• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/posix-timers.c
3  *
4  *
5  * 2002-10-15  Posix Clocks & timers
6  *                           by George Anzinger george@mvista.com
7  *
8  *			     Copyright (C) 2002 2003 by MontaVista Software.
9  *
10  * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11  *			     Copyright (C) 2004 Boris Hu
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or (at
16  * your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but
19  * WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21  * General Public License for more details.
22 
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28  */
29 
30 /* These are all the functions necessary to implement
31  * POSIX clocks & timers
32  */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/hash.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50 #include <linux/hashtable.h>
51 
52 #include "timekeeping.h"
53 
54 /*
55  * Management arrays for POSIX timers. Timers are now kept in static hash table
56  * with 512 entries.
57  * Timer ids are allocated by local routine, which selects proper hash head by
58  * key, constructed from current->signal address and per signal struct counter.
59  * This keeps timer ids unique per process, but now they can intersect between
60  * processes.
61  */
62 
63 /*
64  * Lets keep our timers in a slab cache :-)
65  */
66 static struct kmem_cache *posix_timers_cache;
67 
68 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
69 static DEFINE_SPINLOCK(hash_lock);
70 
71 /*
72  * we assume that the new SIGEV_THREAD_ID shares no bits with the other
73  * SIGEV values.  Here we put out an error if this assumption fails.
74  */
75 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
76                        ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
77 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
78 #endif
79 
80 /*
81  * parisc wants ENOTSUP instead of EOPNOTSUPP
82  */
83 #ifndef ENOTSUP
84 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
85 #else
86 # define ENANOSLEEP_NOTSUP ENOTSUP
87 #endif
88 
89 /*
90  * The timer ID is turned into a timer address by idr_find().
91  * Verifying a valid ID consists of:
92  *
93  * a) checking that idr_find() returns other than -1.
94  * b) checking that the timer id matches the one in the timer itself.
95  * c) that the timer owner is in the callers thread group.
96  */
97 
98 /*
99  * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
100  *	    to implement others.  This structure defines the various
101  *	    clocks.
102  *
103  * RESOLUTION: Clock resolution is used to round up timer and interval
104  *	    times, NOT to report clock times, which are reported with as
105  *	    much resolution as the system can muster.  In some cases this
106  *	    resolution may depend on the underlying clock hardware and
107  *	    may not be quantifiable until run time, and only then is the
108  *	    necessary code is written.	The standard says we should say
109  *	    something about this issue in the documentation...
110  *
111  * FUNCTIONS: The CLOCKs structure defines possible functions to
112  *	    handle various clock functions.
113  *
114  *	    The standard POSIX timer management code assumes the
115  *	    following: 1.) The k_itimer struct (sched.h) is used for
116  *	    the timer.  2.) The list, it_lock, it_clock, it_id and
117  *	    it_pid fields are not modified by timer code.
118  *
119  * Permissions: It is assumed that the clock_settime() function defined
120  *	    for each clock will take care of permission checks.	 Some
121  *	    clocks may be set able by any user (i.e. local process
122  *	    clocks) others not.	 Currently the only set able clock we
123  *	    have is CLOCK_REALTIME and its high res counter part, both of
124  *	    which we beg off on and pass to do_sys_settimeofday().
125  */
126 
127 static struct k_clock posix_clocks[MAX_CLOCKS];
128 
129 /*
130  * These ones are defined below.
131  */
132 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
133 			 struct timespec __user *rmtp);
134 static int common_timer_create(struct k_itimer *new_timer);
135 static void common_timer_get(struct k_itimer *, struct itimerspec *);
136 static int common_timer_set(struct k_itimer *, int,
137 			    struct itimerspec *, struct itimerspec *);
138 static int common_timer_del(struct k_itimer *timer);
139 
140 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
141 
142 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
143 
144 #define lock_timer(tid, flags)						   \
145 ({	struct k_itimer *__timr;					   \
146 	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
147 	__timr;								   \
148 })
149 
hash(struct signal_struct * sig,unsigned int nr)150 static int hash(struct signal_struct *sig, unsigned int nr)
151 {
152 	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
153 }
154 
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)155 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
156 					    struct signal_struct *sig,
157 					    timer_t id)
158 {
159 	struct k_itimer *timer;
160 
161 	hlist_for_each_entry_rcu(timer, head, t_hash) {
162 		if ((timer->it_signal == sig) && (timer->it_id == id))
163 			return timer;
164 	}
165 	return NULL;
166 }
167 
posix_timer_by_id(timer_t id)168 static struct k_itimer *posix_timer_by_id(timer_t id)
169 {
170 	struct signal_struct *sig = current->signal;
171 	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
172 
173 	return __posix_timers_find(head, sig, id);
174 }
175 
posix_timer_add(struct k_itimer * timer)176 static int posix_timer_add(struct k_itimer *timer)
177 {
178 	struct signal_struct *sig = current->signal;
179 	int first_free_id = sig->posix_timer_id;
180 	struct hlist_head *head;
181 	int ret = -ENOENT;
182 
183 	do {
184 		spin_lock(&hash_lock);
185 		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
186 		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
187 			hlist_add_head_rcu(&timer->t_hash, head);
188 			ret = sig->posix_timer_id;
189 		}
190 		if (++sig->posix_timer_id < 0)
191 			sig->posix_timer_id = 0;
192 		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
193 			/* Loop over all possible ids completed */
194 			ret = -EAGAIN;
195 		spin_unlock(&hash_lock);
196 	} while (ret == -ENOENT);
197 	return ret;
198 }
199 
unlock_timer(struct k_itimer * timr,unsigned long flags)200 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
201 {
202 	spin_unlock_irqrestore(&timr->it_lock, flags);
203 }
204 
205 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec * tp)206 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
207 {
208 	ktime_get_real_ts(tp);
209 	return 0;
210 }
211 
212 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec * tp)213 static int posix_clock_realtime_set(const clockid_t which_clock,
214 				    const struct timespec *tp)
215 {
216 	return do_sys_settimeofday(tp, NULL);
217 }
218 
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)219 static int posix_clock_realtime_adj(const clockid_t which_clock,
220 				    struct timex *t)
221 {
222 	return do_adjtimex(t);
223 }
224 
225 /*
226  * Get monotonic time for posix timers
227  */
posix_ktime_get_ts(clockid_t which_clock,struct timespec * tp)228 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
229 {
230 	ktime_get_ts(tp);
231 	return 0;
232 }
233 
234 /*
235  * Get monotonic-raw time for posix timers
236  */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec * tp)237 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
238 {
239 	getrawmonotonic(tp);
240 	return 0;
241 }
242 
243 
posix_get_realtime_coarse(clockid_t which_clock,struct timespec * tp)244 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
245 {
246 	*tp = current_kernel_time();
247 	return 0;
248 }
249 
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec * tp)250 static int posix_get_monotonic_coarse(clockid_t which_clock,
251 						struct timespec *tp)
252 {
253 	*tp = get_monotonic_coarse();
254 	return 0;
255 }
256 
posix_get_coarse_res(const clockid_t which_clock,struct timespec * tp)257 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
258 {
259 	*tp = ktime_to_timespec(KTIME_LOW_RES);
260 	return 0;
261 }
262 
posix_get_boottime(const clockid_t which_clock,struct timespec * tp)263 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
264 {
265 	get_monotonic_boottime(tp);
266 	return 0;
267 }
268 
posix_get_tai(clockid_t which_clock,struct timespec * tp)269 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
270 {
271 	timekeeping_clocktai(tp);
272 	return 0;
273 }
274 
posix_get_hrtimer_res(clockid_t which_clock,struct timespec * tp)275 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp)
276 {
277 	tp->tv_sec = 0;
278 	tp->tv_nsec = hrtimer_resolution;
279 	return 0;
280 }
281 
282 /*
283  * Initialize everything, well, just everything in Posix clocks/timers ;)
284  */
init_posix_timers(void)285 static __init int init_posix_timers(void)
286 {
287 	struct k_clock clock_realtime = {
288 		.clock_getres	= posix_get_hrtimer_res,
289 		.clock_get	= posix_clock_realtime_get,
290 		.clock_set	= posix_clock_realtime_set,
291 		.clock_adj	= posix_clock_realtime_adj,
292 		.nsleep		= common_nsleep,
293 		.nsleep_restart	= hrtimer_nanosleep_restart,
294 		.timer_create	= common_timer_create,
295 		.timer_set	= common_timer_set,
296 		.timer_get	= common_timer_get,
297 		.timer_del	= common_timer_del,
298 	};
299 	struct k_clock clock_monotonic = {
300 		.clock_getres	= posix_get_hrtimer_res,
301 		.clock_get	= posix_ktime_get_ts,
302 		.nsleep		= common_nsleep,
303 		.nsleep_restart	= hrtimer_nanosleep_restart,
304 		.timer_create	= common_timer_create,
305 		.timer_set	= common_timer_set,
306 		.timer_get	= common_timer_get,
307 		.timer_del	= common_timer_del,
308 	};
309 	struct k_clock clock_monotonic_raw = {
310 		.clock_getres	= posix_get_hrtimer_res,
311 		.clock_get	= posix_get_monotonic_raw,
312 	};
313 	struct k_clock clock_realtime_coarse = {
314 		.clock_getres	= posix_get_coarse_res,
315 		.clock_get	= posix_get_realtime_coarse,
316 	};
317 	struct k_clock clock_monotonic_coarse = {
318 		.clock_getres	= posix_get_coarse_res,
319 		.clock_get	= posix_get_monotonic_coarse,
320 	};
321 	struct k_clock clock_tai = {
322 		.clock_getres	= posix_get_hrtimer_res,
323 		.clock_get	= posix_get_tai,
324 		.nsleep		= common_nsleep,
325 		.nsleep_restart	= hrtimer_nanosleep_restart,
326 		.timer_create	= common_timer_create,
327 		.timer_set	= common_timer_set,
328 		.timer_get	= common_timer_get,
329 		.timer_del	= common_timer_del,
330 	};
331 	struct k_clock clock_boottime = {
332 		.clock_getres	= posix_get_hrtimer_res,
333 		.clock_get	= posix_get_boottime,
334 		.nsleep		= common_nsleep,
335 		.nsleep_restart	= hrtimer_nanosleep_restart,
336 		.timer_create	= common_timer_create,
337 		.timer_set	= common_timer_set,
338 		.timer_get	= common_timer_get,
339 		.timer_del	= common_timer_del,
340 	};
341 
342 	posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
343 	posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
344 	posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
345 	posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
346 	posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
347 	posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
348 	posix_timers_register_clock(CLOCK_TAI, &clock_tai);
349 
350 	posix_timers_cache = kmem_cache_create("posix_timers_cache",
351 					sizeof (struct k_itimer), 0, SLAB_PANIC,
352 					NULL);
353 	return 0;
354 }
355 
356 __initcall(init_posix_timers);
357 
358 /*
359  * The siginfo si_overrun field and the return value of timer_getoverrun(2)
360  * are of type int. Clamp the overrun value to INT_MAX
361  */
timer_overrun_to_int(struct k_itimer * timr,int baseval)362 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
363 {
364 	s64 sum = timr->it_overrun_last + (s64)baseval;
365 
366 	return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
367 }
368 
schedule_next_timer(struct k_itimer * timr)369 static void schedule_next_timer(struct k_itimer *timr)
370 {
371 	struct hrtimer *timer = &timr->it.real.timer;
372 
373 	if (timr->it.real.interval.tv64 == 0)
374 		return;
375 
376 	timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
377 					    timr->it.real.interval);
378 
379 	timr->it_overrun_last = timr->it_overrun;
380 	timr->it_overrun = -1LL;
381 	++timr->it_requeue_pending;
382 	hrtimer_restart(timer);
383 }
384 
385 /*
386  * This function is exported for use by the signal deliver code.  It is
387  * called just prior to the info block being released and passes that
388  * block to us.  It's function is to update the overrun entry AND to
389  * restart the timer.  It should only be called if the timer is to be
390  * restarted (i.e. we have flagged this in the sys_private entry of the
391  * info block).
392  *
393  * To protect against the timer going away while the interrupt is queued,
394  * we require that the it_requeue_pending flag be set.
395  */
do_schedule_next_timer(struct siginfo * info)396 void do_schedule_next_timer(struct siginfo *info)
397 {
398 	struct k_itimer *timr;
399 	unsigned long flags;
400 
401 	timr = lock_timer(info->si_tid, &flags);
402 
403 	if (timr && timr->it_requeue_pending == info->si_sys_private) {
404 		if (timr->it_clock < 0)
405 			posix_cpu_timer_schedule(timr);
406 		else
407 			schedule_next_timer(timr);
408 
409 		info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
410 	}
411 
412 	if (timr)
413 		unlock_timer(timr, flags);
414 }
415 
posix_timer_event(struct k_itimer * timr,int si_private)416 int posix_timer_event(struct k_itimer *timr, int si_private)
417 {
418 	struct task_struct *task;
419 	int shared, ret = -1;
420 	/*
421 	 * FIXME: if ->sigq is queued we can race with
422 	 * dequeue_signal()->do_schedule_next_timer().
423 	 *
424 	 * If dequeue_signal() sees the "right" value of
425 	 * si_sys_private it calls do_schedule_next_timer().
426 	 * We re-queue ->sigq and drop ->it_lock().
427 	 * do_schedule_next_timer() locks the timer
428 	 * and re-schedules it while ->sigq is pending.
429 	 * Not really bad, but not that we want.
430 	 */
431 	timr->sigq->info.si_sys_private = si_private;
432 
433 	rcu_read_lock();
434 	task = pid_task(timr->it_pid, PIDTYPE_PID);
435 	if (task) {
436 		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
437 		ret = send_sigqueue(timr->sigq, task, shared);
438 	}
439 	rcu_read_unlock();
440 	/* If we failed to send the signal the timer stops. */
441 	return ret > 0;
442 }
443 EXPORT_SYMBOL_GPL(posix_timer_event);
444 
445 /*
446  * This function gets called when a POSIX.1b interval timer expires.  It
447  * is used as a callback from the kernel internal timer.  The
448  * run_timer_list code ALWAYS calls with interrupts on.
449 
450  * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
451  */
posix_timer_fn(struct hrtimer * timer)452 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
453 {
454 	struct k_itimer *timr;
455 	unsigned long flags;
456 	int si_private = 0;
457 	enum hrtimer_restart ret = HRTIMER_NORESTART;
458 
459 	timr = container_of(timer, struct k_itimer, it.real.timer);
460 	spin_lock_irqsave(&timr->it_lock, flags);
461 
462 	if (timr->it.real.interval.tv64 != 0)
463 		si_private = ++timr->it_requeue_pending;
464 
465 	if (posix_timer_event(timr, si_private)) {
466 		/*
467 		 * signal was not sent because of sig_ignor
468 		 * we will not get a call back to restart it AND
469 		 * it should be restarted.
470 		 */
471 		if (timr->it.real.interval.tv64 != 0) {
472 			ktime_t now = hrtimer_cb_get_time(timer);
473 
474 			/*
475 			 * FIXME: What we really want, is to stop this
476 			 * timer completely and restart it in case the
477 			 * SIG_IGN is removed. This is a non trivial
478 			 * change which involves sighand locking
479 			 * (sigh !), which we don't want to do late in
480 			 * the release cycle.
481 			 *
482 			 * For now we just let timers with an interval
483 			 * less than a jiffie expire every jiffie to
484 			 * avoid softirq starvation in case of SIG_IGN
485 			 * and a very small interval, which would put
486 			 * the timer right back on the softirq pending
487 			 * list. By moving now ahead of time we trick
488 			 * hrtimer_forward() to expire the timer
489 			 * later, while we still maintain the overrun
490 			 * accuracy, but have some inconsistency in
491 			 * the timer_gettime() case. This is at least
492 			 * better than a starved softirq. A more
493 			 * complex fix which solves also another related
494 			 * inconsistency is already in the pipeline.
495 			 */
496 #ifdef CONFIG_HIGH_RES_TIMERS
497 			{
498 				ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
499 
500 				if (timr->it.real.interval.tv64 < kj.tv64)
501 					now = ktime_add(now, kj);
502 			}
503 #endif
504 			timr->it_overrun += hrtimer_forward(timer, now,
505 						timr->it.real.interval);
506 			ret = HRTIMER_RESTART;
507 			++timr->it_requeue_pending;
508 		}
509 	}
510 
511 	unlock_timer(timr, flags);
512 	return ret;
513 }
514 
good_sigevent(sigevent_t * event)515 static struct pid *good_sigevent(sigevent_t * event)
516 {
517 	struct task_struct *rtn = current->group_leader;
518 
519 	switch (event->sigev_notify) {
520 	case SIGEV_SIGNAL | SIGEV_THREAD_ID:
521 		rtn = find_task_by_vpid(event->sigev_notify_thread_id);
522 		if (!rtn || !same_thread_group(rtn, current))
523 			return NULL;
524 		/* FALLTHRU */
525 	case SIGEV_SIGNAL:
526 	case SIGEV_THREAD:
527 		if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
528 			return NULL;
529 		/* FALLTHRU */
530 	case SIGEV_NONE:
531 		return task_pid(rtn);
532 	default:
533 		return NULL;
534 	}
535 }
536 
posix_timers_register_clock(const clockid_t clock_id,struct k_clock * new_clock)537 void posix_timers_register_clock(const clockid_t clock_id,
538 				 struct k_clock *new_clock)
539 {
540 	if ((unsigned) clock_id >= MAX_CLOCKS) {
541 		printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
542 		       clock_id);
543 		return;
544 	}
545 
546 	if (!new_clock->clock_get) {
547 		printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
548 		       clock_id);
549 		return;
550 	}
551 	if (!new_clock->clock_getres) {
552 		printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
553 		       clock_id);
554 		return;
555 	}
556 
557 	posix_clocks[clock_id] = *new_clock;
558 }
559 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
560 
alloc_posix_timer(void)561 static struct k_itimer * alloc_posix_timer(void)
562 {
563 	struct k_itimer *tmr;
564 	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
565 	if (!tmr)
566 		return tmr;
567 	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
568 		kmem_cache_free(posix_timers_cache, tmr);
569 		return NULL;
570 	}
571 	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
572 	return tmr;
573 }
574 
k_itimer_rcu_free(struct rcu_head * head)575 static void k_itimer_rcu_free(struct rcu_head *head)
576 {
577 	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
578 
579 	kmem_cache_free(posix_timers_cache, tmr);
580 }
581 
582 #define IT_ID_SET	1
583 #define IT_ID_NOT_SET	0
release_posix_timer(struct k_itimer * tmr,int it_id_set)584 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
585 {
586 	if (it_id_set) {
587 		unsigned long flags;
588 		spin_lock_irqsave(&hash_lock, flags);
589 		hlist_del_rcu(&tmr->t_hash);
590 		spin_unlock_irqrestore(&hash_lock, flags);
591 	}
592 	put_pid(tmr->it_pid);
593 	sigqueue_free(tmr->sigq);
594 	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
595 }
596 
clockid_to_kclock(const clockid_t id)597 static struct k_clock *clockid_to_kclock(const clockid_t id)
598 {
599 	if (id < 0)
600 		return (id & CLOCKFD_MASK) == CLOCKFD ?
601 			&clock_posix_dynamic : &clock_posix_cpu;
602 
603 	if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
604 		return NULL;
605 	return &posix_clocks[id];
606 }
607 
common_timer_create(struct k_itimer * new_timer)608 static int common_timer_create(struct k_itimer *new_timer)
609 {
610 	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
611 	return 0;
612 }
613 
614 /* Create a POSIX.1b interval timer. */
615 
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)616 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
617 		struct sigevent __user *, timer_event_spec,
618 		timer_t __user *, created_timer_id)
619 {
620 	struct k_clock *kc = clockid_to_kclock(which_clock);
621 	struct k_itimer *new_timer;
622 	int error, new_timer_id;
623 	sigevent_t event;
624 	int it_id_set = IT_ID_NOT_SET;
625 
626 	if (!kc)
627 		return -EINVAL;
628 	if (!kc->timer_create)
629 		return -EOPNOTSUPP;
630 
631 	new_timer = alloc_posix_timer();
632 	if (unlikely(!new_timer))
633 		return -EAGAIN;
634 
635 	spin_lock_init(&new_timer->it_lock);
636 	new_timer_id = posix_timer_add(new_timer);
637 	if (new_timer_id < 0) {
638 		error = new_timer_id;
639 		goto out;
640 	}
641 
642 	it_id_set = IT_ID_SET;
643 	new_timer->it_id = (timer_t) new_timer_id;
644 	new_timer->it_clock = which_clock;
645 	new_timer->it_overrun = -1LL;
646 
647 	if (timer_event_spec) {
648 		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
649 			error = -EFAULT;
650 			goto out;
651 		}
652 		rcu_read_lock();
653 		new_timer->it_pid = get_pid(good_sigevent(&event));
654 		rcu_read_unlock();
655 		if (!new_timer->it_pid) {
656 			error = -EINVAL;
657 			goto out;
658 		}
659 	} else {
660 		memset(&event.sigev_value, 0, sizeof(event.sigev_value));
661 		event.sigev_notify = SIGEV_SIGNAL;
662 		event.sigev_signo = SIGALRM;
663 		event.sigev_value.sival_int = new_timer->it_id;
664 		new_timer->it_pid = get_pid(task_tgid(current));
665 	}
666 
667 	new_timer->it_sigev_notify     = event.sigev_notify;
668 	new_timer->sigq->info.si_signo = event.sigev_signo;
669 	new_timer->sigq->info.si_value = event.sigev_value;
670 	new_timer->sigq->info.si_tid   = new_timer->it_id;
671 	new_timer->sigq->info.si_code  = SI_TIMER;
672 
673 	if (copy_to_user(created_timer_id,
674 			 &new_timer_id, sizeof (new_timer_id))) {
675 		error = -EFAULT;
676 		goto out;
677 	}
678 
679 	error = kc->timer_create(new_timer);
680 	if (error)
681 		goto out;
682 
683 	spin_lock_irq(&current->sighand->siglock);
684 	new_timer->it_signal = current->signal;
685 	list_add(&new_timer->list, &current->signal->posix_timers);
686 	spin_unlock_irq(&current->sighand->siglock);
687 
688 	return 0;
689 	/*
690 	 * In the case of the timer belonging to another task, after
691 	 * the task is unlocked, the timer is owned by the other task
692 	 * and may cease to exist at any time.  Don't use or modify
693 	 * new_timer after the unlock call.
694 	 */
695 out:
696 	release_posix_timer(new_timer, it_id_set);
697 	return error;
698 }
699 
700 /*
701  * Locking issues: We need to protect the result of the id look up until
702  * we get the timer locked down so it is not deleted under us.  The
703  * removal is done under the idr spinlock so we use that here to bridge
704  * the find to the timer lock.  To avoid a dead lock, the timer id MUST
705  * be release with out holding the timer lock.
706  */
__lock_timer(timer_t timer_id,unsigned long * flags)707 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
708 {
709 	struct k_itimer *timr;
710 
711 	/*
712 	 * timer_t could be any type >= int and we want to make sure any
713 	 * @timer_id outside positive int range fails lookup.
714 	 */
715 	if ((unsigned long long)timer_id > INT_MAX)
716 		return NULL;
717 
718 	rcu_read_lock();
719 	timr = posix_timer_by_id(timer_id);
720 	if (timr) {
721 		spin_lock_irqsave(&timr->it_lock, *flags);
722 		if (timr->it_signal == current->signal) {
723 			rcu_read_unlock();
724 			return timr;
725 		}
726 		spin_unlock_irqrestore(&timr->it_lock, *flags);
727 	}
728 	rcu_read_unlock();
729 
730 	return NULL;
731 }
732 
733 /*
734  * Get the time remaining on a POSIX.1b interval timer.  This function
735  * is ALWAYS called with spin_lock_irq on the timer, thus it must not
736  * mess with irq.
737  *
738  * We have a couple of messes to clean up here.  First there is the case
739  * of a timer that has a requeue pending.  These timers should appear to
740  * be in the timer list with an expiry as if we were to requeue them
741  * now.
742  *
743  * The second issue is the SIGEV_NONE timer which may be active but is
744  * not really ever put in the timer list (to save system resources).
745  * This timer may be expired, and if so, we will do it here.  Otherwise
746  * it is the same as a requeue pending timer WRT to what we should
747  * report.
748  */
749 static void
common_timer_get(struct k_itimer * timr,struct itimerspec * cur_setting)750 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
751 {
752 	ktime_t now, remaining, iv;
753 	struct hrtimer *timer = &timr->it.real.timer;
754 
755 	memset(cur_setting, 0, sizeof(struct itimerspec));
756 
757 	iv = timr->it.real.interval;
758 
759 	/* interval timer ? */
760 	if (iv.tv64)
761 		cur_setting->it_interval = ktime_to_timespec(iv);
762 	else if (!hrtimer_active(timer) && timr->it_sigev_notify != SIGEV_NONE)
763 		return;
764 
765 	now = timer->base->get_time();
766 
767 	/*
768 	 * When a requeue is pending or this is a SIGEV_NONE
769 	 * timer move the expiry time forward by intervals, so
770 	 * expiry is > now.
771 	 */
772 	if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
773 			timr->it_sigev_notify == SIGEV_NONE))
774 		timr->it_overrun += hrtimer_forward(timer, now, iv);
775 
776 	remaining = __hrtimer_expires_remaining_adjusted(timer, now);
777 	/* Return 0 only, when the timer is expired and not pending */
778 	if (remaining.tv64 <= 0) {
779 		/*
780 		 * A single shot SIGEV_NONE timer must return 0, when
781 		 * it is expired !
782 		 */
783 		if (timr->it_sigev_notify != SIGEV_NONE)
784 			cur_setting->it_value.tv_nsec = 1;
785 	} else
786 		cur_setting->it_value = ktime_to_timespec(remaining);
787 }
788 
789 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct itimerspec __user *,setting)790 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
791 		struct itimerspec __user *, setting)
792 {
793 	struct itimerspec cur_setting;
794 	struct k_itimer *timr;
795 	struct k_clock *kc;
796 	unsigned long flags;
797 	int ret = 0;
798 
799 	timr = lock_timer(timer_id, &flags);
800 	if (!timr)
801 		return -EINVAL;
802 
803 	kc = clockid_to_kclock(timr->it_clock);
804 	if (WARN_ON_ONCE(!kc || !kc->timer_get))
805 		ret = -EINVAL;
806 	else
807 		kc->timer_get(timr, &cur_setting);
808 
809 	unlock_timer(timr, flags);
810 
811 	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
812 		return -EFAULT;
813 
814 	return ret;
815 }
816 
817 /*
818  * Get the number of overruns of a POSIX.1b interval timer.  This is to
819  * be the overrun of the timer last delivered.  At the same time we are
820  * accumulating overruns on the next timer.  The overrun is frozen when
821  * the signal is delivered, either at the notify time (if the info block
822  * is not queued) or at the actual delivery time (as we are informed by
823  * the call back to do_schedule_next_timer().  So all we need to do is
824  * to pick up the frozen overrun.
825  */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)826 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
827 {
828 	struct k_itimer *timr;
829 	int overrun;
830 	unsigned long flags;
831 
832 	timr = lock_timer(timer_id, &flags);
833 	if (!timr)
834 		return -EINVAL;
835 
836 	overrun = timer_overrun_to_int(timr, 0);
837 	unlock_timer(timr, flags);
838 
839 	return overrun;
840 }
841 
842 /* Set a POSIX.1b interval timer. */
843 /* timr->it_lock is taken. */
844 static int
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec * new_setting,struct itimerspec * old_setting)845 common_timer_set(struct k_itimer *timr, int flags,
846 		 struct itimerspec *new_setting, struct itimerspec *old_setting)
847 {
848 	struct hrtimer *timer = &timr->it.real.timer;
849 	enum hrtimer_mode mode;
850 
851 	if (old_setting)
852 		common_timer_get(timr, old_setting);
853 
854 	/* disable the timer */
855 	timr->it.real.interval.tv64 = 0;
856 	/*
857 	 * careful here.  If smp we could be in the "fire" routine which will
858 	 * be spinning as we hold the lock.  But this is ONLY an SMP issue.
859 	 */
860 	if (hrtimer_try_to_cancel(timer) < 0)
861 		return TIMER_RETRY;
862 
863 	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
864 		~REQUEUE_PENDING;
865 	timr->it_overrun_last = 0;
866 
867 	/* switch off the timer when it_value is zero */
868 	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
869 		return 0;
870 
871 	mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
872 	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
873 	timr->it.real.timer.function = posix_timer_fn;
874 
875 	hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
876 
877 	/* Convert interval */
878 	timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
879 
880 	/* SIGEV_NONE timers are not queued ! See common_timer_get */
881 	if (timr->it_sigev_notify == SIGEV_NONE) {
882 		/* Setup correct expiry time for relative timers */
883 		if (mode == HRTIMER_MODE_REL) {
884 			hrtimer_add_expires(timer, timer->base->get_time());
885 		}
886 		return 0;
887 	}
888 
889 	hrtimer_start_expires(timer, mode);
890 	return 0;
891 }
892 
893 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct itimerspec __user *,new_setting,struct itimerspec __user *,old_setting)894 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
895 		const struct itimerspec __user *, new_setting,
896 		struct itimerspec __user *, old_setting)
897 {
898 	struct k_itimer *timr;
899 	struct itimerspec new_spec, old_spec;
900 	int error = 0;
901 	unsigned long flag;
902 	struct itimerspec *rtn = old_setting ? &old_spec : NULL;
903 	struct k_clock *kc;
904 
905 	if (!new_setting)
906 		return -EINVAL;
907 
908 	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
909 		return -EFAULT;
910 
911 	if (!timespec_valid(&new_spec.it_interval) ||
912 	    !timespec_valid(&new_spec.it_value))
913 		return -EINVAL;
914 retry:
915 	timr = lock_timer(timer_id, &flag);
916 	if (!timr)
917 		return -EINVAL;
918 
919 	kc = clockid_to_kclock(timr->it_clock);
920 	if (WARN_ON_ONCE(!kc || !kc->timer_set))
921 		error = -EINVAL;
922 	else
923 		error = kc->timer_set(timr, flags, &new_spec, rtn);
924 
925 	unlock_timer(timr, flag);
926 	if (error == TIMER_RETRY) {
927 		rtn = NULL;	// We already got the old time...
928 		goto retry;
929 	}
930 
931 	if (old_setting && !error &&
932 	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
933 		error = -EFAULT;
934 
935 	return error;
936 }
937 
common_timer_del(struct k_itimer * timer)938 static int common_timer_del(struct k_itimer *timer)
939 {
940 	timer->it.real.interval.tv64 = 0;
941 
942 	if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
943 		return TIMER_RETRY;
944 	return 0;
945 }
946 
timer_delete_hook(struct k_itimer * timer)947 static inline int timer_delete_hook(struct k_itimer *timer)
948 {
949 	struct k_clock *kc = clockid_to_kclock(timer->it_clock);
950 
951 	if (WARN_ON_ONCE(!kc || !kc->timer_del))
952 		return -EINVAL;
953 	return kc->timer_del(timer);
954 }
955 
956 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)957 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
958 {
959 	struct k_itimer *timer;
960 	unsigned long flags;
961 
962 retry_delete:
963 	timer = lock_timer(timer_id, &flags);
964 	if (!timer)
965 		return -EINVAL;
966 
967 	if (timer_delete_hook(timer) == TIMER_RETRY) {
968 		unlock_timer(timer, flags);
969 		goto retry_delete;
970 	}
971 
972 	spin_lock(&current->sighand->siglock);
973 	list_del(&timer->list);
974 	spin_unlock(&current->sighand->siglock);
975 	/*
976 	 * This keeps any tasks waiting on the spin lock from thinking
977 	 * they got something (see the lock code above).
978 	 */
979 	timer->it_signal = NULL;
980 
981 	unlock_timer(timer, flags);
982 	release_posix_timer(timer, IT_ID_SET);
983 	return 0;
984 }
985 
986 /*
987  * return timer owned by the process, used by exit_itimers
988  */
itimer_delete(struct k_itimer * timer)989 static void itimer_delete(struct k_itimer *timer)
990 {
991 	unsigned long flags;
992 
993 retry_delete:
994 	spin_lock_irqsave(&timer->it_lock, flags);
995 
996 	if (timer_delete_hook(timer) == TIMER_RETRY) {
997 		unlock_timer(timer, flags);
998 		goto retry_delete;
999 	}
1000 	list_del(&timer->list);
1001 	/*
1002 	 * This keeps any tasks waiting on the spin lock from thinking
1003 	 * they got something (see the lock code above).
1004 	 */
1005 	timer->it_signal = NULL;
1006 
1007 	unlock_timer(timer, flags);
1008 	release_posix_timer(timer, IT_ID_SET);
1009 }
1010 
1011 /*
1012  * This is called by do_exit or de_thread, only when there are no more
1013  * references to the shared signal_struct.
1014  */
exit_itimers(struct signal_struct * sig)1015 void exit_itimers(struct signal_struct *sig)
1016 {
1017 	struct k_itimer *tmr;
1018 
1019 	while (!list_empty(&sig->posix_timers)) {
1020 		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1021 		itimer_delete(tmr);
1022 	}
1023 }
1024 
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct timespec __user *,tp)1025 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1026 		const struct timespec __user *, tp)
1027 {
1028 	struct k_clock *kc = clockid_to_kclock(which_clock);
1029 	struct timespec new_tp;
1030 
1031 	if (!kc || !kc->clock_set)
1032 		return -EINVAL;
1033 
1034 	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
1035 		return -EFAULT;
1036 
1037 	return kc->clock_set(which_clock, &new_tp);
1038 }
1039 
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct timespec __user *,tp)1040 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1041 		struct timespec __user *,tp)
1042 {
1043 	struct k_clock *kc = clockid_to_kclock(which_clock);
1044 	struct timespec kernel_tp;
1045 	int error;
1046 
1047 	if (!kc)
1048 		return -EINVAL;
1049 
1050 	error = kc->clock_get(which_clock, &kernel_tp);
1051 
1052 	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
1053 		error = -EFAULT;
1054 
1055 	return error;
1056 }
1057 
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1058 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1059 		struct timex __user *, utx)
1060 {
1061 	struct k_clock *kc = clockid_to_kclock(which_clock);
1062 	struct timex ktx;
1063 	int err;
1064 
1065 	if (!kc)
1066 		return -EINVAL;
1067 	if (!kc->clock_adj)
1068 		return -EOPNOTSUPP;
1069 
1070 	if (copy_from_user(&ktx, utx, sizeof(ktx)))
1071 		return -EFAULT;
1072 
1073 	err = kc->clock_adj(which_clock, &ktx);
1074 
1075 	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1076 		return -EFAULT;
1077 
1078 	return err;
1079 }
1080 
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct timespec __user *,tp)1081 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1082 		struct timespec __user *, tp)
1083 {
1084 	struct k_clock *kc = clockid_to_kclock(which_clock);
1085 	struct timespec rtn_tp;
1086 	int error;
1087 
1088 	if (!kc)
1089 		return -EINVAL;
1090 
1091 	error = kc->clock_getres(which_clock, &rtn_tp);
1092 
1093 	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1094 		error = -EFAULT;
1095 
1096 	return error;
1097 }
1098 
1099 /*
1100  * nanosleep for monotonic and realtime clocks
1101  */
common_nsleep(const clockid_t which_clock,int flags,struct timespec * tsave,struct timespec __user * rmtp)1102 static int common_nsleep(const clockid_t which_clock, int flags,
1103 			 struct timespec *tsave, struct timespec __user *rmtp)
1104 {
1105 	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1106 				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1107 				 which_clock);
1108 }
1109 
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct timespec __user *,rqtp,struct timespec __user *,rmtp)1110 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1111 		const struct timespec __user *, rqtp,
1112 		struct timespec __user *, rmtp)
1113 {
1114 	struct k_clock *kc = clockid_to_kclock(which_clock);
1115 	struct timespec t;
1116 
1117 	if (!kc)
1118 		return -EINVAL;
1119 	if (!kc->nsleep)
1120 		return -ENANOSLEEP_NOTSUP;
1121 
1122 	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1123 		return -EFAULT;
1124 
1125 	if (!timespec_valid(&t))
1126 		return -EINVAL;
1127 
1128 	return kc->nsleep(which_clock, flags, &t, rmtp);
1129 }
1130 
1131 /*
1132  * This will restart clock_nanosleep. This is required only by
1133  * compat_clock_nanosleep_restart for now.
1134  */
clock_nanosleep_restart(struct restart_block * restart_block)1135 long clock_nanosleep_restart(struct restart_block *restart_block)
1136 {
1137 	clockid_t which_clock = restart_block->nanosleep.clockid;
1138 	struct k_clock *kc = clockid_to_kclock(which_clock);
1139 
1140 	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1141 		return -EINVAL;
1142 
1143 	return kc->nsleep_restart(restart_block);
1144 }
1145