1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/mount.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define MAX_DEPTH 16
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 struct dm_table {
33 struct mapped_device *md;
34 unsigned type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47 unsigned integrity_supported:1;
48 unsigned singleton:1;
49
50 /*
51 * Indicates the rw permissions for the new logical
52 * device. This should be a combination of FMODE_READ
53 * and FMODE_WRITE.
54 */
55 fmode_t mode;
56
57 /* a list of devices used by this table */
58 struct list_head devices;
59
60 /* events get handed up using this callback */
61 void (*event_fn)(void *);
62 void *event_context;
63
64 struct dm_md_mempools *mempools;
65
66 struct list_head target_callbacks;
67 };
68
69 /*
70 * Similar to ceiling(log_size(n))
71 */
int_log(unsigned int n,unsigned int base)72 static unsigned int int_log(unsigned int n, unsigned int base)
73 {
74 int result = 0;
75
76 while (n > 1) {
77 n = dm_div_up(n, base);
78 result++;
79 }
80
81 return result;
82 }
83
84 /*
85 * Calculate the index of the child node of the n'th node k'th key.
86 */
get_child(unsigned int n,unsigned int k)87 static inline unsigned int get_child(unsigned int n, unsigned int k)
88 {
89 return (n * CHILDREN_PER_NODE) + k;
90 }
91
92 /*
93 * Return the n'th node of level l from table t.
94 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)95 static inline sector_t *get_node(struct dm_table *t,
96 unsigned int l, unsigned int n)
97 {
98 return t->index[l] + (n * KEYS_PER_NODE);
99 }
100
101 /*
102 * Return the highest key that you could lookup from the n'th
103 * node on level l of the btree.
104 */
high(struct dm_table * t,unsigned int l,unsigned int n)105 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
106 {
107 for (; l < t->depth - 1; l++)
108 n = get_child(n, CHILDREN_PER_NODE - 1);
109
110 if (n >= t->counts[l])
111 return (sector_t) - 1;
112
113 return get_node(t, l, n)[KEYS_PER_NODE - 1];
114 }
115
116 /*
117 * Fills in a level of the btree based on the highs of the level
118 * below it.
119 */
setup_btree_index(unsigned int l,struct dm_table * t)120 static int setup_btree_index(unsigned int l, struct dm_table *t)
121 {
122 unsigned int n, k;
123 sector_t *node;
124
125 for (n = 0U; n < t->counts[l]; n++) {
126 node = get_node(t, l, n);
127
128 for (k = 0U; k < KEYS_PER_NODE; k++)
129 node[k] = high(t, l + 1, get_child(n, k));
130 }
131
132 return 0;
133 }
134
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)135 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
136 {
137 unsigned long size;
138 void *addr;
139
140 /*
141 * Check that we're not going to overflow.
142 */
143 if (nmemb > (ULONG_MAX / elem_size))
144 return NULL;
145
146 size = nmemb * elem_size;
147 addr = vzalloc(size);
148
149 return addr;
150 }
151 EXPORT_SYMBOL(dm_vcalloc);
152
153 /*
154 * highs, and targets are managed as dynamic arrays during a
155 * table load.
156 */
alloc_targets(struct dm_table * t,unsigned int num)157 static int alloc_targets(struct dm_table *t, unsigned int num)
158 {
159 sector_t *n_highs;
160 struct dm_target *n_targets;
161
162 /*
163 * Allocate both the target array and offset array at once.
164 * Append an empty entry to catch sectors beyond the end of
165 * the device.
166 */
167 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
168 sizeof(sector_t));
169 if (!n_highs)
170 return -ENOMEM;
171
172 n_targets = (struct dm_target *) (n_highs + num);
173
174 memset(n_highs, -1, sizeof(*n_highs) * num);
175 vfree(t->highs);
176
177 t->num_allocated = num;
178 t->highs = n_highs;
179 t->targets = n_targets;
180
181 return 0;
182 }
183
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)184 int dm_table_create(struct dm_table **result, fmode_t mode,
185 unsigned num_targets, struct mapped_device *md)
186 {
187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
188
189 if (!t)
190 return -ENOMEM;
191
192 INIT_LIST_HEAD(&t->devices);
193 INIT_LIST_HEAD(&t->target_callbacks);
194
195 if (!num_targets)
196 num_targets = KEYS_PER_NODE;
197
198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
199
200 if (!num_targets) {
201 kfree(t);
202 return -ENOMEM;
203 }
204
205 if (alloc_targets(t, num_targets)) {
206 kfree(t);
207 return -ENOMEM;
208 }
209
210 t->mode = mode;
211 t->md = md;
212 *result = t;
213 return 0;
214 }
215
free_devices(struct list_head * devices,struct mapped_device * md)216 static void free_devices(struct list_head *devices, struct mapped_device *md)
217 {
218 struct list_head *tmp, *next;
219
220 list_for_each_safe(tmp, next, devices) {
221 struct dm_dev_internal *dd =
222 list_entry(tmp, struct dm_dev_internal, list);
223 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
224 dm_device_name(md), dd->dm_dev->name);
225 dm_put_table_device(md, dd->dm_dev);
226 kfree(dd);
227 }
228 }
229
dm_table_destroy(struct dm_table * t)230 void dm_table_destroy(struct dm_table *t)
231 {
232 unsigned int i;
233
234 if (!t)
235 return;
236
237 /* free the indexes */
238 if (t->depth >= 2)
239 vfree(t->index[t->depth - 2]);
240
241 /* free the targets */
242 for (i = 0; i < t->num_targets; i++) {
243 struct dm_target *tgt = t->targets + i;
244
245 if (tgt->type->dtr)
246 tgt->type->dtr(tgt);
247
248 dm_put_target_type(tgt->type);
249 }
250
251 vfree(t->highs);
252
253 /* free the device list */
254 free_devices(&t->devices, t->md);
255
256 dm_free_md_mempools(t->mempools);
257
258 kfree(t);
259 }
260
261 /*
262 * See if we've already got a device in the list.
263 */
find_device(struct list_head * l,dev_t dev)264 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
265 {
266 struct dm_dev_internal *dd;
267
268 list_for_each_entry (dd, l, list)
269 if (dd->dm_dev->bdev->bd_dev == dev)
270 return dd;
271
272 return NULL;
273 }
274
275 /*
276 * If possible, this checks an area of a destination device is invalid.
277 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)278 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
279 sector_t start, sector_t len, void *data)
280 {
281 struct request_queue *q;
282 struct queue_limits *limits = data;
283 struct block_device *bdev = dev->bdev;
284 sector_t dev_size =
285 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
286 unsigned short logical_block_size_sectors =
287 limits->logical_block_size >> SECTOR_SHIFT;
288 char b[BDEVNAME_SIZE];
289
290 /*
291 * Some devices exist without request functions,
292 * such as loop devices not yet bound to backing files.
293 * Forbid the use of such devices.
294 */
295 q = bdev_get_queue(bdev);
296 if (!q || !q->make_request_fn) {
297 DMWARN("%s: %s is not yet initialised: "
298 "start=%llu, len=%llu, dev_size=%llu",
299 dm_device_name(ti->table->md), bdevname(bdev, b),
300 (unsigned long long)start,
301 (unsigned long long)len,
302 (unsigned long long)dev_size);
303 return 1;
304 }
305
306 if (!dev_size)
307 return 0;
308
309 if ((start >= dev_size) || (start + len > dev_size)) {
310 DMWARN("%s: %s too small for target: "
311 "start=%llu, len=%llu, dev_size=%llu",
312 dm_device_name(ti->table->md), bdevname(bdev, b),
313 (unsigned long long)start,
314 (unsigned long long)len,
315 (unsigned long long)dev_size);
316 return 1;
317 }
318
319 if (logical_block_size_sectors <= 1)
320 return 0;
321
322 if (start & (logical_block_size_sectors - 1)) {
323 DMWARN("%s: start=%llu not aligned to h/w "
324 "logical block size %u of %s",
325 dm_device_name(ti->table->md),
326 (unsigned long long)start,
327 limits->logical_block_size, bdevname(bdev, b));
328 return 1;
329 }
330
331 if (len & (logical_block_size_sectors - 1)) {
332 DMWARN("%s: len=%llu not aligned to h/w "
333 "logical block size %u of %s",
334 dm_device_name(ti->table->md),
335 (unsigned long long)len,
336 limits->logical_block_size, bdevname(bdev, b));
337 return 1;
338 }
339
340 return 0;
341 }
342
343 /*
344 * This upgrades the mode on an already open dm_dev, being
345 * careful to leave things as they were if we fail to reopen the
346 * device and not to touch the existing bdev field in case
347 * it is accessed concurrently inside dm_table_any_congested().
348 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)349 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
350 struct mapped_device *md)
351 {
352 int r;
353 struct dm_dev *old_dev, *new_dev;
354
355 old_dev = dd->dm_dev;
356
357 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
358 dd->dm_dev->mode | new_mode, &new_dev);
359 if (r)
360 return r;
361
362 dd->dm_dev = new_dev;
363 dm_put_table_device(md, old_dev);
364
365 return 0;
366 }
367
368 /*
369 * Convert the path to a device
370 */
dm_get_dev_t(const char * path)371 dev_t dm_get_dev_t(const char *path)
372 {
373 dev_t uninitialized_var(dev);
374 struct block_device *bdev;
375
376 bdev = lookup_bdev(path);
377 if (IS_ERR(bdev))
378 dev = name_to_dev_t(path);
379 else {
380 dev = bdev->bd_dev;
381 bdput(bdev);
382 }
383
384 return dev;
385 }
386 EXPORT_SYMBOL_GPL(dm_get_dev_t);
387
388 /*
389 * Add a device to the list, or just increment the usage count if
390 * it's already present.
391 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)392 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
393 struct dm_dev **result)
394 {
395 int r;
396 dev_t dev;
397 unsigned int major, minor;
398 char dummy;
399 struct dm_dev_internal *dd;
400 struct dm_table *t = ti->table;
401
402 BUG_ON(!t);
403
404 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
405 /* Extract the major/minor numbers */
406 dev = MKDEV(major, minor);
407 if (MAJOR(dev) != major || MINOR(dev) != minor)
408 return -EOVERFLOW;
409 } else {
410 dev = dm_get_dev_t(path);
411 if (!dev)
412 return -ENODEV;
413 }
414
415 dd = find_device(&t->devices, dev);
416 if (!dd) {
417 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
418 if (!dd)
419 return -ENOMEM;
420
421 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
422 kfree(dd);
423 return r;
424 }
425
426 atomic_set(&dd->count, 0);
427 list_add(&dd->list, &t->devices);
428
429 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
430 r = upgrade_mode(dd, mode, t->md);
431 if (r)
432 return r;
433 }
434 atomic_inc(&dd->count);
435
436 *result = dd->dm_dev;
437 return 0;
438 }
439 EXPORT_SYMBOL(dm_get_device);
440
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)441 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
442 sector_t start, sector_t len, void *data)
443 {
444 struct queue_limits *limits = data;
445 struct block_device *bdev = dev->bdev;
446 struct request_queue *q = bdev_get_queue(bdev);
447 char b[BDEVNAME_SIZE];
448
449 if (unlikely(!q)) {
450 DMWARN("%s: Cannot set limits for nonexistent device %s",
451 dm_device_name(ti->table->md), bdevname(bdev, b));
452 return 0;
453 }
454
455 if (bdev_stack_limits(limits, bdev, start) < 0)
456 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
457 "physical_block_size=%u, logical_block_size=%u, "
458 "alignment_offset=%u, start=%llu",
459 dm_device_name(ti->table->md), bdevname(bdev, b),
460 q->limits.physical_block_size,
461 q->limits.logical_block_size,
462 q->limits.alignment_offset,
463 (unsigned long long) start << SECTOR_SHIFT);
464
465 return 0;
466 }
467
468 /*
469 * Decrement a device's use count and remove it if necessary.
470 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)471 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
472 {
473 int found = 0;
474 struct list_head *devices = &ti->table->devices;
475 struct dm_dev_internal *dd;
476
477 list_for_each_entry(dd, devices, list) {
478 if (dd->dm_dev == d) {
479 found = 1;
480 break;
481 }
482 }
483 if (!found) {
484 DMWARN("%s: device %s not in table devices list",
485 dm_device_name(ti->table->md), d->name);
486 return;
487 }
488 if (atomic_dec_and_test(&dd->count)) {
489 dm_put_table_device(ti->table->md, d);
490 list_del(&dd->list);
491 kfree(dd);
492 }
493 }
494 EXPORT_SYMBOL(dm_put_device);
495
496 /*
497 * Checks to see if the target joins onto the end of the table.
498 */
adjoin(struct dm_table * table,struct dm_target * ti)499 static int adjoin(struct dm_table *table, struct dm_target *ti)
500 {
501 struct dm_target *prev;
502
503 if (!table->num_targets)
504 return !ti->begin;
505
506 prev = &table->targets[table->num_targets - 1];
507 return (ti->begin == (prev->begin + prev->len));
508 }
509
510 /*
511 * Used to dynamically allocate the arg array.
512 *
513 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
514 * process messages even if some device is suspended. These messages have a
515 * small fixed number of arguments.
516 *
517 * On the other hand, dm-switch needs to process bulk data using messages and
518 * excessive use of GFP_NOIO could cause trouble.
519 */
realloc_argv(unsigned * size,char ** old_argv)520 static char **realloc_argv(unsigned *size, char **old_argv)
521 {
522 char **argv;
523 unsigned new_size;
524 gfp_t gfp;
525
526 if (*size) {
527 new_size = *size * 2;
528 gfp = GFP_KERNEL;
529 } else {
530 new_size = 8;
531 gfp = GFP_NOIO;
532 }
533 argv = kmalloc(new_size * sizeof(*argv), gfp);
534 if (argv) {
535 memcpy(argv, old_argv, *size * sizeof(*argv));
536 *size = new_size;
537 }
538
539 kfree(old_argv);
540 return argv;
541 }
542
543 /*
544 * Destructively splits up the argument list to pass to ctr.
545 */
dm_split_args(int * argc,char *** argvp,char * input)546 int dm_split_args(int *argc, char ***argvp, char *input)
547 {
548 char *start, *end = input, *out, **argv = NULL;
549 unsigned array_size = 0;
550
551 *argc = 0;
552
553 if (!input) {
554 *argvp = NULL;
555 return 0;
556 }
557
558 argv = realloc_argv(&array_size, argv);
559 if (!argv)
560 return -ENOMEM;
561
562 while (1) {
563 /* Skip whitespace */
564 start = skip_spaces(end);
565
566 if (!*start)
567 break; /* success, we hit the end */
568
569 /* 'out' is used to remove any back-quotes */
570 end = out = start;
571 while (*end) {
572 /* Everything apart from '\0' can be quoted */
573 if (*end == '\\' && *(end + 1)) {
574 *out++ = *(end + 1);
575 end += 2;
576 continue;
577 }
578
579 if (isspace(*end))
580 break; /* end of token */
581
582 *out++ = *end++;
583 }
584
585 /* have we already filled the array ? */
586 if ((*argc + 1) > array_size) {
587 argv = realloc_argv(&array_size, argv);
588 if (!argv)
589 return -ENOMEM;
590 }
591
592 /* we know this is whitespace */
593 if (*end)
594 end++;
595
596 /* terminate the string and put it in the array */
597 *out = '\0';
598 argv[*argc] = start;
599 (*argc)++;
600 }
601
602 *argvp = argv;
603 return 0;
604 }
605
606 /*
607 * Impose necessary and sufficient conditions on a devices's table such
608 * that any incoming bio which respects its logical_block_size can be
609 * processed successfully. If it falls across the boundary between
610 * two or more targets, the size of each piece it gets split into must
611 * be compatible with the logical_block_size of the target processing it.
612 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)613 static int validate_hardware_logical_block_alignment(struct dm_table *table,
614 struct queue_limits *limits)
615 {
616 /*
617 * This function uses arithmetic modulo the logical_block_size
618 * (in units of 512-byte sectors).
619 */
620 unsigned short device_logical_block_size_sects =
621 limits->logical_block_size >> SECTOR_SHIFT;
622
623 /*
624 * Offset of the start of the next table entry, mod logical_block_size.
625 */
626 unsigned short next_target_start = 0;
627
628 /*
629 * Given an aligned bio that extends beyond the end of a
630 * target, how many sectors must the next target handle?
631 */
632 unsigned short remaining = 0;
633
634 struct dm_target *uninitialized_var(ti);
635 struct queue_limits ti_limits;
636 unsigned i = 0;
637
638 /*
639 * Check each entry in the table in turn.
640 */
641 while (i < dm_table_get_num_targets(table)) {
642 ti = dm_table_get_target(table, i++);
643
644 blk_set_stacking_limits(&ti_limits);
645
646 /* combine all target devices' limits */
647 if (ti->type->iterate_devices)
648 ti->type->iterate_devices(ti, dm_set_device_limits,
649 &ti_limits);
650
651 /*
652 * If the remaining sectors fall entirely within this
653 * table entry are they compatible with its logical_block_size?
654 */
655 if (remaining < ti->len &&
656 remaining & ((ti_limits.logical_block_size >>
657 SECTOR_SHIFT) - 1))
658 break; /* Error */
659
660 next_target_start =
661 (unsigned short) ((next_target_start + ti->len) &
662 (device_logical_block_size_sects - 1));
663 remaining = next_target_start ?
664 device_logical_block_size_sects - next_target_start : 0;
665 }
666
667 if (remaining) {
668 DMWARN("%s: table line %u (start sect %llu len %llu) "
669 "not aligned to h/w logical block size %u",
670 dm_device_name(table->md), i,
671 (unsigned long long) ti->begin,
672 (unsigned long long) ti->len,
673 limits->logical_block_size);
674 return -EINVAL;
675 }
676
677 return 0;
678 }
679
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)680 int dm_table_add_target(struct dm_table *t, const char *type,
681 sector_t start, sector_t len, char *params)
682 {
683 int r = -EINVAL, argc;
684 char **argv;
685 struct dm_target *tgt;
686
687 if (t->singleton) {
688 DMERR("%s: target type %s must appear alone in table",
689 dm_device_name(t->md), t->targets->type->name);
690 return -EINVAL;
691 }
692
693 BUG_ON(t->num_targets >= t->num_allocated);
694
695 tgt = t->targets + t->num_targets;
696 memset(tgt, 0, sizeof(*tgt));
697
698 if (!len) {
699 DMERR("%s: zero-length target", dm_device_name(t->md));
700 return -EINVAL;
701 }
702
703 tgt->type = dm_get_target_type(type);
704 if (!tgt->type) {
705 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
706 type);
707 return -EINVAL;
708 }
709
710 if (dm_target_needs_singleton(tgt->type)) {
711 if (t->num_targets) {
712 DMERR("%s: target type %s must appear alone in table",
713 dm_device_name(t->md), type);
714 return -EINVAL;
715 }
716 t->singleton = 1;
717 }
718
719 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
720 DMERR("%s: target type %s may not be included in read-only tables",
721 dm_device_name(t->md), type);
722 return -EINVAL;
723 }
724
725 if (t->immutable_target_type) {
726 if (t->immutable_target_type != tgt->type) {
727 DMERR("%s: immutable target type %s cannot be mixed with other target types",
728 dm_device_name(t->md), t->immutable_target_type->name);
729 return -EINVAL;
730 }
731 } else if (dm_target_is_immutable(tgt->type)) {
732 if (t->num_targets) {
733 DMERR("%s: immutable target type %s cannot be mixed with other target types",
734 dm_device_name(t->md), tgt->type->name);
735 return -EINVAL;
736 }
737 t->immutable_target_type = tgt->type;
738 }
739
740 tgt->table = t;
741 tgt->begin = start;
742 tgt->len = len;
743 tgt->error = "Unknown error";
744
745 /*
746 * Does this target adjoin the previous one ?
747 */
748 if (!adjoin(t, tgt)) {
749 tgt->error = "Gap in table";
750 r = -EINVAL;
751 goto bad;
752 }
753
754 r = dm_split_args(&argc, &argv, params);
755 if (r) {
756 tgt->error = "couldn't split parameters (insufficient memory)";
757 goto bad;
758 }
759
760 r = tgt->type->ctr(tgt, argc, argv);
761 kfree(argv);
762 if (r)
763 goto bad;
764
765 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
766
767 if (!tgt->num_discard_bios && tgt->discards_supported)
768 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
769 dm_device_name(t->md), type);
770
771 return 0;
772
773 bad:
774 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
775 dm_put_target_type(tgt->type);
776 return r;
777 }
778
779 /*
780 * Target argument parsing helpers.
781 */
validate_next_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)782 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
783 unsigned *value, char **error, unsigned grouped)
784 {
785 const char *arg_str = dm_shift_arg(arg_set);
786 char dummy;
787
788 if (!arg_str ||
789 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
790 (*value < arg->min) ||
791 (*value > arg->max) ||
792 (grouped && arg_set->argc < *value)) {
793 *error = arg->error;
794 return -EINVAL;
795 }
796
797 return 0;
798 }
799
dm_read_arg(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)800 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
801 unsigned *value, char **error)
802 {
803 return validate_next_arg(arg, arg_set, value, error, 0);
804 }
805 EXPORT_SYMBOL(dm_read_arg);
806
dm_read_arg_group(struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)807 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
808 unsigned *value, char **error)
809 {
810 return validate_next_arg(arg, arg_set, value, error, 1);
811 }
812 EXPORT_SYMBOL(dm_read_arg_group);
813
dm_shift_arg(struct dm_arg_set * as)814 const char *dm_shift_arg(struct dm_arg_set *as)
815 {
816 char *r;
817
818 if (as->argc) {
819 as->argc--;
820 r = *as->argv;
821 as->argv++;
822 return r;
823 }
824
825 return NULL;
826 }
827 EXPORT_SYMBOL(dm_shift_arg);
828
dm_consume_args(struct dm_arg_set * as,unsigned num_args)829 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
830 {
831 BUG_ON(as->argc < num_args);
832 as->argc -= num_args;
833 as->argv += num_args;
834 }
835 EXPORT_SYMBOL(dm_consume_args);
836
__table_type_request_based(unsigned table_type)837 static bool __table_type_request_based(unsigned table_type)
838 {
839 return (table_type == DM_TYPE_REQUEST_BASED ||
840 table_type == DM_TYPE_MQ_REQUEST_BASED);
841 }
842
dm_table_set_type(struct dm_table * t)843 static int dm_table_set_type(struct dm_table *t)
844 {
845 unsigned i;
846 unsigned bio_based = 0, request_based = 0, hybrid = 0;
847 bool use_blk_mq = false;
848 struct dm_target *tgt;
849 struct dm_dev_internal *dd;
850 struct list_head *devices;
851 unsigned live_md_type = dm_get_md_type(t->md);
852
853 for (i = 0; i < t->num_targets; i++) {
854 tgt = t->targets + i;
855 if (dm_target_hybrid(tgt))
856 hybrid = 1;
857 else if (dm_target_request_based(tgt))
858 request_based = 1;
859 else
860 bio_based = 1;
861
862 if (bio_based && request_based) {
863 DMWARN("Inconsistent table: different target types"
864 " can't be mixed up");
865 return -EINVAL;
866 }
867 }
868
869 if (hybrid && !bio_based && !request_based) {
870 /*
871 * The targets can work either way.
872 * Determine the type from the live device.
873 * Default to bio-based if device is new.
874 */
875 if (__table_type_request_based(live_md_type))
876 request_based = 1;
877 else
878 bio_based = 1;
879 }
880
881 if (bio_based) {
882 /* We must use this table as bio-based */
883 t->type = DM_TYPE_BIO_BASED;
884 return 0;
885 }
886
887 BUG_ON(!request_based); /* No targets in this table */
888
889 /*
890 * Request-based dm supports only tables that have a single target now.
891 * To support multiple targets, request splitting support is needed,
892 * and that needs lots of changes in the block-layer.
893 * (e.g. request completion process for partial completion.)
894 */
895 if (t->num_targets > 1) {
896 DMWARN("Request-based dm doesn't support multiple targets yet");
897 return -EINVAL;
898 }
899
900 /* Non-request-stackable devices can't be used for request-based dm */
901 devices = dm_table_get_devices(t);
902 list_for_each_entry(dd, devices, list) {
903 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
904
905 if (!blk_queue_stackable(q)) {
906 DMERR("table load rejected: including"
907 " non-request-stackable devices");
908 return -EINVAL;
909 }
910
911 if (q->mq_ops)
912 use_blk_mq = true;
913 }
914
915 if (use_blk_mq) {
916 /* verify _all_ devices in the table are blk-mq devices */
917 list_for_each_entry(dd, devices, list)
918 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
919 DMERR("table load rejected: not all devices"
920 " are blk-mq request-stackable");
921 return -EINVAL;
922 }
923 t->type = DM_TYPE_MQ_REQUEST_BASED;
924
925 } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
926 /* inherit live MD type */
927 t->type = live_md_type;
928
929 } else
930 t->type = DM_TYPE_REQUEST_BASED;
931
932 return 0;
933 }
934
dm_table_get_type(struct dm_table * t)935 unsigned dm_table_get_type(struct dm_table *t)
936 {
937 return t->type;
938 }
939
dm_table_get_immutable_target_type(struct dm_table * t)940 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
941 {
942 return t->immutable_target_type;
943 }
944
dm_table_request_based(struct dm_table * t)945 bool dm_table_request_based(struct dm_table *t)
946 {
947 return __table_type_request_based(dm_table_get_type(t));
948 }
949
dm_table_mq_request_based(struct dm_table * t)950 bool dm_table_mq_request_based(struct dm_table *t)
951 {
952 return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
953 }
954
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)955 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
956 {
957 unsigned type = dm_table_get_type(t);
958 unsigned per_bio_data_size = 0;
959 struct dm_target *tgt;
960 unsigned i;
961
962 if (unlikely(type == DM_TYPE_NONE)) {
963 DMWARN("no table type is set, can't allocate mempools");
964 return -EINVAL;
965 }
966
967 if (type == DM_TYPE_BIO_BASED)
968 for (i = 0; i < t->num_targets; i++) {
969 tgt = t->targets + i;
970 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
971 }
972
973 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
974 if (!t->mempools)
975 return -ENOMEM;
976
977 return 0;
978 }
979
dm_table_free_md_mempools(struct dm_table * t)980 void dm_table_free_md_mempools(struct dm_table *t)
981 {
982 dm_free_md_mempools(t->mempools);
983 t->mempools = NULL;
984 }
985
dm_table_get_md_mempools(struct dm_table * t)986 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
987 {
988 return t->mempools;
989 }
990
setup_indexes(struct dm_table * t)991 static int setup_indexes(struct dm_table *t)
992 {
993 int i;
994 unsigned int total = 0;
995 sector_t *indexes;
996
997 /* allocate the space for *all* the indexes */
998 for (i = t->depth - 2; i >= 0; i--) {
999 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1000 total += t->counts[i];
1001 }
1002
1003 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1004 if (!indexes)
1005 return -ENOMEM;
1006
1007 /* set up internal nodes, bottom-up */
1008 for (i = t->depth - 2; i >= 0; i--) {
1009 t->index[i] = indexes;
1010 indexes += (KEYS_PER_NODE * t->counts[i]);
1011 setup_btree_index(i, t);
1012 }
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * Builds the btree to index the map.
1019 */
dm_table_build_index(struct dm_table * t)1020 static int dm_table_build_index(struct dm_table *t)
1021 {
1022 int r = 0;
1023 unsigned int leaf_nodes;
1024
1025 /* how many indexes will the btree have ? */
1026 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1027 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1028
1029 /* leaf layer has already been set up */
1030 t->counts[t->depth - 1] = leaf_nodes;
1031 t->index[t->depth - 1] = t->highs;
1032
1033 if (t->depth >= 2)
1034 r = setup_indexes(t);
1035
1036 return r;
1037 }
1038
integrity_profile_exists(struct gendisk * disk)1039 static bool integrity_profile_exists(struct gendisk *disk)
1040 {
1041 return !!blk_get_integrity(disk);
1042 }
1043
1044 /*
1045 * Get a disk whose integrity profile reflects the table's profile.
1046 * Returns NULL if integrity support was inconsistent or unavailable.
1047 */
dm_table_get_integrity_disk(struct dm_table * t)1048 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1049 {
1050 struct list_head *devices = dm_table_get_devices(t);
1051 struct dm_dev_internal *dd = NULL;
1052 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1053
1054 list_for_each_entry(dd, devices, list) {
1055 template_disk = dd->dm_dev->bdev->bd_disk;
1056 if (!integrity_profile_exists(template_disk))
1057 goto no_integrity;
1058 else if (prev_disk &&
1059 blk_integrity_compare(prev_disk, template_disk) < 0)
1060 goto no_integrity;
1061 prev_disk = template_disk;
1062 }
1063
1064 return template_disk;
1065
1066 no_integrity:
1067 if (prev_disk)
1068 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1069 dm_device_name(t->md),
1070 prev_disk->disk_name,
1071 template_disk->disk_name);
1072 return NULL;
1073 }
1074
1075 /*
1076 * Register the mapped device for blk_integrity support if the
1077 * underlying devices have an integrity profile. But all devices may
1078 * not have matching profiles (checking all devices isn't reliable
1079 * during table load because this table may use other DM device(s) which
1080 * must be resumed before they will have an initialized integity
1081 * profile). Consequently, stacked DM devices force a 2 stage integrity
1082 * profile validation: First pass during table load, final pass during
1083 * resume.
1084 */
dm_table_register_integrity(struct dm_table * t)1085 static int dm_table_register_integrity(struct dm_table *t)
1086 {
1087 struct mapped_device *md = t->md;
1088 struct gendisk *template_disk = NULL;
1089
1090 template_disk = dm_table_get_integrity_disk(t);
1091 if (!template_disk)
1092 return 0;
1093
1094 if (!integrity_profile_exists(dm_disk(md))) {
1095 t->integrity_supported = 1;
1096 /*
1097 * Register integrity profile during table load; we can do
1098 * this because the final profile must match during resume.
1099 */
1100 blk_integrity_register(dm_disk(md),
1101 blk_get_integrity(template_disk));
1102 return 0;
1103 }
1104
1105 /*
1106 * If DM device already has an initialized integrity
1107 * profile the new profile should not conflict.
1108 */
1109 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1110 DMWARN("%s: conflict with existing integrity profile: "
1111 "%s profile mismatch",
1112 dm_device_name(t->md),
1113 template_disk->disk_name);
1114 return 1;
1115 }
1116
1117 /* Preserve existing integrity profile */
1118 t->integrity_supported = 1;
1119 return 0;
1120 }
1121
1122 /*
1123 * Prepares the table for use by building the indices,
1124 * setting the type, and allocating mempools.
1125 */
dm_table_complete(struct dm_table * t)1126 int dm_table_complete(struct dm_table *t)
1127 {
1128 int r;
1129
1130 r = dm_table_set_type(t);
1131 if (r) {
1132 DMERR("unable to set table type");
1133 return r;
1134 }
1135
1136 r = dm_table_build_index(t);
1137 if (r) {
1138 DMERR("unable to build btrees");
1139 return r;
1140 }
1141
1142 r = dm_table_register_integrity(t);
1143 if (r) {
1144 DMERR("could not register integrity profile.");
1145 return r;
1146 }
1147
1148 r = dm_table_alloc_md_mempools(t, t->md);
1149 if (r)
1150 DMERR("unable to allocate mempools");
1151
1152 return r;
1153 }
1154
1155 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1156 void dm_table_event_callback(struct dm_table *t,
1157 void (*fn)(void *), void *context)
1158 {
1159 mutex_lock(&_event_lock);
1160 t->event_fn = fn;
1161 t->event_context = context;
1162 mutex_unlock(&_event_lock);
1163 }
1164
dm_table_event(struct dm_table * t)1165 void dm_table_event(struct dm_table *t)
1166 {
1167 mutex_lock(&_event_lock);
1168 if (t->event_fn)
1169 t->event_fn(t->event_context);
1170 mutex_unlock(&_event_lock);
1171 }
1172 EXPORT_SYMBOL(dm_table_event);
1173
dm_table_get_size(struct dm_table * t)1174 inline sector_t dm_table_get_size(struct dm_table *t)
1175 {
1176 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1177 }
1178 EXPORT_SYMBOL(dm_table_get_size);
1179
dm_table_get_target(struct dm_table * t,unsigned int index)1180 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1181 {
1182 if (index >= t->num_targets)
1183 return NULL;
1184
1185 return t->targets + index;
1186 }
1187
1188 /*
1189 * Search the btree for the correct target.
1190 *
1191 * Caller should check returned pointer with dm_target_is_valid()
1192 * to trap I/O beyond end of device.
1193 */
dm_table_find_target(struct dm_table * t,sector_t sector)1194 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1195 {
1196 unsigned int l, n = 0, k = 0;
1197 sector_t *node;
1198
1199 if (unlikely(sector >= dm_table_get_size(t)))
1200 return &t->targets[t->num_targets];
1201
1202 for (l = 0; l < t->depth; l++) {
1203 n = get_child(n, k);
1204 node = get_node(t, l, n);
1205
1206 for (k = 0; k < KEYS_PER_NODE; k++)
1207 if (node[k] >= sector)
1208 break;
1209 }
1210
1211 return &t->targets[(KEYS_PER_NODE * n) + k];
1212 }
1213
1214 /*
1215 * type->iterate_devices() should be called when the sanity check needs to
1216 * iterate and check all underlying data devices. iterate_devices() will
1217 * iterate all underlying data devices until it encounters a non-zero return
1218 * code, returned by whether the input iterate_devices_callout_fn, or
1219 * iterate_devices() itself internally.
1220 *
1221 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1222 * iterate multiple underlying devices internally, in which case a non-zero
1223 * return code returned by iterate_devices_callout_fn will stop the iteration
1224 * in advance.
1225 *
1226 * Cases requiring _any_ underlying device supporting some kind of attribute,
1227 * should use the iteration structure like dm_table_any_dev_attr(), or call
1228 * it directly. @func should handle semantics of positive examples, e.g.
1229 * capable of something.
1230 *
1231 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1232 * should use the iteration structure like dm_table_supports_nowait() or
1233 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1234 * uses an @anti_func that handle semantics of counter examples, e.g. not
1235 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func);
1236 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func)1237 static bool dm_table_any_dev_attr(struct dm_table *t,
1238 iterate_devices_callout_fn func)
1239 {
1240 struct dm_target *ti;
1241 unsigned int i;
1242
1243 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1244 ti = dm_table_get_target(t, i);
1245
1246 if (ti->type->iterate_devices &&
1247 ti->type->iterate_devices(ti, func, NULL))
1248 return true;
1249 }
1250
1251 return false;
1252 }
1253
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1254 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1255 sector_t start, sector_t len, void *data)
1256 {
1257 unsigned *num_devices = data;
1258
1259 (*num_devices)++;
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * Check whether a table has no data devices attached using each
1266 * target's iterate_devices method.
1267 * Returns false if the result is unknown because a target doesn't
1268 * support iterate_devices.
1269 */
dm_table_has_no_data_devices(struct dm_table * table)1270 bool dm_table_has_no_data_devices(struct dm_table *table)
1271 {
1272 struct dm_target *uninitialized_var(ti);
1273 unsigned i = 0, num_devices = 0;
1274
1275 while (i < dm_table_get_num_targets(table)) {
1276 ti = dm_table_get_target(table, i++);
1277
1278 if (!ti->type->iterate_devices)
1279 return false;
1280
1281 ti->type->iterate_devices(ti, count_device, &num_devices);
1282 if (num_devices)
1283 return false;
1284 }
1285
1286 return true;
1287 }
1288
1289 /*
1290 * Establish the new table's queue_limits and validate them.
1291 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1292 int dm_calculate_queue_limits(struct dm_table *table,
1293 struct queue_limits *limits)
1294 {
1295 struct dm_target *uninitialized_var(ti);
1296 struct queue_limits ti_limits;
1297 unsigned i = 0;
1298
1299 blk_set_stacking_limits(limits);
1300
1301 while (i < dm_table_get_num_targets(table)) {
1302 blk_set_stacking_limits(&ti_limits);
1303
1304 ti = dm_table_get_target(table, i++);
1305
1306 if (!ti->type->iterate_devices)
1307 goto combine_limits;
1308
1309 /*
1310 * Combine queue limits of all the devices this target uses.
1311 */
1312 ti->type->iterate_devices(ti, dm_set_device_limits,
1313 &ti_limits);
1314
1315 /* Set I/O hints portion of queue limits */
1316 if (ti->type->io_hints)
1317 ti->type->io_hints(ti, &ti_limits);
1318
1319 /*
1320 * Check each device area is consistent with the target's
1321 * overall queue limits.
1322 */
1323 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1324 &ti_limits))
1325 return -EINVAL;
1326
1327 combine_limits:
1328 /*
1329 * Merge this target's queue limits into the overall limits
1330 * for the table.
1331 */
1332 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1333 DMWARN("%s: adding target device "
1334 "(start sect %llu len %llu) "
1335 "caused an alignment inconsistency",
1336 dm_device_name(table->md),
1337 (unsigned long long) ti->begin,
1338 (unsigned long long) ti->len);
1339 }
1340
1341 return validate_hardware_logical_block_alignment(table, limits);
1342 }
1343
1344 /*
1345 * Verify that all devices have an integrity profile that matches the
1346 * DM device's registered integrity profile. If the profiles don't
1347 * match then unregister the DM device's integrity profile.
1348 */
dm_table_verify_integrity(struct dm_table * t)1349 static void dm_table_verify_integrity(struct dm_table *t)
1350 {
1351 struct gendisk *template_disk = NULL;
1352
1353 if (t->integrity_supported) {
1354 /*
1355 * Verify that the original integrity profile
1356 * matches all the devices in this table.
1357 */
1358 template_disk = dm_table_get_integrity_disk(t);
1359 if (template_disk &&
1360 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1361 return;
1362 }
1363
1364 if (integrity_profile_exists(dm_disk(t->md))) {
1365 DMWARN("%s: unable to establish an integrity profile",
1366 dm_device_name(t->md));
1367 blk_integrity_unregister(dm_disk(t->md));
1368 }
1369 }
1370
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1371 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1372 sector_t start, sector_t len, void *data)
1373 {
1374 unsigned flush = (*(unsigned *)data);
1375 struct request_queue *q = bdev_get_queue(dev->bdev);
1376
1377 return q && (q->flush_flags & flush);
1378 }
1379
dm_table_supports_flush(struct dm_table * t,unsigned flush)1380 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1381 {
1382 struct dm_target *ti;
1383 unsigned i = 0;
1384
1385 /*
1386 * Require at least one underlying device to support flushes.
1387 * t->devices includes internal dm devices such as mirror logs
1388 * so we need to use iterate_devices here, which targets
1389 * supporting flushes must provide.
1390 */
1391 while (i < dm_table_get_num_targets(t)) {
1392 ti = dm_table_get_target(t, i++);
1393
1394 if (!ti->num_flush_bios)
1395 continue;
1396
1397 if (ti->flush_supported)
1398 return true;
1399
1400 if (ti->type->iterate_devices &&
1401 ti->type->iterate_devices(ti, device_flush_capable, &flush))
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
dm_table_discard_zeroes_data(struct dm_table * t)1408 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1409 {
1410 struct dm_target *ti;
1411 unsigned i = 0;
1412
1413 /* Ensure that all targets supports discard_zeroes_data. */
1414 while (i < dm_table_get_num_targets(t)) {
1415 ti = dm_table_get_target(t, i++);
1416
1417 if (ti->discard_zeroes_data_unsupported)
1418 return false;
1419 }
1420
1421 return true;
1422 }
1423
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1424 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1425 sector_t start, sector_t len, void *data)
1426 {
1427 struct request_queue *q = bdev_get_queue(dev->bdev);
1428
1429 return q && !blk_queue_nonrot(q);
1430 }
1431
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1432 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1433 sector_t start, sector_t len, void *data)
1434 {
1435 struct request_queue *q = bdev_get_queue(dev->bdev);
1436
1437 return q && !blk_queue_add_random(q);
1438 }
1439
queue_no_sg_merge(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1440 static int queue_no_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1441 sector_t start, sector_t len, void *data)
1442 {
1443 struct request_queue *q = bdev_get_queue(dev->bdev);
1444
1445 return q && test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1446 }
1447
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1448 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1449 sector_t start, sector_t len, void *data)
1450 {
1451 struct request_queue *q = bdev_get_queue(dev->bdev);
1452
1453 return q && !q->limits.max_write_same_sectors;
1454 }
1455
dm_table_supports_write_same(struct dm_table * t)1456 static bool dm_table_supports_write_same(struct dm_table *t)
1457 {
1458 struct dm_target *ti;
1459 unsigned i = 0;
1460
1461 while (i < dm_table_get_num_targets(t)) {
1462 ti = dm_table_get_target(t, i++);
1463
1464 if (!ti->num_write_same_bios)
1465 return false;
1466
1467 if (!ti->type->iterate_devices ||
1468 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1469 return false;
1470 }
1471
1472 return true;
1473 }
1474
device_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1475 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1476 sector_t start, sector_t len, void *data)
1477 {
1478 struct request_queue *q = bdev_get_queue(dev->bdev);
1479
1480 return q && blk_queue_discard(q);
1481 }
1482
dm_table_supports_discards(struct dm_table * t)1483 static bool dm_table_supports_discards(struct dm_table *t)
1484 {
1485 struct dm_target *ti;
1486 unsigned i = 0;
1487
1488 /*
1489 * Unless any target used by the table set discards_supported,
1490 * require at least one underlying device to support discards.
1491 * t->devices includes internal dm devices such as mirror logs
1492 * so we need to use iterate_devices here, which targets
1493 * supporting discard selectively must provide.
1494 */
1495 while (i < dm_table_get_num_targets(t)) {
1496 ti = dm_table_get_target(t, i++);
1497
1498 if (!ti->num_discard_bios)
1499 continue;
1500
1501 if (ti->discards_supported)
1502 return true;
1503
1504 if (ti->type->iterate_devices &&
1505 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1506 return true;
1507 }
1508
1509 return false;
1510 }
1511
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1512 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1513 struct queue_limits *limits)
1514 {
1515 unsigned flush = 0;
1516
1517 /*
1518 * Copy table's limits to the DM device's request_queue
1519 */
1520 q->limits = *limits;
1521
1522 if (!dm_table_supports_discards(t))
1523 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1524 else
1525 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1526
1527 if (dm_table_supports_flush(t, REQ_FLUSH)) {
1528 flush |= REQ_FLUSH;
1529 if (dm_table_supports_flush(t, REQ_FUA))
1530 flush |= REQ_FUA;
1531 }
1532 blk_queue_flush(q, flush);
1533
1534 if (!dm_table_discard_zeroes_data(t))
1535 q->limits.discard_zeroes_data = 0;
1536
1537 /* Ensure that all underlying devices are non-rotational. */
1538 if (dm_table_any_dev_attr(t, device_is_rotational))
1539 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1540 else
1541 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1542
1543 if (!dm_table_supports_write_same(t))
1544 q->limits.max_write_same_sectors = 0;
1545
1546 if (dm_table_any_dev_attr(t, queue_no_sg_merge))
1547 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1548 else
1549 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1550
1551 dm_table_verify_integrity(t);
1552
1553 /*
1554 * Determine whether or not this queue's I/O timings contribute
1555 * to the entropy pool, Only request-based targets use this.
1556 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1557 * have it set.
1558 */
1559 if (blk_queue_add_random(q) && dm_table_any_dev_attr(t, device_is_not_random))
1560 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1561
1562 /*
1563 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1564 * visible to other CPUs because, once the flag is set, incoming bios
1565 * are processed by request-based dm, which refers to the queue
1566 * settings.
1567 * Until the flag set, bios are passed to bio-based dm and queued to
1568 * md->deferred where queue settings are not needed yet.
1569 * Those bios are passed to request-based dm at the resume time.
1570 */
1571 smp_mb();
1572 if (dm_table_request_based(t))
1573 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1574 }
1575
dm_table_get_num_targets(struct dm_table * t)1576 unsigned int dm_table_get_num_targets(struct dm_table *t)
1577 {
1578 return t->num_targets;
1579 }
1580
dm_table_get_devices(struct dm_table * t)1581 struct list_head *dm_table_get_devices(struct dm_table *t)
1582 {
1583 return &t->devices;
1584 }
1585
dm_table_get_mode(struct dm_table * t)1586 fmode_t dm_table_get_mode(struct dm_table *t)
1587 {
1588 return t->mode;
1589 }
1590 EXPORT_SYMBOL(dm_table_get_mode);
1591
1592 enum suspend_mode {
1593 PRESUSPEND,
1594 PRESUSPEND_UNDO,
1595 POSTSUSPEND,
1596 };
1597
suspend_targets(struct dm_table * t,enum suspend_mode mode)1598 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1599 {
1600 int i = t->num_targets;
1601 struct dm_target *ti = t->targets;
1602
1603 while (i--) {
1604 switch (mode) {
1605 case PRESUSPEND:
1606 if (ti->type->presuspend)
1607 ti->type->presuspend(ti);
1608 break;
1609 case PRESUSPEND_UNDO:
1610 if (ti->type->presuspend_undo)
1611 ti->type->presuspend_undo(ti);
1612 break;
1613 case POSTSUSPEND:
1614 if (ti->type->postsuspend)
1615 ti->type->postsuspend(ti);
1616 break;
1617 }
1618 ti++;
1619 }
1620 }
1621
dm_table_presuspend_targets(struct dm_table * t)1622 void dm_table_presuspend_targets(struct dm_table *t)
1623 {
1624 if (!t)
1625 return;
1626
1627 suspend_targets(t, PRESUSPEND);
1628 }
1629
dm_table_presuspend_undo_targets(struct dm_table * t)1630 void dm_table_presuspend_undo_targets(struct dm_table *t)
1631 {
1632 if (!t)
1633 return;
1634
1635 suspend_targets(t, PRESUSPEND_UNDO);
1636 }
1637
dm_table_postsuspend_targets(struct dm_table * t)1638 void dm_table_postsuspend_targets(struct dm_table *t)
1639 {
1640 if (!t)
1641 return;
1642
1643 suspend_targets(t, POSTSUSPEND);
1644 }
1645
dm_table_resume_targets(struct dm_table * t)1646 int dm_table_resume_targets(struct dm_table *t)
1647 {
1648 int i, r = 0;
1649
1650 for (i = 0; i < t->num_targets; i++) {
1651 struct dm_target *ti = t->targets + i;
1652
1653 if (!ti->type->preresume)
1654 continue;
1655
1656 r = ti->type->preresume(ti);
1657 if (r) {
1658 DMERR("%s: %s: preresume failed, error = %d",
1659 dm_device_name(t->md), ti->type->name, r);
1660 return r;
1661 }
1662 }
1663
1664 for (i = 0; i < t->num_targets; i++) {
1665 struct dm_target *ti = t->targets + i;
1666
1667 if (ti->type->resume)
1668 ti->type->resume(ti);
1669 }
1670
1671 return 0;
1672 }
1673
dm_table_add_target_callbacks(struct dm_table * t,struct dm_target_callbacks * cb)1674 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1675 {
1676 list_add(&cb->list, &t->target_callbacks);
1677 }
1678 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1679
dm_table_any_congested(struct dm_table * t,int bdi_bits)1680 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1681 {
1682 struct dm_dev_internal *dd;
1683 struct list_head *devices = dm_table_get_devices(t);
1684 struct dm_target_callbacks *cb;
1685 int r = 0;
1686
1687 list_for_each_entry(dd, devices, list) {
1688 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1689 char b[BDEVNAME_SIZE];
1690
1691 if (likely(q))
1692 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1693 else
1694 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1695 dm_device_name(t->md),
1696 bdevname(dd->dm_dev->bdev, b));
1697 }
1698
1699 list_for_each_entry(cb, &t->target_callbacks, list)
1700 if (cb->congested_fn)
1701 r |= cb->congested_fn(cb, bdi_bits);
1702
1703 return r;
1704 }
1705
dm_table_get_md(struct dm_table * t)1706 struct mapped_device *dm_table_get_md(struct dm_table *t)
1707 {
1708 return t->md;
1709 }
1710 EXPORT_SYMBOL(dm_table_get_md);
1711
dm_table_run_md_queue_async(struct dm_table * t)1712 void dm_table_run_md_queue_async(struct dm_table *t)
1713 {
1714 struct mapped_device *md;
1715 struct request_queue *queue;
1716 unsigned long flags;
1717
1718 if (!dm_table_request_based(t))
1719 return;
1720
1721 md = dm_table_get_md(t);
1722 queue = dm_get_md_queue(md);
1723 if (queue) {
1724 if (queue->mq_ops)
1725 blk_mq_run_hw_queues(queue, true);
1726 else {
1727 spin_lock_irqsave(queue->queue_lock, flags);
1728 blk_run_queue_async(queue);
1729 spin_unlock_irqrestore(queue->queue_lock, flags);
1730 }
1731 }
1732 }
1733 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1734
1735