• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
3  *    Copyright (C) 2008 Imagination Technologies Ltd.
4  *
5  *  PowerPC version derived from arch/arm/mm/consistent.c
6  *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
7  *
8  *  Copyright (C) 2000 Russell King
9  *
10  * Consistent memory allocators.  Used for DMA devices that want to
11  * share uncached memory with the processor core.  The function return
12  * is the virtual address and 'dma_handle' is the physical address.
13  * Mostly stolen from the ARM port, with some changes for PowerPC.
14  *						-- Dan
15  *
16  * Reorganized to get rid of the arch-specific consistent_* functions
17  * and provide non-coherent implementations for the DMA API. -Matt
18  *
19  * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
20  * implementation. This is pulled straight from ARM and barely
21  * modified. -Matt
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License version 2 as
25  * published by the Free Software Foundation.
26  */
27 
28 #include <linux/sched.h>
29 #include <linux/kernel.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/highmem.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/slab.h>
37 
38 #include <asm/tlbflush.h>
39 #include <asm/mmu.h>
40 
41 #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - CONSISTENT_START) \
42 					>> PAGE_SHIFT)
43 
get_coherent_dma_mask(struct device * dev)44 static u64 get_coherent_dma_mask(struct device *dev)
45 {
46 	u64 mask = ~0ULL;
47 
48 	if (dev) {
49 		mask = dev->coherent_dma_mask;
50 
51 		/*
52 		 * Sanity check the DMA mask - it must be non-zero, and
53 		 * must be able to be satisfied by a DMA allocation.
54 		 */
55 		if (mask == 0) {
56 			dev_warn(dev, "coherent DMA mask is unset\n");
57 			return 0;
58 		}
59 	}
60 
61 	return mask;
62 }
63 /*
64  * This is the page table (2MB) covering uncached, DMA consistent allocations
65  */
66 static pte_t *consistent_pte;
67 static DEFINE_SPINLOCK(consistent_lock);
68 
69 /*
70  * VM region handling support.
71  *
72  * This should become something generic, handling VM region allocations for
73  * vmalloc and similar (ioremap, module space, etc).
74  *
75  * I envisage vmalloc()'s supporting vm_struct becoming:
76  *
77  *  struct vm_struct {
78  *    struct metag_vm_region	region;
79  *    unsigned long	flags;
80  *    struct page	**pages;
81  *    unsigned int	nr_pages;
82  *    unsigned long	phys_addr;
83  *  };
84  *
85  * get_vm_area() would then call metag_vm_region_alloc with an appropriate
86  * struct metag_vm_region head (eg):
87  *
88  *  struct metag_vm_region vmalloc_head = {
89  *	.vm_list	= LIST_HEAD_INIT(vmalloc_head.vm_list),
90  *	.vm_start	= VMALLOC_START,
91  *	.vm_end		= VMALLOC_END,
92  *  };
93  *
94  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
95  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
96  * would have to initialise this each time prior to calling
97  * metag_vm_region_alloc().
98  */
99 struct metag_vm_region {
100 	struct list_head vm_list;
101 	unsigned long vm_start;
102 	unsigned long vm_end;
103 	struct page		*vm_pages;
104 	int			vm_active;
105 };
106 
107 static struct metag_vm_region consistent_head = {
108 	.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
109 	.vm_start = CONSISTENT_START,
110 	.vm_end = CONSISTENT_END,
111 };
112 
metag_vm_region_alloc(struct metag_vm_region * head,size_t size,gfp_t gfp)113 static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
114 						     *head, size_t size,
115 						     gfp_t gfp)
116 {
117 	unsigned long addr = head->vm_start, end = head->vm_end - size;
118 	unsigned long flags;
119 	struct metag_vm_region *c, *new;
120 
121 	new = kmalloc(sizeof(struct metag_vm_region), gfp);
122 	if (!new)
123 		goto out;
124 
125 	spin_lock_irqsave(&consistent_lock, flags);
126 
127 	list_for_each_entry(c, &head->vm_list, vm_list) {
128 		if ((addr + size) < addr)
129 			goto nospc;
130 		if ((addr + size) <= c->vm_start)
131 			goto found;
132 		addr = c->vm_end;
133 		if (addr > end)
134 			goto nospc;
135 	}
136 
137 found:
138 	/*
139 	 * Insert this entry _before_ the one we found.
140 	 */
141 	list_add_tail(&new->vm_list, &c->vm_list);
142 	new->vm_start = addr;
143 	new->vm_end = addr + size;
144 	new->vm_active = 1;
145 
146 	spin_unlock_irqrestore(&consistent_lock, flags);
147 	return new;
148 
149 nospc:
150 	spin_unlock_irqrestore(&consistent_lock, flags);
151 	kfree(new);
152 out:
153 	return NULL;
154 }
155 
metag_vm_region_find(struct metag_vm_region * head,unsigned long addr)156 static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
157 						    *head, unsigned long addr)
158 {
159 	struct metag_vm_region *c;
160 
161 	list_for_each_entry(c, &head->vm_list, vm_list) {
162 		if (c->vm_active && c->vm_start == addr)
163 			goto out;
164 	}
165 	c = NULL;
166 out:
167 	return c;
168 }
169 
170 /*
171  * Allocate DMA-coherent memory space and return both the kernel remapped
172  * virtual and bus address for that space.
173  */
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp)174 void *dma_alloc_coherent(struct device *dev, size_t size,
175 			 dma_addr_t *handle, gfp_t gfp)
176 {
177 	struct page *page;
178 	struct metag_vm_region *c;
179 	unsigned long order;
180 	u64 mask = get_coherent_dma_mask(dev);
181 	u64 limit;
182 
183 	if (!consistent_pte) {
184 		pr_err("%s: not initialised\n", __func__);
185 		dump_stack();
186 		return NULL;
187 	}
188 
189 	if (!mask)
190 		goto no_page;
191 	size = PAGE_ALIGN(size);
192 	limit = (mask + 1) & ~mask;
193 	if ((limit && size >= limit)
194 	    || size >= (CONSISTENT_END - CONSISTENT_START)) {
195 		pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
196 			size, mask);
197 		return NULL;
198 	}
199 
200 	order = get_order(size);
201 
202 	if (mask != 0xffffffff)
203 		gfp |= GFP_DMA;
204 
205 	page = alloc_pages(gfp, order);
206 	if (!page)
207 		goto no_page;
208 
209 	/*
210 	 * Invalidate any data that might be lurking in the
211 	 * kernel direct-mapped region for device DMA.
212 	 */
213 	{
214 		void *kaddr = page_address(page);
215 		memset(kaddr, 0, size);
216 		flush_dcache_region(kaddr, size);
217 	}
218 
219 	/*
220 	 * Allocate a virtual address in the consistent mapping region.
221 	 */
222 	c = metag_vm_region_alloc(&consistent_head, size,
223 				  gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
224 	if (c) {
225 		unsigned long vaddr = c->vm_start;
226 		pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
227 		struct page *end = page + (1 << order);
228 
229 		c->vm_pages = page;
230 		split_page(page, order);
231 
232 		/*
233 		 * Set the "dma handle"
234 		 */
235 		*handle = page_to_bus(page);
236 
237 		do {
238 			BUG_ON(!pte_none(*pte));
239 
240 			SetPageReserved(page);
241 			set_pte_at(&init_mm, vaddr,
242 				   pte, mk_pte(page,
243 					       pgprot_writecombine
244 					       (PAGE_KERNEL)));
245 			page++;
246 			pte++;
247 			vaddr += PAGE_SIZE;
248 		} while (size -= PAGE_SIZE);
249 
250 		/*
251 		 * Free the otherwise unused pages.
252 		 */
253 		while (page < end) {
254 			__free_page(page);
255 			page++;
256 		}
257 
258 		return (void *)c->vm_start;
259 	}
260 
261 	if (page)
262 		__free_pages(page, order);
263 no_page:
264 	return NULL;
265 }
266 EXPORT_SYMBOL(dma_alloc_coherent);
267 
268 /*
269  * free a page as defined by the above mapping.
270  */
dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)271 void dma_free_coherent(struct device *dev, size_t size,
272 		       void *vaddr, dma_addr_t dma_handle)
273 {
274 	struct metag_vm_region *c;
275 	unsigned long flags, addr;
276 	pte_t *ptep;
277 
278 	size = PAGE_ALIGN(size);
279 
280 	spin_lock_irqsave(&consistent_lock, flags);
281 
282 	c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
283 	if (!c)
284 		goto no_area;
285 
286 	c->vm_active = 0;
287 	if ((c->vm_end - c->vm_start) != size) {
288 		pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
289 		       __func__, c->vm_end - c->vm_start, size);
290 		dump_stack();
291 		size = c->vm_end - c->vm_start;
292 	}
293 
294 	ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
295 	addr = c->vm_start;
296 	do {
297 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
298 		unsigned long pfn;
299 
300 		ptep++;
301 		addr += PAGE_SIZE;
302 
303 		if (!pte_none(pte) && pte_present(pte)) {
304 			pfn = pte_pfn(pte);
305 
306 			if (pfn_valid(pfn)) {
307 				struct page *page = pfn_to_page(pfn);
308 				__free_reserved_page(page);
309 				continue;
310 			}
311 		}
312 
313 		pr_crit("%s: bad page in kernel page table\n",
314 			__func__);
315 	} while (size -= PAGE_SIZE);
316 
317 	flush_tlb_kernel_range(c->vm_start, c->vm_end);
318 
319 	list_del(&c->vm_list);
320 
321 	spin_unlock_irqrestore(&consistent_lock, flags);
322 
323 	kfree(c);
324 	return;
325 
326 no_area:
327 	spin_unlock_irqrestore(&consistent_lock, flags);
328 	pr_err("%s: trying to free invalid coherent area: %p\n",
329 	       __func__, vaddr);
330 	dump_stack();
331 }
332 EXPORT_SYMBOL(dma_free_coherent);
333 
334 
dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)335 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
336 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
337 {
338 	int ret = -ENXIO;
339 
340 	unsigned long flags, user_size, kern_size;
341 	struct metag_vm_region *c;
342 
343 	user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
344 
345 	spin_lock_irqsave(&consistent_lock, flags);
346 	c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
347 	spin_unlock_irqrestore(&consistent_lock, flags);
348 
349 	if (c) {
350 		unsigned long off = vma->vm_pgoff;
351 
352 		kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
353 
354 		if (off < kern_size &&
355 		    user_size <= (kern_size - off)) {
356 			ret = remap_pfn_range(vma, vma->vm_start,
357 					      page_to_pfn(c->vm_pages) + off,
358 					      user_size << PAGE_SHIFT,
359 					      vma->vm_page_prot);
360 		}
361 	}
362 
363 
364 	return ret;
365 }
366 
dma_mmap_coherent(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)367 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
368 		      void *cpu_addr, dma_addr_t dma_addr, size_t size)
369 {
370 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
371 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
372 }
373 EXPORT_SYMBOL(dma_mmap_coherent);
374 
dma_mmap_writecombine(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)375 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
376 			  void *cpu_addr, dma_addr_t dma_addr, size_t size)
377 {
378 	vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
379 	return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
380 }
381 EXPORT_SYMBOL(dma_mmap_writecombine);
382 
383 
384 
385 
386 /*
387  * Initialise the consistent memory allocation.
388  */
dma_alloc_init(void)389 static int __init dma_alloc_init(void)
390 {
391 	pgd_t *pgd, *pgd_k;
392 	pud_t *pud, *pud_k;
393 	pmd_t *pmd, *pmd_k;
394 	pte_t *pte;
395 	int ret = 0;
396 
397 	do {
398 		int offset = pgd_index(CONSISTENT_START);
399 		pgd = pgd_offset(&init_mm, CONSISTENT_START);
400 		pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
401 		pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
402 		WARN_ON(!pmd_none(*pmd));
403 
404 		pte = pte_alloc_kernel(pmd, CONSISTENT_START);
405 		if (!pte) {
406 			pr_err("%s: no pte tables\n", __func__);
407 			ret = -ENOMEM;
408 			break;
409 		}
410 
411 		pgd_k = ((pgd_t *) mmu_get_base()) + offset;
412 		pud_k = pud_offset(pgd_k, CONSISTENT_START);
413 		pmd_k = pmd_offset(pud_k, CONSISTENT_START);
414 		set_pmd(pmd_k, *pmd);
415 
416 		consistent_pte = pte;
417 	} while (0);
418 
419 	return ret;
420 }
421 early_initcall(dma_alloc_init);
422 
423 /*
424  * make an area consistent to devices.
425  */
dma_sync_for_device(void * vaddr,size_t size,int dma_direction)426 void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
427 {
428 	/*
429 	 * Ensure any writes get through the write combiner. This is necessary
430 	 * even with DMA_FROM_DEVICE, or the write may dirty the cache after
431 	 * we've invalidated it and get written back during the DMA.
432 	 */
433 
434 	barrier();
435 
436 	switch (dma_direction) {
437 	case DMA_BIDIRECTIONAL:
438 		/*
439 		 * Writeback to ensure the device can see our latest changes and
440 		 * so that we have no dirty lines, and invalidate the cache
441 		 * lines too in preparation for receiving the buffer back
442 		 * (dma_sync_for_cpu) later.
443 		 */
444 		flush_dcache_region(vaddr, size);
445 		break;
446 	case DMA_TO_DEVICE:
447 		/*
448 		 * Writeback to ensure the device can see our latest changes.
449 		 * There's no need to invalidate as the device shouldn't write
450 		 * to the buffer.
451 		 */
452 		writeback_dcache_region(vaddr, size);
453 		break;
454 	case DMA_FROM_DEVICE:
455 		/*
456 		 * Invalidate to ensure we have no dirty lines that could get
457 		 * written back during the DMA. It's also safe to flush
458 		 * (writeback) here if necessary.
459 		 */
460 		invalidate_dcache_region(vaddr, size);
461 		break;
462 	case DMA_NONE:
463 		BUG();
464 	}
465 
466 	wmb();
467 }
468 EXPORT_SYMBOL(dma_sync_for_device);
469 
470 /*
471  * make an area consistent to the core.
472  */
dma_sync_for_cpu(void * vaddr,size_t size,int dma_direction)473 void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
474 {
475 	/*
476 	 * Hardware L2 cache prefetch doesn't occur across 4K physical
477 	 * boundaries, however according to Documentation/DMA-API-HOWTO.txt
478 	 * kmalloc'd memory is DMA'able, so accesses in nearby memory could
479 	 * trigger a cache fill in the DMA buffer.
480 	 *
481 	 * This should never cause dirty lines, so a flush or invalidate should
482 	 * be safe to allow us to see data from the device.
483 	 */
484 	if (_meta_l2c_pf_is_enabled()) {
485 		switch (dma_direction) {
486 		case DMA_BIDIRECTIONAL:
487 		case DMA_FROM_DEVICE:
488 			invalidate_dcache_region(vaddr, size);
489 			break;
490 		case DMA_TO_DEVICE:
491 			/* The device shouldn't have written to the buffer */
492 			break;
493 		case DMA_NONE:
494 			BUG();
495 		}
496 	}
497 
498 	rmb();
499 }
500 EXPORT_SYMBOL(dma_sync_for_cpu);
501