1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 */
28
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33 #include "e1000.h"
34
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 bool link_up);
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 u16 phy_data);
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 u16 *phy_data);
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
92
93 /* IGP cable length table */
94 static const
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107 };
108
109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
110 static DEFINE_SPINLOCK(e1000_phy_lock);
111
112 /**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
e1000_set_phy_type(struct e1000_hw * hw)116 static s32 e1000_set_phy_type(struct e1000_hw *hw)
117 {
118 if (hw->mac_type == e1000_undefined)
119 return -E1000_ERR_PHY_TYPE;
120
121 switch (hw->phy_id) {
122 case M88E1000_E_PHY_ID:
123 case M88E1000_I_PHY_ID:
124 case M88E1011_I_PHY_ID:
125 case M88E1111_I_PHY_ID:
126 case M88E1118_E_PHY_ID:
127 hw->phy_type = e1000_phy_m88;
128 break;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
133 hw->mac_type == e1000_82547_rev_2)
134 hw->phy_type = e1000_phy_igp;
135 break;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
138 break;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
141 break;
142 default:
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
146 }
147
148 return E1000_SUCCESS;
149 }
150
151 /**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
e1000_phy_init_script(struct e1000_hw * hw)155 static void e1000_phy_init_script(struct e1000_hw *hw)
156 {
157 u32 ret_val;
158 u16 phy_saved_data;
159
160 if (hw->phy_init_script) {
161 msleep(20);
162
163 /* Save off the current value of register 0x2F5B to be restored
164 * at the end of this routine.
165 */
166 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
167
168 /* Disabled the PHY transmitter */
169 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170 msleep(20);
171
172 e1000_write_phy_reg(hw, 0x0000, 0x0140);
173 msleep(5);
174
175 switch (hw->mac_type) {
176 case e1000_82541:
177 case e1000_82547:
178 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186 e1000_write_phy_reg(hw, 0x2010, 0x0008);
187 break;
188
189 case e1000_82541_rev_2:
190 case e1000_82547_rev_2:
191 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192 break;
193 default:
194 break;
195 }
196
197 e1000_write_phy_reg(hw, 0x0000, 0x3300);
198 msleep(20);
199
200 /* Now enable the transmitter */
201 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
202
203 if (hw->mac_type == e1000_82547) {
204 u16 fused, fine, coarse;
205
206 /* Move to analog registers page */
207 e1000_read_phy_reg(hw,
208 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209 &fused);
210
211 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212 e1000_read_phy_reg(hw,
213 IGP01E1000_ANALOG_FUSE_STATUS,
214 &fused);
215
216 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217 coarse =
218 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
219
220 if (coarse >
221 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222 coarse -=
223 IGP01E1000_ANALOG_FUSE_COARSE_10;
224 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225 } else if (coarse ==
226 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
228
229 fused =
230 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232 (coarse &
233 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
234
235 e1000_write_phy_reg(hw,
236 IGP01E1000_ANALOG_FUSE_CONTROL,
237 fused);
238 e1000_write_phy_reg(hw,
239 IGP01E1000_ANALOG_FUSE_BYPASS,
240 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241 }
242 }
243 }
244 }
245
246 /**
247 * e1000_set_mac_type - Set the mac type member in the hw struct.
248 * @hw: Struct containing variables accessed by shared code
249 */
e1000_set_mac_type(struct e1000_hw * hw)250 s32 e1000_set_mac_type(struct e1000_hw *hw)
251 {
252 switch (hw->device_id) {
253 case E1000_DEV_ID_82542:
254 switch (hw->revision_id) {
255 case E1000_82542_2_0_REV_ID:
256 hw->mac_type = e1000_82542_rev2_0;
257 break;
258 case E1000_82542_2_1_REV_ID:
259 hw->mac_type = e1000_82542_rev2_1;
260 break;
261 default:
262 /* Invalid 82542 revision ID */
263 return -E1000_ERR_MAC_TYPE;
264 }
265 break;
266 case E1000_DEV_ID_82543GC_FIBER:
267 case E1000_DEV_ID_82543GC_COPPER:
268 hw->mac_type = e1000_82543;
269 break;
270 case E1000_DEV_ID_82544EI_COPPER:
271 case E1000_DEV_ID_82544EI_FIBER:
272 case E1000_DEV_ID_82544GC_COPPER:
273 case E1000_DEV_ID_82544GC_LOM:
274 hw->mac_type = e1000_82544;
275 break;
276 case E1000_DEV_ID_82540EM:
277 case E1000_DEV_ID_82540EM_LOM:
278 case E1000_DEV_ID_82540EP:
279 case E1000_DEV_ID_82540EP_LOM:
280 case E1000_DEV_ID_82540EP_LP:
281 hw->mac_type = e1000_82540;
282 break;
283 case E1000_DEV_ID_82545EM_COPPER:
284 case E1000_DEV_ID_82545EM_FIBER:
285 hw->mac_type = e1000_82545;
286 break;
287 case E1000_DEV_ID_82545GM_COPPER:
288 case E1000_DEV_ID_82545GM_FIBER:
289 case E1000_DEV_ID_82545GM_SERDES:
290 hw->mac_type = e1000_82545_rev_3;
291 break;
292 case E1000_DEV_ID_82546EB_COPPER:
293 case E1000_DEV_ID_82546EB_FIBER:
294 case E1000_DEV_ID_82546EB_QUAD_COPPER:
295 hw->mac_type = e1000_82546;
296 break;
297 case E1000_DEV_ID_82546GB_COPPER:
298 case E1000_DEV_ID_82546GB_FIBER:
299 case E1000_DEV_ID_82546GB_SERDES:
300 case E1000_DEV_ID_82546GB_PCIE:
301 case E1000_DEV_ID_82546GB_QUAD_COPPER:
302 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303 hw->mac_type = e1000_82546_rev_3;
304 break;
305 case E1000_DEV_ID_82541EI:
306 case E1000_DEV_ID_82541EI_MOBILE:
307 case E1000_DEV_ID_82541ER_LOM:
308 hw->mac_type = e1000_82541;
309 break;
310 case E1000_DEV_ID_82541ER:
311 case E1000_DEV_ID_82541GI:
312 case E1000_DEV_ID_82541GI_LF:
313 case E1000_DEV_ID_82541GI_MOBILE:
314 hw->mac_type = e1000_82541_rev_2;
315 break;
316 case E1000_DEV_ID_82547EI:
317 case E1000_DEV_ID_82547EI_MOBILE:
318 hw->mac_type = e1000_82547;
319 break;
320 case E1000_DEV_ID_82547GI:
321 hw->mac_type = e1000_82547_rev_2;
322 break;
323 case E1000_DEV_ID_INTEL_CE4100_GBE:
324 hw->mac_type = e1000_ce4100;
325 break;
326 default:
327 /* Should never have loaded on this device */
328 return -E1000_ERR_MAC_TYPE;
329 }
330
331 switch (hw->mac_type) {
332 case e1000_82541:
333 case e1000_82547:
334 case e1000_82541_rev_2:
335 case e1000_82547_rev_2:
336 hw->asf_firmware_present = true;
337 break;
338 default:
339 break;
340 }
341
342 /* The 82543 chip does not count tx_carrier_errors properly in
343 * FD mode
344 */
345 if (hw->mac_type == e1000_82543)
346 hw->bad_tx_carr_stats_fd = true;
347
348 if (hw->mac_type > e1000_82544)
349 hw->has_smbus = true;
350
351 return E1000_SUCCESS;
352 }
353
354 /**
355 * e1000_set_media_type - Set media type and TBI compatibility.
356 * @hw: Struct containing variables accessed by shared code
357 */
e1000_set_media_type(struct e1000_hw * hw)358 void e1000_set_media_type(struct e1000_hw *hw)
359 {
360 u32 status;
361
362 if (hw->mac_type != e1000_82543) {
363 /* tbi_compatibility is only valid on 82543 */
364 hw->tbi_compatibility_en = false;
365 }
366
367 switch (hw->device_id) {
368 case E1000_DEV_ID_82545GM_SERDES:
369 case E1000_DEV_ID_82546GB_SERDES:
370 hw->media_type = e1000_media_type_internal_serdes;
371 break;
372 default:
373 switch (hw->mac_type) {
374 case e1000_82542_rev2_0:
375 case e1000_82542_rev2_1:
376 hw->media_type = e1000_media_type_fiber;
377 break;
378 case e1000_ce4100:
379 hw->media_type = e1000_media_type_copper;
380 break;
381 default:
382 status = er32(STATUS);
383 if (status & E1000_STATUS_TBIMODE) {
384 hw->media_type = e1000_media_type_fiber;
385 /* tbi_compatibility not valid on fiber */
386 hw->tbi_compatibility_en = false;
387 } else {
388 hw->media_type = e1000_media_type_copper;
389 }
390 break;
391 }
392 }
393 }
394
395 /**
396 * e1000_reset_hw - reset the hardware completely
397 * @hw: Struct containing variables accessed by shared code
398 *
399 * Reset the transmit and receive units; mask and clear all interrupts.
400 */
e1000_reset_hw(struct e1000_hw * hw)401 s32 e1000_reset_hw(struct e1000_hw *hw)
402 {
403 u32 ctrl;
404 u32 ctrl_ext;
405 u32 icr;
406 u32 manc;
407 u32 led_ctrl;
408 s32 ret_val;
409
410 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411 if (hw->mac_type == e1000_82542_rev2_0) {
412 e_dbg("Disabling MWI on 82542 rev 2.0\n");
413 e1000_pci_clear_mwi(hw);
414 }
415
416 /* Clear interrupt mask to stop board from generating interrupts */
417 e_dbg("Masking off all interrupts\n");
418 ew32(IMC, 0xffffffff);
419
420 /* Disable the Transmit and Receive units. Then delay to allow
421 * any pending transactions to complete before we hit the MAC with
422 * the global reset.
423 */
424 ew32(RCTL, 0);
425 ew32(TCTL, E1000_TCTL_PSP);
426 E1000_WRITE_FLUSH();
427
428 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429 hw->tbi_compatibility_on = false;
430
431 /* Delay to allow any outstanding PCI transactions to complete before
432 * resetting the device
433 */
434 msleep(10);
435
436 ctrl = er32(CTRL);
437
438 /* Must reset the PHY before resetting the MAC */
439 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
441 E1000_WRITE_FLUSH();
442 msleep(5);
443 }
444
445 /* Issue a global reset to the MAC. This will reset the chip's
446 * transmit, receive, DMA, and link units. It will not effect
447 * the current PCI configuration. The global reset bit is self-
448 * clearing, and should clear within a microsecond.
449 */
450 e_dbg("Issuing a global reset to MAC\n");
451
452 switch (hw->mac_type) {
453 case e1000_82544:
454 case e1000_82540:
455 case e1000_82545:
456 case e1000_82546:
457 case e1000_82541:
458 case e1000_82541_rev_2:
459 /* These controllers can't ack the 64-bit write when issuing the
460 * reset, so use IO-mapping as a workaround to issue the reset
461 */
462 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463 break;
464 case e1000_82545_rev_3:
465 case e1000_82546_rev_3:
466 /* Reset is performed on a shadow of the control register */
467 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468 break;
469 case e1000_ce4100:
470 default:
471 ew32(CTRL, (ctrl | E1000_CTRL_RST));
472 break;
473 }
474
475 /* After MAC reset, force reload of EEPROM to restore power-on settings
476 * to device. Later controllers reload the EEPROM automatically, so
477 * just wait for reload to complete.
478 */
479 switch (hw->mac_type) {
480 case e1000_82542_rev2_0:
481 case e1000_82542_rev2_1:
482 case e1000_82543:
483 case e1000_82544:
484 /* Wait for reset to complete */
485 udelay(10);
486 ctrl_ext = er32(CTRL_EXT);
487 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488 ew32(CTRL_EXT, ctrl_ext);
489 E1000_WRITE_FLUSH();
490 /* Wait for EEPROM reload */
491 msleep(2);
492 break;
493 case e1000_82541:
494 case e1000_82541_rev_2:
495 case e1000_82547:
496 case e1000_82547_rev_2:
497 /* Wait for EEPROM reload */
498 msleep(20);
499 break;
500 default:
501 /* Auto read done will delay 5ms or poll based on mac type */
502 ret_val = e1000_get_auto_rd_done(hw);
503 if (ret_val)
504 return ret_val;
505 break;
506 }
507
508 /* Disable HW ARPs on ASF enabled adapters */
509 if (hw->mac_type >= e1000_82540) {
510 manc = er32(MANC);
511 manc &= ~(E1000_MANC_ARP_EN);
512 ew32(MANC, manc);
513 }
514
515 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516 e1000_phy_init_script(hw);
517
518 /* Configure activity LED after PHY reset */
519 led_ctrl = er32(LEDCTL);
520 led_ctrl &= IGP_ACTIVITY_LED_MASK;
521 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522 ew32(LEDCTL, led_ctrl);
523 }
524
525 /* Clear interrupt mask to stop board from generating interrupts */
526 e_dbg("Masking off all interrupts\n");
527 ew32(IMC, 0xffffffff);
528
529 /* Clear any pending interrupt events. */
530 icr = er32(ICR);
531
532 /* If MWI was previously enabled, reenable it. */
533 if (hw->mac_type == e1000_82542_rev2_0) {
534 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535 e1000_pci_set_mwi(hw);
536 }
537
538 return E1000_SUCCESS;
539 }
540
541 /**
542 * e1000_init_hw - Performs basic configuration of the adapter.
543 * @hw: Struct containing variables accessed by shared code
544 *
545 * Assumes that the controller has previously been reset and is in a
546 * post-reset uninitialized state. Initializes the receive address registers,
547 * multicast table, and VLAN filter table. Calls routines to setup link
548 * configuration and flow control settings. Clears all on-chip counters. Leaves
549 * the transmit and receive units disabled and uninitialized.
550 */
e1000_init_hw(struct e1000_hw * hw)551 s32 e1000_init_hw(struct e1000_hw *hw)
552 {
553 u32 ctrl;
554 u32 i;
555 s32 ret_val;
556 u32 mta_size;
557 u32 ctrl_ext;
558
559 /* Initialize Identification LED */
560 ret_val = e1000_id_led_init(hw);
561 if (ret_val) {
562 e_dbg("Error Initializing Identification LED\n");
563 return ret_val;
564 }
565
566 /* Set the media type and TBI compatibility */
567 e1000_set_media_type(hw);
568
569 /* Disabling VLAN filtering. */
570 e_dbg("Initializing the IEEE VLAN\n");
571 if (hw->mac_type < e1000_82545_rev_3)
572 ew32(VET, 0);
573 e1000_clear_vfta(hw);
574
575 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576 if (hw->mac_type == e1000_82542_rev2_0) {
577 e_dbg("Disabling MWI on 82542 rev 2.0\n");
578 e1000_pci_clear_mwi(hw);
579 ew32(RCTL, E1000_RCTL_RST);
580 E1000_WRITE_FLUSH();
581 msleep(5);
582 }
583
584 /* Setup the receive address. This involves initializing all of the
585 * Receive Address Registers (RARs 0 - 15).
586 */
587 e1000_init_rx_addrs(hw);
588
589 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590 if (hw->mac_type == e1000_82542_rev2_0) {
591 ew32(RCTL, 0);
592 E1000_WRITE_FLUSH();
593 msleep(1);
594 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595 e1000_pci_set_mwi(hw);
596 }
597
598 /* Zero out the Multicast HASH table */
599 e_dbg("Zeroing the MTA\n");
600 mta_size = E1000_MC_TBL_SIZE;
601 for (i = 0; i < mta_size; i++) {
602 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603 /* use write flush to prevent Memory Write Block (MWB) from
604 * occurring when accessing our register space
605 */
606 E1000_WRITE_FLUSH();
607 }
608
609 /* Set the PCI priority bit correctly in the CTRL register. This
610 * determines if the adapter gives priority to receives, or if it
611 * gives equal priority to transmits and receives. Valid only on
612 * 82542 and 82543 silicon.
613 */
614 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615 ctrl = er32(CTRL);
616 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617 }
618
619 switch (hw->mac_type) {
620 case e1000_82545_rev_3:
621 case e1000_82546_rev_3:
622 break;
623 default:
624 /* Workaround for PCI-X problem when BIOS sets MMRBC
625 * incorrectly.
626 */
627 if (hw->bus_type == e1000_bus_type_pcix
628 && e1000_pcix_get_mmrbc(hw) > 2048)
629 e1000_pcix_set_mmrbc(hw, 2048);
630 break;
631 }
632
633 /* Call a subroutine to configure the link and setup flow control. */
634 ret_val = e1000_setup_link(hw);
635
636 /* Set the transmit descriptor write-back policy */
637 if (hw->mac_type > e1000_82544) {
638 ctrl = er32(TXDCTL);
639 ctrl =
640 (ctrl & ~E1000_TXDCTL_WTHRESH) |
641 E1000_TXDCTL_FULL_TX_DESC_WB;
642 ew32(TXDCTL, ctrl);
643 }
644
645 /* Clear all of the statistics registers (clear on read). It is
646 * important that we do this after we have tried to establish link
647 * because the symbol error count will increment wildly if there
648 * is no link.
649 */
650 e1000_clear_hw_cntrs(hw);
651
652 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654 ctrl_ext = er32(CTRL_EXT);
655 /* Relaxed ordering must be disabled to avoid a parity
656 * error crash in a PCI slot.
657 */
658 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659 ew32(CTRL_EXT, ctrl_ext);
660 }
661
662 return ret_val;
663 }
664
665 /**
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667 * @hw: Struct containing variables accessed by shared code.
668 */
e1000_adjust_serdes_amplitude(struct e1000_hw * hw)669 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
670 {
671 u16 eeprom_data;
672 s32 ret_val;
673
674 if (hw->media_type != e1000_media_type_internal_serdes)
675 return E1000_SUCCESS;
676
677 switch (hw->mac_type) {
678 case e1000_82545_rev_3:
679 case e1000_82546_rev_3:
680 break;
681 default:
682 return E1000_SUCCESS;
683 }
684
685 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686 &eeprom_data);
687 if (ret_val) {
688 return ret_val;
689 }
690
691 if (eeprom_data != EEPROM_RESERVED_WORD) {
692 /* Adjust SERDES output amplitude only. */
693 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694 ret_val =
695 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696 if (ret_val)
697 return ret_val;
698 }
699
700 return E1000_SUCCESS;
701 }
702
703 /**
704 * e1000_setup_link - Configures flow control and link settings.
705 * @hw: Struct containing variables accessed by shared code
706 *
707 * Determines which flow control settings to use. Calls the appropriate media-
708 * specific link configuration function. Configures the flow control settings.
709 * Assuming the adapter has a valid link partner, a valid link should be
710 * established. Assumes the hardware has previously been reset and the
711 * transmitter and receiver are not enabled.
712 */
e1000_setup_link(struct e1000_hw * hw)713 s32 e1000_setup_link(struct e1000_hw *hw)
714 {
715 u32 ctrl_ext;
716 s32 ret_val;
717 u16 eeprom_data;
718
719 /* Read and store word 0x0F of the EEPROM. This word contains bits
720 * that determine the hardware's default PAUSE (flow control) mode,
721 * a bit that determines whether the HW defaults to enabling or
722 * disabling auto-negotiation, and the direction of the
723 * SW defined pins. If there is no SW over-ride of the flow
724 * control setting, then the variable hw->fc will
725 * be initialized based on a value in the EEPROM.
726 */
727 if (hw->fc == E1000_FC_DEFAULT) {
728 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729 1, &eeprom_data);
730 if (ret_val) {
731 e_dbg("EEPROM Read Error\n");
732 return -E1000_ERR_EEPROM;
733 }
734 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735 hw->fc = E1000_FC_NONE;
736 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737 EEPROM_WORD0F_ASM_DIR)
738 hw->fc = E1000_FC_TX_PAUSE;
739 else
740 hw->fc = E1000_FC_FULL;
741 }
742
743 /* We want to save off the original Flow Control configuration just
744 * in case we get disconnected and then reconnected into a different
745 * hub or switch with different Flow Control capabilities.
746 */
747 if (hw->mac_type == e1000_82542_rev2_0)
748 hw->fc &= (~E1000_FC_TX_PAUSE);
749
750 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751 hw->fc &= (~E1000_FC_RX_PAUSE);
752
753 hw->original_fc = hw->fc;
754
755 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
756
757 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
758 * polarity value for the SW controlled pins, and setup the
759 * Extended Device Control reg with that info.
760 * This is needed because one of the SW controlled pins is used for
761 * signal detection. So this should be done before e1000_setup_pcs_link()
762 * or e1000_phy_setup() is called.
763 */
764 if (hw->mac_type == e1000_82543) {
765 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766 1, &eeprom_data);
767 if (ret_val) {
768 e_dbg("EEPROM Read Error\n");
769 return -E1000_ERR_EEPROM;
770 }
771 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772 SWDPIO__EXT_SHIFT);
773 ew32(CTRL_EXT, ctrl_ext);
774 }
775
776 /* Call the necessary subroutine to configure the link. */
777 ret_val = (hw->media_type == e1000_media_type_copper) ?
778 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
779
780 /* Initialize the flow control address, type, and PAUSE timer
781 * registers to their default values. This is done even if flow
782 * control is disabled, because it does not hurt anything to
783 * initialize these registers.
784 */
785 e_dbg("Initializing the Flow Control address, type and timer regs\n");
786
787 ew32(FCT, FLOW_CONTROL_TYPE);
788 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
790
791 ew32(FCTTV, hw->fc_pause_time);
792
793 /* Set the flow control receive threshold registers. Normally,
794 * these registers will be set to a default threshold that may be
795 * adjusted later by the driver's runtime code. However, if the
796 * ability to transmit pause frames in not enabled, then these
797 * registers will be set to 0.
798 */
799 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800 ew32(FCRTL, 0);
801 ew32(FCRTH, 0);
802 } else {
803 /* We need to set up the Receive Threshold high and low water
804 * marks as well as (optionally) enabling the transmission of
805 * XON frames.
806 */
807 if (hw->fc_send_xon) {
808 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809 ew32(FCRTH, hw->fc_high_water);
810 } else {
811 ew32(FCRTL, hw->fc_low_water);
812 ew32(FCRTH, hw->fc_high_water);
813 }
814 }
815 return ret_val;
816 }
817
818 /**
819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820 * @hw: Struct containing variables accessed by shared code
821 *
822 * Manipulates Physical Coding Sublayer functions in order to configure
823 * link. Assumes the hardware has been previously reset and the transmitter
824 * and receiver are not enabled.
825 */
e1000_setup_fiber_serdes_link(struct e1000_hw * hw)826 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
827 {
828 u32 ctrl;
829 u32 status;
830 u32 txcw = 0;
831 u32 i;
832 u32 signal = 0;
833 s32 ret_val;
834
835 /* On adapters with a MAC newer than 82544, SWDP 1 will be
836 * set when the optics detect a signal. On older adapters, it will be
837 * cleared when there is a signal. This applies to fiber media only.
838 * If we're on serdes media, adjust the output amplitude to value
839 * set in the EEPROM.
840 */
841 ctrl = er32(CTRL);
842 if (hw->media_type == e1000_media_type_fiber)
843 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
844
845 ret_val = e1000_adjust_serdes_amplitude(hw);
846 if (ret_val)
847 return ret_val;
848
849 /* Take the link out of reset */
850 ctrl &= ~(E1000_CTRL_LRST);
851
852 /* Adjust VCO speed to improve BER performance */
853 ret_val = e1000_set_vco_speed(hw);
854 if (ret_val)
855 return ret_val;
856
857 e1000_config_collision_dist(hw);
858
859 /* Check for a software override of the flow control settings, and setup
860 * the device accordingly. If auto-negotiation is enabled, then
861 * software will have to set the "PAUSE" bits to the correct value in
862 * the Tranmsit Config Word Register (TXCW) and re-start
863 * auto-negotiation. However, if auto-negotiation is disabled, then
864 * software will have to manually configure the two flow control enable
865 * bits in the CTRL register.
866 *
867 * The possible values of the "fc" parameter are:
868 * 0: Flow control is completely disabled
869 * 1: Rx flow control is enabled (we can receive pause frames, but
870 * not send pause frames).
871 * 2: Tx flow control is enabled (we can send pause frames but we do
872 * not support receiving pause frames).
873 * 3: Both Rx and TX flow control (symmetric) are enabled.
874 */
875 switch (hw->fc) {
876 case E1000_FC_NONE:
877 /* Flow ctrl is completely disabled by a software over-ride */
878 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879 break;
880 case E1000_FC_RX_PAUSE:
881 /* Rx Flow control is enabled and Tx Flow control is disabled by
882 * a software over-ride. Since there really isn't a way to
883 * advertise that we are capable of Rx Pause ONLY, we will
884 * advertise that we support both symmetric and asymmetric Rx
885 * PAUSE. Later, we will disable the adapter's ability to send
886 * PAUSE frames.
887 */
888 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889 break;
890 case E1000_FC_TX_PAUSE:
891 /* Tx Flow control is enabled, and Rx Flow control is disabled,
892 * by a software over-ride.
893 */
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895 break;
896 case E1000_FC_FULL:
897 /* Flow control (both Rx and Tx) is enabled by a software
898 * over-ride.
899 */
900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901 break;
902 default:
903 e_dbg("Flow control param set incorrectly\n");
904 return -E1000_ERR_CONFIG;
905 }
906
907 /* Since auto-negotiation is enabled, take the link out of reset (the
908 * link will be in reset, because we previously reset the chip). This
909 * will restart auto-negotiation. If auto-negotiation is successful
910 * then the link-up status bit will be set and the flow control enable
911 * bits (RFCE and TFCE) will be set according to their negotiated value.
912 */
913 e_dbg("Auto-negotiation enabled\n");
914
915 ew32(TXCW, txcw);
916 ew32(CTRL, ctrl);
917 E1000_WRITE_FLUSH();
918
919 hw->txcw = txcw;
920 msleep(1);
921
922 /* If we have a signal (the cable is plugged in) then poll for a
923 * "Link-Up" indication in the Device Status Register. Time-out if a
924 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925 * complete in less than 500 milliseconds even if the other end is doing
926 * it in SW). For internal serdes, we just assume a signal is present,
927 * then poll.
928 */
929 if (hw->media_type == e1000_media_type_internal_serdes ||
930 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
931 e_dbg("Looking for Link\n");
932 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933 msleep(10);
934 status = er32(STATUS);
935 if (status & E1000_STATUS_LU)
936 break;
937 }
938 if (i == (LINK_UP_TIMEOUT / 10)) {
939 e_dbg("Never got a valid link from auto-neg!!!\n");
940 hw->autoneg_failed = 1;
941 /* AutoNeg failed to achieve a link, so we'll call
942 * e1000_check_for_link. This routine will force the
943 * link up if we detect a signal. This will allow us to
944 * communicate with non-autonegotiating link partners.
945 */
946 ret_val = e1000_check_for_link(hw);
947 if (ret_val) {
948 e_dbg("Error while checking for link\n");
949 return ret_val;
950 }
951 hw->autoneg_failed = 0;
952 } else {
953 hw->autoneg_failed = 0;
954 e_dbg("Valid Link Found\n");
955 }
956 } else {
957 e_dbg("No Signal Detected\n");
958 }
959 return E1000_SUCCESS;
960 }
961
962 /**
963 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964 * @hw: Struct containing variables accessed by shared code
965 *
966 * Commits changes to PHY configuration by calling e1000_phy_reset().
967 */
e1000_copper_link_rtl_setup(struct e1000_hw * hw)968 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969 {
970 s32 ret_val;
971
972 /* SW reset the PHY so all changes take effect */
973 ret_val = e1000_phy_reset(hw);
974 if (ret_val) {
975 e_dbg("Error Resetting the PHY\n");
976 return ret_val;
977 }
978
979 return E1000_SUCCESS;
980 }
981
gbe_dhg_phy_setup(struct e1000_hw * hw)982 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983 {
984 s32 ret_val;
985 u32 ctrl_aux;
986
987 switch (hw->phy_type) {
988 case e1000_phy_8211:
989 ret_val = e1000_copper_link_rtl_setup(hw);
990 if (ret_val) {
991 e_dbg("e1000_copper_link_rtl_setup failed!\n");
992 return ret_val;
993 }
994 break;
995 case e1000_phy_8201:
996 /* Set RMII mode */
997 ctrl_aux = er32(CTL_AUX);
998 ctrl_aux |= E1000_CTL_AUX_RMII;
999 ew32(CTL_AUX, ctrl_aux);
1000 E1000_WRITE_FLUSH();
1001
1002 /* Disable the J/K bits required for receive */
1003 ctrl_aux = er32(CTL_AUX);
1004 ctrl_aux |= 0x4;
1005 ctrl_aux &= ~0x2;
1006 ew32(CTL_AUX, ctrl_aux);
1007 E1000_WRITE_FLUSH();
1008 ret_val = e1000_copper_link_rtl_setup(hw);
1009
1010 if (ret_val) {
1011 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012 return ret_val;
1013 }
1014 break;
1015 default:
1016 e_dbg("Error Resetting the PHY\n");
1017 return E1000_ERR_PHY_TYPE;
1018 }
1019
1020 return E1000_SUCCESS;
1021 }
1022
1023 /**
1024 * e1000_copper_link_preconfig - early configuration for copper
1025 * @hw: Struct containing variables accessed by shared code
1026 *
1027 * Make sure we have a valid PHY and change PHY mode before link setup.
1028 */
e1000_copper_link_preconfig(struct e1000_hw * hw)1029 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1030 {
1031 u32 ctrl;
1032 s32 ret_val;
1033 u16 phy_data;
1034
1035 ctrl = er32(CTRL);
1036 /* With 82543, we need to force speed and duplex on the MAC equal to
1037 * what the PHY speed and duplex configuration is. In addition, we need
1038 * to perform a hardware reset on the PHY to take it out of reset.
1039 */
1040 if (hw->mac_type > e1000_82543) {
1041 ctrl |= E1000_CTRL_SLU;
1042 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043 ew32(CTRL, ctrl);
1044 } else {
1045 ctrl |=
1046 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047 ew32(CTRL, ctrl);
1048 ret_val = e1000_phy_hw_reset(hw);
1049 if (ret_val)
1050 return ret_val;
1051 }
1052
1053 /* Make sure we have a valid PHY */
1054 ret_val = e1000_detect_gig_phy(hw);
1055 if (ret_val) {
1056 e_dbg("Error, did not detect valid phy.\n");
1057 return ret_val;
1058 }
1059 e_dbg("Phy ID = %x\n", hw->phy_id);
1060
1061 /* Set PHY to class A mode (if necessary) */
1062 ret_val = e1000_set_phy_mode(hw);
1063 if (ret_val)
1064 return ret_val;
1065
1066 if ((hw->mac_type == e1000_82545_rev_3) ||
1067 (hw->mac_type == e1000_82546_rev_3)) {
1068 ret_val =
1069 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070 phy_data |= 0x00000008;
1071 ret_val =
1072 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073 }
1074
1075 if (hw->mac_type <= e1000_82543 ||
1076 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077 hw->mac_type == e1000_82541_rev_2
1078 || hw->mac_type == e1000_82547_rev_2)
1079 hw->phy_reset_disable = false;
1080
1081 return E1000_SUCCESS;
1082 }
1083
1084 /**
1085 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086 * @hw: Struct containing variables accessed by shared code
1087 */
e1000_copper_link_igp_setup(struct e1000_hw * hw)1088 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1089 {
1090 u32 led_ctrl;
1091 s32 ret_val;
1092 u16 phy_data;
1093
1094 if (hw->phy_reset_disable)
1095 return E1000_SUCCESS;
1096
1097 ret_val = e1000_phy_reset(hw);
1098 if (ret_val) {
1099 e_dbg("Error Resetting the PHY\n");
1100 return ret_val;
1101 }
1102
1103 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1104 msleep(15);
1105 /* Configure activity LED after PHY reset */
1106 led_ctrl = er32(LEDCTL);
1107 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109 ew32(LEDCTL, led_ctrl);
1110
1111 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112 if (hw->phy_type == e1000_phy_igp) {
1113 /* disable lplu d3 during driver init */
1114 ret_val = e1000_set_d3_lplu_state(hw, false);
1115 if (ret_val) {
1116 e_dbg("Error Disabling LPLU D3\n");
1117 return ret_val;
1118 }
1119 }
1120
1121 /* Configure mdi-mdix settings */
1122 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123 if (ret_val)
1124 return ret_val;
1125
1126 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127 hw->dsp_config_state = e1000_dsp_config_disabled;
1128 /* Force MDI for earlier revs of the IGP PHY */
1129 phy_data &=
1130 ~(IGP01E1000_PSCR_AUTO_MDIX |
1131 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132 hw->mdix = 1;
1133
1134 } else {
1135 hw->dsp_config_state = e1000_dsp_config_enabled;
1136 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1137
1138 switch (hw->mdix) {
1139 case 1:
1140 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141 break;
1142 case 2:
1143 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144 break;
1145 case 0:
1146 default:
1147 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148 break;
1149 }
1150 }
1151 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152 if (ret_val)
1153 return ret_val;
1154
1155 /* set auto-master slave resolution settings */
1156 if (hw->autoneg) {
1157 e1000_ms_type phy_ms_setting = hw->master_slave;
1158
1159 if (hw->ffe_config_state == e1000_ffe_config_active)
1160 hw->ffe_config_state = e1000_ffe_config_enabled;
1161
1162 if (hw->dsp_config_state == e1000_dsp_config_activated)
1163 hw->dsp_config_state = e1000_dsp_config_enabled;
1164
1165 /* when autonegotiation advertisement is only 1000Mbps then we
1166 * should disable SmartSpeed and enable Auto MasterSlave
1167 * resolution as hardware default.
1168 */
1169 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170 /* Disable SmartSpeed */
1171 ret_val =
1172 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173 &phy_data);
1174 if (ret_val)
1175 return ret_val;
1176 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177 ret_val =
1178 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179 phy_data);
1180 if (ret_val)
1181 return ret_val;
1182 /* Set auto Master/Slave resolution process */
1183 ret_val =
1184 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185 if (ret_val)
1186 return ret_val;
1187 phy_data &= ~CR_1000T_MS_ENABLE;
1188 ret_val =
1189 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190 if (ret_val)
1191 return ret_val;
1192 }
1193
1194 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195 if (ret_val)
1196 return ret_val;
1197
1198 /* load defaults for future use */
1199 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200 ((phy_data & CR_1000T_MS_VALUE) ?
1201 e1000_ms_force_master :
1202 e1000_ms_force_slave) : e1000_ms_auto;
1203
1204 switch (phy_ms_setting) {
1205 case e1000_ms_force_master:
1206 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207 break;
1208 case e1000_ms_force_slave:
1209 phy_data |= CR_1000T_MS_ENABLE;
1210 phy_data &= ~(CR_1000T_MS_VALUE);
1211 break;
1212 case e1000_ms_auto:
1213 phy_data &= ~CR_1000T_MS_ENABLE;
1214 default:
1215 break;
1216 }
1217 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218 if (ret_val)
1219 return ret_val;
1220 }
1221
1222 return E1000_SUCCESS;
1223 }
1224
1225 /**
1226 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227 * @hw: Struct containing variables accessed by shared code
1228 */
e1000_copper_link_mgp_setup(struct e1000_hw * hw)1229 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1230 {
1231 s32 ret_val;
1232 u16 phy_data;
1233
1234 if (hw->phy_reset_disable)
1235 return E1000_SUCCESS;
1236
1237 /* Enable CRS on TX. This must be set for half-duplex operation. */
1238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239 if (ret_val)
1240 return ret_val;
1241
1242 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1243
1244 /* Options:
1245 * MDI/MDI-X = 0 (default)
1246 * 0 - Auto for all speeds
1247 * 1 - MDI mode
1248 * 2 - MDI-X mode
1249 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250 */
1251 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1252
1253 switch (hw->mdix) {
1254 case 1:
1255 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256 break;
1257 case 2:
1258 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259 break;
1260 case 3:
1261 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262 break;
1263 case 0:
1264 default:
1265 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266 break;
1267 }
1268
1269 /* Options:
1270 * disable_polarity_correction = 0 (default)
1271 * Automatic Correction for Reversed Cable Polarity
1272 * 0 - Disabled
1273 * 1 - Enabled
1274 */
1275 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276 if (hw->disable_polarity_correction == 1)
1277 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 if (ret_val)
1280 return ret_val;
1281
1282 if (hw->phy_revision < M88E1011_I_REV_4) {
1283 /* Force TX_CLK in the Extended PHY Specific Control Register
1284 * to 25MHz clock.
1285 */
1286 ret_val =
1287 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288 &phy_data);
1289 if (ret_val)
1290 return ret_val;
1291
1292 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1293
1294 if ((hw->phy_revision == E1000_REVISION_2) &&
1295 (hw->phy_id == M88E1111_I_PHY_ID)) {
1296 /* Vidalia Phy, set the downshift counter to 5x */
1297 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299 ret_val = e1000_write_phy_reg(hw,
1300 M88E1000_EXT_PHY_SPEC_CTRL,
1301 phy_data);
1302 if (ret_val)
1303 return ret_val;
1304 } else {
1305 /* Configure Master and Slave downshift values */
1306 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310 ret_val = e1000_write_phy_reg(hw,
1311 M88E1000_EXT_PHY_SPEC_CTRL,
1312 phy_data);
1313 if (ret_val)
1314 return ret_val;
1315 }
1316 }
1317
1318 /* SW Reset the PHY so all changes take effect */
1319 ret_val = e1000_phy_reset(hw);
1320 if (ret_val) {
1321 e_dbg("Error Resetting the PHY\n");
1322 return ret_val;
1323 }
1324
1325 return E1000_SUCCESS;
1326 }
1327
1328 /**
1329 * e1000_copper_link_autoneg - setup auto-neg
1330 * @hw: Struct containing variables accessed by shared code
1331 *
1332 * Setup auto-negotiation and flow control advertisements,
1333 * and then perform auto-negotiation.
1334 */
e1000_copper_link_autoneg(struct e1000_hw * hw)1335 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1336 {
1337 s32 ret_val;
1338 u16 phy_data;
1339
1340 /* Perform some bounds checking on the hw->autoneg_advertised
1341 * parameter. If this variable is zero, then set it to the default.
1342 */
1343 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1344
1345 /* If autoneg_advertised is zero, we assume it was not defaulted
1346 * by the calling code so we set to advertise full capability.
1347 */
1348 if (hw->autoneg_advertised == 0)
1349 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1350
1351 /* IFE/RTL8201N PHY only supports 10/100 */
1352 if (hw->phy_type == e1000_phy_8201)
1353 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354
1355 e_dbg("Reconfiguring auto-neg advertisement params\n");
1356 ret_val = e1000_phy_setup_autoneg(hw);
1357 if (ret_val) {
1358 e_dbg("Error Setting up Auto-Negotiation\n");
1359 return ret_val;
1360 }
1361 e_dbg("Restarting Auto-Neg\n");
1362
1363 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364 * the Auto Neg Restart bit in the PHY control register.
1365 */
1366 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367 if (ret_val)
1368 return ret_val;
1369
1370 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372 if (ret_val)
1373 return ret_val;
1374
1375 /* Does the user want to wait for Auto-Neg to complete here, or
1376 * check at a later time (for example, callback routine).
1377 */
1378 if (hw->wait_autoneg_complete) {
1379 ret_val = e1000_wait_autoneg(hw);
1380 if (ret_val) {
1381 e_dbg
1382 ("Error while waiting for autoneg to complete\n");
1383 return ret_val;
1384 }
1385 }
1386
1387 hw->get_link_status = true;
1388
1389 return E1000_SUCCESS;
1390 }
1391
1392 /**
1393 * e1000_copper_link_postconfig - post link setup
1394 * @hw: Struct containing variables accessed by shared code
1395 *
1396 * Config the MAC and the PHY after link is up.
1397 * 1) Set up the MAC to the current PHY speed/duplex
1398 * if we are on 82543. If we
1399 * are on newer silicon, we only need to configure
1400 * collision distance in the Transmit Control Register.
1401 * 2) Set up flow control on the MAC to that established with
1402 * the link partner.
1403 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404 */
e1000_copper_link_postconfig(struct e1000_hw * hw)1405 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1406 {
1407 s32 ret_val;
1408
1409 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1410 e1000_config_collision_dist(hw);
1411 } else {
1412 ret_val = e1000_config_mac_to_phy(hw);
1413 if (ret_val) {
1414 e_dbg("Error configuring MAC to PHY settings\n");
1415 return ret_val;
1416 }
1417 }
1418 ret_val = e1000_config_fc_after_link_up(hw);
1419 if (ret_val) {
1420 e_dbg("Error Configuring Flow Control\n");
1421 return ret_val;
1422 }
1423
1424 /* Config DSP to improve Giga link quality */
1425 if (hw->phy_type == e1000_phy_igp) {
1426 ret_val = e1000_config_dsp_after_link_change(hw, true);
1427 if (ret_val) {
1428 e_dbg("Error Configuring DSP after link up\n");
1429 return ret_val;
1430 }
1431 }
1432
1433 return E1000_SUCCESS;
1434 }
1435
1436 /**
1437 * e1000_setup_copper_link - phy/speed/duplex setting
1438 * @hw: Struct containing variables accessed by shared code
1439 *
1440 * Detects which PHY is present and sets up the speed and duplex
1441 */
e1000_setup_copper_link(struct e1000_hw * hw)1442 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1443 {
1444 s32 ret_val;
1445 u16 i;
1446 u16 phy_data;
1447
1448 /* Check if it is a valid PHY and set PHY mode if necessary. */
1449 ret_val = e1000_copper_link_preconfig(hw);
1450 if (ret_val)
1451 return ret_val;
1452
1453 if (hw->phy_type == e1000_phy_igp) {
1454 ret_val = e1000_copper_link_igp_setup(hw);
1455 if (ret_val)
1456 return ret_val;
1457 } else if (hw->phy_type == e1000_phy_m88) {
1458 ret_val = e1000_copper_link_mgp_setup(hw);
1459 if (ret_val)
1460 return ret_val;
1461 } else {
1462 ret_val = gbe_dhg_phy_setup(hw);
1463 if (ret_val) {
1464 e_dbg("gbe_dhg_phy_setup failed!\n");
1465 return ret_val;
1466 }
1467 }
1468
1469 if (hw->autoneg) {
1470 /* Setup autoneg and flow control advertisement
1471 * and perform autonegotiation
1472 */
1473 ret_val = e1000_copper_link_autoneg(hw);
1474 if (ret_val)
1475 return ret_val;
1476 } else {
1477 /* PHY will be set to 10H, 10F, 100H,or 100F
1478 * depending on value from forced_speed_duplex.
1479 */
1480 e_dbg("Forcing speed and duplex\n");
1481 ret_val = e1000_phy_force_speed_duplex(hw);
1482 if (ret_val) {
1483 e_dbg("Error Forcing Speed and Duplex\n");
1484 return ret_val;
1485 }
1486 }
1487
1488 /* Check link status. Wait up to 100 microseconds for link to become
1489 * valid.
1490 */
1491 for (i = 0; i < 10; i++) {
1492 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493 if (ret_val)
1494 return ret_val;
1495 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496 if (ret_val)
1497 return ret_val;
1498
1499 if (phy_data & MII_SR_LINK_STATUS) {
1500 /* Config the MAC and PHY after link is up */
1501 ret_val = e1000_copper_link_postconfig(hw);
1502 if (ret_val)
1503 return ret_val;
1504
1505 e_dbg("Valid link established!!!\n");
1506 return E1000_SUCCESS;
1507 }
1508 udelay(10);
1509 }
1510
1511 e_dbg("Unable to establish link!!!\n");
1512 return E1000_SUCCESS;
1513 }
1514
1515 /**
1516 * e1000_phy_setup_autoneg - phy settings
1517 * @hw: Struct containing variables accessed by shared code
1518 *
1519 * Configures PHY autoneg and flow control advertisement settings
1520 */
e1000_phy_setup_autoneg(struct e1000_hw * hw)1521 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1522 {
1523 s32 ret_val;
1524 u16 mii_autoneg_adv_reg;
1525 u16 mii_1000t_ctrl_reg;
1526
1527 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529 if (ret_val)
1530 return ret_val;
1531
1532 /* Read the MII 1000Base-T Control Register (Address 9). */
1533 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1534 if (ret_val)
1535 return ret_val;
1536 else if (hw->phy_type == e1000_phy_8201)
1537 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1538
1539 /* Need to parse both autoneg_advertised and fc and set up
1540 * the appropriate PHY registers. First we will parse for
1541 * autoneg_advertised software override. Since we can advertise
1542 * a plethora of combinations, we need to check each bit
1543 * individually.
1544 */
1545
1546 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548 * the 1000Base-T Control Register (Address 9).
1549 */
1550 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1552
1553 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1554
1555 /* Do we want to advertise 10 Mb Half Duplex? */
1556 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1557 e_dbg("Advertise 10mb Half duplex\n");
1558 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559 }
1560
1561 /* Do we want to advertise 10 Mb Full Duplex? */
1562 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1563 e_dbg("Advertise 10mb Full duplex\n");
1564 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565 }
1566
1567 /* Do we want to advertise 100 Mb Half Duplex? */
1568 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1569 e_dbg("Advertise 100mb Half duplex\n");
1570 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571 }
1572
1573 /* Do we want to advertise 100 Mb Full Duplex? */
1574 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1575 e_dbg("Advertise 100mb Full duplex\n");
1576 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577 }
1578
1579 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1581 e_dbg
1582 ("Advertise 1000mb Half duplex requested, request denied!\n");
1583 }
1584
1585 /* Do we want to advertise 1000 Mb Full Duplex? */
1586 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1587 e_dbg("Advertise 1000mb Full duplex\n");
1588 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589 }
1590
1591 /* Check for a software override of the flow control settings, and
1592 * setup the PHY advertisement registers accordingly. If
1593 * auto-negotiation is enabled, then software will have to set the
1594 * "PAUSE" bits to the correct value in the Auto-Negotiation
1595 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596 * auto-negotiation.
1597 *
1598 * The possible values of the "fc" parameter are:
1599 * 0: Flow control is completely disabled
1600 * 1: Rx flow control is enabled (we can receive pause frames
1601 * but not send pause frames).
1602 * 2: Tx flow control is enabled (we can send pause frames
1603 * but we do not support receiving pause frames).
1604 * 3: Both Rx and TX flow control (symmetric) are enabled.
1605 * other: No software override. The flow control configuration
1606 * in the EEPROM is used.
1607 */
1608 switch (hw->fc) {
1609 case E1000_FC_NONE: /* 0 */
1610 /* Flow control (RX & TX) is completely disabled by a
1611 * software over-ride.
1612 */
1613 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614 break;
1615 case E1000_FC_RX_PAUSE: /* 1 */
1616 /* RX Flow control is enabled, and TX Flow control is
1617 * disabled, by a software over-ride.
1618 */
1619 /* Since there really isn't a way to advertise that we are
1620 * capable of RX Pause ONLY, we will advertise that we
1621 * support both symmetric and asymmetric RX PAUSE. Later
1622 * (in e1000_config_fc_after_link_up) we will disable the
1623 * hw's ability to send PAUSE frames.
1624 */
1625 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626 break;
1627 case E1000_FC_TX_PAUSE: /* 2 */
1628 /* TX Flow control is enabled, and RX Flow control is
1629 * disabled, by a software over-ride.
1630 */
1631 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633 break;
1634 case E1000_FC_FULL: /* 3 */
1635 /* Flow control (both RX and TX) is enabled by a software
1636 * over-ride.
1637 */
1638 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 break;
1640 default:
1641 e_dbg("Flow control param set incorrectly\n");
1642 return -E1000_ERR_CONFIG;
1643 }
1644
1645 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646 if (ret_val)
1647 return ret_val;
1648
1649 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1650
1651 if (hw->phy_type == e1000_phy_8201) {
1652 mii_1000t_ctrl_reg = 0;
1653 } else {
1654 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1655 mii_1000t_ctrl_reg);
1656 if (ret_val)
1657 return ret_val;
1658 }
1659
1660 return E1000_SUCCESS;
1661 }
1662
1663 /**
1664 * e1000_phy_force_speed_duplex - force link settings
1665 * @hw: Struct containing variables accessed by shared code
1666 *
1667 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668 */
e1000_phy_force_speed_duplex(struct e1000_hw * hw)1669 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1670 {
1671 u32 ctrl;
1672 s32 ret_val;
1673 u16 mii_ctrl_reg;
1674 u16 mii_status_reg;
1675 u16 phy_data;
1676 u16 i;
1677
1678 /* Turn off Flow control if we are forcing speed and duplex. */
1679 hw->fc = E1000_FC_NONE;
1680
1681 e_dbg("hw->fc = %d\n", hw->fc);
1682
1683 /* Read the Device Control Register. */
1684 ctrl = er32(CTRL);
1685
1686 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688 ctrl &= ~(DEVICE_SPEED_MASK);
1689
1690 /* Clear the Auto Speed Detect Enable bit. */
1691 ctrl &= ~E1000_CTRL_ASDE;
1692
1693 /* Read the MII Control Register. */
1694 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695 if (ret_val)
1696 return ret_val;
1697
1698 /* We need to disable autoneg in order to force link and duplex. */
1699
1700 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1701
1702 /* Are we forcing Full or Half Duplex? */
1703 if (hw->forced_speed_duplex == e1000_100_full ||
1704 hw->forced_speed_duplex == e1000_10_full) {
1705 /* We want to force full duplex so we SET the full duplex bits
1706 * in the Device and MII Control Registers.
1707 */
1708 ctrl |= E1000_CTRL_FD;
1709 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1710 e_dbg("Full Duplex\n");
1711 } else {
1712 /* We want to force half duplex so we CLEAR the full duplex bits
1713 * in the Device and MII Control Registers.
1714 */
1715 ctrl &= ~E1000_CTRL_FD;
1716 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1717 e_dbg("Half Duplex\n");
1718 }
1719
1720 /* Are we forcing 100Mbps??? */
1721 if (hw->forced_speed_duplex == e1000_100_full ||
1722 hw->forced_speed_duplex == e1000_100_half) {
1723 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724 ctrl |= E1000_CTRL_SPD_100;
1725 mii_ctrl_reg |= MII_CR_SPEED_100;
1726 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1727 e_dbg("Forcing 100mb ");
1728 } else {
1729 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731 mii_ctrl_reg |= MII_CR_SPEED_10;
1732 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1733 e_dbg("Forcing 10mb ");
1734 }
1735
1736 e1000_config_collision_dist(hw);
1737
1738 /* Write the configured values back to the Device Control Reg. */
1739 ew32(CTRL, ctrl);
1740
1741 if (hw->phy_type == e1000_phy_m88) {
1742 ret_val =
1743 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744 if (ret_val)
1745 return ret_val;
1746
1747 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748 * MDI forced whenever speed are duplex are forced.
1749 */
1750 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751 ret_val =
1752 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753 if (ret_val)
1754 return ret_val;
1755
1756 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1757
1758 /* Need to reset the PHY or these changes will be ignored */
1759 mii_ctrl_reg |= MII_CR_RESET;
1760
1761 /* Disable MDI-X support for 10/100 */
1762 } else {
1763 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1764 * forced whenever speed or duplex are forced.
1765 */
1766 ret_val =
1767 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768 if (ret_val)
1769 return ret_val;
1770
1771 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1773
1774 ret_val =
1775 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776 if (ret_val)
1777 return ret_val;
1778 }
1779
1780 /* Write back the modified PHY MII control register. */
1781 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782 if (ret_val)
1783 return ret_val;
1784
1785 udelay(1);
1786
1787 /* The wait_autoneg_complete flag may be a little misleading here.
1788 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789 * But we do want to delay for a period while forcing only so we
1790 * don't generate false No Link messages. So we will wait here
1791 * only if the user has set wait_autoneg_complete to 1, which is
1792 * the default.
1793 */
1794 if (hw->wait_autoneg_complete) {
1795 /* We will wait for autoneg to complete. */
1796 e_dbg("Waiting for forced speed/duplex link.\n");
1797 mii_status_reg = 0;
1798
1799 /* Wait for autoneg to complete or 4.5 seconds to expire */
1800 for (i = PHY_FORCE_TIME; i > 0; i--) {
1801 /* Read the MII Status Register and wait for Auto-Neg
1802 * Complete bit to be set.
1803 */
1804 ret_val =
1805 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806 if (ret_val)
1807 return ret_val;
1808
1809 ret_val =
1810 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811 if (ret_val)
1812 return ret_val;
1813
1814 if (mii_status_reg & MII_SR_LINK_STATUS)
1815 break;
1816 msleep(100);
1817 }
1818 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1819 /* We didn't get link. Reset the DSP and wait again
1820 * for link.
1821 */
1822 ret_val = e1000_phy_reset_dsp(hw);
1823 if (ret_val) {
1824 e_dbg("Error Resetting PHY DSP\n");
1825 return ret_val;
1826 }
1827 }
1828 /* This loop will early-out if the link condition has been
1829 * met
1830 */
1831 for (i = PHY_FORCE_TIME; i > 0; i--) {
1832 if (mii_status_reg & MII_SR_LINK_STATUS)
1833 break;
1834 msleep(100);
1835 /* Read the MII Status Register and wait for Auto-Neg
1836 * Complete bit to be set.
1837 */
1838 ret_val =
1839 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 if (ret_val)
1841 return ret_val;
1842
1843 ret_val =
1844 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 if (ret_val)
1846 return ret_val;
1847 }
1848 }
1849
1850 if (hw->phy_type == e1000_phy_m88) {
1851 /* Because we reset the PHY above, we need to re-force TX_CLK in
1852 * the Extended PHY Specific Control Register to 25MHz clock.
1853 * This value defaults back to a 2.5MHz clock when the PHY is
1854 * reset.
1855 */
1856 ret_val =
1857 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858 &phy_data);
1859 if (ret_val)
1860 return ret_val;
1861
1862 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863 ret_val =
1864 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865 phy_data);
1866 if (ret_val)
1867 return ret_val;
1868
1869 /* In addition, because of the s/w reset above, we need to
1870 * enable CRS on Tx. This must be set for both full and half
1871 * duplex operation.
1872 */
1873 ret_val =
1874 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875 if (ret_val)
1876 return ret_val;
1877
1878 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879 ret_val =
1880 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881 if (ret_val)
1882 return ret_val;
1883
1884 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1885 && (!hw->autoneg)
1886 && (hw->forced_speed_duplex == e1000_10_full
1887 || hw->forced_speed_duplex == e1000_10_half)) {
1888 ret_val = e1000_polarity_reversal_workaround(hw);
1889 if (ret_val)
1890 return ret_val;
1891 }
1892 }
1893 return E1000_SUCCESS;
1894 }
1895
1896 /**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
e1000_config_collision_dist(struct e1000_hw * hw)1904 void e1000_config_collision_dist(struct e1000_hw *hw)
1905 {
1906 u32 tctl, coll_dist;
1907
1908 if (hw->mac_type < e1000_82543)
1909 coll_dist = E1000_COLLISION_DISTANCE_82542;
1910 else
1911 coll_dist = E1000_COLLISION_DISTANCE;
1912
1913 tctl = er32(TCTL);
1914
1915 tctl &= ~E1000_TCTL_COLD;
1916 tctl |= coll_dist << E1000_COLD_SHIFT;
1917
1918 ew32(TCTL, tctl);
1919 E1000_WRITE_FLUSH();
1920 }
1921
1922 /**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
e1000_config_mac_to_phy(struct e1000_hw * hw)1931 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932 {
1933 u32 ctrl;
1934 s32 ret_val;
1935 u16 phy_data;
1936
1937 /* 82544 or newer MAC, Auto Speed Detection takes care of
1938 * MAC speed/duplex configuration.
1939 */
1940 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941 return E1000_SUCCESS;
1942
1943 /* Read the Device Control Register and set the bits to Force Speed
1944 * and Duplex.
1945 */
1946 ctrl = er32(CTRL);
1947 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949
1950 switch (hw->phy_type) {
1951 case e1000_phy_8201:
1952 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953 if (ret_val)
1954 return ret_val;
1955
1956 if (phy_data & RTL_PHY_CTRL_FD)
1957 ctrl |= E1000_CTRL_FD;
1958 else
1959 ctrl &= ~E1000_CTRL_FD;
1960
1961 if (phy_data & RTL_PHY_CTRL_SPD_100)
1962 ctrl |= E1000_CTRL_SPD_100;
1963 else
1964 ctrl |= E1000_CTRL_SPD_10;
1965
1966 e1000_config_collision_dist(hw);
1967 break;
1968 default:
1969 /* Set up duplex in the Device Control and Transmit Control
1970 * registers depending on negotiated values.
1971 */
1972 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973 &phy_data);
1974 if (ret_val)
1975 return ret_val;
1976
1977 if (phy_data & M88E1000_PSSR_DPLX)
1978 ctrl |= E1000_CTRL_FD;
1979 else
1980 ctrl &= ~E1000_CTRL_FD;
1981
1982 e1000_config_collision_dist(hw);
1983
1984 /* Set up speed in the Device Control register depending on
1985 * negotiated values.
1986 */
1987 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988 ctrl |= E1000_CTRL_SPD_1000;
1989 else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990 M88E1000_PSSR_100MBS)
1991 ctrl |= E1000_CTRL_SPD_100;
1992 }
1993
1994 /* Write the configured values back to the Device Control Reg. */
1995 ew32(CTRL, ctrl);
1996 return E1000_SUCCESS;
1997 }
1998
1999 /**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
2003 * Forces the MAC's flow control settings.
2004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
2009 */
e1000_force_mac_fc(struct e1000_hw * hw)2010 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011 {
2012 u32 ctrl;
2013
2014 /* Get the current configuration of the Device Control Register */
2015 ctrl = er32(CTRL);
2016
2017 /* Because we didn't get link via the internal auto-negotiation
2018 * mechanism (we either forced link or we got link via PHY
2019 * auto-neg), we have to manually enable/disable transmit an
2020 * receive flow control.
2021 *
2022 * The "Case" statement below enables/disable flow control
2023 * according to the "hw->fc" parameter.
2024 *
2025 * The possible values of the "fc" parameter are:
2026 * 0: Flow control is completely disabled
2027 * 1: Rx flow control is enabled (we can receive pause
2028 * frames but not send pause frames).
2029 * 2: Tx flow control is enabled (we can send pause frames
2030 * frames but we do not receive pause frames).
2031 * 3: Both Rx and TX flow control (symmetric) is enabled.
2032 * other: No other values should be possible at this point.
2033 */
2034
2035 switch (hw->fc) {
2036 case E1000_FC_NONE:
2037 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038 break;
2039 case E1000_FC_RX_PAUSE:
2040 ctrl &= (~E1000_CTRL_TFCE);
2041 ctrl |= E1000_CTRL_RFCE;
2042 break;
2043 case E1000_FC_TX_PAUSE:
2044 ctrl &= (~E1000_CTRL_RFCE);
2045 ctrl |= E1000_CTRL_TFCE;
2046 break;
2047 case E1000_FC_FULL:
2048 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049 break;
2050 default:
2051 e_dbg("Flow control param set incorrectly\n");
2052 return -E1000_ERR_CONFIG;
2053 }
2054
2055 /* Disable TX Flow Control for 82542 (rev 2.0) */
2056 if (hw->mac_type == e1000_82542_rev2_0)
2057 ctrl &= (~E1000_CTRL_TFCE);
2058
2059 ew32(CTRL, ctrl);
2060 return E1000_SUCCESS;
2061 }
2062
2063 /**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
2067 * Configures flow control settings after link is established
2068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
e1000_config_fc_after_link_up(struct e1000_hw * hw)2074 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075 {
2076 s32 ret_val;
2077 u16 mii_status_reg;
2078 u16 mii_nway_adv_reg;
2079 u16 mii_nway_lp_ability_reg;
2080 u16 speed;
2081 u16 duplex;
2082
2083 /* Check for the case where we have fiber media and auto-neg failed
2084 * so we had to force link. In this case, we need to force the
2085 * configuration of the MAC to match the "fc" parameter.
2086 */
2087 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2088 || ((hw->media_type == e1000_media_type_internal_serdes)
2089 && (hw->autoneg_failed))
2090 || ((hw->media_type == e1000_media_type_copper)
2091 && (!hw->autoneg))) {
2092 ret_val = e1000_force_mac_fc(hw);
2093 if (ret_val) {
2094 e_dbg("Error forcing flow control settings\n");
2095 return ret_val;
2096 }
2097 }
2098
2099 /* Check for the case where we have copper media and auto-neg is
2100 * enabled. In this case, we need to check and see if Auto-Neg
2101 * has completed, and if so, how the PHY and link partner has
2102 * flow control configured.
2103 */
2104 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2105 /* Read the MII Status Register and check to see if AutoNeg
2106 * has completed. We read this twice because this reg has
2107 * some "sticky" (latched) bits.
2108 */
2109 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2110 if (ret_val)
2111 return ret_val;
2112 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2113 if (ret_val)
2114 return ret_val;
2115
2116 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2117 /* The AutoNeg process has completed, so we now need to
2118 * read both the Auto Negotiation Advertisement Register
2119 * (Address 4) and the Auto_Negotiation Base Page
2120 * Ability Register (Address 5) to determine how flow
2121 * control was negotiated.
2122 */
2123 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2124 &mii_nway_adv_reg);
2125 if (ret_val)
2126 return ret_val;
2127 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2128 &mii_nway_lp_ability_reg);
2129 if (ret_val)
2130 return ret_val;
2131
2132 /* Two bits in the Auto Negotiation Advertisement
2133 * Register (Address 4) and two bits in the Auto
2134 * Negotiation Base Page Ability Register (Address 5)
2135 * determine flow control for both the PHY and the link
2136 * partner. The following table, taken out of the IEEE
2137 * 802.3ab/D6.0 dated March 25, 1999, describes these
2138 * PAUSE resolution bits and how flow control is
2139 * determined based upon these settings.
2140 * NOTE: DC = Don't Care
2141 *
2142 * LOCAL DEVICE | LINK PARTNER
2143 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2144 *-------|---------|-------|---------|------------------
2145 * 0 | 0 | DC | DC | E1000_FC_NONE
2146 * 0 | 1 | 0 | DC | E1000_FC_NONE
2147 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2148 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2149 * 1 | 0 | 0 | DC | E1000_FC_NONE
2150 * 1 | DC | 1 | DC | E1000_FC_FULL
2151 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2152 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2153 *
2154 */
2155 /* Are both PAUSE bits set to 1? If so, this implies
2156 * Symmetric Flow Control is enabled at both ends. The
2157 * ASM_DIR bits are irrelevant per the spec.
2158 *
2159 * For Symmetric Flow Control:
2160 *
2161 * LOCAL DEVICE | LINK PARTNER
2162 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2163 *-------|---------|-------|---------|------------------
2164 * 1 | DC | 1 | DC | E1000_FC_FULL
2165 *
2166 */
2167 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2169 /* Now we need to check if the user selected Rx
2170 * ONLY of pause frames. In this case, we had
2171 * to advertise FULL flow control because we
2172 * could not advertise Rx ONLY. Hence, we must
2173 * now check to see if we need to turn OFF the
2174 * TRANSMISSION of PAUSE frames.
2175 */
2176 if (hw->original_fc == E1000_FC_FULL) {
2177 hw->fc = E1000_FC_FULL;
2178 e_dbg("Flow Control = FULL.\n");
2179 } else {
2180 hw->fc = E1000_FC_RX_PAUSE;
2181 e_dbg
2182 ("Flow Control = RX PAUSE frames only.\n");
2183 }
2184 }
2185 /* For receiving PAUSE frames ONLY.
2186 *
2187 * LOCAL DEVICE | LINK PARTNER
2188 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2189 *-------|---------|-------|---------|------------------
2190 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2191 *
2192 */
2193 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2194 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2195 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2196 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2197 {
2198 hw->fc = E1000_FC_TX_PAUSE;
2199 e_dbg
2200 ("Flow Control = TX PAUSE frames only.\n");
2201 }
2202 /* For transmitting PAUSE frames ONLY.
2203 *
2204 * LOCAL DEVICE | LINK PARTNER
2205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206 *-------|---------|-------|---------|------------------
2207 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2208 *
2209 */
2210 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2214 {
2215 hw->fc = E1000_FC_RX_PAUSE;
2216 e_dbg
2217 ("Flow Control = RX PAUSE frames only.\n");
2218 }
2219 /* Per the IEEE spec, at this point flow control should
2220 * be disabled. However, we want to consider that we
2221 * could be connected to a legacy switch that doesn't
2222 * advertise desired flow control, but can be forced on
2223 * the link partner. So if we advertised no flow
2224 * control, that is what we will resolve to. If we
2225 * advertised some kind of receive capability (Rx Pause
2226 * Only or Full Flow Control) and the link partner
2227 * advertised none, we will configure ourselves to
2228 * enable Rx Flow Control only. We can do this safely
2229 * for two reasons: If the link partner really
2230 * didn't want flow control enabled, and we enable Rx,
2231 * no harm done since we won't be receiving any PAUSE
2232 * frames anyway. If the intent on the link partner was
2233 * to have flow control enabled, then by us enabling Rx
2234 * only, we can at least receive pause frames and
2235 * process them. This is a good idea because in most
2236 * cases, since we are predominantly a server NIC, more
2237 * times than not we will be asked to delay transmission
2238 * of packets than asking our link partner to pause
2239 * transmission of frames.
2240 */
2241 else if ((hw->original_fc == E1000_FC_NONE ||
2242 hw->original_fc == E1000_FC_TX_PAUSE) ||
2243 hw->fc_strict_ieee) {
2244 hw->fc = E1000_FC_NONE;
2245 e_dbg("Flow Control = NONE.\n");
2246 } else {
2247 hw->fc = E1000_FC_RX_PAUSE;
2248 e_dbg
2249 ("Flow Control = RX PAUSE frames only.\n");
2250 }
2251
2252 /* Now we need to do one last check... If we auto-
2253 * negotiated to HALF DUPLEX, flow control should not be
2254 * enabled per IEEE 802.3 spec.
2255 */
2256 ret_val =
2257 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2258 if (ret_val) {
2259 e_dbg
2260 ("Error getting link speed and duplex\n");
2261 return ret_val;
2262 }
2263
2264 if (duplex == HALF_DUPLEX)
2265 hw->fc = E1000_FC_NONE;
2266
2267 /* Now we call a subroutine to actually force the MAC
2268 * controller to use the correct flow control settings.
2269 */
2270 ret_val = e1000_force_mac_fc(hw);
2271 if (ret_val) {
2272 e_dbg
2273 ("Error forcing flow control settings\n");
2274 return ret_val;
2275 }
2276 } else {
2277 e_dbg
2278 ("Copper PHY and Auto Neg has not completed.\n");
2279 }
2280 }
2281 return E1000_SUCCESS;
2282 }
2283
2284 /**
2285 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2286 * @hw: pointer to the HW structure
2287 *
2288 * Checks for link up on the hardware. If link is not up and we have
2289 * a signal, then we need to force link up.
2290 */
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)2291 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2292 {
2293 u32 rxcw;
2294 u32 ctrl;
2295 u32 status;
2296 s32 ret_val = E1000_SUCCESS;
2297
2298 ctrl = er32(CTRL);
2299 status = er32(STATUS);
2300 rxcw = er32(RXCW);
2301
2302 /* If we don't have link (auto-negotiation failed or link partner
2303 * cannot auto-negotiate), and our link partner is not trying to
2304 * auto-negotiate with us (we are receiving idles or data),
2305 * we need to force link up. We also need to give auto-negotiation
2306 * time to complete.
2307 */
2308 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2309 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2310 if (hw->autoneg_failed == 0) {
2311 hw->autoneg_failed = 1;
2312 goto out;
2313 }
2314 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2315
2316 /* Disable auto-negotiation in the TXCW register */
2317 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2318
2319 /* Force link-up and also force full-duplex. */
2320 ctrl = er32(CTRL);
2321 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2322 ew32(CTRL, ctrl);
2323
2324 /* Configure Flow Control after forcing link up. */
2325 ret_val = e1000_config_fc_after_link_up(hw);
2326 if (ret_val) {
2327 e_dbg("Error configuring flow control\n");
2328 goto out;
2329 }
2330 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2331 /* If we are forcing link and we are receiving /C/ ordered
2332 * sets, re-enable auto-negotiation in the TXCW register
2333 * and disable forced link in the Device Control register
2334 * in an attempt to auto-negotiate with our link partner.
2335 */
2336 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2337 ew32(TXCW, hw->txcw);
2338 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2339
2340 hw->serdes_has_link = true;
2341 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2342 /* If we force link for non-auto-negotiation switch, check
2343 * link status based on MAC synchronization for internal
2344 * serdes media type.
2345 */
2346 /* SYNCH bit and IV bit are sticky. */
2347 udelay(10);
2348 rxcw = er32(RXCW);
2349 if (rxcw & E1000_RXCW_SYNCH) {
2350 if (!(rxcw & E1000_RXCW_IV)) {
2351 hw->serdes_has_link = true;
2352 e_dbg("SERDES: Link up - forced.\n");
2353 }
2354 } else {
2355 hw->serdes_has_link = false;
2356 e_dbg("SERDES: Link down - force failed.\n");
2357 }
2358 }
2359
2360 if (E1000_TXCW_ANE & er32(TXCW)) {
2361 status = er32(STATUS);
2362 if (status & E1000_STATUS_LU) {
2363 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2364 udelay(10);
2365 rxcw = er32(RXCW);
2366 if (rxcw & E1000_RXCW_SYNCH) {
2367 if (!(rxcw & E1000_RXCW_IV)) {
2368 hw->serdes_has_link = true;
2369 e_dbg("SERDES: Link up - autoneg "
2370 "completed successfully.\n");
2371 } else {
2372 hw->serdes_has_link = false;
2373 e_dbg("SERDES: Link down - invalid"
2374 "codewords detected in autoneg.\n");
2375 }
2376 } else {
2377 hw->serdes_has_link = false;
2378 e_dbg("SERDES: Link down - no sync.\n");
2379 }
2380 } else {
2381 hw->serdes_has_link = false;
2382 e_dbg("SERDES: Link down - autoneg failed\n");
2383 }
2384 }
2385
2386 out:
2387 return ret_val;
2388 }
2389
2390 /**
2391 * e1000_check_for_link
2392 * @hw: Struct containing variables accessed by shared code
2393 *
2394 * Checks to see if the link status of the hardware has changed.
2395 * Called by any function that needs to check the link status of the adapter.
2396 */
e1000_check_for_link(struct e1000_hw * hw)2397 s32 e1000_check_for_link(struct e1000_hw *hw)
2398 {
2399 u32 rxcw = 0;
2400 u32 ctrl;
2401 u32 status;
2402 u32 rctl;
2403 u32 icr;
2404 u32 signal = 0;
2405 s32 ret_val;
2406 u16 phy_data;
2407
2408 ctrl = er32(CTRL);
2409 status = er32(STATUS);
2410
2411 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2412 * set when the optics detect a signal. On older adapters, it will be
2413 * cleared when there is a signal. This applies to fiber media only.
2414 */
2415 if ((hw->media_type == e1000_media_type_fiber) ||
2416 (hw->media_type == e1000_media_type_internal_serdes)) {
2417 rxcw = er32(RXCW);
2418
2419 if (hw->media_type == e1000_media_type_fiber) {
2420 signal =
2421 (hw->mac_type >
2422 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2423 if (status & E1000_STATUS_LU)
2424 hw->get_link_status = false;
2425 }
2426 }
2427
2428 /* If we have a copper PHY then we only want to go out to the PHY
2429 * registers to see if Auto-Neg has completed and/or if our link
2430 * status has changed. The get_link_status flag will be set if we
2431 * receive a Link Status Change interrupt or we have Rx Sequence
2432 * Errors.
2433 */
2434 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2435 /* First we want to see if the MII Status Register reports
2436 * link. If so, then we want to get the current speed/duplex
2437 * of the PHY.
2438 * Read the register twice since the link bit is sticky.
2439 */
2440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2441 if (ret_val)
2442 return ret_val;
2443 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2444 if (ret_val)
2445 return ret_val;
2446
2447 if (phy_data & MII_SR_LINK_STATUS) {
2448 hw->get_link_status = false;
2449 /* Check if there was DownShift, must be checked
2450 * immediately after link-up
2451 */
2452 e1000_check_downshift(hw);
2453
2454 /* If we are on 82544 or 82543 silicon and speed/duplex
2455 * are forced to 10H or 10F, then we will implement the
2456 * polarity reversal workaround. We disable interrupts
2457 * first, and upon returning, place the devices
2458 * interrupt state to its previous value except for the
2459 * link status change interrupt which will
2460 * happen due to the execution of this workaround.
2461 */
2462
2463 if ((hw->mac_type == e1000_82544
2464 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2465 && (hw->forced_speed_duplex == e1000_10_full
2466 || hw->forced_speed_duplex == e1000_10_half)) {
2467 ew32(IMC, 0xffffffff);
2468 ret_val =
2469 e1000_polarity_reversal_workaround(hw);
2470 icr = er32(ICR);
2471 ew32(ICS, (icr & ~E1000_ICS_LSC));
2472 ew32(IMS, IMS_ENABLE_MASK);
2473 }
2474
2475 } else {
2476 /* No link detected */
2477 e1000_config_dsp_after_link_change(hw, false);
2478 return 0;
2479 }
2480
2481 /* If we are forcing speed/duplex, then we simply return since
2482 * we have already determined whether we have link or not.
2483 */
2484 if (!hw->autoneg)
2485 return -E1000_ERR_CONFIG;
2486
2487 /* optimize the dsp settings for the igp phy */
2488 e1000_config_dsp_after_link_change(hw, true);
2489
2490 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2491 * have Si on board that is 82544 or newer, Auto
2492 * Speed Detection takes care of MAC speed/duplex
2493 * configuration. So we only need to configure Collision
2494 * Distance in the MAC. Otherwise, we need to force
2495 * speed/duplex on the MAC to the current PHY speed/duplex
2496 * settings.
2497 */
2498 if ((hw->mac_type >= e1000_82544) &&
2499 (hw->mac_type != e1000_ce4100))
2500 e1000_config_collision_dist(hw);
2501 else {
2502 ret_val = e1000_config_mac_to_phy(hw);
2503 if (ret_val) {
2504 e_dbg
2505 ("Error configuring MAC to PHY settings\n");
2506 return ret_val;
2507 }
2508 }
2509
2510 /* Configure Flow Control now that Auto-Neg has completed.
2511 * First, we need to restore the desired flow control settings
2512 * because we may have had to re-autoneg with a different link
2513 * partner.
2514 */
2515 ret_val = e1000_config_fc_after_link_up(hw);
2516 if (ret_val) {
2517 e_dbg("Error configuring flow control\n");
2518 return ret_val;
2519 }
2520
2521 /* At this point we know that we are on copper and we have
2522 * auto-negotiated link. These are conditions for checking the
2523 * link partner capability register. We use the link speed to
2524 * determine if TBI compatibility needs to be turned on or off.
2525 * If the link is not at gigabit speed, then TBI compatibility
2526 * is not needed. If we are at gigabit speed, we turn on TBI
2527 * compatibility.
2528 */
2529 if (hw->tbi_compatibility_en) {
2530 u16 speed, duplex;
2531 ret_val =
2532 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2533 if (ret_val) {
2534 e_dbg
2535 ("Error getting link speed and duplex\n");
2536 return ret_val;
2537 }
2538 if (speed != SPEED_1000) {
2539 /* If link speed is not set to gigabit speed, we
2540 * do not need to enable TBI compatibility.
2541 */
2542 if (hw->tbi_compatibility_on) {
2543 /* If we previously were in the mode,
2544 * turn it off.
2545 */
2546 rctl = er32(RCTL);
2547 rctl &= ~E1000_RCTL_SBP;
2548 ew32(RCTL, rctl);
2549 hw->tbi_compatibility_on = false;
2550 }
2551 } else {
2552 /* If TBI compatibility is was previously off,
2553 * turn it on. For compatibility with a TBI link
2554 * partner, we will store bad packets. Some
2555 * frames have an additional byte on the end and
2556 * will look like CRC errors to to the hardware.
2557 */
2558 if (!hw->tbi_compatibility_on) {
2559 hw->tbi_compatibility_on = true;
2560 rctl = er32(RCTL);
2561 rctl |= E1000_RCTL_SBP;
2562 ew32(RCTL, rctl);
2563 }
2564 }
2565 }
2566 }
2567
2568 if ((hw->media_type == e1000_media_type_fiber) ||
2569 (hw->media_type == e1000_media_type_internal_serdes))
2570 e1000_check_for_serdes_link_generic(hw);
2571
2572 return E1000_SUCCESS;
2573 }
2574
2575 /**
2576 * e1000_get_speed_and_duplex
2577 * @hw: Struct containing variables accessed by shared code
2578 * @speed: Speed of the connection
2579 * @duplex: Duplex setting of the connection
2580 *
2581 * Detects the current speed and duplex settings of the hardware.
2582 */
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)2583 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2584 {
2585 u32 status;
2586 s32 ret_val;
2587 u16 phy_data;
2588
2589 if (hw->mac_type >= e1000_82543) {
2590 status = er32(STATUS);
2591 if (status & E1000_STATUS_SPEED_1000) {
2592 *speed = SPEED_1000;
2593 e_dbg("1000 Mbs, ");
2594 } else if (status & E1000_STATUS_SPEED_100) {
2595 *speed = SPEED_100;
2596 e_dbg("100 Mbs, ");
2597 } else {
2598 *speed = SPEED_10;
2599 e_dbg("10 Mbs, ");
2600 }
2601
2602 if (status & E1000_STATUS_FD) {
2603 *duplex = FULL_DUPLEX;
2604 e_dbg("Full Duplex\n");
2605 } else {
2606 *duplex = HALF_DUPLEX;
2607 e_dbg(" Half Duplex\n");
2608 }
2609 } else {
2610 e_dbg("1000 Mbs, Full Duplex\n");
2611 *speed = SPEED_1000;
2612 *duplex = FULL_DUPLEX;
2613 }
2614
2615 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2616 * even if it is operating at half duplex. Here we set the duplex
2617 * settings to match the duplex in the link partner's capabilities.
2618 */
2619 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2620 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2621 if (ret_val)
2622 return ret_val;
2623
2624 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2625 *duplex = HALF_DUPLEX;
2626 else {
2627 ret_val =
2628 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2629 if (ret_val)
2630 return ret_val;
2631 if ((*speed == SPEED_100
2632 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2633 || (*speed == SPEED_10
2634 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2635 *duplex = HALF_DUPLEX;
2636 }
2637 }
2638
2639 return E1000_SUCCESS;
2640 }
2641
2642 /**
2643 * e1000_wait_autoneg
2644 * @hw: Struct containing variables accessed by shared code
2645 *
2646 * Blocks until autoneg completes or times out (~4.5 seconds)
2647 */
e1000_wait_autoneg(struct e1000_hw * hw)2648 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2649 {
2650 s32 ret_val;
2651 u16 i;
2652 u16 phy_data;
2653
2654 e_dbg("Waiting for Auto-Neg to complete.\n");
2655
2656 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2657 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2658 /* Read the MII Status Register and wait for Auto-Neg
2659 * Complete bit to be set.
2660 */
2661 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2662 if (ret_val)
2663 return ret_val;
2664 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2665 if (ret_val)
2666 return ret_val;
2667 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2668 return E1000_SUCCESS;
2669 }
2670 msleep(100);
2671 }
2672 return E1000_SUCCESS;
2673 }
2674
2675 /**
2676 * e1000_raise_mdi_clk - Raises the Management Data Clock
2677 * @hw: Struct containing variables accessed by shared code
2678 * @ctrl: Device control register's current value
2679 */
e1000_raise_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2680 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2681 {
2682 /* Raise the clock input to the Management Data Clock (by setting the
2683 * MDC bit), and then delay 10 microseconds.
2684 */
2685 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2686 E1000_WRITE_FLUSH();
2687 udelay(10);
2688 }
2689
2690 /**
2691 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2692 * @hw: Struct containing variables accessed by shared code
2693 * @ctrl: Device control register's current value
2694 */
e1000_lower_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2695 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2696 {
2697 /* Lower the clock input to the Management Data Clock (by clearing the
2698 * MDC bit), and then delay 10 microseconds.
2699 */
2700 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2701 E1000_WRITE_FLUSH();
2702 udelay(10);
2703 }
2704
2705 /**
2706 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2707 * @hw: Struct containing variables accessed by shared code
2708 * @data: Data to send out to the PHY
2709 * @count: Number of bits to shift out
2710 *
2711 * Bits are shifted out in MSB to LSB order.
2712 */
e1000_shift_out_mdi_bits(struct e1000_hw * hw,u32 data,u16 count)2713 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2714 {
2715 u32 ctrl;
2716 u32 mask;
2717
2718 /* We need to shift "count" number of bits out to the PHY. So, the value
2719 * in the "data" parameter will be shifted out to the PHY one bit at a
2720 * time. In order to do this, "data" must be broken down into bits.
2721 */
2722 mask = 0x01;
2723 mask <<= (count - 1);
2724
2725 ctrl = er32(CTRL);
2726
2727 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2728 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2729
2730 while (mask) {
2731 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2732 * "1" and then raising and lowering the Management Data Clock.
2733 * A "0" is shifted out to the PHY by setting the MDIO bit to
2734 * "0" and then raising and lowering the clock.
2735 */
2736 if (data & mask)
2737 ctrl |= E1000_CTRL_MDIO;
2738 else
2739 ctrl &= ~E1000_CTRL_MDIO;
2740
2741 ew32(CTRL, ctrl);
2742 E1000_WRITE_FLUSH();
2743
2744 udelay(10);
2745
2746 e1000_raise_mdi_clk(hw, &ctrl);
2747 e1000_lower_mdi_clk(hw, &ctrl);
2748
2749 mask = mask >> 1;
2750 }
2751 }
2752
2753 /**
2754 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2755 * @hw: Struct containing variables accessed by shared code
2756 *
2757 * Bits are shifted in in MSB to LSB order.
2758 */
e1000_shift_in_mdi_bits(struct e1000_hw * hw)2759 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2760 {
2761 u32 ctrl;
2762 u16 data = 0;
2763 u8 i;
2764
2765 /* In order to read a register from the PHY, we need to shift in a total
2766 * of 18 bits from the PHY. The first two bit (turnaround) times are
2767 * used to avoid contention on the MDIO pin when a read operation is
2768 * performed. These two bits are ignored by us and thrown away. Bits are
2769 * "shifted in" by raising the input to the Management Data Clock
2770 * (setting the MDC bit), and then reading the value of the MDIO bit.
2771 */
2772 ctrl = er32(CTRL);
2773
2774 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2775 * input.
2776 */
2777 ctrl &= ~E1000_CTRL_MDIO_DIR;
2778 ctrl &= ~E1000_CTRL_MDIO;
2779
2780 ew32(CTRL, ctrl);
2781 E1000_WRITE_FLUSH();
2782
2783 /* Raise and Lower the clock before reading in the data. This accounts
2784 * for the turnaround bits. The first clock occurred when we clocked out
2785 * the last bit of the Register Address.
2786 */
2787 e1000_raise_mdi_clk(hw, &ctrl);
2788 e1000_lower_mdi_clk(hw, &ctrl);
2789
2790 for (data = 0, i = 0; i < 16; i++) {
2791 data = data << 1;
2792 e1000_raise_mdi_clk(hw, &ctrl);
2793 ctrl = er32(CTRL);
2794 /* Check to see if we shifted in a "1". */
2795 if (ctrl & E1000_CTRL_MDIO)
2796 data |= 1;
2797 e1000_lower_mdi_clk(hw, &ctrl);
2798 }
2799
2800 e1000_raise_mdi_clk(hw, &ctrl);
2801 e1000_lower_mdi_clk(hw, &ctrl);
2802
2803 return data;
2804 }
2805
2806
2807 /**
2808 * e1000_read_phy_reg - read a phy register
2809 * @hw: Struct containing variables accessed by shared code
2810 * @reg_addr: address of the PHY register to read
2811 *
2812 * Reads the value from a PHY register, if the value is on a specific non zero
2813 * page, sets the page first.
2814 */
e1000_read_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2815 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2816 {
2817 u32 ret_val;
2818 unsigned long flags;
2819
2820 spin_lock_irqsave(&e1000_phy_lock, flags);
2821
2822 if ((hw->phy_type == e1000_phy_igp) &&
2823 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2824 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2825 (u16) reg_addr);
2826 if (ret_val) {
2827 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2828 return ret_val;
2829 }
2830 }
2831
2832 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833 phy_data);
2834 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2835
2836 return ret_val;
2837 }
2838
e1000_read_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2839 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2840 u16 *phy_data)
2841 {
2842 u32 i;
2843 u32 mdic = 0;
2844 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2845
2846 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2847 e_dbg("PHY Address %d is out of range\n", reg_addr);
2848 return -E1000_ERR_PARAM;
2849 }
2850
2851 if (hw->mac_type > e1000_82543) {
2852 /* Set up Op-code, Phy Address, and register address in the MDI
2853 * Control register. The MAC will take care of interfacing with
2854 * the PHY to retrieve the desired data.
2855 */
2856 if (hw->mac_type == e1000_ce4100) {
2857 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2858 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2859 (INTEL_CE_GBE_MDIC_OP_READ) |
2860 (INTEL_CE_GBE_MDIC_GO));
2861
2862 writel(mdic, E1000_MDIO_CMD);
2863
2864 /* Poll the ready bit to see if the MDI read
2865 * completed
2866 */
2867 for (i = 0; i < 64; i++) {
2868 udelay(50);
2869 mdic = readl(E1000_MDIO_CMD);
2870 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2871 break;
2872 }
2873
2874 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2875 e_dbg("MDI Read did not complete\n");
2876 return -E1000_ERR_PHY;
2877 }
2878
2879 mdic = readl(E1000_MDIO_STS);
2880 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2881 e_dbg("MDI Read Error\n");
2882 return -E1000_ERR_PHY;
2883 }
2884 *phy_data = (u16) mdic;
2885 } else {
2886 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2887 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2888 (E1000_MDIC_OP_READ));
2889
2890 ew32(MDIC, mdic);
2891
2892 /* Poll the ready bit to see if the MDI read
2893 * completed
2894 */
2895 for (i = 0; i < 64; i++) {
2896 udelay(50);
2897 mdic = er32(MDIC);
2898 if (mdic & E1000_MDIC_READY)
2899 break;
2900 }
2901 if (!(mdic & E1000_MDIC_READY)) {
2902 e_dbg("MDI Read did not complete\n");
2903 return -E1000_ERR_PHY;
2904 }
2905 if (mdic & E1000_MDIC_ERROR) {
2906 e_dbg("MDI Error\n");
2907 return -E1000_ERR_PHY;
2908 }
2909 *phy_data = (u16) mdic;
2910 }
2911 } else {
2912 /* We must first send a preamble through the MDIO pin to signal
2913 * the beginning of an MII instruction. This is done by sending
2914 * 32 consecutive "1" bits.
2915 */
2916 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2917
2918 /* Now combine the next few fields that are required for a read
2919 * operation. We use this method instead of calling the
2920 * e1000_shift_out_mdi_bits routine five different times. The
2921 * format of a MII read instruction consists of a shift out of
2922 * 14 bits and is defined as follows:
2923 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2924 * followed by a shift in of 18 bits. This first two bits
2925 * shifted in are TurnAround bits used to avoid contention on
2926 * the MDIO pin when a READ operation is performed. These two
2927 * bits are thrown away followed by a shift in of 16 bits which
2928 * contains the desired data.
2929 */
2930 mdic = ((reg_addr) | (phy_addr << 5) |
2931 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2932
2933 e1000_shift_out_mdi_bits(hw, mdic, 14);
2934
2935 /* Now that we've shifted out the read command to the MII, we
2936 * need to "shift in" the 16-bit value (18 total bits) of the
2937 * requested PHY register address.
2938 */
2939 *phy_data = e1000_shift_in_mdi_bits(hw);
2940 }
2941 return E1000_SUCCESS;
2942 }
2943
2944 /**
2945 * e1000_write_phy_reg - write a phy register
2946 *
2947 * @hw: Struct containing variables accessed by shared code
2948 * @reg_addr: address of the PHY register to write
2949 * @data: data to write to the PHY
2950 *
2951 * Writes a value to a PHY register
2952 */
e1000_write_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2953 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2954 {
2955 u32 ret_val;
2956 unsigned long flags;
2957
2958 spin_lock_irqsave(&e1000_phy_lock, flags);
2959
2960 if ((hw->phy_type == e1000_phy_igp) &&
2961 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2962 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2963 (u16) reg_addr);
2964 if (ret_val) {
2965 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2966 return ret_val;
2967 }
2968 }
2969
2970 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2971 phy_data);
2972 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2973
2974 return ret_val;
2975 }
2976
e1000_write_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2977 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2978 u16 phy_data)
2979 {
2980 u32 i;
2981 u32 mdic = 0;
2982 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2983
2984 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2985 e_dbg("PHY Address %d is out of range\n", reg_addr);
2986 return -E1000_ERR_PARAM;
2987 }
2988
2989 if (hw->mac_type > e1000_82543) {
2990 /* Set up Op-code, Phy Address, register address, and data
2991 * intended for the PHY register in the MDI Control register.
2992 * The MAC will take care of interfacing with the PHY to send
2993 * the desired data.
2994 */
2995 if (hw->mac_type == e1000_ce4100) {
2996 mdic = (((u32) phy_data) |
2997 (reg_addr << E1000_MDIC_REG_SHIFT) |
2998 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2999 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3000 (INTEL_CE_GBE_MDIC_GO));
3001
3002 writel(mdic, E1000_MDIO_CMD);
3003
3004 /* Poll the ready bit to see if the MDI read
3005 * completed
3006 */
3007 for (i = 0; i < 640; i++) {
3008 udelay(5);
3009 mdic = readl(E1000_MDIO_CMD);
3010 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3011 break;
3012 }
3013 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3014 e_dbg("MDI Write did not complete\n");
3015 return -E1000_ERR_PHY;
3016 }
3017 } else {
3018 mdic = (((u32) phy_data) |
3019 (reg_addr << E1000_MDIC_REG_SHIFT) |
3020 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3021 (E1000_MDIC_OP_WRITE));
3022
3023 ew32(MDIC, mdic);
3024
3025 /* Poll the ready bit to see if the MDI read
3026 * completed
3027 */
3028 for (i = 0; i < 641; i++) {
3029 udelay(5);
3030 mdic = er32(MDIC);
3031 if (mdic & E1000_MDIC_READY)
3032 break;
3033 }
3034 if (!(mdic & E1000_MDIC_READY)) {
3035 e_dbg("MDI Write did not complete\n");
3036 return -E1000_ERR_PHY;
3037 }
3038 }
3039 } else {
3040 /* We'll need to use the SW defined pins to shift the write
3041 * command out to the PHY. We first send a preamble to the PHY
3042 * to signal the beginning of the MII instruction. This is done
3043 * by sending 32 consecutive "1" bits.
3044 */
3045 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3046
3047 /* Now combine the remaining required fields that will indicate
3048 * a write operation. We use this method instead of calling the
3049 * e1000_shift_out_mdi_bits routine for each field in the
3050 * command. The format of a MII write instruction is as follows:
3051 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3052 */
3053 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3054 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3055 mdic <<= 16;
3056 mdic |= (u32) phy_data;
3057
3058 e1000_shift_out_mdi_bits(hw, mdic, 32);
3059 }
3060
3061 return E1000_SUCCESS;
3062 }
3063
3064 /**
3065 * e1000_phy_hw_reset - reset the phy, hardware style
3066 * @hw: Struct containing variables accessed by shared code
3067 *
3068 * Returns the PHY to the power-on reset state
3069 */
e1000_phy_hw_reset(struct e1000_hw * hw)3070 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3071 {
3072 u32 ctrl, ctrl_ext;
3073 u32 led_ctrl;
3074
3075 e_dbg("Resetting Phy...\n");
3076
3077 if (hw->mac_type > e1000_82543) {
3078 /* Read the device control register and assert the
3079 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3080 * For e1000 hardware, we delay for 10ms between the assert
3081 * and de-assert.
3082 */
3083 ctrl = er32(CTRL);
3084 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3085 E1000_WRITE_FLUSH();
3086
3087 msleep(10);
3088
3089 ew32(CTRL, ctrl);
3090 E1000_WRITE_FLUSH();
3091
3092 } else {
3093 /* Read the Extended Device Control Register, assert the
3094 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3095 * out of reset.
3096 */
3097 ctrl_ext = er32(CTRL_EXT);
3098 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3099 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3100 ew32(CTRL_EXT, ctrl_ext);
3101 E1000_WRITE_FLUSH();
3102 msleep(10);
3103 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3104 ew32(CTRL_EXT, ctrl_ext);
3105 E1000_WRITE_FLUSH();
3106 }
3107 udelay(150);
3108
3109 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3110 /* Configure activity LED after PHY reset */
3111 led_ctrl = er32(LEDCTL);
3112 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3113 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3114 ew32(LEDCTL, led_ctrl);
3115 }
3116
3117 /* Wait for FW to finish PHY configuration. */
3118 return e1000_get_phy_cfg_done(hw);
3119 }
3120
3121 /**
3122 * e1000_phy_reset - reset the phy to commit settings
3123 * @hw: Struct containing variables accessed by shared code
3124 *
3125 * Resets the PHY
3126 * Sets bit 15 of the MII Control register
3127 */
e1000_phy_reset(struct e1000_hw * hw)3128 s32 e1000_phy_reset(struct e1000_hw *hw)
3129 {
3130 s32 ret_val;
3131 u16 phy_data;
3132
3133 switch (hw->phy_type) {
3134 case e1000_phy_igp:
3135 ret_val = e1000_phy_hw_reset(hw);
3136 if (ret_val)
3137 return ret_val;
3138 break;
3139 default:
3140 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3141 if (ret_val)
3142 return ret_val;
3143
3144 phy_data |= MII_CR_RESET;
3145 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3146 if (ret_val)
3147 return ret_val;
3148
3149 udelay(1);
3150 break;
3151 }
3152
3153 if (hw->phy_type == e1000_phy_igp)
3154 e1000_phy_init_script(hw);
3155
3156 return E1000_SUCCESS;
3157 }
3158
3159 /**
3160 * e1000_detect_gig_phy - check the phy type
3161 * @hw: Struct containing variables accessed by shared code
3162 *
3163 * Probes the expected PHY address for known PHY IDs
3164 */
e1000_detect_gig_phy(struct e1000_hw * hw)3165 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3166 {
3167 s32 phy_init_status, ret_val;
3168 u16 phy_id_high, phy_id_low;
3169 bool match = false;
3170
3171 if (hw->phy_id != 0)
3172 return E1000_SUCCESS;
3173
3174 /* Read the PHY ID Registers to identify which PHY is onboard. */
3175 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3176 if (ret_val)
3177 return ret_val;
3178
3179 hw->phy_id = (u32) (phy_id_high << 16);
3180 udelay(20);
3181 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3182 if (ret_val)
3183 return ret_val;
3184
3185 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3186 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3187
3188 switch (hw->mac_type) {
3189 case e1000_82543:
3190 if (hw->phy_id == M88E1000_E_PHY_ID)
3191 match = true;
3192 break;
3193 case e1000_82544:
3194 if (hw->phy_id == M88E1000_I_PHY_ID)
3195 match = true;
3196 break;
3197 case e1000_82540:
3198 case e1000_82545:
3199 case e1000_82545_rev_3:
3200 case e1000_82546:
3201 case e1000_82546_rev_3:
3202 if (hw->phy_id == M88E1011_I_PHY_ID)
3203 match = true;
3204 break;
3205 case e1000_ce4100:
3206 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3207 (hw->phy_id == RTL8201N_PHY_ID) ||
3208 (hw->phy_id == M88E1118_E_PHY_ID))
3209 match = true;
3210 break;
3211 case e1000_82541:
3212 case e1000_82541_rev_2:
3213 case e1000_82547:
3214 case e1000_82547_rev_2:
3215 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3216 match = true;
3217 break;
3218 default:
3219 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3220 return -E1000_ERR_CONFIG;
3221 }
3222 phy_init_status = e1000_set_phy_type(hw);
3223
3224 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3225 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3226 return E1000_SUCCESS;
3227 }
3228 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3229 return -E1000_ERR_PHY;
3230 }
3231
3232 /**
3233 * e1000_phy_reset_dsp - reset DSP
3234 * @hw: Struct containing variables accessed by shared code
3235 *
3236 * Resets the PHY's DSP
3237 */
e1000_phy_reset_dsp(struct e1000_hw * hw)3238 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3239 {
3240 s32 ret_val;
3241
3242 do {
3243 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3244 if (ret_val)
3245 break;
3246 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3247 if (ret_val)
3248 break;
3249 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3250 if (ret_val)
3251 break;
3252 ret_val = E1000_SUCCESS;
3253 } while (0);
3254
3255 return ret_val;
3256 }
3257
3258 /**
3259 * e1000_phy_igp_get_info - get igp specific registers
3260 * @hw: Struct containing variables accessed by shared code
3261 * @phy_info: PHY information structure
3262 *
3263 * Get PHY information from various PHY registers for igp PHY only.
3264 */
e1000_phy_igp_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3265 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3266 struct e1000_phy_info *phy_info)
3267 {
3268 s32 ret_val;
3269 u16 phy_data, min_length, max_length, average;
3270 e1000_rev_polarity polarity;
3271
3272 /* The downshift status is checked only once, after link is established,
3273 * and it stored in the hw->speed_downgraded parameter.
3274 */
3275 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3276
3277 /* IGP01E1000 does not need to support it. */
3278 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3279
3280 /* IGP01E1000 always correct polarity reversal */
3281 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3282
3283 /* Check polarity status */
3284 ret_val = e1000_check_polarity(hw, &polarity);
3285 if (ret_val)
3286 return ret_val;
3287
3288 phy_info->cable_polarity = polarity;
3289
3290 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3291 if (ret_val)
3292 return ret_val;
3293
3294 phy_info->mdix_mode =
3295 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3296 IGP01E1000_PSSR_MDIX_SHIFT);
3297
3298 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3299 IGP01E1000_PSSR_SPEED_1000MBPS) {
3300 /* Local/Remote Receiver Information are only valid @ 1000
3301 * Mbps
3302 */
3303 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3304 if (ret_val)
3305 return ret_val;
3306
3307 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3308 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3309 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3310 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3311 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3312 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3313
3314 /* Get cable length */
3315 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3316 if (ret_val)
3317 return ret_val;
3318
3319 /* Translate to old method */
3320 average = (max_length + min_length) / 2;
3321
3322 if (average <= e1000_igp_cable_length_50)
3323 phy_info->cable_length = e1000_cable_length_50;
3324 else if (average <= e1000_igp_cable_length_80)
3325 phy_info->cable_length = e1000_cable_length_50_80;
3326 else if (average <= e1000_igp_cable_length_110)
3327 phy_info->cable_length = e1000_cable_length_80_110;
3328 else if (average <= e1000_igp_cable_length_140)
3329 phy_info->cable_length = e1000_cable_length_110_140;
3330 else
3331 phy_info->cable_length = e1000_cable_length_140;
3332 }
3333
3334 return E1000_SUCCESS;
3335 }
3336
3337 /**
3338 * e1000_phy_m88_get_info - get m88 specific registers
3339 * @hw: Struct containing variables accessed by shared code
3340 * @phy_info: PHY information structure
3341 *
3342 * Get PHY information from various PHY registers for m88 PHY only.
3343 */
e1000_phy_m88_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3344 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3345 struct e1000_phy_info *phy_info)
3346 {
3347 s32 ret_val;
3348 u16 phy_data;
3349 e1000_rev_polarity polarity;
3350
3351 /* The downshift status is checked only once, after link is established,
3352 * and it stored in the hw->speed_downgraded parameter.
3353 */
3354 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3355
3356 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3357 if (ret_val)
3358 return ret_val;
3359
3360 phy_info->extended_10bt_distance =
3361 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3362 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3363 e1000_10bt_ext_dist_enable_lower :
3364 e1000_10bt_ext_dist_enable_normal;
3365
3366 phy_info->polarity_correction =
3367 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3368 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3369 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3370
3371 /* Check polarity status */
3372 ret_val = e1000_check_polarity(hw, &polarity);
3373 if (ret_val)
3374 return ret_val;
3375 phy_info->cable_polarity = polarity;
3376
3377 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3378 if (ret_val)
3379 return ret_val;
3380
3381 phy_info->mdix_mode =
3382 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3383 M88E1000_PSSR_MDIX_SHIFT);
3384
3385 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3386 /* Cable Length Estimation and Local/Remote Receiver Information
3387 * are only valid at 1000 Mbps.
3388 */
3389 phy_info->cable_length =
3390 (e1000_cable_length) ((phy_data &
3391 M88E1000_PSSR_CABLE_LENGTH) >>
3392 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3393
3394 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3395 if (ret_val)
3396 return ret_val;
3397
3398 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3399 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3400 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3401 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3402 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3403 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3404
3405 }
3406
3407 return E1000_SUCCESS;
3408 }
3409
3410 /**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
e1000_phy_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3417 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418 {
3419 s32 ret_val;
3420 u16 phy_data;
3421
3422 phy_info->cable_length = e1000_cable_length_undefined;
3423 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425 phy_info->downshift = e1000_downshift_undefined;
3426 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430
3431 if (hw->media_type != e1000_media_type_copper) {
3432 e_dbg("PHY info is only valid for copper media\n");
3433 return -E1000_ERR_CONFIG;
3434 }
3435
3436 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437 if (ret_val)
3438 return ret_val;
3439
3440 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441 if (ret_val)
3442 return ret_val;
3443
3444 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445 e_dbg("PHY info is only valid if link is up\n");
3446 return -E1000_ERR_CONFIG;
3447 }
3448
3449 if (hw->phy_type == e1000_phy_igp)
3450 return e1000_phy_igp_get_info(hw, phy_info);
3451 else if ((hw->phy_type == e1000_phy_8211) ||
3452 (hw->phy_type == e1000_phy_8201))
3453 return E1000_SUCCESS;
3454 else
3455 return e1000_phy_m88_get_info(hw, phy_info);
3456 }
3457
e1000_validate_mdi_setting(struct e1000_hw * hw)3458 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459 {
3460 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461 e_dbg("Invalid MDI setting detected\n");
3462 hw->mdix = 1;
3463 return -E1000_ERR_CONFIG;
3464 }
3465 return E1000_SUCCESS;
3466 }
3467
3468 /**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
3472 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3473 * is configured.
3474 */
e1000_init_eeprom_params(struct e1000_hw * hw)3475 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476 {
3477 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478 u32 eecd = er32(EECD);
3479 s32 ret_val = E1000_SUCCESS;
3480 u16 eeprom_size;
3481
3482 switch (hw->mac_type) {
3483 case e1000_82542_rev2_0:
3484 case e1000_82542_rev2_1:
3485 case e1000_82543:
3486 case e1000_82544:
3487 eeprom->type = e1000_eeprom_microwire;
3488 eeprom->word_size = 64;
3489 eeprom->opcode_bits = 3;
3490 eeprom->address_bits = 6;
3491 eeprom->delay_usec = 50;
3492 break;
3493 case e1000_82540:
3494 case e1000_82545:
3495 case e1000_82545_rev_3:
3496 case e1000_82546:
3497 case e1000_82546_rev_3:
3498 eeprom->type = e1000_eeprom_microwire;
3499 eeprom->opcode_bits = 3;
3500 eeprom->delay_usec = 50;
3501 if (eecd & E1000_EECD_SIZE) {
3502 eeprom->word_size = 256;
3503 eeprom->address_bits = 8;
3504 } else {
3505 eeprom->word_size = 64;
3506 eeprom->address_bits = 6;
3507 }
3508 break;
3509 case e1000_82541:
3510 case e1000_82541_rev_2:
3511 case e1000_82547:
3512 case e1000_82547_rev_2:
3513 if (eecd & E1000_EECD_TYPE) {
3514 eeprom->type = e1000_eeprom_spi;
3515 eeprom->opcode_bits = 8;
3516 eeprom->delay_usec = 1;
3517 if (eecd & E1000_EECD_ADDR_BITS) {
3518 eeprom->page_size = 32;
3519 eeprom->address_bits = 16;
3520 } else {
3521 eeprom->page_size = 8;
3522 eeprom->address_bits = 8;
3523 }
3524 } else {
3525 eeprom->type = e1000_eeprom_microwire;
3526 eeprom->opcode_bits = 3;
3527 eeprom->delay_usec = 50;
3528 if (eecd & E1000_EECD_ADDR_BITS) {
3529 eeprom->word_size = 256;
3530 eeprom->address_bits = 8;
3531 } else {
3532 eeprom->word_size = 64;
3533 eeprom->address_bits = 6;
3534 }
3535 }
3536 break;
3537 default:
3538 break;
3539 }
3540
3541 if (eeprom->type == e1000_eeprom_spi) {
3542 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543 * 128B to 32KB (incremented by powers of 2).
3544 */
3545 /* Set to default value for initial eeprom read. */
3546 eeprom->word_size = 64;
3547 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548 if (ret_val)
3549 return ret_val;
3550 eeprom_size =
3551 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552 /* 256B eeprom size was not supported in earlier hardware, so we
3553 * bump eeprom_size up one to ensure that "1" (which maps to
3554 * 256B) is never the result used in the shifting logic below.
3555 */
3556 if (eeprom_size)
3557 eeprom_size++;
3558
3559 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560 }
3561 return ret_val;
3562 }
3563
3564 /**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
e1000_raise_ee_clk(struct e1000_hw * hw,u32 * eecd)3569 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570 {
3571 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572 * wait <delay> microseconds.
3573 */
3574 *eecd = *eecd | E1000_EECD_SK;
3575 ew32(EECD, *eecd);
3576 E1000_WRITE_FLUSH();
3577 udelay(hw->eeprom.delay_usec);
3578 }
3579
3580 /**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
e1000_lower_ee_clk(struct e1000_hw * hw,u32 * eecd)3585 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586 {
3587 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588 * then wait 50 microseconds.
3589 */
3590 *eecd = *eecd & ~E1000_EECD_SK;
3591 ew32(EECD, *eecd);
3592 E1000_WRITE_FLUSH();
3593 udelay(hw->eeprom.delay_usec);
3594 }
3595
3596 /**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
e1000_shift_out_ee_bits(struct e1000_hw * hw,u16 data,u16 count)3602 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603 {
3604 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605 u32 eecd;
3606 u32 mask;
3607
3608 /* We need to shift "count" bits out to the EEPROM. So, value in the
3609 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610 * In order to do this, "data" must be broken down into bits.
3611 */
3612 mask = 0x01 << (count - 1);
3613 eecd = er32(EECD);
3614 if (eeprom->type == e1000_eeprom_microwire) {
3615 eecd &= ~E1000_EECD_DO;
3616 } else if (eeprom->type == e1000_eeprom_spi) {
3617 eecd |= E1000_EECD_DO;
3618 }
3619 do {
3620 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621 * "1", and then raising and then lowering the clock (the SK bit
3622 * controls the clock input to the EEPROM). A "0" is shifted
3623 * out to the EEPROM by setting "DI" to "0" and then raising and
3624 * then lowering the clock.
3625 */
3626 eecd &= ~E1000_EECD_DI;
3627
3628 if (data & mask)
3629 eecd |= E1000_EECD_DI;
3630
3631 ew32(EECD, eecd);
3632 E1000_WRITE_FLUSH();
3633
3634 udelay(eeprom->delay_usec);
3635
3636 e1000_raise_ee_clk(hw, &eecd);
3637 e1000_lower_ee_clk(hw, &eecd);
3638
3639 mask = mask >> 1;
3640
3641 } while (mask);
3642
3643 /* We leave the "DI" bit set to "0" when we leave this routine. */
3644 eecd &= ~E1000_EECD_DI;
3645 ew32(EECD, eecd);
3646 }
3647
3648 /**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
e1000_shift_in_ee_bits(struct e1000_hw * hw,u16 count)3653 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654 {
3655 u32 eecd;
3656 u32 i;
3657 u16 data;
3658
3659 /* In order to read a register from the EEPROM, we need to shift 'count'
3660 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661 * input to the EEPROM (setting the SK bit), and then reading the value
3662 * of the "DO" bit. During this "shifting in" process the "DI" bit
3663 * should always be clear.
3664 */
3665
3666 eecd = er32(EECD);
3667
3668 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669 data = 0;
3670
3671 for (i = 0; i < count; i++) {
3672 data = data << 1;
3673 e1000_raise_ee_clk(hw, &eecd);
3674
3675 eecd = er32(EECD);
3676
3677 eecd &= ~(E1000_EECD_DI);
3678 if (eecd & E1000_EECD_DO)
3679 data |= 1;
3680
3681 e1000_lower_ee_clk(hw, &eecd);
3682 }
3683
3684 return data;
3685 }
3686
3687 /**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
3690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
3693 */
e1000_acquire_eeprom(struct e1000_hw * hw)3694 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695 {
3696 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697 u32 eecd, i = 0;
3698
3699 eecd = er32(EECD);
3700
3701 /* Request EEPROM Access */
3702 if (hw->mac_type > e1000_82544) {
3703 eecd |= E1000_EECD_REQ;
3704 ew32(EECD, eecd);
3705 eecd = er32(EECD);
3706 while ((!(eecd & E1000_EECD_GNT)) &&
3707 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708 i++;
3709 udelay(5);
3710 eecd = er32(EECD);
3711 }
3712 if (!(eecd & E1000_EECD_GNT)) {
3713 eecd &= ~E1000_EECD_REQ;
3714 ew32(EECD, eecd);
3715 e_dbg("Could not acquire EEPROM grant\n");
3716 return -E1000_ERR_EEPROM;
3717 }
3718 }
3719
3720 /* Setup EEPROM for Read/Write */
3721
3722 if (eeprom->type == e1000_eeprom_microwire) {
3723 /* Clear SK and DI */
3724 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725 ew32(EECD, eecd);
3726
3727 /* Set CS */
3728 eecd |= E1000_EECD_CS;
3729 ew32(EECD, eecd);
3730 } else if (eeprom->type == e1000_eeprom_spi) {
3731 /* Clear SK and CS */
3732 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733 ew32(EECD, eecd);
3734 E1000_WRITE_FLUSH();
3735 udelay(1);
3736 }
3737
3738 return E1000_SUCCESS;
3739 }
3740
3741 /**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
e1000_standby_eeprom(struct e1000_hw * hw)3745 static void e1000_standby_eeprom(struct e1000_hw *hw)
3746 {
3747 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748 u32 eecd;
3749
3750 eecd = er32(EECD);
3751
3752 if (eeprom->type == e1000_eeprom_microwire) {
3753 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754 ew32(EECD, eecd);
3755 E1000_WRITE_FLUSH();
3756 udelay(eeprom->delay_usec);
3757
3758 /* Clock high */
3759 eecd |= E1000_EECD_SK;
3760 ew32(EECD, eecd);
3761 E1000_WRITE_FLUSH();
3762 udelay(eeprom->delay_usec);
3763
3764 /* Select EEPROM */
3765 eecd |= E1000_EECD_CS;
3766 ew32(EECD, eecd);
3767 E1000_WRITE_FLUSH();
3768 udelay(eeprom->delay_usec);
3769
3770 /* Clock low */
3771 eecd &= ~E1000_EECD_SK;
3772 ew32(EECD, eecd);
3773 E1000_WRITE_FLUSH();
3774 udelay(eeprom->delay_usec);
3775 } else if (eeprom->type == e1000_eeprom_spi) {
3776 /* Toggle CS to flush commands */
3777 eecd |= E1000_EECD_CS;
3778 ew32(EECD, eecd);
3779 E1000_WRITE_FLUSH();
3780 udelay(eeprom->delay_usec);
3781 eecd &= ~E1000_EECD_CS;
3782 ew32(EECD, eecd);
3783 E1000_WRITE_FLUSH();
3784 udelay(eeprom->delay_usec);
3785 }
3786 }
3787
3788 /**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
3791 *
3792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
e1000_release_eeprom(struct e1000_hw * hw)3794 static void e1000_release_eeprom(struct e1000_hw *hw)
3795 {
3796 u32 eecd;
3797
3798 eecd = er32(EECD);
3799
3800 if (hw->eeprom.type == e1000_eeprom_spi) {
3801 eecd |= E1000_EECD_CS; /* Pull CS high */
3802 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3803
3804 ew32(EECD, eecd);
3805 E1000_WRITE_FLUSH();
3806
3807 udelay(hw->eeprom.delay_usec);
3808 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809 /* cleanup eeprom */
3810
3811 /* CS on Microwire is active-high */
3812 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813
3814 ew32(EECD, eecd);
3815
3816 /* Rising edge of clock */
3817 eecd |= E1000_EECD_SK;
3818 ew32(EECD, eecd);
3819 E1000_WRITE_FLUSH();
3820 udelay(hw->eeprom.delay_usec);
3821
3822 /* Falling edge of clock */
3823 eecd &= ~E1000_EECD_SK;
3824 ew32(EECD, eecd);
3825 E1000_WRITE_FLUSH();
3826 udelay(hw->eeprom.delay_usec);
3827 }
3828
3829 /* Stop requesting EEPROM access */
3830 if (hw->mac_type > e1000_82544) {
3831 eecd &= ~E1000_EECD_REQ;
3832 ew32(EECD, eecd);
3833 }
3834 }
3835
3836 /**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
e1000_spi_eeprom_ready(struct e1000_hw * hw)3840 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841 {
3842 u16 retry_count = 0;
3843 u8 spi_stat_reg;
3844
3845 /* Read "Status Register" repeatedly until the LSB is cleared. The
3846 * EEPROM will signal that the command has been completed by clearing
3847 * bit 0 of the internal status register. If it's not cleared within
3848 * 5 milliseconds, then error out.
3849 */
3850 retry_count = 0;
3851 do {
3852 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853 hw->eeprom.opcode_bits);
3854 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3855 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856 break;
3857
3858 udelay(5);
3859 retry_count += 5;
3860
3861 e1000_standby_eeprom(hw);
3862 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3863
3864 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865 * only 0-5mSec on 5V devices)
3866 */
3867 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868 e_dbg("SPI EEPROM Status error\n");
3869 return -E1000_ERR_EEPROM;
3870 }
3871
3872 return E1000_SUCCESS;
3873 }
3874
3875 /**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
e1000_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3882 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883 {
3884 s32 ret;
3885 spin_lock(&e1000_eeprom_lock);
3886 ret = e1000_do_read_eeprom(hw, offset, words, data);
3887 spin_unlock(&e1000_eeprom_lock);
3888 return ret;
3889 }
3890
e1000_do_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3891 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3892 u16 *data)
3893 {
3894 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3895 u32 i = 0;
3896
3897 if (hw->mac_type == e1000_ce4100) {
3898 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3899 data);
3900 return E1000_SUCCESS;
3901 }
3902
3903 /* A check for invalid values: offset too large, too many words, and
3904 * not enough words.
3905 */
3906 if ((offset >= eeprom->word_size)
3907 || (words > eeprom->word_size - offset) || (words == 0)) {
3908 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3909 "size = %d\n", offset, eeprom->word_size);
3910 return -E1000_ERR_EEPROM;
3911 }
3912
3913 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3914 * directly. In this case, we need to acquire the EEPROM so that
3915 * FW or other port software does not interrupt.
3916 */
3917 /* Prepare the EEPROM for bit-bang reading */
3918 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3919 return -E1000_ERR_EEPROM;
3920
3921 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3922 * acquired the EEPROM at this point, so any returns should release it
3923 */
3924 if (eeprom->type == e1000_eeprom_spi) {
3925 u16 word_in;
3926 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3927
3928 if (e1000_spi_eeprom_ready(hw)) {
3929 e1000_release_eeprom(hw);
3930 return -E1000_ERR_EEPROM;
3931 }
3932
3933 e1000_standby_eeprom(hw);
3934
3935 /* Some SPI eeproms use the 8th address bit embedded in the
3936 * opcode
3937 */
3938 if ((eeprom->address_bits == 8) && (offset >= 128))
3939 read_opcode |= EEPROM_A8_OPCODE_SPI;
3940
3941 /* Send the READ command (opcode + addr) */
3942 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3943 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3944 eeprom->address_bits);
3945
3946 /* Read the data. The address of the eeprom internally
3947 * increments with each byte (spi) being read, saving on the
3948 * overhead of eeprom setup and tear-down. The address counter
3949 * will roll over if reading beyond the size of the eeprom, thus
3950 * allowing the entire memory to be read starting from any
3951 * offset.
3952 */
3953 for (i = 0; i < words; i++) {
3954 word_in = e1000_shift_in_ee_bits(hw, 16);
3955 data[i] = (word_in >> 8) | (word_in << 8);
3956 }
3957 } else if (eeprom->type == e1000_eeprom_microwire) {
3958 for (i = 0; i < words; i++) {
3959 /* Send the READ command (opcode + addr) */
3960 e1000_shift_out_ee_bits(hw,
3961 EEPROM_READ_OPCODE_MICROWIRE,
3962 eeprom->opcode_bits);
3963 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3964 eeprom->address_bits);
3965
3966 /* Read the data. For microwire, each word requires the
3967 * overhead of eeprom setup and tear-down.
3968 */
3969 data[i] = e1000_shift_in_ee_bits(hw, 16);
3970 e1000_standby_eeprom(hw);
3971 }
3972 }
3973
3974 /* End this read operation */
3975 e1000_release_eeprom(hw);
3976
3977 return E1000_SUCCESS;
3978 }
3979
3980 /**
3981 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3982 * @hw: Struct containing variables accessed by shared code
3983 *
3984 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3985 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3986 * valid.
3987 */
e1000_validate_eeprom_checksum(struct e1000_hw * hw)3988 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3989 {
3990 u16 checksum = 0;
3991 u16 i, eeprom_data;
3992
3993 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3994 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3995 e_dbg("EEPROM Read Error\n");
3996 return -E1000_ERR_EEPROM;
3997 }
3998 checksum += eeprom_data;
3999 }
4000
4001 #ifdef CONFIG_PARISC
4002 /* This is a signature and not a checksum on HP c8000 */
4003 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4004 return E1000_SUCCESS;
4005
4006 #endif
4007 if (checksum == (u16) EEPROM_SUM)
4008 return E1000_SUCCESS;
4009 else {
4010 e_dbg("EEPROM Checksum Invalid\n");
4011 return -E1000_ERR_EEPROM;
4012 }
4013 }
4014
4015 /**
4016 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4017 * @hw: Struct containing variables accessed by shared code
4018 *
4019 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4020 * Writes the difference to word offset 63 of the EEPROM.
4021 */
e1000_update_eeprom_checksum(struct e1000_hw * hw)4022 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4023 {
4024 u16 checksum = 0;
4025 u16 i, eeprom_data;
4026
4027 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4028 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4029 e_dbg("EEPROM Read Error\n");
4030 return -E1000_ERR_EEPROM;
4031 }
4032 checksum += eeprom_data;
4033 }
4034 checksum = (u16) EEPROM_SUM - checksum;
4035 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4036 e_dbg("EEPROM Write Error\n");
4037 return -E1000_ERR_EEPROM;
4038 }
4039 return E1000_SUCCESS;
4040 }
4041
4042 /**
4043 * e1000_write_eeprom - write words to the different EEPROM types.
4044 * @hw: Struct containing variables accessed by shared code
4045 * @offset: offset within the EEPROM to be written to
4046 * @words: number of words to write
4047 * @data: 16 bit word to be written to the EEPROM
4048 *
4049 * If e1000_update_eeprom_checksum is not called after this function, the
4050 * EEPROM will most likely contain an invalid checksum.
4051 */
e1000_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4052 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4053 {
4054 s32 ret;
4055 spin_lock(&e1000_eeprom_lock);
4056 ret = e1000_do_write_eeprom(hw, offset, words, data);
4057 spin_unlock(&e1000_eeprom_lock);
4058 return ret;
4059 }
4060
e1000_do_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4061 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4062 u16 *data)
4063 {
4064 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4065 s32 status = 0;
4066
4067 if (hw->mac_type == e1000_ce4100) {
4068 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4069 data);
4070 return E1000_SUCCESS;
4071 }
4072
4073 /* A check for invalid values: offset too large, too many words, and
4074 * not enough words.
4075 */
4076 if ((offset >= eeprom->word_size)
4077 || (words > eeprom->word_size - offset) || (words == 0)) {
4078 e_dbg("\"words\" parameter out of bounds\n");
4079 return -E1000_ERR_EEPROM;
4080 }
4081
4082 /* Prepare the EEPROM for writing */
4083 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4084 return -E1000_ERR_EEPROM;
4085
4086 if (eeprom->type == e1000_eeprom_microwire) {
4087 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4088 } else {
4089 status = e1000_write_eeprom_spi(hw, offset, words, data);
4090 msleep(10);
4091 }
4092
4093 /* Done with writing */
4094 e1000_release_eeprom(hw);
4095
4096 return status;
4097 }
4098
4099 /**
4100 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4101 * @hw: Struct containing variables accessed by shared code
4102 * @offset: offset within the EEPROM to be written to
4103 * @words: number of words to write
4104 * @data: pointer to array of 8 bit words to be written to the EEPROM
4105 */
e1000_write_eeprom_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4106 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4107 u16 *data)
4108 {
4109 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4110 u16 widx = 0;
4111
4112 while (widx < words) {
4113 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4114
4115 if (e1000_spi_eeprom_ready(hw))
4116 return -E1000_ERR_EEPROM;
4117
4118 e1000_standby_eeprom(hw);
4119
4120 /* Send the WRITE ENABLE command (8 bit opcode ) */
4121 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4122 eeprom->opcode_bits);
4123
4124 e1000_standby_eeprom(hw);
4125
4126 /* Some SPI eeproms use the 8th address bit embedded in the
4127 * opcode
4128 */
4129 if ((eeprom->address_bits == 8) && (offset >= 128))
4130 write_opcode |= EEPROM_A8_OPCODE_SPI;
4131
4132 /* Send the Write command (8-bit opcode + addr) */
4133 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4134
4135 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4136 eeprom->address_bits);
4137
4138 /* Send the data */
4139
4140 /* Loop to allow for up to whole page write (32 bytes) of
4141 * eeprom
4142 */
4143 while (widx < words) {
4144 u16 word_out = data[widx];
4145 word_out = (word_out >> 8) | (word_out << 8);
4146 e1000_shift_out_ee_bits(hw, word_out, 16);
4147 widx++;
4148
4149 /* Some larger eeprom sizes are capable of a 32-byte
4150 * PAGE WRITE operation, while the smaller eeproms are
4151 * capable of an 8-byte PAGE WRITE operation. Break the
4152 * inner loop to pass new address
4153 */
4154 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4155 e1000_standby_eeprom(hw);
4156 break;
4157 }
4158 }
4159 }
4160
4161 return E1000_SUCCESS;
4162 }
4163
4164 /**
4165 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4166 * @hw: Struct containing variables accessed by shared code
4167 * @offset: offset within the EEPROM to be written to
4168 * @words: number of words to write
4169 * @data: pointer to array of 8 bit words to be written to the EEPROM
4170 */
e1000_write_eeprom_microwire(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4171 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4172 u16 words, u16 *data)
4173 {
4174 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4175 u32 eecd;
4176 u16 words_written = 0;
4177 u16 i = 0;
4178
4179 /* Send the write enable command to the EEPROM (3-bit opcode plus
4180 * 6/8-bit dummy address beginning with 11). It's less work to include
4181 * the 11 of the dummy address as part of the opcode than it is to shift
4182 * it over the correct number of bits for the address. This puts the
4183 * EEPROM into write/erase mode.
4184 */
4185 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4186 (u16) (eeprom->opcode_bits + 2));
4187
4188 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4189
4190 /* Prepare the EEPROM */
4191 e1000_standby_eeprom(hw);
4192
4193 while (words_written < words) {
4194 /* Send the Write command (3-bit opcode + addr) */
4195 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4196 eeprom->opcode_bits);
4197
4198 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4199 eeprom->address_bits);
4200
4201 /* Send the data */
4202 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4203
4204 /* Toggle the CS line. This in effect tells the EEPROM to
4205 * execute the previous command.
4206 */
4207 e1000_standby_eeprom(hw);
4208
4209 /* Read DO repeatedly until it is high (equal to '1'). The
4210 * EEPROM will signal that the command has been completed by
4211 * raising the DO signal. If DO does not go high in 10
4212 * milliseconds, then error out.
4213 */
4214 for (i = 0; i < 200; i++) {
4215 eecd = er32(EECD);
4216 if (eecd & E1000_EECD_DO)
4217 break;
4218 udelay(50);
4219 }
4220 if (i == 200) {
4221 e_dbg("EEPROM Write did not complete\n");
4222 return -E1000_ERR_EEPROM;
4223 }
4224
4225 /* Recover from write */
4226 e1000_standby_eeprom(hw);
4227
4228 words_written++;
4229 }
4230
4231 /* Send the write disable command to the EEPROM (3-bit opcode plus
4232 * 6/8-bit dummy address beginning with 10). It's less work to include
4233 * the 10 of the dummy address as part of the opcode than it is to shift
4234 * it over the correct number of bits for the address. This takes the
4235 * EEPROM out of write/erase mode.
4236 */
4237 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4238 (u16) (eeprom->opcode_bits + 2));
4239
4240 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4241
4242 return E1000_SUCCESS;
4243 }
4244
4245 /**
4246 * e1000_read_mac_addr - read the adapters MAC from eeprom
4247 * @hw: Struct containing variables accessed by shared code
4248 *
4249 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4250 * second function of dual function devices
4251 */
e1000_read_mac_addr(struct e1000_hw * hw)4252 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4253 {
4254 u16 offset;
4255 u16 eeprom_data, i;
4256
4257 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4258 offset = i >> 1;
4259 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4260 e_dbg("EEPROM Read Error\n");
4261 return -E1000_ERR_EEPROM;
4262 }
4263 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4264 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4265 }
4266
4267 switch (hw->mac_type) {
4268 default:
4269 break;
4270 case e1000_82546:
4271 case e1000_82546_rev_3:
4272 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4273 hw->perm_mac_addr[5] ^= 0x01;
4274 break;
4275 }
4276
4277 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4278 hw->mac_addr[i] = hw->perm_mac_addr[i];
4279 return E1000_SUCCESS;
4280 }
4281
4282 /**
4283 * e1000_init_rx_addrs - Initializes receive address filters.
4284 * @hw: Struct containing variables accessed by shared code
4285 *
4286 * Places the MAC address in receive address register 0 and clears the rest
4287 * of the receive address registers. Clears the multicast table. Assumes
4288 * the receiver is in reset when the routine is called.
4289 */
e1000_init_rx_addrs(struct e1000_hw * hw)4290 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4291 {
4292 u32 i;
4293 u32 rar_num;
4294
4295 /* Setup the receive address. */
4296 e_dbg("Programming MAC Address into RAR[0]\n");
4297
4298 e1000_rar_set(hw, hw->mac_addr, 0);
4299
4300 rar_num = E1000_RAR_ENTRIES;
4301
4302 /* Zero out the other 15 receive addresses. */
4303 e_dbg("Clearing RAR[1-15]\n");
4304 for (i = 1; i < rar_num; i++) {
4305 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4306 E1000_WRITE_FLUSH();
4307 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4308 E1000_WRITE_FLUSH();
4309 }
4310 }
4311
4312 /**
4313 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4314 * @hw: Struct containing variables accessed by shared code
4315 * @mc_addr: the multicast address to hash
4316 */
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)4317 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4318 {
4319 u32 hash_value = 0;
4320
4321 /* The portion of the address that is used for the hash table is
4322 * determined by the mc_filter_type setting.
4323 */
4324 switch (hw->mc_filter_type) {
4325 /* [0] [1] [2] [3] [4] [5]
4326 * 01 AA 00 12 34 56
4327 * LSB MSB
4328 */
4329 case 0:
4330 /* [47:36] i.e. 0x563 for above example address */
4331 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4332 break;
4333 case 1:
4334 /* [46:35] i.e. 0xAC6 for above example address */
4335 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4336 break;
4337 case 2:
4338 /* [45:34] i.e. 0x5D8 for above example address */
4339 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4340 break;
4341 case 3:
4342 /* [43:32] i.e. 0x634 for above example address */
4343 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4344 break;
4345 }
4346
4347 hash_value &= 0xFFF;
4348 return hash_value;
4349 }
4350
4351 /**
4352 * e1000_rar_set - Puts an ethernet address into a receive address register.
4353 * @hw: Struct containing variables accessed by shared code
4354 * @addr: Address to put into receive address register
4355 * @index: Receive address register to write
4356 */
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)4357 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4358 {
4359 u32 rar_low, rar_high;
4360
4361 /* HW expects these in little endian so we reverse the byte order
4362 * from network order (big endian) to little endian
4363 */
4364 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4365 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4366 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4367
4368 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4369 * unit hang.
4370 *
4371 * Description:
4372 * If there are any Rx frames queued up or otherwise present in the HW
4373 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4374 * hang. To work around this issue, we have to disable receives and
4375 * flush out all Rx frames before we enable RSS. To do so, we modify we
4376 * redirect all Rx traffic to manageability and then reset the HW.
4377 * This flushes away Rx frames, and (since the redirections to
4378 * manageability persists across resets) keeps new ones from coming in
4379 * while we work. Then, we clear the Address Valid AV bit for all MAC
4380 * addresses and undo the re-direction to manageability.
4381 * Now, frames are coming in again, but the MAC won't accept them, so
4382 * far so good. We now proceed to initialize RSS (if necessary) and
4383 * configure the Rx unit. Last, we re-enable the AV bits and continue
4384 * on our merry way.
4385 */
4386 switch (hw->mac_type) {
4387 default:
4388 /* Indicate to hardware the Address is Valid. */
4389 rar_high |= E1000_RAH_AV;
4390 break;
4391 }
4392
4393 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4394 E1000_WRITE_FLUSH();
4395 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4396 E1000_WRITE_FLUSH();
4397 }
4398
4399 /**
4400 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4401 * @hw: Struct containing variables accessed by shared code
4402 * @offset: Offset in VLAN filer table to write
4403 * @value: Value to write into VLAN filter table
4404 */
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)4405 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4406 {
4407 u32 temp;
4408
4409 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4410 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4411 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4412 E1000_WRITE_FLUSH();
4413 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4414 E1000_WRITE_FLUSH();
4415 } else {
4416 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4417 E1000_WRITE_FLUSH();
4418 }
4419 }
4420
4421 /**
4422 * e1000_clear_vfta - Clears the VLAN filer table
4423 * @hw: Struct containing variables accessed by shared code
4424 */
e1000_clear_vfta(struct e1000_hw * hw)4425 static void e1000_clear_vfta(struct e1000_hw *hw)
4426 {
4427 u32 offset;
4428 u32 vfta_value = 0;
4429 u32 vfta_offset = 0;
4430 u32 vfta_bit_in_reg = 0;
4431
4432 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4433 /* If the offset we want to clear is the same offset of the
4434 * manageability VLAN ID, then clear all bits except that of the
4435 * manageability unit
4436 */
4437 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4438 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4439 E1000_WRITE_FLUSH();
4440 }
4441 }
4442
e1000_id_led_init(struct e1000_hw * hw)4443 static s32 e1000_id_led_init(struct e1000_hw *hw)
4444 {
4445 u32 ledctl;
4446 const u32 ledctl_mask = 0x000000FF;
4447 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4448 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4449 u16 eeprom_data, i, temp;
4450 const u16 led_mask = 0x0F;
4451
4452 if (hw->mac_type < e1000_82540) {
4453 /* Nothing to do */
4454 return E1000_SUCCESS;
4455 }
4456
4457 ledctl = er32(LEDCTL);
4458 hw->ledctl_default = ledctl;
4459 hw->ledctl_mode1 = hw->ledctl_default;
4460 hw->ledctl_mode2 = hw->ledctl_default;
4461
4462 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4463 e_dbg("EEPROM Read Error\n");
4464 return -E1000_ERR_EEPROM;
4465 }
4466
4467 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4468 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4469 eeprom_data = ID_LED_DEFAULT;
4470 }
4471
4472 for (i = 0; i < 4; i++) {
4473 temp = (eeprom_data >> (i << 2)) & led_mask;
4474 switch (temp) {
4475 case ID_LED_ON1_DEF2:
4476 case ID_LED_ON1_ON2:
4477 case ID_LED_ON1_OFF2:
4478 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4479 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4480 break;
4481 case ID_LED_OFF1_DEF2:
4482 case ID_LED_OFF1_ON2:
4483 case ID_LED_OFF1_OFF2:
4484 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4485 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4486 break;
4487 default:
4488 /* Do nothing */
4489 break;
4490 }
4491 switch (temp) {
4492 case ID_LED_DEF1_ON2:
4493 case ID_LED_ON1_ON2:
4494 case ID_LED_OFF1_ON2:
4495 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4496 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4497 break;
4498 case ID_LED_DEF1_OFF2:
4499 case ID_LED_ON1_OFF2:
4500 case ID_LED_OFF1_OFF2:
4501 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4502 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4503 break;
4504 default:
4505 /* Do nothing */
4506 break;
4507 }
4508 }
4509 return E1000_SUCCESS;
4510 }
4511
4512 /**
4513 * e1000_setup_led
4514 * @hw: Struct containing variables accessed by shared code
4515 *
4516 * Prepares SW controlable LED for use and saves the current state of the LED.
4517 */
e1000_setup_led(struct e1000_hw * hw)4518 s32 e1000_setup_led(struct e1000_hw *hw)
4519 {
4520 u32 ledctl;
4521 s32 ret_val = E1000_SUCCESS;
4522
4523 switch (hw->mac_type) {
4524 case e1000_82542_rev2_0:
4525 case e1000_82542_rev2_1:
4526 case e1000_82543:
4527 case e1000_82544:
4528 /* No setup necessary */
4529 break;
4530 case e1000_82541:
4531 case e1000_82547:
4532 case e1000_82541_rev_2:
4533 case e1000_82547_rev_2:
4534 /* Turn off PHY Smart Power Down (if enabled) */
4535 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4536 &hw->phy_spd_default);
4537 if (ret_val)
4538 return ret_val;
4539 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4540 (u16) (hw->phy_spd_default &
4541 ~IGP01E1000_GMII_SPD));
4542 if (ret_val)
4543 return ret_val;
4544 /* Fall Through */
4545 default:
4546 if (hw->media_type == e1000_media_type_fiber) {
4547 ledctl = er32(LEDCTL);
4548 /* Save current LEDCTL settings */
4549 hw->ledctl_default = ledctl;
4550 /* Turn off LED0 */
4551 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4552 E1000_LEDCTL_LED0_BLINK |
4553 E1000_LEDCTL_LED0_MODE_MASK);
4554 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4555 E1000_LEDCTL_LED0_MODE_SHIFT);
4556 ew32(LEDCTL, ledctl);
4557 } else if (hw->media_type == e1000_media_type_copper)
4558 ew32(LEDCTL, hw->ledctl_mode1);
4559 break;
4560 }
4561
4562 return E1000_SUCCESS;
4563 }
4564
4565 /**
4566 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4567 * @hw: Struct containing variables accessed by shared code
4568 */
e1000_cleanup_led(struct e1000_hw * hw)4569 s32 e1000_cleanup_led(struct e1000_hw *hw)
4570 {
4571 s32 ret_val = E1000_SUCCESS;
4572
4573 switch (hw->mac_type) {
4574 case e1000_82542_rev2_0:
4575 case e1000_82542_rev2_1:
4576 case e1000_82543:
4577 case e1000_82544:
4578 /* No cleanup necessary */
4579 break;
4580 case e1000_82541:
4581 case e1000_82547:
4582 case e1000_82541_rev_2:
4583 case e1000_82547_rev_2:
4584 /* Turn on PHY Smart Power Down (if previously enabled) */
4585 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4586 hw->phy_spd_default);
4587 if (ret_val)
4588 return ret_val;
4589 /* Fall Through */
4590 default:
4591 /* Restore LEDCTL settings */
4592 ew32(LEDCTL, hw->ledctl_default);
4593 break;
4594 }
4595
4596 return E1000_SUCCESS;
4597 }
4598
4599 /**
4600 * e1000_led_on - Turns on the software controllable LED
4601 * @hw: Struct containing variables accessed by shared code
4602 */
e1000_led_on(struct e1000_hw * hw)4603 s32 e1000_led_on(struct e1000_hw *hw)
4604 {
4605 u32 ctrl = er32(CTRL);
4606
4607 switch (hw->mac_type) {
4608 case e1000_82542_rev2_0:
4609 case e1000_82542_rev2_1:
4610 case e1000_82543:
4611 /* Set SW Defineable Pin 0 to turn on the LED */
4612 ctrl |= E1000_CTRL_SWDPIN0;
4613 ctrl |= E1000_CTRL_SWDPIO0;
4614 break;
4615 case e1000_82544:
4616 if (hw->media_type == e1000_media_type_fiber) {
4617 /* Set SW Defineable Pin 0 to turn on the LED */
4618 ctrl |= E1000_CTRL_SWDPIN0;
4619 ctrl |= E1000_CTRL_SWDPIO0;
4620 } else {
4621 /* Clear SW Defineable Pin 0 to turn on the LED */
4622 ctrl &= ~E1000_CTRL_SWDPIN0;
4623 ctrl |= E1000_CTRL_SWDPIO0;
4624 }
4625 break;
4626 default:
4627 if (hw->media_type == e1000_media_type_fiber) {
4628 /* Clear SW Defineable Pin 0 to turn on the LED */
4629 ctrl &= ~E1000_CTRL_SWDPIN0;
4630 ctrl |= E1000_CTRL_SWDPIO0;
4631 } else if (hw->media_type == e1000_media_type_copper) {
4632 ew32(LEDCTL, hw->ledctl_mode2);
4633 return E1000_SUCCESS;
4634 }
4635 break;
4636 }
4637
4638 ew32(CTRL, ctrl);
4639
4640 return E1000_SUCCESS;
4641 }
4642
4643 /**
4644 * e1000_led_off - Turns off the software controllable LED
4645 * @hw: Struct containing variables accessed by shared code
4646 */
e1000_led_off(struct e1000_hw * hw)4647 s32 e1000_led_off(struct e1000_hw *hw)
4648 {
4649 u32 ctrl = er32(CTRL);
4650
4651 switch (hw->mac_type) {
4652 case e1000_82542_rev2_0:
4653 case e1000_82542_rev2_1:
4654 case e1000_82543:
4655 /* Clear SW Defineable Pin 0 to turn off the LED */
4656 ctrl &= ~E1000_CTRL_SWDPIN0;
4657 ctrl |= E1000_CTRL_SWDPIO0;
4658 break;
4659 case e1000_82544:
4660 if (hw->media_type == e1000_media_type_fiber) {
4661 /* Clear SW Defineable Pin 0 to turn off the LED */
4662 ctrl &= ~E1000_CTRL_SWDPIN0;
4663 ctrl |= E1000_CTRL_SWDPIO0;
4664 } else {
4665 /* Set SW Defineable Pin 0 to turn off the LED */
4666 ctrl |= E1000_CTRL_SWDPIN0;
4667 ctrl |= E1000_CTRL_SWDPIO0;
4668 }
4669 break;
4670 default:
4671 if (hw->media_type == e1000_media_type_fiber) {
4672 /* Set SW Defineable Pin 0 to turn off the LED */
4673 ctrl |= E1000_CTRL_SWDPIN0;
4674 ctrl |= E1000_CTRL_SWDPIO0;
4675 } else if (hw->media_type == e1000_media_type_copper) {
4676 ew32(LEDCTL, hw->ledctl_mode1);
4677 return E1000_SUCCESS;
4678 }
4679 break;
4680 }
4681
4682 ew32(CTRL, ctrl);
4683
4684 return E1000_SUCCESS;
4685 }
4686
4687 /**
4688 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4689 * @hw: Struct containing variables accessed by shared code
4690 */
e1000_clear_hw_cntrs(struct e1000_hw * hw)4691 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4692 {
4693 volatile u32 temp;
4694
4695 temp = er32(CRCERRS);
4696 temp = er32(SYMERRS);
4697 temp = er32(MPC);
4698 temp = er32(SCC);
4699 temp = er32(ECOL);
4700 temp = er32(MCC);
4701 temp = er32(LATECOL);
4702 temp = er32(COLC);
4703 temp = er32(DC);
4704 temp = er32(SEC);
4705 temp = er32(RLEC);
4706 temp = er32(XONRXC);
4707 temp = er32(XONTXC);
4708 temp = er32(XOFFRXC);
4709 temp = er32(XOFFTXC);
4710 temp = er32(FCRUC);
4711
4712 temp = er32(PRC64);
4713 temp = er32(PRC127);
4714 temp = er32(PRC255);
4715 temp = er32(PRC511);
4716 temp = er32(PRC1023);
4717 temp = er32(PRC1522);
4718
4719 temp = er32(GPRC);
4720 temp = er32(BPRC);
4721 temp = er32(MPRC);
4722 temp = er32(GPTC);
4723 temp = er32(GORCL);
4724 temp = er32(GORCH);
4725 temp = er32(GOTCL);
4726 temp = er32(GOTCH);
4727 temp = er32(RNBC);
4728 temp = er32(RUC);
4729 temp = er32(RFC);
4730 temp = er32(ROC);
4731 temp = er32(RJC);
4732 temp = er32(TORL);
4733 temp = er32(TORH);
4734 temp = er32(TOTL);
4735 temp = er32(TOTH);
4736 temp = er32(TPR);
4737 temp = er32(TPT);
4738
4739 temp = er32(PTC64);
4740 temp = er32(PTC127);
4741 temp = er32(PTC255);
4742 temp = er32(PTC511);
4743 temp = er32(PTC1023);
4744 temp = er32(PTC1522);
4745
4746 temp = er32(MPTC);
4747 temp = er32(BPTC);
4748
4749 if (hw->mac_type < e1000_82543)
4750 return;
4751
4752 temp = er32(ALGNERRC);
4753 temp = er32(RXERRC);
4754 temp = er32(TNCRS);
4755 temp = er32(CEXTERR);
4756 temp = er32(TSCTC);
4757 temp = er32(TSCTFC);
4758
4759 if (hw->mac_type <= e1000_82544)
4760 return;
4761
4762 temp = er32(MGTPRC);
4763 temp = er32(MGTPDC);
4764 temp = er32(MGTPTC);
4765 }
4766
4767 /**
4768 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4769 * @hw: Struct containing variables accessed by shared code
4770 *
4771 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4772 * hw->ifs_params_forced to true. However, you must initialize hw->
4773 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4774 * before calling this function.
4775 */
e1000_reset_adaptive(struct e1000_hw * hw)4776 void e1000_reset_adaptive(struct e1000_hw *hw)
4777 {
4778 if (hw->adaptive_ifs) {
4779 if (!hw->ifs_params_forced) {
4780 hw->current_ifs_val = 0;
4781 hw->ifs_min_val = IFS_MIN;
4782 hw->ifs_max_val = IFS_MAX;
4783 hw->ifs_step_size = IFS_STEP;
4784 hw->ifs_ratio = IFS_RATIO;
4785 }
4786 hw->in_ifs_mode = false;
4787 ew32(AIT, 0);
4788 } else {
4789 e_dbg("Not in Adaptive IFS mode!\n");
4790 }
4791 }
4792
4793 /**
4794 * e1000_update_adaptive - update adaptive IFS
4795 * @hw: Struct containing variables accessed by shared code
4796 * @tx_packets: Number of transmits since last callback
4797 * @total_collisions: Number of collisions since last callback
4798 *
4799 * Called during the callback/watchdog routine to update IFS value based on
4800 * the ratio of transmits to collisions.
4801 */
e1000_update_adaptive(struct e1000_hw * hw)4802 void e1000_update_adaptive(struct e1000_hw *hw)
4803 {
4804 if (hw->adaptive_ifs) {
4805 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4806 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4807 hw->in_ifs_mode = true;
4808 if (hw->current_ifs_val < hw->ifs_max_val) {
4809 if (hw->current_ifs_val == 0)
4810 hw->current_ifs_val =
4811 hw->ifs_min_val;
4812 else
4813 hw->current_ifs_val +=
4814 hw->ifs_step_size;
4815 ew32(AIT, hw->current_ifs_val);
4816 }
4817 }
4818 } else {
4819 if (hw->in_ifs_mode
4820 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4821 hw->current_ifs_val = 0;
4822 hw->in_ifs_mode = false;
4823 ew32(AIT, 0);
4824 }
4825 }
4826 } else {
4827 e_dbg("Not in Adaptive IFS mode!\n");
4828 }
4829 }
4830
4831 /**
4832 * e1000_get_bus_info
4833 * @hw: Struct containing variables accessed by shared code
4834 *
4835 * Gets the current PCI bus type, speed, and width of the hardware
4836 */
e1000_get_bus_info(struct e1000_hw * hw)4837 void e1000_get_bus_info(struct e1000_hw *hw)
4838 {
4839 u32 status;
4840
4841 switch (hw->mac_type) {
4842 case e1000_82542_rev2_0:
4843 case e1000_82542_rev2_1:
4844 hw->bus_type = e1000_bus_type_pci;
4845 hw->bus_speed = e1000_bus_speed_unknown;
4846 hw->bus_width = e1000_bus_width_unknown;
4847 break;
4848 default:
4849 status = er32(STATUS);
4850 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4851 e1000_bus_type_pcix : e1000_bus_type_pci;
4852
4853 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4854 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4855 e1000_bus_speed_66 : e1000_bus_speed_120;
4856 } else if (hw->bus_type == e1000_bus_type_pci) {
4857 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4858 e1000_bus_speed_66 : e1000_bus_speed_33;
4859 } else {
4860 switch (status & E1000_STATUS_PCIX_SPEED) {
4861 case E1000_STATUS_PCIX_SPEED_66:
4862 hw->bus_speed = e1000_bus_speed_66;
4863 break;
4864 case E1000_STATUS_PCIX_SPEED_100:
4865 hw->bus_speed = e1000_bus_speed_100;
4866 break;
4867 case E1000_STATUS_PCIX_SPEED_133:
4868 hw->bus_speed = e1000_bus_speed_133;
4869 break;
4870 default:
4871 hw->bus_speed = e1000_bus_speed_reserved;
4872 break;
4873 }
4874 }
4875 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4876 e1000_bus_width_64 : e1000_bus_width_32;
4877 break;
4878 }
4879 }
4880
4881 /**
4882 * e1000_write_reg_io
4883 * @hw: Struct containing variables accessed by shared code
4884 * @offset: offset to write to
4885 * @value: value to write
4886 *
4887 * Writes a value to one of the devices registers using port I/O (as opposed to
4888 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4889 */
e1000_write_reg_io(struct e1000_hw * hw,u32 offset,u32 value)4890 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4891 {
4892 unsigned long io_addr = hw->io_base;
4893 unsigned long io_data = hw->io_base + 4;
4894
4895 e1000_io_write(hw, io_addr, offset);
4896 e1000_io_write(hw, io_data, value);
4897 }
4898
4899 /**
4900 * e1000_get_cable_length - Estimates the cable length.
4901 * @hw: Struct containing variables accessed by shared code
4902 * @min_length: The estimated minimum length
4903 * @max_length: The estimated maximum length
4904 *
4905 * returns: - E1000_ERR_XXX
4906 * E1000_SUCCESS
4907 *
4908 * This function always returns a ranged length (minimum & maximum).
4909 * So for M88 phy's, this function interprets the one value returned from the
4910 * register to the minimum and maximum range.
4911 * For IGP phy's, the function calculates the range by the AGC registers.
4912 */
e1000_get_cable_length(struct e1000_hw * hw,u16 * min_length,u16 * max_length)4913 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4914 u16 *max_length)
4915 {
4916 s32 ret_val;
4917 u16 agc_value = 0;
4918 u16 i, phy_data;
4919 u16 cable_length;
4920
4921 *min_length = *max_length = 0;
4922
4923 /* Use old method for Phy older than IGP */
4924 if (hw->phy_type == e1000_phy_m88) {
4925
4926 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4927 &phy_data);
4928 if (ret_val)
4929 return ret_val;
4930 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4931 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4932
4933 /* Convert the enum value to ranged values */
4934 switch (cable_length) {
4935 case e1000_cable_length_50:
4936 *min_length = 0;
4937 *max_length = e1000_igp_cable_length_50;
4938 break;
4939 case e1000_cable_length_50_80:
4940 *min_length = e1000_igp_cable_length_50;
4941 *max_length = e1000_igp_cable_length_80;
4942 break;
4943 case e1000_cable_length_80_110:
4944 *min_length = e1000_igp_cable_length_80;
4945 *max_length = e1000_igp_cable_length_110;
4946 break;
4947 case e1000_cable_length_110_140:
4948 *min_length = e1000_igp_cable_length_110;
4949 *max_length = e1000_igp_cable_length_140;
4950 break;
4951 case e1000_cable_length_140:
4952 *min_length = e1000_igp_cable_length_140;
4953 *max_length = e1000_igp_cable_length_170;
4954 break;
4955 default:
4956 return -E1000_ERR_PHY;
4957 }
4958 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
4959 u16 cur_agc_value;
4960 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4961 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4962 IGP01E1000_PHY_AGC_A,
4963 IGP01E1000_PHY_AGC_B,
4964 IGP01E1000_PHY_AGC_C,
4965 IGP01E1000_PHY_AGC_D
4966 };
4967 /* Read the AGC registers for all channels */
4968 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4969
4970 ret_val =
4971 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4972 if (ret_val)
4973 return ret_val;
4974
4975 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4976
4977 /* Value bound check. */
4978 if ((cur_agc_value >=
4979 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
4980 || (cur_agc_value == 0))
4981 return -E1000_ERR_PHY;
4982
4983 agc_value += cur_agc_value;
4984
4985 /* Update minimal AGC value. */
4986 if (min_agc_value > cur_agc_value)
4987 min_agc_value = cur_agc_value;
4988 }
4989
4990 /* Remove the minimal AGC result for length < 50m */
4991 if (agc_value <
4992 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4993 agc_value -= min_agc_value;
4994
4995 /* Get the average length of the remaining 3 channels */
4996 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4997 } else {
4998 /* Get the average length of all the 4 channels. */
4999 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5000 }
5001
5002 /* Set the range of the calculated length. */
5003 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5004 IGP01E1000_AGC_RANGE) > 0) ?
5005 (e1000_igp_cable_length_table[agc_value] -
5006 IGP01E1000_AGC_RANGE) : 0;
5007 *max_length = e1000_igp_cable_length_table[agc_value] +
5008 IGP01E1000_AGC_RANGE;
5009 }
5010
5011 return E1000_SUCCESS;
5012 }
5013
5014 /**
5015 * e1000_check_polarity - Check the cable polarity
5016 * @hw: Struct containing variables accessed by shared code
5017 * @polarity: output parameter : 0 - Polarity is not reversed
5018 * 1 - Polarity is reversed.
5019 *
5020 * returns: - E1000_ERR_XXX
5021 * E1000_SUCCESS
5022 *
5023 * For phy's older than IGP, this function simply reads the polarity bit in the
5024 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5025 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5026 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5027 * IGP01E1000_PHY_PCS_INIT_REG.
5028 */
e1000_check_polarity(struct e1000_hw * hw,e1000_rev_polarity * polarity)5029 static s32 e1000_check_polarity(struct e1000_hw *hw,
5030 e1000_rev_polarity *polarity)
5031 {
5032 s32 ret_val;
5033 u16 phy_data;
5034
5035 if (hw->phy_type == e1000_phy_m88) {
5036 /* return the Polarity bit in the Status register. */
5037 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5038 &phy_data);
5039 if (ret_val)
5040 return ret_val;
5041 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5042 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5043 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5044
5045 } else if (hw->phy_type == e1000_phy_igp) {
5046 /* Read the Status register to check the speed */
5047 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5048 &phy_data);
5049 if (ret_val)
5050 return ret_val;
5051
5052 /* If speed is 1000 Mbps, must read the
5053 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5054 */
5055 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5056 IGP01E1000_PSSR_SPEED_1000MBPS) {
5057
5058 /* Read the GIG initialization PCS register (0x00B4) */
5059 ret_val =
5060 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5061 &phy_data);
5062 if (ret_val)
5063 return ret_val;
5064
5065 /* Check the polarity bits */
5066 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5067 e1000_rev_polarity_reversed :
5068 e1000_rev_polarity_normal;
5069 } else {
5070 /* For 10 Mbps, read the polarity bit in the status
5071 * register. (for 100 Mbps this bit is always 0)
5072 */
5073 *polarity =
5074 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5075 e1000_rev_polarity_reversed :
5076 e1000_rev_polarity_normal;
5077 }
5078 }
5079 return E1000_SUCCESS;
5080 }
5081
5082 /**
5083 * e1000_check_downshift - Check if Downshift occurred
5084 * @hw: Struct containing variables accessed by shared code
5085 * @downshift: output parameter : 0 - No Downshift occurred.
5086 * 1 - Downshift occurred.
5087 *
5088 * returns: - E1000_ERR_XXX
5089 * E1000_SUCCESS
5090 *
5091 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5092 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5093 * Link Health register. In IGP this bit is latched high, so the driver must
5094 * read it immediately after link is established.
5095 */
e1000_check_downshift(struct e1000_hw * hw)5096 static s32 e1000_check_downshift(struct e1000_hw *hw)
5097 {
5098 s32 ret_val;
5099 u16 phy_data;
5100
5101 if (hw->phy_type == e1000_phy_igp) {
5102 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5103 &phy_data);
5104 if (ret_val)
5105 return ret_val;
5106
5107 hw->speed_downgraded =
5108 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5109 } else if (hw->phy_type == e1000_phy_m88) {
5110 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5111 &phy_data);
5112 if (ret_val)
5113 return ret_val;
5114
5115 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5116 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5117 }
5118
5119 return E1000_SUCCESS;
5120 }
5121
5122 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5123 IGP01E1000_PHY_AGC_PARAM_A,
5124 IGP01E1000_PHY_AGC_PARAM_B,
5125 IGP01E1000_PHY_AGC_PARAM_C,
5126 IGP01E1000_PHY_AGC_PARAM_D
5127 };
5128
e1000_1000Mb_check_cable_length(struct e1000_hw * hw)5129 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5130 {
5131 u16 min_length, max_length;
5132 u16 phy_data, i;
5133 s32 ret_val;
5134
5135 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5136 if (ret_val)
5137 return ret_val;
5138
5139 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5140 return 0;
5141
5142 if (min_length >= e1000_igp_cable_length_50) {
5143 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5144 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5145 &phy_data);
5146 if (ret_val)
5147 return ret_val;
5148
5149 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5150
5151 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5152 phy_data);
5153 if (ret_val)
5154 return ret_val;
5155 }
5156 hw->dsp_config_state = e1000_dsp_config_activated;
5157 } else {
5158 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5159 u32 idle_errs = 0;
5160
5161 /* clear previous idle error counts */
5162 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5163 if (ret_val)
5164 return ret_val;
5165
5166 for (i = 0; i < ffe_idle_err_timeout; i++) {
5167 udelay(1000);
5168 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5169 &phy_data);
5170 if (ret_val)
5171 return ret_val;
5172
5173 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5174 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5175 hw->ffe_config_state = e1000_ffe_config_active;
5176
5177 ret_val = e1000_write_phy_reg(hw,
5178 IGP01E1000_PHY_DSP_FFE,
5179 IGP01E1000_PHY_DSP_FFE_CM_CP);
5180 if (ret_val)
5181 return ret_val;
5182 break;
5183 }
5184
5185 if (idle_errs)
5186 ffe_idle_err_timeout =
5187 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5188 }
5189 }
5190
5191 return 0;
5192 }
5193
5194 /**
5195 * e1000_config_dsp_after_link_change
5196 * @hw: Struct containing variables accessed by shared code
5197 * @link_up: was link up at the time this was called
5198 *
5199 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5200 * E1000_SUCCESS at any other case.
5201 *
5202 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5203 * gigabit link is achieved to improve link quality.
5204 */
5205
e1000_config_dsp_after_link_change(struct e1000_hw * hw,bool link_up)5206 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5207 {
5208 s32 ret_val;
5209 u16 phy_data, phy_saved_data, speed, duplex, i;
5210
5211 if (hw->phy_type != e1000_phy_igp)
5212 return E1000_SUCCESS;
5213
5214 if (link_up) {
5215 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5216 if (ret_val) {
5217 e_dbg("Error getting link speed and duplex\n");
5218 return ret_val;
5219 }
5220
5221 if (speed == SPEED_1000) {
5222 ret_val = e1000_1000Mb_check_cable_length(hw);
5223 if (ret_val)
5224 return ret_val;
5225 }
5226 } else {
5227 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5228 /* Save off the current value of register 0x2F5B to be
5229 * restored at the end of the routines.
5230 */
5231 ret_val =
5232 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5233
5234 if (ret_val)
5235 return ret_val;
5236
5237 /* Disable the PHY transmitter */
5238 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5239
5240 if (ret_val)
5241 return ret_val;
5242
5243 msleep(20);
5244
5245 ret_val = e1000_write_phy_reg(hw, 0x0000,
5246 IGP01E1000_IEEE_FORCE_GIGA);
5247 if (ret_val)
5248 return ret_val;
5249 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5250 ret_val =
5251 e1000_read_phy_reg(hw, dsp_reg_array[i],
5252 &phy_data);
5253 if (ret_val)
5254 return ret_val;
5255
5256 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5257 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5258
5259 ret_val =
5260 e1000_write_phy_reg(hw, dsp_reg_array[i],
5261 phy_data);
5262 if (ret_val)
5263 return ret_val;
5264 }
5265
5266 ret_val = e1000_write_phy_reg(hw, 0x0000,
5267 IGP01E1000_IEEE_RESTART_AUTONEG);
5268 if (ret_val)
5269 return ret_val;
5270
5271 msleep(20);
5272
5273 /* Now enable the transmitter */
5274 ret_val =
5275 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5276
5277 if (ret_val)
5278 return ret_val;
5279
5280 hw->dsp_config_state = e1000_dsp_config_enabled;
5281 }
5282
5283 if (hw->ffe_config_state == e1000_ffe_config_active) {
5284 /* Save off the current value of register 0x2F5B to be
5285 * restored at the end of the routines.
5286 */
5287 ret_val =
5288 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5289
5290 if (ret_val)
5291 return ret_val;
5292
5293 /* Disable the PHY transmitter */
5294 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5295
5296 if (ret_val)
5297 return ret_val;
5298
5299 msleep(20);
5300
5301 ret_val = e1000_write_phy_reg(hw, 0x0000,
5302 IGP01E1000_IEEE_FORCE_GIGA);
5303 if (ret_val)
5304 return ret_val;
5305 ret_val =
5306 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5307 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5308 if (ret_val)
5309 return ret_val;
5310
5311 ret_val = e1000_write_phy_reg(hw, 0x0000,
5312 IGP01E1000_IEEE_RESTART_AUTONEG);
5313 if (ret_val)
5314 return ret_val;
5315
5316 msleep(20);
5317
5318 /* Now enable the transmitter */
5319 ret_val =
5320 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5321
5322 if (ret_val)
5323 return ret_val;
5324
5325 hw->ffe_config_state = e1000_ffe_config_enabled;
5326 }
5327 }
5328 return E1000_SUCCESS;
5329 }
5330
5331 /**
5332 * e1000_set_phy_mode - Set PHY to class A mode
5333 * @hw: Struct containing variables accessed by shared code
5334 *
5335 * Assumes the following operations will follow to enable the new class mode.
5336 * 1. Do a PHY soft reset
5337 * 2. Restart auto-negotiation or force link.
5338 */
e1000_set_phy_mode(struct e1000_hw * hw)5339 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5340 {
5341 s32 ret_val;
5342 u16 eeprom_data;
5343
5344 if ((hw->mac_type == e1000_82545_rev_3) &&
5345 (hw->media_type == e1000_media_type_copper)) {
5346 ret_val =
5347 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5348 &eeprom_data);
5349 if (ret_val) {
5350 return ret_val;
5351 }
5352
5353 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5354 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5355 ret_val =
5356 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5357 0x000B);
5358 if (ret_val)
5359 return ret_val;
5360 ret_val =
5361 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5362 0x8104);
5363 if (ret_val)
5364 return ret_val;
5365
5366 hw->phy_reset_disable = false;
5367 }
5368 }
5369
5370 return E1000_SUCCESS;
5371 }
5372
5373 /**
5374 * e1000_set_d3_lplu_state - set d3 link power state
5375 * @hw: Struct containing variables accessed by shared code
5376 * @active: true to enable lplu false to disable lplu.
5377 *
5378 * This function sets the lplu state according to the active flag. When
5379 * activating lplu this function also disables smart speed and vise versa.
5380 * lplu will not be activated unless the device autonegotiation advertisement
5381 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5382 *
5383 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5384 * E1000_SUCCESS at any other case.
5385 */
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)5386 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5387 {
5388 s32 ret_val;
5389 u16 phy_data;
5390
5391 if (hw->phy_type != e1000_phy_igp)
5392 return E1000_SUCCESS;
5393
5394 /* During driver activity LPLU should not be used or it will attain link
5395 * from the lowest speeds starting from 10Mbps. The capability is used
5396 * for Dx transitions and states
5397 */
5398 if (hw->mac_type == e1000_82541_rev_2
5399 || hw->mac_type == e1000_82547_rev_2) {
5400 ret_val =
5401 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5402 if (ret_val)
5403 return ret_val;
5404 }
5405
5406 if (!active) {
5407 if (hw->mac_type == e1000_82541_rev_2 ||
5408 hw->mac_type == e1000_82547_rev_2) {
5409 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5410 ret_val =
5411 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5412 phy_data);
5413 if (ret_val)
5414 return ret_val;
5415 }
5416
5417 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5418 * during Dx states where the power conservation is most
5419 * important. During driver activity we should enable
5420 * SmartSpeed, so performance is maintained.
5421 */
5422 if (hw->smart_speed == e1000_smart_speed_on) {
5423 ret_val =
5424 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5425 &phy_data);
5426 if (ret_val)
5427 return ret_val;
5428
5429 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5430 ret_val =
5431 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5432 phy_data);
5433 if (ret_val)
5434 return ret_val;
5435 } else if (hw->smart_speed == e1000_smart_speed_off) {
5436 ret_val =
5437 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5438 &phy_data);
5439 if (ret_val)
5440 return ret_val;
5441
5442 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5443 ret_val =
5444 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5445 phy_data);
5446 if (ret_val)
5447 return ret_val;
5448 }
5449 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5450 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5451 || (hw->autoneg_advertised ==
5452 AUTONEG_ADVERTISE_10_100_ALL)) {
5453
5454 if (hw->mac_type == e1000_82541_rev_2 ||
5455 hw->mac_type == e1000_82547_rev_2) {
5456 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5457 ret_val =
5458 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5459 phy_data);
5460 if (ret_val)
5461 return ret_val;
5462 }
5463
5464 /* When LPLU is enabled we should disable SmartSpeed */
5465 ret_val =
5466 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5467 &phy_data);
5468 if (ret_val)
5469 return ret_val;
5470
5471 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5472 ret_val =
5473 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5474 phy_data);
5475 if (ret_val)
5476 return ret_val;
5477
5478 }
5479 return E1000_SUCCESS;
5480 }
5481
5482 /**
5483 * e1000_set_vco_speed
5484 * @hw: Struct containing variables accessed by shared code
5485 *
5486 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5487 */
e1000_set_vco_speed(struct e1000_hw * hw)5488 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5489 {
5490 s32 ret_val;
5491 u16 default_page = 0;
5492 u16 phy_data;
5493
5494 switch (hw->mac_type) {
5495 case e1000_82545_rev_3:
5496 case e1000_82546_rev_3:
5497 break;
5498 default:
5499 return E1000_SUCCESS;
5500 }
5501
5502 /* Set PHY register 30, page 5, bit 8 to 0 */
5503
5504 ret_val =
5505 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5506 if (ret_val)
5507 return ret_val;
5508
5509 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5510 if (ret_val)
5511 return ret_val;
5512
5513 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5514 if (ret_val)
5515 return ret_val;
5516
5517 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5518 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5519 if (ret_val)
5520 return ret_val;
5521
5522 /* Set PHY register 30, page 4, bit 11 to 1 */
5523
5524 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5525 if (ret_val)
5526 return ret_val;
5527
5528 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5529 if (ret_val)
5530 return ret_val;
5531
5532 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5533 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5534 if (ret_val)
5535 return ret_val;
5536
5537 ret_val =
5538 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5539 if (ret_val)
5540 return ret_val;
5541
5542 return E1000_SUCCESS;
5543 }
5544
5545
5546 /**
5547 * e1000_enable_mng_pass_thru - check for bmc pass through
5548 * @hw: Struct containing variables accessed by shared code
5549 *
5550 * Verifies the hardware needs to allow ARPs to be processed by the host
5551 * returns: - true/false
5552 */
e1000_enable_mng_pass_thru(struct e1000_hw * hw)5553 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5554 {
5555 u32 manc;
5556
5557 if (hw->asf_firmware_present) {
5558 manc = er32(MANC);
5559
5560 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5561 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5562 return false;
5563 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5564 return true;
5565 }
5566 return false;
5567 }
5568
e1000_polarity_reversal_workaround(struct e1000_hw * hw)5569 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5570 {
5571 s32 ret_val;
5572 u16 mii_status_reg;
5573 u16 i;
5574
5575 /* Polarity reversal workaround for forced 10F/10H links. */
5576
5577 /* Disable the transmitter on the PHY */
5578
5579 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5580 if (ret_val)
5581 return ret_val;
5582 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5583 if (ret_val)
5584 return ret_val;
5585
5586 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5587 if (ret_val)
5588 return ret_val;
5589
5590 /* This loop will early-out if the NO link condition has been met. */
5591 for (i = PHY_FORCE_TIME; i > 0; i--) {
5592 /* Read the MII Status Register and wait for Link Status bit
5593 * to be clear.
5594 */
5595
5596 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5597 if (ret_val)
5598 return ret_val;
5599
5600 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5601 if (ret_val)
5602 return ret_val;
5603
5604 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5605 break;
5606 msleep(100);
5607 }
5608
5609 /* Recommended delay time after link has been lost */
5610 msleep(1000);
5611
5612 /* Now we will re-enable th transmitter on the PHY */
5613
5614 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5615 if (ret_val)
5616 return ret_val;
5617 msleep(50);
5618 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5619 if (ret_val)
5620 return ret_val;
5621 msleep(50);
5622 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5623 if (ret_val)
5624 return ret_val;
5625 msleep(50);
5626 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5627 if (ret_val)
5628 return ret_val;
5629
5630 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5631 if (ret_val)
5632 return ret_val;
5633
5634 /* This loop will early-out if the link condition has been met. */
5635 for (i = PHY_FORCE_TIME; i > 0; i--) {
5636 /* Read the MII Status Register and wait for Link Status bit
5637 * to be set.
5638 */
5639
5640 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5641 if (ret_val)
5642 return ret_val;
5643
5644 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5645 if (ret_val)
5646 return ret_val;
5647
5648 if (mii_status_reg & MII_SR_LINK_STATUS)
5649 break;
5650 msleep(100);
5651 }
5652 return E1000_SUCCESS;
5653 }
5654
5655 /**
5656 * e1000_get_auto_rd_done
5657 * @hw: Struct containing variables accessed by shared code
5658 *
5659 * Check for EEPROM Auto Read bit done.
5660 * returns: - E1000_ERR_RESET if fail to reset MAC
5661 * E1000_SUCCESS at any other case.
5662 */
e1000_get_auto_rd_done(struct e1000_hw * hw)5663 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5664 {
5665 msleep(5);
5666 return E1000_SUCCESS;
5667 }
5668
5669 /**
5670 * e1000_get_phy_cfg_done
5671 * @hw: Struct containing variables accessed by shared code
5672 *
5673 * Checks if the PHY configuration is done
5674 * returns: - E1000_ERR_RESET if fail to reset MAC
5675 * E1000_SUCCESS at any other case.
5676 */
e1000_get_phy_cfg_done(struct e1000_hw * hw)5677 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5678 {
5679 msleep(10);
5680 return E1000_SUCCESS;
5681 }
5682