• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/super.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  super.c contains code to handle: - mount structures
7  *                                   - super-block tables
8  *                                   - filesystem drivers list
9  *                                   - mount system call
10  *                                   - umount system call
11  *                                   - ustat system call
12  *
13  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14  *
15  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17  *  Added options to /proc/mounts:
18  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21  */
22 
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h>		/* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37 
38 
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41 
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 	"sb_writers",
44 	"sb_pagefaults",
45 	"sb_internal",
46 };
47 
48 /*
49  * One thing we have to be careful of with a per-sb shrinker is that we don't
50  * drop the last active reference to the superblock from within the shrinker.
51  * If that happens we could trigger unregistering the shrinker from within the
52  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53  * take a passive reference to the superblock to avoid this from occurring.
54  */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 				      struct shrink_control *sc)
57 {
58 	struct super_block *sb;
59 	long	fs_objects = 0;
60 	long	total_objects;
61 	long	freed = 0;
62 	long	dentries;
63 	long	inodes;
64 
65 	sb = container_of(shrink, struct super_block, s_shrink);
66 
67 	/*
68 	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69 	 * to recurse into the FS that called us in clear_inode() and friends..
70 	 */
71 	if (!(sc->gfp_mask & __GFP_FS))
72 		return SHRINK_STOP;
73 
74 	if (!trylock_super(sb))
75 		return SHRINK_STOP;
76 
77 	if (sb->s_op->nr_cached_objects)
78 		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79 
80 	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 	total_objects = dentries + inodes + fs_objects + 1;
83 	if (!total_objects)
84 		total_objects = 1;
85 
86 	/* proportion the scan between the caches */
87 	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90 
91 	/*
92 	 * prune the dcache first as the icache is pinned by it, then
93 	 * prune the icache, followed by the filesystem specific caches
94 	 *
95 	 * Ensure that we always scan at least one object - memcg kmem
96 	 * accounting uses this to fully empty the caches.
97 	 */
98 	sc->nr_to_scan = dentries + 1;
99 	freed = prune_dcache_sb(sb, sc);
100 	sc->nr_to_scan = inodes + 1;
101 	freed += prune_icache_sb(sb, sc);
102 
103 	if (fs_objects) {
104 		sc->nr_to_scan = fs_objects + 1;
105 		freed += sb->s_op->free_cached_objects(sb, sc);
106 	}
107 
108 	up_read(&sb->s_umount);
109 	return freed;
110 }
111 
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)112 static unsigned long super_cache_count(struct shrinker *shrink,
113 				       struct shrink_control *sc)
114 {
115 	struct super_block *sb;
116 	long	total_objects = 0;
117 
118 	sb = container_of(shrink, struct super_block, s_shrink);
119 
120 	/*
121 	 * We don't call trylock_super() here as it is a scalability bottleneck,
122 	 * so we're exposed to partial setup state. The shrinker rwsem does not
123 	 * protect filesystem operations backing list_lru_shrink_count() or
124 	 * s_op->nr_cached_objects(). Counts can change between
125 	 * super_cache_count and super_cache_scan, so we really don't need locks
126 	 * here.
127 	 *
128 	 * However, if we are currently mounting the superblock, the underlying
129 	 * filesystem might be in a state of partial construction and hence it
130 	 * is dangerous to access it.  trylock_super() uses a MS_BORN check to
131 	 * avoid this situation, so do the same here. The memory barrier is
132 	 * matched with the one in mount_fs() as we don't hold locks here.
133 	 */
134 	if (!(sb->s_flags & MS_BORN))
135 		return 0;
136 	smp_rmb();
137 
138 	if (sb->s_op && sb->s_op->nr_cached_objects)
139 		total_objects = sb->s_op->nr_cached_objects(sb, sc);
140 
141 	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
142 	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
143 
144 	total_objects = vfs_pressure_ratio(total_objects);
145 	return total_objects;
146 }
147 
destroy_super_work(struct work_struct * work)148 static void destroy_super_work(struct work_struct *work)
149 {
150 	struct super_block *s = container_of(work, struct super_block,
151 							destroy_work);
152 	int i;
153 
154 	for (i = 0; i < SB_FREEZE_LEVELS; i++)
155 		percpu_free_rwsem(&s->s_writers.rw_sem[i]);
156 	kfree(s);
157 }
158 
destroy_super_rcu(struct rcu_head * head)159 static void destroy_super_rcu(struct rcu_head *head)
160 {
161 	struct super_block *s = container_of(head, struct super_block, rcu);
162 	INIT_WORK(&s->destroy_work, destroy_super_work);
163 	schedule_work(&s->destroy_work);
164 }
165 
166 /**
167  *	destroy_super	-	frees a superblock
168  *	@s: superblock to free
169  *
170  *	Frees a superblock.
171  */
destroy_super(struct super_block * s)172 static void destroy_super(struct super_block *s)
173 {
174 	list_lru_destroy(&s->s_dentry_lru);
175 	list_lru_destroy(&s->s_inode_lru);
176 	security_sb_free(s);
177 	WARN_ON(!list_empty(&s->s_mounts));
178 	kfree(s->s_subtype);
179 	kfree(s->s_options);
180 	call_rcu(&s->rcu, destroy_super_rcu);
181 }
182 
183 /**
184  *	alloc_super	-	create new superblock
185  *	@type:	filesystem type superblock should belong to
186  *	@flags: the mount flags
187  *
188  *	Allocates and initializes a new &struct super_block.  alloc_super()
189  *	returns a pointer new superblock or %NULL if allocation had failed.
190  */
alloc_super(struct file_system_type * type,int flags)191 static struct super_block *alloc_super(struct file_system_type *type, int flags)
192 {
193 	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
194 	static const struct super_operations default_op;
195 	int i;
196 
197 	if (!s)
198 		return NULL;
199 
200 	INIT_LIST_HEAD(&s->s_mounts);
201 
202 	if (security_sb_alloc(s))
203 		goto fail;
204 
205 	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
206 		if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
207 					sb_writers_name[i],
208 					&type->s_writers_key[i]))
209 			goto fail;
210 	}
211 	init_waitqueue_head(&s->s_writers.wait_unfrozen);
212 	s->s_bdi = &noop_backing_dev_info;
213 	s->s_flags = flags;
214 	INIT_HLIST_NODE(&s->s_instances);
215 	INIT_HLIST_BL_HEAD(&s->s_anon);
216 	mutex_init(&s->s_sync_lock);
217 	INIT_LIST_HEAD(&s->s_inodes);
218 	spin_lock_init(&s->s_inode_list_lock);
219 
220 	if (list_lru_init_memcg(&s->s_dentry_lru))
221 		goto fail;
222 	if (list_lru_init_memcg(&s->s_inode_lru))
223 		goto fail;
224 
225 	init_rwsem(&s->s_umount);
226 	lockdep_set_class(&s->s_umount, &type->s_umount_key);
227 	/*
228 	 * sget() can have s_umount recursion.
229 	 *
230 	 * When it cannot find a suitable sb, it allocates a new
231 	 * one (this one), and tries again to find a suitable old
232 	 * one.
233 	 *
234 	 * In case that succeeds, it will acquire the s_umount
235 	 * lock of the old one. Since these are clearly distrinct
236 	 * locks, and this object isn't exposed yet, there's no
237 	 * risk of deadlocks.
238 	 *
239 	 * Annotate this by putting this lock in a different
240 	 * subclass.
241 	 */
242 	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
243 	s->s_count = 1;
244 	atomic_set(&s->s_active, 1);
245 	mutex_init(&s->s_vfs_rename_mutex);
246 	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
247 	mutex_init(&s->s_dquot.dqio_mutex);
248 	mutex_init(&s->s_dquot.dqonoff_mutex);
249 	s->s_maxbytes = MAX_NON_LFS;
250 	s->s_op = &default_op;
251 	s->s_time_gran = 1000000000;
252 	s->cleancache_poolid = CLEANCACHE_NO_POOL;
253 
254 	s->s_shrink.seeks = DEFAULT_SEEKS;
255 	s->s_shrink.scan_objects = super_cache_scan;
256 	s->s_shrink.count_objects = super_cache_count;
257 	s->s_shrink.batch = 1024;
258 	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
259 	return s;
260 
261 fail:
262 	destroy_super(s);
263 	return NULL;
264 }
265 
266 /* Superblock refcounting  */
267 
268 /*
269  * Drop a superblock's refcount.  The caller must hold sb_lock.
270  */
__put_super(struct super_block * sb)271 static void __put_super(struct super_block *sb)
272 {
273 	if (!--sb->s_count) {
274 		list_del_init(&sb->s_list);
275 		destroy_super(sb);
276 	}
277 }
278 
279 /**
280  *	put_super	-	drop a temporary reference to superblock
281  *	@sb: superblock in question
282  *
283  *	Drops a temporary reference, frees superblock if there's no
284  *	references left.
285  */
put_super(struct super_block * sb)286 static void put_super(struct super_block *sb)
287 {
288 	spin_lock(&sb_lock);
289 	__put_super(sb);
290 	spin_unlock(&sb_lock);
291 }
292 
293 
294 /**
295  *	deactivate_locked_super	-	drop an active reference to superblock
296  *	@s: superblock to deactivate
297  *
298  *	Drops an active reference to superblock, converting it into a temprory
299  *	one if there is no other active references left.  In that case we
300  *	tell fs driver to shut it down and drop the temporary reference we
301  *	had just acquired.
302  *
303  *	Caller holds exclusive lock on superblock; that lock is released.
304  */
deactivate_locked_super(struct super_block * s)305 void deactivate_locked_super(struct super_block *s)
306 {
307 	struct file_system_type *fs = s->s_type;
308 	if (atomic_dec_and_test(&s->s_active)) {
309 		cleancache_invalidate_fs(s);
310 		unregister_shrinker(&s->s_shrink);
311 		fs->kill_sb(s);
312 
313 		/*
314 		 * Since list_lru_destroy() may sleep, we cannot call it from
315 		 * put_super(), where we hold the sb_lock. Therefore we destroy
316 		 * the lru lists right now.
317 		 */
318 		list_lru_destroy(&s->s_dentry_lru);
319 		list_lru_destroy(&s->s_inode_lru);
320 
321 		put_filesystem(fs);
322 		put_super(s);
323 	} else {
324 		up_write(&s->s_umount);
325 	}
326 }
327 
328 EXPORT_SYMBOL(deactivate_locked_super);
329 
330 /**
331  *	deactivate_super	-	drop an active reference to superblock
332  *	@s: superblock to deactivate
333  *
334  *	Variant of deactivate_locked_super(), except that superblock is *not*
335  *	locked by caller.  If we are going to drop the final active reference,
336  *	lock will be acquired prior to that.
337  */
deactivate_super(struct super_block * s)338 void deactivate_super(struct super_block *s)
339 {
340         if (!atomic_add_unless(&s->s_active, -1, 1)) {
341 		down_write(&s->s_umount);
342 		deactivate_locked_super(s);
343 	}
344 }
345 
346 EXPORT_SYMBOL(deactivate_super);
347 
348 /**
349  *	grab_super - acquire an active reference
350  *	@s: reference we are trying to make active
351  *
352  *	Tries to acquire an active reference.  grab_super() is used when we
353  * 	had just found a superblock in super_blocks or fs_type->fs_supers
354  *	and want to turn it into a full-blown active reference.  grab_super()
355  *	is called with sb_lock held and drops it.  Returns 1 in case of
356  *	success, 0 if we had failed (superblock contents was already dead or
357  *	dying when grab_super() had been called).  Note that this is only
358  *	called for superblocks not in rundown mode (== ones still on ->fs_supers
359  *	of their type), so increment of ->s_count is OK here.
360  */
grab_super(struct super_block * s)361 static int grab_super(struct super_block *s) __releases(sb_lock)
362 {
363 	s->s_count++;
364 	spin_unlock(&sb_lock);
365 	down_write(&s->s_umount);
366 	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
367 		put_super(s);
368 		return 1;
369 	}
370 	up_write(&s->s_umount);
371 	put_super(s);
372 	return 0;
373 }
374 
375 /*
376  *	trylock_super - try to grab ->s_umount shared
377  *	@sb: reference we are trying to grab
378  *
379  *	Try to prevent fs shutdown.  This is used in places where we
380  *	cannot take an active reference but we need to ensure that the
381  *	filesystem is not shut down while we are working on it. It returns
382  *	false if we cannot acquire s_umount or if we lose the race and
383  *	filesystem already got into shutdown, and returns true with the s_umount
384  *	lock held in read mode in case of success. On successful return,
385  *	the caller must drop the s_umount lock when done.
386  *
387  *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
388  *	The reason why it's safe is that we are OK with doing trylock instead
389  *	of down_read().  There's a couple of places that are OK with that, but
390  *	it's very much not a general-purpose interface.
391  */
trylock_super(struct super_block * sb)392 bool trylock_super(struct super_block *sb)
393 {
394 	if (down_read_trylock(&sb->s_umount)) {
395 		if (!hlist_unhashed(&sb->s_instances) &&
396 		    sb->s_root && (sb->s_flags & MS_BORN))
397 			return true;
398 		up_read(&sb->s_umount);
399 	}
400 
401 	return false;
402 }
403 
404 /**
405  *	generic_shutdown_super	-	common helper for ->kill_sb()
406  *	@sb: superblock to kill
407  *
408  *	generic_shutdown_super() does all fs-independent work on superblock
409  *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
410  *	that need destruction out of superblock, call generic_shutdown_super()
411  *	and release aforementioned objects.  Note: dentries and inodes _are_
412  *	taken care of and do not need specific handling.
413  *
414  *	Upon calling this function, the filesystem may no longer alter or
415  *	rearrange the set of dentries belonging to this super_block, nor may it
416  *	change the attachments of dentries to inodes.
417  */
generic_shutdown_super(struct super_block * sb)418 void generic_shutdown_super(struct super_block *sb)
419 {
420 	const struct super_operations *sop = sb->s_op;
421 
422 	if (sb->s_root) {
423 		shrink_dcache_for_umount(sb);
424 		sync_filesystem(sb);
425 		sb->s_flags &= ~MS_ACTIVE;
426 
427 		fsnotify_unmount_inodes(sb);
428 		cgroup_writeback_umount();
429 
430 		evict_inodes(sb);
431 
432 		if (sb->s_dio_done_wq) {
433 			destroy_workqueue(sb->s_dio_done_wq);
434 			sb->s_dio_done_wq = NULL;
435 		}
436 
437 		if (sop->put_super)
438 			sop->put_super(sb);
439 
440 		if (!list_empty(&sb->s_inodes)) {
441 			printk("VFS: Busy inodes after unmount of %s. "
442 			   "Self-destruct in 5 seconds.  Have a nice day...\n",
443 			   sb->s_id);
444 		}
445 	}
446 	spin_lock(&sb_lock);
447 	/* should be initialized for __put_super_and_need_restart() */
448 	hlist_del_init(&sb->s_instances);
449 	spin_unlock(&sb_lock);
450 	up_write(&sb->s_umount);
451 }
452 
453 EXPORT_SYMBOL(generic_shutdown_super);
454 
455 /**
456  *	sget	-	find or create a superblock
457  *	@type:	filesystem type superblock should belong to
458  *	@test:	comparison callback
459  *	@set:	setup callback
460  *	@flags:	mount flags
461  *	@data:	argument to each of them
462  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)463 struct super_block *sget(struct file_system_type *type,
464 			int (*test)(struct super_block *,void *),
465 			int (*set)(struct super_block *,void *),
466 			int flags,
467 			void *data)
468 {
469 	struct super_block *s = NULL;
470 	struct super_block *old;
471 	int err;
472 
473 retry:
474 	spin_lock(&sb_lock);
475 	if (test) {
476 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
477 			if (!test(old, data))
478 				continue;
479 			if (!grab_super(old))
480 				goto retry;
481 			if (s) {
482 				up_write(&s->s_umount);
483 				destroy_super(s);
484 				s = NULL;
485 			}
486 			return old;
487 		}
488 	}
489 	if (!s) {
490 		spin_unlock(&sb_lock);
491 		s = alloc_super(type, flags);
492 		if (!s)
493 			return ERR_PTR(-ENOMEM);
494 		goto retry;
495 	}
496 
497 	err = set(s, data);
498 	if (err) {
499 		spin_unlock(&sb_lock);
500 		up_write(&s->s_umount);
501 		destroy_super(s);
502 		return ERR_PTR(err);
503 	}
504 	s->s_type = type;
505 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
506 	list_add_tail(&s->s_list, &super_blocks);
507 	hlist_add_head(&s->s_instances, &type->fs_supers);
508 	spin_unlock(&sb_lock);
509 	get_filesystem(type);
510 	err = register_shrinker(&s->s_shrink);
511 	if (err) {
512 		deactivate_locked_super(s);
513 		s = ERR_PTR(err);
514 	}
515 	return s;
516 }
517 
518 EXPORT_SYMBOL(sget);
519 
drop_super(struct super_block * sb)520 void drop_super(struct super_block *sb)
521 {
522 	up_read(&sb->s_umount);
523 	put_super(sb);
524 }
525 
526 EXPORT_SYMBOL(drop_super);
527 
528 /**
529  *	iterate_supers - call function for all active superblocks
530  *	@f: function to call
531  *	@arg: argument to pass to it
532  *
533  *	Scans the superblock list and calls given function, passing it
534  *	locked superblock and given argument.
535  */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)536 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
537 {
538 	struct super_block *sb, *p = NULL;
539 
540 	spin_lock(&sb_lock);
541 	list_for_each_entry(sb, &super_blocks, s_list) {
542 		if (hlist_unhashed(&sb->s_instances))
543 			continue;
544 		sb->s_count++;
545 		spin_unlock(&sb_lock);
546 
547 		down_read(&sb->s_umount);
548 		if (sb->s_root && (sb->s_flags & MS_BORN))
549 			f(sb, arg);
550 		up_read(&sb->s_umount);
551 
552 		spin_lock(&sb_lock);
553 		if (p)
554 			__put_super(p);
555 		p = sb;
556 	}
557 	if (p)
558 		__put_super(p);
559 	spin_unlock(&sb_lock);
560 }
561 
562 /**
563  *	iterate_supers_type - call function for superblocks of given type
564  *	@type: fs type
565  *	@f: function to call
566  *	@arg: argument to pass to it
567  *
568  *	Scans the superblock list and calls given function, passing it
569  *	locked superblock and given argument.
570  */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)571 void iterate_supers_type(struct file_system_type *type,
572 	void (*f)(struct super_block *, void *), void *arg)
573 {
574 	struct super_block *sb, *p = NULL;
575 
576 	spin_lock(&sb_lock);
577 	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
578 		sb->s_count++;
579 		spin_unlock(&sb_lock);
580 
581 		down_read(&sb->s_umount);
582 		if (sb->s_root && (sb->s_flags & MS_BORN))
583 			f(sb, arg);
584 		up_read(&sb->s_umount);
585 
586 		spin_lock(&sb_lock);
587 		if (p)
588 			__put_super(p);
589 		p = sb;
590 	}
591 	if (p)
592 		__put_super(p);
593 	spin_unlock(&sb_lock);
594 }
595 
596 EXPORT_SYMBOL(iterate_supers_type);
597 
598 /**
599  *	get_super - get the superblock of a device
600  *	@bdev: device to get the superblock for
601  *
602  *	Scans the superblock list and finds the superblock of the file system
603  *	mounted on the device given. %NULL is returned if no match is found.
604  */
605 
get_super(struct block_device * bdev)606 struct super_block *get_super(struct block_device *bdev)
607 {
608 	struct super_block *sb;
609 
610 	if (!bdev)
611 		return NULL;
612 
613 	spin_lock(&sb_lock);
614 rescan:
615 	list_for_each_entry(sb, &super_blocks, s_list) {
616 		if (hlist_unhashed(&sb->s_instances))
617 			continue;
618 		if (sb->s_bdev == bdev) {
619 			sb->s_count++;
620 			spin_unlock(&sb_lock);
621 			down_read(&sb->s_umount);
622 			/* still alive? */
623 			if (sb->s_root && (sb->s_flags & MS_BORN))
624 				return sb;
625 			up_read(&sb->s_umount);
626 			/* nope, got unmounted */
627 			spin_lock(&sb_lock);
628 			__put_super(sb);
629 			goto rescan;
630 		}
631 	}
632 	spin_unlock(&sb_lock);
633 	return NULL;
634 }
635 
636 EXPORT_SYMBOL(get_super);
637 
638 /**
639  *	get_super_thawed - get thawed superblock of a device
640  *	@bdev: device to get the superblock for
641  *
642  *	Scans the superblock list and finds the superblock of the file system
643  *	mounted on the device. The superblock is returned once it is thawed
644  *	(or immediately if it was not frozen). %NULL is returned if no match
645  *	is found.
646  */
get_super_thawed(struct block_device * bdev)647 struct super_block *get_super_thawed(struct block_device *bdev)
648 {
649 	while (1) {
650 		struct super_block *s = get_super(bdev);
651 		if (!s || s->s_writers.frozen == SB_UNFROZEN)
652 			return s;
653 		up_read(&s->s_umount);
654 		wait_event(s->s_writers.wait_unfrozen,
655 			   s->s_writers.frozen == SB_UNFROZEN);
656 		put_super(s);
657 	}
658 }
659 EXPORT_SYMBOL(get_super_thawed);
660 
661 /**
662  * get_active_super - get an active reference to the superblock of a device
663  * @bdev: device to get the superblock for
664  *
665  * Scans the superblock list and finds the superblock of the file system
666  * mounted on the device given.  Returns the superblock with an active
667  * reference or %NULL if none was found.
668  */
get_active_super(struct block_device * bdev)669 struct super_block *get_active_super(struct block_device *bdev)
670 {
671 	struct super_block *sb;
672 
673 	if (!bdev)
674 		return NULL;
675 
676 restart:
677 	spin_lock(&sb_lock);
678 	list_for_each_entry(sb, &super_blocks, s_list) {
679 		if (hlist_unhashed(&sb->s_instances))
680 			continue;
681 		if (sb->s_bdev == bdev) {
682 			if (!grab_super(sb))
683 				goto restart;
684 			up_write(&sb->s_umount);
685 			return sb;
686 		}
687 	}
688 	spin_unlock(&sb_lock);
689 	return NULL;
690 }
691 
user_get_super(dev_t dev)692 struct super_block *user_get_super(dev_t dev)
693 {
694 	struct super_block *sb;
695 
696 	spin_lock(&sb_lock);
697 rescan:
698 	list_for_each_entry(sb, &super_blocks, s_list) {
699 		if (hlist_unhashed(&sb->s_instances))
700 			continue;
701 		if (sb->s_dev ==  dev) {
702 			sb->s_count++;
703 			spin_unlock(&sb_lock);
704 			down_read(&sb->s_umount);
705 			/* still alive? */
706 			if (sb->s_root && (sb->s_flags & MS_BORN))
707 				return sb;
708 			up_read(&sb->s_umount);
709 			/* nope, got unmounted */
710 			spin_lock(&sb_lock);
711 			__put_super(sb);
712 			goto rescan;
713 		}
714 	}
715 	spin_unlock(&sb_lock);
716 	return NULL;
717 }
718 
719 /**
720  *	do_remount_sb2 - asks filesystem to change mount options.
721  *	@mnt:   mount we are looking at
722  *	@sb:	superblock in question
723  *	@flags:	numeric part of options
724  *	@data:	the rest of options
725  *      @force: whether or not to force the change
726  *
727  *	Alters the mount options of a mounted file system.
728  */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)729 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
730 {
731 	int retval;
732 	int remount_ro;
733 
734 	if (sb->s_writers.frozen != SB_UNFROZEN)
735 		return -EBUSY;
736 
737 #ifdef CONFIG_BLOCK
738 	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
739 		return -EACCES;
740 #endif
741 
742 	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
743 
744 	if (remount_ro) {
745 		if (!hlist_empty(&sb->s_pins)) {
746 			up_write(&sb->s_umount);
747 			group_pin_kill(&sb->s_pins);
748 			down_write(&sb->s_umount);
749 			if (!sb->s_root)
750 				return 0;
751 			if (sb->s_writers.frozen != SB_UNFROZEN)
752 				return -EBUSY;
753 			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
754 		}
755 	}
756 	shrink_dcache_sb(sb);
757 
758 	/* If we are remounting RDONLY and current sb is read/write,
759 	   make sure there are no rw files opened */
760 	if (remount_ro) {
761 		if (force) {
762 			sb->s_readonly_remount = 1;
763 			smp_wmb();
764 		} else {
765 			retval = sb_prepare_remount_readonly(sb);
766 			if (retval)
767 				return retval;
768 		}
769 	}
770 
771 	if (mnt && sb->s_op->remount_fs2) {
772 		retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
773 		if (retval) {
774 			if (!force)
775 				goto cancel_readonly;
776 			/* If forced remount, go ahead despite any errors */
777 			WARN(1, "forced remount of a %s fs returned %i\n",
778 			     sb->s_type->name, retval);
779 		}
780 	} else if (sb->s_op->remount_fs) {
781 		retval = sb->s_op->remount_fs(sb, &flags, data);
782 		if (retval) {
783 			if (!force)
784 				goto cancel_readonly;
785 			/* If forced remount, go ahead despite any errors */
786 			WARN(1, "forced remount of a %s fs returned %i\n",
787 			     sb->s_type->name, retval);
788 		}
789 	}
790 	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
791 	/* Needs to be ordered wrt mnt_is_readonly() */
792 	smp_wmb();
793 	sb->s_readonly_remount = 0;
794 
795 	/*
796 	 * Some filesystems modify their metadata via some other path than the
797 	 * bdev buffer cache (eg. use a private mapping, or directories in
798 	 * pagecache, etc). Also file data modifications go via their own
799 	 * mappings. So If we try to mount readonly then copy the filesystem
800 	 * from bdev, we could get stale data, so invalidate it to give a best
801 	 * effort at coherency.
802 	 */
803 	if (remount_ro && sb->s_bdev)
804 		invalidate_bdev(sb->s_bdev);
805 	return 0;
806 
807 cancel_readonly:
808 	sb->s_readonly_remount = 0;
809 	return retval;
810 }
811 
do_remount_sb(struct super_block * sb,int flags,void * data,int force)812 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
813 {
814 	return do_remount_sb2(NULL, sb, flags, data, force);
815 }
816 
do_emergency_remount(struct work_struct * work)817 static void do_emergency_remount(struct work_struct *work)
818 {
819 	struct super_block *sb, *p = NULL;
820 
821 	spin_lock(&sb_lock);
822 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
823 		if (hlist_unhashed(&sb->s_instances))
824 			continue;
825 		sb->s_count++;
826 		spin_unlock(&sb_lock);
827 		down_write(&sb->s_umount);
828 		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
829 		    !(sb->s_flags & MS_RDONLY)) {
830 			/*
831 			 * What lock protects sb->s_flags??
832 			 */
833 			do_remount_sb(sb, MS_RDONLY, NULL, 1);
834 		}
835 		up_write(&sb->s_umount);
836 		spin_lock(&sb_lock);
837 		if (p)
838 			__put_super(p);
839 		p = sb;
840 	}
841 	if (p)
842 		__put_super(p);
843 	spin_unlock(&sb_lock);
844 	kfree(work);
845 	printk("Emergency Remount complete\n");
846 }
847 
emergency_remount(void)848 void emergency_remount(void)
849 {
850 	struct work_struct *work;
851 
852 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
853 	if (work) {
854 		INIT_WORK(work, do_emergency_remount);
855 		schedule_work(work);
856 	}
857 }
858 
859 /*
860  * Unnamed block devices are dummy devices used by virtual
861  * filesystems which don't use real block-devices.  -- jrs
862  */
863 
864 static DEFINE_IDA(unnamed_dev_ida);
865 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
866 /* Many userspace utilities consider an FSID of 0 invalid.
867  * Always return at least 1 from get_anon_bdev.
868  */
869 static int unnamed_dev_start = 1;
870 
get_anon_bdev(dev_t * p)871 int get_anon_bdev(dev_t *p)
872 {
873 	int dev;
874 	int error;
875 
876  retry:
877 	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
878 		return -ENOMEM;
879 	spin_lock(&unnamed_dev_lock);
880 	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
881 	if (!error)
882 		unnamed_dev_start = dev + 1;
883 	spin_unlock(&unnamed_dev_lock);
884 	if (error == -EAGAIN)
885 		/* We raced and lost with another CPU. */
886 		goto retry;
887 	else if (error)
888 		return -EAGAIN;
889 
890 	if (dev >= (1 << MINORBITS)) {
891 		spin_lock(&unnamed_dev_lock);
892 		ida_remove(&unnamed_dev_ida, dev);
893 		if (unnamed_dev_start > dev)
894 			unnamed_dev_start = dev;
895 		spin_unlock(&unnamed_dev_lock);
896 		return -EMFILE;
897 	}
898 	*p = MKDEV(0, dev & MINORMASK);
899 	return 0;
900 }
901 EXPORT_SYMBOL(get_anon_bdev);
902 
free_anon_bdev(dev_t dev)903 void free_anon_bdev(dev_t dev)
904 {
905 	int slot = MINOR(dev);
906 	spin_lock(&unnamed_dev_lock);
907 	ida_remove(&unnamed_dev_ida, slot);
908 	if (slot < unnamed_dev_start)
909 		unnamed_dev_start = slot;
910 	spin_unlock(&unnamed_dev_lock);
911 }
912 EXPORT_SYMBOL(free_anon_bdev);
913 
set_anon_super(struct super_block * s,void * data)914 int set_anon_super(struct super_block *s, void *data)
915 {
916 	return get_anon_bdev(&s->s_dev);
917 }
918 
919 EXPORT_SYMBOL(set_anon_super);
920 
kill_anon_super(struct super_block * sb)921 void kill_anon_super(struct super_block *sb)
922 {
923 	dev_t dev = sb->s_dev;
924 	generic_shutdown_super(sb);
925 	free_anon_bdev(dev);
926 }
927 
928 EXPORT_SYMBOL(kill_anon_super);
929 
kill_litter_super(struct super_block * sb)930 void kill_litter_super(struct super_block *sb)
931 {
932 	if (sb->s_root)
933 		d_genocide(sb->s_root);
934 	kill_anon_super(sb);
935 }
936 
937 EXPORT_SYMBOL(kill_litter_super);
938 
ns_test_super(struct super_block * sb,void * data)939 static int ns_test_super(struct super_block *sb, void *data)
940 {
941 	return sb->s_fs_info == data;
942 }
943 
ns_set_super(struct super_block * sb,void * data)944 static int ns_set_super(struct super_block *sb, void *data)
945 {
946 	sb->s_fs_info = data;
947 	return set_anon_super(sb, NULL);
948 }
949 
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))950 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
951 	void *data, int (*fill_super)(struct super_block *, void *, int))
952 {
953 	struct super_block *sb;
954 
955 	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
956 	if (IS_ERR(sb))
957 		return ERR_CAST(sb);
958 
959 	if (!sb->s_root) {
960 		int err;
961 		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
962 		if (err) {
963 			deactivate_locked_super(sb);
964 			return ERR_PTR(err);
965 		}
966 
967 		sb->s_flags |= MS_ACTIVE;
968 	}
969 
970 	return dget(sb->s_root);
971 }
972 
973 EXPORT_SYMBOL(mount_ns);
974 
975 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)976 static int set_bdev_super(struct super_block *s, void *data)
977 {
978 	s->s_bdev = data;
979 	s->s_dev = s->s_bdev->bd_dev;
980 
981 	/*
982 	 * We set the bdi here to the queue backing, file systems can
983 	 * overwrite this in ->fill_super()
984 	 */
985 	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
986 	return 0;
987 }
988 
test_bdev_super(struct super_block * s,void * data)989 static int test_bdev_super(struct super_block *s, void *data)
990 {
991 	return (void *)s->s_bdev == data;
992 }
993 
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))994 struct dentry *mount_bdev(struct file_system_type *fs_type,
995 	int flags, const char *dev_name, void *data,
996 	int (*fill_super)(struct super_block *, void *, int))
997 {
998 	struct block_device *bdev;
999 	struct super_block *s;
1000 	fmode_t mode = FMODE_READ | FMODE_EXCL;
1001 	int error = 0;
1002 
1003 	if (!(flags & MS_RDONLY))
1004 		mode |= FMODE_WRITE;
1005 
1006 	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1007 	if (IS_ERR(bdev))
1008 		return ERR_CAST(bdev);
1009 
1010 	/*
1011 	 * once the super is inserted into the list by sget, s_umount
1012 	 * will protect the lockfs code from trying to start a snapshot
1013 	 * while we are mounting
1014 	 */
1015 	mutex_lock(&bdev->bd_fsfreeze_mutex);
1016 	if (bdev->bd_fsfreeze_count > 0) {
1017 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
1018 		error = -EBUSY;
1019 		goto error_bdev;
1020 	}
1021 	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1022 		 bdev);
1023 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
1024 	if (IS_ERR(s))
1025 		goto error_s;
1026 
1027 	if (s->s_root) {
1028 		if ((flags ^ s->s_flags) & MS_RDONLY) {
1029 			deactivate_locked_super(s);
1030 			error = -EBUSY;
1031 			goto error_bdev;
1032 		}
1033 
1034 		/*
1035 		 * s_umount nests inside bd_mutex during
1036 		 * __invalidate_device().  blkdev_put() acquires
1037 		 * bd_mutex and can't be called under s_umount.  Drop
1038 		 * s_umount temporarily.  This is safe as we're
1039 		 * holding an active reference.
1040 		 */
1041 		up_write(&s->s_umount);
1042 		blkdev_put(bdev, mode);
1043 		down_write(&s->s_umount);
1044 	} else {
1045 		char b[BDEVNAME_SIZE];
1046 
1047 		s->s_mode = mode;
1048 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1049 		sb_set_blocksize(s, block_size(bdev));
1050 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1051 		if (error) {
1052 			deactivate_locked_super(s);
1053 			goto error;
1054 		}
1055 
1056 		s->s_flags |= MS_ACTIVE;
1057 		bdev->bd_super = s;
1058 	}
1059 
1060 	return dget(s->s_root);
1061 
1062 error_s:
1063 	error = PTR_ERR(s);
1064 error_bdev:
1065 	blkdev_put(bdev, mode);
1066 error:
1067 	return ERR_PTR(error);
1068 }
1069 EXPORT_SYMBOL(mount_bdev);
1070 
kill_block_super(struct super_block * sb)1071 void kill_block_super(struct super_block *sb)
1072 {
1073 	struct block_device *bdev = sb->s_bdev;
1074 	fmode_t mode = sb->s_mode;
1075 
1076 	bdev->bd_super = NULL;
1077 	generic_shutdown_super(sb);
1078 	sync_blockdev(bdev);
1079 	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1080 	blkdev_put(bdev, mode | FMODE_EXCL);
1081 }
1082 
1083 EXPORT_SYMBOL(kill_block_super);
1084 #endif
1085 
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1086 struct dentry *mount_nodev(struct file_system_type *fs_type,
1087 	int flags, void *data,
1088 	int (*fill_super)(struct super_block *, void *, int))
1089 {
1090 	int error;
1091 	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1092 
1093 	if (IS_ERR(s))
1094 		return ERR_CAST(s);
1095 
1096 	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1097 	if (error) {
1098 		deactivate_locked_super(s);
1099 		return ERR_PTR(error);
1100 	}
1101 	s->s_flags |= MS_ACTIVE;
1102 	return dget(s->s_root);
1103 }
1104 EXPORT_SYMBOL(mount_nodev);
1105 
compare_single(struct super_block * s,void * p)1106 static int compare_single(struct super_block *s, void *p)
1107 {
1108 	return 1;
1109 }
1110 
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1111 struct dentry *mount_single(struct file_system_type *fs_type,
1112 	int flags, void *data,
1113 	int (*fill_super)(struct super_block *, void *, int))
1114 {
1115 	struct super_block *s;
1116 	int error;
1117 
1118 	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1119 	if (IS_ERR(s))
1120 		return ERR_CAST(s);
1121 	if (!s->s_root) {
1122 		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1123 		if (error) {
1124 			deactivate_locked_super(s);
1125 			return ERR_PTR(error);
1126 		}
1127 		s->s_flags |= MS_ACTIVE;
1128 	} else {
1129 		do_remount_sb(s, flags, data, 0);
1130 	}
1131 	return dget(s->s_root);
1132 }
1133 EXPORT_SYMBOL(mount_single);
1134 
1135 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1136 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1137 {
1138 	struct dentry *root;
1139 	struct super_block *sb;
1140 	char *secdata = NULL;
1141 	int error = -ENOMEM;
1142 
1143 	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1144 		secdata = alloc_secdata();
1145 		if (!secdata)
1146 			goto out;
1147 
1148 		error = security_sb_copy_data(data, secdata);
1149 		if (error)
1150 			goto out_free_secdata;
1151 	}
1152 
1153 	if (type->mount2)
1154 		root = type->mount2(mnt, type, flags, name, data);
1155 	else
1156 		root = type->mount(type, flags, name, data);
1157 	if (IS_ERR(root)) {
1158 		error = PTR_ERR(root);
1159 		goto out_free_secdata;
1160 	}
1161 	sb = root->d_sb;
1162 	BUG_ON(!sb);
1163 	WARN_ON(!sb->s_bdi);
1164 
1165 	/*
1166 	 * Write barrier is for super_cache_count(). We place it before setting
1167 	 * MS_BORN as the data dependency between the two functions is the
1168 	 * superblock structure contents that we just set up, not the MS_BORN
1169 	 * flag.
1170 	 */
1171 	smp_wmb();
1172 	sb->s_flags |= MS_BORN;
1173 
1174 	error = security_sb_kern_mount(sb, flags, secdata);
1175 	if (error)
1176 		goto out_sb;
1177 
1178 	/*
1179 	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1180 	 * but s_maxbytes was an unsigned long long for many releases. Throw
1181 	 * this warning for a little while to try and catch filesystems that
1182 	 * violate this rule.
1183 	 */
1184 	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1185 		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1186 
1187 	up_write(&sb->s_umount);
1188 	free_secdata(secdata);
1189 	return root;
1190 out_sb:
1191 	dput(root);
1192 	deactivate_locked_super(sb);
1193 out_free_secdata:
1194 	free_secdata(secdata);
1195 out:
1196 	return ERR_PTR(error);
1197 }
1198 
1199 /*
1200  * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1201  * instead.
1202  */
__sb_end_write(struct super_block * sb,int level)1203 void __sb_end_write(struct super_block *sb, int level)
1204 {
1205 	percpu_up_read(sb->s_writers.rw_sem + level-1);
1206 }
1207 EXPORT_SYMBOL(__sb_end_write);
1208 
1209 /*
1210  * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1211  * instead.
1212  */
__sb_start_write(struct super_block * sb,int level,bool wait)1213 int __sb_start_write(struct super_block *sb, int level, bool wait)
1214 {
1215 	bool force_trylock = false;
1216 	int ret = 1;
1217 
1218 #ifdef CONFIG_LOCKDEP
1219 	/*
1220 	 * We want lockdep to tell us about possible deadlocks with freezing
1221 	 * but it's it bit tricky to properly instrument it. Getting a freeze
1222 	 * protection works as getting a read lock but there are subtle
1223 	 * problems. XFS for example gets freeze protection on internal level
1224 	 * twice in some cases, which is OK only because we already hold a
1225 	 * freeze protection also on higher level. Due to these cases we have
1226 	 * to use wait == F (trylock mode) which must not fail.
1227 	 */
1228 	if (wait) {
1229 		int i;
1230 
1231 		for (i = 0; i < level - 1; i++)
1232 			if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1233 				force_trylock = true;
1234 				break;
1235 			}
1236 	}
1237 #endif
1238 	if (wait && !force_trylock)
1239 		percpu_down_read(sb->s_writers.rw_sem + level-1);
1240 	else
1241 		ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1242 
1243 	WARN_ON(force_trylock & !ret);
1244 	return ret;
1245 }
1246 EXPORT_SYMBOL(__sb_start_write);
1247 
1248 /**
1249  * sb_wait_write - wait until all writers to given file system finish
1250  * @sb: the super for which we wait
1251  * @level: type of writers we wait for (normal vs page fault)
1252  *
1253  * This function waits until there are no writers of given type to given file
1254  * system.
1255  */
sb_wait_write(struct super_block * sb,int level)1256 static void sb_wait_write(struct super_block *sb, int level)
1257 {
1258 	percpu_down_write(sb->s_writers.rw_sem + level-1);
1259 	/*
1260 	 * We are going to return to userspace and forget about this lock, the
1261 	 * ownership goes to the caller of thaw_super() which does unlock.
1262 	 *
1263 	 * FIXME: we should do this before return from freeze_super() after we
1264 	 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1265 	 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1266 	 * this leads to lockdep false-positives, so currently we do the early
1267 	 * release right after acquire.
1268 	 */
1269 	percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1270 }
1271 
sb_freeze_unlock(struct super_block * sb)1272 static void sb_freeze_unlock(struct super_block *sb)
1273 {
1274 	int level;
1275 
1276 	for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1277 		percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1278 
1279 	for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1280 		percpu_up_write(sb->s_writers.rw_sem + level);
1281 }
1282 
1283 /**
1284  * freeze_super - lock the filesystem and force it into a consistent state
1285  * @sb: the super to lock
1286  *
1287  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1288  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1289  * -EBUSY.
1290  *
1291  * During this function, sb->s_writers.frozen goes through these values:
1292  *
1293  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1294  *
1295  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1296  * writes should be blocked, though page faults are still allowed. We wait for
1297  * all writes to complete and then proceed to the next stage.
1298  *
1299  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1300  * but internal fs threads can still modify the filesystem (although they
1301  * should not dirty new pages or inodes), writeback can run etc. After waiting
1302  * for all running page faults we sync the filesystem which will clean all
1303  * dirty pages and inodes (no new dirty pages or inodes can be created when
1304  * sync is running).
1305  *
1306  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1307  * modification are blocked (e.g. XFS preallocation truncation on inode
1308  * reclaim). This is usually implemented by blocking new transactions for
1309  * filesystems that have them and need this additional guard. After all
1310  * internal writers are finished we call ->freeze_fs() to finish filesystem
1311  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1312  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1313  *
1314  * sb->s_writers.frozen is protected by sb->s_umount.
1315  */
freeze_super(struct super_block * sb)1316 int freeze_super(struct super_block *sb)
1317 {
1318 	int ret;
1319 
1320 	atomic_inc(&sb->s_active);
1321 	down_write(&sb->s_umount);
1322 	if (sb->s_writers.frozen != SB_UNFROZEN) {
1323 		deactivate_locked_super(sb);
1324 		return -EBUSY;
1325 	}
1326 
1327 	if (!(sb->s_flags & MS_BORN)) {
1328 		up_write(&sb->s_umount);
1329 		return 0;	/* sic - it's "nothing to do" */
1330 	}
1331 
1332 	if (sb->s_flags & MS_RDONLY) {
1333 		/* Nothing to do really... */
1334 		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1335 		up_write(&sb->s_umount);
1336 		return 0;
1337 	}
1338 
1339 	sb->s_writers.frozen = SB_FREEZE_WRITE;
1340 	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1341 	up_write(&sb->s_umount);
1342 	sb_wait_write(sb, SB_FREEZE_WRITE);
1343 	down_write(&sb->s_umount);
1344 
1345 	/* Now we go and block page faults... */
1346 	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1347 	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1348 
1349 	/* All writers are done so after syncing there won't be dirty data */
1350 	sync_filesystem(sb);
1351 
1352 	/* Now wait for internal filesystem counter */
1353 	sb->s_writers.frozen = SB_FREEZE_FS;
1354 	sb_wait_write(sb, SB_FREEZE_FS);
1355 
1356 	if (sb->s_op->freeze_fs) {
1357 		ret = sb->s_op->freeze_fs(sb);
1358 		if (ret) {
1359 			printk(KERN_ERR
1360 				"VFS:Filesystem freeze failed\n");
1361 			sb->s_writers.frozen = SB_UNFROZEN;
1362 			sb_freeze_unlock(sb);
1363 			wake_up(&sb->s_writers.wait_unfrozen);
1364 			deactivate_locked_super(sb);
1365 			return ret;
1366 		}
1367 	}
1368 	/*
1369 	 * For debugging purposes so that fs can warn if it sees write activity
1370 	 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1371 	 */
1372 	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1373 	up_write(&sb->s_umount);
1374 	return 0;
1375 }
1376 EXPORT_SYMBOL(freeze_super);
1377 
1378 /**
1379  * thaw_super -- unlock filesystem
1380  * @sb: the super to thaw
1381  *
1382  * Unlocks the filesystem and marks it writeable again after freeze_super().
1383  */
thaw_super(struct super_block * sb)1384 int thaw_super(struct super_block *sb)
1385 {
1386 	int error;
1387 
1388 	down_write(&sb->s_umount);
1389 	if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1390 		up_write(&sb->s_umount);
1391 		return -EINVAL;
1392 	}
1393 
1394 	if (sb->s_flags & MS_RDONLY) {
1395 		sb->s_writers.frozen = SB_UNFROZEN;
1396 		goto out;
1397 	}
1398 
1399 	if (sb->s_op->unfreeze_fs) {
1400 		error = sb->s_op->unfreeze_fs(sb);
1401 		if (error) {
1402 			printk(KERN_ERR
1403 				"VFS:Filesystem thaw failed\n");
1404 			up_write(&sb->s_umount);
1405 			return error;
1406 		}
1407 	}
1408 
1409 	sb->s_writers.frozen = SB_UNFROZEN;
1410 	sb_freeze_unlock(sb);
1411 out:
1412 	wake_up(&sb->s_writers.wait_unfrozen);
1413 	deactivate_locked_super(sb);
1414 	return 0;
1415 }
1416 EXPORT_SYMBOL(thaw_super);
1417