• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
getname(const char __user * filename)204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
getname_kernel(const char * filename)210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		const size_t size = offsetof(struct filename, iname[1]);
223 		struct filename *tmp;
224 
225 		tmp = kmalloc(size, GFP_KERNEL);
226 		if (unlikely(!tmp)) {
227 			__putname(result);
228 			return ERR_PTR(-ENOMEM);
229 		}
230 		tmp->name = (char *)result;
231 		result = tmp;
232 	} else {
233 		__putname(result);
234 		return ERR_PTR(-ENAMETOOLONG);
235 	}
236 	memcpy((char *)result->name, filename, len);
237 	result->uptr = NULL;
238 	result->aname = NULL;
239 	result->refcnt = 1;
240 	audit_getname(result);
241 
242 	return result;
243 }
244 
putname(struct filename * name)245 void putname(struct filename *name)
246 {
247 	BUG_ON(name->refcnt <= 0);
248 
249 	if (--name->refcnt > 0)
250 		return;
251 
252 	if (name->name != name->iname) {
253 		__putname(name->name);
254 		kfree(name);
255 	} else
256 		__putname(name);
257 }
258 
check_acl(struct inode * inode,int mask)259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 	struct posix_acl *acl;
263 
264 	if (mask & MAY_NOT_BLOCK) {
265 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 	        if (!acl)
267 	                return -EAGAIN;
268 		/* no ->get_acl() calls in RCU mode... */
269 		if (acl == ACL_NOT_CACHED)
270 			return -ECHILD;
271 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 	}
273 
274 	acl = get_acl(inode, ACL_TYPE_ACCESS);
275 	if (IS_ERR(acl))
276 		return PTR_ERR(acl);
277 	if (acl) {
278 	        int error = posix_acl_permission(inode, acl, mask);
279 	        posix_acl_release(acl);
280 	        return error;
281 	}
282 #endif
283 
284 	return -EAGAIN;
285 }
286 
287 /*
288  * This does the basic permission checking
289  */
acl_permission_check(struct inode * inode,int mask)290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 	unsigned int mode = inode->i_mode;
293 
294 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 		mode >>= 6;
296 	else {
297 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 			int error = check_acl(inode, mask);
299 			if (error != -EAGAIN)
300 				return error;
301 		}
302 
303 		if (in_group_p(inode->i_gid))
304 			mode >>= 3;
305 	}
306 
307 	/*
308 	 * If the DACs are ok we don't need any capability check.
309 	 */
310 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 		return 0;
312 	return -EACCES;
313 }
314 
315 /**
316  * generic_permission -  check for access rights on a Posix-like filesystem
317  * @inode:	inode to check access rights for
318  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319  *
320  * Used to check for read/write/execute permissions on a file.
321  * We use "fsuid" for this, letting us set arbitrary permissions
322  * for filesystem access without changing the "normal" uids which
323  * are used for other things.
324  *
325  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326  * request cannot be satisfied (eg. requires blocking or too much complexity).
327  * It would then be called again in ref-walk mode.
328  */
generic_permission(struct inode * inode,int mask)329 int generic_permission(struct inode *inode, int mask)
330 {
331 	int ret;
332 
333 	/*
334 	 * Do the basic permission checks.
335 	 */
336 	ret = acl_permission_check(inode, mask);
337 	if (ret != -EACCES)
338 		return ret;
339 
340 	if (S_ISDIR(inode->i_mode)) {
341 		/* DACs are overridable for directories */
342 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 			return 0;
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		return -EACCES;
349 	}
350 	/*
351 	 * Read/write DACs are always overridable.
352 	 * Executable DACs are overridable when there is
353 	 * at least one exec bit set.
354 	 */
355 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 			return 0;
358 
359 	/*
360 	 * Searching includes executable on directories, else just read.
361 	 */
362 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 	if (mask == MAY_READ)
364 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 			return 0;
366 
367 	return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370 
371 /*
372  * We _really_ want to just do "generic_permission()" without
373  * even looking at the inode->i_op values. So we keep a cache
374  * flag in inode->i_opflags, that says "this has not special
375  * permission function, use the fast case".
376  */
do_inode_permission(struct vfsmount * mnt,struct inode * inode,int mask)377 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
378 {
379 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 		if (likely(mnt && inode->i_op->permission2))
381 			return inode->i_op->permission2(mnt, inode, mask);
382 		if (likely(inode->i_op->permission))
383 			return inode->i_op->permission(inode, mask);
384 
385 		/* This gets set once for the inode lifetime */
386 		spin_lock(&inode->i_lock);
387 		inode->i_opflags |= IOP_FASTPERM;
388 		spin_unlock(&inode->i_lock);
389 	}
390 	return generic_permission(inode, mask);
391 }
392 
393 /**
394  * __inode_permission - Check for access rights to a given inode
395  * @inode: Inode to check permission on
396  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397  *
398  * Check for read/write/execute permissions on an inode.
399  *
400  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401  *
402  * This does not check for a read-only file system.  You probably want
403  * inode_permission().
404  */
__inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)405 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
406 {
407 	int retval;
408 
409 	if (unlikely(mask & MAY_WRITE)) {
410 		/*
411 		 * Nobody gets write access to an immutable file.
412 		 */
413 		if (IS_IMMUTABLE(inode))
414 			return -EACCES;
415 	}
416 
417 	retval = do_inode_permission(mnt, inode, mask);
418 	if (retval)
419 		return retval;
420 
421 	retval = devcgroup_inode_permission(inode, mask);
422 	if (retval)
423 		return retval;
424 
425 	retval = security_inode_permission(inode, mask);
426 	return retval;
427 }
428 EXPORT_SYMBOL(__inode_permission2);
429 
__inode_permission(struct inode * inode,int mask)430 int __inode_permission(struct inode *inode, int mask)
431 {
432 	return __inode_permission2(NULL, inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435 
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 	if (unlikely(mask & MAY_WRITE)) {
447 		umode_t mode = inode->i_mode;
448 
449 		/* Nobody gets write access to a read-only fs. */
450 		if ((sb->s_flags & MS_RDONLY) &&
451 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 			return -EROFS;
453 	}
454 	return 0;
455 }
456 
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)468 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
469 {
470 	int retval;
471 
472 	retval = sb_permission(inode->i_sb, inode, mask);
473 	if (retval)
474 		return retval;
475 	return __inode_permission2(mnt, inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission2);
478 
inode_permission(struct inode * inode,int mask)479 int inode_permission(struct inode *inode, int mask)
480 {
481 	return inode_permission2(NULL, inode, mask);
482 }
483 EXPORT_SYMBOL(inode_permission);
484 
485 /**
486  * path_get - get a reference to a path
487  * @path: path to get the reference to
488  *
489  * Given a path increment the reference count to the dentry and the vfsmount.
490  */
path_get(const struct path * path)491 void path_get(const struct path *path)
492 {
493 	mntget(path->mnt);
494 	dget(path->dentry);
495 }
496 EXPORT_SYMBOL(path_get);
497 
498 /**
499  * path_put - put a reference to a path
500  * @path: path to put the reference to
501  *
502  * Given a path decrement the reference count to the dentry and the vfsmount.
503  */
path_put(const struct path * path)504 void path_put(const struct path *path)
505 {
506 	dput(path->dentry);
507 	mntput(path->mnt);
508 }
509 EXPORT_SYMBOL(path_put);
510 
511 #define EMBEDDED_LEVELS 2
512 struct nameidata {
513 	struct path	path;
514 	struct qstr	last;
515 	struct path	root;
516 	struct inode	*inode; /* path.dentry.d_inode */
517 	unsigned int	flags;
518 	unsigned	seq, m_seq;
519 	int		last_type;
520 	unsigned	depth;
521 	int		total_link_count;
522 	struct saved {
523 		struct path link;
524 		void *cookie;
525 		const char *name;
526 		struct inode *inode;
527 		unsigned seq;
528 	} *stack, internal[EMBEDDED_LEVELS];
529 	struct filename	*name;
530 	struct nameidata *saved;
531 	unsigned	root_seq;
532 	int		dfd;
533 };
534 
set_nameidata(struct nameidata * p,int dfd,struct filename * name)535 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
536 {
537 	struct nameidata *old = current->nameidata;
538 	p->stack = p->internal;
539 	p->dfd = dfd;
540 	p->name = name;
541 	p->total_link_count = old ? old->total_link_count : 0;
542 	p->saved = old;
543 	current->nameidata = p;
544 }
545 
restore_nameidata(void)546 static void restore_nameidata(void)
547 {
548 	struct nameidata *now = current->nameidata, *old = now->saved;
549 
550 	current->nameidata = old;
551 	if (old)
552 		old->total_link_count = now->total_link_count;
553 	if (now->stack != now->internal) {
554 		kfree(now->stack);
555 		now->stack = now->internal;
556 	}
557 }
558 
__nd_alloc_stack(struct nameidata * nd)559 static int __nd_alloc_stack(struct nameidata *nd)
560 {
561 	struct saved *p;
562 
563 	if (nd->flags & LOOKUP_RCU) {
564 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
565 				  GFP_ATOMIC);
566 		if (unlikely(!p))
567 			return -ECHILD;
568 	} else {
569 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
570 				  GFP_KERNEL);
571 		if (unlikely(!p))
572 			return -ENOMEM;
573 	}
574 	memcpy(p, nd->internal, sizeof(nd->internal));
575 	nd->stack = p;
576 	return 0;
577 }
578 
579 /**
580  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
581  * @path: nameidate to verify
582  *
583  * Rename can sometimes move a file or directory outside of a bind
584  * mount, path_connected allows those cases to be detected.
585  */
path_connected(const struct path * path)586 static bool path_connected(const struct path *path)
587 {
588 	struct vfsmount *mnt = path->mnt;
589 	struct super_block *sb = mnt->mnt_sb;
590 
591 	/* Bind mounts and multi-root filesystems can have disconnected paths */
592 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
593 		return true;
594 
595 	return is_subdir(path->dentry, mnt->mnt_root);
596 }
597 
nd_alloc_stack(struct nameidata * nd)598 static inline int nd_alloc_stack(struct nameidata *nd)
599 {
600 	if (likely(nd->depth != EMBEDDED_LEVELS))
601 		return 0;
602 	if (likely(nd->stack != nd->internal))
603 		return 0;
604 	return __nd_alloc_stack(nd);
605 }
606 
drop_links(struct nameidata * nd)607 static void drop_links(struct nameidata *nd)
608 {
609 	int i = nd->depth;
610 	while (i--) {
611 		struct saved *last = nd->stack + i;
612 		struct inode *inode = last->inode;
613 		if (last->cookie && inode->i_op->put_link) {
614 			inode->i_op->put_link(inode, last->cookie);
615 			last->cookie = NULL;
616 		}
617 	}
618 }
619 
terminate_walk(struct nameidata * nd)620 static void terminate_walk(struct nameidata *nd)
621 {
622 	drop_links(nd);
623 	if (!(nd->flags & LOOKUP_RCU)) {
624 		int i;
625 		path_put(&nd->path);
626 		for (i = 0; i < nd->depth; i++)
627 			path_put(&nd->stack[i].link);
628 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
629 			path_put(&nd->root);
630 			nd->root.mnt = NULL;
631 		}
632 	} else {
633 		nd->flags &= ~LOOKUP_RCU;
634 		if (!(nd->flags & LOOKUP_ROOT))
635 			nd->root.mnt = NULL;
636 		rcu_read_unlock();
637 	}
638 	nd->depth = 0;
639 }
640 
641 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)642 static bool legitimize_path(struct nameidata *nd,
643 			    struct path *path, unsigned seq)
644 {
645 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
646 	if (unlikely(res)) {
647 		if (res > 0)
648 			path->mnt = NULL;
649 		path->dentry = NULL;
650 		return false;
651 	}
652 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
653 		path->dentry = NULL;
654 		return false;
655 	}
656 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
657 }
658 
legitimize_links(struct nameidata * nd)659 static bool legitimize_links(struct nameidata *nd)
660 {
661 	int i;
662 	for (i = 0; i < nd->depth; i++) {
663 		struct saved *last = nd->stack + i;
664 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
665 			drop_links(nd);
666 			nd->depth = i + 1;
667 			return false;
668 		}
669 	}
670 	return true;
671 }
672 
673 /*
674  * Path walking has 2 modes, rcu-walk and ref-walk (see
675  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
676  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
677  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
678  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
679  * got stuck, so ref-walk may continue from there. If this is not successful
680  * (eg. a seqcount has changed), then failure is returned and it's up to caller
681  * to restart the path walk from the beginning in ref-walk mode.
682  */
683 
684 /**
685  * unlazy_walk - try to switch to ref-walk mode.
686  * @nd: nameidata pathwalk data
687  * @dentry: child of nd->path.dentry or NULL
688  * @seq: seq number to check dentry against
689  * Returns: 0 on success, -ECHILD on failure
690  *
691  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
692  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
693  * @nd or NULL.  Must be called from rcu-walk context.
694  * Nothing should touch nameidata between unlazy_walk() failure and
695  * terminate_walk().
696  */
unlazy_walk(struct nameidata * nd,struct dentry * dentry,unsigned seq)697 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
698 {
699 	struct dentry *parent = nd->path.dentry;
700 
701 	BUG_ON(!(nd->flags & LOOKUP_RCU));
702 
703 	nd->flags &= ~LOOKUP_RCU;
704 	if (unlikely(!legitimize_links(nd)))
705 		goto out2;
706 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
707 		goto out2;
708 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
709 		goto out1;
710 
711 	/*
712 	 * For a negative lookup, the lookup sequence point is the parents
713 	 * sequence point, and it only needs to revalidate the parent dentry.
714 	 *
715 	 * For a positive lookup, we need to move both the parent and the
716 	 * dentry from the RCU domain to be properly refcounted. And the
717 	 * sequence number in the dentry validates *both* dentry counters,
718 	 * since we checked the sequence number of the parent after we got
719 	 * the child sequence number. So we know the parent must still
720 	 * be valid if the child sequence number is still valid.
721 	 */
722 	if (!dentry) {
723 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
724 			goto out;
725 		BUG_ON(nd->inode != parent->d_inode);
726 	} else {
727 		if (!lockref_get_not_dead(&dentry->d_lockref))
728 			goto out;
729 		if (read_seqcount_retry(&dentry->d_seq, seq))
730 			goto drop_dentry;
731 	}
732 
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
738 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
739 			rcu_read_unlock();
740 			dput(dentry);
741 			return -ECHILD;
742 		}
743 	}
744 
745 	rcu_read_unlock();
746 	return 0;
747 
748 drop_dentry:
749 	rcu_read_unlock();
750 	dput(dentry);
751 	goto drop_root_mnt;
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 drop_root_mnt:
759 	if (!(nd->flags & LOOKUP_ROOT))
760 		nd->root.mnt = NULL;
761 	return -ECHILD;
762 }
763 
unlazy_link(struct nameidata * nd,struct path * link,unsigned seq)764 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
765 {
766 	if (unlikely(!legitimize_path(nd, link, seq))) {
767 		drop_links(nd);
768 		nd->depth = 0;
769 		nd->flags &= ~LOOKUP_RCU;
770 		nd->path.mnt = NULL;
771 		nd->path.dentry = NULL;
772 		if (!(nd->flags & LOOKUP_ROOT))
773 			nd->root.mnt = NULL;
774 		rcu_read_unlock();
775 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
776 		return 0;
777 	}
778 	path_put(link);
779 	return -ECHILD;
780 }
781 
d_revalidate(struct dentry * dentry,unsigned int flags)782 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
783 {
784 	return dentry->d_op->d_revalidate(dentry, flags);
785 }
786 
787 /**
788  * complete_walk - successful completion of path walk
789  * @nd:  pointer nameidata
790  *
791  * If we had been in RCU mode, drop out of it and legitimize nd->path.
792  * Revalidate the final result, unless we'd already done that during
793  * the path walk or the filesystem doesn't ask for it.  Return 0 on
794  * success, -error on failure.  In case of failure caller does not
795  * need to drop nd->path.
796  */
complete_walk(struct nameidata * nd)797 static int complete_walk(struct nameidata *nd)
798 {
799 	struct dentry *dentry = nd->path.dentry;
800 	int status;
801 
802 	if (nd->flags & LOOKUP_RCU) {
803 		if (!(nd->flags & LOOKUP_ROOT))
804 			nd->root.mnt = NULL;
805 		if (unlikely(unlazy_walk(nd, NULL, 0)))
806 			return -ECHILD;
807 	}
808 
809 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
810 		return 0;
811 
812 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
813 		return 0;
814 
815 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
816 	if (status > 0)
817 		return 0;
818 
819 	if (!status)
820 		status = -ESTALE;
821 
822 	return status;
823 }
824 
set_root(struct nameidata * nd)825 static void set_root(struct nameidata *nd)
826 {
827 	get_fs_root(current->fs, &nd->root);
828 }
829 
set_root_rcu(struct nameidata * nd)830 static void set_root_rcu(struct nameidata *nd)
831 {
832 	struct fs_struct *fs = current->fs;
833 	unsigned seq;
834 
835 	do {
836 		seq = read_seqcount_begin(&fs->seq);
837 		nd->root = fs->root;
838 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
839 	} while (read_seqcount_retry(&fs->seq, seq));
840 }
841 
path_put_conditional(struct path * path,struct nameidata * nd)842 static void path_put_conditional(struct path *path, struct nameidata *nd)
843 {
844 	dput(path->dentry);
845 	if (path->mnt != nd->path.mnt)
846 		mntput(path->mnt);
847 }
848 
path_to_nameidata(const struct path * path,struct nameidata * nd)849 static inline void path_to_nameidata(const struct path *path,
850 					struct nameidata *nd)
851 {
852 	if (!(nd->flags & LOOKUP_RCU)) {
853 		dput(nd->path.dentry);
854 		if (nd->path.mnt != path->mnt)
855 			mntput(nd->path.mnt);
856 	}
857 	nd->path.mnt = path->mnt;
858 	nd->path.dentry = path->dentry;
859 }
860 
861 /*
862  * Helper to directly jump to a known parsed path from ->follow_link,
863  * caller must have taken a reference to path beforehand.
864  */
nd_jump_link(struct path * path)865 void nd_jump_link(struct path *path)
866 {
867 	struct nameidata *nd = current->nameidata;
868 	path_put(&nd->path);
869 
870 	nd->path = *path;
871 	nd->inode = nd->path.dentry->d_inode;
872 	nd->flags |= LOOKUP_JUMPED;
873 }
874 
put_link(struct nameidata * nd)875 static inline void put_link(struct nameidata *nd)
876 {
877 	struct saved *last = nd->stack + --nd->depth;
878 	struct inode *inode = last->inode;
879 	if (last->cookie && inode->i_op->put_link)
880 		inode->i_op->put_link(inode, last->cookie);
881 	if (!(nd->flags & LOOKUP_RCU))
882 		path_put(&last->link);
883 }
884 
885 int sysctl_protected_symlinks __read_mostly = 0;
886 int sysctl_protected_hardlinks __read_mostly = 0;
887 int sysctl_protected_fifos __read_mostly;
888 int sysctl_protected_regular __read_mostly;
889 
890 /**
891  * may_follow_link - Check symlink following for unsafe situations
892  * @nd: nameidata pathwalk data
893  *
894  * In the case of the sysctl_protected_symlinks sysctl being enabled,
895  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
896  * in a sticky world-writable directory. This is to protect privileged
897  * processes from failing races against path names that may change out
898  * from under them by way of other users creating malicious symlinks.
899  * It will permit symlinks to be followed only when outside a sticky
900  * world-writable directory, or when the uid of the symlink and follower
901  * match, or when the directory owner matches the symlink's owner.
902  *
903  * Returns 0 if following the symlink is allowed, -ve on error.
904  */
may_follow_link(struct nameidata * nd)905 static inline int may_follow_link(struct nameidata *nd)
906 {
907 	const struct inode *inode;
908 	const struct inode *parent;
909 	kuid_t puid;
910 
911 	if (!sysctl_protected_symlinks)
912 		return 0;
913 
914 	/* Allowed if owner and follower match. */
915 	inode = nd->stack[0].inode;
916 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
917 		return 0;
918 
919 	/* Allowed if parent directory not sticky and world-writable. */
920 	parent = nd->inode;
921 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
922 		return 0;
923 
924 	/* Allowed if parent directory and link owner match. */
925 	puid = parent->i_uid;
926 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
927 		return 0;
928 
929 	if (nd->flags & LOOKUP_RCU)
930 		return -ECHILD;
931 
932 	audit_log_link_denied("follow_link", &nd->stack[0].link);
933 	return -EACCES;
934 }
935 
936 /**
937  * safe_hardlink_source - Check for safe hardlink conditions
938  * @inode: the source inode to hardlink from
939  *
940  * Return false if at least one of the following conditions:
941  *    - inode is not a regular file
942  *    - inode is setuid
943  *    - inode is setgid and group-exec
944  *    - access failure for read and write
945  *
946  * Otherwise returns true.
947  */
safe_hardlink_source(struct inode * inode)948 static bool safe_hardlink_source(struct inode *inode)
949 {
950 	umode_t mode = inode->i_mode;
951 
952 	/* Special files should not get pinned to the filesystem. */
953 	if (!S_ISREG(mode))
954 		return false;
955 
956 	/* Setuid files should not get pinned to the filesystem. */
957 	if (mode & S_ISUID)
958 		return false;
959 
960 	/* Executable setgid files should not get pinned to the filesystem. */
961 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
962 		return false;
963 
964 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
965 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
966 		return false;
967 
968 	return true;
969 }
970 
971 /**
972  * may_linkat - Check permissions for creating a hardlink
973  * @link: the source to hardlink from
974  *
975  * Block hardlink when all of:
976  *  - sysctl_protected_hardlinks enabled
977  *  - fsuid does not match inode
978  *  - hardlink source is unsafe (see safe_hardlink_source() above)
979  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
980  *
981  * Returns 0 if successful, -ve on error.
982  */
may_linkat(struct path * link)983 static int may_linkat(struct path *link)
984 {
985 	struct inode *inode;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	inode = link->dentry->d_inode;
991 
992 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
993 	 * otherwise, it must be a safe source.
994 	 */
995 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
996 		return 0;
997 
998 	audit_log_link_denied("linkat", link);
999 	return -EPERM;
1000 }
1001 
1002 /**
1003  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1004  *			  should be allowed, or not, on files that already
1005  *			  exist.
1006  * @dir_mode: mode bits of directory
1007  * @dir_uid: owner of directory
1008  * @inode: the inode of the file to open
1009  *
1010  * Block an O_CREAT open of a FIFO (or a regular file) when:
1011  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1012  *   - the file already exists
1013  *   - we are in a sticky directory
1014  *   - we don't own the file
1015  *   - the owner of the directory doesn't own the file
1016  *   - the directory is world writable
1017  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1018  * the directory doesn't have to be world writable: being group writable will
1019  * be enough.
1020  *
1021  * Returns 0 if the open is allowed, -ve on error.
1022  */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1023 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1024 				struct inode * const inode)
1025 {
1026 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1027 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1028 	    likely(!(dir_mode & S_ISVTX)) ||
1029 	    uid_eq(inode->i_uid, dir_uid) ||
1030 	    uid_eq(current_fsuid(), inode->i_uid))
1031 		return 0;
1032 
1033 	if (likely(dir_mode & 0002) ||
1034 	    (dir_mode & 0020 &&
1035 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1036 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1037 		return -EACCES;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static __always_inline
get_link(struct nameidata * nd)1043 const char *get_link(struct nameidata *nd)
1044 {
1045 	struct saved *last = nd->stack + nd->depth - 1;
1046 	struct dentry *dentry = last->link.dentry;
1047 	struct inode *inode = last->inode;
1048 	int error;
1049 	const char *res;
1050 
1051 	if (!(nd->flags & LOOKUP_RCU)) {
1052 		touch_atime(&last->link);
1053 		cond_resched();
1054 	} else if (atime_needs_update(&last->link, inode)) {
1055 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1056 			return ERR_PTR(-ECHILD);
1057 		touch_atime(&last->link);
1058 	}
1059 
1060 	error = security_inode_follow_link(dentry, inode,
1061 					   nd->flags & LOOKUP_RCU);
1062 	if (unlikely(error))
1063 		return ERR_PTR(error);
1064 
1065 	nd->last_type = LAST_BIND;
1066 	res = inode->i_link;
1067 	if (!res) {
1068 		if (nd->flags & LOOKUP_RCU) {
1069 			if (unlikely(unlazy_walk(nd, NULL, 0)))
1070 				return ERR_PTR(-ECHILD);
1071 		}
1072 		res = inode->i_op->follow_link(dentry, &last->cookie);
1073 		if (IS_ERR_OR_NULL(res)) {
1074 			last->cookie = NULL;
1075 			return res;
1076 		}
1077 	}
1078 	if (*res == '/') {
1079 		if (nd->flags & LOOKUP_RCU) {
1080 			struct dentry *d;
1081 			if (!nd->root.mnt)
1082 				set_root_rcu(nd);
1083 			nd->path = nd->root;
1084 			d = nd->path.dentry;
1085 			nd->inode = d->d_inode;
1086 			nd->seq = nd->root_seq;
1087 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1088 				return ERR_PTR(-ECHILD);
1089 		} else {
1090 			if (!nd->root.mnt)
1091 				set_root(nd);
1092 			path_put(&nd->path);
1093 			nd->path = nd->root;
1094 			path_get(&nd->root);
1095 			nd->inode = nd->path.dentry->d_inode;
1096 		}
1097 		nd->flags |= LOOKUP_JUMPED;
1098 		while (unlikely(*++res == '/'))
1099 			;
1100 	}
1101 	if (!*res)
1102 		res = NULL;
1103 	return res;
1104 }
1105 
1106 /*
1107  * follow_up - Find the mountpoint of path's vfsmount
1108  *
1109  * Given a path, find the mountpoint of its source file system.
1110  * Replace @path with the path of the mountpoint in the parent mount.
1111  * Up is towards /.
1112  *
1113  * Return 1 if we went up a level and 0 if we were already at the
1114  * root.
1115  */
follow_up(struct path * path)1116 int follow_up(struct path *path)
1117 {
1118 	struct mount *mnt = real_mount(path->mnt);
1119 	struct mount *parent;
1120 	struct dentry *mountpoint;
1121 
1122 	read_seqlock_excl(&mount_lock);
1123 	parent = mnt->mnt_parent;
1124 	if (parent == mnt) {
1125 		read_sequnlock_excl(&mount_lock);
1126 		return 0;
1127 	}
1128 	mntget(&parent->mnt);
1129 	mountpoint = dget(mnt->mnt_mountpoint);
1130 	read_sequnlock_excl(&mount_lock);
1131 	dput(path->dentry);
1132 	path->dentry = mountpoint;
1133 	mntput(path->mnt);
1134 	path->mnt = &parent->mnt;
1135 	return 1;
1136 }
1137 EXPORT_SYMBOL(follow_up);
1138 
1139 /*
1140  * Perform an automount
1141  * - return -EISDIR to tell follow_managed() to stop and return the path we
1142  *   were called with.
1143  */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1144 static int follow_automount(struct path *path, struct nameidata *nd,
1145 			    bool *need_mntput)
1146 {
1147 	struct vfsmount *mnt;
1148 	int err;
1149 
1150 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1151 		return -EREMOTE;
1152 
1153 	/* We don't want to mount if someone's just doing a stat -
1154 	 * unless they're stat'ing a directory and appended a '/' to
1155 	 * the name.
1156 	 *
1157 	 * We do, however, want to mount if someone wants to open or
1158 	 * create a file of any type under the mountpoint, wants to
1159 	 * traverse through the mountpoint or wants to open the
1160 	 * mounted directory.  Also, autofs may mark negative dentries
1161 	 * as being automount points.  These will need the attentions
1162 	 * of the daemon to instantiate them before they can be used.
1163 	 */
1164 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1165 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1166 	    path->dentry->d_inode)
1167 		return -EISDIR;
1168 
1169 	nd->total_link_count++;
1170 	if (nd->total_link_count >= 40)
1171 		return -ELOOP;
1172 
1173 	mnt = path->dentry->d_op->d_automount(path);
1174 	if (IS_ERR(mnt)) {
1175 		/*
1176 		 * The filesystem is allowed to return -EISDIR here to indicate
1177 		 * it doesn't want to automount.  For instance, autofs would do
1178 		 * this so that its userspace daemon can mount on this dentry.
1179 		 *
1180 		 * However, we can only permit this if it's a terminal point in
1181 		 * the path being looked up; if it wasn't then the remainder of
1182 		 * the path is inaccessible and we should say so.
1183 		 */
1184 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1185 			return -EREMOTE;
1186 		return PTR_ERR(mnt);
1187 	}
1188 
1189 	if (!mnt) /* mount collision */
1190 		return 0;
1191 
1192 	if (!*need_mntput) {
1193 		/* lock_mount() may release path->mnt on error */
1194 		mntget(path->mnt);
1195 		*need_mntput = true;
1196 	}
1197 	err = finish_automount(mnt, path);
1198 
1199 	switch (err) {
1200 	case -EBUSY:
1201 		/* Someone else made a mount here whilst we were busy */
1202 		return 0;
1203 	case 0:
1204 		path_put(path);
1205 		path->mnt = mnt;
1206 		path->dentry = dget(mnt->mnt_root);
1207 		return 0;
1208 	default:
1209 		return err;
1210 	}
1211 
1212 }
1213 
1214 /*
1215  * Handle a dentry that is managed in some way.
1216  * - Flagged for transit management (autofs)
1217  * - Flagged as mountpoint
1218  * - Flagged as automount point
1219  *
1220  * This may only be called in refwalk mode.
1221  *
1222  * Serialization is taken care of in namespace.c
1223  */
follow_managed(struct path * path,struct nameidata * nd)1224 static int follow_managed(struct path *path, struct nameidata *nd)
1225 {
1226 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1227 	unsigned managed;
1228 	bool need_mntput = false;
1229 	int ret = 0;
1230 
1231 	/* Given that we're not holding a lock here, we retain the value in a
1232 	 * local variable for each dentry as we look at it so that we don't see
1233 	 * the components of that value change under us */
1234 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1235 	       managed &= DCACHE_MANAGED_DENTRY,
1236 	       unlikely(managed != 0)) {
1237 		/* Allow the filesystem to manage the transit without i_mutex
1238 		 * being held. */
1239 		if (managed & DCACHE_MANAGE_TRANSIT) {
1240 			BUG_ON(!path->dentry->d_op);
1241 			BUG_ON(!path->dentry->d_op->d_manage);
1242 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1243 			if (ret < 0)
1244 				break;
1245 		}
1246 
1247 		/* Transit to a mounted filesystem. */
1248 		if (managed & DCACHE_MOUNTED) {
1249 			struct vfsmount *mounted = lookup_mnt(path);
1250 			if (mounted) {
1251 				dput(path->dentry);
1252 				if (need_mntput)
1253 					mntput(path->mnt);
1254 				path->mnt = mounted;
1255 				path->dentry = dget(mounted->mnt_root);
1256 				need_mntput = true;
1257 				continue;
1258 			}
1259 
1260 			/* Something is mounted on this dentry in another
1261 			 * namespace and/or whatever was mounted there in this
1262 			 * namespace got unmounted before lookup_mnt() could
1263 			 * get it */
1264 		}
1265 
1266 		/* Handle an automount point */
1267 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1268 			ret = follow_automount(path, nd, &need_mntput);
1269 			if (ret < 0)
1270 				break;
1271 			continue;
1272 		}
1273 
1274 		/* We didn't change the current path point */
1275 		break;
1276 	}
1277 
1278 	if (need_mntput && path->mnt == mnt)
1279 		mntput(path->mnt);
1280 	if (ret == -EISDIR)
1281 		ret = 0;
1282 	if (need_mntput)
1283 		nd->flags |= LOOKUP_JUMPED;
1284 	if (unlikely(ret < 0))
1285 		path_put_conditional(path, nd);
1286 	return ret;
1287 }
1288 
follow_down_one(struct path * path)1289 int follow_down_one(struct path *path)
1290 {
1291 	struct vfsmount *mounted;
1292 
1293 	mounted = lookup_mnt(path);
1294 	if (mounted) {
1295 		dput(path->dentry);
1296 		mntput(path->mnt);
1297 		path->mnt = mounted;
1298 		path->dentry = dget(mounted->mnt_root);
1299 		return 1;
1300 	}
1301 	return 0;
1302 }
1303 EXPORT_SYMBOL(follow_down_one);
1304 
managed_dentry_rcu(struct dentry * dentry)1305 static inline int managed_dentry_rcu(struct dentry *dentry)
1306 {
1307 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1308 		dentry->d_op->d_manage(dentry, true) : 0;
1309 }
1310 
1311 /*
1312  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1313  * we meet a managed dentry that would need blocking.
1314  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1315 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1316 			       struct inode **inode, unsigned *seqp)
1317 {
1318 	for (;;) {
1319 		struct mount *mounted;
1320 		/*
1321 		 * Don't forget we might have a non-mountpoint managed dentry
1322 		 * that wants to block transit.
1323 		 */
1324 		switch (managed_dentry_rcu(path->dentry)) {
1325 		case -ECHILD:
1326 		default:
1327 			return false;
1328 		case -EISDIR:
1329 			return true;
1330 		case 0:
1331 			break;
1332 		}
1333 
1334 		if (!d_mountpoint(path->dentry))
1335 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1336 
1337 		mounted = __lookup_mnt(path->mnt, path->dentry);
1338 		if (!mounted)
1339 			break;
1340 		path->mnt = &mounted->mnt;
1341 		path->dentry = mounted->mnt.mnt_root;
1342 		nd->flags |= LOOKUP_JUMPED;
1343 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1344 		/*
1345 		 * Update the inode too. We don't need to re-check the
1346 		 * dentry sequence number here after this d_inode read,
1347 		 * because a mount-point is always pinned.
1348 		 */
1349 		*inode = path->dentry->d_inode;
1350 	}
1351 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1352 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1353 }
1354 
follow_dotdot_rcu(struct nameidata * nd)1355 static int follow_dotdot_rcu(struct nameidata *nd)
1356 {
1357 	struct inode *inode = nd->inode;
1358 	if (!nd->root.mnt)
1359 		set_root_rcu(nd);
1360 
1361 	while (1) {
1362 		if (path_equal(&nd->path, &nd->root))
1363 			break;
1364 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1365 			struct dentry *old = nd->path.dentry;
1366 			struct dentry *parent = old->d_parent;
1367 			unsigned seq;
1368 
1369 			inode = parent->d_inode;
1370 			seq = read_seqcount_begin(&parent->d_seq);
1371 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1372 				return -ECHILD;
1373 			nd->path.dentry = parent;
1374 			nd->seq = seq;
1375 			if (unlikely(!path_connected(&nd->path)))
1376 				return -ECHILD;
1377 			break;
1378 		} else {
1379 			struct mount *mnt = real_mount(nd->path.mnt);
1380 			struct mount *mparent = mnt->mnt_parent;
1381 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1382 			struct inode *inode2 = mountpoint->d_inode;
1383 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1384 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385 				return -ECHILD;
1386 			if (&mparent->mnt == nd->path.mnt)
1387 				break;
1388 			/* we know that mountpoint was pinned */
1389 			nd->path.dentry = mountpoint;
1390 			nd->path.mnt = &mparent->mnt;
1391 			inode = inode2;
1392 			nd->seq = seq;
1393 		}
1394 	}
1395 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1396 		struct mount *mounted;
1397 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1398 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1399 			return -ECHILD;
1400 		if (!mounted)
1401 			break;
1402 		nd->path.mnt = &mounted->mnt;
1403 		nd->path.dentry = mounted->mnt.mnt_root;
1404 		inode = nd->path.dentry->d_inode;
1405 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1406 	}
1407 	nd->inode = inode;
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Follow down to the covering mount currently visible to userspace.  At each
1413  * point, the filesystem owning that dentry may be queried as to whether the
1414  * caller is permitted to proceed or not.
1415  */
follow_down(struct path * path)1416 int follow_down(struct path *path)
1417 {
1418 	unsigned managed;
1419 	int ret;
1420 
1421 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1422 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1423 		/* Allow the filesystem to manage the transit without i_mutex
1424 		 * being held.
1425 		 *
1426 		 * We indicate to the filesystem if someone is trying to mount
1427 		 * something here.  This gives autofs the chance to deny anyone
1428 		 * other than its daemon the right to mount on its
1429 		 * superstructure.
1430 		 *
1431 		 * The filesystem may sleep at this point.
1432 		 */
1433 		if (managed & DCACHE_MANAGE_TRANSIT) {
1434 			BUG_ON(!path->dentry->d_op);
1435 			BUG_ON(!path->dentry->d_op->d_manage);
1436 			ret = path->dentry->d_op->d_manage(
1437 				path->dentry, false);
1438 			if (ret < 0)
1439 				return ret == -EISDIR ? 0 : ret;
1440 		}
1441 
1442 		/* Transit to a mounted filesystem. */
1443 		if (managed & DCACHE_MOUNTED) {
1444 			struct vfsmount *mounted = lookup_mnt(path);
1445 			if (!mounted)
1446 				break;
1447 			dput(path->dentry);
1448 			mntput(path->mnt);
1449 			path->mnt = mounted;
1450 			path->dentry = dget(mounted->mnt_root);
1451 			continue;
1452 		}
1453 
1454 		/* Don't handle automount points here */
1455 		break;
1456 	}
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(follow_down);
1460 
1461 /*
1462  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1463  */
follow_mount(struct path * path)1464 static void follow_mount(struct path *path)
1465 {
1466 	while (d_mountpoint(path->dentry)) {
1467 		struct vfsmount *mounted = lookup_mnt(path);
1468 		if (!mounted)
1469 			break;
1470 		dput(path->dentry);
1471 		mntput(path->mnt);
1472 		path->mnt = mounted;
1473 		path->dentry = dget(mounted->mnt_root);
1474 	}
1475 }
1476 
follow_dotdot(struct nameidata * nd)1477 static int follow_dotdot(struct nameidata *nd)
1478 {
1479 	if (!nd->root.mnt)
1480 		set_root(nd);
1481 
1482 	while(1) {
1483 		struct dentry *old = nd->path.dentry;
1484 
1485 		if (nd->path.dentry == nd->root.dentry &&
1486 		    nd->path.mnt == nd->root.mnt) {
1487 			break;
1488 		}
1489 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1490 			/* rare case of legitimate dget_parent()... */
1491 			nd->path.dentry = dget_parent(nd->path.dentry);
1492 			dput(old);
1493 			if (unlikely(!path_connected(&nd->path)))
1494 				return -ENOENT;
1495 			break;
1496 		}
1497 		if (!follow_up(&nd->path))
1498 			break;
1499 	}
1500 	follow_mount(&nd->path);
1501 	nd->inode = nd->path.dentry->d_inode;
1502 	return 0;
1503 }
1504 
1505 /*
1506  * This looks up the name in dcache, possibly revalidates the old dentry and
1507  * allocates a new one if not found or not valid.  In the need_lookup argument
1508  * returns whether i_op->lookup is necessary.
1509  *
1510  * dir->d_inode->i_mutex must be held
1511  */
lookup_dcache(struct qstr * name,struct dentry * dir,unsigned int flags,bool * need_lookup)1512 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1513 				    unsigned int flags, bool *need_lookup)
1514 {
1515 	struct dentry *dentry;
1516 	int error;
1517 
1518 	*need_lookup = false;
1519 	dentry = d_lookup(dir, name);
1520 	if (dentry) {
1521 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1522 			error = d_revalidate(dentry, flags);
1523 			if (unlikely(error <= 0)) {
1524 				if (error < 0) {
1525 					dput(dentry);
1526 					return ERR_PTR(error);
1527 				} else {
1528 					d_invalidate(dentry);
1529 					dput(dentry);
1530 					dentry = NULL;
1531 				}
1532 			}
1533 		}
1534 	}
1535 
1536 	if (!dentry) {
1537 		dentry = d_alloc(dir, name);
1538 		if (unlikely(!dentry))
1539 			return ERR_PTR(-ENOMEM);
1540 
1541 		*need_lookup = true;
1542 	}
1543 	return dentry;
1544 }
1545 
1546 /*
1547  * Call i_op->lookup on the dentry.  The dentry must be negative and
1548  * unhashed.
1549  *
1550  * dir->d_inode->i_mutex must be held
1551  */
lookup_real(struct inode * dir,struct dentry * dentry,unsigned int flags)1552 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1553 				  unsigned int flags)
1554 {
1555 	struct dentry *old;
1556 
1557 	/* Don't create child dentry for a dead directory. */
1558 	if (unlikely(IS_DEADDIR(dir))) {
1559 		dput(dentry);
1560 		return ERR_PTR(-ENOENT);
1561 	}
1562 
1563 	old = dir->i_op->lookup(dir, dentry, flags);
1564 	if (unlikely(old)) {
1565 		dput(dentry);
1566 		dentry = old;
1567 	}
1568 	return dentry;
1569 }
1570 
__lookup_hash(struct qstr * name,struct dentry * base,unsigned int flags)1571 static struct dentry *__lookup_hash(struct qstr *name,
1572 		struct dentry *base, unsigned int flags)
1573 {
1574 	bool need_lookup;
1575 	struct dentry *dentry;
1576 
1577 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1578 	if (!need_lookup)
1579 		return dentry;
1580 
1581 	return lookup_real(base->d_inode, dentry, flags);
1582 }
1583 
1584 /*
1585  *  It's more convoluted than I'd like it to be, but... it's still fairly
1586  *  small and for now I'd prefer to have fast path as straight as possible.
1587  *  It _is_ time-critical.
1588  */
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1589 static int lookup_fast(struct nameidata *nd,
1590 		       struct path *path, struct inode **inode,
1591 		       unsigned *seqp)
1592 {
1593 	struct vfsmount *mnt = nd->path.mnt;
1594 	struct dentry *dentry, *parent = nd->path.dentry;
1595 	int need_reval = 1;
1596 	int status = 1;
1597 	int err;
1598 
1599 	/*
1600 	 * Rename seqlock is not required here because in the off chance
1601 	 * of a false negative due to a concurrent rename, we're going to
1602 	 * do the non-racy lookup, below.
1603 	 */
1604 	if (nd->flags & LOOKUP_RCU) {
1605 		unsigned seq;
1606 		bool negative;
1607 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1608 		if (!dentry)
1609 			goto unlazy;
1610 
1611 		/*
1612 		 * This sequence count validates that the inode matches
1613 		 * the dentry name information from lookup.
1614 		 */
1615 		*inode = d_backing_inode(dentry);
1616 		negative = d_is_negative(dentry);
1617 		if (read_seqcount_retry(&dentry->d_seq, seq))
1618 			return -ECHILD;
1619 
1620 		/*
1621 		 * This sequence count validates that the parent had no
1622 		 * changes while we did the lookup of the dentry above.
1623 		 *
1624 		 * The memory barrier in read_seqcount_begin of child is
1625 		 *  enough, we can use __read_seqcount_retry here.
1626 		 */
1627 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1628 			return -ECHILD;
1629 
1630 		*seqp = seq;
1631 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1632 			status = d_revalidate(dentry, nd->flags);
1633 			if (unlikely(status <= 0)) {
1634 				if (status != -ECHILD)
1635 					need_reval = 0;
1636 				goto unlazy;
1637 			}
1638 		}
1639 		/*
1640 		 * Note: do negative dentry check after revalidation in
1641 		 * case that drops it.
1642 		 */
1643 		if (negative)
1644 			return -ENOENT;
1645 		path->mnt = mnt;
1646 		path->dentry = dentry;
1647 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1648 			return 0;
1649 unlazy:
1650 		if (unlazy_walk(nd, dentry, seq))
1651 			return -ECHILD;
1652 	} else {
1653 		dentry = __d_lookup(parent, &nd->last);
1654 	}
1655 
1656 	if (unlikely(!dentry))
1657 		goto need_lookup;
1658 
1659 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1660 		status = d_revalidate(dentry, nd->flags);
1661 	if (unlikely(status <= 0)) {
1662 		if (status < 0) {
1663 			dput(dentry);
1664 			return status;
1665 		}
1666 		d_invalidate(dentry);
1667 		dput(dentry);
1668 		goto need_lookup;
1669 	}
1670 
1671 	if (unlikely(d_is_negative(dentry))) {
1672 		dput(dentry);
1673 		return -ENOENT;
1674 	}
1675 	path->mnt = mnt;
1676 	path->dentry = dentry;
1677 	err = follow_managed(path, nd);
1678 	if (likely(!err))
1679 		*inode = d_backing_inode(path->dentry);
1680 	return err;
1681 
1682 need_lookup:
1683 	return 1;
1684 }
1685 
1686 /* Fast lookup failed, do it the slow way */
lookup_slow(struct nameidata * nd,struct path * path)1687 static int lookup_slow(struct nameidata *nd, struct path *path)
1688 {
1689 	struct dentry *dentry, *parent;
1690 
1691 	parent = nd->path.dentry;
1692 	BUG_ON(nd->inode != parent->d_inode);
1693 
1694 	mutex_lock(&parent->d_inode->i_mutex);
1695 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1696 	mutex_unlock(&parent->d_inode->i_mutex);
1697 	if (IS_ERR(dentry))
1698 		return PTR_ERR(dentry);
1699 	path->mnt = nd->path.mnt;
1700 	path->dentry = dentry;
1701 	return follow_managed(path, nd);
1702 }
1703 
may_lookup(struct nameidata * nd)1704 static inline int may_lookup(struct nameidata *nd)
1705 {
1706 	if (nd->flags & LOOKUP_RCU) {
1707 		int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1708 		if (err != -ECHILD)
1709 			return err;
1710 		if (unlazy_walk(nd, NULL, 0))
1711 			return -ECHILD;
1712 	}
1713 	return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1714 }
1715 
handle_dots(struct nameidata * nd,int type)1716 static inline int handle_dots(struct nameidata *nd, int type)
1717 {
1718 	if (type == LAST_DOTDOT) {
1719 		if (nd->flags & LOOKUP_RCU) {
1720 			return follow_dotdot_rcu(nd);
1721 		} else
1722 			return follow_dotdot(nd);
1723 	}
1724 	return 0;
1725 }
1726 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1727 static int pick_link(struct nameidata *nd, struct path *link,
1728 		     struct inode *inode, unsigned seq)
1729 {
1730 	int error;
1731 	struct saved *last;
1732 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1733 		path_to_nameidata(link, nd);
1734 		return -ELOOP;
1735 	}
1736 	if (!(nd->flags & LOOKUP_RCU)) {
1737 		if (link->mnt == nd->path.mnt)
1738 			mntget(link->mnt);
1739 	}
1740 	error = nd_alloc_stack(nd);
1741 	if (unlikely(error)) {
1742 		if (error == -ECHILD) {
1743 			if (unlikely(unlazy_link(nd, link, seq)))
1744 				return -ECHILD;
1745 			error = nd_alloc_stack(nd);
1746 		}
1747 		if (error) {
1748 			path_put(link);
1749 			return error;
1750 		}
1751 	}
1752 
1753 	last = nd->stack + nd->depth++;
1754 	last->link = *link;
1755 	last->cookie = NULL;
1756 	last->inode = inode;
1757 	last->seq = seq;
1758 	return 1;
1759 }
1760 
1761 /*
1762  * Do we need to follow links? We _really_ want to be able
1763  * to do this check without having to look at inode->i_op,
1764  * so we keep a cache of "no, this doesn't need follow_link"
1765  * for the common case.
1766  */
should_follow_link(struct nameidata * nd,struct path * link,int follow,struct inode * inode,unsigned seq)1767 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1768 				     int follow,
1769 				     struct inode *inode, unsigned seq)
1770 {
1771 	if (likely(!d_is_symlink(link->dentry)))
1772 		return 0;
1773 	if (!follow)
1774 		return 0;
1775 	/* make sure that d_is_symlink above matches inode */
1776 	if (nd->flags & LOOKUP_RCU) {
1777 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1778 			return -ECHILD;
1779 	}
1780 	return pick_link(nd, link, inode, seq);
1781 }
1782 
1783 enum {WALK_GET = 1, WALK_PUT = 2};
1784 
walk_component(struct nameidata * nd,int flags)1785 static int walk_component(struct nameidata *nd, int flags)
1786 {
1787 	struct path path;
1788 	struct inode *inode;
1789 	unsigned seq;
1790 	int err;
1791 	/*
1792 	 * "." and ".." are special - ".." especially so because it has
1793 	 * to be able to know about the current root directory and
1794 	 * parent relationships.
1795 	 */
1796 	if (unlikely(nd->last_type != LAST_NORM)) {
1797 		err = handle_dots(nd, nd->last_type);
1798 		if (flags & WALK_PUT)
1799 			put_link(nd);
1800 		return err;
1801 	}
1802 	err = lookup_fast(nd, &path, &inode, &seq);
1803 	if (unlikely(err)) {
1804 		if (err < 0)
1805 			return err;
1806 
1807 		err = lookup_slow(nd, &path);
1808 		if (err < 0)
1809 			return err;
1810 
1811 		seq = 0;	/* we are already out of RCU mode */
1812 		err = -ENOENT;
1813 		if (d_is_negative(path.dentry))
1814 			goto out_path_put;
1815 		inode = d_backing_inode(path.dentry);
1816 	}
1817 
1818 	if (flags & WALK_PUT)
1819 		put_link(nd);
1820 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1821 	if (unlikely(err))
1822 		return err;
1823 	path_to_nameidata(&path, nd);
1824 	nd->inode = inode;
1825 	nd->seq = seq;
1826 	return 0;
1827 
1828 out_path_put:
1829 	path_to_nameidata(&path, nd);
1830 	return err;
1831 }
1832 
1833 /*
1834  * We can do the critical dentry name comparison and hashing
1835  * operations one word at a time, but we are limited to:
1836  *
1837  * - Architectures with fast unaligned word accesses. We could
1838  *   do a "get_unaligned()" if this helps and is sufficiently
1839  *   fast.
1840  *
1841  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1842  *   do not trap on the (extremely unlikely) case of a page
1843  *   crossing operation.
1844  *
1845  * - Furthermore, we need an efficient 64-bit compile for the
1846  *   64-bit case in order to generate the "number of bytes in
1847  *   the final mask". Again, that could be replaced with a
1848  *   efficient population count instruction or similar.
1849  */
1850 #ifdef CONFIG_DCACHE_WORD_ACCESS
1851 
1852 #include <asm/word-at-a-time.h>
1853 
1854 #ifdef CONFIG_64BIT
1855 
fold_hash(unsigned long hash)1856 static inline unsigned int fold_hash(unsigned long hash)
1857 {
1858 	return hash_64(hash, 32);
1859 }
1860 
1861 #else	/* 32-bit case */
1862 
1863 #define fold_hash(x) (x)
1864 
1865 #endif
1866 
full_name_hash(const unsigned char * name,unsigned int len)1867 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1868 {
1869 	unsigned long a, mask;
1870 	unsigned long hash = 0;
1871 
1872 	for (;;) {
1873 		a = load_unaligned_zeropad(name);
1874 		if (len < sizeof(unsigned long))
1875 			break;
1876 		hash += a;
1877 		hash *= 9;
1878 		name += sizeof(unsigned long);
1879 		len -= sizeof(unsigned long);
1880 		if (!len)
1881 			goto done;
1882 	}
1883 	mask = bytemask_from_count(len);
1884 	hash += mask & a;
1885 done:
1886 	return fold_hash(hash);
1887 }
1888 EXPORT_SYMBOL(full_name_hash);
1889 
1890 /*
1891  * Calculate the length and hash of the path component, and
1892  * return the "hash_len" as the result.
1893  */
hash_name(const char * name)1894 static inline u64 hash_name(const char *name)
1895 {
1896 	unsigned long a, b, adata, bdata, mask, hash, len;
1897 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1898 
1899 	hash = a = 0;
1900 	len = -sizeof(unsigned long);
1901 	do {
1902 		hash = (hash + a) * 9;
1903 		len += sizeof(unsigned long);
1904 		a = load_unaligned_zeropad(name+len);
1905 		b = a ^ REPEAT_BYTE('/');
1906 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1907 
1908 	adata = prep_zero_mask(a, adata, &constants);
1909 	bdata = prep_zero_mask(b, bdata, &constants);
1910 
1911 	mask = create_zero_mask(adata | bdata);
1912 
1913 	hash += a & zero_bytemask(mask);
1914 	len += find_zero(mask);
1915 	return hashlen_create(fold_hash(hash), len);
1916 }
1917 
1918 #else
1919 
full_name_hash(const unsigned char * name,unsigned int len)1920 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1921 {
1922 	unsigned long hash = init_name_hash();
1923 	while (len--)
1924 		hash = partial_name_hash(*name++, hash);
1925 	return end_name_hash(hash);
1926 }
1927 EXPORT_SYMBOL(full_name_hash);
1928 
1929 /*
1930  * We know there's a real path component here of at least
1931  * one character.
1932  */
hash_name(const char * name)1933 static inline u64 hash_name(const char *name)
1934 {
1935 	unsigned long hash = init_name_hash();
1936 	unsigned long len = 0, c;
1937 
1938 	c = (unsigned char)*name;
1939 	do {
1940 		len++;
1941 		hash = partial_name_hash(c, hash);
1942 		c = (unsigned char)name[len];
1943 	} while (c && c != '/');
1944 	return hashlen_create(end_name_hash(hash), len);
1945 }
1946 
1947 #endif
1948 
1949 /*
1950  * Name resolution.
1951  * This is the basic name resolution function, turning a pathname into
1952  * the final dentry. We expect 'base' to be positive and a directory.
1953  *
1954  * Returns 0 and nd will have valid dentry and mnt on success.
1955  * Returns error and drops reference to input namei data on failure.
1956  */
link_path_walk(const char * name,struct nameidata * nd)1957 static int link_path_walk(const char *name, struct nameidata *nd)
1958 {
1959 	int err;
1960 
1961 	while (*name=='/')
1962 		name++;
1963 	if (!*name)
1964 		return 0;
1965 
1966 	/* At this point we know we have a real path component. */
1967 	for(;;) {
1968 		u64 hash_len;
1969 		int type;
1970 
1971 		err = may_lookup(nd);
1972  		if (err)
1973 			return err;
1974 
1975 		hash_len = hash_name(name);
1976 
1977 		type = LAST_NORM;
1978 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1979 			case 2:
1980 				if (name[1] == '.') {
1981 					type = LAST_DOTDOT;
1982 					nd->flags |= LOOKUP_JUMPED;
1983 				}
1984 				break;
1985 			case 1:
1986 				type = LAST_DOT;
1987 		}
1988 		if (likely(type == LAST_NORM)) {
1989 			struct dentry *parent = nd->path.dentry;
1990 			nd->flags &= ~LOOKUP_JUMPED;
1991 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1992 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1993 				err = parent->d_op->d_hash(parent, &this);
1994 				if (err < 0)
1995 					return err;
1996 				hash_len = this.hash_len;
1997 				name = this.name;
1998 			}
1999 		}
2000 
2001 		nd->last.hash_len = hash_len;
2002 		nd->last.name = name;
2003 		nd->last_type = type;
2004 
2005 		name += hashlen_len(hash_len);
2006 		if (!*name)
2007 			goto OK;
2008 		/*
2009 		 * If it wasn't NUL, we know it was '/'. Skip that
2010 		 * slash, and continue until no more slashes.
2011 		 */
2012 		do {
2013 			name++;
2014 		} while (unlikely(*name == '/'));
2015 		if (unlikely(!*name)) {
2016 OK:
2017 			/* pathname body, done */
2018 			if (!nd->depth)
2019 				return 0;
2020 			name = nd->stack[nd->depth - 1].name;
2021 			/* trailing symlink, done */
2022 			if (!name)
2023 				return 0;
2024 			/* last component of nested symlink */
2025 			err = walk_component(nd, WALK_GET | WALK_PUT);
2026 		} else {
2027 			err = walk_component(nd, WALK_GET);
2028 		}
2029 		if (err < 0)
2030 			return err;
2031 
2032 		if (err) {
2033 			const char *s = get_link(nd);
2034 
2035 			if (IS_ERR(s))
2036 				return PTR_ERR(s);
2037 			err = 0;
2038 			if (unlikely(!s)) {
2039 				/* jumped */
2040 				put_link(nd);
2041 			} else {
2042 				nd->stack[nd->depth - 1].name = name;
2043 				name = s;
2044 				continue;
2045 			}
2046 		}
2047 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2048 			if (nd->flags & LOOKUP_RCU) {
2049 				if (unlazy_walk(nd, NULL, 0))
2050 					return -ECHILD;
2051 			}
2052 			return -ENOTDIR;
2053 		}
2054 	}
2055 }
2056 
path_init(struct nameidata * nd,unsigned flags)2057 static const char *path_init(struct nameidata *nd, unsigned flags)
2058 {
2059 	int retval = 0;
2060 	const char *s = nd->name->name;
2061 
2062 	if (!*s)
2063 		flags &= ~LOOKUP_RCU;
2064 
2065 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2066 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2067 	nd->depth = 0;
2068 	if (flags & LOOKUP_ROOT) {
2069 		struct dentry *root = nd->root.dentry;
2070 		struct vfsmount *mnt = nd->root.mnt;
2071 		struct inode *inode = root->d_inode;
2072 		if (*s) {
2073 			if (!d_can_lookup(root))
2074 				return ERR_PTR(-ENOTDIR);
2075 			retval = inode_permission2(mnt, inode, MAY_EXEC);
2076 			if (retval)
2077 				return ERR_PTR(retval);
2078 		}
2079 		nd->path = nd->root;
2080 		nd->inode = inode;
2081 		if (flags & LOOKUP_RCU) {
2082 			rcu_read_lock();
2083 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2084 			nd->root_seq = nd->seq;
2085 			nd->m_seq = read_seqbegin(&mount_lock);
2086 		} else {
2087 			path_get(&nd->path);
2088 		}
2089 		return s;
2090 	}
2091 
2092 	nd->root.mnt = NULL;
2093 
2094 	nd->m_seq = read_seqbegin(&mount_lock);
2095 	if (*s == '/') {
2096 		if (flags & LOOKUP_RCU) {
2097 			rcu_read_lock();
2098 			set_root_rcu(nd);
2099 			nd->seq = nd->root_seq;
2100 		} else {
2101 			set_root(nd);
2102 			path_get(&nd->root);
2103 		}
2104 		nd->path = nd->root;
2105 	} else if (nd->dfd == AT_FDCWD) {
2106 		if (flags & LOOKUP_RCU) {
2107 			struct fs_struct *fs = current->fs;
2108 			unsigned seq;
2109 
2110 			rcu_read_lock();
2111 
2112 			do {
2113 				seq = read_seqcount_begin(&fs->seq);
2114 				nd->path = fs->pwd;
2115 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2116 			} while (read_seqcount_retry(&fs->seq, seq));
2117 		} else {
2118 			get_fs_pwd(current->fs, &nd->path);
2119 		}
2120 	} else {
2121 		/* Caller must check execute permissions on the starting path component */
2122 		struct fd f = fdget_raw(nd->dfd);
2123 		struct dentry *dentry;
2124 
2125 		if (!f.file)
2126 			return ERR_PTR(-EBADF);
2127 
2128 		dentry = f.file->f_path.dentry;
2129 
2130 		if (*s) {
2131 			if (!d_can_lookup(dentry)) {
2132 				fdput(f);
2133 				return ERR_PTR(-ENOTDIR);
2134 			}
2135 		}
2136 
2137 		nd->path = f.file->f_path;
2138 		if (flags & LOOKUP_RCU) {
2139 			rcu_read_lock();
2140 			nd->inode = nd->path.dentry->d_inode;
2141 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2142 		} else {
2143 			path_get(&nd->path);
2144 			nd->inode = nd->path.dentry->d_inode;
2145 		}
2146 		fdput(f);
2147 		return s;
2148 	}
2149 
2150 	nd->inode = nd->path.dentry->d_inode;
2151 	if (!(flags & LOOKUP_RCU))
2152 		return s;
2153 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2154 		return s;
2155 	if (!(nd->flags & LOOKUP_ROOT))
2156 		nd->root.mnt = NULL;
2157 	rcu_read_unlock();
2158 	return ERR_PTR(-ECHILD);
2159 }
2160 
trailing_symlink(struct nameidata * nd)2161 static const char *trailing_symlink(struct nameidata *nd)
2162 {
2163 	const char *s;
2164 	int error = may_follow_link(nd);
2165 	if (unlikely(error))
2166 		return ERR_PTR(error);
2167 	nd->flags |= LOOKUP_PARENT;
2168 	nd->stack[0].name = NULL;
2169 	s = get_link(nd);
2170 	return s ? s : "";
2171 }
2172 
lookup_last(struct nameidata * nd)2173 static inline int lookup_last(struct nameidata *nd)
2174 {
2175 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2176 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2177 
2178 	nd->flags &= ~LOOKUP_PARENT;
2179 	return walk_component(nd,
2180 			nd->flags & LOOKUP_FOLLOW
2181 				? nd->depth
2182 					? WALK_PUT | WALK_GET
2183 					: WALK_GET
2184 				: 0);
2185 }
2186 
2187 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2188 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2189 {
2190 	const char *s = path_init(nd, flags);
2191 	int err;
2192 
2193 	if (IS_ERR(s))
2194 		return PTR_ERR(s);
2195 	while (!(err = link_path_walk(s, nd))
2196 		&& ((err = lookup_last(nd)) > 0)) {
2197 		s = trailing_symlink(nd);
2198 		if (IS_ERR(s)) {
2199 			err = PTR_ERR(s);
2200 			break;
2201 		}
2202 	}
2203 	if (!err)
2204 		err = complete_walk(nd);
2205 
2206 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2207 		if (!d_can_lookup(nd->path.dentry))
2208 			err = -ENOTDIR;
2209 	if (!err) {
2210 		*path = nd->path;
2211 		nd->path.mnt = NULL;
2212 		nd->path.dentry = NULL;
2213 	}
2214 	terminate_walk(nd);
2215 	return err;
2216 }
2217 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2218 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2219 			   struct path *path, struct path *root)
2220 {
2221 	int retval;
2222 	struct nameidata nd;
2223 	if (IS_ERR(name))
2224 		return PTR_ERR(name);
2225 	if (unlikely(root)) {
2226 		nd.root = *root;
2227 		flags |= LOOKUP_ROOT;
2228 	}
2229 	set_nameidata(&nd, dfd, name);
2230 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2231 	if (unlikely(retval == -ECHILD))
2232 		retval = path_lookupat(&nd, flags, path);
2233 	if (unlikely(retval == -ESTALE))
2234 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2235 
2236 	if (likely(!retval))
2237 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2238 	restore_nameidata();
2239 	putname(name);
2240 	return retval;
2241 }
2242 
2243 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2244 static int path_parentat(struct nameidata *nd, unsigned flags,
2245 				struct path *parent)
2246 {
2247 	const char *s = path_init(nd, flags);
2248 	int err;
2249 	if (IS_ERR(s))
2250 		return PTR_ERR(s);
2251 	err = link_path_walk(s, nd);
2252 	if (!err)
2253 		err = complete_walk(nd);
2254 	if (!err) {
2255 		*parent = nd->path;
2256 		nd->path.mnt = NULL;
2257 		nd->path.dentry = NULL;
2258 	}
2259 	terminate_walk(nd);
2260 	return err;
2261 }
2262 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2263 static struct filename *filename_parentat(int dfd, struct filename *name,
2264 				unsigned int flags, struct path *parent,
2265 				struct qstr *last, int *type)
2266 {
2267 	int retval;
2268 	struct nameidata nd;
2269 
2270 	if (IS_ERR(name))
2271 		return name;
2272 	set_nameidata(&nd, dfd, name);
2273 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2274 	if (unlikely(retval == -ECHILD))
2275 		retval = path_parentat(&nd, flags, parent);
2276 	if (unlikely(retval == -ESTALE))
2277 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2278 	if (likely(!retval)) {
2279 		*last = nd.last;
2280 		*type = nd.last_type;
2281 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2282 	} else {
2283 		putname(name);
2284 		name = ERR_PTR(retval);
2285 	}
2286 	restore_nameidata();
2287 	return name;
2288 }
2289 
2290 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2291 struct dentry *kern_path_locked(const char *name, struct path *path)
2292 {
2293 	struct filename *filename;
2294 	struct dentry *d;
2295 	struct qstr last;
2296 	int type;
2297 
2298 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2299 				    &last, &type);
2300 	if (IS_ERR(filename))
2301 		return ERR_CAST(filename);
2302 	if (unlikely(type != LAST_NORM)) {
2303 		path_put(path);
2304 		putname(filename);
2305 		return ERR_PTR(-EINVAL);
2306 	}
2307 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2308 	d = __lookup_hash(&last, path->dentry, 0);
2309 	if (IS_ERR(d)) {
2310 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2311 		path_put(path);
2312 	}
2313 	putname(filename);
2314 	return d;
2315 }
2316 
kern_path(const char * name,unsigned int flags,struct path * path)2317 int kern_path(const char *name, unsigned int flags, struct path *path)
2318 {
2319 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2320 			       flags, path, NULL);
2321 }
2322 EXPORT_SYMBOL(kern_path);
2323 
2324 /**
2325  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2326  * @dentry:  pointer to dentry of the base directory
2327  * @mnt: pointer to vfs mount of the base directory
2328  * @name: pointer to file name
2329  * @flags: lookup flags
2330  * @path: pointer to struct path to fill
2331  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2332 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2333 		    const char *name, unsigned int flags,
2334 		    struct path *path)
2335 {
2336 	struct path root = {.mnt = mnt, .dentry = dentry};
2337 	/* the first argument of filename_lookup() is ignored with root */
2338 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2339 			       flags , path, &root);
2340 }
2341 EXPORT_SYMBOL(vfs_path_lookup);
2342 
2343 /**
2344  * lookup_one_len - filesystem helper to lookup single pathname component
2345  * @name:	pathname component to lookup
2346  * @mnt:	mount we are looking up on
2347  * @base:	base directory to lookup from
2348  * @len:	maximum length @len should be interpreted to
2349  *
2350  * Note that this routine is purely a helper for filesystem usage and should
2351  * not be called by generic code.
2352  */
lookup_one_len2(const char * name,struct vfsmount * mnt,struct dentry * base,int len)2353 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2354 {
2355 	struct qstr this;
2356 	unsigned int c;
2357 	int err;
2358 
2359 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2360 
2361 	this.name = name;
2362 	this.len = len;
2363 	this.hash = full_name_hash(name, len);
2364 	if (!len)
2365 		return ERR_PTR(-EACCES);
2366 
2367 	if (unlikely(name[0] == '.')) {
2368 		if (len < 2 || (len == 2 && name[1] == '.'))
2369 			return ERR_PTR(-EACCES);
2370 	}
2371 
2372 	while (len--) {
2373 		c = *(const unsigned char *)name++;
2374 		if (c == '/' || c == '\0')
2375 			return ERR_PTR(-EACCES);
2376 	}
2377 	/*
2378 	 * See if the low-level filesystem might want
2379 	 * to use its own hash..
2380 	 */
2381 	if (base->d_flags & DCACHE_OP_HASH) {
2382 		int err = base->d_op->d_hash(base, &this);
2383 		if (err < 0)
2384 			return ERR_PTR(err);
2385 	}
2386 
2387 	err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2388 	if (err)
2389 		return ERR_PTR(err);
2390 
2391 	return __lookup_hash(&this, base, 0);
2392 }
2393 EXPORT_SYMBOL(lookup_one_len2);
2394 
lookup_one_len(const char * name,struct dentry * base,int len)2395 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2396 {
2397 	return lookup_one_len2(name, NULL, base, len);
2398 }
2399 EXPORT_SYMBOL(lookup_one_len);
2400 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2401 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2402 		 struct path *path, int *empty)
2403 {
2404 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2405 			       flags, path, NULL);
2406 }
2407 EXPORT_SYMBOL(user_path_at_empty);
2408 
2409 /*
2410  * NB: most callers don't do anything directly with the reference to the
2411  *     to struct filename, but the nd->last pointer points into the name string
2412  *     allocated by getname. So we must hold the reference to it until all
2413  *     path-walking is complete.
2414  */
2415 static inline struct filename *
user_path_parent(int dfd,const char __user * path,struct path * parent,struct qstr * last,int * type,unsigned int flags)2416 user_path_parent(int dfd, const char __user *path,
2417 		 struct path *parent,
2418 		 struct qstr *last,
2419 		 int *type,
2420 		 unsigned int flags)
2421 {
2422 	/* only LOOKUP_REVAL is allowed in extra flags */
2423 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2424 				 parent, last, type);
2425 }
2426 
2427 /**
2428  * mountpoint_last - look up last component for umount
2429  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2430  * @path: pointer to container for result
2431  *
2432  * This is a special lookup_last function just for umount. In this case, we
2433  * need to resolve the path without doing any revalidation.
2434  *
2435  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2436  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2437  * in almost all cases, this lookup will be served out of the dcache. The only
2438  * cases where it won't are if nd->last refers to a symlink or the path is
2439  * bogus and it doesn't exist.
2440  *
2441  * Returns:
2442  * -error: if there was an error during lookup. This includes -ENOENT if the
2443  *         lookup found a negative dentry. The nd->path reference will also be
2444  *         put in this case.
2445  *
2446  * 0:      if we successfully resolved nd->path and found it to not to be a
2447  *         symlink that needs to be followed. "path" will also be populated.
2448  *         The nd->path reference will also be put.
2449  *
2450  * 1:      if we successfully resolved nd->last and found it to be a symlink
2451  *         that needs to be followed. "path" will be populated with the path
2452  *         to the link, and nd->path will *not* be put.
2453  */
2454 static int
mountpoint_last(struct nameidata * nd,struct path * path)2455 mountpoint_last(struct nameidata *nd, struct path *path)
2456 {
2457 	int error = 0;
2458 	struct dentry *dentry;
2459 	struct dentry *dir = nd->path.dentry;
2460 
2461 	/* If we're in rcuwalk, drop out of it to handle last component */
2462 	if (nd->flags & LOOKUP_RCU) {
2463 		if (unlazy_walk(nd, NULL, 0))
2464 			return -ECHILD;
2465 	}
2466 
2467 	nd->flags &= ~LOOKUP_PARENT;
2468 
2469 	if (unlikely(nd->last_type != LAST_NORM)) {
2470 		error = handle_dots(nd, nd->last_type);
2471 		if (error)
2472 			return error;
2473 		dentry = dget(nd->path.dentry);
2474 		goto done;
2475 	}
2476 
2477 	mutex_lock(&dir->d_inode->i_mutex);
2478 	dentry = d_lookup(dir, &nd->last);
2479 	if (!dentry) {
2480 		/*
2481 		 * No cached dentry. Mounted dentries are pinned in the cache,
2482 		 * so that means that this dentry is probably a symlink or the
2483 		 * path doesn't actually point to a mounted dentry.
2484 		 */
2485 		dentry = d_alloc(dir, &nd->last);
2486 		if (!dentry) {
2487 			mutex_unlock(&dir->d_inode->i_mutex);
2488 			return -ENOMEM;
2489 		}
2490 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2491 		if (IS_ERR(dentry)) {
2492 			mutex_unlock(&dir->d_inode->i_mutex);
2493 			return PTR_ERR(dentry);
2494 		}
2495 	}
2496 	mutex_unlock(&dir->d_inode->i_mutex);
2497 
2498 done:
2499 	if (d_is_negative(dentry)) {
2500 		dput(dentry);
2501 		return -ENOENT;
2502 	}
2503 	if (nd->depth)
2504 		put_link(nd);
2505 	path->dentry = dentry;
2506 	path->mnt = nd->path.mnt;
2507 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2508 				   d_backing_inode(dentry), 0);
2509 	if (unlikely(error))
2510 		return error;
2511 	mntget(path->mnt);
2512 	follow_mount(path);
2513 	return 0;
2514 }
2515 
2516 /**
2517  * path_mountpoint - look up a path to be umounted
2518  * @nd:		lookup context
2519  * @flags:	lookup flags
2520  * @path:	pointer to container for result
2521  *
2522  * Look up the given name, but don't attempt to revalidate the last component.
2523  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2524  */
2525 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2526 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2527 {
2528 	const char *s = path_init(nd, flags);
2529 	int err;
2530 	if (IS_ERR(s))
2531 		return PTR_ERR(s);
2532 	while (!(err = link_path_walk(s, nd)) &&
2533 		(err = mountpoint_last(nd, path)) > 0) {
2534 		s = trailing_symlink(nd);
2535 		if (IS_ERR(s)) {
2536 			err = PTR_ERR(s);
2537 			break;
2538 		}
2539 	}
2540 	terminate_walk(nd);
2541 	return err;
2542 }
2543 
2544 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2545 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2546 			unsigned int flags)
2547 {
2548 	struct nameidata nd;
2549 	int error;
2550 	if (IS_ERR(name))
2551 		return PTR_ERR(name);
2552 	set_nameidata(&nd, dfd, name);
2553 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2554 	if (unlikely(error == -ECHILD))
2555 		error = path_mountpoint(&nd, flags, path);
2556 	if (unlikely(error == -ESTALE))
2557 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2558 	if (likely(!error))
2559 		audit_inode(name, path->dentry, 0);
2560 	restore_nameidata();
2561 	putname(name);
2562 	return error;
2563 }
2564 
2565 /**
2566  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2567  * @dfd:	directory file descriptor
2568  * @name:	pathname from userland
2569  * @flags:	lookup flags
2570  * @path:	pointer to container to hold result
2571  *
2572  * A umount is a special case for path walking. We're not actually interested
2573  * in the inode in this situation, and ESTALE errors can be a problem. We
2574  * simply want track down the dentry and vfsmount attached at the mountpoint
2575  * and avoid revalidating the last component.
2576  *
2577  * Returns 0 and populates "path" on success.
2578  */
2579 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2580 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2581 			struct path *path)
2582 {
2583 	return filename_mountpoint(dfd, getname(name), path, flags);
2584 }
2585 
2586 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2587 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2588 			unsigned int flags)
2589 {
2590 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2591 }
2592 EXPORT_SYMBOL(kern_path_mountpoint);
2593 
__check_sticky(struct inode * dir,struct inode * inode)2594 int __check_sticky(struct inode *dir, struct inode *inode)
2595 {
2596 	kuid_t fsuid = current_fsuid();
2597 
2598 	if (uid_eq(inode->i_uid, fsuid))
2599 		return 0;
2600 	if (uid_eq(dir->i_uid, fsuid))
2601 		return 0;
2602 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2603 }
2604 EXPORT_SYMBOL(__check_sticky);
2605 
2606 /*
2607  *	Check whether we can remove a link victim from directory dir, check
2608  *  whether the type of victim is right.
2609  *  1. We can't do it if dir is read-only (done in permission())
2610  *  2. We should have write and exec permissions on dir
2611  *  3. We can't remove anything from append-only dir
2612  *  4. We can't do anything with immutable dir (done in permission())
2613  *  5. If the sticky bit on dir is set we should either
2614  *	a. be owner of dir, or
2615  *	b. be owner of victim, or
2616  *	c. have CAP_FOWNER capability
2617  *  6. If the victim is append-only or immutable we can't do antyhing with
2618  *     links pointing to it.
2619  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2620  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2621  *  9. We can't remove a root or mountpoint.
2622  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2623  *     nfs_async_unlink().
2624  */
may_delete(struct vfsmount * mnt,struct inode * dir,struct dentry * victim,bool isdir)2625 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2626 {
2627 	struct inode *inode = d_backing_inode(victim);
2628 	int error;
2629 
2630 	if (d_is_negative(victim))
2631 		return -ENOENT;
2632 	BUG_ON(!inode);
2633 
2634 	BUG_ON(victim->d_parent->d_inode != dir);
2635 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2636 
2637 	error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2638 	if (error)
2639 		return error;
2640 	if (IS_APPEND(dir))
2641 		return -EPERM;
2642 
2643 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2644 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2645 		return -EPERM;
2646 	if (isdir) {
2647 		if (!d_is_dir(victim))
2648 			return -ENOTDIR;
2649 		if (IS_ROOT(victim))
2650 			return -EBUSY;
2651 	} else if (d_is_dir(victim))
2652 		return -EISDIR;
2653 	if (IS_DEADDIR(dir))
2654 		return -ENOENT;
2655 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2656 		return -EBUSY;
2657 	return 0;
2658 }
2659 
2660 /*	Check whether we can create an object with dentry child in directory
2661  *  dir.
2662  *  1. We can't do it if child already exists (open has special treatment for
2663  *     this case, but since we are inlined it's OK)
2664  *  2. We can't do it if dir is read-only (done in permission())
2665  *  3. We should have write and exec permissions on dir
2666  *  4. We can't do it if dir is immutable (done in permission())
2667  */
may_create(struct vfsmount * mnt,struct inode * dir,struct dentry * child)2668 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2669 {
2670 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2671 	if (child->d_inode)
2672 		return -EEXIST;
2673 	if (IS_DEADDIR(dir))
2674 		return -ENOENT;
2675 	return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2676 }
2677 
2678 /*
2679  * p1 and p2 should be directories on the same fs.
2680  */
lock_rename(struct dentry * p1,struct dentry * p2)2681 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2682 {
2683 	struct dentry *p;
2684 
2685 	if (p1 == p2) {
2686 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2687 		return NULL;
2688 	}
2689 
2690 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2691 
2692 	p = d_ancestor(p2, p1);
2693 	if (p) {
2694 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2695 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2696 		return p;
2697 	}
2698 
2699 	p = d_ancestor(p1, p2);
2700 	if (p) {
2701 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2702 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2703 		return p;
2704 	}
2705 
2706 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2707 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2708 	return NULL;
2709 }
2710 EXPORT_SYMBOL(lock_rename);
2711 
unlock_rename(struct dentry * p1,struct dentry * p2)2712 void unlock_rename(struct dentry *p1, struct dentry *p2)
2713 {
2714 	mutex_unlock(&p1->d_inode->i_mutex);
2715 	if (p1 != p2) {
2716 		mutex_unlock(&p2->d_inode->i_mutex);
2717 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2718 	}
2719 }
2720 EXPORT_SYMBOL(unlock_rename);
2721 
vfs_create2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2722 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2723 		umode_t mode, bool want_excl)
2724 {
2725 	int error = may_create(mnt, dir, dentry);
2726 	if (error)
2727 		return error;
2728 
2729 	if (!dir->i_op->create)
2730 		return -EACCES;	/* shouldn't it be ENOSYS? */
2731 	mode &= S_IALLUGO;
2732 	mode |= S_IFREG;
2733 	error = security_inode_create(dir, dentry, mode);
2734 	if (error)
2735 		return error;
2736 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2737 	if (!error)
2738 		fsnotify_create(dir, dentry);
2739 	return error;
2740 }
2741 EXPORT_SYMBOL(vfs_create2);
2742 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2743 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2744 		bool want_excl)
2745 {
2746 	return vfs_create2(NULL, dir, dentry, mode, want_excl);
2747 }
2748 EXPORT_SYMBOL(vfs_create);
2749 
may_open(struct path * path,int acc_mode,int flag)2750 static int may_open(struct path *path, int acc_mode, int flag)
2751 {
2752 	struct dentry *dentry = path->dentry;
2753 	struct vfsmount *mnt = path->mnt;
2754 	struct inode *inode = dentry->d_inode;
2755 	int error;
2756 
2757 	/* O_PATH? */
2758 	if (!acc_mode)
2759 		return 0;
2760 
2761 	if (!inode)
2762 		return -ENOENT;
2763 
2764 	switch (inode->i_mode & S_IFMT) {
2765 	case S_IFLNK:
2766 		return -ELOOP;
2767 	case S_IFDIR:
2768 		if (acc_mode & MAY_WRITE)
2769 			return -EISDIR;
2770 		break;
2771 	case S_IFBLK:
2772 	case S_IFCHR:
2773 		if (path->mnt->mnt_flags & MNT_NODEV)
2774 			return -EACCES;
2775 		/*FALLTHRU*/
2776 	case S_IFIFO:
2777 	case S_IFSOCK:
2778 		flag &= ~O_TRUNC;
2779 		break;
2780 	}
2781 
2782 	error = inode_permission2(mnt, inode, acc_mode);
2783 	if (error)
2784 		return error;
2785 
2786 	/*
2787 	 * An append-only file must be opened in append mode for writing.
2788 	 */
2789 	if (IS_APPEND(inode)) {
2790 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2791 			return -EPERM;
2792 		if (flag & O_TRUNC)
2793 			return -EPERM;
2794 	}
2795 
2796 	/* O_NOATIME can only be set by the owner or superuser */
2797 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2798 		return -EPERM;
2799 
2800 	return 0;
2801 }
2802 
handle_truncate(struct file * filp)2803 static int handle_truncate(struct file *filp)
2804 {
2805 	struct path *path = &filp->f_path;
2806 	struct inode *inode = path->dentry->d_inode;
2807 	int error = get_write_access(inode);
2808 	if (error)
2809 		return error;
2810 	/*
2811 	 * Refuse to truncate files with mandatory locks held on them.
2812 	 */
2813 	error = locks_verify_locked(filp);
2814 	if (!error)
2815 		error = security_path_truncate(path);
2816 	if (!error) {
2817 		error = do_truncate2(path->mnt, path->dentry, 0,
2818 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2819 				    filp);
2820 	}
2821 	put_write_access(inode);
2822 	return error;
2823 }
2824 
open_to_namei_flags(int flag)2825 static inline int open_to_namei_flags(int flag)
2826 {
2827 	if ((flag & O_ACCMODE) == 3)
2828 		flag--;
2829 	return flag;
2830 }
2831 
may_o_create(struct path * dir,struct dentry * dentry,umode_t mode)2832 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2833 {
2834 	int error = security_path_mknod(dir, dentry, mode, 0);
2835 	if (error)
2836 		return error;
2837 
2838 	error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2839 	if (error)
2840 		return error;
2841 
2842 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2843 }
2844 
2845 /*
2846  * Attempt to atomically look up, create and open a file from a negative
2847  * dentry.
2848  *
2849  * Returns 0 if successful.  The file will have been created and attached to
2850  * @file by the filesystem calling finish_open().
2851  *
2852  * Returns 1 if the file was looked up only or didn't need creating.  The
2853  * caller will need to perform the open themselves.  @path will have been
2854  * updated to point to the new dentry.  This may be negative.
2855  *
2856  * Returns an error code otherwise.
2857  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,bool got_write,bool need_lookup,int * opened)2858 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2859 			struct path *path, struct file *file,
2860 			const struct open_flags *op,
2861 			bool got_write, bool need_lookup,
2862 			int *opened)
2863 {
2864 	struct inode *dir =  nd->path.dentry->d_inode;
2865 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2866 	umode_t mode;
2867 	int error;
2868 	int acc_mode;
2869 	int create_error = 0;
2870 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2871 	bool excl;
2872 
2873 	BUG_ON(dentry->d_inode);
2874 
2875 	/* Don't create child dentry for a dead directory. */
2876 	if (unlikely(IS_DEADDIR(dir))) {
2877 		error = -ENOENT;
2878 		goto out;
2879 	}
2880 
2881 	mode = op->mode;
2882 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2883 		mode &= ~current_umask();
2884 
2885 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2886 	if (excl)
2887 		open_flag &= ~O_TRUNC;
2888 
2889 	/*
2890 	 * Checking write permission is tricky, bacuse we don't know if we are
2891 	 * going to actually need it: O_CREAT opens should work as long as the
2892 	 * file exists.  But checking existence breaks atomicity.  The trick is
2893 	 * to check access and if not granted clear O_CREAT from the flags.
2894 	 *
2895 	 * Another problem is returing the "right" error value (e.g. for an
2896 	 * O_EXCL open we want to return EEXIST not EROFS).
2897 	 */
2898 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2899 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2900 		if (!(open_flag & O_CREAT)) {
2901 			/*
2902 			 * No O_CREATE -> atomicity not a requirement -> fall
2903 			 * back to lookup + open
2904 			 */
2905 			goto no_open;
2906 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2907 			/* Fall back and fail with the right error */
2908 			create_error = -EROFS;
2909 			goto no_open;
2910 		} else {
2911 			/* No side effects, safe to clear O_CREAT */
2912 			create_error = -EROFS;
2913 			open_flag &= ~O_CREAT;
2914 		}
2915 	}
2916 
2917 	if (open_flag & O_CREAT) {
2918 		error = may_o_create(&nd->path, dentry, mode);
2919 		if (error) {
2920 			create_error = error;
2921 			if (open_flag & O_EXCL)
2922 				goto no_open;
2923 			open_flag &= ~O_CREAT;
2924 		}
2925 	}
2926 
2927 	if (nd->flags & LOOKUP_DIRECTORY)
2928 		open_flag |= O_DIRECTORY;
2929 
2930 	file->f_path.dentry = DENTRY_NOT_SET;
2931 	file->f_path.mnt = nd->path.mnt;
2932 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2933 				      opened);
2934 	if (error < 0) {
2935 		if (create_error && error == -ENOENT)
2936 			error = create_error;
2937 		goto out;
2938 	}
2939 
2940 	if (error) {	/* returned 1, that is */
2941 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2942 			error = -EIO;
2943 			goto out;
2944 		}
2945 		if (file->f_path.dentry) {
2946 			dput(dentry);
2947 			dentry = file->f_path.dentry;
2948 		}
2949 		if (*opened & FILE_CREATED)
2950 			fsnotify_create(dir, dentry);
2951 		if (!dentry->d_inode) {
2952 			WARN_ON(*opened & FILE_CREATED);
2953 			if (create_error) {
2954 				error = create_error;
2955 				goto out;
2956 			}
2957 		} else {
2958 			if (excl && !(*opened & FILE_CREATED)) {
2959 				error = -EEXIST;
2960 				goto out;
2961 			}
2962 		}
2963 		goto looked_up;
2964 	}
2965 
2966 	/*
2967 	 * We didn't have the inode before the open, so check open permission
2968 	 * here.
2969 	 */
2970 	acc_mode = op->acc_mode;
2971 	if (*opened & FILE_CREATED) {
2972 		WARN_ON(!(open_flag & O_CREAT));
2973 		fsnotify_create(dir, dentry);
2974 		acc_mode = MAY_OPEN;
2975 	}
2976 	error = may_open(&file->f_path, acc_mode, open_flag);
2977 	if (error)
2978 		fput(file);
2979 
2980 out:
2981 	dput(dentry);
2982 	return error;
2983 
2984 no_open:
2985 	if (need_lookup) {
2986 		dentry = lookup_real(dir, dentry, nd->flags);
2987 		if (IS_ERR(dentry))
2988 			return PTR_ERR(dentry);
2989 	}
2990 	if (create_error && !dentry->d_inode) {
2991 		error = create_error;
2992 		goto out;
2993 	}
2994 looked_up:
2995 	path->dentry = dentry;
2996 	path->mnt = nd->path.mnt;
2997 	return 1;
2998 }
2999 
3000 /*
3001  * Look up and maybe create and open the last component.
3002  *
3003  * Must be called with i_mutex held on parent.
3004  *
3005  * Returns 0 if the file was successfully atomically created (if necessary) and
3006  * opened.  In this case the file will be returned attached to @file.
3007  *
3008  * Returns 1 if the file was not completely opened at this time, though lookups
3009  * and creations will have been performed and the dentry returned in @path will
3010  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3011  * specified then a negative dentry may be returned.
3012  *
3013  * An error code is returned otherwise.
3014  *
3015  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3016  * cleared otherwise prior to returning.
3017  */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write,int * opened)3018 static int lookup_open(struct nameidata *nd, struct path *path,
3019 			struct file *file,
3020 			const struct open_flags *op,
3021 			bool got_write, int *opened)
3022 {
3023 	struct dentry *dir = nd->path.dentry;
3024 	struct vfsmount *mnt = nd->path.mnt;
3025 	struct inode *dir_inode = dir->d_inode;
3026 	struct dentry *dentry;
3027 	int error;
3028 	bool need_lookup;
3029 
3030 	*opened &= ~FILE_CREATED;
3031 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
3032 	if (IS_ERR(dentry))
3033 		return PTR_ERR(dentry);
3034 
3035 	/* Cached positive dentry: will open in f_op->open */
3036 	if (!need_lookup && dentry->d_inode)
3037 		goto out_no_open;
3038 
3039 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3040 		return atomic_open(nd, dentry, path, file, op, got_write,
3041 				   need_lookup, opened);
3042 	}
3043 
3044 	if (need_lookup) {
3045 		BUG_ON(dentry->d_inode);
3046 
3047 		dentry = lookup_real(dir_inode, dentry, nd->flags);
3048 		if (IS_ERR(dentry))
3049 			return PTR_ERR(dentry);
3050 	}
3051 
3052 	/* Negative dentry, just create the file */
3053 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3054 		umode_t mode = op->mode;
3055 		if (!IS_POSIXACL(dir->d_inode))
3056 			mode &= ~current_umask();
3057 		/*
3058 		 * This write is needed to ensure that a
3059 		 * rw->ro transition does not occur between
3060 		 * the time when the file is created and when
3061 		 * a permanent write count is taken through
3062 		 * the 'struct file' in finish_open().
3063 		 */
3064 		if (!got_write) {
3065 			error = -EROFS;
3066 			goto out_dput;
3067 		}
3068 		*opened |= FILE_CREATED;
3069 		error = security_path_mknod(&nd->path, dentry, mode, 0);
3070 		if (error)
3071 			goto out_dput;
3072 		error = vfs_create2(mnt, dir->d_inode, dentry, mode,
3073 				   nd->flags & LOOKUP_EXCL);
3074 		if (error)
3075 			goto out_dput;
3076 	}
3077 out_no_open:
3078 	path->dentry = dentry;
3079 	path->mnt = nd->path.mnt;
3080 	return 1;
3081 
3082 out_dput:
3083 	dput(dentry);
3084 	return error;
3085 }
3086 
3087 /*
3088  * Handle the last step of open()
3089  */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op,int * opened)3090 static int do_last(struct nameidata *nd,
3091 		   struct file *file, const struct open_flags *op,
3092 		   int *opened)
3093 {
3094 	struct dentry *dir = nd->path.dentry;
3095 	kuid_t dir_uid = nd->inode->i_uid;
3096 	umode_t dir_mode = nd->inode->i_mode;
3097 	int open_flag = op->open_flag;
3098 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3099 	bool got_write = false;
3100 	int acc_mode = op->acc_mode;
3101 	unsigned seq;
3102 	struct inode *inode;
3103 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3104 	struct path path;
3105 	bool retried = false;
3106 	int error;
3107 
3108 	nd->flags &= ~LOOKUP_PARENT;
3109 	nd->flags |= op->intent;
3110 
3111 	if (nd->last_type != LAST_NORM) {
3112 		error = handle_dots(nd, nd->last_type);
3113 		if (unlikely(error))
3114 			return error;
3115 		goto finish_open;
3116 	}
3117 
3118 	if (!(open_flag & O_CREAT)) {
3119 		if (nd->last.name[nd->last.len])
3120 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3121 		/* we _can_ be in RCU mode here */
3122 		error = lookup_fast(nd, &path, &inode, &seq);
3123 		if (likely(!error))
3124 			goto finish_lookup;
3125 
3126 		if (error < 0)
3127 			return error;
3128 
3129 		BUG_ON(nd->inode != dir->d_inode);
3130 	} else {
3131 		/* create side of things */
3132 		/*
3133 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3134 		 * has been cleared when we got to the last component we are
3135 		 * about to look up
3136 		 */
3137 		error = complete_walk(nd);
3138 		if (error)
3139 			return error;
3140 
3141 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3142 		/* trailing slashes? */
3143 		if (unlikely(nd->last.name[nd->last.len]))
3144 			return -EISDIR;
3145 	}
3146 
3147 retry_lookup:
3148 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3149 		error = mnt_want_write(nd->path.mnt);
3150 		if (!error)
3151 			got_write = true;
3152 		/*
3153 		 * do _not_ fail yet - we might not need that or fail with
3154 		 * a different error; let lookup_open() decide; we'll be
3155 		 * dropping this one anyway.
3156 		 */
3157 	}
3158 	mutex_lock(&dir->d_inode->i_mutex);
3159 	error = lookup_open(nd, &path, file, op, got_write, opened);
3160 	mutex_unlock(&dir->d_inode->i_mutex);
3161 
3162 	if (error <= 0) {
3163 		if (error)
3164 			goto out;
3165 
3166 		if ((*opened & FILE_CREATED) ||
3167 		    !S_ISREG(file_inode(file)->i_mode))
3168 			will_truncate = false;
3169 
3170 		audit_inode(nd->name, file->f_path.dentry, 0);
3171 		goto opened;
3172 	}
3173 
3174 	if (*opened & FILE_CREATED) {
3175 		/* Don't check for write permission, don't truncate */
3176 		open_flag &= ~O_TRUNC;
3177 		will_truncate = false;
3178 		acc_mode = MAY_OPEN;
3179 		path_to_nameidata(&path, nd);
3180 		goto finish_open_created;
3181 	}
3182 
3183 	/*
3184 	 * create/update audit record if it already exists.
3185 	 */
3186 	if (d_is_positive(path.dentry))
3187 		audit_inode(nd->name, path.dentry, 0);
3188 
3189 	/*
3190 	 * If atomic_open() acquired write access it is dropped now due to
3191 	 * possible mount and symlink following (this might be optimized away if
3192 	 * necessary...)
3193 	 */
3194 	if (got_write) {
3195 		mnt_drop_write(nd->path.mnt);
3196 		got_write = false;
3197 	}
3198 
3199 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3200 		path_to_nameidata(&path, nd);
3201 		return -EEXIST;
3202 	}
3203 
3204 	error = follow_managed(&path, nd);
3205 	if (unlikely(error < 0))
3206 		return error;
3207 
3208 	BUG_ON(nd->flags & LOOKUP_RCU);
3209 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3210 	if (unlikely(d_is_negative(path.dentry))) {
3211 		path_to_nameidata(&path, nd);
3212 		return -ENOENT;
3213 	}
3214 	inode = d_backing_inode(path.dentry);
3215 finish_lookup:
3216 	if (nd->depth)
3217 		put_link(nd);
3218 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3219 				   inode, seq);
3220 	if (unlikely(error))
3221 		return error;
3222 
3223 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3224 		path_to_nameidata(&path, nd);
3225 	} else {
3226 		save_parent.dentry = nd->path.dentry;
3227 		save_parent.mnt = mntget(path.mnt);
3228 		nd->path.dentry = path.dentry;
3229 
3230 	}
3231 	nd->inode = inode;
3232 	nd->seq = seq;
3233 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3234 finish_open:
3235 	error = complete_walk(nd);
3236 	if (error) {
3237 		path_put(&save_parent);
3238 		return error;
3239 	}
3240 	audit_inode(nd->name, nd->path.dentry, 0);
3241 	if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3242 		error = -ELOOP;
3243 		goto out;
3244 	}
3245 	if (open_flag & O_CREAT) {
3246 		error = -EISDIR;
3247 		if (d_is_dir(nd->path.dentry))
3248 			goto out;
3249 		error = may_create_in_sticky(dir_mode, dir_uid,
3250 					     d_backing_inode(nd->path.dentry));
3251 		if (unlikely(error))
3252 			goto out;
3253 	}
3254 	error = -ENOTDIR;
3255 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3256 		goto out;
3257 	if (!d_is_reg(nd->path.dentry))
3258 		will_truncate = false;
3259 
3260 	if (will_truncate) {
3261 		error = mnt_want_write(nd->path.mnt);
3262 		if (error)
3263 			goto out;
3264 		got_write = true;
3265 	}
3266 finish_open_created:
3267 	error = may_open(&nd->path, acc_mode, open_flag);
3268 	if (error)
3269 		goto out;
3270 
3271 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3272 	error = vfs_open(&nd->path, file, current_cred());
3273 	if (!error) {
3274 		*opened |= FILE_OPENED;
3275 	} else {
3276 		if (error == -EOPENSTALE)
3277 			goto stale_open;
3278 		goto out;
3279 	}
3280 opened:
3281 	error = open_check_o_direct(file);
3282 	if (error)
3283 		goto exit_fput;
3284 	error = ima_file_check(file, op->acc_mode, *opened);
3285 	if (error)
3286 		goto exit_fput;
3287 
3288 	if (will_truncate) {
3289 		error = handle_truncate(file);
3290 		if (error)
3291 			goto exit_fput;
3292 	}
3293 out:
3294 	if (unlikely(error > 0)) {
3295 		WARN_ON(1);
3296 		error = -EINVAL;
3297 	}
3298 	if (got_write)
3299 		mnt_drop_write(nd->path.mnt);
3300 	path_put(&save_parent);
3301 	return error;
3302 
3303 exit_fput:
3304 	fput(file);
3305 	goto out;
3306 
3307 stale_open:
3308 	/* If no saved parent or already retried then can't retry */
3309 	if (!save_parent.dentry || retried)
3310 		goto out;
3311 
3312 	BUG_ON(save_parent.dentry != dir);
3313 	path_put(&nd->path);
3314 	nd->path = save_parent;
3315 	nd->inode = dir->d_inode;
3316 	save_parent.mnt = NULL;
3317 	save_parent.dentry = NULL;
3318 	if (got_write) {
3319 		mnt_drop_write(nd->path.mnt);
3320 		got_write = false;
3321 	}
3322 	retried = true;
3323 	goto retry_lookup;
3324 }
3325 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file,int * opened)3326 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3327 		const struct open_flags *op,
3328 		struct file *file, int *opened)
3329 {
3330 	static const struct qstr name = QSTR_INIT("/", 1);
3331 	struct dentry *child;
3332 	struct inode *dir;
3333 	struct path path;
3334 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3335 	if (unlikely(error))
3336 		return error;
3337 	error = mnt_want_write(path.mnt);
3338 	if (unlikely(error))
3339 		goto out;
3340 	dir = path.dentry->d_inode;
3341 	/* we want directory to be writable */
3342 	error = inode_permission2(path.mnt, dir, MAY_WRITE | MAY_EXEC);
3343 	if (error)
3344 		goto out2;
3345 	if (!dir->i_op->tmpfile) {
3346 		error = -EOPNOTSUPP;
3347 		goto out2;
3348 	}
3349 	child = d_alloc(path.dentry, &name);
3350 	if (unlikely(!child)) {
3351 		error = -ENOMEM;
3352 		goto out2;
3353 	}
3354 	dput(path.dentry);
3355 	path.dentry = child;
3356 	error = dir->i_op->tmpfile(dir, child, op->mode);
3357 	if (error)
3358 		goto out2;
3359 	audit_inode(nd->name, child, 0);
3360 	/* Don't check for other permissions, the inode was just created */
3361 	error = may_open(&path, MAY_OPEN, op->open_flag);
3362 	if (error)
3363 		goto out2;
3364 	file->f_path.mnt = path.mnt;
3365 	error = finish_open(file, child, NULL, opened);
3366 	if (error)
3367 		goto out2;
3368 	error = open_check_o_direct(file);
3369 	if (error) {
3370 		fput(file);
3371 	} else if (!(op->open_flag & O_EXCL)) {
3372 		struct inode *inode = file_inode(file);
3373 		spin_lock(&inode->i_lock);
3374 		inode->i_state |= I_LINKABLE;
3375 		spin_unlock(&inode->i_lock);
3376 	}
3377 out2:
3378 	mnt_drop_write(path.mnt);
3379 out:
3380 	path_put(&path);
3381 	return error;
3382 }
3383 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3384 static struct file *path_openat(struct nameidata *nd,
3385 			const struct open_flags *op, unsigned flags)
3386 {
3387 	const char *s;
3388 	struct file *file;
3389 	int opened = 0;
3390 	int error;
3391 
3392 	file = get_empty_filp();
3393 	if (IS_ERR(file))
3394 		return file;
3395 
3396 	file->f_flags = op->open_flag;
3397 
3398 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3399 		error = do_tmpfile(nd, flags, op, file, &opened);
3400 		goto out2;
3401 	}
3402 
3403 	s = path_init(nd, flags);
3404 	if (IS_ERR(s)) {
3405 		put_filp(file);
3406 		return ERR_CAST(s);
3407 	}
3408 	while (!(error = link_path_walk(s, nd)) &&
3409 		(error = do_last(nd, file, op, &opened)) > 0) {
3410 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3411 		s = trailing_symlink(nd);
3412 		if (IS_ERR(s)) {
3413 			error = PTR_ERR(s);
3414 			break;
3415 		}
3416 	}
3417 	terminate_walk(nd);
3418 out2:
3419 	if (!(opened & FILE_OPENED)) {
3420 		BUG_ON(!error);
3421 		put_filp(file);
3422 	}
3423 	if (unlikely(error)) {
3424 		if (error == -EOPENSTALE) {
3425 			if (flags & LOOKUP_RCU)
3426 				error = -ECHILD;
3427 			else
3428 				error = -ESTALE;
3429 		}
3430 		file = ERR_PTR(error);
3431 	}
3432 	return file;
3433 }
3434 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3435 struct file *do_filp_open(int dfd, struct filename *pathname,
3436 		const struct open_flags *op)
3437 {
3438 	struct nameidata nd;
3439 	int flags = op->lookup_flags;
3440 	struct file *filp;
3441 
3442 	set_nameidata(&nd, dfd, pathname);
3443 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3444 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3445 		filp = path_openat(&nd, op, flags);
3446 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3447 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3448 	restore_nameidata();
3449 	return filp;
3450 }
3451 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3452 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3453 		const char *name, const struct open_flags *op)
3454 {
3455 	struct nameidata nd;
3456 	struct file *file;
3457 	struct filename *filename;
3458 	int flags = op->lookup_flags | LOOKUP_ROOT;
3459 
3460 	nd.root.mnt = mnt;
3461 	nd.root.dentry = dentry;
3462 
3463 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3464 		return ERR_PTR(-ELOOP);
3465 
3466 	filename = getname_kernel(name);
3467 	if (IS_ERR(filename))
3468 		return ERR_CAST(filename);
3469 
3470 	set_nameidata(&nd, -1, filename);
3471 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3472 	if (unlikely(file == ERR_PTR(-ECHILD)))
3473 		file = path_openat(&nd, op, flags);
3474 	if (unlikely(file == ERR_PTR(-ESTALE)))
3475 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3476 	restore_nameidata();
3477 	putname(filename);
3478 	return file;
3479 }
3480 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3481 static struct dentry *filename_create(int dfd, struct filename *name,
3482 				struct path *path, unsigned int lookup_flags)
3483 {
3484 	struct dentry *dentry = ERR_PTR(-EEXIST);
3485 	struct qstr last;
3486 	int type;
3487 	int err2;
3488 	int error;
3489 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3490 
3491 	/*
3492 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3493 	 * other flags passed in are ignored!
3494 	 */
3495 	lookup_flags &= LOOKUP_REVAL;
3496 
3497 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3498 	if (IS_ERR(name))
3499 		return ERR_CAST(name);
3500 
3501 	/*
3502 	 * Yucky last component or no last component at all?
3503 	 * (foo/., foo/.., /////)
3504 	 */
3505 	if (unlikely(type != LAST_NORM))
3506 		goto out;
3507 
3508 	/* don't fail immediately if it's r/o, at least try to report other errors */
3509 	err2 = mnt_want_write(path->mnt);
3510 	/*
3511 	 * Do the final lookup.
3512 	 */
3513 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3514 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3515 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3516 	if (IS_ERR(dentry))
3517 		goto unlock;
3518 
3519 	error = -EEXIST;
3520 	if (d_is_positive(dentry))
3521 		goto fail;
3522 
3523 	/*
3524 	 * Special case - lookup gave negative, but... we had foo/bar/
3525 	 * From the vfs_mknod() POV we just have a negative dentry -
3526 	 * all is fine. Let's be bastards - you had / on the end, you've
3527 	 * been asking for (non-existent) directory. -ENOENT for you.
3528 	 */
3529 	if (unlikely(!is_dir && last.name[last.len])) {
3530 		error = -ENOENT;
3531 		goto fail;
3532 	}
3533 	if (unlikely(err2)) {
3534 		error = err2;
3535 		goto fail;
3536 	}
3537 	putname(name);
3538 	return dentry;
3539 fail:
3540 	dput(dentry);
3541 	dentry = ERR_PTR(error);
3542 unlock:
3543 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3544 	if (!err2)
3545 		mnt_drop_write(path->mnt);
3546 out:
3547 	path_put(path);
3548 	putname(name);
3549 	return dentry;
3550 }
3551 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3552 struct dentry *kern_path_create(int dfd, const char *pathname,
3553 				struct path *path, unsigned int lookup_flags)
3554 {
3555 	return filename_create(dfd, getname_kernel(pathname),
3556 				path, lookup_flags);
3557 }
3558 EXPORT_SYMBOL(kern_path_create);
3559 
done_path_create(struct path * path,struct dentry * dentry)3560 void done_path_create(struct path *path, struct dentry *dentry)
3561 {
3562 	dput(dentry);
3563 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3564 	mnt_drop_write(path->mnt);
3565 	path_put(path);
3566 }
3567 EXPORT_SYMBOL(done_path_create);
3568 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3569 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3570 				struct path *path, unsigned int lookup_flags)
3571 {
3572 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3573 }
3574 EXPORT_SYMBOL(user_path_create);
3575 
vfs_mknod2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3576 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3577 {
3578 	int error = may_create(mnt, dir, dentry);
3579 
3580 	if (error)
3581 		return error;
3582 
3583 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3584 		return -EPERM;
3585 
3586 	if (!dir->i_op->mknod)
3587 		return -EPERM;
3588 
3589 	error = devcgroup_inode_mknod(mode, dev);
3590 	if (error)
3591 		return error;
3592 
3593 	error = security_inode_mknod(dir, dentry, mode, dev);
3594 	if (error)
3595 		return error;
3596 
3597 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3598 	if (!error)
3599 		fsnotify_create(dir, dentry);
3600 	return error;
3601 }
3602 EXPORT_SYMBOL(vfs_mknod2);
3603 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3604 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3605 {
3606 	return vfs_mknod2(NULL, dir, dentry, mode, dev);
3607 }
3608 EXPORT_SYMBOL(vfs_mknod);
3609 
may_mknod(umode_t mode)3610 static int may_mknod(umode_t mode)
3611 {
3612 	switch (mode & S_IFMT) {
3613 	case S_IFREG:
3614 	case S_IFCHR:
3615 	case S_IFBLK:
3616 	case S_IFIFO:
3617 	case S_IFSOCK:
3618 	case 0: /* zero mode translates to S_IFREG */
3619 		return 0;
3620 	case S_IFDIR:
3621 		return -EPERM;
3622 	default:
3623 		return -EINVAL;
3624 	}
3625 }
3626 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)3627 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3628 		unsigned, dev)
3629 {
3630 	struct dentry *dentry;
3631 	struct path path;
3632 	int error;
3633 	unsigned int lookup_flags = 0;
3634 
3635 	error = may_mknod(mode);
3636 	if (error)
3637 		return error;
3638 retry:
3639 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3640 	if (IS_ERR(dentry))
3641 		return PTR_ERR(dentry);
3642 
3643 	if (!IS_POSIXACL(path.dentry->d_inode))
3644 		mode &= ~current_umask();
3645 	error = security_path_mknod(&path, dentry, mode, dev);
3646 	if (error)
3647 		goto out;
3648 	switch (mode & S_IFMT) {
3649 		case 0: case S_IFREG:
3650 			error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3651 			break;
3652 		case S_IFCHR: case S_IFBLK:
3653 			error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3654 					new_decode_dev(dev));
3655 			break;
3656 		case S_IFIFO: case S_IFSOCK:
3657 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3658 			break;
3659 	}
3660 out:
3661 	done_path_create(&path, dentry);
3662 	if (retry_estale(error, lookup_flags)) {
3663 		lookup_flags |= LOOKUP_REVAL;
3664 		goto retry;
3665 	}
3666 	return error;
3667 }
3668 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3669 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3670 {
3671 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3672 }
3673 
vfs_mkdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode)3674 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3675 {
3676 	int error = may_create(mnt, dir, dentry);
3677 	unsigned max_links = dir->i_sb->s_max_links;
3678 
3679 	if (error)
3680 		return error;
3681 
3682 	if (!dir->i_op->mkdir)
3683 		return -EPERM;
3684 
3685 	mode &= (S_IRWXUGO|S_ISVTX);
3686 	error = security_inode_mkdir(dir, dentry, mode);
3687 	if (error)
3688 		return error;
3689 
3690 	if (max_links && dir->i_nlink >= max_links)
3691 		return -EMLINK;
3692 
3693 	error = dir->i_op->mkdir(dir, dentry, mode);
3694 	if (!error)
3695 		fsnotify_mkdir(dir, dentry);
3696 	return error;
3697 }
3698 EXPORT_SYMBOL(vfs_mkdir2);
3699 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3700 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3701 {
3702 	return vfs_mkdir2(NULL, dir, dentry, mode);
3703 }
3704 EXPORT_SYMBOL(vfs_mkdir);
3705 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3706 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3707 {
3708 	struct dentry *dentry;
3709 	struct path path;
3710 	int error;
3711 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3712 
3713 retry:
3714 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3715 	if (IS_ERR(dentry))
3716 		return PTR_ERR(dentry);
3717 
3718 	if (!IS_POSIXACL(path.dentry->d_inode))
3719 		mode &= ~current_umask();
3720 	error = security_path_mkdir(&path, dentry, mode);
3721 	if (!error)
3722 		error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3723 	done_path_create(&path, dentry);
3724 	if (retry_estale(error, lookup_flags)) {
3725 		lookup_flags |= LOOKUP_REVAL;
3726 		goto retry;
3727 	}
3728 	return error;
3729 }
3730 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3731 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3732 {
3733 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3734 }
3735 
3736 /*
3737  * The dentry_unhash() helper will try to drop the dentry early: we
3738  * should have a usage count of 1 if we're the only user of this
3739  * dentry, and if that is true (possibly after pruning the dcache),
3740  * then we drop the dentry now.
3741  *
3742  * A low-level filesystem can, if it choses, legally
3743  * do a
3744  *
3745  *	if (!d_unhashed(dentry))
3746  *		return -EBUSY;
3747  *
3748  * if it cannot handle the case of removing a directory
3749  * that is still in use by something else..
3750  */
dentry_unhash(struct dentry * dentry)3751 void dentry_unhash(struct dentry *dentry)
3752 {
3753 	shrink_dcache_parent(dentry);
3754 	spin_lock(&dentry->d_lock);
3755 	if (dentry->d_lockref.count == 1)
3756 		__d_drop(dentry);
3757 	spin_unlock(&dentry->d_lock);
3758 }
3759 EXPORT_SYMBOL(dentry_unhash);
3760 
vfs_rmdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3761 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3762 {
3763 	int error = may_delete(mnt, dir, dentry, 1);
3764 
3765 	if (error)
3766 		return error;
3767 
3768 	if (!dir->i_op->rmdir)
3769 		return -EPERM;
3770 
3771 	dget(dentry);
3772 	mutex_lock(&dentry->d_inode->i_mutex);
3773 
3774 	error = -EBUSY;
3775 	if (is_local_mountpoint(dentry))
3776 		goto out;
3777 
3778 	error = security_inode_rmdir(dir, dentry);
3779 	if (error)
3780 		goto out;
3781 
3782 	shrink_dcache_parent(dentry);
3783 	error = dir->i_op->rmdir(dir, dentry);
3784 	if (error)
3785 		goto out;
3786 
3787 	dentry->d_inode->i_flags |= S_DEAD;
3788 	dont_mount(dentry);
3789 	detach_mounts(dentry);
3790 
3791 out:
3792 	mutex_unlock(&dentry->d_inode->i_mutex);
3793 	dput(dentry);
3794 	if (!error)
3795 		d_delete(dentry);
3796 	return error;
3797 }
3798 EXPORT_SYMBOL(vfs_rmdir2);
3799 
vfs_rmdir(struct inode * dir,struct dentry * dentry)3800 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3801 {
3802 	return vfs_rmdir2(NULL, dir, dentry);
3803 }
3804 EXPORT_SYMBOL(vfs_rmdir);
3805 
do_rmdir(int dfd,const char __user * pathname)3806 static long do_rmdir(int dfd, const char __user *pathname)
3807 {
3808 	int error = 0;
3809 	struct filename *name;
3810 	struct dentry *dentry;
3811 	struct path path;
3812 	struct qstr last;
3813 	int type;
3814 	unsigned int lookup_flags = 0;
3815 retry:
3816 	name = user_path_parent(dfd, pathname,
3817 				&path, &last, &type, lookup_flags);
3818 	if (IS_ERR(name))
3819 		return PTR_ERR(name);
3820 
3821 	switch (type) {
3822 	case LAST_DOTDOT:
3823 		error = -ENOTEMPTY;
3824 		goto exit1;
3825 	case LAST_DOT:
3826 		error = -EINVAL;
3827 		goto exit1;
3828 	case LAST_ROOT:
3829 		error = -EBUSY;
3830 		goto exit1;
3831 	}
3832 
3833 	error = mnt_want_write(path.mnt);
3834 	if (error)
3835 		goto exit1;
3836 
3837 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3838 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3839 	error = PTR_ERR(dentry);
3840 	if (IS_ERR(dentry))
3841 		goto exit2;
3842 	if (!dentry->d_inode) {
3843 		error = -ENOENT;
3844 		goto exit3;
3845 	}
3846 	error = security_path_rmdir(&path, dentry);
3847 	if (error)
3848 		goto exit3;
3849 	error = vfs_rmdir2(path.mnt, path.dentry->d_inode, dentry);
3850 exit3:
3851 	dput(dentry);
3852 exit2:
3853 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3854 	mnt_drop_write(path.mnt);
3855 exit1:
3856 	path_put(&path);
3857 	putname(name);
3858 	if (retry_estale(error, lookup_flags)) {
3859 		lookup_flags |= LOOKUP_REVAL;
3860 		goto retry;
3861 	}
3862 	return error;
3863 }
3864 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3865 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3866 {
3867 	return do_rmdir(AT_FDCWD, pathname);
3868 }
3869 
3870 /**
3871  * vfs_unlink - unlink a filesystem object
3872  * @dir:	parent directory
3873  * @dentry:	victim
3874  * @delegated_inode: returns victim inode, if the inode is delegated.
3875  *
3876  * The caller must hold dir->i_mutex.
3877  *
3878  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3879  * return a reference to the inode in delegated_inode.  The caller
3880  * should then break the delegation on that inode and retry.  Because
3881  * breaking a delegation may take a long time, the caller should drop
3882  * dir->i_mutex before doing so.
3883  *
3884  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3885  * be appropriate for callers that expect the underlying filesystem not
3886  * to be NFS exported.
3887  */
vfs_unlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3888 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3889 {
3890 	struct inode *target = dentry->d_inode;
3891 	int error = may_delete(mnt, dir, dentry, 0);
3892 
3893 	if (error)
3894 		return error;
3895 
3896 	if (!dir->i_op->unlink)
3897 		return -EPERM;
3898 
3899 	mutex_lock(&target->i_mutex);
3900 	if (is_local_mountpoint(dentry))
3901 		error = -EBUSY;
3902 	else {
3903 		error = security_inode_unlink(dir, dentry);
3904 		if (!error) {
3905 			error = try_break_deleg(target, delegated_inode);
3906 			if (error)
3907 				goto out;
3908 			error = dir->i_op->unlink(dir, dentry);
3909 			if (!error) {
3910 				dont_mount(dentry);
3911 				detach_mounts(dentry);
3912 			}
3913 		}
3914 	}
3915 out:
3916 	mutex_unlock(&target->i_mutex);
3917 
3918 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3919 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3920 		fsnotify_link_count(target);
3921 		d_delete(dentry);
3922 	}
3923 
3924 	return error;
3925 }
3926 EXPORT_SYMBOL(vfs_unlink2);
3927 
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3928 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3929 {
3930 	return vfs_unlink2(NULL, dir, dentry, delegated_inode);
3931 }
3932 EXPORT_SYMBOL(vfs_unlink);
3933 
3934 /*
3935  * Make sure that the actual truncation of the file will occur outside its
3936  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3937  * writeout happening, and we don't want to prevent access to the directory
3938  * while waiting on the I/O.
3939  */
do_unlinkat(int dfd,const char __user * pathname)3940 static long do_unlinkat(int dfd, const char __user *pathname)
3941 {
3942 	int error;
3943 	struct filename *name;
3944 	struct dentry *dentry;
3945 	struct path path;
3946 	struct qstr last;
3947 	int type;
3948 	struct inode *inode = NULL;
3949 	struct inode *delegated_inode = NULL;
3950 	unsigned int lookup_flags = 0;
3951 retry:
3952 	name = user_path_parent(dfd, pathname,
3953 				&path, &last, &type, lookup_flags);
3954 	if (IS_ERR(name))
3955 		return PTR_ERR(name);
3956 
3957 	error = -EISDIR;
3958 	if (type != LAST_NORM)
3959 		goto exit1;
3960 
3961 	error = mnt_want_write(path.mnt);
3962 	if (error)
3963 		goto exit1;
3964 retry_deleg:
3965 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3966 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3967 	error = PTR_ERR(dentry);
3968 	if (!IS_ERR(dentry)) {
3969 		/* Why not before? Because we want correct error value */
3970 		if (last.name[last.len])
3971 			goto slashes;
3972 		inode = dentry->d_inode;
3973 		if (d_is_negative(dentry))
3974 			goto slashes;
3975 		ihold(inode);
3976 		error = security_path_unlink(&path, dentry);
3977 		if (error)
3978 			goto exit2;
3979 		error = vfs_unlink2(path.mnt, path.dentry->d_inode, dentry, &delegated_inode);
3980 exit2:
3981 		dput(dentry);
3982 	}
3983 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3984 	if (inode)
3985 		iput(inode);	/* truncate the inode here */
3986 	inode = NULL;
3987 	if (delegated_inode) {
3988 		error = break_deleg_wait(&delegated_inode);
3989 		if (!error)
3990 			goto retry_deleg;
3991 	}
3992 	mnt_drop_write(path.mnt);
3993 exit1:
3994 	path_put(&path);
3995 	putname(name);
3996 	if (retry_estale(error, lookup_flags)) {
3997 		lookup_flags |= LOOKUP_REVAL;
3998 		inode = NULL;
3999 		goto retry;
4000 	}
4001 	return error;
4002 
4003 slashes:
4004 	if (d_is_negative(dentry))
4005 		error = -ENOENT;
4006 	else if (d_is_dir(dentry))
4007 		error = -EISDIR;
4008 	else
4009 		error = -ENOTDIR;
4010 	goto exit2;
4011 }
4012 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4013 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4014 {
4015 	if ((flag & ~AT_REMOVEDIR) != 0)
4016 		return -EINVAL;
4017 
4018 	if (flag & AT_REMOVEDIR)
4019 		return do_rmdir(dfd, pathname);
4020 
4021 	return do_unlinkat(dfd, pathname);
4022 }
4023 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4024 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4025 {
4026 	return do_unlinkat(AT_FDCWD, pathname);
4027 }
4028 
vfs_symlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,const char * oldname)4029 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
4030 {
4031 	int error = may_create(mnt, dir, dentry);
4032 
4033 	if (error)
4034 		return error;
4035 
4036 	if (!dir->i_op->symlink)
4037 		return -EPERM;
4038 
4039 	error = security_inode_symlink(dir, dentry, oldname);
4040 	if (error)
4041 		return error;
4042 
4043 	error = dir->i_op->symlink(dir, dentry, oldname);
4044 	if (!error)
4045 		fsnotify_create(dir, dentry);
4046 	return error;
4047 }
4048 EXPORT_SYMBOL(vfs_symlink2);
4049 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4050 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4051 {
4052 	return vfs_symlink2(NULL, dir, dentry, oldname);
4053 }
4054 EXPORT_SYMBOL(vfs_symlink);
4055 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4056 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4057 		int, newdfd, const char __user *, newname)
4058 {
4059 	int error;
4060 	struct filename *from;
4061 	struct dentry *dentry;
4062 	struct path path;
4063 	unsigned int lookup_flags = 0;
4064 
4065 	from = getname(oldname);
4066 	if (IS_ERR(from))
4067 		return PTR_ERR(from);
4068 retry:
4069 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4070 	error = PTR_ERR(dentry);
4071 	if (IS_ERR(dentry))
4072 		goto out_putname;
4073 
4074 	error = security_path_symlink(&path, dentry, from->name);
4075 	if (!error)
4076 		error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
4077 	done_path_create(&path, dentry);
4078 	if (retry_estale(error, lookup_flags)) {
4079 		lookup_flags |= LOOKUP_REVAL;
4080 		goto retry;
4081 	}
4082 out_putname:
4083 	putname(from);
4084 	return error;
4085 }
4086 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4087 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4088 {
4089 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4090 }
4091 
4092 /**
4093  * vfs_link - create a new link
4094  * @old_dentry:	object to be linked
4095  * @dir:	new parent
4096  * @new_dentry:	where to create the new link
4097  * @delegated_inode: returns inode needing a delegation break
4098  *
4099  * The caller must hold dir->i_mutex
4100  *
4101  * If vfs_link discovers a delegation on the to-be-linked file in need
4102  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4103  * inode in delegated_inode.  The caller should then break the delegation
4104  * and retry.  Because breaking a delegation may take a long time, the
4105  * caller should drop the i_mutex before doing so.
4106  *
4107  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4108  * be appropriate for callers that expect the underlying filesystem not
4109  * to be NFS exported.
4110  */
vfs_link2(struct vfsmount * mnt,struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4111 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4112 {
4113 	struct inode *inode = old_dentry->d_inode;
4114 	unsigned max_links = dir->i_sb->s_max_links;
4115 	int error;
4116 
4117 	if (!inode)
4118 		return -ENOENT;
4119 
4120 	error = may_create(mnt, dir, new_dentry);
4121 	if (error)
4122 		return error;
4123 
4124 	if (dir->i_sb != inode->i_sb)
4125 		return -EXDEV;
4126 
4127 	/*
4128 	 * A link to an append-only or immutable file cannot be created.
4129 	 */
4130 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4131 		return -EPERM;
4132 	if (!dir->i_op->link)
4133 		return -EPERM;
4134 	if (S_ISDIR(inode->i_mode))
4135 		return -EPERM;
4136 
4137 	error = security_inode_link(old_dentry, dir, new_dentry);
4138 	if (error)
4139 		return error;
4140 
4141 	mutex_lock(&inode->i_mutex);
4142 	/* Make sure we don't allow creating hardlink to an unlinked file */
4143 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4144 		error =  -ENOENT;
4145 	else if (max_links && inode->i_nlink >= max_links)
4146 		error = -EMLINK;
4147 	else {
4148 		error = try_break_deleg(inode, delegated_inode);
4149 		if (!error)
4150 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4151 	}
4152 
4153 	if (!error && (inode->i_state & I_LINKABLE)) {
4154 		spin_lock(&inode->i_lock);
4155 		inode->i_state &= ~I_LINKABLE;
4156 		spin_unlock(&inode->i_lock);
4157 	}
4158 	mutex_unlock(&inode->i_mutex);
4159 	if (!error)
4160 		fsnotify_link(dir, inode, new_dentry);
4161 	return error;
4162 }
4163 EXPORT_SYMBOL(vfs_link2);
4164 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4165 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4166 {
4167 	return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4168 }
4169 EXPORT_SYMBOL(vfs_link);
4170 
4171 /*
4172  * Hardlinks are often used in delicate situations.  We avoid
4173  * security-related surprises by not following symlinks on the
4174  * newname.  --KAB
4175  *
4176  * We don't follow them on the oldname either to be compatible
4177  * with linux 2.0, and to avoid hard-linking to directories
4178  * and other special files.  --ADM
4179  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4180 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4181 		int, newdfd, const char __user *, newname, int, flags)
4182 {
4183 	struct dentry *new_dentry;
4184 	struct path old_path, new_path;
4185 	struct inode *delegated_inode = NULL;
4186 	int how = 0;
4187 	int error;
4188 
4189 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4190 		return -EINVAL;
4191 	/*
4192 	 * To use null names we require CAP_DAC_READ_SEARCH
4193 	 * This ensures that not everyone will be able to create
4194 	 * handlink using the passed filedescriptor.
4195 	 */
4196 	if (flags & AT_EMPTY_PATH) {
4197 		if (!capable(CAP_DAC_READ_SEARCH))
4198 			return -ENOENT;
4199 		how = LOOKUP_EMPTY;
4200 	}
4201 
4202 	if (flags & AT_SYMLINK_FOLLOW)
4203 		how |= LOOKUP_FOLLOW;
4204 retry:
4205 	error = user_path_at(olddfd, oldname, how, &old_path);
4206 	if (error)
4207 		return error;
4208 
4209 	new_dentry = user_path_create(newdfd, newname, &new_path,
4210 					(how & LOOKUP_REVAL));
4211 	error = PTR_ERR(new_dentry);
4212 	if (IS_ERR(new_dentry))
4213 		goto out;
4214 
4215 	error = -EXDEV;
4216 	if (old_path.mnt != new_path.mnt)
4217 		goto out_dput;
4218 	error = may_linkat(&old_path);
4219 	if (unlikely(error))
4220 		goto out_dput;
4221 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4222 	if (error)
4223 		goto out_dput;
4224 	error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4225 out_dput:
4226 	done_path_create(&new_path, new_dentry);
4227 	if (delegated_inode) {
4228 		error = break_deleg_wait(&delegated_inode);
4229 		if (!error) {
4230 			path_put(&old_path);
4231 			goto retry;
4232 		}
4233 	}
4234 	if (retry_estale(error, how)) {
4235 		path_put(&old_path);
4236 		how |= LOOKUP_REVAL;
4237 		goto retry;
4238 	}
4239 out:
4240 	path_put(&old_path);
4241 
4242 	return error;
4243 }
4244 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4245 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4246 {
4247 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4248 }
4249 
4250 /**
4251  * vfs_rename - rename a filesystem object
4252  * @old_dir:	parent of source
4253  * @old_dentry:	source
4254  * @new_dir:	parent of destination
4255  * @new_dentry:	destination
4256  * @delegated_inode: returns an inode needing a delegation break
4257  * @flags:	rename flags
4258  *
4259  * The caller must hold multiple mutexes--see lock_rename()).
4260  *
4261  * If vfs_rename discovers a delegation in need of breaking at either
4262  * the source or destination, it will return -EWOULDBLOCK and return a
4263  * reference to the inode in delegated_inode.  The caller should then
4264  * break the delegation and retry.  Because breaking a delegation may
4265  * take a long time, the caller should drop all locks before doing
4266  * so.
4267  *
4268  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4269  * be appropriate for callers that expect the underlying filesystem not
4270  * to be NFS exported.
4271  *
4272  * The worst of all namespace operations - renaming directory. "Perverted"
4273  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4274  * Problems:
4275  *	a) we can get into loop creation.
4276  *	b) race potential - two innocent renames can create a loop together.
4277  *	   That's where 4.4 screws up. Current fix: serialization on
4278  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4279  *	   story.
4280  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4281  *	   and source (if it is not a directory).
4282  *	   And that - after we got ->i_mutex on parents (until then we don't know
4283  *	   whether the target exists).  Solution: try to be smart with locking
4284  *	   order for inodes.  We rely on the fact that tree topology may change
4285  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4286  *	   move will be locked.  Thus we can rank directories by the tree
4287  *	   (ancestors first) and rank all non-directories after them.
4288  *	   That works since everybody except rename does "lock parent, lookup,
4289  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4290  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4291  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4292  *	   we'd better make sure that there's no link(2) for them.
4293  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4294  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4295  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4296  *	   ->i_mutex on parents, which works but leads to some truly excessive
4297  *	   locking].
4298  */
vfs_rename2(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4299 int vfs_rename2(struct vfsmount *mnt,
4300 	       struct inode *old_dir, struct dentry *old_dentry,
4301 	       struct inode *new_dir, struct dentry *new_dentry,
4302 	       struct inode **delegated_inode, unsigned int flags)
4303 {
4304 	int error;
4305 	bool is_dir = d_is_dir(old_dentry);
4306 	struct inode *source = old_dentry->d_inode;
4307 	struct inode *target = new_dentry->d_inode;
4308 	bool new_is_dir = false;
4309 	unsigned max_links = new_dir->i_sb->s_max_links;
4310 	struct name_snapshot old_name;
4311 
4312 	/*
4313 	 * Check source == target.
4314 	 * On overlayfs need to look at underlying inodes.
4315 	 */
4316 	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4317 		return 0;
4318 
4319 	error = may_delete(mnt, old_dir, old_dentry, is_dir);
4320 	if (error)
4321 		return error;
4322 
4323 	if (!target) {
4324 		error = may_create(mnt, new_dir, new_dentry);
4325 	} else {
4326 		new_is_dir = d_is_dir(new_dentry);
4327 
4328 		if (!(flags & RENAME_EXCHANGE))
4329 			error = may_delete(mnt, new_dir, new_dentry, is_dir);
4330 		else
4331 			error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4332 	}
4333 	if (error)
4334 		return error;
4335 
4336 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4337 		return -EPERM;
4338 
4339 	if (flags && !old_dir->i_op->rename2)
4340 		return -EINVAL;
4341 
4342 	/*
4343 	 * If we are going to change the parent - check write permissions,
4344 	 * we'll need to flip '..'.
4345 	 */
4346 	if (new_dir != old_dir) {
4347 		if (is_dir) {
4348 			error = inode_permission2(mnt, source, MAY_WRITE);
4349 			if (error)
4350 				return error;
4351 		}
4352 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4353 			error = inode_permission2(mnt, target, MAY_WRITE);
4354 			if (error)
4355 				return error;
4356 		}
4357 	}
4358 
4359 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4360 				      flags);
4361 	if (error)
4362 		return error;
4363 
4364 	take_dentry_name_snapshot(&old_name, old_dentry);
4365 	dget(new_dentry);
4366 	if (!is_dir || (flags & RENAME_EXCHANGE))
4367 		lock_two_nondirectories(source, target);
4368 	else if (target)
4369 		mutex_lock(&target->i_mutex);
4370 
4371 	error = -EBUSY;
4372 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4373 		goto out;
4374 
4375 	if (max_links && new_dir != old_dir) {
4376 		error = -EMLINK;
4377 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4378 			goto out;
4379 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4380 		    old_dir->i_nlink >= max_links)
4381 			goto out;
4382 	}
4383 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4384 		shrink_dcache_parent(new_dentry);
4385 	if (!is_dir) {
4386 		error = try_break_deleg(source, delegated_inode);
4387 		if (error)
4388 			goto out;
4389 	}
4390 	if (target && !new_is_dir) {
4391 		error = try_break_deleg(target, delegated_inode);
4392 		if (error)
4393 			goto out;
4394 	}
4395 	if (!old_dir->i_op->rename2) {
4396 		error = old_dir->i_op->rename(old_dir, old_dentry,
4397 					      new_dir, new_dentry);
4398 	} else {
4399 		WARN_ON(old_dir->i_op->rename != NULL);
4400 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4401 					       new_dir, new_dentry, flags);
4402 	}
4403 	if (error)
4404 		goto out;
4405 
4406 	if (!(flags & RENAME_EXCHANGE) && target) {
4407 		if (is_dir)
4408 			target->i_flags |= S_DEAD;
4409 		dont_mount(new_dentry);
4410 		detach_mounts(new_dentry);
4411 	}
4412 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4413 		if (!(flags & RENAME_EXCHANGE))
4414 			d_move(old_dentry, new_dentry);
4415 		else
4416 			d_exchange(old_dentry, new_dentry);
4417 	}
4418 out:
4419 	if (!is_dir || (flags & RENAME_EXCHANGE))
4420 		unlock_two_nondirectories(source, target);
4421 	else if (target)
4422 		mutex_unlock(&target->i_mutex);
4423 	dput(new_dentry);
4424 	if (!error) {
4425 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4426 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4427 		if (flags & RENAME_EXCHANGE) {
4428 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4429 				      new_is_dir, NULL, new_dentry);
4430 		}
4431 	}
4432 	release_dentry_name_snapshot(&old_name);
4433 
4434 	return error;
4435 }
4436 EXPORT_SYMBOL(vfs_rename2);
4437 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4438 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4439 	       struct inode *new_dir, struct dentry *new_dentry,
4440 	       struct inode **delegated_inode, unsigned int flags)
4441 {
4442 	return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4443 }
4444 EXPORT_SYMBOL(vfs_rename);
4445 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4446 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4447 		int, newdfd, const char __user *, newname, unsigned int, flags)
4448 {
4449 	struct dentry *old_dentry, *new_dentry;
4450 	struct dentry *trap;
4451 	struct path old_path, new_path;
4452 	struct qstr old_last, new_last;
4453 	int old_type, new_type;
4454 	struct inode *delegated_inode = NULL;
4455 	struct filename *from;
4456 	struct filename *to;
4457 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4458 	bool should_retry = false;
4459 	int error;
4460 
4461 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4462 		return -EINVAL;
4463 
4464 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4465 	    (flags & RENAME_EXCHANGE))
4466 		return -EINVAL;
4467 
4468 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4469 		return -EPERM;
4470 
4471 	if (flags & RENAME_EXCHANGE)
4472 		target_flags = 0;
4473 
4474 retry:
4475 	from = user_path_parent(olddfd, oldname,
4476 				&old_path, &old_last, &old_type, lookup_flags);
4477 	if (IS_ERR(from)) {
4478 		error = PTR_ERR(from);
4479 		goto exit;
4480 	}
4481 
4482 	to = user_path_parent(newdfd, newname,
4483 				&new_path, &new_last, &new_type, lookup_flags);
4484 	if (IS_ERR(to)) {
4485 		error = PTR_ERR(to);
4486 		goto exit1;
4487 	}
4488 
4489 	error = -EXDEV;
4490 	if (old_path.mnt != new_path.mnt)
4491 		goto exit2;
4492 
4493 	error = -EBUSY;
4494 	if (old_type != LAST_NORM)
4495 		goto exit2;
4496 
4497 	if (flags & RENAME_NOREPLACE)
4498 		error = -EEXIST;
4499 	if (new_type != LAST_NORM)
4500 		goto exit2;
4501 
4502 	error = mnt_want_write(old_path.mnt);
4503 	if (error)
4504 		goto exit2;
4505 
4506 retry_deleg:
4507 	trap = lock_rename(new_path.dentry, old_path.dentry);
4508 
4509 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4510 	error = PTR_ERR(old_dentry);
4511 	if (IS_ERR(old_dentry))
4512 		goto exit3;
4513 	/* source must exist */
4514 	error = -ENOENT;
4515 	if (d_is_negative(old_dentry))
4516 		goto exit4;
4517 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4518 	error = PTR_ERR(new_dentry);
4519 	if (IS_ERR(new_dentry))
4520 		goto exit4;
4521 	error = -EEXIST;
4522 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4523 		goto exit5;
4524 	if (flags & RENAME_EXCHANGE) {
4525 		error = -ENOENT;
4526 		if (d_is_negative(new_dentry))
4527 			goto exit5;
4528 
4529 		if (!d_is_dir(new_dentry)) {
4530 			error = -ENOTDIR;
4531 			if (new_last.name[new_last.len])
4532 				goto exit5;
4533 		}
4534 	}
4535 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4536 	if (!d_is_dir(old_dentry)) {
4537 		error = -ENOTDIR;
4538 		if (old_last.name[old_last.len])
4539 			goto exit5;
4540 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4541 			goto exit5;
4542 	}
4543 	/* source should not be ancestor of target */
4544 	error = -EINVAL;
4545 	if (old_dentry == trap)
4546 		goto exit5;
4547 	/* target should not be an ancestor of source */
4548 	if (!(flags & RENAME_EXCHANGE))
4549 		error = -ENOTEMPTY;
4550 	if (new_dentry == trap)
4551 		goto exit5;
4552 
4553 	error = security_path_rename(&old_path, old_dentry,
4554 				     &new_path, new_dentry, flags);
4555 	if (error)
4556 		goto exit5;
4557 	error = vfs_rename2(old_path.mnt, old_path.dentry->d_inode, old_dentry,
4558 			   new_path.dentry->d_inode, new_dentry,
4559 			   &delegated_inode, flags);
4560 exit5:
4561 	dput(new_dentry);
4562 exit4:
4563 	dput(old_dentry);
4564 exit3:
4565 	unlock_rename(new_path.dentry, old_path.dentry);
4566 	if (delegated_inode) {
4567 		error = break_deleg_wait(&delegated_inode);
4568 		if (!error)
4569 			goto retry_deleg;
4570 	}
4571 	mnt_drop_write(old_path.mnt);
4572 exit2:
4573 	if (retry_estale(error, lookup_flags))
4574 		should_retry = true;
4575 	path_put(&new_path);
4576 	putname(to);
4577 exit1:
4578 	path_put(&old_path);
4579 	putname(from);
4580 	if (should_retry) {
4581 		should_retry = false;
4582 		lookup_flags |= LOOKUP_REVAL;
4583 		goto retry;
4584 	}
4585 exit:
4586 	return error;
4587 }
4588 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4589 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4590 		int, newdfd, const char __user *, newname)
4591 {
4592 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4593 }
4594 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4595 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4596 {
4597 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4598 }
4599 
vfs_whiteout(struct inode * dir,struct dentry * dentry)4600 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4601 {
4602 	int error = may_create(NULL, dir, dentry);
4603 	if (error)
4604 		return error;
4605 
4606 	if (!dir->i_op->mknod)
4607 		return -EPERM;
4608 
4609 	return dir->i_op->mknod(dir, dentry,
4610 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4611 }
4612 EXPORT_SYMBOL(vfs_whiteout);
4613 
readlink_copy(char __user * buffer,int buflen,const char * link)4614 int readlink_copy(char __user *buffer, int buflen, const char *link)
4615 {
4616 	int len = PTR_ERR(link);
4617 	if (IS_ERR(link))
4618 		goto out;
4619 
4620 	len = strlen(link);
4621 	if (len > (unsigned) buflen)
4622 		len = buflen;
4623 	if (copy_to_user(buffer, link, len))
4624 		len = -EFAULT;
4625 out:
4626 	return len;
4627 }
4628 EXPORT_SYMBOL(readlink_copy);
4629 
4630 /*
4631  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4632  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4633  * using) it for any given inode is up to filesystem.
4634  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)4635 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4636 {
4637 	void *cookie;
4638 	struct inode *inode = d_inode(dentry);
4639 	const char *link = inode->i_link;
4640 	int res;
4641 
4642 	if (!link) {
4643 		link = inode->i_op->follow_link(dentry, &cookie);
4644 		if (IS_ERR(link))
4645 			return PTR_ERR(link);
4646 	}
4647 	res = readlink_copy(buffer, buflen, link);
4648 	if (inode->i_op->put_link)
4649 		inode->i_op->put_link(inode, cookie);
4650 	return res;
4651 }
4652 EXPORT_SYMBOL(generic_readlink);
4653 
4654 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)4655 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4656 {
4657 	char *kaddr;
4658 	struct page *page;
4659 	struct address_space *mapping = dentry->d_inode->i_mapping;
4660 	page = read_mapping_page(mapping, 0, NULL);
4661 	if (IS_ERR(page))
4662 		return (char*)page;
4663 	*ppage = page;
4664 	kaddr = kmap(page);
4665 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4666 	return kaddr;
4667 }
4668 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4669 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4670 {
4671 	struct page *page = NULL;
4672 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4673 	if (page) {
4674 		kunmap(page);
4675 		page_cache_release(page);
4676 	}
4677 	return res;
4678 }
4679 EXPORT_SYMBOL(page_readlink);
4680 
page_follow_link_light(struct dentry * dentry,void ** cookie)4681 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4682 {
4683 	struct page *page = NULL;
4684 	char *res = page_getlink(dentry, &page);
4685 	if (!IS_ERR(res))
4686 		*cookie = page;
4687 	return res;
4688 }
4689 EXPORT_SYMBOL(page_follow_link_light);
4690 
page_put_link(struct inode * unused,void * cookie)4691 void page_put_link(struct inode *unused, void *cookie)
4692 {
4693 	struct page *page = cookie;
4694 	kunmap(page);
4695 	page_cache_release(page);
4696 }
4697 EXPORT_SYMBOL(page_put_link);
4698 
4699 /*
4700  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4701  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4702 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4703 {
4704 	struct address_space *mapping = inode->i_mapping;
4705 	struct page *page;
4706 	void *fsdata;
4707 	int err;
4708 	char *kaddr;
4709 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4710 	if (nofs)
4711 		flags |= AOP_FLAG_NOFS;
4712 
4713 retry:
4714 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4715 				flags, &page, &fsdata);
4716 	if (err)
4717 		goto fail;
4718 
4719 	kaddr = kmap_atomic(page);
4720 	memcpy(kaddr, symname, len-1);
4721 	kunmap_atomic(kaddr);
4722 
4723 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4724 							page, fsdata);
4725 	if (err < 0)
4726 		goto fail;
4727 	if (err < len-1)
4728 		goto retry;
4729 
4730 	mark_inode_dirty(inode);
4731 	return 0;
4732 fail:
4733 	return err;
4734 }
4735 EXPORT_SYMBOL(__page_symlink);
4736 
page_symlink(struct inode * inode,const char * symname,int len)4737 int page_symlink(struct inode *inode, const char *symname, int len)
4738 {
4739 	return __page_symlink(inode, symname, len,
4740 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4741 }
4742 EXPORT_SYMBOL(page_symlink);
4743 
4744 const struct inode_operations page_symlink_inode_operations = {
4745 	.readlink	= generic_readlink,
4746 	.follow_link	= page_follow_link_light,
4747 	.put_link	= page_put_link,
4748 };
4749 EXPORT_SYMBOL(page_symlink_inode_operations);
4750