• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /*
30  * Catch too early calls to dmi_check_system():
31  */
32 static int dmi_initialized;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
43 
dmi_string_nosave(const struct dmi_header * dm,u8 s)44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45 {
46 	const u8 *bp = ((u8 *) dm) + dm->length;
47 	const u8 *nsp;
48 
49 	if (s) {
50 		while (--s > 0 && *bp)
51 			bp += strlen(bp) + 1;
52 
53 		/* Strings containing only spaces are considered empty */
54 		nsp = bp;
55 		while (*nsp == ' ')
56 			nsp++;
57 		if (*nsp != '\0')
58 			return bp;
59 	}
60 
61 	return dmi_empty_string;
62 }
63 
dmi_string(const struct dmi_header * dm,u8 s)64 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
65 {
66 	const char *bp = dmi_string_nosave(dm, s);
67 	char *str;
68 	size_t len;
69 
70 	if (bp == dmi_empty_string)
71 		return dmi_empty_string;
72 
73 	len = strlen(bp) + 1;
74 	str = dmi_alloc(len);
75 	if (str != NULL)
76 		strcpy(str, bp);
77 
78 	return str;
79 }
80 
81 /*
82  *	We have to be cautious here. We have seen BIOSes with DMI pointers
83  *	pointing to completely the wrong place for example
84  */
dmi_decode_table(u8 * buf,void (* decode)(const struct dmi_header *,void *),void * private_data)85 static void dmi_decode_table(u8 *buf,
86 			     void (*decode)(const struct dmi_header *, void *),
87 			     void *private_data)
88 {
89 	u8 *data = buf;
90 	int i = 0;
91 
92 	/*
93 	 * Stop when we have seen all the items the table claimed to have
94 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
95 	 * >= 3.0 only) OR we run off the end of the table (should never
96 	 * happen but sometimes does on bogus implementations.)
97 	 */
98 	while ((!dmi_num || i < dmi_num) &&
99 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
100 		const struct dmi_header *dm = (const struct dmi_header *)data;
101 
102 		/*
103 		 *  We want to know the total length (formatted area and
104 		 *  strings) before decoding to make sure we won't run off the
105 		 *  table in dmi_decode or dmi_string
106 		 */
107 		data += dm->length;
108 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
109 			data++;
110 		if (data - buf < dmi_len - 1)
111 			decode(dm, private_data);
112 
113 		data += 2;
114 		i++;
115 
116 		/*
117 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
118 		 * For tables behind a 64-bit entry point, we have no item
119 		 * count and no exact table length, so stop on end-of-table
120 		 * marker. For tables behind a 32-bit entry point, we have
121 		 * seen OEM structures behind the end-of-table marker on
122 		 * some systems, so don't trust it.
123 		 */
124 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
125 			break;
126 	}
127 
128 	/* Trim DMI table length if needed */
129 	if (dmi_len > data - buf)
130 		dmi_len = data - buf;
131 }
132 
133 static phys_addr_t dmi_base;
134 
dmi_walk_early(void (* decode)(const struct dmi_header *,void *))135 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
136 		void *))
137 {
138 	u8 *buf;
139 	u32 orig_dmi_len = dmi_len;
140 
141 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
142 	if (buf == NULL)
143 		return -1;
144 
145 	dmi_decode_table(buf, decode, NULL);
146 
147 	add_device_randomness(buf, dmi_len);
148 
149 	dmi_early_unmap(buf, orig_dmi_len);
150 	return 0;
151 }
152 
dmi_checksum(const u8 * buf,u8 len)153 static int __init dmi_checksum(const u8 *buf, u8 len)
154 {
155 	u8 sum = 0;
156 	int a;
157 
158 	for (a = 0; a < len; a++)
159 		sum += buf[a];
160 
161 	return sum == 0;
162 }
163 
164 static const char *dmi_ident[DMI_STRING_MAX];
165 static LIST_HEAD(dmi_devices);
166 int dmi_available;
167 
168 /*
169  *	Save a DMI string
170  */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)171 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
172 		int string)
173 {
174 	const char *d = (const char *) dm;
175 	const char *p;
176 
177 	if (dmi_ident[slot])
178 		return;
179 
180 	p = dmi_string(dm, d[string]);
181 	if (p == NULL)
182 		return;
183 
184 	dmi_ident[slot] = p;
185 }
186 
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)187 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
188 		int index)
189 {
190 	const u8 *d = (u8 *) dm + index;
191 	char *s;
192 	int is_ff = 1, is_00 = 1, i;
193 
194 	if (dmi_ident[slot])
195 		return;
196 
197 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
198 		if (d[i] != 0x00)
199 			is_00 = 0;
200 		if (d[i] != 0xFF)
201 			is_ff = 0;
202 	}
203 
204 	if (is_ff || is_00)
205 		return;
206 
207 	s = dmi_alloc(16*2+4+1);
208 	if (!s)
209 		return;
210 
211 	/*
212 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
213 	 * the UUID are supposed to be little-endian encoded.  The specification
214 	 * says that this is the defacto standard.
215 	 */
216 	if (dmi_ver >= 0x020600)
217 		sprintf(s, "%pUL", d);
218 	else
219 		sprintf(s, "%pUB", d);
220 
221 	dmi_ident[slot] = s;
222 }
223 
dmi_save_type(const struct dmi_header * dm,int slot,int index)224 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
225 		int index)
226 {
227 	const u8 *d = (u8 *) dm + index;
228 	char *s;
229 
230 	if (dmi_ident[slot])
231 		return;
232 
233 	s = dmi_alloc(4);
234 	if (!s)
235 		return;
236 
237 	sprintf(s, "%u", *d & 0x7F);
238 	dmi_ident[slot] = s;
239 }
240 
dmi_save_one_device(int type,const char * name)241 static void __init dmi_save_one_device(int type, const char *name)
242 {
243 	struct dmi_device *dev;
244 
245 	/* No duplicate device */
246 	if (dmi_find_device(type, name, NULL))
247 		return;
248 
249 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
250 	if (!dev)
251 		return;
252 
253 	dev->type = type;
254 	strcpy((char *)(dev + 1), name);
255 	dev->name = (char *)(dev + 1);
256 	dev->device_data = NULL;
257 	list_add(&dev->list, &dmi_devices);
258 }
259 
dmi_save_devices(const struct dmi_header * dm)260 static void __init dmi_save_devices(const struct dmi_header *dm)
261 {
262 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
263 
264 	for (i = 0; i < count; i++) {
265 		const char *d = (char *)(dm + 1) + (i * 2);
266 
267 		/* Skip disabled device */
268 		if ((*d & 0x80) == 0)
269 			continue;
270 
271 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
272 	}
273 }
274 
dmi_save_oem_strings_devices(const struct dmi_header * dm)275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
276 {
277 	int i, count = *(u8 *)(dm + 1);
278 	struct dmi_device *dev;
279 
280 	for (i = 1; i <= count; i++) {
281 		const char *devname = dmi_string(dm, i);
282 
283 		if (devname == dmi_empty_string)
284 			continue;
285 
286 		dev = dmi_alloc(sizeof(*dev));
287 		if (!dev)
288 			break;
289 
290 		dev->type = DMI_DEV_TYPE_OEM_STRING;
291 		dev->name = devname;
292 		dev->device_data = NULL;
293 
294 		list_add(&dev->list, &dmi_devices);
295 	}
296 }
297 
dmi_save_ipmi_device(const struct dmi_header * dm)298 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
299 {
300 	struct dmi_device *dev;
301 	void *data;
302 
303 	data = dmi_alloc(dm->length);
304 	if (data == NULL)
305 		return;
306 
307 	memcpy(data, dm, dm->length);
308 
309 	dev = dmi_alloc(sizeof(*dev));
310 	if (!dev)
311 		return;
312 
313 	dev->type = DMI_DEV_TYPE_IPMI;
314 	dev->name = "IPMI controller";
315 	dev->device_data = data;
316 
317 	list_add_tail(&dev->list, &dmi_devices);
318 }
319 
dmi_save_dev_onboard(int instance,int segment,int bus,int devfn,const char * name)320 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
321 					int devfn, const char *name)
322 {
323 	struct dmi_dev_onboard *onboard_dev;
324 
325 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
326 	if (!onboard_dev)
327 		return;
328 
329 	onboard_dev->instance = instance;
330 	onboard_dev->segment = segment;
331 	onboard_dev->bus = bus;
332 	onboard_dev->devfn = devfn;
333 
334 	strcpy((char *)&onboard_dev[1], name);
335 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
336 	onboard_dev->dev.name = (char *)&onboard_dev[1];
337 	onboard_dev->dev.device_data = onboard_dev;
338 
339 	list_add(&onboard_dev->dev.list, &dmi_devices);
340 }
341 
dmi_save_extended_devices(const struct dmi_header * dm)342 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
343 {
344 	const u8 *d = (u8 *) dm + 5;
345 
346 	/* Skip disabled device */
347 	if ((*d & 0x80) == 0)
348 		return;
349 
350 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
351 			     dmi_string_nosave(dm, *(d-1)));
352 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
353 }
354 
count_mem_devices(const struct dmi_header * dm,void * v)355 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
356 {
357 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
358 		return;
359 	dmi_memdev_nr++;
360 }
361 
save_mem_devices(const struct dmi_header * dm,void * v)362 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
363 {
364 	const char *d = (const char *)dm;
365 	static int nr;
366 
367 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
368 		return;
369 	if (nr >= dmi_memdev_nr) {
370 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
371 		return;
372 	}
373 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
374 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
375 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
376 	nr++;
377 }
378 
dmi_memdev_walk(void)379 void __init dmi_memdev_walk(void)
380 {
381 	if (!dmi_available)
382 		return;
383 
384 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
385 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
386 		if (dmi_memdev)
387 			dmi_walk_early(save_mem_devices);
388 	}
389 }
390 
391 /*
392  *	Process a DMI table entry. Right now all we care about are the BIOS
393  *	and machine entries. For 2.5 we should pull the smbus controller info
394  *	out of here.
395  */
dmi_decode(const struct dmi_header * dm,void * dummy)396 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
397 {
398 	switch (dm->type) {
399 	case 0:		/* BIOS Information */
400 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
401 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
402 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
403 		break;
404 	case 1:		/* System Information */
405 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
406 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
407 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
408 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
409 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
410 		break;
411 	case 2:		/* Base Board Information */
412 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
413 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
414 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
415 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
416 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
417 		break;
418 	case 3:		/* Chassis Information */
419 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
420 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
421 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
422 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
423 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
424 		break;
425 	case 10:	/* Onboard Devices Information */
426 		dmi_save_devices(dm);
427 		break;
428 	case 11:	/* OEM Strings */
429 		dmi_save_oem_strings_devices(dm);
430 		break;
431 	case 38:	/* IPMI Device Information */
432 		dmi_save_ipmi_device(dm);
433 		break;
434 	case 41:	/* Onboard Devices Extended Information */
435 		dmi_save_extended_devices(dm);
436 	}
437 }
438 
print_filtered(char * buf,size_t len,const char * info)439 static int __init print_filtered(char *buf, size_t len, const char *info)
440 {
441 	int c = 0;
442 	const char *p;
443 
444 	if (!info)
445 		return c;
446 
447 	for (p = info; *p; p++)
448 		if (isprint(*p))
449 			c += scnprintf(buf + c, len - c, "%c", *p);
450 		else
451 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
452 	return c;
453 }
454 
dmi_format_ids(char * buf,size_t len)455 static void __init dmi_format_ids(char *buf, size_t len)
456 {
457 	int c = 0;
458 	const char *board;	/* Board Name is optional */
459 
460 	c += print_filtered(buf + c, len - c,
461 			    dmi_get_system_info(DMI_SYS_VENDOR));
462 	c += scnprintf(buf + c, len - c, " ");
463 	c += print_filtered(buf + c, len - c,
464 			    dmi_get_system_info(DMI_PRODUCT_NAME));
465 
466 	board = dmi_get_system_info(DMI_BOARD_NAME);
467 	if (board) {
468 		c += scnprintf(buf + c, len - c, "/");
469 		c += print_filtered(buf + c, len - c, board);
470 	}
471 	c += scnprintf(buf + c, len - c, ", BIOS ");
472 	c += print_filtered(buf + c, len - c,
473 			    dmi_get_system_info(DMI_BIOS_VERSION));
474 	c += scnprintf(buf + c, len - c, " ");
475 	c += print_filtered(buf + c, len - c,
476 			    dmi_get_system_info(DMI_BIOS_DATE));
477 }
478 
479 /*
480  * Check for DMI/SMBIOS headers in the system firmware image.  Any
481  * SMBIOS header must start 16 bytes before the DMI header, so take a
482  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
483  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
484  * takes precedence) and return 0.  Otherwise return 1.
485  */
dmi_present(const u8 * buf)486 static int __init dmi_present(const u8 *buf)
487 {
488 	u32 smbios_ver;
489 
490 	if (memcmp(buf, "_SM_", 4) == 0 &&
491 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
492 		smbios_ver = get_unaligned_be16(buf + 6);
493 		smbios_entry_point_size = buf[5];
494 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
495 
496 		/* Some BIOS report weird SMBIOS version, fix that up */
497 		switch (smbios_ver) {
498 		case 0x021F:
499 		case 0x0221:
500 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
501 				 smbios_ver & 0xFF, 3);
502 			smbios_ver = 0x0203;
503 			break;
504 		case 0x0233:
505 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
506 			smbios_ver = 0x0206;
507 			break;
508 		}
509 	} else {
510 		smbios_ver = 0;
511 	}
512 
513 	buf += 16;
514 
515 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
516 		if (smbios_ver)
517 			dmi_ver = smbios_ver;
518 		else
519 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
520 		dmi_ver <<= 8;
521 		dmi_num = get_unaligned_le16(buf + 12);
522 		dmi_len = get_unaligned_le16(buf + 6);
523 		dmi_base = get_unaligned_le32(buf + 8);
524 
525 		if (dmi_walk_early(dmi_decode) == 0) {
526 			if (smbios_ver) {
527 				pr_info("SMBIOS %d.%d present.\n",
528 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
529 			} else {
530 				smbios_entry_point_size = 15;
531 				memcpy(smbios_entry_point, buf,
532 				       smbios_entry_point_size);
533 				pr_info("Legacy DMI %d.%d present.\n",
534 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
535 			}
536 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
537 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
538 			return 0;
539 		}
540 	}
541 
542 	return 1;
543 }
544 
545 /*
546  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
547  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
548  */
dmi_smbios3_present(const u8 * buf)549 static int __init dmi_smbios3_present(const u8 *buf)
550 {
551 	if (memcmp(buf, "_SM3_", 5) == 0 &&
552 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
553 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
554 		dmi_num = 0;			/* No longer specified */
555 		dmi_len = get_unaligned_le32(buf + 12);
556 		dmi_base = get_unaligned_le64(buf + 16);
557 		smbios_entry_point_size = buf[6];
558 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
559 
560 		if (dmi_walk_early(dmi_decode) == 0) {
561 			pr_info("SMBIOS %d.%d.%d present.\n",
562 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
563 				dmi_ver & 0xFF);
564 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
565 			pr_debug("DMI: %s\n", dmi_ids_string);
566 			return 0;
567 		}
568 	}
569 	return 1;
570 }
571 
dmi_scan_machine(void)572 void __init dmi_scan_machine(void)
573 {
574 	char __iomem *p, *q;
575 	char buf[32];
576 
577 	if (efi_enabled(EFI_CONFIG_TABLES)) {
578 		/*
579 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
580 		 * allowed to define both the 64-bit entry point (smbios3) and
581 		 * the 32-bit entry point (smbios), in which case they should
582 		 * either both point to the same SMBIOS structure table, or the
583 		 * table pointed to by the 64-bit entry point should contain a
584 		 * superset of the table contents pointed to by the 32-bit entry
585 		 * point (section 5.2)
586 		 * This implies that the 64-bit entry point should have
587 		 * precedence if it is defined and supported by the OS. If we
588 		 * have the 64-bit entry point, but fail to decode it, fall
589 		 * back to the legacy one (if available)
590 		 */
591 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
592 			p = dmi_early_remap(efi.smbios3, 32);
593 			if (p == NULL)
594 				goto error;
595 			memcpy_fromio(buf, p, 32);
596 			dmi_early_unmap(p, 32);
597 
598 			if (!dmi_smbios3_present(buf)) {
599 				dmi_available = 1;
600 				goto out;
601 			}
602 		}
603 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
604 			goto error;
605 
606 		/* This is called as a core_initcall() because it isn't
607 		 * needed during early boot.  This also means we can
608 		 * iounmap the space when we're done with it.
609 		 */
610 		p = dmi_early_remap(efi.smbios, 32);
611 		if (p == NULL)
612 			goto error;
613 		memcpy_fromio(buf, p, 32);
614 		dmi_early_unmap(p, 32);
615 
616 		if (!dmi_present(buf)) {
617 			dmi_available = 1;
618 			goto out;
619 		}
620 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
621 		p = dmi_early_remap(0xF0000, 0x10000);
622 		if (p == NULL)
623 			goto error;
624 
625 		/*
626 		 * Iterate over all possible DMI header addresses q.
627 		 * Maintain the 32 bytes around q in buf.  On the
628 		 * first iteration, substitute zero for the
629 		 * out-of-range bytes so there is no chance of falsely
630 		 * detecting an SMBIOS header.
631 		 */
632 		memset(buf, 0, 16);
633 		for (q = p; q < p + 0x10000; q += 16) {
634 			memcpy_fromio(buf + 16, q, 16);
635 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
636 				dmi_available = 1;
637 				dmi_early_unmap(p, 0x10000);
638 				goto out;
639 			}
640 			memcpy(buf, buf + 16, 16);
641 		}
642 		dmi_early_unmap(p, 0x10000);
643 	}
644  error:
645 	pr_info("DMI not present or invalid.\n");
646  out:
647 	dmi_initialized = 1;
648 }
649 
raw_table_read(struct file * file,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)650 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
651 			      struct bin_attribute *attr, char *buf,
652 			      loff_t pos, size_t count)
653 {
654 	memcpy(buf, attr->private + pos, count);
655 	return count;
656 }
657 
658 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
659 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
660 
dmi_init(void)661 static int __init dmi_init(void)
662 {
663 	struct kobject *tables_kobj;
664 	u8 *dmi_table;
665 	int ret = -ENOMEM;
666 
667 	if (!dmi_available) {
668 		ret = -ENODATA;
669 		goto err;
670 	}
671 
672 	/*
673 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
674 	 * even after farther error, as it can be used by other modules like
675 	 * dmi-sysfs.
676 	 */
677 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
678 	if (!dmi_kobj)
679 		goto err;
680 
681 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
682 	if (!tables_kobj)
683 		goto err;
684 
685 	dmi_table = dmi_remap(dmi_base, dmi_len);
686 	if (!dmi_table)
687 		goto err_tables;
688 
689 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
690 	bin_attr_smbios_entry_point.private = smbios_entry_point;
691 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
692 	if (ret)
693 		goto err_unmap;
694 
695 	bin_attr_DMI.size = dmi_len;
696 	bin_attr_DMI.private = dmi_table;
697 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
698 	if (!ret)
699 		return 0;
700 
701 	sysfs_remove_bin_file(tables_kobj,
702 			      &bin_attr_smbios_entry_point);
703  err_unmap:
704 	dmi_unmap(dmi_table);
705  err_tables:
706 	kobject_del(tables_kobj);
707 	kobject_put(tables_kobj);
708  err:
709 	pr_err("dmi: Firmware registration failed.\n");
710 
711 	return ret;
712 }
713 subsys_initcall(dmi_init);
714 
715 /**
716  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
717  *
718  * Invoke dump_stack_set_arch_desc() with DMI system information so that
719  * DMI identifiers are printed out on task dumps.  Arch boot code should
720  * call this function after dmi_scan_machine() if it wants to print out DMI
721  * identifiers on task dumps.
722  */
dmi_set_dump_stack_arch_desc(void)723 void __init dmi_set_dump_stack_arch_desc(void)
724 {
725 	dump_stack_set_arch_desc("%s", dmi_ids_string);
726 }
727 
728 /**
729  *	dmi_matches - check if dmi_system_id structure matches system DMI data
730  *	@dmi: pointer to the dmi_system_id structure to check
731  */
dmi_matches(const struct dmi_system_id * dmi)732 static bool dmi_matches(const struct dmi_system_id *dmi)
733 {
734 	int i;
735 
736 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
737 
738 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
739 		int s = dmi->matches[i].slot;
740 		if (s == DMI_NONE)
741 			break;
742 		if (dmi_ident[s]) {
743 			if (!dmi->matches[i].exact_match &&
744 			    strstr(dmi_ident[s], dmi->matches[i].substr))
745 				continue;
746 			else if (dmi->matches[i].exact_match &&
747 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
748 				continue;
749 		}
750 
751 		/* No match */
752 		return false;
753 	}
754 	return true;
755 }
756 
757 /**
758  *	dmi_is_end_of_table - check for end-of-table marker
759  *	@dmi: pointer to the dmi_system_id structure to check
760  */
dmi_is_end_of_table(const struct dmi_system_id * dmi)761 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
762 {
763 	return dmi->matches[0].slot == DMI_NONE;
764 }
765 
766 /**
767  *	dmi_check_system - check system DMI data
768  *	@list: array of dmi_system_id structures to match against
769  *		All non-null elements of the list must match
770  *		their slot's (field index's) data (i.e., each
771  *		list string must be a substring of the specified
772  *		DMI slot's string data) to be considered a
773  *		successful match.
774  *
775  *	Walk the blacklist table running matching functions until someone
776  *	returns non zero or we hit the end. Callback function is called for
777  *	each successful match. Returns the number of matches.
778  */
dmi_check_system(const struct dmi_system_id * list)779 int dmi_check_system(const struct dmi_system_id *list)
780 {
781 	int count = 0;
782 	const struct dmi_system_id *d;
783 
784 	for (d = list; !dmi_is_end_of_table(d); d++)
785 		if (dmi_matches(d)) {
786 			count++;
787 			if (d->callback && d->callback(d))
788 				break;
789 		}
790 
791 	return count;
792 }
793 EXPORT_SYMBOL(dmi_check_system);
794 
795 /**
796  *	dmi_first_match - find dmi_system_id structure matching system DMI data
797  *	@list: array of dmi_system_id structures to match against
798  *		All non-null elements of the list must match
799  *		their slot's (field index's) data (i.e., each
800  *		list string must be a substring of the specified
801  *		DMI slot's string data) to be considered a
802  *		successful match.
803  *
804  *	Walk the blacklist table until the first match is found.  Return the
805  *	pointer to the matching entry or NULL if there's no match.
806  */
dmi_first_match(const struct dmi_system_id * list)807 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
808 {
809 	const struct dmi_system_id *d;
810 
811 	for (d = list; !dmi_is_end_of_table(d); d++)
812 		if (dmi_matches(d))
813 			return d;
814 
815 	return NULL;
816 }
817 EXPORT_SYMBOL(dmi_first_match);
818 
819 /**
820  *	dmi_get_system_info - return DMI data value
821  *	@field: data index (see enum dmi_field)
822  *
823  *	Returns one DMI data value, can be used to perform
824  *	complex DMI data checks.
825  */
dmi_get_system_info(int field)826 const char *dmi_get_system_info(int field)
827 {
828 	return dmi_ident[field];
829 }
830 EXPORT_SYMBOL(dmi_get_system_info);
831 
832 /**
833  * dmi_name_in_serial - Check if string is in the DMI product serial information
834  * @str: string to check for
835  */
dmi_name_in_serial(const char * str)836 int dmi_name_in_serial(const char *str)
837 {
838 	int f = DMI_PRODUCT_SERIAL;
839 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
840 		return 1;
841 	return 0;
842 }
843 
844 /**
845  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
846  *	@str: Case sensitive Name
847  */
dmi_name_in_vendors(const char * str)848 int dmi_name_in_vendors(const char *str)
849 {
850 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
851 	int i;
852 	for (i = 0; fields[i] != DMI_NONE; i++) {
853 		int f = fields[i];
854 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
855 			return 1;
856 	}
857 	return 0;
858 }
859 EXPORT_SYMBOL(dmi_name_in_vendors);
860 
861 /**
862  *	dmi_find_device - find onboard device by type/name
863  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
864  *	@name: device name string or %NULL to match all
865  *	@from: previous device found in search, or %NULL for new search.
866  *
867  *	Iterates through the list of known onboard devices. If a device is
868  *	found with a matching @vendor and @device, a pointer to its device
869  *	structure is returned.  Otherwise, %NULL is returned.
870  *	A new search is initiated by passing %NULL as the @from argument.
871  *	If @from is not %NULL, searches continue from next device.
872  */
dmi_find_device(int type,const char * name,const struct dmi_device * from)873 const struct dmi_device *dmi_find_device(int type, const char *name,
874 				    const struct dmi_device *from)
875 {
876 	const struct list_head *head = from ? &from->list : &dmi_devices;
877 	struct list_head *d;
878 
879 	for (d = head->next; d != &dmi_devices; d = d->next) {
880 		const struct dmi_device *dev =
881 			list_entry(d, struct dmi_device, list);
882 
883 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
884 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
885 			return dev;
886 	}
887 
888 	return NULL;
889 }
890 EXPORT_SYMBOL(dmi_find_device);
891 
892 /**
893  *	dmi_get_date - parse a DMI date
894  *	@field:	data index (see enum dmi_field)
895  *	@yearp: optional out parameter for the year
896  *	@monthp: optional out parameter for the month
897  *	@dayp: optional out parameter for the day
898  *
899  *	The date field is assumed to be in the form resembling
900  *	[mm[/dd]]/yy[yy] and the result is stored in the out
901  *	parameters any or all of which can be omitted.
902  *
903  *	If the field doesn't exist, all out parameters are set to zero
904  *	and false is returned.  Otherwise, true is returned with any
905  *	invalid part of date set to zero.
906  *
907  *	On return, year, month and day are guaranteed to be in the
908  *	range of [0,9999], [0,12] and [0,31] respectively.
909  */
dmi_get_date(int field,int * yearp,int * monthp,int * dayp)910 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
911 {
912 	int year = 0, month = 0, day = 0;
913 	bool exists;
914 	const char *s, *y;
915 	char *e;
916 
917 	s = dmi_get_system_info(field);
918 	exists = s;
919 	if (!exists)
920 		goto out;
921 
922 	/*
923 	 * Determine year first.  We assume the date string resembles
924 	 * mm/dd/yy[yy] but the original code extracted only the year
925 	 * from the end.  Keep the behavior in the spirit of no
926 	 * surprises.
927 	 */
928 	y = strrchr(s, '/');
929 	if (!y)
930 		goto out;
931 
932 	y++;
933 	year = simple_strtoul(y, &e, 10);
934 	if (y != e && year < 100) {	/* 2-digit year */
935 		year += 1900;
936 		if (year < 1996)	/* no dates < spec 1.0 */
937 			year += 100;
938 	}
939 	if (year > 9999)		/* year should fit in %04d */
940 		year = 0;
941 
942 	/* parse the mm and dd */
943 	month = simple_strtoul(s, &e, 10);
944 	if (s == e || *e != '/' || !month || month > 12) {
945 		month = 0;
946 		goto out;
947 	}
948 
949 	s = e + 1;
950 	day = simple_strtoul(s, &e, 10);
951 	if (s == y || s == e || *e != '/' || day > 31)
952 		day = 0;
953 out:
954 	if (yearp)
955 		*yearp = year;
956 	if (monthp)
957 		*monthp = month;
958 	if (dayp)
959 		*dayp = day;
960 	return exists;
961 }
962 EXPORT_SYMBOL(dmi_get_date);
963 
964 /**
965  *	dmi_walk - Walk the DMI table and get called back for every record
966  *	@decode: Callback function
967  *	@private_data: Private data to be passed to the callback function
968  *
969  *	Returns -1 when the DMI table can't be reached, 0 on success.
970  */
dmi_walk(void (* decode)(const struct dmi_header *,void *),void * private_data)971 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
972 	     void *private_data)
973 {
974 	u8 *buf;
975 
976 	if (!dmi_available)
977 		return -1;
978 
979 	buf = dmi_remap(dmi_base, dmi_len);
980 	if (buf == NULL)
981 		return -1;
982 
983 	dmi_decode_table(buf, decode, private_data);
984 
985 	dmi_unmap(buf);
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(dmi_walk);
989 
990 /**
991  * dmi_match - compare a string to the dmi field (if exists)
992  * @f: DMI field identifier
993  * @str: string to compare the DMI field to
994  *
995  * Returns true if the requested field equals to the str (including NULL).
996  */
dmi_match(enum dmi_field f,const char * str)997 bool dmi_match(enum dmi_field f, const char *str)
998 {
999 	const char *info = dmi_get_system_info(f);
1000 
1001 	if (info == NULL || str == NULL)
1002 		return info == str;
1003 
1004 	return !strcmp(info, str);
1005 }
1006 EXPORT_SYMBOL_GPL(dmi_match);
1007 
dmi_memdev_name(u16 handle,const char ** bank,const char ** device)1008 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1009 {
1010 	int n;
1011 
1012 	if (dmi_memdev == NULL)
1013 		return;
1014 
1015 	for (n = 0; n < dmi_memdev_nr; n++) {
1016 		if (handle == dmi_memdev[n].handle) {
1017 			*bank = dmi_memdev[n].bank;
1018 			*device = dmi_memdev[n].device;
1019 			break;
1020 		}
1021 	}
1022 }
1023 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1024