1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51
52 #include "timekeeping.h"
53
54 /*
55 * Management arrays for POSIX timers. Timers are now kept in static hash table
56 * with 512 entries.
57 * Timer ids are allocated by local routine, which selects proper hash head by
58 * key, constructed from current->signal address and per signal struct counter.
59 * This keeps timer ids unique per process, but now they can intersect between
60 * processes.
61 */
62
63 /*
64 * Lets keep our timers in a slab cache :-)
65 */
66 static struct kmem_cache *posix_timers_cache;
67
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
70
71 /*
72 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73 * SIGEV values. Here we put out an error if this assumption fails.
74 */
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
79
80 /*
81 * parisc wants ENOTSUP instead of EOPNOTSUPP
82 */
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
88
89 /*
90 * The timer ID is turned into a timer address by idr_find().
91 * Verifying a valid ID consists of:
92 *
93 * a) checking that idr_find() returns other than -1.
94 * b) checking that the timer id matches the one in the timer itself.
95 * c) that the timer owner is in the callers thread group.
96 */
97
98 /*
99 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100 * to implement others. This structure defines the various
101 * clocks.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to
112 * handle various clock functions.
113 *
114 * The standard POSIX timer management code assumes the
115 * following: 1.) The k_itimer struct (sched.h) is used for
116 * the timer. 2.) The list, it_lock, it_clock, it_id and
117 * it_pid fields are not modified by timer code.
118 *
119 * Permissions: It is assumed that the clock_settime() function defined
120 * for each clock will take care of permission checks. Some
121 * clocks may be set able by any user (i.e. local process
122 * clocks) others not. Currently the only set able clock we
123 * have is CLOCK_REALTIME and its high res counter part, both of
124 * which we beg off on and pass to do_sys_settimeofday().
125 */
126
127 static struct k_clock posix_clocks[MAX_CLOCKS];
128
129 /*
130 * These ones are defined below.
131 */
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
139
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
141
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
143
144 #define lock_timer(tid, flags) \
145 ({ struct k_itimer *__timr; \
146 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
147 __timr; \
148 })
149
hash(struct signal_struct * sig,unsigned int nr)150 static int hash(struct signal_struct *sig, unsigned int nr)
151 {
152 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
153 }
154
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 struct signal_struct *sig,
157 timer_t id)
158 {
159 struct k_itimer *timer;
160
161 hlist_for_each_entry_rcu(timer, head, t_hash) {
162 if ((timer->it_signal == sig) && (timer->it_id == id))
163 return timer;
164 }
165 return NULL;
166 }
167
posix_timer_by_id(timer_t id)168 static struct k_itimer *posix_timer_by_id(timer_t id)
169 {
170 struct signal_struct *sig = current->signal;
171 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
172
173 return __posix_timers_find(head, sig, id);
174 }
175
posix_timer_add(struct k_itimer * timer)176 static int posix_timer_add(struct k_itimer *timer)
177 {
178 struct signal_struct *sig = current->signal;
179 int first_free_id = sig->posix_timer_id;
180 struct hlist_head *head;
181 int ret = -ENOENT;
182
183 do {
184 spin_lock(&hash_lock);
185 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 hlist_add_head_rcu(&timer->t_hash, head);
188 ret = sig->posix_timer_id;
189 }
190 if (++sig->posix_timer_id < 0)
191 sig->posix_timer_id = 0;
192 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 /* Loop over all possible ids completed */
194 ret = -EAGAIN;
195 spin_unlock(&hash_lock);
196 } while (ret == -ENOENT);
197 return ret;
198 }
199
unlock_timer(struct k_itimer * timr,unsigned long flags)200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
201 {
202 spin_unlock_irqrestore(&timr->it_lock, flags);
203 }
204
205 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
207 {
208 ktime_get_real_ts(tp);
209 return 0;
210 }
211
212 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 const struct timespec *tp)
215 {
216 return do_sys_settimeofday(tp, NULL);
217 }
218
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 struct timex *t)
221 {
222 return do_adjtimex(t);
223 }
224
225 /*
226 * Get monotonic time for posix timers
227 */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
229 {
230 ktime_get_ts(tp);
231 return 0;
232 }
233
234 /*
235 * Get monotonic-raw time for posix timers
236 */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
238 {
239 getrawmonotonic(tp);
240 return 0;
241 }
242
243
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
245 {
246 *tp = current_kernel_time();
247 return 0;
248 }
249
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 struct timespec *tp)
252 {
253 *tp = get_monotonic_coarse();
254 return 0;
255 }
256
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
258 {
259 *tp = ktime_to_timespec(KTIME_LOW_RES);
260 return 0;
261 }
262
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
264 {
265 get_monotonic_boottime(tp);
266 return 0;
267 }
268
posix_get_tai(clockid_t which_clock,struct timespec * tp)269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
270 {
271 timekeeping_clocktai(tp);
272 return 0;
273 }
274
posix_get_hrtimer_res(clockid_t which_clock,struct timespec * tp)275 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp)
276 {
277 tp->tv_sec = 0;
278 tp->tv_nsec = hrtimer_resolution;
279 return 0;
280 }
281
282 /*
283 * Initialize everything, well, just everything in Posix clocks/timers ;)
284 */
init_posix_timers(void)285 static __init int init_posix_timers(void)
286 {
287 struct k_clock clock_realtime = {
288 .clock_getres = posix_get_hrtimer_res,
289 .clock_get = posix_clock_realtime_get,
290 .clock_set = posix_clock_realtime_set,
291 .clock_adj = posix_clock_realtime_adj,
292 .nsleep = common_nsleep,
293 .nsleep_restart = hrtimer_nanosleep_restart,
294 .timer_create = common_timer_create,
295 .timer_set = common_timer_set,
296 .timer_get = common_timer_get,
297 .timer_del = common_timer_del,
298 };
299 struct k_clock clock_monotonic = {
300 .clock_getres = posix_get_hrtimer_res,
301 .clock_get = posix_ktime_get_ts,
302 .nsleep = common_nsleep,
303 .nsleep_restart = hrtimer_nanosleep_restart,
304 .timer_create = common_timer_create,
305 .timer_set = common_timer_set,
306 .timer_get = common_timer_get,
307 .timer_del = common_timer_del,
308 };
309 struct k_clock clock_monotonic_raw = {
310 .clock_getres = posix_get_hrtimer_res,
311 .clock_get = posix_get_monotonic_raw,
312 };
313 struct k_clock clock_realtime_coarse = {
314 .clock_getres = posix_get_coarse_res,
315 .clock_get = posix_get_realtime_coarse,
316 };
317 struct k_clock clock_monotonic_coarse = {
318 .clock_getres = posix_get_coarse_res,
319 .clock_get = posix_get_monotonic_coarse,
320 };
321 struct k_clock clock_tai = {
322 .clock_getres = posix_get_hrtimer_res,
323 .clock_get = posix_get_tai,
324 .nsleep = common_nsleep,
325 .nsleep_restart = hrtimer_nanosleep_restart,
326 .timer_create = common_timer_create,
327 .timer_set = common_timer_set,
328 .timer_get = common_timer_get,
329 .timer_del = common_timer_del,
330 };
331 struct k_clock clock_boottime = {
332 .clock_getres = posix_get_hrtimer_res,
333 .clock_get = posix_get_boottime,
334 .nsleep = common_nsleep,
335 .nsleep_restart = hrtimer_nanosleep_restart,
336 .timer_create = common_timer_create,
337 .timer_set = common_timer_set,
338 .timer_get = common_timer_get,
339 .timer_del = common_timer_del,
340 };
341
342 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
343 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
344 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
345 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
346 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
347 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
348 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
349
350 posix_timers_cache = kmem_cache_create("posix_timers_cache",
351 sizeof (struct k_itimer), 0, SLAB_PANIC,
352 NULL);
353 return 0;
354 }
355
356 __initcall(init_posix_timers);
357
358 /*
359 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
360 * are of type int. Clamp the overrun value to INT_MAX
361 */
timer_overrun_to_int(struct k_itimer * timr,int baseval)362 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
363 {
364 s64 sum = timr->it_overrun_last + (s64)baseval;
365
366 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
367 }
368
schedule_next_timer(struct k_itimer * timr)369 static void schedule_next_timer(struct k_itimer *timr)
370 {
371 struct hrtimer *timer = &timr->it.real.timer;
372
373 if (timr->it.real.interval.tv64 == 0)
374 return;
375
376 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
377 timr->it.real.interval);
378
379 timr->it_overrun_last = timr->it_overrun;
380 timr->it_overrun = -1LL;
381 ++timr->it_requeue_pending;
382 hrtimer_restart(timer);
383 }
384
385 /*
386 * This function is exported for use by the signal deliver code. It is
387 * called just prior to the info block being released and passes that
388 * block to us. It's function is to update the overrun entry AND to
389 * restart the timer. It should only be called if the timer is to be
390 * restarted (i.e. we have flagged this in the sys_private entry of the
391 * info block).
392 *
393 * To protect against the timer going away while the interrupt is queued,
394 * we require that the it_requeue_pending flag be set.
395 */
do_schedule_next_timer(struct siginfo * info)396 void do_schedule_next_timer(struct siginfo *info)
397 {
398 struct k_itimer *timr;
399 unsigned long flags;
400
401 timr = lock_timer(info->si_tid, &flags);
402
403 if (timr && timr->it_requeue_pending == info->si_sys_private) {
404 if (timr->it_clock < 0)
405 posix_cpu_timer_schedule(timr);
406 else
407 schedule_next_timer(timr);
408
409 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
410 }
411
412 if (timr)
413 unlock_timer(timr, flags);
414 }
415
posix_timer_event(struct k_itimer * timr,int si_private)416 int posix_timer_event(struct k_itimer *timr, int si_private)
417 {
418 struct task_struct *task;
419 int shared, ret = -1;
420 /*
421 * FIXME: if ->sigq is queued we can race with
422 * dequeue_signal()->do_schedule_next_timer().
423 *
424 * If dequeue_signal() sees the "right" value of
425 * si_sys_private it calls do_schedule_next_timer().
426 * We re-queue ->sigq and drop ->it_lock().
427 * do_schedule_next_timer() locks the timer
428 * and re-schedules it while ->sigq is pending.
429 * Not really bad, but not that we want.
430 */
431 timr->sigq->info.si_sys_private = si_private;
432
433 rcu_read_lock();
434 task = pid_task(timr->it_pid, PIDTYPE_PID);
435 if (task) {
436 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
437 ret = send_sigqueue(timr->sigq, task, shared);
438 }
439 rcu_read_unlock();
440 /* If we failed to send the signal the timer stops. */
441 return ret > 0;
442 }
443 EXPORT_SYMBOL_GPL(posix_timer_event);
444
445 /*
446 * This function gets called when a POSIX.1b interval timer expires. It
447 * is used as a callback from the kernel internal timer. The
448 * run_timer_list code ALWAYS calls with interrupts on.
449
450 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
451 */
posix_timer_fn(struct hrtimer * timer)452 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
453 {
454 struct k_itimer *timr;
455 unsigned long flags;
456 int si_private = 0;
457 enum hrtimer_restart ret = HRTIMER_NORESTART;
458
459 timr = container_of(timer, struct k_itimer, it.real.timer);
460 spin_lock_irqsave(&timr->it_lock, flags);
461
462 if (timr->it.real.interval.tv64 != 0)
463 si_private = ++timr->it_requeue_pending;
464
465 if (posix_timer_event(timr, si_private)) {
466 /*
467 * signal was not sent because of sig_ignor
468 * we will not get a call back to restart it AND
469 * it should be restarted.
470 */
471 if (timr->it.real.interval.tv64 != 0) {
472 ktime_t now = hrtimer_cb_get_time(timer);
473
474 /*
475 * FIXME: What we really want, is to stop this
476 * timer completely and restart it in case the
477 * SIG_IGN is removed. This is a non trivial
478 * change which involves sighand locking
479 * (sigh !), which we don't want to do late in
480 * the release cycle.
481 *
482 * For now we just let timers with an interval
483 * less than a jiffie expire every jiffie to
484 * avoid softirq starvation in case of SIG_IGN
485 * and a very small interval, which would put
486 * the timer right back on the softirq pending
487 * list. By moving now ahead of time we trick
488 * hrtimer_forward() to expire the timer
489 * later, while we still maintain the overrun
490 * accuracy, but have some inconsistency in
491 * the timer_gettime() case. This is at least
492 * better than a starved softirq. A more
493 * complex fix which solves also another related
494 * inconsistency is already in the pipeline.
495 */
496 #ifdef CONFIG_HIGH_RES_TIMERS
497 {
498 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
499
500 if (timr->it.real.interval.tv64 < kj.tv64)
501 now = ktime_add(now, kj);
502 }
503 #endif
504 timr->it_overrun += hrtimer_forward(timer, now,
505 timr->it.real.interval);
506 ret = HRTIMER_RESTART;
507 ++timr->it_requeue_pending;
508 }
509 }
510
511 unlock_timer(timr, flags);
512 return ret;
513 }
514
good_sigevent(sigevent_t * event)515 static struct pid *good_sigevent(sigevent_t * event)
516 {
517 struct task_struct *rtn = current->group_leader;
518
519 switch (event->sigev_notify) {
520 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
521 rtn = find_task_by_vpid(event->sigev_notify_thread_id);
522 if (!rtn || !same_thread_group(rtn, current))
523 return NULL;
524 /* FALLTHRU */
525 case SIGEV_SIGNAL:
526 case SIGEV_THREAD:
527 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
528 return NULL;
529 /* FALLTHRU */
530 case SIGEV_NONE:
531 return task_pid(rtn);
532 default:
533 return NULL;
534 }
535 }
536
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)537 void posix_timers_register_clock(const clockid_t clock_id,
538 struct k_clock *new_clock)
539 {
540 if ((unsigned) clock_id >= MAX_CLOCKS) {
541 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
542 clock_id);
543 return;
544 }
545
546 if (!new_clock->clock_get) {
547 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
548 clock_id);
549 return;
550 }
551 if (!new_clock->clock_getres) {
552 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
553 clock_id);
554 return;
555 }
556
557 posix_clocks[clock_id] = *new_clock;
558 }
559 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
560
alloc_posix_timer(void)561 static struct k_itimer * alloc_posix_timer(void)
562 {
563 struct k_itimer *tmr;
564 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
565 if (!tmr)
566 return tmr;
567 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
568 kmem_cache_free(posix_timers_cache, tmr);
569 return NULL;
570 }
571 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
572 return tmr;
573 }
574
k_itimer_rcu_free(struct rcu_head * head)575 static void k_itimer_rcu_free(struct rcu_head *head)
576 {
577 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
578
579 kmem_cache_free(posix_timers_cache, tmr);
580 }
581
582 #define IT_ID_SET 1
583 #define IT_ID_NOT_SET 0
release_posix_timer(struct k_itimer * tmr,int it_id_set)584 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
585 {
586 if (it_id_set) {
587 unsigned long flags;
588 spin_lock_irqsave(&hash_lock, flags);
589 hlist_del_rcu(&tmr->t_hash);
590 spin_unlock_irqrestore(&hash_lock, flags);
591 }
592 put_pid(tmr->it_pid);
593 sigqueue_free(tmr->sigq);
594 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
595 }
596
clockid_to_kclock(const clockid_t id)597 static struct k_clock *clockid_to_kclock(const clockid_t id)
598 {
599 if (id < 0)
600 return (id & CLOCKFD_MASK) == CLOCKFD ?
601 &clock_posix_dynamic : &clock_posix_cpu;
602
603 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
604 return NULL;
605 return &posix_clocks[id];
606 }
607
common_timer_create(struct k_itimer * new_timer)608 static int common_timer_create(struct k_itimer *new_timer)
609 {
610 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
611 return 0;
612 }
613
614 /* Create a POSIX.1b interval timer. */
615
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)616 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
617 struct sigevent __user *, timer_event_spec,
618 timer_t __user *, created_timer_id)
619 {
620 struct k_clock *kc = clockid_to_kclock(which_clock);
621 struct k_itimer *new_timer;
622 int error, new_timer_id;
623 sigevent_t event;
624 int it_id_set = IT_ID_NOT_SET;
625
626 if (!kc)
627 return -EINVAL;
628 if (!kc->timer_create)
629 return -EOPNOTSUPP;
630
631 new_timer = alloc_posix_timer();
632 if (unlikely(!new_timer))
633 return -EAGAIN;
634
635 spin_lock_init(&new_timer->it_lock);
636 new_timer_id = posix_timer_add(new_timer);
637 if (new_timer_id < 0) {
638 error = new_timer_id;
639 goto out;
640 }
641
642 it_id_set = IT_ID_SET;
643 new_timer->it_id = (timer_t) new_timer_id;
644 new_timer->it_clock = which_clock;
645 new_timer->it_overrun = -1LL;
646
647 if (timer_event_spec) {
648 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
649 error = -EFAULT;
650 goto out;
651 }
652 rcu_read_lock();
653 new_timer->it_pid = get_pid(good_sigevent(&event));
654 rcu_read_unlock();
655 if (!new_timer->it_pid) {
656 error = -EINVAL;
657 goto out;
658 }
659 } else {
660 memset(&event.sigev_value, 0, sizeof(event.sigev_value));
661 event.sigev_notify = SIGEV_SIGNAL;
662 event.sigev_signo = SIGALRM;
663 event.sigev_value.sival_int = new_timer->it_id;
664 new_timer->it_pid = get_pid(task_tgid(current));
665 }
666
667 new_timer->it_sigev_notify = event.sigev_notify;
668 new_timer->sigq->info.si_signo = event.sigev_signo;
669 new_timer->sigq->info.si_value = event.sigev_value;
670 new_timer->sigq->info.si_tid = new_timer->it_id;
671 new_timer->sigq->info.si_code = SI_TIMER;
672
673 if (copy_to_user(created_timer_id,
674 &new_timer_id, sizeof (new_timer_id))) {
675 error = -EFAULT;
676 goto out;
677 }
678
679 error = kc->timer_create(new_timer);
680 if (error)
681 goto out;
682
683 spin_lock_irq(¤t->sighand->siglock);
684 new_timer->it_signal = current->signal;
685 list_add(&new_timer->list, ¤t->signal->posix_timers);
686 spin_unlock_irq(¤t->sighand->siglock);
687
688 return 0;
689 /*
690 * In the case of the timer belonging to another task, after
691 * the task is unlocked, the timer is owned by the other task
692 * and may cease to exist at any time. Don't use or modify
693 * new_timer after the unlock call.
694 */
695 out:
696 release_posix_timer(new_timer, it_id_set);
697 return error;
698 }
699
700 /*
701 * Locking issues: We need to protect the result of the id look up until
702 * we get the timer locked down so it is not deleted under us. The
703 * removal is done under the idr spinlock so we use that here to bridge
704 * the find to the timer lock. To avoid a dead lock, the timer id MUST
705 * be release with out holding the timer lock.
706 */
__lock_timer(timer_t timer_id,unsigned long * flags)707 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
708 {
709 struct k_itimer *timr;
710
711 /*
712 * timer_t could be any type >= int and we want to make sure any
713 * @timer_id outside positive int range fails lookup.
714 */
715 if ((unsigned long long)timer_id > INT_MAX)
716 return NULL;
717
718 rcu_read_lock();
719 timr = posix_timer_by_id(timer_id);
720 if (timr) {
721 spin_lock_irqsave(&timr->it_lock, *flags);
722 if (timr->it_signal == current->signal) {
723 rcu_read_unlock();
724 return timr;
725 }
726 spin_unlock_irqrestore(&timr->it_lock, *flags);
727 }
728 rcu_read_unlock();
729
730 return NULL;
731 }
732
733 /*
734 * Get the time remaining on a POSIX.1b interval timer. This function
735 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
736 * mess with irq.
737 *
738 * We have a couple of messes to clean up here. First there is the case
739 * of a timer that has a requeue pending. These timers should appear to
740 * be in the timer list with an expiry as if we were to requeue them
741 * now.
742 *
743 * The second issue is the SIGEV_NONE timer which may be active but is
744 * not really ever put in the timer list (to save system resources).
745 * This timer may be expired, and if so, we will do it here. Otherwise
746 * it is the same as a requeue pending timer WRT to what we should
747 * report.
748 */
749 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)750 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
751 {
752 ktime_t now, remaining, iv;
753 struct hrtimer *timer = &timr->it.real.timer;
754
755 memset(cur_setting, 0, sizeof(struct itimerspec));
756
757 iv = timr->it.real.interval;
758
759 /* interval timer ? */
760 if (iv.tv64)
761 cur_setting->it_interval = ktime_to_timespec(iv);
762 else if (!hrtimer_active(timer) && timr->it_sigev_notify != SIGEV_NONE)
763 return;
764
765 now = timer->base->get_time();
766
767 /*
768 * When a requeue is pending or this is a SIGEV_NONE
769 * timer move the expiry time forward by intervals, so
770 * expiry is > now.
771 */
772 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
773 timr->it_sigev_notify == SIGEV_NONE))
774 timr->it_overrun += hrtimer_forward(timer, now, iv);
775
776 remaining = __hrtimer_expires_remaining_adjusted(timer, now);
777 /* Return 0 only, when the timer is expired and not pending */
778 if (remaining.tv64 <= 0) {
779 /*
780 * A single shot SIGEV_NONE timer must return 0, when
781 * it is expired !
782 */
783 if (timr->it_sigev_notify != SIGEV_NONE)
784 cur_setting->it_value.tv_nsec = 1;
785 } else
786 cur_setting->it_value = ktime_to_timespec(remaining);
787 }
788
789 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)790 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
791 struct itimerspec __user *, setting)
792 {
793 struct itimerspec cur_setting;
794 struct k_itimer *timr;
795 struct k_clock *kc;
796 unsigned long flags;
797 int ret = 0;
798
799 timr = lock_timer(timer_id, &flags);
800 if (!timr)
801 return -EINVAL;
802
803 kc = clockid_to_kclock(timr->it_clock);
804 if (WARN_ON_ONCE(!kc || !kc->timer_get))
805 ret = -EINVAL;
806 else
807 kc->timer_get(timr, &cur_setting);
808
809 unlock_timer(timr, flags);
810
811 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
812 return -EFAULT;
813
814 return ret;
815 }
816
817 /*
818 * Get the number of overruns of a POSIX.1b interval timer. This is to
819 * be the overrun of the timer last delivered. At the same time we are
820 * accumulating overruns on the next timer. The overrun is frozen when
821 * the signal is delivered, either at the notify time (if the info block
822 * is not queued) or at the actual delivery time (as we are informed by
823 * the call back to do_schedule_next_timer(). So all we need to do is
824 * to pick up the frozen overrun.
825 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)826 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
827 {
828 struct k_itimer *timr;
829 int overrun;
830 unsigned long flags;
831
832 timr = lock_timer(timer_id, &flags);
833 if (!timr)
834 return -EINVAL;
835
836 overrun = timer_overrun_to_int(timr, 0);
837 unlock_timer(timr, flags);
838
839 return overrun;
840 }
841
842 /* Set a POSIX.1b interval timer. */
843 /* timr->it_lock is taken. */
844 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)845 common_timer_set(struct k_itimer *timr, int flags,
846 struct itimerspec *new_setting, struct itimerspec *old_setting)
847 {
848 struct hrtimer *timer = &timr->it.real.timer;
849 enum hrtimer_mode mode;
850
851 if (old_setting)
852 common_timer_get(timr, old_setting);
853
854 /* disable the timer */
855 timr->it.real.interval.tv64 = 0;
856 /*
857 * careful here. If smp we could be in the "fire" routine which will
858 * be spinning as we hold the lock. But this is ONLY an SMP issue.
859 */
860 if (hrtimer_try_to_cancel(timer) < 0)
861 return TIMER_RETRY;
862
863 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
864 ~REQUEUE_PENDING;
865 timr->it_overrun_last = 0;
866
867 /* switch off the timer when it_value is zero */
868 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
869 return 0;
870
871 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
872 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
873 timr->it.real.timer.function = posix_timer_fn;
874
875 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
876
877 /* Convert interval */
878 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
879
880 /* SIGEV_NONE timers are not queued ! See common_timer_get */
881 if (timr->it_sigev_notify == SIGEV_NONE) {
882 /* Setup correct expiry time for relative timers */
883 if (mode == HRTIMER_MODE_REL) {
884 hrtimer_add_expires(timer, timer->base->get_time());
885 }
886 return 0;
887 }
888
889 hrtimer_start_expires(timer, mode);
890 return 0;
891 }
892
893 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)894 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
895 const struct itimerspec __user *, new_setting,
896 struct itimerspec __user *, old_setting)
897 {
898 struct k_itimer *timr;
899 struct itimerspec new_spec, old_spec;
900 int error = 0;
901 unsigned long flag;
902 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
903 struct k_clock *kc;
904
905 if (!new_setting)
906 return -EINVAL;
907
908 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
909 return -EFAULT;
910
911 if (!timespec_valid(&new_spec.it_interval) ||
912 !timespec_valid(&new_spec.it_value))
913 return -EINVAL;
914 retry:
915 timr = lock_timer(timer_id, &flag);
916 if (!timr)
917 return -EINVAL;
918
919 kc = clockid_to_kclock(timr->it_clock);
920 if (WARN_ON_ONCE(!kc || !kc->timer_set))
921 error = -EINVAL;
922 else
923 error = kc->timer_set(timr, flags, &new_spec, rtn);
924
925 unlock_timer(timr, flag);
926 if (error == TIMER_RETRY) {
927 rtn = NULL; // We already got the old time...
928 goto retry;
929 }
930
931 if (old_setting && !error &&
932 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
933 error = -EFAULT;
934
935 return error;
936 }
937
common_timer_del(struct k_itimer * timer)938 static int common_timer_del(struct k_itimer *timer)
939 {
940 timer->it.real.interval.tv64 = 0;
941
942 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
943 return TIMER_RETRY;
944 return 0;
945 }
946
timer_delete_hook(struct k_itimer * timer)947 static inline int timer_delete_hook(struct k_itimer *timer)
948 {
949 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
950
951 if (WARN_ON_ONCE(!kc || !kc->timer_del))
952 return -EINVAL;
953 return kc->timer_del(timer);
954 }
955
956 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)957 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
958 {
959 struct k_itimer *timer;
960 unsigned long flags;
961
962 retry_delete:
963 timer = lock_timer(timer_id, &flags);
964 if (!timer)
965 return -EINVAL;
966
967 if (timer_delete_hook(timer) == TIMER_RETRY) {
968 unlock_timer(timer, flags);
969 goto retry_delete;
970 }
971
972 spin_lock(¤t->sighand->siglock);
973 list_del(&timer->list);
974 spin_unlock(¤t->sighand->siglock);
975 /*
976 * This keeps any tasks waiting on the spin lock from thinking
977 * they got something (see the lock code above).
978 */
979 timer->it_signal = NULL;
980
981 unlock_timer(timer, flags);
982 release_posix_timer(timer, IT_ID_SET);
983 return 0;
984 }
985
986 /*
987 * return timer owned by the process, used by exit_itimers
988 */
itimer_delete(struct k_itimer * timer)989 static void itimer_delete(struct k_itimer *timer)
990 {
991 unsigned long flags;
992
993 retry_delete:
994 spin_lock_irqsave(&timer->it_lock, flags);
995
996 if (timer_delete_hook(timer) == TIMER_RETRY) {
997 unlock_timer(timer, flags);
998 goto retry_delete;
999 }
1000 list_del(&timer->list);
1001 /*
1002 * This keeps any tasks waiting on the spin lock from thinking
1003 * they got something (see the lock code above).
1004 */
1005 timer->it_signal = NULL;
1006
1007 unlock_timer(timer, flags);
1008 release_posix_timer(timer, IT_ID_SET);
1009 }
1010
1011 /*
1012 * This is called by do_exit or de_thread, only when there are no more
1013 * references to the shared signal_struct.
1014 */
exit_itimers(struct signal_struct * sig)1015 void exit_itimers(struct signal_struct *sig)
1016 {
1017 struct k_itimer *tmr;
1018
1019 while (!list_empty(&sig->posix_timers)) {
1020 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1021 itimer_delete(tmr);
1022 }
1023 }
1024
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)1025 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1026 const struct timespec __user *, tp)
1027 {
1028 struct k_clock *kc = clockid_to_kclock(which_clock);
1029 struct timespec new_tp;
1030
1031 if (!kc || !kc->clock_set)
1032 return -EINVAL;
1033
1034 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1035 return -EFAULT;
1036
1037 return kc->clock_set(which_clock, &new_tp);
1038 }
1039
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)1040 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1041 struct timespec __user *,tp)
1042 {
1043 struct k_clock *kc = clockid_to_kclock(which_clock);
1044 struct timespec kernel_tp;
1045 int error;
1046
1047 if (!kc)
1048 return -EINVAL;
1049
1050 error = kc->clock_get(which_clock, &kernel_tp);
1051
1052 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1053 error = -EFAULT;
1054
1055 return error;
1056 }
1057
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1058 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1059 struct timex __user *, utx)
1060 {
1061 struct k_clock *kc = clockid_to_kclock(which_clock);
1062 struct timex ktx;
1063 int err;
1064
1065 if (!kc)
1066 return -EINVAL;
1067 if (!kc->clock_adj)
1068 return -EOPNOTSUPP;
1069
1070 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1071 return -EFAULT;
1072
1073 err = kc->clock_adj(which_clock, &ktx);
1074
1075 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1076 return -EFAULT;
1077
1078 return err;
1079 }
1080
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1081 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1082 struct timespec __user *, tp)
1083 {
1084 struct k_clock *kc = clockid_to_kclock(which_clock);
1085 struct timespec rtn_tp;
1086 int error;
1087
1088 if (!kc)
1089 return -EINVAL;
1090
1091 error = kc->clock_getres(which_clock, &rtn_tp);
1092
1093 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1094 error = -EFAULT;
1095
1096 return error;
1097 }
1098
1099 /*
1100 * nanosleep for monotonic and realtime clocks
1101 */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1102 static int common_nsleep(const clockid_t which_clock, int flags,
1103 struct timespec *tsave, struct timespec __user *rmtp)
1104 {
1105 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1106 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1107 which_clock);
1108 }
1109
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1110 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1111 const struct timespec __user *, rqtp,
1112 struct timespec __user *, rmtp)
1113 {
1114 struct k_clock *kc = clockid_to_kclock(which_clock);
1115 struct timespec t;
1116
1117 if (!kc)
1118 return -EINVAL;
1119 if (!kc->nsleep)
1120 return -ENANOSLEEP_NOTSUP;
1121
1122 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1123 return -EFAULT;
1124
1125 if (!timespec_valid(&t))
1126 return -EINVAL;
1127
1128 return kc->nsleep(which_clock, flags, &t, rmtp);
1129 }
1130
1131 /*
1132 * This will restart clock_nanosleep. This is required only by
1133 * compat_clock_nanosleep_restart for now.
1134 */
clock_nanosleep_restart(struct restart_block * restart_block)1135 long clock_nanosleep_restart(struct restart_block *restart_block)
1136 {
1137 clockid_t which_clock = restart_block->nanosleep.clockid;
1138 struct k_clock *kc = clockid_to_kclock(which_clock);
1139
1140 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1141 return -EINVAL;
1142
1143 return kc->nsleep_restart(restart_block);
1144 }
1145