1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-uevent.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
24 #include <linux/ktime.h>
25 #include <linux/elevator.h> /* for rq_end_sector() */
26 #include <linux/blk-mq.h>
27 #include <linux/pr.h>
28
29 #include <trace/events/block.h>
30
31 #define DM_MSG_PREFIX "core"
32
33 #ifdef CONFIG_PRINTK
34 /*
35 * ratelimit state to be used in DMXXX_LIMIT().
36 */
37 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
38 DEFAULT_RATELIMIT_INTERVAL,
39 DEFAULT_RATELIMIT_BURST);
40 EXPORT_SYMBOL(dm_ratelimit_state);
41 #endif
42
43 /*
44 * Cookies are numeric values sent with CHANGE and REMOVE
45 * uevents while resuming, removing or renaming the device.
46 */
47 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
48 #define DM_COOKIE_LENGTH 24
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 /*
66 * For bio-based dm.
67 * One of these is allocated per bio.
68 */
69 struct dm_io {
70 struct mapped_device *md;
71 int error;
72 atomic_t io_count;
73 struct bio *bio;
74 unsigned long start_time;
75 spinlock_t endio_lock;
76 struct dm_stats_aux stats_aux;
77 };
78
79 /*
80 * For request-based dm.
81 * One of these is allocated per request.
82 */
83 struct dm_rq_target_io {
84 struct mapped_device *md;
85 struct dm_target *ti;
86 struct request *orig, *clone;
87 struct kthread_work work;
88 int error;
89 union map_info info;
90 struct dm_stats_aux stats_aux;
91 unsigned long duration_jiffies;
92 unsigned n_sectors;
93 };
94
95 /*
96 * For request-based dm - the bio clones we allocate are embedded in these
97 * structs.
98 *
99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
100 * the bioset is created - this means the bio has to come at the end of the
101 * struct.
102 */
103 struct dm_rq_clone_bio_info {
104 struct bio *orig;
105 struct dm_rq_target_io *tio;
106 struct bio clone;
107 };
108
dm_get_rq_mapinfo(struct request * rq)109 union map_info *dm_get_rq_mapinfo(struct request *rq)
110 {
111 if (rq && rq->end_io_data)
112 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
113 return NULL;
114 }
115 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
116
117 #define MINOR_ALLOCED ((void *)-1)
118
119 /*
120 * Bits for the md->flags field.
121 */
122 #define DMF_BLOCK_IO_FOR_SUSPEND 0
123 #define DMF_SUSPENDED 1
124 #define DMF_FROZEN 2
125 #define DMF_FREEING 3
126 #define DMF_DELETING 4
127 #define DMF_NOFLUSH_SUSPENDING 5
128 #define DMF_DEFERRED_REMOVE 6
129 #define DMF_SUSPENDED_INTERNALLY 7
130
131 /*
132 * A dummy definition to make RCU happy.
133 * struct dm_table should never be dereferenced in this file.
134 */
135 struct dm_table {
136 int undefined__;
137 };
138
139 /*
140 * Work processed by per-device workqueue.
141 */
142 struct mapped_device {
143 struct srcu_struct io_barrier;
144 struct mutex suspend_lock;
145 atomic_t holders;
146 atomic_t open_count;
147
148 /*
149 * The current mapping.
150 * Use dm_get_live_table{_fast} or take suspend_lock for
151 * dereference.
152 */
153 struct dm_table __rcu *map;
154
155 struct list_head table_devices;
156 struct mutex table_devices_lock;
157
158 unsigned long flags;
159
160 struct request_queue *queue;
161 unsigned type;
162 /* Protect queue and type against concurrent access. */
163 struct mutex type_lock;
164
165 struct target_type *immutable_target_type;
166
167 struct gendisk *disk;
168 char name[16];
169
170 void *interface_ptr;
171
172 /*
173 * A list of ios that arrived while we were suspended.
174 */
175 atomic_t pending[2];
176 wait_queue_head_t wait;
177 struct work_struct work;
178 struct bio_list deferred;
179 spinlock_t deferred_lock;
180
181 /*
182 * Processing queue (flush)
183 */
184 struct workqueue_struct *wq;
185
186 /*
187 * io objects are allocated from here.
188 */
189 mempool_t *io_pool;
190 mempool_t *rq_pool;
191
192 struct bio_set *bs;
193
194 /*
195 * Event handling.
196 */
197 atomic_t event_nr;
198 wait_queue_head_t eventq;
199 atomic_t uevent_seq;
200 struct list_head uevent_list;
201 spinlock_t uevent_lock; /* Protect access to uevent_list */
202
203 /*
204 * freeze/thaw support require holding onto a super block
205 */
206 struct super_block *frozen_sb;
207 struct block_device *bdev;
208
209 /* forced geometry settings */
210 struct hd_geometry geometry;
211
212 /* kobject and completion */
213 struct dm_kobject_holder kobj_holder;
214
215 /* zero-length flush that will be cloned and submitted to targets */
216 struct bio flush_bio;
217
218 /* the number of internal suspends */
219 unsigned internal_suspend_count;
220
221 struct dm_stats stats;
222
223 struct kthread_worker kworker;
224 struct task_struct *kworker_task;
225
226 /* for request-based merge heuristic in dm_request_fn() */
227 unsigned seq_rq_merge_deadline_usecs;
228 int last_rq_rw;
229 sector_t last_rq_pos;
230 ktime_t last_rq_start_time;
231
232 /* for blk-mq request-based DM support */
233 struct blk_mq_tag_set tag_set;
234 bool use_blk_mq;
235 };
236
237 #ifdef CONFIG_DM_MQ_DEFAULT
238 static bool use_blk_mq = true;
239 #else
240 static bool use_blk_mq = false;
241 #endif
242
dm_use_blk_mq(struct mapped_device * md)243 bool dm_use_blk_mq(struct mapped_device *md)
244 {
245 return md->use_blk_mq;
246 }
247
248 /*
249 * For mempools pre-allocation at the table loading time.
250 */
251 struct dm_md_mempools {
252 mempool_t *io_pool;
253 mempool_t *rq_pool;
254 struct bio_set *bs;
255 };
256
257 struct table_device {
258 struct list_head list;
259 atomic_t count;
260 struct dm_dev dm_dev;
261 };
262
263 #define RESERVED_BIO_BASED_IOS 16
264 #define RESERVED_REQUEST_BASED_IOS 256
265 #define RESERVED_MAX_IOS 1024
266 static struct kmem_cache *_io_cache;
267 static struct kmem_cache *_rq_tio_cache;
268 static struct kmem_cache *_rq_cache;
269
270 /*
271 * Bio-based DM's mempools' reserved IOs set by the user.
272 */
273 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
274
275 /*
276 * Request-based DM's mempools' reserved IOs set by the user.
277 */
278 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
279
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)280 static unsigned __dm_get_module_param(unsigned *module_param,
281 unsigned def, unsigned max)
282 {
283 unsigned param = ACCESS_ONCE(*module_param);
284 unsigned modified_param = 0;
285
286 if (!param)
287 modified_param = def;
288 else if (param > max)
289 modified_param = max;
290
291 if (modified_param) {
292 (void)cmpxchg(module_param, param, modified_param);
293 param = modified_param;
294 }
295
296 return param;
297 }
298
dm_get_reserved_bio_based_ios(void)299 unsigned dm_get_reserved_bio_based_ios(void)
300 {
301 return __dm_get_module_param(&reserved_bio_based_ios,
302 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
303 }
304 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
305
dm_get_reserved_rq_based_ios(void)306 unsigned dm_get_reserved_rq_based_ios(void)
307 {
308 return __dm_get_module_param(&reserved_rq_based_ios,
309 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
310 }
311 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
312
local_init(void)313 static int __init local_init(void)
314 {
315 int r = -ENOMEM;
316
317 /* allocate a slab for the dm_ios */
318 _io_cache = KMEM_CACHE(dm_io, 0);
319 if (!_io_cache)
320 return r;
321
322 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
323 if (!_rq_tio_cache)
324 goto out_free_io_cache;
325
326 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
327 __alignof__(struct request), 0, NULL);
328 if (!_rq_cache)
329 goto out_free_rq_tio_cache;
330
331 r = dm_uevent_init();
332 if (r)
333 goto out_free_rq_cache;
334
335 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
336 if (!deferred_remove_workqueue) {
337 r = -ENOMEM;
338 goto out_uevent_exit;
339 }
340
341 _major = major;
342 r = register_blkdev(_major, _name);
343 if (r < 0)
344 goto out_free_workqueue;
345
346 if (!_major)
347 _major = r;
348
349 return 0;
350
351 out_free_workqueue:
352 destroy_workqueue(deferred_remove_workqueue);
353 out_uevent_exit:
354 dm_uevent_exit();
355 out_free_rq_cache:
356 kmem_cache_destroy(_rq_cache);
357 out_free_rq_tio_cache:
358 kmem_cache_destroy(_rq_tio_cache);
359 out_free_io_cache:
360 kmem_cache_destroy(_io_cache);
361
362 return r;
363 }
364
local_exit(void)365 static void local_exit(void)
366 {
367 flush_scheduled_work();
368 destroy_workqueue(deferred_remove_workqueue);
369
370 kmem_cache_destroy(_rq_cache);
371 kmem_cache_destroy(_rq_tio_cache);
372 kmem_cache_destroy(_io_cache);
373 unregister_blkdev(_major, _name);
374 dm_uevent_exit();
375
376 _major = 0;
377
378 DMINFO("cleaned up");
379 }
380
381 static int (*_inits[])(void) __initdata = {
382 local_init,
383 dm_target_init,
384 dm_linear_init,
385 dm_stripe_init,
386 dm_io_init,
387 dm_kcopyd_init,
388 dm_interface_init,
389 dm_statistics_init,
390 };
391
392 static void (*_exits[])(void) = {
393 local_exit,
394 dm_target_exit,
395 dm_linear_exit,
396 dm_stripe_exit,
397 dm_io_exit,
398 dm_kcopyd_exit,
399 dm_interface_exit,
400 dm_statistics_exit,
401 };
402
dm_init(void)403 static int __init dm_init(void)
404 {
405 const int count = ARRAY_SIZE(_inits);
406
407 int r, i;
408
409 for (i = 0; i < count; i++) {
410 r = _inits[i]();
411 if (r)
412 goto bad;
413 }
414
415 return 0;
416
417 bad:
418 while (i--)
419 _exits[i]();
420
421 return r;
422 }
423
dm_exit(void)424 static void __exit dm_exit(void)
425 {
426 int i = ARRAY_SIZE(_exits);
427
428 while (i--)
429 _exits[i]();
430
431 /*
432 * Should be empty by this point.
433 */
434 idr_destroy(&_minor_idr);
435 }
436
437 /*
438 * Block device functions
439 */
dm_deleting_md(struct mapped_device * md)440 int dm_deleting_md(struct mapped_device *md)
441 {
442 return test_bit(DMF_DELETING, &md->flags);
443 }
444
dm_blk_open(struct block_device * bdev,fmode_t mode)445 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
446 {
447 struct mapped_device *md;
448
449 spin_lock(&_minor_lock);
450
451 md = bdev->bd_disk->private_data;
452 if (!md)
453 goto out;
454
455 if (test_bit(DMF_FREEING, &md->flags) ||
456 dm_deleting_md(md)) {
457 md = NULL;
458 goto out;
459 }
460
461 dm_get(md);
462 atomic_inc(&md->open_count);
463 out:
464 spin_unlock(&_minor_lock);
465
466 return md ? 0 : -ENXIO;
467 }
468
dm_blk_close(struct gendisk * disk,fmode_t mode)469 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
470 {
471 struct mapped_device *md;
472
473 spin_lock(&_minor_lock);
474
475 md = disk->private_data;
476 if (WARN_ON(!md))
477 goto out;
478
479 if (atomic_dec_and_test(&md->open_count) &&
480 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
481 queue_work(deferred_remove_workqueue, &deferred_remove_work);
482
483 dm_put(md);
484 out:
485 spin_unlock(&_minor_lock);
486 }
487
dm_open_count(struct mapped_device * md)488 int dm_open_count(struct mapped_device *md)
489 {
490 return atomic_read(&md->open_count);
491 }
492
493 /*
494 * Guarantees nothing is using the device before it's deleted.
495 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)496 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
497 {
498 int r = 0;
499
500 spin_lock(&_minor_lock);
501
502 if (dm_open_count(md)) {
503 r = -EBUSY;
504 if (mark_deferred)
505 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
506 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
507 r = -EEXIST;
508 else
509 set_bit(DMF_DELETING, &md->flags);
510
511 spin_unlock(&_minor_lock);
512
513 return r;
514 }
515
dm_cancel_deferred_remove(struct mapped_device * md)516 int dm_cancel_deferred_remove(struct mapped_device *md)
517 {
518 int r = 0;
519
520 spin_lock(&_minor_lock);
521
522 if (test_bit(DMF_DELETING, &md->flags))
523 r = -EBUSY;
524 else
525 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
526
527 spin_unlock(&_minor_lock);
528
529 return r;
530 }
531
do_deferred_remove(struct work_struct * w)532 static void do_deferred_remove(struct work_struct *w)
533 {
534 dm_deferred_remove();
535 }
536
dm_get_size(struct mapped_device * md)537 sector_t dm_get_size(struct mapped_device *md)
538 {
539 return get_capacity(md->disk);
540 }
541
dm_get_md_queue(struct mapped_device * md)542 struct request_queue *dm_get_md_queue(struct mapped_device *md)
543 {
544 return md->queue;
545 }
546
dm_get_stats(struct mapped_device * md)547 struct dm_stats *dm_get_stats(struct mapped_device *md)
548 {
549 return &md->stats;
550 }
551
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)552 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
553 {
554 struct mapped_device *md = bdev->bd_disk->private_data;
555
556 return dm_get_geometry(md, geo);
557 }
558
dm_get_live_table_for_ioctl(struct mapped_device * md,struct dm_target ** tgt,struct block_device ** bdev,fmode_t * mode,int * srcu_idx)559 static int dm_get_live_table_for_ioctl(struct mapped_device *md,
560 struct dm_target **tgt, struct block_device **bdev,
561 fmode_t *mode, int *srcu_idx)
562 {
563 struct dm_table *map;
564 int r;
565
566 retry:
567 r = -ENOTTY;
568 map = dm_get_live_table(md, srcu_idx);
569 if (!map || !dm_table_get_size(map))
570 goto out;
571
572 /* We only support devices that have a single target */
573 if (dm_table_get_num_targets(map) != 1)
574 goto out;
575
576 *tgt = dm_table_get_target(map, 0);
577
578 if (!(*tgt)->type->prepare_ioctl)
579 goto out;
580
581 if (dm_suspended_md(md)) {
582 r = -EAGAIN;
583 goto out;
584 }
585
586 r = (*tgt)->type->prepare_ioctl(*tgt, bdev, mode);
587 if (r < 0)
588 goto out;
589
590 return r;
591
592 out:
593 dm_put_live_table(md, *srcu_idx);
594 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
595 msleep(10);
596 goto retry;
597 }
598 return r;
599 }
600
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)601 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
602 unsigned int cmd, unsigned long arg)
603 {
604 struct mapped_device *md = bdev->bd_disk->private_data;
605 struct dm_target *tgt;
606 struct block_device *tgt_bdev = NULL;
607 int srcu_idx, r;
608
609 r = dm_get_live_table_for_ioctl(md, &tgt, &tgt_bdev, &mode, &srcu_idx);
610 if (r < 0)
611 return r;
612
613 if (r > 0) {
614 /*
615 * Target determined this ioctl is being issued against
616 * a logical partition of the parent bdev; so extra
617 * validation is needed.
618 */
619 r = scsi_verify_blk_ioctl(NULL, cmd);
620 if (r)
621 goto out;
622 }
623
624 r = __blkdev_driver_ioctl(tgt_bdev, mode, cmd, arg);
625 out:
626 dm_put_live_table(md, srcu_idx);
627 return r;
628 }
629
alloc_io(struct mapped_device * md)630 static struct dm_io *alloc_io(struct mapped_device *md)
631 {
632 return mempool_alloc(md->io_pool, GFP_NOIO);
633 }
634
free_io(struct mapped_device * md,struct dm_io * io)635 static void free_io(struct mapped_device *md, struct dm_io *io)
636 {
637 mempool_free(io, md->io_pool);
638 }
639
free_tio(struct mapped_device * md,struct dm_target_io * tio)640 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
641 {
642 bio_put(&tio->clone);
643 }
644
alloc_rq_tio(struct mapped_device * md,gfp_t gfp_mask)645 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
646 gfp_t gfp_mask)
647 {
648 return mempool_alloc(md->io_pool, gfp_mask);
649 }
650
free_rq_tio(struct dm_rq_target_io * tio)651 static void free_rq_tio(struct dm_rq_target_io *tio)
652 {
653 mempool_free(tio, tio->md->io_pool);
654 }
655
alloc_clone_request(struct mapped_device * md,gfp_t gfp_mask)656 static struct request *alloc_clone_request(struct mapped_device *md,
657 gfp_t gfp_mask)
658 {
659 return mempool_alloc(md->rq_pool, gfp_mask);
660 }
661
free_clone_request(struct mapped_device * md,struct request * rq)662 static void free_clone_request(struct mapped_device *md, struct request *rq)
663 {
664 mempool_free(rq, md->rq_pool);
665 }
666
md_in_flight(struct mapped_device * md)667 static int md_in_flight(struct mapped_device *md)
668 {
669 return atomic_read(&md->pending[READ]) +
670 atomic_read(&md->pending[WRITE]);
671 }
672
start_io_acct(struct dm_io * io)673 static void start_io_acct(struct dm_io *io)
674 {
675 struct mapped_device *md = io->md;
676 struct bio *bio = io->bio;
677 int cpu;
678 int rw = bio_data_dir(bio);
679
680 io->start_time = jiffies;
681
682 cpu = part_stat_lock();
683 part_round_stats(cpu, &dm_disk(md)->part0);
684 part_stat_unlock();
685 atomic_set(&dm_disk(md)->part0.in_flight[rw],
686 atomic_inc_return(&md->pending[rw]));
687
688 if (unlikely(dm_stats_used(&md->stats)))
689 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
690 bio_sectors(bio), false, 0, &io->stats_aux);
691 }
692
end_io_acct(struct dm_io * io)693 static void end_io_acct(struct dm_io *io)
694 {
695 struct mapped_device *md = io->md;
696 struct bio *bio = io->bio;
697 unsigned long duration = jiffies - io->start_time;
698 int pending;
699 int rw = bio_data_dir(bio);
700
701 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
702
703 if (unlikely(dm_stats_used(&md->stats)))
704 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
705 bio_sectors(bio), true, duration, &io->stats_aux);
706
707 /*
708 * After this is decremented the bio must not be touched if it is
709 * a flush.
710 */
711 pending = atomic_dec_return(&md->pending[rw]);
712 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
713 pending += atomic_read(&md->pending[rw^0x1]);
714
715 /* nudge anyone waiting on suspend queue */
716 if (!pending)
717 wake_up(&md->wait);
718 }
719
720 /*
721 * Add the bio to the list of deferred io.
722 */
queue_io(struct mapped_device * md,struct bio * bio)723 static void queue_io(struct mapped_device *md, struct bio *bio)
724 {
725 unsigned long flags;
726
727 spin_lock_irqsave(&md->deferred_lock, flags);
728 bio_list_add(&md->deferred, bio);
729 spin_unlock_irqrestore(&md->deferred_lock, flags);
730 queue_work(md->wq, &md->work);
731 }
732
733 /*
734 * Everyone (including functions in this file), should use this
735 * function to access the md->map field, and make sure they call
736 * dm_put_live_table() when finished.
737 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)738 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
739 {
740 *srcu_idx = srcu_read_lock(&md->io_barrier);
741
742 return srcu_dereference(md->map, &md->io_barrier);
743 }
744
dm_put_live_table(struct mapped_device * md,int srcu_idx)745 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
746 {
747 srcu_read_unlock(&md->io_barrier, srcu_idx);
748 }
749
dm_sync_table(struct mapped_device * md)750 void dm_sync_table(struct mapped_device *md)
751 {
752 synchronize_srcu(&md->io_barrier);
753 synchronize_rcu_expedited();
754 }
755
756 /*
757 * A fast alternative to dm_get_live_table/dm_put_live_table.
758 * The caller must not block between these two functions.
759 */
dm_get_live_table_fast(struct mapped_device * md)760 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
761 {
762 rcu_read_lock();
763 return rcu_dereference(md->map);
764 }
765
dm_put_live_table_fast(struct mapped_device * md)766 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
767 {
768 rcu_read_unlock();
769 }
770
771 /*
772 * Open a table device so we can use it as a map destination.
773 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)774 static int open_table_device(struct table_device *td, dev_t dev,
775 struct mapped_device *md)
776 {
777 static char *_claim_ptr = "I belong to device-mapper";
778 struct block_device *bdev;
779
780 int r;
781
782 BUG_ON(td->dm_dev.bdev);
783
784 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
785 if (IS_ERR(bdev))
786 return PTR_ERR(bdev);
787
788 r = bd_link_disk_holder(bdev, dm_disk(md));
789 if (r) {
790 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
791 return r;
792 }
793
794 td->dm_dev.bdev = bdev;
795 return 0;
796 }
797
798 /*
799 * Close a table device that we've been using.
800 */
close_table_device(struct table_device * td,struct mapped_device * md)801 static void close_table_device(struct table_device *td, struct mapped_device *md)
802 {
803 if (!td->dm_dev.bdev)
804 return;
805
806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
808 td->dm_dev.bdev = NULL;
809 }
810
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)811 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
812 fmode_t mode) {
813 struct table_device *td;
814
815 list_for_each_entry(td, l, list)
816 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
817 return td;
818
819 return NULL;
820 }
821
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)822 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
823 struct dm_dev **result) {
824 int r;
825 struct table_device *td;
826
827 mutex_lock(&md->table_devices_lock);
828 td = find_table_device(&md->table_devices, dev, mode);
829 if (!td) {
830 td = kmalloc(sizeof(*td), GFP_KERNEL);
831 if (!td) {
832 mutex_unlock(&md->table_devices_lock);
833 return -ENOMEM;
834 }
835
836 td->dm_dev.mode = mode;
837 td->dm_dev.bdev = NULL;
838
839 if ((r = open_table_device(td, dev, md))) {
840 mutex_unlock(&md->table_devices_lock);
841 kfree(td);
842 return r;
843 }
844
845 format_dev_t(td->dm_dev.name, dev);
846
847 atomic_set(&td->count, 0);
848 list_add(&td->list, &md->table_devices);
849 }
850 atomic_inc(&td->count);
851 mutex_unlock(&md->table_devices_lock);
852
853 *result = &td->dm_dev;
854 return 0;
855 }
856 EXPORT_SYMBOL_GPL(dm_get_table_device);
857
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)858 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
859 {
860 struct table_device *td = container_of(d, struct table_device, dm_dev);
861
862 mutex_lock(&md->table_devices_lock);
863 if (atomic_dec_and_test(&td->count)) {
864 close_table_device(td, md);
865 list_del(&td->list);
866 kfree(td);
867 }
868 mutex_unlock(&md->table_devices_lock);
869 }
870 EXPORT_SYMBOL(dm_put_table_device);
871
free_table_devices(struct list_head * devices)872 static void free_table_devices(struct list_head *devices)
873 {
874 struct list_head *tmp, *next;
875
876 list_for_each_safe(tmp, next, devices) {
877 struct table_device *td = list_entry(tmp, struct table_device, list);
878
879 DMWARN("dm_destroy: %s still exists with %d references",
880 td->dm_dev.name, atomic_read(&td->count));
881 kfree(td);
882 }
883 }
884
885 /*
886 * Get the geometry associated with a dm device
887 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)888 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
889 {
890 *geo = md->geometry;
891
892 return 0;
893 }
894
895 /*
896 * Set the geometry of a device.
897 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)898 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
899 {
900 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
901
902 if (geo->start > sz) {
903 DMWARN("Start sector is beyond the geometry limits.");
904 return -EINVAL;
905 }
906
907 md->geometry = *geo;
908
909 return 0;
910 }
911
912 /*-----------------------------------------------------------------
913 * CRUD START:
914 * A more elegant soln is in the works that uses the queue
915 * merge fn, unfortunately there are a couple of changes to
916 * the block layer that I want to make for this. So in the
917 * interests of getting something for people to use I give
918 * you this clearly demarcated crap.
919 *---------------------------------------------------------------*/
920
__noflush_suspending(struct mapped_device * md)921 static int __noflush_suspending(struct mapped_device *md)
922 {
923 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
924 }
925
926 /*
927 * Decrements the number of outstanding ios that a bio has been
928 * cloned into, completing the original io if necc.
929 */
dec_pending(struct dm_io * io,int error)930 static void dec_pending(struct dm_io *io, int error)
931 {
932 unsigned long flags;
933 int io_error;
934 struct bio *bio;
935 struct mapped_device *md = io->md;
936
937 /* Push-back supersedes any I/O errors */
938 if (unlikely(error)) {
939 spin_lock_irqsave(&io->endio_lock, flags);
940 if (!(io->error > 0 && __noflush_suspending(md)))
941 io->error = error;
942 spin_unlock_irqrestore(&io->endio_lock, flags);
943 }
944
945 if (atomic_dec_and_test(&io->io_count)) {
946 if (io->error == DM_ENDIO_REQUEUE) {
947 /*
948 * Target requested pushing back the I/O.
949 */
950 spin_lock_irqsave(&md->deferred_lock, flags);
951 if (__noflush_suspending(md))
952 bio_list_add_head(&md->deferred, io->bio);
953 else
954 /* noflush suspend was interrupted. */
955 io->error = -EIO;
956 spin_unlock_irqrestore(&md->deferred_lock, flags);
957 }
958
959 io_error = io->error;
960 bio = io->bio;
961 end_io_acct(io);
962 free_io(md, io);
963
964 if (io_error == DM_ENDIO_REQUEUE)
965 return;
966
967 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
968 /*
969 * Preflush done for flush with data, reissue
970 * without REQ_FLUSH.
971 */
972 bio->bi_rw &= ~REQ_FLUSH;
973 queue_io(md, bio);
974 } else {
975 /* done with normal IO or empty flush */
976 trace_block_bio_complete(md->queue, bio, io_error);
977 if (io_error)
978 bio->bi_error = io_error;
979 bio_endio(bio);
980 }
981 }
982 }
983
disable_write_same(struct mapped_device * md)984 static void disable_write_same(struct mapped_device *md)
985 {
986 struct queue_limits *limits = dm_get_queue_limits(md);
987
988 /* device doesn't really support WRITE SAME, disable it */
989 limits->max_write_same_sectors = 0;
990 }
991
clone_endio(struct bio * bio)992 static void clone_endio(struct bio *bio)
993 {
994 int error = bio->bi_error;
995 int r = error;
996 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
997 struct dm_io *io = tio->io;
998 struct mapped_device *md = tio->io->md;
999 dm_endio_fn endio = tio->ti->type->end_io;
1000
1001 if (endio) {
1002 r = endio(tio->ti, bio, error);
1003 if (r < 0 || r == DM_ENDIO_REQUEUE)
1004 /*
1005 * error and requeue request are handled
1006 * in dec_pending().
1007 */
1008 error = r;
1009 else if (r == DM_ENDIO_INCOMPLETE)
1010 /* The target will handle the io */
1011 return;
1012 else if (r) {
1013 DMWARN("unimplemented target endio return value: %d", r);
1014 BUG();
1015 }
1016 }
1017
1018 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1019 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1020 disable_write_same(md);
1021
1022 free_tio(md, tio);
1023 dec_pending(io, error);
1024 }
1025
1026 /*
1027 * Partial completion handling for request-based dm
1028 */
end_clone_bio(struct bio * clone)1029 static void end_clone_bio(struct bio *clone)
1030 {
1031 struct dm_rq_clone_bio_info *info =
1032 container_of(clone, struct dm_rq_clone_bio_info, clone);
1033 struct dm_rq_target_io *tio = info->tio;
1034 struct bio *bio = info->orig;
1035 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1036 int error = clone->bi_error;
1037
1038 bio_put(clone);
1039
1040 if (tio->error)
1041 /*
1042 * An error has already been detected on the request.
1043 * Once error occurred, just let clone->end_io() handle
1044 * the remainder.
1045 */
1046 return;
1047 else if (error) {
1048 /*
1049 * Don't notice the error to the upper layer yet.
1050 * The error handling decision is made by the target driver,
1051 * when the request is completed.
1052 */
1053 tio->error = error;
1054 return;
1055 }
1056
1057 /*
1058 * I/O for the bio successfully completed.
1059 * Notice the data completion to the upper layer.
1060 */
1061
1062 /*
1063 * bios are processed from the head of the list.
1064 * So the completing bio should always be rq->bio.
1065 * If it's not, something wrong is happening.
1066 */
1067 if (tio->orig->bio != bio)
1068 DMERR("bio completion is going in the middle of the request");
1069
1070 /*
1071 * Update the original request.
1072 * Do not use blk_end_request() here, because it may complete
1073 * the original request before the clone, and break the ordering.
1074 */
1075 blk_update_request(tio->orig, 0, nr_bytes);
1076 }
1077
tio_from_request(struct request * rq)1078 static struct dm_rq_target_io *tio_from_request(struct request *rq)
1079 {
1080 return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1081 }
1082
rq_end_stats(struct mapped_device * md,struct request * orig)1083 static void rq_end_stats(struct mapped_device *md, struct request *orig)
1084 {
1085 if (unlikely(dm_stats_used(&md->stats))) {
1086 struct dm_rq_target_io *tio = tio_from_request(orig);
1087 tio->duration_jiffies = jiffies - tio->duration_jiffies;
1088 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1089 tio->n_sectors, true, tio->duration_jiffies,
1090 &tio->stats_aux);
1091 }
1092 }
1093
1094 /*
1095 * Don't touch any member of the md after calling this function because
1096 * the md may be freed in dm_put() at the end of this function.
1097 * Or do dm_get() before calling this function and dm_put() later.
1098 */
rq_completed(struct mapped_device * md,int rw,bool run_queue)1099 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1100 {
1101 atomic_dec(&md->pending[rw]);
1102
1103 /* nudge anyone waiting on suspend queue */
1104 if (!md_in_flight(md))
1105 wake_up(&md->wait);
1106
1107 /*
1108 * Run this off this callpath, as drivers could invoke end_io while
1109 * inside their request_fn (and holding the queue lock). Calling
1110 * back into ->request_fn() could deadlock attempting to grab the
1111 * queue lock again.
1112 */
1113 if (!md->queue->mq_ops && run_queue)
1114 blk_run_queue_async(md->queue);
1115
1116 /*
1117 * dm_put() must be at the end of this function. See the comment above
1118 */
1119 dm_put(md);
1120 }
1121
free_rq_clone(struct request * clone)1122 static void free_rq_clone(struct request *clone)
1123 {
1124 struct dm_rq_target_io *tio = clone->end_io_data;
1125 struct mapped_device *md = tio->md;
1126
1127 blk_rq_unprep_clone(clone);
1128
1129 if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1130 /* stacked on blk-mq queue(s) */
1131 tio->ti->type->release_clone_rq(clone);
1132 else if (!md->queue->mq_ops)
1133 /* request_fn queue stacked on request_fn queue(s) */
1134 free_clone_request(md, clone);
1135 /*
1136 * NOTE: for the blk-mq queue stacked on request_fn queue(s) case:
1137 * no need to call free_clone_request() because we leverage blk-mq by
1138 * allocating the clone at the end of the blk-mq pdu (see: clone_rq)
1139 */
1140
1141 if (!md->queue->mq_ops)
1142 free_rq_tio(tio);
1143 }
1144
1145 /*
1146 * Complete the clone and the original request.
1147 * Must be called without clone's queue lock held,
1148 * see end_clone_request() for more details.
1149 */
dm_end_request(struct request * clone,int error)1150 static void dm_end_request(struct request *clone, int error)
1151 {
1152 int rw = rq_data_dir(clone);
1153 struct dm_rq_target_io *tio = clone->end_io_data;
1154 struct mapped_device *md = tio->md;
1155 struct request *rq = tio->orig;
1156
1157 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1158 rq->errors = clone->errors;
1159 rq->resid_len = clone->resid_len;
1160
1161 if (rq->sense)
1162 /*
1163 * We are using the sense buffer of the original
1164 * request.
1165 * So setting the length of the sense data is enough.
1166 */
1167 rq->sense_len = clone->sense_len;
1168 }
1169
1170 free_rq_clone(clone);
1171 rq_end_stats(md, rq);
1172 if (!rq->q->mq_ops)
1173 blk_end_request_all(rq, error);
1174 else
1175 blk_mq_end_request(rq, error);
1176 rq_completed(md, rw, true);
1177 }
1178
dm_unprep_request(struct request * rq)1179 static void dm_unprep_request(struct request *rq)
1180 {
1181 struct dm_rq_target_io *tio = tio_from_request(rq);
1182 struct request *clone = tio->clone;
1183
1184 if (!rq->q->mq_ops) {
1185 rq->special = NULL;
1186 rq->cmd_flags &= ~REQ_DONTPREP;
1187 }
1188
1189 if (clone)
1190 free_rq_clone(clone);
1191 else if (!tio->md->queue->mq_ops)
1192 free_rq_tio(tio);
1193 }
1194
1195 /*
1196 * Requeue the original request of a clone.
1197 */
old_requeue_request(struct request * rq)1198 static void old_requeue_request(struct request *rq)
1199 {
1200 struct request_queue *q = rq->q;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(q->queue_lock, flags);
1204 blk_requeue_request(q, rq);
1205 blk_run_queue_async(q);
1206 spin_unlock_irqrestore(q->queue_lock, flags);
1207 }
1208
dm_requeue_original_request(struct mapped_device * md,struct request * rq)1209 static void dm_requeue_original_request(struct mapped_device *md,
1210 struct request *rq)
1211 {
1212 int rw = rq_data_dir(rq);
1213
1214 rq_end_stats(md, rq);
1215 dm_unprep_request(rq);
1216
1217 if (!rq->q->mq_ops)
1218 old_requeue_request(rq);
1219 else {
1220 blk_mq_requeue_request(rq);
1221 blk_mq_kick_requeue_list(rq->q);
1222 }
1223
1224 rq_completed(md, rw, false);
1225 }
1226
old_stop_queue(struct request_queue * q)1227 static void old_stop_queue(struct request_queue *q)
1228 {
1229 unsigned long flags;
1230
1231 if (blk_queue_stopped(q))
1232 return;
1233
1234 spin_lock_irqsave(q->queue_lock, flags);
1235 blk_stop_queue(q);
1236 spin_unlock_irqrestore(q->queue_lock, flags);
1237 }
1238
stop_queue(struct request_queue * q)1239 static void stop_queue(struct request_queue *q)
1240 {
1241 if (!q->mq_ops)
1242 old_stop_queue(q);
1243 else
1244 blk_mq_stop_hw_queues(q);
1245 }
1246
old_start_queue(struct request_queue * q)1247 static void old_start_queue(struct request_queue *q)
1248 {
1249 unsigned long flags;
1250
1251 spin_lock_irqsave(q->queue_lock, flags);
1252 if (blk_queue_stopped(q))
1253 blk_start_queue(q);
1254 spin_unlock_irqrestore(q->queue_lock, flags);
1255 }
1256
start_queue(struct request_queue * q)1257 static void start_queue(struct request_queue *q)
1258 {
1259 if (!q->mq_ops)
1260 old_start_queue(q);
1261 else
1262 blk_mq_start_stopped_hw_queues(q, true);
1263 }
1264
dm_done(struct request * clone,int error,bool mapped)1265 static void dm_done(struct request *clone, int error, bool mapped)
1266 {
1267 int r = error;
1268 struct dm_rq_target_io *tio = clone->end_io_data;
1269 dm_request_endio_fn rq_end_io = NULL;
1270
1271 if (tio->ti) {
1272 rq_end_io = tio->ti->type->rq_end_io;
1273
1274 if (mapped && rq_end_io)
1275 r = rq_end_io(tio->ti, clone, error, &tio->info);
1276 }
1277
1278 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1279 !clone->q->limits.max_write_same_sectors))
1280 disable_write_same(tio->md);
1281
1282 if (r <= 0)
1283 /* The target wants to complete the I/O */
1284 dm_end_request(clone, r);
1285 else if (r == DM_ENDIO_INCOMPLETE)
1286 /* The target will handle the I/O */
1287 return;
1288 else if (r == DM_ENDIO_REQUEUE)
1289 /* The target wants to requeue the I/O */
1290 dm_requeue_original_request(tio->md, tio->orig);
1291 else {
1292 DMWARN("unimplemented target endio return value: %d", r);
1293 BUG();
1294 }
1295 }
1296
1297 /*
1298 * Request completion handler for request-based dm
1299 */
dm_softirq_done(struct request * rq)1300 static void dm_softirq_done(struct request *rq)
1301 {
1302 bool mapped = true;
1303 struct dm_rq_target_io *tio = tio_from_request(rq);
1304 struct request *clone = tio->clone;
1305 int rw;
1306
1307 if (!clone) {
1308 rq_end_stats(tio->md, rq);
1309 rw = rq_data_dir(rq);
1310 if (!rq->q->mq_ops) {
1311 blk_end_request_all(rq, tio->error);
1312 rq_completed(tio->md, rw, false);
1313 free_rq_tio(tio);
1314 } else {
1315 blk_mq_end_request(rq, tio->error);
1316 rq_completed(tio->md, rw, false);
1317 }
1318 return;
1319 }
1320
1321 if (rq->cmd_flags & REQ_FAILED)
1322 mapped = false;
1323
1324 dm_done(clone, tio->error, mapped);
1325 }
1326
1327 /*
1328 * Complete the clone and the original request with the error status
1329 * through softirq context.
1330 */
dm_complete_request(struct request * rq,int error)1331 static void dm_complete_request(struct request *rq, int error)
1332 {
1333 struct dm_rq_target_io *tio = tio_from_request(rq);
1334
1335 tio->error = error;
1336 if (!rq->q->mq_ops)
1337 blk_complete_request(rq);
1338 else
1339 blk_mq_complete_request(rq, error);
1340 }
1341
1342 /*
1343 * Complete the not-mapped clone and the original request with the error status
1344 * through softirq context.
1345 * Target's rq_end_io() function isn't called.
1346 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1347 */
dm_kill_unmapped_request(struct request * rq,int error)1348 static void dm_kill_unmapped_request(struct request *rq, int error)
1349 {
1350 rq->cmd_flags |= REQ_FAILED;
1351 dm_complete_request(rq, error);
1352 }
1353
1354 /*
1355 * Called with the clone's queue lock held (for non-blk-mq)
1356 */
end_clone_request(struct request * clone,int error)1357 static void end_clone_request(struct request *clone, int error)
1358 {
1359 struct dm_rq_target_io *tio = clone->end_io_data;
1360
1361 if (!clone->q->mq_ops) {
1362 /*
1363 * For just cleaning up the information of the queue in which
1364 * the clone was dispatched.
1365 * The clone is *NOT* freed actually here because it is alloced
1366 * from dm own mempool (REQ_ALLOCED isn't set).
1367 */
1368 __blk_put_request(clone->q, clone);
1369 }
1370
1371 /*
1372 * Actual request completion is done in a softirq context which doesn't
1373 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1374 * - another request may be submitted by the upper level driver
1375 * of the stacking during the completion
1376 * - the submission which requires queue lock may be done
1377 * against this clone's queue
1378 */
1379 dm_complete_request(tio->orig, error);
1380 }
1381
1382 /*
1383 * Return maximum size of I/O possible at the supplied sector up to the current
1384 * target boundary.
1385 */
max_io_len_target_boundary(sector_t sector,struct dm_target * ti)1386 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1387 {
1388 sector_t target_offset = dm_target_offset(ti, sector);
1389
1390 return ti->len - target_offset;
1391 }
1392
max_io_len(sector_t sector,struct dm_target * ti)1393 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1394 {
1395 sector_t len = max_io_len_target_boundary(sector, ti);
1396 sector_t offset, max_len;
1397
1398 /*
1399 * Does the target need to split even further?
1400 */
1401 if (ti->max_io_len) {
1402 offset = dm_target_offset(ti, sector);
1403 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1404 max_len = sector_div(offset, ti->max_io_len);
1405 else
1406 max_len = offset & (ti->max_io_len - 1);
1407 max_len = ti->max_io_len - max_len;
1408
1409 if (len > max_len)
1410 len = max_len;
1411 }
1412
1413 return len;
1414 }
1415
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1416 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1417 {
1418 if (len > UINT_MAX) {
1419 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1420 (unsigned long long)len, UINT_MAX);
1421 ti->error = "Maximum size of target IO is too large";
1422 return -EINVAL;
1423 }
1424
1425 ti->max_io_len = (uint32_t) len;
1426
1427 return 0;
1428 }
1429 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1430
1431 /*
1432 * A target may call dm_accept_partial_bio only from the map routine. It is
1433 * allowed for all bio types except REQ_FLUSH.
1434 *
1435 * dm_accept_partial_bio informs the dm that the target only wants to process
1436 * additional n_sectors sectors of the bio and the rest of the data should be
1437 * sent in a next bio.
1438 *
1439 * A diagram that explains the arithmetics:
1440 * +--------------------+---------------+-------+
1441 * | 1 | 2 | 3 |
1442 * +--------------------+---------------+-------+
1443 *
1444 * <-------------- *tio->len_ptr --------------->
1445 * <------- bi_size ------->
1446 * <-- n_sectors -->
1447 *
1448 * Region 1 was already iterated over with bio_advance or similar function.
1449 * (it may be empty if the target doesn't use bio_advance)
1450 * Region 2 is the remaining bio size that the target wants to process.
1451 * (it may be empty if region 1 is non-empty, although there is no reason
1452 * to make it empty)
1453 * The target requires that region 3 is to be sent in the next bio.
1454 *
1455 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1456 * the partially processed part (the sum of regions 1+2) must be the same for all
1457 * copies of the bio.
1458 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1459 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1460 {
1461 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1462 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1463 BUG_ON(bio->bi_rw & REQ_FLUSH);
1464 BUG_ON(bi_size > *tio->len_ptr);
1465 BUG_ON(n_sectors > bi_size);
1466 *tio->len_ptr -= bi_size - n_sectors;
1467 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1468 }
1469 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1470
1471 /*
1472 * Flush current->bio_list when the target map method blocks.
1473 * This fixes deadlocks in snapshot and possibly in other targets.
1474 */
1475 struct dm_offload {
1476 struct blk_plug plug;
1477 struct blk_plug_cb cb;
1478 };
1479
flush_current_bio_list(struct blk_plug_cb * cb,bool from_schedule)1480 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1481 {
1482 struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1483 struct bio_list list;
1484 struct bio *bio;
1485 int i;
1486
1487 INIT_LIST_HEAD(&o->cb.list);
1488
1489 if (unlikely(!current->bio_list))
1490 return;
1491
1492 for (i = 0; i < 2; i++) {
1493 list = current->bio_list[i];
1494 bio_list_init(¤t->bio_list[i]);
1495
1496 while ((bio = bio_list_pop(&list))) {
1497 struct bio_set *bs = bio->bi_pool;
1498 if (unlikely(!bs) || bs == fs_bio_set) {
1499 bio_list_add(¤t->bio_list[i], bio);
1500 continue;
1501 }
1502
1503 spin_lock(&bs->rescue_lock);
1504 bio_list_add(&bs->rescue_list, bio);
1505 queue_work(bs->rescue_workqueue, &bs->rescue_work);
1506 spin_unlock(&bs->rescue_lock);
1507 }
1508 }
1509 }
1510
dm_offload_start(struct dm_offload * o)1511 static void dm_offload_start(struct dm_offload *o)
1512 {
1513 blk_start_plug(&o->plug);
1514 o->cb.callback = flush_current_bio_list;
1515 list_add(&o->cb.list, ¤t->plug->cb_list);
1516 }
1517
dm_offload_end(struct dm_offload * o)1518 static void dm_offload_end(struct dm_offload *o)
1519 {
1520 list_del(&o->cb.list);
1521 blk_finish_plug(&o->plug);
1522 }
1523
__map_bio(struct dm_target_io * tio)1524 static void __map_bio(struct dm_target_io *tio)
1525 {
1526 int r;
1527 sector_t sector;
1528 struct mapped_device *md;
1529 struct dm_offload o;
1530 struct bio *clone = &tio->clone;
1531 struct dm_target *ti = tio->ti;
1532
1533 clone->bi_end_io = clone_endio;
1534
1535 /*
1536 * Map the clone. If r == 0 we don't need to do
1537 * anything, the target has assumed ownership of
1538 * this io.
1539 */
1540 atomic_inc(&tio->io->io_count);
1541 sector = clone->bi_iter.bi_sector;
1542
1543 dm_offload_start(&o);
1544 r = ti->type->map(ti, clone);
1545 dm_offload_end(&o);
1546
1547 if (r == DM_MAPIO_REMAPPED) {
1548 /* the bio has been remapped so dispatch it */
1549
1550 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1551 tio->io->bio->bi_bdev->bd_dev, sector);
1552
1553 generic_make_request(clone);
1554 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1555 /* error the io and bail out, or requeue it if needed */
1556 md = tio->io->md;
1557 dec_pending(tio->io, r);
1558 free_tio(md, tio);
1559 } else if (r != DM_MAPIO_SUBMITTED) {
1560 DMWARN("unimplemented target map return value: %d", r);
1561 BUG();
1562 }
1563 }
1564
1565 struct clone_info {
1566 struct mapped_device *md;
1567 struct dm_table *map;
1568 struct bio *bio;
1569 struct dm_io *io;
1570 sector_t sector;
1571 unsigned sector_count;
1572 };
1573
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1574 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1575 {
1576 bio->bi_iter.bi_sector = sector;
1577 bio->bi_iter.bi_size = to_bytes(len);
1578 }
1579
1580 /*
1581 * Creates a bio that consists of range of complete bvecs.
1582 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1583 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1584 sector_t sector, unsigned len)
1585 {
1586 struct bio *clone = &tio->clone;
1587
1588 __bio_clone_fast(clone, bio);
1589
1590 if (bio_integrity(bio))
1591 bio_integrity_clone(clone, bio, GFP_NOIO);
1592
1593 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1594 clone->bi_iter.bi_size = to_bytes(len);
1595
1596 if (bio_integrity(bio))
1597 bio_integrity_trim(clone, 0, len);
1598 }
1599
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr)1600 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1601 struct dm_target *ti,
1602 unsigned target_bio_nr)
1603 {
1604 struct dm_target_io *tio;
1605 struct bio *clone;
1606
1607 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1608 tio = container_of(clone, struct dm_target_io, clone);
1609
1610 tio->io = ci->io;
1611 tio->ti = ti;
1612 tio->target_bio_nr = target_bio_nr;
1613
1614 return tio;
1615 }
1616
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len)1617 static void __clone_and_map_simple_bio(struct clone_info *ci,
1618 struct dm_target *ti,
1619 unsigned target_bio_nr, unsigned *len)
1620 {
1621 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1622 struct bio *clone = &tio->clone;
1623
1624 tio->len_ptr = len;
1625
1626 __bio_clone_fast(clone, ci->bio);
1627 if (len)
1628 bio_setup_sector(clone, ci->sector, *len);
1629
1630 __map_bio(tio);
1631 }
1632
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1633 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1634 unsigned num_bios, unsigned *len)
1635 {
1636 unsigned target_bio_nr;
1637
1638 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1639 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1640 }
1641
__send_empty_flush(struct clone_info * ci)1642 static int __send_empty_flush(struct clone_info *ci)
1643 {
1644 unsigned target_nr = 0;
1645 struct dm_target *ti;
1646
1647 BUG_ON(bio_has_data(ci->bio));
1648 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1649 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1650
1651 return 0;
1652 }
1653
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1654 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1655 sector_t sector, unsigned *len)
1656 {
1657 struct bio *bio = ci->bio;
1658 struct dm_target_io *tio;
1659 unsigned target_bio_nr;
1660 unsigned num_target_bios = 1;
1661
1662 /*
1663 * Does the target want to receive duplicate copies of the bio?
1664 */
1665 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1666 num_target_bios = ti->num_write_bios(ti, bio);
1667
1668 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1669 tio = alloc_tio(ci, ti, target_bio_nr);
1670 tio->len_ptr = len;
1671 clone_bio(tio, bio, sector, *len);
1672 __map_bio(tio);
1673 }
1674 }
1675
1676 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1677
get_num_discard_bios(struct dm_target * ti)1678 static unsigned get_num_discard_bios(struct dm_target *ti)
1679 {
1680 return ti->num_discard_bios;
1681 }
1682
get_num_write_same_bios(struct dm_target * ti)1683 static unsigned get_num_write_same_bios(struct dm_target *ti)
1684 {
1685 return ti->num_write_same_bios;
1686 }
1687
1688 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1689
is_split_required_for_discard(struct dm_target * ti)1690 static bool is_split_required_for_discard(struct dm_target *ti)
1691 {
1692 return ti->split_discard_bios;
1693 }
1694
__send_changing_extent_only(struct clone_info * ci,get_num_bios_fn get_num_bios,is_split_required_fn is_split_required)1695 static int __send_changing_extent_only(struct clone_info *ci,
1696 get_num_bios_fn get_num_bios,
1697 is_split_required_fn is_split_required)
1698 {
1699 struct dm_target *ti;
1700 unsigned len;
1701 unsigned num_bios;
1702
1703 do {
1704 ti = dm_table_find_target(ci->map, ci->sector);
1705 if (!dm_target_is_valid(ti))
1706 return -EIO;
1707
1708 /*
1709 * Even though the device advertised support for this type of
1710 * request, that does not mean every target supports it, and
1711 * reconfiguration might also have changed that since the
1712 * check was performed.
1713 */
1714 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1715 if (!num_bios)
1716 return -EOPNOTSUPP;
1717
1718 if (is_split_required && !is_split_required(ti))
1719 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1720 else
1721 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1722
1723 __send_duplicate_bios(ci, ti, num_bios, &len);
1724
1725 ci->sector += len;
1726 } while (ci->sector_count -= len);
1727
1728 return 0;
1729 }
1730
__send_discard(struct clone_info * ci)1731 static int __send_discard(struct clone_info *ci)
1732 {
1733 return __send_changing_extent_only(ci, get_num_discard_bios,
1734 is_split_required_for_discard);
1735 }
1736
__send_write_same(struct clone_info * ci)1737 static int __send_write_same(struct clone_info *ci)
1738 {
1739 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1740 }
1741
1742 /*
1743 * Select the correct strategy for processing a non-flush bio.
1744 */
__split_and_process_non_flush(struct clone_info * ci)1745 static int __split_and_process_non_flush(struct clone_info *ci)
1746 {
1747 struct bio *bio = ci->bio;
1748 struct dm_target *ti;
1749 unsigned len;
1750
1751 if (unlikely(bio->bi_rw & REQ_DISCARD))
1752 return __send_discard(ci);
1753 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754 return __send_write_same(ci);
1755
1756 ti = dm_table_find_target(ci->map, ci->sector);
1757 if (!dm_target_is_valid(ti))
1758 return -EIO;
1759
1760 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1761
1762 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763
1764 ci->sector += len;
1765 ci->sector_count -= len;
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * Entry point to split a bio into clones and submit them to the targets.
1772 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1773 static void __split_and_process_bio(struct mapped_device *md,
1774 struct dm_table *map, struct bio *bio)
1775 {
1776 struct clone_info ci;
1777 int error = 0;
1778
1779 if (unlikely(!map)) {
1780 bio_io_error(bio);
1781 return;
1782 }
1783
1784 ci.map = map;
1785 ci.md = md;
1786 ci.io = alloc_io(md);
1787 ci.io->error = 0;
1788 atomic_set(&ci.io->io_count, 1);
1789 ci.io->bio = bio;
1790 ci.io->md = md;
1791 spin_lock_init(&ci.io->endio_lock);
1792 ci.sector = bio->bi_iter.bi_sector;
1793
1794 start_io_acct(ci.io);
1795
1796 if (bio->bi_rw & REQ_FLUSH) {
1797 ci.bio = &ci.md->flush_bio;
1798 ci.sector_count = 0;
1799 error = __send_empty_flush(&ci);
1800 /* dec_pending submits any data associated with flush */
1801 } else {
1802 ci.bio = bio;
1803 ci.sector_count = bio_sectors(bio);
1804 while (ci.sector_count && !error)
1805 error = __split_and_process_non_flush(&ci);
1806 }
1807
1808 /* drop the extra reference count */
1809 dec_pending(ci.io, error);
1810 }
1811 /*-----------------------------------------------------------------
1812 * CRUD END
1813 *---------------------------------------------------------------*/
1814
1815 /*
1816 * The request function that just remaps the bio built up by
1817 * dm_merge_bvec.
1818 */
dm_make_request(struct request_queue * q,struct bio * bio)1819 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1820 {
1821 int rw = bio_data_dir(bio);
1822 struct mapped_device *md = q->queuedata;
1823 int srcu_idx;
1824 struct dm_table *map;
1825
1826 map = dm_get_live_table(md, &srcu_idx);
1827
1828 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1829
1830 /* if we're suspended, we have to queue this io for later */
1831 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1832 dm_put_live_table(md, srcu_idx);
1833
1834 if (bio_rw(bio) != READA)
1835 queue_io(md, bio);
1836 else
1837 bio_io_error(bio);
1838 return BLK_QC_T_NONE;
1839 }
1840
1841 __split_and_process_bio(md, map, bio);
1842 dm_put_live_table(md, srcu_idx);
1843 return BLK_QC_T_NONE;
1844 }
1845
dm_request_based(struct mapped_device * md)1846 int dm_request_based(struct mapped_device *md)
1847 {
1848 return blk_queue_stackable(md->queue);
1849 }
1850
dm_dispatch_clone_request(struct request * clone,struct request * rq)1851 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1852 {
1853 int r;
1854
1855 if (blk_queue_io_stat(clone->q))
1856 clone->cmd_flags |= REQ_IO_STAT;
1857
1858 clone->start_time = jiffies;
1859 r = blk_insert_cloned_request(clone->q, clone);
1860 if (r)
1861 /* must complete clone in terms of original request */
1862 dm_complete_request(rq, r);
1863 }
1864
dm_rq_bio_constructor(struct bio * bio,struct bio * bio_orig,void * data)1865 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1866 void *data)
1867 {
1868 struct dm_rq_target_io *tio = data;
1869 struct dm_rq_clone_bio_info *info =
1870 container_of(bio, struct dm_rq_clone_bio_info, clone);
1871
1872 info->orig = bio_orig;
1873 info->tio = tio;
1874 bio->bi_end_io = end_clone_bio;
1875
1876 return 0;
1877 }
1878
setup_clone(struct request * clone,struct request * rq,struct dm_rq_target_io * tio,gfp_t gfp_mask)1879 static int setup_clone(struct request *clone, struct request *rq,
1880 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1881 {
1882 int r;
1883
1884 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1885 dm_rq_bio_constructor, tio);
1886 if (r)
1887 return r;
1888
1889 clone->cmd = rq->cmd;
1890 clone->cmd_len = rq->cmd_len;
1891 clone->sense = rq->sense;
1892 clone->end_io = end_clone_request;
1893 clone->end_io_data = tio;
1894
1895 tio->clone = clone;
1896
1897 return 0;
1898 }
1899
clone_rq(struct request * rq,struct mapped_device * md,struct dm_rq_target_io * tio,gfp_t gfp_mask)1900 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1901 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1902 {
1903 /*
1904 * Do not allocate a clone if tio->clone was already set
1905 * (see: dm_mq_queue_rq).
1906 */
1907 bool alloc_clone = !tio->clone;
1908 struct request *clone;
1909
1910 if (alloc_clone) {
1911 clone = alloc_clone_request(md, gfp_mask);
1912 if (!clone)
1913 return NULL;
1914 } else
1915 clone = tio->clone;
1916
1917 blk_rq_init(NULL, clone);
1918 if (setup_clone(clone, rq, tio, gfp_mask)) {
1919 /* -ENOMEM */
1920 if (alloc_clone)
1921 free_clone_request(md, clone);
1922 return NULL;
1923 }
1924
1925 return clone;
1926 }
1927
1928 static void map_tio_request(struct kthread_work *work);
1929
init_tio(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1930 static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1931 struct mapped_device *md)
1932 {
1933 tio->md = md;
1934 tio->ti = NULL;
1935 tio->clone = NULL;
1936 tio->orig = rq;
1937 tio->error = 0;
1938 memset(&tio->info, 0, sizeof(tio->info));
1939 if (md->kworker_task)
1940 init_kthread_work(&tio->work, map_tio_request);
1941 }
1942
prep_tio(struct request * rq,struct mapped_device * md,gfp_t gfp_mask)1943 static struct dm_rq_target_io *prep_tio(struct request *rq,
1944 struct mapped_device *md, gfp_t gfp_mask)
1945 {
1946 struct dm_rq_target_io *tio;
1947 int srcu_idx;
1948 struct dm_table *table;
1949
1950 tio = alloc_rq_tio(md, gfp_mask);
1951 if (!tio)
1952 return NULL;
1953
1954 init_tio(tio, rq, md);
1955
1956 table = dm_get_live_table(md, &srcu_idx);
1957 if (!dm_table_mq_request_based(table)) {
1958 if (!clone_rq(rq, md, tio, gfp_mask)) {
1959 dm_put_live_table(md, srcu_idx);
1960 free_rq_tio(tio);
1961 return NULL;
1962 }
1963 }
1964 dm_put_live_table(md, srcu_idx);
1965
1966 return tio;
1967 }
1968
1969 /*
1970 * Called with the queue lock held.
1971 */
dm_prep_fn(struct request_queue * q,struct request * rq)1972 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1973 {
1974 struct mapped_device *md = q->queuedata;
1975 struct dm_rq_target_io *tio;
1976
1977 if (unlikely(rq->special)) {
1978 DMWARN("Already has something in rq->special.");
1979 return BLKPREP_KILL;
1980 }
1981
1982 tio = prep_tio(rq, md, GFP_ATOMIC);
1983 if (!tio)
1984 return BLKPREP_DEFER;
1985
1986 rq->special = tio;
1987 rq->cmd_flags |= REQ_DONTPREP;
1988
1989 return BLKPREP_OK;
1990 }
1991
1992 /*
1993 * Returns:
1994 * 0 : the request has been processed
1995 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1996 * < 0 : the request was completed due to failure
1997 */
map_request(struct dm_rq_target_io * tio,struct request * rq,struct mapped_device * md)1998 static int map_request(struct dm_rq_target_io *tio, struct request *rq,
1999 struct mapped_device *md)
2000 {
2001 int r;
2002 struct dm_target *ti = tio->ti;
2003 struct request *clone = NULL;
2004
2005 if (tio->clone) {
2006 clone = tio->clone;
2007 r = ti->type->map_rq(ti, clone, &tio->info);
2008 } else {
2009 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2010 if (r < 0) {
2011 /* The target wants to complete the I/O */
2012 dm_kill_unmapped_request(rq, r);
2013 return r;
2014 }
2015 if (r != DM_MAPIO_REMAPPED)
2016 return r;
2017 if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2018 /* -ENOMEM */
2019 ti->type->release_clone_rq(clone);
2020 return DM_MAPIO_REQUEUE;
2021 }
2022 }
2023
2024 switch (r) {
2025 case DM_MAPIO_SUBMITTED:
2026 /* The target has taken the I/O to submit by itself later */
2027 break;
2028 case DM_MAPIO_REMAPPED:
2029 /* The target has remapped the I/O so dispatch it */
2030 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2031 blk_rq_pos(rq));
2032 dm_dispatch_clone_request(clone, rq);
2033 break;
2034 case DM_MAPIO_REQUEUE:
2035 /* The target wants to requeue the I/O */
2036 dm_requeue_original_request(md, tio->orig);
2037 break;
2038 default:
2039 if (r > 0) {
2040 DMWARN("unimplemented target map return value: %d", r);
2041 BUG();
2042 }
2043
2044 /* The target wants to complete the I/O */
2045 dm_kill_unmapped_request(rq, r);
2046 return r;
2047 }
2048
2049 return 0;
2050 }
2051
map_tio_request(struct kthread_work * work)2052 static void map_tio_request(struct kthread_work *work)
2053 {
2054 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2055 struct request *rq = tio->orig;
2056 struct mapped_device *md = tio->md;
2057
2058 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2059 dm_requeue_original_request(md, rq);
2060 }
2061
dm_start_request(struct mapped_device * md,struct request * orig)2062 static void dm_start_request(struct mapped_device *md, struct request *orig)
2063 {
2064 if (!orig->q->mq_ops)
2065 blk_start_request(orig);
2066 else
2067 blk_mq_start_request(orig);
2068 atomic_inc(&md->pending[rq_data_dir(orig)]);
2069
2070 if (md->seq_rq_merge_deadline_usecs) {
2071 md->last_rq_pos = rq_end_sector(orig);
2072 md->last_rq_rw = rq_data_dir(orig);
2073 md->last_rq_start_time = ktime_get();
2074 }
2075
2076 if (unlikely(dm_stats_used(&md->stats))) {
2077 struct dm_rq_target_io *tio = tio_from_request(orig);
2078 tio->duration_jiffies = jiffies;
2079 tio->n_sectors = blk_rq_sectors(orig);
2080 dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2081 tio->n_sectors, false, 0, &tio->stats_aux);
2082 }
2083
2084 /*
2085 * Hold the md reference here for the in-flight I/O.
2086 * We can't rely on the reference count by device opener,
2087 * because the device may be closed during the request completion
2088 * when all bios are completed.
2089 * See the comment in rq_completed() too.
2090 */
2091 dm_get(md);
2092 }
2093
2094 #define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2095
dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device * md,char * buf)2096 ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2097 {
2098 return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2099 }
2100
dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device * md,const char * buf,size_t count)2101 ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2102 const char *buf, size_t count)
2103 {
2104 unsigned deadline;
2105
2106 if (!dm_request_based(md) || md->use_blk_mq)
2107 return count;
2108
2109 if (kstrtouint(buf, 10, &deadline))
2110 return -EINVAL;
2111
2112 if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2113 deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2114
2115 md->seq_rq_merge_deadline_usecs = deadline;
2116
2117 return count;
2118 }
2119
dm_request_peeked_before_merge_deadline(struct mapped_device * md)2120 static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
2121 {
2122 ktime_t kt_deadline;
2123
2124 if (!md->seq_rq_merge_deadline_usecs)
2125 return false;
2126
2127 kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2128 kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2129
2130 return !ktime_after(ktime_get(), kt_deadline);
2131 }
2132
2133 /*
2134 * q->request_fn for request-based dm.
2135 * Called with the queue lock held.
2136 */
dm_request_fn(struct request_queue * q)2137 static void dm_request_fn(struct request_queue *q)
2138 {
2139 struct mapped_device *md = q->queuedata;
2140 int srcu_idx;
2141 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2142 struct dm_target *ti;
2143 struct request *rq;
2144 struct dm_rq_target_io *tio;
2145 sector_t pos;
2146
2147 /*
2148 * For suspend, check blk_queue_stopped() and increment
2149 * ->pending within a single queue_lock not to increment the
2150 * number of in-flight I/Os after the queue is stopped in
2151 * dm_suspend().
2152 */
2153 while (!blk_queue_stopped(q)) {
2154 rq = blk_peek_request(q);
2155 if (!rq)
2156 goto out;
2157
2158 /* always use block 0 to find the target for flushes for now */
2159 pos = 0;
2160 if (!(rq->cmd_flags & REQ_FLUSH))
2161 pos = blk_rq_pos(rq);
2162
2163 ti = dm_table_find_target(map, pos);
2164 if (!dm_target_is_valid(ti)) {
2165 /*
2166 * Must perform setup, that rq_completed() requires,
2167 * before calling dm_kill_unmapped_request
2168 */
2169 DMERR_LIMIT("request attempted access beyond the end of device");
2170 dm_start_request(md, rq);
2171 dm_kill_unmapped_request(rq, -EIO);
2172 continue;
2173 }
2174
2175 if (dm_request_peeked_before_merge_deadline(md) &&
2176 md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2177 md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq))
2178 goto delay_and_out;
2179
2180 if (ti->type->busy && ti->type->busy(ti))
2181 goto delay_and_out;
2182
2183 dm_start_request(md, rq);
2184
2185 tio = tio_from_request(rq);
2186 /* Establish tio->ti before queuing work (map_tio_request) */
2187 tio->ti = ti;
2188 queue_kthread_work(&md->kworker, &tio->work);
2189 BUG_ON(!irqs_disabled());
2190 }
2191
2192 goto out;
2193
2194 delay_and_out:
2195 blk_delay_queue(q, 10);
2196 out:
2197 dm_put_live_table(md, srcu_idx);
2198 }
2199
dm_any_congested(void * congested_data,int bdi_bits)2200 static int dm_any_congested(void *congested_data, int bdi_bits)
2201 {
2202 int r = bdi_bits;
2203 struct mapped_device *md = congested_data;
2204 struct dm_table *map;
2205
2206 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2207 map = dm_get_live_table_fast(md);
2208 if (map) {
2209 /*
2210 * Request-based dm cares about only own queue for
2211 * the query about congestion status of request_queue
2212 */
2213 if (dm_request_based(md))
2214 r = md->queue->backing_dev_info.wb.state &
2215 bdi_bits;
2216 else
2217 r = dm_table_any_congested(map, bdi_bits);
2218 }
2219 dm_put_live_table_fast(md);
2220 }
2221
2222 return r;
2223 }
2224
2225 /*-----------------------------------------------------------------
2226 * An IDR is used to keep track of allocated minor numbers.
2227 *---------------------------------------------------------------*/
free_minor(int minor)2228 static void free_minor(int minor)
2229 {
2230 spin_lock(&_minor_lock);
2231 idr_remove(&_minor_idr, minor);
2232 spin_unlock(&_minor_lock);
2233 }
2234
2235 /*
2236 * See if the device with a specific minor # is free.
2237 */
specific_minor(int minor)2238 static int specific_minor(int minor)
2239 {
2240 int r;
2241
2242 if (minor >= (1 << MINORBITS))
2243 return -EINVAL;
2244
2245 idr_preload(GFP_KERNEL);
2246 spin_lock(&_minor_lock);
2247
2248 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2249
2250 spin_unlock(&_minor_lock);
2251 idr_preload_end();
2252 if (r < 0)
2253 return r == -ENOSPC ? -EBUSY : r;
2254 return 0;
2255 }
2256
next_free_minor(int * minor)2257 static int next_free_minor(int *minor)
2258 {
2259 int r;
2260
2261 idr_preload(GFP_KERNEL);
2262 spin_lock(&_minor_lock);
2263
2264 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2265
2266 spin_unlock(&_minor_lock);
2267 idr_preload_end();
2268 if (r < 0)
2269 return r;
2270 *minor = r;
2271 return 0;
2272 }
2273
2274 static const struct block_device_operations dm_blk_dops;
2275
2276 static void dm_wq_work(struct work_struct *work);
2277
dm_init_md_queue(struct mapped_device * md)2278 static void dm_init_md_queue(struct mapped_device *md)
2279 {
2280 /*
2281 * Request-based dm devices cannot be stacked on top of bio-based dm
2282 * devices. The type of this dm device may not have been decided yet.
2283 * The type is decided at the first table loading time.
2284 * To prevent problematic device stacking, clear the queue flag
2285 * for request stacking support until then.
2286 *
2287 * This queue is new, so no concurrency on the queue_flags.
2288 */
2289 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2290
2291 /*
2292 * Initialize data that will only be used by a non-blk-mq DM queue
2293 * - must do so here (in alloc_dev callchain) before queue is used
2294 */
2295 md->queue->queuedata = md;
2296 }
2297
dm_init_old_md_queue(struct mapped_device * md)2298 static void dm_init_old_md_queue(struct mapped_device *md)
2299 {
2300 md->use_blk_mq = false;
2301 dm_init_md_queue(md);
2302
2303 /*
2304 * Initialize aspects of queue that aren't relevant for blk-mq
2305 */
2306 md->queue->backing_dev_info.congested_data = md;
2307 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2308 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2309 }
2310
cleanup_mapped_device(struct mapped_device * md)2311 static void cleanup_mapped_device(struct mapped_device *md)
2312 {
2313 if (md->wq)
2314 destroy_workqueue(md->wq);
2315 if (md->kworker_task)
2316 kthread_stop(md->kworker_task);
2317 mempool_destroy(md->io_pool);
2318 mempool_destroy(md->rq_pool);
2319 if (md->bs)
2320 bioset_free(md->bs);
2321
2322 if (md->disk) {
2323 spin_lock(&_minor_lock);
2324 md->disk->private_data = NULL;
2325 spin_unlock(&_minor_lock);
2326 del_gendisk(md->disk);
2327 put_disk(md->disk);
2328 }
2329
2330 if (md->queue)
2331 blk_cleanup_queue(md->queue);
2332
2333 cleanup_srcu_struct(&md->io_barrier);
2334
2335 if (md->bdev) {
2336 bdput(md->bdev);
2337 md->bdev = NULL;
2338 }
2339 }
2340
2341 /*
2342 * Allocate and initialise a blank device with a given minor.
2343 */
alloc_dev(int minor)2344 static struct mapped_device *alloc_dev(int minor)
2345 {
2346 int r;
2347 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2348 void *old_md;
2349
2350 if (!md) {
2351 DMWARN("unable to allocate device, out of memory.");
2352 return NULL;
2353 }
2354
2355 if (!try_module_get(THIS_MODULE))
2356 goto bad_module_get;
2357
2358 /* get a minor number for the dev */
2359 if (minor == DM_ANY_MINOR)
2360 r = next_free_minor(&minor);
2361 else
2362 r = specific_minor(minor);
2363 if (r < 0)
2364 goto bad_minor;
2365
2366 r = init_srcu_struct(&md->io_barrier);
2367 if (r < 0)
2368 goto bad_io_barrier;
2369
2370 md->use_blk_mq = use_blk_mq;
2371 md->type = DM_TYPE_NONE;
2372 mutex_init(&md->suspend_lock);
2373 mutex_init(&md->type_lock);
2374 mutex_init(&md->table_devices_lock);
2375 spin_lock_init(&md->deferred_lock);
2376 atomic_set(&md->holders, 1);
2377 atomic_set(&md->open_count, 0);
2378 atomic_set(&md->event_nr, 0);
2379 atomic_set(&md->uevent_seq, 0);
2380 INIT_LIST_HEAD(&md->uevent_list);
2381 INIT_LIST_HEAD(&md->table_devices);
2382 spin_lock_init(&md->uevent_lock);
2383
2384 md->queue = blk_alloc_queue(GFP_KERNEL);
2385 if (!md->queue)
2386 goto bad;
2387
2388 dm_init_md_queue(md);
2389 /*
2390 * default to bio-based required ->make_request_fn until DM
2391 * table is loaded and md->type established. If request-based
2392 * table is loaded: blk-mq will override accordingly.
2393 */
2394 blk_queue_make_request(md->queue, dm_make_request);
2395
2396 md->disk = alloc_disk(1);
2397 if (!md->disk)
2398 goto bad;
2399
2400 atomic_set(&md->pending[0], 0);
2401 atomic_set(&md->pending[1], 0);
2402 init_waitqueue_head(&md->wait);
2403 INIT_WORK(&md->work, dm_wq_work);
2404 init_waitqueue_head(&md->eventq);
2405 init_completion(&md->kobj_holder.completion);
2406 md->kworker_task = NULL;
2407
2408 md->disk->major = _major;
2409 md->disk->first_minor = minor;
2410 md->disk->fops = &dm_blk_dops;
2411 md->disk->queue = md->queue;
2412 md->disk->private_data = md;
2413 sprintf(md->disk->disk_name, "dm-%d", minor);
2414 add_disk(md->disk);
2415 format_dev_t(md->name, MKDEV(_major, minor));
2416
2417 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2418 if (!md->wq)
2419 goto bad;
2420
2421 md->bdev = bdget_disk(md->disk, 0);
2422 if (!md->bdev)
2423 goto bad;
2424
2425 bio_init(&md->flush_bio);
2426 md->flush_bio.bi_bdev = md->bdev;
2427 md->flush_bio.bi_rw = WRITE_FLUSH;
2428
2429 dm_stats_init(&md->stats);
2430
2431 /* Populate the mapping, nobody knows we exist yet */
2432 spin_lock(&_minor_lock);
2433 old_md = idr_replace(&_minor_idr, md, minor);
2434 spin_unlock(&_minor_lock);
2435
2436 BUG_ON(old_md != MINOR_ALLOCED);
2437
2438 return md;
2439
2440 bad:
2441 cleanup_mapped_device(md);
2442 bad_io_barrier:
2443 free_minor(minor);
2444 bad_minor:
2445 module_put(THIS_MODULE);
2446 bad_module_get:
2447 kfree(md);
2448 return NULL;
2449 }
2450
2451 static void unlock_fs(struct mapped_device *md);
2452
free_dev(struct mapped_device * md)2453 static void free_dev(struct mapped_device *md)
2454 {
2455 int minor = MINOR(disk_devt(md->disk));
2456
2457 unlock_fs(md);
2458
2459 cleanup_mapped_device(md);
2460 if (md->use_blk_mq)
2461 blk_mq_free_tag_set(&md->tag_set);
2462
2463 free_table_devices(&md->table_devices);
2464 dm_stats_cleanup(&md->stats);
2465 free_minor(minor);
2466
2467 module_put(THIS_MODULE);
2468 kfree(md);
2469 }
2470
__bind_mempools(struct mapped_device * md,struct dm_table * t)2471 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2472 {
2473 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2474
2475 if (md->bs) {
2476 /* The md already has necessary mempools. */
2477 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2478 /*
2479 * Reload bioset because front_pad may have changed
2480 * because a different table was loaded.
2481 */
2482 bioset_free(md->bs);
2483 md->bs = p->bs;
2484 p->bs = NULL;
2485 }
2486 /*
2487 * There's no need to reload with request-based dm
2488 * because the size of front_pad doesn't change.
2489 * Note for future: If you are to reload bioset,
2490 * prep-ed requests in the queue may refer
2491 * to bio from the old bioset, so you must walk
2492 * through the queue to unprep.
2493 */
2494 goto out;
2495 }
2496
2497 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2498
2499 md->io_pool = p->io_pool;
2500 p->io_pool = NULL;
2501 md->rq_pool = p->rq_pool;
2502 p->rq_pool = NULL;
2503 md->bs = p->bs;
2504 p->bs = NULL;
2505
2506 out:
2507 /* mempool bind completed, no longer need any mempools in the table */
2508 dm_table_free_md_mempools(t);
2509 }
2510
2511 /*
2512 * Bind a table to the device.
2513 */
event_callback(void * context)2514 static void event_callback(void *context)
2515 {
2516 unsigned long flags;
2517 LIST_HEAD(uevents);
2518 struct mapped_device *md = (struct mapped_device *) context;
2519
2520 spin_lock_irqsave(&md->uevent_lock, flags);
2521 list_splice_init(&md->uevent_list, &uevents);
2522 spin_unlock_irqrestore(&md->uevent_lock, flags);
2523
2524 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2525
2526 atomic_inc(&md->event_nr);
2527 wake_up(&md->eventq);
2528 }
2529
2530 /*
2531 * Protected by md->suspend_lock obtained by dm_swap_table().
2532 */
__set_size(struct mapped_device * md,sector_t size)2533 static void __set_size(struct mapped_device *md, sector_t size)
2534 {
2535 set_capacity(md->disk, size);
2536
2537 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2538 }
2539
2540 /*
2541 * Returns old map, which caller must destroy.
2542 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2543 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2544 struct queue_limits *limits)
2545 {
2546 struct dm_table *old_map;
2547 struct request_queue *q = md->queue;
2548 sector_t size;
2549
2550 size = dm_table_get_size(t);
2551
2552 /*
2553 * Wipe any geometry if the size of the table changed.
2554 */
2555 if (size != dm_get_size(md))
2556 memset(&md->geometry, 0, sizeof(md->geometry));
2557
2558 __set_size(md, size);
2559
2560 dm_table_event_callback(t, event_callback, md);
2561
2562 /*
2563 * The queue hasn't been stopped yet, if the old table type wasn't
2564 * for request-based during suspension. So stop it to prevent
2565 * I/O mapping before resume.
2566 * This must be done before setting the queue restrictions,
2567 * because request-based dm may be run just after the setting.
2568 */
2569 if (dm_table_request_based(t))
2570 stop_queue(q);
2571
2572 __bind_mempools(md, t);
2573
2574 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2575 rcu_assign_pointer(md->map, t);
2576 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2577
2578 dm_table_set_restrictions(t, q, limits);
2579 if (old_map)
2580 dm_sync_table(md);
2581
2582 return old_map;
2583 }
2584
2585 /*
2586 * Returns unbound table for the caller to free.
2587 */
__unbind(struct mapped_device * md)2588 static struct dm_table *__unbind(struct mapped_device *md)
2589 {
2590 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2591
2592 if (!map)
2593 return NULL;
2594
2595 dm_table_event_callback(map, NULL, NULL);
2596 RCU_INIT_POINTER(md->map, NULL);
2597 dm_sync_table(md);
2598
2599 return map;
2600 }
2601
2602 /*
2603 * Constructor for a new device.
2604 */
dm_create(int minor,struct mapped_device ** result)2605 int dm_create(int minor, struct mapped_device **result)
2606 {
2607 struct mapped_device *md;
2608
2609 md = alloc_dev(minor);
2610 if (!md)
2611 return -ENXIO;
2612
2613 dm_sysfs_init(md);
2614
2615 *result = md;
2616 return 0;
2617 }
2618
2619 /*
2620 * Functions to manage md->type.
2621 * All are required to hold md->type_lock.
2622 */
dm_lock_md_type(struct mapped_device * md)2623 void dm_lock_md_type(struct mapped_device *md)
2624 {
2625 mutex_lock(&md->type_lock);
2626 }
2627
dm_unlock_md_type(struct mapped_device * md)2628 void dm_unlock_md_type(struct mapped_device *md)
2629 {
2630 mutex_unlock(&md->type_lock);
2631 }
2632
dm_set_md_type(struct mapped_device * md,unsigned type)2633 void dm_set_md_type(struct mapped_device *md, unsigned type)
2634 {
2635 BUG_ON(!mutex_is_locked(&md->type_lock));
2636 md->type = type;
2637 }
2638
dm_get_md_type(struct mapped_device * md)2639 unsigned dm_get_md_type(struct mapped_device *md)
2640 {
2641 BUG_ON(!mutex_is_locked(&md->type_lock));
2642 return md->type;
2643 }
2644
dm_get_immutable_target_type(struct mapped_device * md)2645 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2646 {
2647 return md->immutable_target_type;
2648 }
2649
2650 /*
2651 * The queue_limits are only valid as long as you have a reference
2652 * count on 'md'.
2653 */
dm_get_queue_limits(struct mapped_device * md)2654 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2655 {
2656 BUG_ON(!atomic_read(&md->holders));
2657 return &md->queue->limits;
2658 }
2659 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2660
init_rq_based_worker_thread(struct mapped_device * md)2661 static void init_rq_based_worker_thread(struct mapped_device *md)
2662 {
2663 /* Initialize the request-based DM worker thread */
2664 init_kthread_worker(&md->kworker);
2665 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2666 "kdmwork-%s", dm_device_name(md));
2667 }
2668
2669 /*
2670 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2671 */
dm_init_request_based_queue(struct mapped_device * md)2672 static int dm_init_request_based_queue(struct mapped_device *md)
2673 {
2674 struct request_queue *q = NULL;
2675
2676 /* Fully initialize the queue */
2677 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2678 if (!q)
2679 return -EINVAL;
2680
2681 /* disable dm_request_fn's merge heuristic by default */
2682 md->seq_rq_merge_deadline_usecs = 0;
2683
2684 md->queue = q;
2685 dm_init_old_md_queue(md);
2686 blk_queue_softirq_done(md->queue, dm_softirq_done);
2687 blk_queue_prep_rq(md->queue, dm_prep_fn);
2688
2689 init_rq_based_worker_thread(md);
2690
2691 elv_register_queue(md->queue);
2692
2693 return 0;
2694 }
2695
dm_mq_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2696 static int dm_mq_init_request(void *data, struct request *rq,
2697 unsigned int hctx_idx, unsigned int request_idx,
2698 unsigned int numa_node)
2699 {
2700 struct mapped_device *md = data;
2701 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2702
2703 /*
2704 * Must initialize md member of tio, otherwise it won't
2705 * be available in dm_mq_queue_rq.
2706 */
2707 tio->md = md;
2708
2709 return 0;
2710 }
2711
dm_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2712 static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2713 const struct blk_mq_queue_data *bd)
2714 {
2715 struct request *rq = bd->rq;
2716 struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2717 struct mapped_device *md = tio->md;
2718 int srcu_idx;
2719 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2720 struct dm_target *ti;
2721 sector_t pos;
2722
2723 /* always use block 0 to find the target for flushes for now */
2724 pos = 0;
2725 if (!(rq->cmd_flags & REQ_FLUSH))
2726 pos = blk_rq_pos(rq);
2727
2728 ti = dm_table_find_target(map, pos);
2729 if (!dm_target_is_valid(ti)) {
2730 dm_put_live_table(md, srcu_idx);
2731 DMERR_LIMIT("request attempted access beyond the end of device");
2732 /*
2733 * Must perform setup, that rq_completed() requires,
2734 * before returning BLK_MQ_RQ_QUEUE_ERROR
2735 */
2736 dm_start_request(md, rq);
2737 return BLK_MQ_RQ_QUEUE_ERROR;
2738 }
2739 dm_put_live_table(md, srcu_idx);
2740
2741 if (ti->type->busy && ti->type->busy(ti))
2742 return BLK_MQ_RQ_QUEUE_BUSY;
2743
2744 dm_start_request(md, rq);
2745
2746 /* Init tio using md established in .init_request */
2747 init_tio(tio, rq, md);
2748
2749 /*
2750 * Establish tio->ti before queuing work (map_tio_request)
2751 * or making direct call to map_request().
2752 */
2753 tio->ti = ti;
2754
2755 /* Clone the request if underlying devices aren't blk-mq */
2756 if (dm_table_get_type(map) == DM_TYPE_REQUEST_BASED) {
2757 /* clone request is allocated at the end of the pdu */
2758 tio->clone = (void *)blk_mq_rq_to_pdu(rq) + sizeof(struct dm_rq_target_io);
2759 (void) clone_rq(rq, md, tio, GFP_ATOMIC);
2760 queue_kthread_work(&md->kworker, &tio->work);
2761 } else {
2762 /* Direct call is fine since .queue_rq allows allocations */
2763 if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2764 /* Undo dm_start_request() before requeuing */
2765 rq_end_stats(md, rq);
2766 rq_completed(md, rq_data_dir(rq), false);
2767 return BLK_MQ_RQ_QUEUE_BUSY;
2768 }
2769 }
2770
2771 return BLK_MQ_RQ_QUEUE_OK;
2772 }
2773
2774 static struct blk_mq_ops dm_mq_ops = {
2775 .queue_rq = dm_mq_queue_rq,
2776 .map_queue = blk_mq_map_queue,
2777 .complete = dm_softirq_done,
2778 .init_request = dm_mq_init_request,
2779 };
2780
dm_init_request_based_blk_mq_queue(struct mapped_device * md)2781 static int dm_init_request_based_blk_mq_queue(struct mapped_device *md)
2782 {
2783 unsigned md_type = dm_get_md_type(md);
2784 struct request_queue *q;
2785 int err;
2786
2787 memset(&md->tag_set, 0, sizeof(md->tag_set));
2788 md->tag_set.ops = &dm_mq_ops;
2789 md->tag_set.queue_depth = BLKDEV_MAX_RQ;
2790 md->tag_set.numa_node = NUMA_NO_NODE;
2791 md->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2792 md->tag_set.nr_hw_queues = 1;
2793 if (md_type == DM_TYPE_REQUEST_BASED) {
2794 /* make the memory for non-blk-mq clone part of the pdu */
2795 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io) + sizeof(struct request);
2796 } else
2797 md->tag_set.cmd_size = sizeof(struct dm_rq_target_io);
2798 md->tag_set.driver_data = md;
2799
2800 err = blk_mq_alloc_tag_set(&md->tag_set);
2801 if (err)
2802 return err;
2803
2804 q = blk_mq_init_allocated_queue(&md->tag_set, md->queue);
2805 if (IS_ERR(q)) {
2806 err = PTR_ERR(q);
2807 goto out_tag_set;
2808 }
2809 md->queue = q;
2810 dm_init_md_queue(md);
2811
2812 /* backfill 'mq' sysfs registration normally done in blk_register_queue */
2813 blk_mq_register_disk(md->disk);
2814
2815 if (md_type == DM_TYPE_REQUEST_BASED)
2816 init_rq_based_worker_thread(md);
2817
2818 return 0;
2819
2820 out_tag_set:
2821 blk_mq_free_tag_set(&md->tag_set);
2822 return err;
2823 }
2824
filter_md_type(unsigned type,struct mapped_device * md)2825 static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2826 {
2827 if (type == DM_TYPE_BIO_BASED)
2828 return type;
2829
2830 return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2831 }
2832
2833 /*
2834 * Setup the DM device's queue based on md's type
2835 */
dm_setup_md_queue(struct mapped_device * md)2836 int dm_setup_md_queue(struct mapped_device *md)
2837 {
2838 int r;
2839 unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2840
2841 switch (md_type) {
2842 case DM_TYPE_REQUEST_BASED:
2843 r = dm_init_request_based_queue(md);
2844 if (r) {
2845 DMWARN("Cannot initialize queue for request-based mapped device");
2846 return r;
2847 }
2848 break;
2849 case DM_TYPE_MQ_REQUEST_BASED:
2850 r = dm_init_request_based_blk_mq_queue(md);
2851 if (r) {
2852 DMWARN("Cannot initialize queue for request-based blk-mq mapped device");
2853 return r;
2854 }
2855 break;
2856 case DM_TYPE_BIO_BASED:
2857 dm_init_old_md_queue(md);
2858 /*
2859 * DM handles splitting bios as needed. Free the bio_split bioset
2860 * since it won't be used (saves 1 process per bio-based DM device).
2861 */
2862 bioset_free(md->queue->bio_split);
2863 md->queue->bio_split = NULL;
2864 break;
2865 }
2866
2867 return 0;
2868 }
2869
dm_get_md(dev_t dev)2870 struct mapped_device *dm_get_md(dev_t dev)
2871 {
2872 struct mapped_device *md;
2873 unsigned minor = MINOR(dev);
2874
2875 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2876 return NULL;
2877
2878 spin_lock(&_minor_lock);
2879
2880 md = idr_find(&_minor_idr, minor);
2881 if (md) {
2882 if ((md == MINOR_ALLOCED ||
2883 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2884 dm_deleting_md(md) ||
2885 test_bit(DMF_FREEING, &md->flags))) {
2886 md = NULL;
2887 goto out;
2888 }
2889 dm_get(md);
2890 }
2891
2892 out:
2893 spin_unlock(&_minor_lock);
2894
2895 return md;
2896 }
2897 EXPORT_SYMBOL_GPL(dm_get_md);
2898
dm_get_mdptr(struct mapped_device * md)2899 void *dm_get_mdptr(struct mapped_device *md)
2900 {
2901 return md->interface_ptr;
2902 }
2903
dm_set_mdptr(struct mapped_device * md,void * ptr)2904 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2905 {
2906 md->interface_ptr = ptr;
2907 }
2908
dm_get(struct mapped_device * md)2909 void dm_get(struct mapped_device *md)
2910 {
2911 atomic_inc(&md->holders);
2912 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2913 }
2914
dm_hold(struct mapped_device * md)2915 int dm_hold(struct mapped_device *md)
2916 {
2917 spin_lock(&_minor_lock);
2918 if (test_bit(DMF_FREEING, &md->flags)) {
2919 spin_unlock(&_minor_lock);
2920 return -EBUSY;
2921 }
2922 dm_get(md);
2923 spin_unlock(&_minor_lock);
2924 return 0;
2925 }
2926 EXPORT_SYMBOL_GPL(dm_hold);
2927
dm_device_name(struct mapped_device * md)2928 const char *dm_device_name(struct mapped_device *md)
2929 {
2930 return md->name;
2931 }
2932 EXPORT_SYMBOL_GPL(dm_device_name);
2933
__dm_destroy(struct mapped_device * md,bool wait)2934 static void __dm_destroy(struct mapped_device *md, bool wait)
2935 {
2936 struct request_queue *q = dm_get_md_queue(md);
2937 struct dm_table *map;
2938 int srcu_idx;
2939
2940 might_sleep();
2941
2942 spin_lock(&_minor_lock);
2943 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2944 set_bit(DMF_FREEING, &md->flags);
2945 spin_unlock(&_minor_lock);
2946
2947 blk_set_queue_dying(q);
2948
2949 if (dm_request_based(md) && md->kworker_task)
2950 flush_kthread_worker(&md->kworker);
2951
2952 /*
2953 * Take suspend_lock so that presuspend and postsuspend methods
2954 * do not race with internal suspend.
2955 */
2956 mutex_lock(&md->suspend_lock);
2957 map = dm_get_live_table(md, &srcu_idx);
2958 if (!dm_suspended_md(md)) {
2959 dm_table_presuspend_targets(map);
2960 dm_table_postsuspend_targets(map);
2961 }
2962 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2963 dm_put_live_table(md, srcu_idx);
2964 mutex_unlock(&md->suspend_lock);
2965
2966 /*
2967 * Rare, but there may be I/O requests still going to complete,
2968 * for example. Wait for all references to disappear.
2969 * No one should increment the reference count of the mapped_device,
2970 * after the mapped_device state becomes DMF_FREEING.
2971 */
2972 if (wait)
2973 while (atomic_read(&md->holders))
2974 msleep(1);
2975 else if (atomic_read(&md->holders))
2976 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2977 dm_device_name(md), atomic_read(&md->holders));
2978
2979 dm_sysfs_exit(md);
2980 dm_table_destroy(__unbind(md));
2981 free_dev(md);
2982 }
2983
dm_destroy(struct mapped_device * md)2984 void dm_destroy(struct mapped_device *md)
2985 {
2986 __dm_destroy(md, true);
2987 }
2988
dm_destroy_immediate(struct mapped_device * md)2989 void dm_destroy_immediate(struct mapped_device *md)
2990 {
2991 __dm_destroy(md, false);
2992 }
2993
dm_put(struct mapped_device * md)2994 void dm_put(struct mapped_device *md)
2995 {
2996 atomic_dec(&md->holders);
2997 }
2998 EXPORT_SYMBOL_GPL(dm_put);
2999
dm_wait_for_completion(struct mapped_device * md,int interruptible)3000 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
3001 {
3002 int r = 0;
3003 DECLARE_WAITQUEUE(wait, current);
3004
3005 add_wait_queue(&md->wait, &wait);
3006
3007 while (1) {
3008 set_current_state(interruptible);
3009
3010 if (!md_in_flight(md))
3011 break;
3012
3013 if (interruptible == TASK_INTERRUPTIBLE &&
3014 signal_pending(current)) {
3015 r = -EINTR;
3016 break;
3017 }
3018
3019 io_schedule();
3020 }
3021 set_current_state(TASK_RUNNING);
3022
3023 remove_wait_queue(&md->wait, &wait);
3024
3025 return r;
3026 }
3027
3028 /*
3029 * Process the deferred bios
3030 */
dm_wq_work(struct work_struct * work)3031 static void dm_wq_work(struct work_struct *work)
3032 {
3033 struct mapped_device *md = container_of(work, struct mapped_device,
3034 work);
3035 struct bio *c;
3036 int srcu_idx;
3037 struct dm_table *map;
3038
3039 map = dm_get_live_table(md, &srcu_idx);
3040
3041 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3042 spin_lock_irq(&md->deferred_lock);
3043 c = bio_list_pop(&md->deferred);
3044 spin_unlock_irq(&md->deferred_lock);
3045
3046 if (!c)
3047 break;
3048
3049 if (dm_request_based(md))
3050 generic_make_request(c);
3051 else
3052 __split_and_process_bio(md, map, c);
3053 }
3054
3055 dm_put_live_table(md, srcu_idx);
3056 }
3057
dm_queue_flush(struct mapped_device * md)3058 static void dm_queue_flush(struct mapped_device *md)
3059 {
3060 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3061 smp_mb__after_atomic();
3062 queue_work(md->wq, &md->work);
3063 }
3064
3065 /*
3066 * Swap in a new table, returning the old one for the caller to destroy.
3067 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)3068 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3069 {
3070 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3071 struct queue_limits limits;
3072 int r;
3073
3074 mutex_lock(&md->suspend_lock);
3075
3076 /* device must be suspended */
3077 if (!dm_suspended_md(md))
3078 goto out;
3079
3080 /*
3081 * If the new table has no data devices, retain the existing limits.
3082 * This helps multipath with queue_if_no_path if all paths disappear,
3083 * then new I/O is queued based on these limits, and then some paths
3084 * reappear.
3085 */
3086 if (dm_table_has_no_data_devices(table)) {
3087 live_map = dm_get_live_table_fast(md);
3088 if (live_map)
3089 limits = md->queue->limits;
3090 dm_put_live_table_fast(md);
3091 }
3092
3093 if (!live_map) {
3094 r = dm_calculate_queue_limits(table, &limits);
3095 if (r) {
3096 map = ERR_PTR(r);
3097 goto out;
3098 }
3099 }
3100
3101 map = __bind(md, table, &limits);
3102
3103 out:
3104 mutex_unlock(&md->suspend_lock);
3105 return map;
3106 }
3107
3108 /*
3109 * Functions to lock and unlock any filesystem running on the
3110 * device.
3111 */
lock_fs(struct mapped_device * md)3112 static int lock_fs(struct mapped_device *md)
3113 {
3114 int r;
3115
3116 WARN_ON(md->frozen_sb);
3117
3118 md->frozen_sb = freeze_bdev(md->bdev);
3119 if (IS_ERR(md->frozen_sb)) {
3120 r = PTR_ERR(md->frozen_sb);
3121 md->frozen_sb = NULL;
3122 return r;
3123 }
3124
3125 set_bit(DMF_FROZEN, &md->flags);
3126
3127 return 0;
3128 }
3129
unlock_fs(struct mapped_device * md)3130 static void unlock_fs(struct mapped_device *md)
3131 {
3132 if (!test_bit(DMF_FROZEN, &md->flags))
3133 return;
3134
3135 thaw_bdev(md->bdev, md->frozen_sb);
3136 md->frozen_sb = NULL;
3137 clear_bit(DMF_FROZEN, &md->flags);
3138 }
3139
3140 /*
3141 * If __dm_suspend returns 0, the device is completely quiescent
3142 * now. There is no request-processing activity. All new requests
3143 * are being added to md->deferred list.
3144 *
3145 * Caller must hold md->suspend_lock
3146 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,int interruptible,int dmf_suspended_flag)3147 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3148 unsigned suspend_flags, int interruptible,
3149 int dmf_suspended_flag)
3150 {
3151 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3152 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3153 int r;
3154
3155 /*
3156 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3157 * This flag is cleared before dm_suspend returns.
3158 */
3159 if (noflush)
3160 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3161
3162 /*
3163 * This gets reverted if there's an error later and the targets
3164 * provide the .presuspend_undo hook.
3165 */
3166 dm_table_presuspend_targets(map);
3167
3168 /*
3169 * Flush I/O to the device.
3170 * Any I/O submitted after lock_fs() may not be flushed.
3171 * noflush takes precedence over do_lockfs.
3172 * (lock_fs() flushes I/Os and waits for them to complete.)
3173 */
3174 if (!noflush && do_lockfs) {
3175 r = lock_fs(md);
3176 if (r) {
3177 dm_table_presuspend_undo_targets(map);
3178 return r;
3179 }
3180 }
3181
3182 /*
3183 * Here we must make sure that no processes are submitting requests
3184 * to target drivers i.e. no one may be executing
3185 * __split_and_process_bio. This is called from dm_request and
3186 * dm_wq_work.
3187 *
3188 * To get all processes out of __split_and_process_bio in dm_request,
3189 * we take the write lock. To prevent any process from reentering
3190 * __split_and_process_bio from dm_request and quiesce the thread
3191 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3192 * flush_workqueue(md->wq).
3193 */
3194 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3195 if (map)
3196 synchronize_srcu(&md->io_barrier);
3197
3198 /*
3199 * Stop md->queue before flushing md->wq in case request-based
3200 * dm defers requests to md->wq from md->queue.
3201 */
3202 if (dm_request_based(md)) {
3203 stop_queue(md->queue);
3204 if (md->kworker_task)
3205 flush_kthread_worker(&md->kworker);
3206 }
3207
3208 flush_workqueue(md->wq);
3209
3210 /*
3211 * At this point no more requests are entering target request routines.
3212 * We call dm_wait_for_completion to wait for all existing requests
3213 * to finish.
3214 */
3215 r = dm_wait_for_completion(md, interruptible);
3216 if (!r)
3217 set_bit(dmf_suspended_flag, &md->flags);
3218
3219 if (noflush)
3220 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3221 if (map)
3222 synchronize_srcu(&md->io_barrier);
3223
3224 /* were we interrupted ? */
3225 if (r < 0) {
3226 dm_queue_flush(md);
3227
3228 if (dm_request_based(md))
3229 start_queue(md->queue);
3230
3231 unlock_fs(md);
3232 dm_table_presuspend_undo_targets(map);
3233 /* pushback list is already flushed, so skip flush */
3234 }
3235
3236 return r;
3237 }
3238
3239 /*
3240 * We need to be able to change a mapping table under a mounted
3241 * filesystem. For example we might want to move some data in
3242 * the background. Before the table can be swapped with
3243 * dm_bind_table, dm_suspend must be called to flush any in
3244 * flight bios and ensure that any further io gets deferred.
3245 */
3246 /*
3247 * Suspend mechanism in request-based dm.
3248 *
3249 * 1. Flush all I/Os by lock_fs() if needed.
3250 * 2. Stop dispatching any I/O by stopping the request_queue.
3251 * 3. Wait for all in-flight I/Os to be completed or requeued.
3252 *
3253 * To abort suspend, start the request_queue.
3254 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)3255 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3256 {
3257 struct dm_table *map = NULL;
3258 int r = 0;
3259
3260 retry:
3261 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3262
3263 if (dm_suspended_md(md)) {
3264 r = -EINVAL;
3265 goto out_unlock;
3266 }
3267
3268 if (dm_suspended_internally_md(md)) {
3269 /* already internally suspended, wait for internal resume */
3270 mutex_unlock(&md->suspend_lock);
3271 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3272 if (r)
3273 return r;
3274 goto retry;
3275 }
3276
3277 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3278
3279 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3280 if (r)
3281 goto out_unlock;
3282
3283 dm_table_postsuspend_targets(map);
3284
3285 out_unlock:
3286 mutex_unlock(&md->suspend_lock);
3287 return r;
3288 }
3289
__dm_resume(struct mapped_device * md,struct dm_table * map)3290 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3291 {
3292 if (map) {
3293 int r = dm_table_resume_targets(map);
3294 if (r)
3295 return r;
3296 }
3297
3298 dm_queue_flush(md);
3299
3300 /*
3301 * Flushing deferred I/Os must be done after targets are resumed
3302 * so that mapping of targets can work correctly.
3303 * Request-based dm is queueing the deferred I/Os in its request_queue.
3304 */
3305 if (dm_request_based(md))
3306 start_queue(md->queue);
3307
3308 unlock_fs(md);
3309
3310 return 0;
3311 }
3312
dm_resume(struct mapped_device * md)3313 int dm_resume(struct mapped_device *md)
3314 {
3315 int r;
3316 struct dm_table *map = NULL;
3317
3318 retry:
3319 r = -EINVAL;
3320 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3321
3322 if (!dm_suspended_md(md))
3323 goto out;
3324
3325 if (dm_suspended_internally_md(md)) {
3326 /* already internally suspended, wait for internal resume */
3327 mutex_unlock(&md->suspend_lock);
3328 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3329 if (r)
3330 return r;
3331 goto retry;
3332 }
3333
3334 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3335 if (!map || !dm_table_get_size(map))
3336 goto out;
3337
3338 r = __dm_resume(md, map);
3339 if (r)
3340 goto out;
3341
3342 clear_bit(DMF_SUSPENDED, &md->flags);
3343 out:
3344 mutex_unlock(&md->suspend_lock);
3345
3346 return r;
3347 }
3348
3349 /*
3350 * Internal suspend/resume works like userspace-driven suspend. It waits
3351 * until all bios finish and prevents issuing new bios to the target drivers.
3352 * It may be used only from the kernel.
3353 */
3354
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)3355 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3356 {
3357 struct dm_table *map = NULL;
3358
3359 if (md->internal_suspend_count++)
3360 return; /* nested internal suspend */
3361
3362 if (dm_suspended_md(md)) {
3363 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3364 return; /* nest suspend */
3365 }
3366
3367 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3368
3369 /*
3370 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3371 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3372 * would require changing .presuspend to return an error -- avoid this
3373 * until there is a need for more elaborate variants of internal suspend.
3374 */
3375 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3376 DMF_SUSPENDED_INTERNALLY);
3377
3378 dm_table_postsuspend_targets(map);
3379 }
3380
__dm_internal_resume(struct mapped_device * md)3381 static void __dm_internal_resume(struct mapped_device *md)
3382 {
3383 BUG_ON(!md->internal_suspend_count);
3384
3385 if (--md->internal_suspend_count)
3386 return; /* resume from nested internal suspend */
3387
3388 if (dm_suspended_md(md))
3389 goto done; /* resume from nested suspend */
3390
3391 /*
3392 * NOTE: existing callers don't need to call dm_table_resume_targets
3393 * (which may fail -- so best to avoid it for now by passing NULL map)
3394 */
3395 (void) __dm_resume(md, NULL);
3396
3397 done:
3398 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3399 smp_mb__after_atomic();
3400 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3401 }
3402
dm_internal_suspend_noflush(struct mapped_device * md)3403 void dm_internal_suspend_noflush(struct mapped_device *md)
3404 {
3405 mutex_lock(&md->suspend_lock);
3406 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3407 mutex_unlock(&md->suspend_lock);
3408 }
3409 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3410
dm_internal_resume(struct mapped_device * md)3411 void dm_internal_resume(struct mapped_device *md)
3412 {
3413 mutex_lock(&md->suspend_lock);
3414 __dm_internal_resume(md);
3415 mutex_unlock(&md->suspend_lock);
3416 }
3417 EXPORT_SYMBOL_GPL(dm_internal_resume);
3418
3419 /*
3420 * Fast variants of internal suspend/resume hold md->suspend_lock,
3421 * which prevents interaction with userspace-driven suspend.
3422 */
3423
dm_internal_suspend_fast(struct mapped_device * md)3424 void dm_internal_suspend_fast(struct mapped_device *md)
3425 {
3426 mutex_lock(&md->suspend_lock);
3427 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3428 return;
3429
3430 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3431 synchronize_srcu(&md->io_barrier);
3432 flush_workqueue(md->wq);
3433 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3434 }
3435 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3436
dm_internal_resume_fast(struct mapped_device * md)3437 void dm_internal_resume_fast(struct mapped_device *md)
3438 {
3439 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3440 goto done;
3441
3442 dm_queue_flush(md);
3443
3444 done:
3445 mutex_unlock(&md->suspend_lock);
3446 }
3447 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3448
3449 /*-----------------------------------------------------------------
3450 * Event notification.
3451 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)3452 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3453 unsigned cookie)
3454 {
3455 char udev_cookie[DM_COOKIE_LENGTH];
3456 char *envp[] = { udev_cookie, NULL };
3457
3458 if (!cookie)
3459 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3460 else {
3461 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3462 DM_COOKIE_ENV_VAR_NAME, cookie);
3463 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3464 action, envp);
3465 }
3466 }
3467
dm_next_uevent_seq(struct mapped_device * md)3468 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3469 {
3470 return atomic_add_return(1, &md->uevent_seq);
3471 }
3472
dm_get_event_nr(struct mapped_device * md)3473 uint32_t dm_get_event_nr(struct mapped_device *md)
3474 {
3475 return atomic_read(&md->event_nr);
3476 }
3477
dm_wait_event(struct mapped_device * md,int event_nr)3478 int dm_wait_event(struct mapped_device *md, int event_nr)
3479 {
3480 return wait_event_interruptible(md->eventq,
3481 (event_nr != atomic_read(&md->event_nr)));
3482 }
3483
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3484 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3485 {
3486 unsigned long flags;
3487
3488 spin_lock_irqsave(&md->uevent_lock, flags);
3489 list_add(elist, &md->uevent_list);
3490 spin_unlock_irqrestore(&md->uevent_lock, flags);
3491 }
3492
3493 /*
3494 * The gendisk is only valid as long as you have a reference
3495 * count on 'md'.
3496 */
dm_disk(struct mapped_device * md)3497 struct gendisk *dm_disk(struct mapped_device *md)
3498 {
3499 return md->disk;
3500 }
3501 EXPORT_SYMBOL_GPL(dm_disk);
3502
dm_kobject(struct mapped_device * md)3503 struct kobject *dm_kobject(struct mapped_device *md)
3504 {
3505 return &md->kobj_holder.kobj;
3506 }
3507
dm_get_from_kobject(struct kobject * kobj)3508 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3509 {
3510 struct mapped_device *md;
3511
3512 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3513
3514 spin_lock(&_minor_lock);
3515 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3516 md = NULL;
3517 goto out;
3518 }
3519 dm_get(md);
3520 out:
3521 spin_unlock(&_minor_lock);
3522
3523 return md;
3524 }
3525
dm_suspended_md(struct mapped_device * md)3526 int dm_suspended_md(struct mapped_device *md)
3527 {
3528 return test_bit(DMF_SUSPENDED, &md->flags);
3529 }
3530
dm_suspended_internally_md(struct mapped_device * md)3531 int dm_suspended_internally_md(struct mapped_device *md)
3532 {
3533 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3534 }
3535
dm_test_deferred_remove_flag(struct mapped_device * md)3536 int dm_test_deferred_remove_flag(struct mapped_device *md)
3537 {
3538 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3539 }
3540
dm_suspended(struct dm_target * ti)3541 int dm_suspended(struct dm_target *ti)
3542 {
3543 return dm_suspended_md(dm_table_get_md(ti->table));
3544 }
3545 EXPORT_SYMBOL_GPL(dm_suspended);
3546
dm_noflush_suspending(struct dm_target * ti)3547 int dm_noflush_suspending(struct dm_target *ti)
3548 {
3549 return __noflush_suspending(dm_table_get_md(ti->table));
3550 }
3551 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3552
dm_alloc_md_mempools(struct mapped_device * md,unsigned type,unsigned integrity,unsigned per_bio_data_size)3553 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3554 unsigned integrity, unsigned per_bio_data_size)
3555 {
3556 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3557 struct kmem_cache *cachep = NULL;
3558 unsigned int pool_size = 0;
3559 unsigned int front_pad;
3560
3561 if (!pools)
3562 return NULL;
3563
3564 type = filter_md_type(type, md);
3565
3566 switch (type) {
3567 case DM_TYPE_BIO_BASED:
3568 cachep = _io_cache;
3569 pool_size = dm_get_reserved_bio_based_ios();
3570 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3571 break;
3572 case DM_TYPE_REQUEST_BASED:
3573 cachep = _rq_tio_cache;
3574 pool_size = dm_get_reserved_rq_based_ios();
3575 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3576 if (!pools->rq_pool)
3577 goto out;
3578 /* fall through to setup remaining rq-based pools */
3579 case DM_TYPE_MQ_REQUEST_BASED:
3580 if (!pool_size)
3581 pool_size = dm_get_reserved_rq_based_ios();
3582 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3583 /* per_bio_data_size is not used. See __bind_mempools(). */
3584 WARN_ON(per_bio_data_size != 0);
3585 break;
3586 default:
3587 BUG();
3588 }
3589
3590 if (cachep) {
3591 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3592 if (!pools->io_pool)
3593 goto out;
3594 }
3595
3596 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3597 if (!pools->bs)
3598 goto out;
3599
3600 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3601 goto out;
3602
3603 return pools;
3604
3605 out:
3606 dm_free_md_mempools(pools);
3607
3608 return NULL;
3609 }
3610
dm_free_md_mempools(struct dm_md_mempools * pools)3611 void dm_free_md_mempools(struct dm_md_mempools *pools)
3612 {
3613 if (!pools)
3614 return;
3615
3616 mempool_destroy(pools->io_pool);
3617 mempool_destroy(pools->rq_pool);
3618
3619 if (pools->bs)
3620 bioset_free(pools->bs);
3621
3622 kfree(pools);
3623 }
3624
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3625 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3626 u32 flags)
3627 {
3628 struct mapped_device *md = bdev->bd_disk->private_data;
3629 const struct pr_ops *ops;
3630 struct dm_target *tgt;
3631 fmode_t mode;
3632 int srcu_idx, r;
3633
3634 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3635 if (r < 0)
3636 return r;
3637
3638 ops = bdev->bd_disk->fops->pr_ops;
3639 if (ops && ops->pr_register)
3640 r = ops->pr_register(bdev, old_key, new_key, flags);
3641 else
3642 r = -EOPNOTSUPP;
3643
3644 dm_put_live_table(md, srcu_idx);
3645 return r;
3646 }
3647
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3648 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3649 u32 flags)
3650 {
3651 struct mapped_device *md = bdev->bd_disk->private_data;
3652 const struct pr_ops *ops;
3653 struct dm_target *tgt;
3654 fmode_t mode;
3655 int srcu_idx, r;
3656
3657 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3658 if (r < 0)
3659 return r;
3660
3661 ops = bdev->bd_disk->fops->pr_ops;
3662 if (ops && ops->pr_reserve)
3663 r = ops->pr_reserve(bdev, key, type, flags);
3664 else
3665 r = -EOPNOTSUPP;
3666
3667 dm_put_live_table(md, srcu_idx);
3668 return r;
3669 }
3670
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3671 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3672 {
3673 struct mapped_device *md = bdev->bd_disk->private_data;
3674 const struct pr_ops *ops;
3675 struct dm_target *tgt;
3676 fmode_t mode;
3677 int srcu_idx, r;
3678
3679 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3680 if (r < 0)
3681 return r;
3682
3683 ops = bdev->bd_disk->fops->pr_ops;
3684 if (ops && ops->pr_release)
3685 r = ops->pr_release(bdev, key, type);
3686 else
3687 r = -EOPNOTSUPP;
3688
3689 dm_put_live_table(md, srcu_idx);
3690 return r;
3691 }
3692
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3693 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3694 enum pr_type type, bool abort)
3695 {
3696 struct mapped_device *md = bdev->bd_disk->private_data;
3697 const struct pr_ops *ops;
3698 struct dm_target *tgt;
3699 fmode_t mode;
3700 int srcu_idx, r;
3701
3702 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3703 if (r < 0)
3704 return r;
3705
3706 ops = bdev->bd_disk->fops->pr_ops;
3707 if (ops && ops->pr_preempt)
3708 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3709 else
3710 r = -EOPNOTSUPP;
3711
3712 dm_put_live_table(md, srcu_idx);
3713 return r;
3714 }
3715
dm_pr_clear(struct block_device * bdev,u64 key)3716 static int dm_pr_clear(struct block_device *bdev, u64 key)
3717 {
3718 struct mapped_device *md = bdev->bd_disk->private_data;
3719 const struct pr_ops *ops;
3720 struct dm_target *tgt;
3721 fmode_t mode;
3722 int srcu_idx, r;
3723
3724 r = dm_get_live_table_for_ioctl(md, &tgt, &bdev, &mode, &srcu_idx);
3725 if (r < 0)
3726 return r;
3727
3728 ops = bdev->bd_disk->fops->pr_ops;
3729 if (ops && ops->pr_clear)
3730 r = ops->pr_clear(bdev, key);
3731 else
3732 r = -EOPNOTSUPP;
3733
3734 dm_put_live_table(md, srcu_idx);
3735 return r;
3736 }
3737
3738 static const struct pr_ops dm_pr_ops = {
3739 .pr_register = dm_pr_register,
3740 .pr_reserve = dm_pr_reserve,
3741 .pr_release = dm_pr_release,
3742 .pr_preempt = dm_pr_preempt,
3743 .pr_clear = dm_pr_clear,
3744 };
3745
3746 static const struct block_device_operations dm_blk_dops = {
3747 .open = dm_blk_open,
3748 .release = dm_blk_close,
3749 .ioctl = dm_blk_ioctl,
3750 .getgeo = dm_blk_getgeo,
3751 .pr_ops = &dm_pr_ops,
3752 .owner = THIS_MODULE
3753 };
3754
3755 /*
3756 * module hooks
3757 */
3758 module_init(dm_init);
3759 module_exit(dm_exit);
3760
3761 module_param(major, uint, 0);
3762 MODULE_PARM_DESC(major, "The major number of the device mapper");
3763
3764 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3765 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3766
3767 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3768 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3769
3770 module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3771 MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3772
3773 MODULE_DESCRIPTION(DM_NAME " driver");
3774 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3775 MODULE_LICENSE("GPL");
3776