• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
__er16flash(struct e1000_hw * hw,unsigned long reg)159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
__er32flash(struct e1000_hw * hw,unsigned long reg)164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 		if (e1000_phy_is_accessible_pchlan(hw))
337 			break;
338 
339 		/* Before toggling LANPHYPC, see if PHY is accessible by
340 		 * forcing MAC to SMBus mode first.
341 		 */
342 		mac_reg = er32(CTRL_EXT);
343 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 		ew32(CTRL_EXT, mac_reg);
345 
346 		/* Wait 50 milliseconds for MAC to finish any retries
347 		 * that it might be trying to perform from previous
348 		 * attempts to acknowledge any phy read requests.
349 		 */
350 		msleep(50);
351 
352 		/* fall-through */
353 	case e1000_pch2lan:
354 		if (e1000_phy_is_accessible_pchlan(hw))
355 			break;
356 
357 		/* fall-through */
358 	case e1000_pchlan:
359 		if ((hw->mac.type == e1000_pchlan) &&
360 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
361 			break;
362 
363 		if (hw->phy.ops.check_reset_block(hw)) {
364 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 			ret_val = -E1000_ERR_PHY;
366 			break;
367 		}
368 
369 		/* Toggle LANPHYPC Value bit */
370 		e1000_toggle_lanphypc_pch_lpt(hw);
371 		if (hw->mac.type >= e1000_pch_lpt) {
372 			if (e1000_phy_is_accessible_pchlan(hw))
373 				break;
374 
375 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
376 			 * so ensure that the MAC is also out of SMBus mode
377 			 */
378 			mac_reg = er32(CTRL_EXT);
379 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 			ew32(CTRL_EXT, mac_reg);
381 
382 			if (e1000_phy_is_accessible_pchlan(hw))
383 				break;
384 
385 			ret_val = -E1000_ERR_PHY;
386 		}
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	hw->phy.ops.release(hw);
393 	if (!ret_val) {
394 
395 		/* Check to see if able to reset PHY.  Print error if not */
396 		if (hw->phy.ops.check_reset_block(hw)) {
397 			e_err("Reset blocked by ME\n");
398 			goto out;
399 		}
400 
401 		/* Reset the PHY before any access to it.  Doing so, ensures
402 		 * that the PHY is in a known good state before we read/write
403 		 * PHY registers.  The generic reset is sufficient here,
404 		 * because we haven't determined the PHY type yet.
405 		 */
406 		ret_val = e1000e_phy_hw_reset_generic(hw);
407 		if (ret_val)
408 			goto out;
409 
410 		/* On a successful reset, possibly need to wait for the PHY
411 		 * to quiesce to an accessible state before returning control
412 		 * to the calling function.  If the PHY does not quiesce, then
413 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 		 *  the PHY is in.
415 		 */
416 		ret_val = hw->phy.ops.check_reset_block(hw);
417 		if (ret_val)
418 			e_err("ME blocked access to PHY after reset\n");
419 	}
420 
421 out:
422 	/* Ungate automatic PHY configuration on non-managed 82579 */
423 	if ((hw->mac.type == e1000_pch2lan) &&
424 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 		usleep_range(10000, 20000);
426 		e1000_gate_hw_phy_config_ich8lan(hw, false);
427 	}
428 
429 	return ret_val;
430 }
431 
432 /**
433  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
434  *  @hw: pointer to the HW structure
435  *
436  *  Initialize family-specific PHY parameters and function pointers.
437  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439 {
440 	struct e1000_phy_info *phy = &hw->phy;
441 	s32 ret_val;
442 
443 	phy->addr = 1;
444 	phy->reset_delay_us = 100;
445 
446 	phy->ops.set_page = e1000_set_page_igp;
447 	phy->ops.read_reg = e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.write_reg = e1000_write_phy_reg_hv;
453 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 	phy->ops.power_up = e1000_power_up_phy_copper;
456 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 
459 	phy->id = e1000_phy_unknown;
460 
461 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 	if (ret_val)
463 		return ret_val;
464 
465 	if (phy->id == e1000_phy_unknown)
466 		switch (hw->mac.type) {
467 		default:
468 			ret_val = e1000e_get_phy_id(hw);
469 			if (ret_val)
470 				return ret_val;
471 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 				break;
473 			/* fall-through */
474 		case e1000_pch2lan:
475 		case e1000_pch_lpt:
476 		case e1000_pch_spt:
477 			/* In case the PHY needs to be in mdio slow mode,
478 			 * set slow mode and try to get the PHY id again.
479 			 */
480 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 			if (ret_val)
482 				return ret_val;
483 			ret_val = e1000e_get_phy_id(hw);
484 			if (ret_val)
485 				return ret_val;
486 			break;
487 		}
488 	phy->type = e1000e_get_phy_type_from_id(phy->id);
489 
490 	switch (phy->type) {
491 	case e1000_phy_82577:
492 	case e1000_phy_82579:
493 	case e1000_phy_i217:
494 		phy->ops.check_polarity = e1000_check_polarity_82577;
495 		phy->ops.force_speed_duplex =
496 		    e1000_phy_force_speed_duplex_82577;
497 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 		phy->ops.get_info = e1000_get_phy_info_82577;
499 		phy->ops.commit = e1000e_phy_sw_reset;
500 		break;
501 	case e1000_phy_82578:
502 		phy->ops.check_polarity = e1000_check_polarity_m88;
503 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 		phy->ops.get_info = e1000e_get_phy_info_m88;
506 		break;
507 	default:
508 		ret_val = -E1000_ERR_PHY;
509 		break;
510 	}
511 
512 	return ret_val;
513 }
514 
515 /**
516  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517  *  @hw: pointer to the HW structure
518  *
519  *  Initialize family-specific PHY parameters and function pointers.
520  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522 {
523 	struct e1000_phy_info *phy = &hw->phy;
524 	s32 ret_val;
525 	u16 i = 0;
526 
527 	phy->addr = 1;
528 	phy->reset_delay_us = 100;
529 
530 	phy->ops.power_up = e1000_power_up_phy_copper;
531 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532 
533 	/* We may need to do this twice - once for IGP and if that fails,
534 	 * we'll set BM func pointers and try again
535 	 */
536 	ret_val = e1000e_determine_phy_address(hw);
537 	if (ret_val) {
538 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 		ret_val = e1000e_determine_phy_address(hw);
541 		if (ret_val) {
542 			e_dbg("Cannot determine PHY addr. Erroring out\n");
543 			return ret_val;
544 		}
545 	}
546 
547 	phy->id = 0;
548 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 	       (i++ < 100)) {
550 		usleep_range(1000, 2000);
551 		ret_val = e1000e_get_phy_id(hw);
552 		if (ret_val)
553 			return ret_val;
554 	}
555 
556 	/* Verify phy id */
557 	switch (phy->id) {
558 	case IGP03E1000_E_PHY_ID:
559 		phy->type = e1000_phy_igp_3;
560 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 		phy->ops.get_info = e1000e_get_phy_info_igp;
564 		phy->ops.check_polarity = e1000_check_polarity_igp;
565 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 		break;
567 	case IFE_E_PHY_ID:
568 	case IFE_PLUS_E_PHY_ID:
569 	case IFE_C_E_PHY_ID:
570 		phy->type = e1000_phy_ife;
571 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 		phy->ops.get_info = e1000_get_phy_info_ife;
573 		phy->ops.check_polarity = e1000_check_polarity_ife;
574 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 		break;
576 	case BME1000_E_PHY_ID:
577 		phy->type = e1000_phy_bm;
578 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 		phy->ops.commit = e1000e_phy_sw_reset;
582 		phy->ops.get_info = e1000e_get_phy_info_m88;
583 		phy->ops.check_polarity = e1000_check_polarity_m88;
584 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 		break;
586 	default:
587 		return -E1000_ERR_PHY;
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595  *  @hw: pointer to the HW structure
596  *
597  *  Initialize family-specific NVM parameters and function
598  *  pointers.
599  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601 {
602 	struct e1000_nvm_info *nvm = &hw->nvm;
603 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 	u32 gfpreg, sector_base_addr, sector_end_addr;
605 	u16 i;
606 	u32 nvm_size;
607 
608 	nvm->type = e1000_nvm_flash_sw;
609 
610 	if (hw->mac.type == e1000_pch_spt) {
611 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 		 * STRAP register. This is because in SPT the GbE Flash region
613 		 * is no longer accessed through the flash registers. Instead,
614 		 * the mechanism has changed, and the Flash region access
615 		 * registers are now implemented in GbE memory space.
616 		 */
617 		nvm->flash_base_addr = 0;
618 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 		    * NVM_SIZE_MULTIPLIER;
620 		nvm->flash_bank_size = nvm_size / 2;
621 		/* Adjust to word count */
622 		nvm->flash_bank_size /= sizeof(u16);
623 		/* Set the base address for flash register access */
624 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 	} else {
626 		/* Can't read flash registers if register set isn't mapped. */
627 		if (!hw->flash_address) {
628 			e_dbg("ERROR: Flash registers not mapped\n");
629 			return -E1000_ERR_CONFIG;
630 		}
631 
632 		gfpreg = er32flash(ICH_FLASH_GFPREG);
633 
634 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 		 * Add 1 to sector_end_addr since this sector is included in
636 		 * the overall size.
637 		 */
638 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640 
641 		/* flash_base_addr is byte-aligned */
642 		nvm->flash_base_addr = sector_base_addr
643 		    << FLASH_SECTOR_ADDR_SHIFT;
644 
645 		/* find total size of the NVM, then cut in half since the total
646 		 * size represents two separate NVM banks.
647 		 */
648 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 					<< FLASH_SECTOR_ADDR_SHIFT);
650 		nvm->flash_bank_size /= 2;
651 		/* Adjust to word count */
652 		nvm->flash_bank_size /= sizeof(u16);
653 	}
654 
655 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656 
657 	/* Clear shadow ram */
658 	for (i = 0; i < nvm->word_size; i++) {
659 		dev_spec->shadow_ram[i].modified = false;
660 		dev_spec->shadow_ram[i].value = 0xFFFF;
661 	}
662 
663 	return 0;
664 }
665 
666 /**
667  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668  *  @hw: pointer to the HW structure
669  *
670  *  Initialize family-specific MAC parameters and function
671  *  pointers.
672  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674 {
675 	struct e1000_mac_info *mac = &hw->mac;
676 
677 	/* Set media type function pointer */
678 	hw->phy.media_type = e1000_media_type_copper;
679 
680 	/* Set mta register count */
681 	mac->mta_reg_count = 32;
682 	/* Set rar entry count */
683 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 	if (mac->type == e1000_ich8lan)
685 		mac->rar_entry_count--;
686 	/* FWSM register */
687 	mac->has_fwsm = true;
688 	/* ARC subsystem not supported */
689 	mac->arc_subsystem_valid = false;
690 	/* Adaptive IFS supported */
691 	mac->adaptive_ifs = true;
692 
693 	/* LED and other operations */
694 	switch (mac->type) {
695 	case e1000_ich8lan:
696 	case e1000_ich9lan:
697 	case e1000_ich10lan:
698 		/* check management mode */
699 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 		/* ID LED init */
701 		mac->ops.id_led_init = e1000e_id_led_init_generic;
702 		/* blink LED */
703 		mac->ops.blink_led = e1000e_blink_led_generic;
704 		/* setup LED */
705 		mac->ops.setup_led = e1000e_setup_led_generic;
706 		/* cleanup LED */
707 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 		/* turn on/off LED */
709 		mac->ops.led_on = e1000_led_on_ich8lan;
710 		mac->ops.led_off = e1000_led_off_ich8lan;
711 		break;
712 	case e1000_pch2lan:
713 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 		mac->ops.rar_set = e1000_rar_set_pch2lan;
715 		/* fall-through */
716 	case e1000_pch_lpt:
717 	case e1000_pch_spt:
718 	case e1000_pchlan:
719 		/* check management mode */
720 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 		/* ID LED init */
722 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 		/* setup LED */
724 		mac->ops.setup_led = e1000_setup_led_pchlan;
725 		/* cleanup LED */
726 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 		/* turn on/off LED */
728 		mac->ops.led_on = e1000_led_on_pchlan;
729 		mac->ops.led_off = e1000_led_off_pchlan;
730 		break;
731 	default:
732 		break;
733 	}
734 
735 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 		mac->ops.setup_physical_interface =
739 		    e1000_setup_copper_link_pch_lpt;
740 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 	}
742 
743 	/* Enable PCS Lock-loss workaround for ICH8 */
744 	if (mac->type == e1000_ich8lan)
745 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746 
747 	return 0;
748 }
749 
750 /**
751  *  __e1000_access_emi_reg_locked - Read/write EMI register
752  *  @hw: pointer to the HW structure
753  *  @addr: EMI address to program
754  *  @data: pointer to value to read/write from/to the EMI address
755  *  @read: boolean flag to indicate read or write
756  *
757  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
758  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 					 u16 *data, bool read)
761 {
762 	s32 ret_val;
763 
764 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 	if (ret_val)
766 		return ret_val;
767 
768 	if (read)
769 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 	else
771 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772 
773 	return ret_val;
774 }
775 
776 /**
777  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
778  *  @hw: pointer to the HW structure
779  *  @addr: EMI address to program
780  *  @data: value to be read from the EMI address
781  *
782  *  Assumes the SW/FW/HW Semaphore is already acquired.
783  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785 {
786 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
787 }
788 
789 /**
790  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
791  *  @hw: pointer to the HW structure
792  *  @addr: EMI address to program
793  *  @data: value to be written to the EMI address
794  *
795  *  Assumes the SW/FW/HW Semaphore is already acquired.
796  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798 {
799 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800 }
801 
802 /**
803  *  e1000_set_eee_pchlan - Enable/disable EEE support
804  *  @hw: pointer to the HW structure
805  *
806  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
807  *  the link and the EEE capabilities of the link partner.  The LPI Control
808  *  register bits will remain set only if/when link is up.
809  *
810  *  EEE LPI must not be asserted earlier than one second after link is up.
811  *  On 82579, EEE LPI should not be enabled until such time otherwise there
812  *  can be link issues with some switches.  Other devices can have EEE LPI
813  *  enabled immediately upon link up since they have a timer in hardware which
814  *  prevents LPI from being asserted too early.
815  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817 {
818 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 	s32 ret_val;
820 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821 
822 	switch (hw->phy.type) {
823 	case e1000_phy_82579:
824 		lpa = I82579_EEE_LP_ABILITY;
825 		pcs_status = I82579_EEE_PCS_STATUS;
826 		adv_addr = I82579_EEE_ADVERTISEMENT;
827 		break;
828 	case e1000_phy_i217:
829 		lpa = I217_EEE_LP_ABILITY;
830 		pcs_status = I217_EEE_PCS_STATUS;
831 		adv_addr = I217_EEE_ADVERTISEMENT;
832 		break;
833 	default:
834 		return 0;
835 	}
836 
837 	ret_val = hw->phy.ops.acquire(hw);
838 	if (ret_val)
839 		return ret_val;
840 
841 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 	if (ret_val)
843 		goto release;
844 
845 	/* Clear bits that enable EEE in various speeds */
846 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847 
848 	/* Enable EEE if not disabled by user */
849 	if (!dev_spec->eee_disable) {
850 		/* Save off link partner's EEE ability */
851 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 						    &dev_spec->eee_lp_ability);
853 		if (ret_val)
854 			goto release;
855 
856 		/* Read EEE advertisement */
857 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 		if (ret_val)
859 			goto release;
860 
861 		/* Enable EEE only for speeds in which the link partner is
862 		 * EEE capable and for which we advertise EEE.
863 		 */
864 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866 
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 			e1e_rphy_locked(hw, MII_LPA, &data);
869 			if (data & LPA_100FULL)
870 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 			else
872 				/* EEE is not supported in 100Half, so ignore
873 				 * partner's EEE in 100 ability if full-duplex
874 				 * is not advertised.
875 				 */
876 				dev_spec->eee_lp_ability &=
877 				    ~I82579_EEE_100_SUPPORTED;
878 		}
879 	}
880 
881 	if (hw->phy.type == e1000_phy_82579) {
882 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 						    &data);
884 		if (ret_val)
885 			goto release;
886 
887 		data &= ~I82579_LPI_100_PLL_SHUT;
888 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 						     data);
890 	}
891 
892 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 	if (ret_val)
895 		goto release;
896 
897 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 	hw->phy.ops.release(hw);
900 
901 	return ret_val;
902 }
903 
904 /**
905  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906  *  @hw:   pointer to the HW structure
907  *  @link: link up bool flag
908  *
909  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910  *  preventing further DMA write requests.  Workaround the issue by disabling
911  *  the de-assertion of the clock request when in 1Gpbs mode.
912  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913  *  speeds in order to avoid Tx hangs.
914  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916 {
917 	u32 fextnvm6 = er32(FEXTNVM6);
918 	u32 status = er32(STATUS);
919 	s32 ret_val = 0;
920 	u16 reg;
921 
922 	if (link && (status & E1000_STATUS_SPEED_1000)) {
923 		ret_val = hw->phy.ops.acquire(hw);
924 		if (ret_val)
925 			return ret_val;
926 
927 		ret_val =
928 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 						&reg);
930 		if (ret_val)
931 			goto release;
932 
933 		ret_val =
934 		    e1000e_write_kmrn_reg_locked(hw,
935 						 E1000_KMRNCTRLSTA_K1_CONFIG,
936 						 reg &
937 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 		if (ret_val)
939 			goto release;
940 
941 		usleep_range(10, 20);
942 
943 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944 
945 		ret_val =
946 		    e1000e_write_kmrn_reg_locked(hw,
947 						 E1000_KMRNCTRLSTA_K1_CONFIG,
948 						 reg);
949 release:
950 		hw->phy.ops.release(hw);
951 	} else {
952 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954 
955 		if ((hw->phy.revision > 5) || !link ||
956 		    ((status & E1000_STATUS_SPEED_100) &&
957 		     (status & E1000_STATUS_FD)))
958 			goto update_fextnvm6;
959 
960 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
961 		if (ret_val)
962 			return ret_val;
963 
964 		/* Clear link status transmit timeout */
965 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966 
967 		if (status & E1000_STATUS_SPEED_100) {
968 			/* Set inband Tx timeout to 5x10us for 100Half */
969 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970 
971 			/* Do not extend the K1 entry latency for 100Half */
972 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 		} else {
974 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
975 			reg |= 50 <<
976 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977 
978 			/* Extend the K1 entry latency for 10 Mbps */
979 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 		}
981 
982 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 		if (ret_val)
984 			return ret_val;
985 
986 update_fextnvm6:
987 		ew32(FEXTNVM6, fextnvm6);
988 	}
989 
990 	return ret_val;
991 }
992 
993 /**
994  *  e1000_platform_pm_pch_lpt - Set platform power management values
995  *  @hw: pointer to the HW structure
996  *  @link: bool indicating link status
997  *
998  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000  *  when link is up (which must not exceed the maximum latency supported
1001  *  by the platform), otherwise specify there is no LTR requirement.
1002  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004  *  Capability register set, on this device LTR is set by writing the
1005  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007  *  message to the PMC.
1008  **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010 {
1011 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 	u16 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1014 	u16 lat_enc_d = 0;	/* latency decoded */
1015 	u16 lat_enc = 0;	/* latency encoded */
1016 
1017 	if (link) {
1018 		u16 speed, duplex, scale = 0;
1019 		u16 max_snoop, max_nosnoop;
1020 		u16 max_ltr_enc;	/* max LTR latency encoded */
1021 		u64 value;
1022 		u32 rxa;
1023 
1024 		if (!hw->adapter->max_frame_size) {
1025 			e_dbg("max_frame_size not set.\n");
1026 			return -E1000_ERR_CONFIG;
1027 		}
1028 
1029 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1030 		if (!speed) {
1031 			e_dbg("Speed not set.\n");
1032 			return -E1000_ERR_CONFIG;
1033 		}
1034 
1035 		/* Rx Packet Buffer Allocation size (KB) */
1036 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1037 
1038 		/* Determine the maximum latency tolerated by the device.
1039 		 *
1040 		 * Per the PCIe spec, the tolerated latencies are encoded as
1041 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1042 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1043 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1044 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1045 		 */
1046 		rxa *= 512;
1047 		value = (rxa > hw->adapter->max_frame_size) ?
1048 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1049 			0;
1050 
1051 		while (value > PCI_LTR_VALUE_MASK) {
1052 			scale++;
1053 			value = DIV_ROUND_UP(value, (1 << 5));
1054 		}
1055 		if (scale > E1000_LTRV_SCALE_MAX) {
1056 			e_dbg("Invalid LTR latency scale %d\n", scale);
1057 			return -E1000_ERR_CONFIG;
1058 		}
1059 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1060 
1061 		/* Determine the maximum latency tolerated by the platform */
1062 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1063 				     &max_snoop);
1064 		pci_read_config_word(hw->adapter->pdev,
1065 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1067 
1068 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1069 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1070 			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1071 			     >> E1000_LTRV_SCALE_SHIFT)));
1072 
1073 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1074 				 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1076 				 >> E1000_LTRV_SCALE_SHIFT)));
1077 
1078 		if (lat_enc_d > max_ltr_enc_d)
1079 			lat_enc = max_ltr_enc;
1080 	}
1081 
1082 	/* Set Snoop and No-Snoop latencies the same */
1083 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1084 	ew32(LTRV, reg);
1085 
1086 	return 0;
1087 }
1088 
1089 /**
1090  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1091  *  @hw: pointer to the HW structure
1092  *  @to_sx: boolean indicating a system power state transition to Sx
1093  *
1094  *  When link is down, configure ULP mode to significantly reduce the power
1095  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1096  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1097  *  system, configure the ULP mode by software.
1098  */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1099 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1100 {
1101 	u32 mac_reg;
1102 	s32 ret_val = 0;
1103 	u16 phy_reg;
1104 	u16 oem_reg = 0;
1105 
1106 	if ((hw->mac.type < e1000_pch_lpt) ||
1107 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1108 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1109 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1110 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1111 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1112 		return 0;
1113 
1114 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1115 		/* Request ME configure ULP mode in the PHY */
1116 		mac_reg = er32(H2ME);
1117 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1118 		ew32(H2ME, mac_reg);
1119 
1120 		goto out;
1121 	}
1122 
1123 	if (!to_sx) {
1124 		int i = 0;
1125 
1126 		/* Poll up to 5 seconds for Cable Disconnected indication */
1127 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1128 			/* Bail if link is re-acquired */
1129 			if (er32(STATUS) & E1000_STATUS_LU)
1130 				return -E1000_ERR_PHY;
1131 
1132 			if (i++ == 100)
1133 				break;
1134 
1135 			msleep(50);
1136 		}
1137 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1138 		      (er32(FEXT) &
1139 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1140 	}
1141 
1142 	ret_val = hw->phy.ops.acquire(hw);
1143 	if (ret_val)
1144 		goto out;
1145 
1146 	/* Force SMBus mode in PHY */
1147 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1148 	if (ret_val)
1149 		goto release;
1150 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1151 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1152 
1153 	/* Force SMBus mode in MAC */
1154 	mac_reg = er32(CTRL_EXT);
1155 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1156 	ew32(CTRL_EXT, mac_reg);
1157 
1158 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1159 	 * LPLU and disable Gig speed when entering ULP
1160 	 */
1161 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1162 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163 						       &oem_reg);
1164 		if (ret_val)
1165 			goto release;
1166 
1167 		phy_reg = oem_reg;
1168 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1169 
1170 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1171 							phy_reg);
1172 
1173 		if (ret_val)
1174 			goto release;
1175 	}
1176 
1177 	/* Set Inband ULP Exit, Reset to SMBus mode and
1178 	 * Disable SMBus Release on PERST# in PHY
1179 	 */
1180 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1181 	if (ret_val)
1182 		goto release;
1183 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1184 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1185 	if (to_sx) {
1186 		if (er32(WUFC) & E1000_WUFC_LNKC)
1187 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1188 		else
1189 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1190 
1191 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1192 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1193 	} else {
1194 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1195 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1196 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1197 	}
1198 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199 
1200 	/* Set Disable SMBus Release on PERST# in MAC */
1201 	mac_reg = er32(FEXTNVM7);
1202 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1203 	ew32(FEXTNVM7, mac_reg);
1204 
1205 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1206 	phy_reg |= I218_ULP_CONFIG1_START;
1207 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1208 
1209 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1210 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1211 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1212 							oem_reg);
1213 		if (ret_val)
1214 			goto release;
1215 	}
1216 
1217 release:
1218 	hw->phy.ops.release(hw);
1219 out:
1220 	if (ret_val)
1221 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1222 	else
1223 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1224 
1225 	return ret_val;
1226 }
1227 
1228 /**
1229  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1230  *  @hw: pointer to the HW structure
1231  *  @force: boolean indicating whether or not to force disabling ULP
1232  *
1233  *  Un-configure ULP mode when link is up, the system is transitioned from
1234  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1235  *  system, poll for an indication from ME that ULP has been un-configured.
1236  *  If not on an ME enabled system, un-configure the ULP mode by software.
1237  *
1238  *  During nominal operation, this function is called when link is acquired
1239  *  to disable ULP mode (force=false); otherwise, for example when unloading
1240  *  the driver or during Sx->S0 transitions, this is called with force=true
1241  *  to forcibly disable ULP.
1242  */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1243 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1244 {
1245 	s32 ret_val = 0;
1246 	u32 mac_reg;
1247 	u16 phy_reg;
1248 	int i = 0;
1249 
1250 	if ((hw->mac.type < e1000_pch_lpt) ||
1251 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1252 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1253 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1254 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1255 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1256 		return 0;
1257 
1258 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1259 		if (force) {
1260 			/* Request ME un-configure ULP mode in the PHY */
1261 			mac_reg = er32(H2ME);
1262 			mac_reg &= ~E1000_H2ME_ULP;
1263 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1264 			ew32(H2ME, mac_reg);
1265 		}
1266 
1267 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1268 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1269 			if (i++ == 10) {
1270 				ret_val = -E1000_ERR_PHY;
1271 				goto out;
1272 			}
1273 
1274 			usleep_range(10000, 20000);
1275 		}
1276 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1277 
1278 		if (force) {
1279 			mac_reg = er32(H2ME);
1280 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1281 			ew32(H2ME, mac_reg);
1282 		} else {
1283 			/* Clear H2ME.ULP after ME ULP configuration */
1284 			mac_reg = er32(H2ME);
1285 			mac_reg &= ~E1000_H2ME_ULP;
1286 			ew32(H2ME, mac_reg);
1287 		}
1288 
1289 		goto out;
1290 	}
1291 
1292 	ret_val = hw->phy.ops.acquire(hw);
1293 	if (ret_val)
1294 		goto out;
1295 
1296 	if (force)
1297 		/* Toggle LANPHYPC Value bit */
1298 		e1000_toggle_lanphypc_pch_lpt(hw);
1299 
1300 	/* Unforce SMBus mode in PHY */
1301 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1302 	if (ret_val) {
1303 		/* The MAC might be in PCIe mode, so temporarily force to
1304 		 * SMBus mode in order to access the PHY.
1305 		 */
1306 		mac_reg = er32(CTRL_EXT);
1307 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1308 		ew32(CTRL_EXT, mac_reg);
1309 
1310 		msleep(50);
1311 
1312 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1313 						       &phy_reg);
1314 		if (ret_val)
1315 			goto release;
1316 	}
1317 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1318 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1319 
1320 	/* Unforce SMBus mode in MAC */
1321 	mac_reg = er32(CTRL_EXT);
1322 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1323 	ew32(CTRL_EXT, mac_reg);
1324 
1325 	/* When ULP mode was previously entered, K1 was disabled by the
1326 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1327 	 */
1328 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1329 	if (ret_val)
1330 		goto release;
1331 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1332 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1333 
1334 	/* Clear ULP enabled configuration */
1335 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1336 	if (ret_val)
1337 		goto release;
1338 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1339 		     I218_ULP_CONFIG1_STICKY_ULP |
1340 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1341 		     I218_ULP_CONFIG1_WOL_HOST |
1342 		     I218_ULP_CONFIG1_INBAND_EXIT |
1343 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1344 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1345 
1346 	/* Commit ULP changes by starting auto ULP configuration */
1347 	phy_reg |= I218_ULP_CONFIG1_START;
1348 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1349 
1350 	/* Clear Disable SMBus Release on PERST# in MAC */
1351 	mac_reg = er32(FEXTNVM7);
1352 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1353 	ew32(FEXTNVM7, mac_reg);
1354 
1355 release:
1356 	hw->phy.ops.release(hw);
1357 	if (force) {
1358 		e1000_phy_hw_reset(hw);
1359 		msleep(50);
1360 	}
1361 out:
1362 	if (ret_val)
1363 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1364 	else
1365 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1366 
1367 	return ret_val;
1368 }
1369 
1370 /**
1371  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1372  *  @hw: pointer to the HW structure
1373  *
1374  *  Checks to see of the link status of the hardware has changed.  If a
1375  *  change in link status has been detected, then we read the PHY registers
1376  *  to get the current speed/duplex if link exists.
1377  *
1378  *  Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
1379  *  up).
1380  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1381 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1382 {
1383 	struct e1000_mac_info *mac = &hw->mac;
1384 	s32 ret_val, tipg_reg = 0;
1385 	u16 emi_addr, emi_val = 0;
1386 	bool link;
1387 	u16 phy_reg;
1388 
1389 	/* We only want to go out to the PHY registers to see if Auto-Neg
1390 	 * has completed and/or if our link status has changed.  The
1391 	 * get_link_status flag is set upon receiving a Link Status
1392 	 * Change or Rx Sequence Error interrupt.
1393 	 */
1394 	if (!mac->get_link_status)
1395 		return 1;
1396 
1397 	/* First we want to see if the MII Status Register reports
1398 	 * link.  If so, then we want to get the current speed/duplex
1399 	 * of the PHY.
1400 	 */
1401 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1402 	if (ret_val)
1403 		return ret_val;
1404 
1405 	if (hw->mac.type == e1000_pchlan) {
1406 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1407 		if (ret_val)
1408 			return ret_val;
1409 	}
1410 
1411 	/* When connected at 10Mbps half-duplex, some parts are excessively
1412 	 * aggressive resulting in many collisions. To avoid this, increase
1413 	 * the IPG and reduce Rx latency in the PHY.
1414 	 */
1415 	if (((hw->mac.type == e1000_pch2lan) ||
1416 	     (hw->mac.type == e1000_pch_lpt) ||
1417 	     (hw->mac.type == e1000_pch_spt)) && link) {
1418 		u16 speed, duplex;
1419 
1420 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1421 		tipg_reg = er32(TIPG);
1422 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1423 
1424 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1425 			tipg_reg |= 0xFF;
1426 			/* Reduce Rx latency in analog PHY */
1427 			emi_val = 0;
1428 		} else if (hw->mac.type == e1000_pch_spt &&
1429 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1430 			tipg_reg |= 0xC;
1431 			emi_val = 1;
1432 		} else {
1433 
1434 			/* Roll back the default values */
1435 			tipg_reg |= 0x08;
1436 			emi_val = 1;
1437 		}
1438 
1439 		ew32(TIPG, tipg_reg);
1440 
1441 		ret_val = hw->phy.ops.acquire(hw);
1442 		if (ret_val)
1443 			return ret_val;
1444 
1445 		if (hw->mac.type == e1000_pch2lan)
1446 			emi_addr = I82579_RX_CONFIG;
1447 		else
1448 			emi_addr = I217_RX_CONFIG;
1449 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1450 
1451 		hw->phy.ops.release(hw);
1452 
1453 		if (ret_val)
1454 			return ret_val;
1455 
1456 		if (hw->mac.type == e1000_pch_spt) {
1457 			u16 data;
1458 			u16 ptr_gap;
1459 
1460 			if (speed == SPEED_1000) {
1461 				ret_val = hw->phy.ops.acquire(hw);
1462 				if (ret_val)
1463 					return ret_val;
1464 
1465 				ret_val = e1e_rphy_locked(hw,
1466 							  PHY_REG(776, 20),
1467 							  &data);
1468 				if (ret_val) {
1469 					hw->phy.ops.release(hw);
1470 					return ret_val;
1471 				}
1472 
1473 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1474 				if (ptr_gap < 0x18) {
1475 					data &= ~(0x3FF << 2);
1476 					data |= (0x18 << 2);
1477 					ret_val =
1478 					    e1e_wphy_locked(hw,
1479 							    PHY_REG(776, 20),
1480 							    data);
1481 				}
1482 				hw->phy.ops.release(hw);
1483 				if (ret_val)
1484 					return ret_val;
1485 			}
1486 		}
1487 	}
1488 
1489 	/* I217 Packet Loss issue:
1490 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1491 	 * on power up.
1492 	 * Set the Beacon Duration for I217 to 8 usec
1493 	 */
1494 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1495 		u32 mac_reg;
1496 
1497 		mac_reg = er32(FEXTNVM4);
1498 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1499 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1500 		ew32(FEXTNVM4, mac_reg);
1501 	}
1502 
1503 	/* Work-around I218 hang issue */
1504 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1505 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1506 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1507 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1508 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1509 		if (ret_val)
1510 			return ret_val;
1511 	}
1512 	if ((hw->mac.type == e1000_pch_lpt) ||
1513 	    (hw->mac.type == e1000_pch_spt)) {
1514 		/* Set platform power management values for
1515 		 * Latency Tolerance Reporting (LTR)
1516 		 */
1517 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1518 		if (ret_val)
1519 			return ret_val;
1520 	}
1521 
1522 	/* Clear link partner's EEE ability */
1523 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1524 
1525 	/* FEXTNVM6 K1-off workaround */
1526 	if (hw->mac.type == e1000_pch_spt) {
1527 		u32 pcieanacfg = er32(PCIEANACFG);
1528 		u32 fextnvm6 = er32(FEXTNVM6);
1529 
1530 		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1531 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1532 		else
1533 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1534 
1535 		ew32(FEXTNVM6, fextnvm6);
1536 	}
1537 
1538 	if (!link)
1539 		return 0;	/* No link detected */
1540 
1541 	mac->get_link_status = false;
1542 
1543 	switch (hw->mac.type) {
1544 	case e1000_pch2lan:
1545 		ret_val = e1000_k1_workaround_lv(hw);
1546 		if (ret_val)
1547 			return ret_val;
1548 		/* fall-thru */
1549 	case e1000_pchlan:
1550 		if (hw->phy.type == e1000_phy_82578) {
1551 			ret_val = e1000_link_stall_workaround_hv(hw);
1552 			if (ret_val)
1553 				return ret_val;
1554 		}
1555 
1556 		/* Workaround for PCHx parts in half-duplex:
1557 		 * Set the number of preambles removed from the packet
1558 		 * when it is passed from the PHY to the MAC to prevent
1559 		 * the MAC from misinterpreting the packet type.
1560 		 */
1561 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1562 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1563 
1564 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1565 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1566 
1567 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1568 		break;
1569 	default:
1570 		break;
1571 	}
1572 
1573 	/* Check if there was DownShift, must be checked
1574 	 * immediately after link-up
1575 	 */
1576 	e1000e_check_downshift(hw);
1577 
1578 	/* Enable/Disable EEE after link up */
1579 	if (hw->phy.type > e1000_phy_82579) {
1580 		ret_val = e1000_set_eee_pchlan(hw);
1581 		if (ret_val)
1582 			return ret_val;
1583 	}
1584 
1585 	/* If we are forcing speed/duplex, then we simply return since
1586 	 * we have already determined whether we have link or not.
1587 	 */
1588 	if (!mac->autoneg)
1589 		return 1;
1590 
1591 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1592 	 * of MAC speed/duplex configuration.  So we only need to
1593 	 * configure Collision Distance in the MAC.
1594 	 */
1595 	mac->ops.config_collision_dist(hw);
1596 
1597 	/* Configure Flow Control now that Auto-Neg has completed.
1598 	 * First, we need to restore the desired flow control
1599 	 * settings because we may have had to re-autoneg with a
1600 	 * different link partner.
1601 	 */
1602 	ret_val = e1000e_config_fc_after_link_up(hw);
1603 	if (ret_val) {
1604 		e_dbg("Error configuring flow control\n");
1605 		return ret_val;
1606 	}
1607 
1608 	return 1;
1609 }
1610 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1611 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1612 {
1613 	struct e1000_hw *hw = &adapter->hw;
1614 	s32 rc;
1615 
1616 	rc = e1000_init_mac_params_ich8lan(hw);
1617 	if (rc)
1618 		return rc;
1619 
1620 	rc = e1000_init_nvm_params_ich8lan(hw);
1621 	if (rc)
1622 		return rc;
1623 
1624 	switch (hw->mac.type) {
1625 	case e1000_ich8lan:
1626 	case e1000_ich9lan:
1627 	case e1000_ich10lan:
1628 		rc = e1000_init_phy_params_ich8lan(hw);
1629 		break;
1630 	case e1000_pchlan:
1631 	case e1000_pch2lan:
1632 	case e1000_pch_lpt:
1633 	case e1000_pch_spt:
1634 		rc = e1000_init_phy_params_pchlan(hw);
1635 		break;
1636 	default:
1637 		break;
1638 	}
1639 	if (rc)
1640 		return rc;
1641 
1642 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1643 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1644 	 */
1645 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1646 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1647 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1648 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1649 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1650 
1651 		hw->mac.ops.blink_led = NULL;
1652 	}
1653 
1654 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1655 	    (adapter->hw.phy.type != e1000_phy_ife))
1656 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1657 
1658 	/* Enable workaround for 82579 w/ ME enabled */
1659 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1660 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1661 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1662 
1663 	return 0;
1664 }
1665 
1666 static DEFINE_MUTEX(nvm_mutex);
1667 
1668 /**
1669  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1670  *  @hw: pointer to the HW structure
1671  *
1672  *  Acquires the mutex for performing NVM operations.
1673  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1674 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1675 {
1676 	mutex_lock(&nvm_mutex);
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  *  e1000_release_nvm_ich8lan - Release NVM mutex
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  Releases the mutex used while performing NVM operations.
1686  **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1687 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1688 {
1689 	mutex_unlock(&nvm_mutex);
1690 }
1691 
1692 /**
1693  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1694  *  @hw: pointer to the HW structure
1695  *
1696  *  Acquires the software control flag for performing PHY and select
1697  *  MAC CSR accesses.
1698  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1699 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1700 {
1701 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1702 	s32 ret_val = 0;
1703 
1704 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1705 			     &hw->adapter->state)) {
1706 		e_dbg("contention for Phy access\n");
1707 		return -E1000_ERR_PHY;
1708 	}
1709 
1710 	while (timeout) {
1711 		extcnf_ctrl = er32(EXTCNF_CTRL);
1712 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1713 			break;
1714 
1715 		mdelay(1);
1716 		timeout--;
1717 	}
1718 
1719 	if (!timeout) {
1720 		e_dbg("SW has already locked the resource.\n");
1721 		ret_val = -E1000_ERR_CONFIG;
1722 		goto out;
1723 	}
1724 
1725 	timeout = SW_FLAG_TIMEOUT;
1726 
1727 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1728 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1729 
1730 	while (timeout) {
1731 		extcnf_ctrl = er32(EXTCNF_CTRL);
1732 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1733 			break;
1734 
1735 		mdelay(1);
1736 		timeout--;
1737 	}
1738 
1739 	if (!timeout) {
1740 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1741 		      er32(FWSM), extcnf_ctrl);
1742 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1743 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 		ret_val = -E1000_ERR_CONFIG;
1745 		goto out;
1746 	}
1747 
1748 out:
1749 	if (ret_val)
1750 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1751 
1752 	return ret_val;
1753 }
1754 
1755 /**
1756  *  e1000_release_swflag_ich8lan - Release software control flag
1757  *  @hw: pointer to the HW structure
1758  *
1759  *  Releases the software control flag for performing PHY and select
1760  *  MAC CSR accesses.
1761  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1762 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1763 {
1764 	u32 extcnf_ctrl;
1765 
1766 	extcnf_ctrl = er32(EXTCNF_CTRL);
1767 
1768 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1769 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1770 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1771 	} else {
1772 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1773 	}
1774 
1775 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1776 }
1777 
1778 /**
1779  *  e1000_check_mng_mode_ich8lan - Checks management mode
1780  *  @hw: pointer to the HW structure
1781  *
1782  *  This checks if the adapter has any manageability enabled.
1783  *  This is a function pointer entry point only called by read/write
1784  *  routines for the PHY and NVM parts.
1785  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1786 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1787 {
1788 	u32 fwsm;
1789 
1790 	fwsm = er32(FWSM);
1791 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1792 		((fwsm & E1000_FWSM_MODE_MASK) ==
1793 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1794 }
1795 
1796 /**
1797  *  e1000_check_mng_mode_pchlan - Checks management mode
1798  *  @hw: pointer to the HW structure
1799  *
1800  *  This checks if the adapter has iAMT enabled.
1801  *  This is a function pointer entry point only called by read/write
1802  *  routines for the PHY and NVM parts.
1803  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1804 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1805 {
1806 	u32 fwsm;
1807 
1808 	fwsm = er32(FWSM);
1809 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812 
1813 /**
1814  *  e1000_rar_set_pch2lan - Set receive address register
1815  *  @hw: pointer to the HW structure
1816  *  @addr: pointer to the receive address
1817  *  @index: receive address array register
1818  *
1819  *  Sets the receive address array register at index to the address passed
1820  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1821  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822  *  Use SHRA[0-3] in place of those reserved for ME.
1823  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826 	u32 rar_low, rar_high;
1827 
1828 	/* HW expects these in little endian so we reverse the byte order
1829 	 * from network order (big endian) to little endian
1830 	 */
1831 	rar_low = ((u32)addr[0] |
1832 		   ((u32)addr[1] << 8) |
1833 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1834 
1835 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1836 
1837 	/* If MAC address zero, no need to set the AV bit */
1838 	if (rar_low || rar_high)
1839 		rar_high |= E1000_RAH_AV;
1840 
1841 	if (index == 0) {
1842 		ew32(RAL(index), rar_low);
1843 		e1e_flush();
1844 		ew32(RAH(index), rar_high);
1845 		e1e_flush();
1846 		return 0;
1847 	}
1848 
1849 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1850 	 * next address into the SHRA register array.
1851 	 */
1852 	if (index < (u32)(hw->mac.rar_entry_count)) {
1853 		s32 ret_val;
1854 
1855 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1856 		if (ret_val)
1857 			goto out;
1858 
1859 		ew32(SHRAL(index - 1), rar_low);
1860 		e1e_flush();
1861 		ew32(SHRAH(index - 1), rar_high);
1862 		e1e_flush();
1863 
1864 		e1000_release_swflag_ich8lan(hw);
1865 
1866 		/* verify the register updates */
1867 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1868 		    (er32(SHRAH(index - 1)) == rar_high))
1869 			return 0;
1870 
1871 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1872 		      (index - 1), er32(FWSM));
1873 	}
1874 
1875 out:
1876 	e_dbg("Failed to write receive address at index %d\n", index);
1877 	return -E1000_ERR_CONFIG;
1878 }
1879 
1880 /**
1881  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1882  *  @hw: pointer to the HW structure
1883  *
1884  *  Get the number of available receive registers that the Host can
1885  *  program. SHRA[0-10] are the shared receive address registers
1886  *  that are shared between the Host and manageability engine (ME).
1887  *  ME can reserve any number of addresses and the host needs to be
1888  *  able to tell how many available registers it has access to.
1889  **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1890 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1891 {
1892 	u32 wlock_mac;
1893 	u32 num_entries;
1894 
1895 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1896 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1897 
1898 	switch (wlock_mac) {
1899 	case 0:
1900 		/* All SHRA[0..10] and RAR[0] available */
1901 		num_entries = hw->mac.rar_entry_count;
1902 		break;
1903 	case 1:
1904 		/* Only RAR[0] available */
1905 		num_entries = 1;
1906 		break;
1907 	default:
1908 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1909 		num_entries = wlock_mac + 1;
1910 		break;
1911 	}
1912 
1913 	return num_entries;
1914 }
1915 
1916 /**
1917  *  e1000_rar_set_pch_lpt - Set receive address registers
1918  *  @hw: pointer to the HW structure
1919  *  @addr: pointer to the receive address
1920  *  @index: receive address array register
1921  *
1922  *  Sets the receive address register array at index to the address passed
1923  *  in by addr. For LPT, RAR[0] is the base address register that is to
1924  *  contain the MAC address. SHRA[0-10] are the shared receive address
1925  *  registers that are shared between the Host and manageability engine (ME).
1926  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1927 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1928 {
1929 	u32 rar_low, rar_high;
1930 	u32 wlock_mac;
1931 
1932 	/* HW expects these in little endian so we reverse the byte order
1933 	 * from network order (big endian) to little endian
1934 	 */
1935 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1936 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1937 
1938 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1939 
1940 	/* If MAC address zero, no need to set the AV bit */
1941 	if (rar_low || rar_high)
1942 		rar_high |= E1000_RAH_AV;
1943 
1944 	if (index == 0) {
1945 		ew32(RAL(index), rar_low);
1946 		e1e_flush();
1947 		ew32(RAH(index), rar_high);
1948 		e1e_flush();
1949 		return 0;
1950 	}
1951 
1952 	/* The manageability engine (ME) can lock certain SHRAR registers that
1953 	 * it is using - those registers are unavailable for use.
1954 	 */
1955 	if (index < hw->mac.rar_entry_count) {
1956 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1957 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1958 
1959 		/* Check if all SHRAR registers are locked */
1960 		if (wlock_mac == 1)
1961 			goto out;
1962 
1963 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1964 			s32 ret_val;
1965 
1966 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1967 
1968 			if (ret_val)
1969 				goto out;
1970 
1971 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1972 			e1e_flush();
1973 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1974 			e1e_flush();
1975 
1976 			e1000_release_swflag_ich8lan(hw);
1977 
1978 			/* verify the register updates */
1979 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1980 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1981 				return 0;
1982 		}
1983 	}
1984 
1985 out:
1986 	e_dbg("Failed to write receive address at index %d\n", index);
1987 	return -E1000_ERR_CONFIG;
1988 }
1989 
1990 /**
1991  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1992  *  @hw: pointer to the HW structure
1993  *
1994  *  Checks if firmware is blocking the reset of the PHY.
1995  *  This is a function pointer entry point only called by
1996  *  reset routines.
1997  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)1998 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1999 {
2000 	bool blocked = false;
2001 	int i = 0;
2002 
2003 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2004 	       (i++ < 10))
2005 		usleep_range(10000, 20000);
2006 	return blocked ? E1000_BLK_PHY_RESET : 0;
2007 }
2008 
2009 /**
2010  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2011  *  @hw: pointer to the HW structure
2012  *
2013  *  Assumes semaphore already acquired.
2014  *
2015  **/
e1000_write_smbus_addr(struct e1000_hw * hw)2016 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2017 {
2018 	u16 phy_data;
2019 	u32 strap = er32(STRAP);
2020 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2021 	    E1000_STRAP_SMT_FREQ_SHIFT;
2022 	s32 ret_val;
2023 
2024 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2025 
2026 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2027 	if (ret_val)
2028 		return ret_val;
2029 
2030 	phy_data &= ~HV_SMB_ADDR_MASK;
2031 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2032 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2033 
2034 	if (hw->phy.type == e1000_phy_i217) {
2035 		/* Restore SMBus frequency */
2036 		if (freq--) {
2037 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2038 			phy_data |= (freq & (1 << 0)) <<
2039 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2040 			phy_data |= (freq & (1 << 1)) <<
2041 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2042 		} else {
2043 			e_dbg("Unsupported SMB frequency in PHY\n");
2044 		}
2045 	}
2046 
2047 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2048 }
2049 
2050 /**
2051  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2052  *  @hw:   pointer to the HW structure
2053  *
2054  *  SW should configure the LCD from the NVM extended configuration region
2055  *  as a workaround for certain parts.
2056  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2057 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2058 {
2059 	struct e1000_phy_info *phy = &hw->phy;
2060 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2061 	s32 ret_val = 0;
2062 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2063 
2064 	/* Initialize the PHY from the NVM on ICH platforms.  This
2065 	 * is needed due to an issue where the NVM configuration is
2066 	 * not properly autoloaded after power transitions.
2067 	 * Therefore, after each PHY reset, we will load the
2068 	 * configuration data out of the NVM manually.
2069 	 */
2070 	switch (hw->mac.type) {
2071 	case e1000_ich8lan:
2072 		if (phy->type != e1000_phy_igp_3)
2073 			return ret_val;
2074 
2075 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2076 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2077 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2078 			break;
2079 		}
2080 		/* Fall-thru */
2081 	case e1000_pchlan:
2082 	case e1000_pch2lan:
2083 	case e1000_pch_lpt:
2084 	case e1000_pch_spt:
2085 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2086 		break;
2087 	default:
2088 		return ret_val;
2089 	}
2090 
2091 	ret_val = hw->phy.ops.acquire(hw);
2092 	if (ret_val)
2093 		return ret_val;
2094 
2095 	data = er32(FEXTNVM);
2096 	if (!(data & sw_cfg_mask))
2097 		goto release;
2098 
2099 	/* Make sure HW does not configure LCD from PHY
2100 	 * extended configuration before SW configuration
2101 	 */
2102 	data = er32(EXTCNF_CTRL);
2103 	if ((hw->mac.type < e1000_pch2lan) &&
2104 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2105 		goto release;
2106 
2107 	cnf_size = er32(EXTCNF_SIZE);
2108 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2109 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2110 	if (!cnf_size)
2111 		goto release;
2112 
2113 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2114 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2115 
2116 	if (((hw->mac.type == e1000_pchlan) &&
2117 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2118 	    (hw->mac.type > e1000_pchlan)) {
2119 		/* HW configures the SMBus address and LEDs when the
2120 		 * OEM and LCD Write Enable bits are set in the NVM.
2121 		 * When both NVM bits are cleared, SW will configure
2122 		 * them instead.
2123 		 */
2124 		ret_val = e1000_write_smbus_addr(hw);
2125 		if (ret_val)
2126 			goto release;
2127 
2128 		data = er32(LEDCTL);
2129 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2130 							(u16)data);
2131 		if (ret_val)
2132 			goto release;
2133 	}
2134 
2135 	/* Configure LCD from extended configuration region. */
2136 
2137 	/* cnf_base_addr is in DWORD */
2138 	word_addr = (u16)(cnf_base_addr << 1);
2139 
2140 	for (i = 0; i < cnf_size; i++) {
2141 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2142 		if (ret_val)
2143 			goto release;
2144 
2145 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2146 					 1, &reg_addr);
2147 		if (ret_val)
2148 			goto release;
2149 
2150 		/* Save off the PHY page for future writes. */
2151 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2152 			phy_page = reg_data;
2153 			continue;
2154 		}
2155 
2156 		reg_addr &= PHY_REG_MASK;
2157 		reg_addr |= phy_page;
2158 
2159 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2160 		if (ret_val)
2161 			goto release;
2162 	}
2163 
2164 release:
2165 	hw->phy.ops.release(hw);
2166 	return ret_val;
2167 }
2168 
2169 /**
2170  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2171  *  @hw:   pointer to the HW structure
2172  *  @link: link up bool flag
2173  *
2174  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2175  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2176  *  If link is down, the function will restore the default K1 setting located
2177  *  in the NVM.
2178  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2179 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2180 {
2181 	s32 ret_val = 0;
2182 	u16 status_reg = 0;
2183 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2184 
2185 	if (hw->mac.type != e1000_pchlan)
2186 		return 0;
2187 
2188 	/* Wrap the whole flow with the sw flag */
2189 	ret_val = hw->phy.ops.acquire(hw);
2190 	if (ret_val)
2191 		return ret_val;
2192 
2193 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2194 	if (link) {
2195 		if (hw->phy.type == e1000_phy_82578) {
2196 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2197 						  &status_reg);
2198 			if (ret_val)
2199 				goto release;
2200 
2201 			status_reg &= (BM_CS_STATUS_LINK_UP |
2202 				       BM_CS_STATUS_RESOLVED |
2203 				       BM_CS_STATUS_SPEED_MASK);
2204 
2205 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2206 					   BM_CS_STATUS_RESOLVED |
2207 					   BM_CS_STATUS_SPEED_1000))
2208 				k1_enable = false;
2209 		}
2210 
2211 		if (hw->phy.type == e1000_phy_82577) {
2212 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2213 			if (ret_val)
2214 				goto release;
2215 
2216 			status_reg &= (HV_M_STATUS_LINK_UP |
2217 				       HV_M_STATUS_AUTONEG_COMPLETE |
2218 				       HV_M_STATUS_SPEED_MASK);
2219 
2220 			if (status_reg == (HV_M_STATUS_LINK_UP |
2221 					   HV_M_STATUS_AUTONEG_COMPLETE |
2222 					   HV_M_STATUS_SPEED_1000))
2223 				k1_enable = false;
2224 		}
2225 
2226 		/* Link stall fix for link up */
2227 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2228 		if (ret_val)
2229 			goto release;
2230 
2231 	} else {
2232 		/* Link stall fix for link down */
2233 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2234 		if (ret_val)
2235 			goto release;
2236 	}
2237 
2238 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2239 
2240 release:
2241 	hw->phy.ops.release(hw);
2242 
2243 	return ret_val;
2244 }
2245 
2246 /**
2247  *  e1000_configure_k1_ich8lan - Configure K1 power state
2248  *  @hw: pointer to the HW structure
2249  *  @enable: K1 state to configure
2250  *
2251  *  Configure the K1 power state based on the provided parameter.
2252  *  Assumes semaphore already acquired.
2253  *
2254  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2255  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2256 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2257 {
2258 	s32 ret_val;
2259 	u32 ctrl_reg = 0;
2260 	u32 ctrl_ext = 0;
2261 	u32 reg = 0;
2262 	u16 kmrn_reg = 0;
2263 
2264 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2265 					      &kmrn_reg);
2266 	if (ret_val)
2267 		return ret_val;
2268 
2269 	if (k1_enable)
2270 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2271 	else
2272 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2273 
2274 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2275 					       kmrn_reg);
2276 	if (ret_val)
2277 		return ret_val;
2278 
2279 	usleep_range(20, 40);
2280 	ctrl_ext = er32(CTRL_EXT);
2281 	ctrl_reg = er32(CTRL);
2282 
2283 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2284 	reg |= E1000_CTRL_FRCSPD;
2285 	ew32(CTRL, reg);
2286 
2287 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2288 	e1e_flush();
2289 	usleep_range(20, 40);
2290 	ew32(CTRL, ctrl_reg);
2291 	ew32(CTRL_EXT, ctrl_ext);
2292 	e1e_flush();
2293 	usleep_range(20, 40);
2294 
2295 	return 0;
2296 }
2297 
2298 /**
2299  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2300  *  @hw:       pointer to the HW structure
2301  *  @d0_state: boolean if entering d0 or d3 device state
2302  *
2303  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2304  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2305  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2306  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2307 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2308 {
2309 	s32 ret_val = 0;
2310 	u32 mac_reg;
2311 	u16 oem_reg;
2312 
2313 	if (hw->mac.type < e1000_pchlan)
2314 		return ret_val;
2315 
2316 	ret_val = hw->phy.ops.acquire(hw);
2317 	if (ret_val)
2318 		return ret_val;
2319 
2320 	if (hw->mac.type == e1000_pchlan) {
2321 		mac_reg = er32(EXTCNF_CTRL);
2322 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2323 			goto release;
2324 	}
2325 
2326 	mac_reg = er32(FEXTNVM);
2327 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2328 		goto release;
2329 
2330 	mac_reg = er32(PHY_CTRL);
2331 
2332 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2333 	if (ret_val)
2334 		goto release;
2335 
2336 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2337 
2338 	if (d0_state) {
2339 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2340 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2341 
2342 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2343 			oem_reg |= HV_OEM_BITS_LPLU;
2344 	} else {
2345 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2346 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2347 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2348 
2349 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2350 			       E1000_PHY_CTRL_NOND0A_LPLU))
2351 			oem_reg |= HV_OEM_BITS_LPLU;
2352 	}
2353 
2354 	/* Set Restart auto-neg to activate the bits */
2355 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2356 	    !hw->phy.ops.check_reset_block(hw))
2357 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2358 
2359 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2360 
2361 release:
2362 	hw->phy.ops.release(hw);
2363 
2364 	return ret_val;
2365 }
2366 
2367 /**
2368  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2369  *  @hw:   pointer to the HW structure
2370  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2371 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2372 {
2373 	s32 ret_val;
2374 	u16 data;
2375 
2376 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2377 	if (ret_val)
2378 		return ret_val;
2379 
2380 	data |= HV_KMRN_MDIO_SLOW;
2381 
2382 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2383 
2384 	return ret_val;
2385 }
2386 
2387 /**
2388  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2389  *  done after every PHY reset.
2390  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2391 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2392 {
2393 	s32 ret_val = 0;
2394 	u16 phy_data;
2395 
2396 	if (hw->mac.type != e1000_pchlan)
2397 		return 0;
2398 
2399 	/* Set MDIO slow mode before any other MDIO access */
2400 	if (hw->phy.type == e1000_phy_82577) {
2401 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2402 		if (ret_val)
2403 			return ret_val;
2404 	}
2405 
2406 	if (((hw->phy.type == e1000_phy_82577) &&
2407 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2408 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2409 		/* Disable generation of early preamble */
2410 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2411 		if (ret_val)
2412 			return ret_val;
2413 
2414 		/* Preamble tuning for SSC */
2415 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2416 		if (ret_val)
2417 			return ret_val;
2418 	}
2419 
2420 	if (hw->phy.type == e1000_phy_82578) {
2421 		/* Return registers to default by doing a soft reset then
2422 		 * writing 0x3140 to the control register.
2423 		 */
2424 		if (hw->phy.revision < 2) {
2425 			e1000e_phy_sw_reset(hw);
2426 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2427 		}
2428 	}
2429 
2430 	/* Select page 0 */
2431 	ret_val = hw->phy.ops.acquire(hw);
2432 	if (ret_val)
2433 		return ret_val;
2434 
2435 	hw->phy.addr = 1;
2436 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2437 	hw->phy.ops.release(hw);
2438 	if (ret_val)
2439 		return ret_val;
2440 
2441 	/* Configure the K1 Si workaround during phy reset assuming there is
2442 	 * link so that it disables K1 if link is in 1Gbps.
2443 	 */
2444 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2445 	if (ret_val)
2446 		return ret_val;
2447 
2448 	/* Workaround for link disconnects on a busy hub in half duplex */
2449 	ret_val = hw->phy.ops.acquire(hw);
2450 	if (ret_val)
2451 		return ret_val;
2452 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2453 	if (ret_val)
2454 		goto release;
2455 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2456 	if (ret_val)
2457 		goto release;
2458 
2459 	/* set MSE higher to enable link to stay up when noise is high */
2460 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2461 release:
2462 	hw->phy.ops.release(hw);
2463 
2464 	return ret_val;
2465 }
2466 
2467 /**
2468  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2469  *  @hw:   pointer to the HW structure
2470  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2471 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2472 {
2473 	u32 mac_reg;
2474 	u16 i, phy_reg = 0;
2475 	s32 ret_val;
2476 
2477 	ret_val = hw->phy.ops.acquire(hw);
2478 	if (ret_val)
2479 		return;
2480 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2481 	if (ret_val)
2482 		goto release;
2483 
2484 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2485 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2486 		mac_reg = er32(RAL(i));
2487 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2488 					   (u16)(mac_reg & 0xFFFF));
2489 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2490 					   (u16)((mac_reg >> 16) & 0xFFFF));
2491 
2492 		mac_reg = er32(RAH(i));
2493 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2494 					   (u16)(mac_reg & 0xFFFF));
2495 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2496 					   (u16)((mac_reg & E1000_RAH_AV)
2497 						 >> 16));
2498 	}
2499 
2500 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501 
2502 release:
2503 	hw->phy.ops.release(hw);
2504 }
2505 
2506 /**
2507  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2508  *  with 82579 PHY
2509  *  @hw: pointer to the HW structure
2510  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2511  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2512 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2513 {
2514 	s32 ret_val = 0;
2515 	u16 phy_reg, data;
2516 	u32 mac_reg;
2517 	u16 i;
2518 
2519 	if (hw->mac.type < e1000_pch2lan)
2520 		return 0;
2521 
2522 	/* disable Rx path while enabling/disabling workaround */
2523 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2524 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2525 	if (ret_val)
2526 		return ret_val;
2527 
2528 	if (enable) {
2529 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2530 		 * SHRAL/H) and initial CRC values to the MAC
2531 		 */
2532 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2533 			u8 mac_addr[ETH_ALEN] = { 0 };
2534 			u32 addr_high, addr_low;
2535 
2536 			addr_high = er32(RAH(i));
2537 			if (!(addr_high & E1000_RAH_AV))
2538 				continue;
2539 			addr_low = er32(RAL(i));
2540 			mac_addr[0] = (addr_low & 0xFF);
2541 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2542 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2543 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2544 			mac_addr[4] = (addr_high & 0xFF);
2545 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2546 
2547 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2548 		}
2549 
2550 		/* Write Rx addresses to the PHY */
2551 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2552 
2553 		/* Enable jumbo frame workaround in the MAC */
2554 		mac_reg = er32(FFLT_DBG);
2555 		mac_reg &= ~(1 << 14);
2556 		mac_reg |= (7 << 15);
2557 		ew32(FFLT_DBG, mac_reg);
2558 
2559 		mac_reg = er32(RCTL);
2560 		mac_reg |= E1000_RCTL_SECRC;
2561 		ew32(RCTL, mac_reg);
2562 
2563 		ret_val = e1000e_read_kmrn_reg(hw,
2564 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2565 					       &data);
2566 		if (ret_val)
2567 			return ret_val;
2568 		ret_val = e1000e_write_kmrn_reg(hw,
2569 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2570 						data | (1 << 0));
2571 		if (ret_val)
2572 			return ret_val;
2573 		ret_val = e1000e_read_kmrn_reg(hw,
2574 					       E1000_KMRNCTRLSTA_HD_CTRL,
2575 					       &data);
2576 		if (ret_val)
2577 			return ret_val;
2578 		data &= ~(0xF << 8);
2579 		data |= (0xB << 8);
2580 		ret_val = e1000e_write_kmrn_reg(hw,
2581 						E1000_KMRNCTRLSTA_HD_CTRL,
2582 						data);
2583 		if (ret_val)
2584 			return ret_val;
2585 
2586 		/* Enable jumbo frame workaround in the PHY */
2587 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2588 		data &= ~(0x7F << 5);
2589 		data |= (0x37 << 5);
2590 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2591 		if (ret_val)
2592 			return ret_val;
2593 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2594 		data &= ~(1 << 13);
2595 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2596 		if (ret_val)
2597 			return ret_val;
2598 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2599 		data &= ~(0x3FF << 2);
2600 		data |= (E1000_TX_PTR_GAP << 2);
2601 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2602 		if (ret_val)
2603 			return ret_val;
2604 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2605 		if (ret_val)
2606 			return ret_val;
2607 		e1e_rphy(hw, HV_PM_CTRL, &data);
2608 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2609 		if (ret_val)
2610 			return ret_val;
2611 	} else {
2612 		/* Write MAC register values back to h/w defaults */
2613 		mac_reg = er32(FFLT_DBG);
2614 		mac_reg &= ~(0xF << 14);
2615 		ew32(FFLT_DBG, mac_reg);
2616 
2617 		mac_reg = er32(RCTL);
2618 		mac_reg &= ~E1000_RCTL_SECRC;
2619 		ew32(RCTL, mac_reg);
2620 
2621 		ret_val = e1000e_read_kmrn_reg(hw,
2622 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2623 					       &data);
2624 		if (ret_val)
2625 			return ret_val;
2626 		ret_val = e1000e_write_kmrn_reg(hw,
2627 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2628 						data & ~(1 << 0));
2629 		if (ret_val)
2630 			return ret_val;
2631 		ret_val = e1000e_read_kmrn_reg(hw,
2632 					       E1000_KMRNCTRLSTA_HD_CTRL,
2633 					       &data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		data &= ~(0xF << 8);
2637 		data |= (0xB << 8);
2638 		ret_val = e1000e_write_kmrn_reg(hw,
2639 						E1000_KMRNCTRLSTA_HD_CTRL,
2640 						data);
2641 		if (ret_val)
2642 			return ret_val;
2643 
2644 		/* Write PHY register values back to h/w defaults */
2645 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2646 		data &= ~(0x7F << 5);
2647 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2648 		if (ret_val)
2649 			return ret_val;
2650 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2651 		data |= (1 << 13);
2652 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2653 		if (ret_val)
2654 			return ret_val;
2655 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2656 		data &= ~(0x3FF << 2);
2657 		data |= (0x8 << 2);
2658 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2659 		if (ret_val)
2660 			return ret_val;
2661 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2662 		if (ret_val)
2663 			return ret_val;
2664 		e1e_rphy(hw, HV_PM_CTRL, &data);
2665 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2666 		if (ret_val)
2667 			return ret_val;
2668 	}
2669 
2670 	/* re-enable Rx path after enabling/disabling workaround */
2671 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2672 }
2673 
2674 /**
2675  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2676  *  done after every PHY reset.
2677  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2678 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2679 {
2680 	s32 ret_val = 0;
2681 
2682 	if (hw->mac.type != e1000_pch2lan)
2683 		return 0;
2684 
2685 	/* Set MDIO slow mode before any other MDIO access */
2686 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2687 	if (ret_val)
2688 		return ret_val;
2689 
2690 	ret_val = hw->phy.ops.acquire(hw);
2691 	if (ret_val)
2692 		return ret_val;
2693 	/* set MSE higher to enable link to stay up when noise is high */
2694 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2695 	if (ret_val)
2696 		goto release;
2697 	/* drop link after 5 times MSE threshold was reached */
2698 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2699 release:
2700 	hw->phy.ops.release(hw);
2701 
2702 	return ret_val;
2703 }
2704 
2705 /**
2706  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2707  *  @hw:   pointer to the HW structure
2708  *
2709  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2710  *  Disable K1 in 1000Mbps and 100Mbps
2711  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2712 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2713 {
2714 	s32 ret_val = 0;
2715 	u16 status_reg = 0;
2716 
2717 	if (hw->mac.type != e1000_pch2lan)
2718 		return 0;
2719 
2720 	/* Set K1 beacon duration based on 10Mbs speed */
2721 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2722 	if (ret_val)
2723 		return ret_val;
2724 
2725 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2726 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2727 		if (status_reg &
2728 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2729 			u16 pm_phy_reg;
2730 
2731 			/* LV 1G/100 Packet drop issue wa  */
2732 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2733 			if (ret_val)
2734 				return ret_val;
2735 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2736 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2737 			if (ret_val)
2738 				return ret_val;
2739 		} else {
2740 			u32 mac_reg;
2741 
2742 			mac_reg = er32(FEXTNVM4);
2743 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2744 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2745 			ew32(FEXTNVM4, mac_reg);
2746 		}
2747 	}
2748 
2749 	return ret_val;
2750 }
2751 
2752 /**
2753  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2754  *  @hw:   pointer to the HW structure
2755  *  @gate: boolean set to true to gate, false to ungate
2756  *
2757  *  Gate/ungate the automatic PHY configuration via hardware; perform
2758  *  the configuration via software instead.
2759  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2760 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2761 {
2762 	u32 extcnf_ctrl;
2763 
2764 	if (hw->mac.type < e1000_pch2lan)
2765 		return;
2766 
2767 	extcnf_ctrl = er32(EXTCNF_CTRL);
2768 
2769 	if (gate)
2770 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2771 	else
2772 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2773 
2774 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2775 }
2776 
2777 /**
2778  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2779  *  @hw: pointer to the HW structure
2780  *
2781  *  Check the appropriate indication the MAC has finished configuring the
2782  *  PHY after a software reset.
2783  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2784 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2785 {
2786 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2787 
2788 	/* Wait for basic configuration completes before proceeding */
2789 	do {
2790 		data = er32(STATUS);
2791 		data &= E1000_STATUS_LAN_INIT_DONE;
2792 		usleep_range(100, 200);
2793 	} while ((!data) && --loop);
2794 
2795 	/* If basic configuration is incomplete before the above loop
2796 	 * count reaches 0, loading the configuration from NVM will
2797 	 * leave the PHY in a bad state possibly resulting in no link.
2798 	 */
2799 	if (loop == 0)
2800 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2801 
2802 	/* Clear the Init Done bit for the next init event */
2803 	data = er32(STATUS);
2804 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2805 	ew32(STATUS, data);
2806 }
2807 
2808 /**
2809  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2810  *  @hw: pointer to the HW structure
2811  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2812 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2813 {
2814 	s32 ret_val = 0;
2815 	u16 reg;
2816 
2817 	if (hw->phy.ops.check_reset_block(hw))
2818 		return 0;
2819 
2820 	/* Allow time for h/w to get to quiescent state after reset */
2821 	usleep_range(10000, 20000);
2822 
2823 	/* Perform any necessary post-reset workarounds */
2824 	switch (hw->mac.type) {
2825 	case e1000_pchlan:
2826 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2827 		if (ret_val)
2828 			return ret_val;
2829 		break;
2830 	case e1000_pch2lan:
2831 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2832 		if (ret_val)
2833 			return ret_val;
2834 		break;
2835 	default:
2836 		break;
2837 	}
2838 
2839 	/* Clear the host wakeup bit after lcd reset */
2840 	if (hw->mac.type >= e1000_pchlan) {
2841 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2842 		reg &= ~BM_WUC_HOST_WU_BIT;
2843 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2844 	}
2845 
2846 	/* Configure the LCD with the extended configuration region in NVM */
2847 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2848 	if (ret_val)
2849 		return ret_val;
2850 
2851 	/* Configure the LCD with the OEM bits in NVM */
2852 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2853 
2854 	if (hw->mac.type == e1000_pch2lan) {
2855 		/* Ungate automatic PHY configuration on non-managed 82579 */
2856 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2857 			usleep_range(10000, 20000);
2858 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2859 		}
2860 
2861 		/* Set EEE LPI Update Timer to 200usec */
2862 		ret_val = hw->phy.ops.acquire(hw);
2863 		if (ret_val)
2864 			return ret_val;
2865 		ret_val = e1000_write_emi_reg_locked(hw,
2866 						     I82579_LPI_UPDATE_TIMER,
2867 						     0x1387);
2868 		hw->phy.ops.release(hw);
2869 	}
2870 
2871 	return ret_val;
2872 }
2873 
2874 /**
2875  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2876  *  @hw: pointer to the HW structure
2877  *
2878  *  Resets the PHY
2879  *  This is a function pointer entry point called by drivers
2880  *  or other shared routines.
2881  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2882 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2883 {
2884 	s32 ret_val = 0;
2885 
2886 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2887 	if ((hw->mac.type == e1000_pch2lan) &&
2888 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2889 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2890 
2891 	ret_val = e1000e_phy_hw_reset_generic(hw);
2892 	if (ret_val)
2893 		return ret_val;
2894 
2895 	return e1000_post_phy_reset_ich8lan(hw);
2896 }
2897 
2898 /**
2899  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2900  *  @hw: pointer to the HW structure
2901  *  @active: true to enable LPLU, false to disable
2902  *
2903  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2904  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2905  *  the phy speed. This function will manually set the LPLU bit and restart
2906  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2907  *  since it configures the same bit.
2908  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2909 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2910 {
2911 	s32 ret_val;
2912 	u16 oem_reg;
2913 
2914 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2915 	if (ret_val)
2916 		return ret_val;
2917 
2918 	if (active)
2919 		oem_reg |= HV_OEM_BITS_LPLU;
2920 	else
2921 		oem_reg &= ~HV_OEM_BITS_LPLU;
2922 
2923 	if (!hw->phy.ops.check_reset_block(hw))
2924 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2925 
2926 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2927 }
2928 
2929 /**
2930  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2931  *  @hw: pointer to the HW structure
2932  *  @active: true to enable LPLU, false to disable
2933  *
2934  *  Sets the LPLU D0 state according to the active flag.  When
2935  *  activating LPLU this function also disables smart speed
2936  *  and vice versa.  LPLU will not be activated unless the
2937  *  device autonegotiation advertisement meets standards of
2938  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2939  *  This is a function pointer entry point only called by
2940  *  PHY setup routines.
2941  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2942 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2943 {
2944 	struct e1000_phy_info *phy = &hw->phy;
2945 	u32 phy_ctrl;
2946 	s32 ret_val = 0;
2947 	u16 data;
2948 
2949 	if (phy->type == e1000_phy_ife)
2950 		return 0;
2951 
2952 	phy_ctrl = er32(PHY_CTRL);
2953 
2954 	if (active) {
2955 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2956 		ew32(PHY_CTRL, phy_ctrl);
2957 
2958 		if (phy->type != e1000_phy_igp_3)
2959 			return 0;
2960 
2961 		/* Call gig speed drop workaround on LPLU before accessing
2962 		 * any PHY registers
2963 		 */
2964 		if (hw->mac.type == e1000_ich8lan)
2965 			e1000e_gig_downshift_workaround_ich8lan(hw);
2966 
2967 		/* When LPLU is enabled, we should disable SmartSpeed */
2968 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2969 		if (ret_val)
2970 			return ret_val;
2971 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2972 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2973 		if (ret_val)
2974 			return ret_val;
2975 	} else {
2976 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2977 		ew32(PHY_CTRL, phy_ctrl);
2978 
2979 		if (phy->type != e1000_phy_igp_3)
2980 			return 0;
2981 
2982 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2983 		 * during Dx states where the power conservation is most
2984 		 * important.  During driver activity we should enable
2985 		 * SmartSpeed, so performance is maintained.
2986 		 */
2987 		if (phy->smart_speed == e1000_smart_speed_on) {
2988 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989 					   &data);
2990 			if (ret_val)
2991 				return ret_val;
2992 
2993 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2994 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2995 					   data);
2996 			if (ret_val)
2997 				return ret_val;
2998 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2999 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3000 					   &data);
3001 			if (ret_val)
3002 				return ret_val;
3003 
3004 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3005 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3006 					   data);
3007 			if (ret_val)
3008 				return ret_val;
3009 		}
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3017  *  @hw: pointer to the HW structure
3018  *  @active: true to enable LPLU, false to disable
3019  *
3020  *  Sets the LPLU D3 state according to the active flag.  When
3021  *  activating LPLU this function also disables smart speed
3022  *  and vice versa.  LPLU will not be activated unless the
3023  *  device autonegotiation advertisement meets standards of
3024  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3025  *  This is a function pointer entry point only called by
3026  *  PHY setup routines.
3027  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3028 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029 {
3030 	struct e1000_phy_info *phy = &hw->phy;
3031 	u32 phy_ctrl;
3032 	s32 ret_val = 0;
3033 	u16 data;
3034 
3035 	phy_ctrl = er32(PHY_CTRL);
3036 
3037 	if (!active) {
3038 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3039 		ew32(PHY_CTRL, phy_ctrl);
3040 
3041 		if (phy->type != e1000_phy_igp_3)
3042 			return 0;
3043 
3044 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3045 		 * during Dx states where the power conservation is most
3046 		 * important.  During driver activity we should enable
3047 		 * SmartSpeed, so performance is maintained.
3048 		 */
3049 		if (phy->smart_speed == e1000_smart_speed_on) {
3050 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051 					   &data);
3052 			if (ret_val)
3053 				return ret_val;
3054 
3055 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3056 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3057 					   data);
3058 			if (ret_val)
3059 				return ret_val;
3060 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3061 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062 					   &data);
3063 			if (ret_val)
3064 				return ret_val;
3065 
3066 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3067 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3068 					   data);
3069 			if (ret_val)
3070 				return ret_val;
3071 		}
3072 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3073 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3074 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3075 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3076 		ew32(PHY_CTRL, phy_ctrl);
3077 
3078 		if (phy->type != e1000_phy_igp_3)
3079 			return 0;
3080 
3081 		/* Call gig speed drop workaround on LPLU before accessing
3082 		 * any PHY registers
3083 		 */
3084 		if (hw->mac.type == e1000_ich8lan)
3085 			e1000e_gig_downshift_workaround_ich8lan(hw);
3086 
3087 		/* When LPLU is enabled, we should disable SmartSpeed */
3088 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3089 		if (ret_val)
3090 			return ret_val;
3091 
3092 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3093 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3094 	}
3095 
3096 	return ret_val;
3097 }
3098 
3099 /**
3100  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3101  *  @hw: pointer to the HW structure
3102  *  @bank:  pointer to the variable that returns the active bank
3103  *
3104  *  Reads signature byte from the NVM using the flash access registers.
3105  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3106  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3107 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3108 {
3109 	u32 eecd;
3110 	struct e1000_nvm_info *nvm = &hw->nvm;
3111 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3112 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3113 	u8 sig_byte = 0;
3114 	s32 ret_val;
3115 
3116 	switch (hw->mac.type) {
3117 		/* In SPT, read from the CTRL_EXT reg instead of
3118 		 * accessing the sector valid bits from the nvm
3119 		 */
3120 	case e1000_pch_spt:
3121 		*bank = er32(CTRL_EXT)
3122 		    & E1000_CTRL_EXT_NVMVS;
3123 		if ((*bank == 0) || (*bank == 1)) {
3124 			e_dbg("ERROR: No valid NVM bank present\n");
3125 			return -E1000_ERR_NVM;
3126 		} else {
3127 			*bank = *bank - 2;
3128 			return 0;
3129 		}
3130 		break;
3131 	case e1000_ich8lan:
3132 	case e1000_ich9lan:
3133 		eecd = er32(EECD);
3134 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3135 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3136 			if (eecd & E1000_EECD_SEC1VAL)
3137 				*bank = 1;
3138 			else
3139 				*bank = 0;
3140 
3141 			return 0;
3142 		}
3143 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3144 		/* fall-thru */
3145 	default:
3146 		/* set bank to 0 in case flash read fails */
3147 		*bank = 0;
3148 
3149 		/* Check bank 0 */
3150 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3151 							&sig_byte);
3152 		if (ret_val)
3153 			return ret_val;
3154 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3155 		    E1000_ICH_NVM_SIG_VALUE) {
3156 			*bank = 0;
3157 			return 0;
3158 		}
3159 
3160 		/* Check bank 1 */
3161 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3162 							bank1_offset,
3163 							&sig_byte);
3164 		if (ret_val)
3165 			return ret_val;
3166 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3167 		    E1000_ICH_NVM_SIG_VALUE) {
3168 			*bank = 1;
3169 			return 0;
3170 		}
3171 
3172 		e_dbg("ERROR: No valid NVM bank present\n");
3173 		return -E1000_ERR_NVM;
3174 	}
3175 }
3176 
3177 /**
3178  *  e1000_read_nvm_spt - NVM access for SPT
3179  *  @hw: pointer to the HW structure
3180  *  @offset: The offset (in bytes) of the word(s) to read.
3181  *  @words: Size of data to read in words.
3182  *  @data: pointer to the word(s) to read at offset.
3183  *
3184  *  Reads a word(s) from the NVM
3185  **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3186 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3187 			      u16 *data)
3188 {
3189 	struct e1000_nvm_info *nvm = &hw->nvm;
3190 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3191 	u32 act_offset;
3192 	s32 ret_val = 0;
3193 	u32 bank = 0;
3194 	u32 dword = 0;
3195 	u16 offset_to_read;
3196 	u16 i;
3197 
3198 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3199 	    (words == 0)) {
3200 		e_dbg("nvm parameter(s) out of bounds\n");
3201 		ret_val = -E1000_ERR_NVM;
3202 		goto out;
3203 	}
3204 
3205 	nvm->ops.acquire(hw);
3206 
3207 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3208 	if (ret_val) {
3209 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3210 		bank = 0;
3211 	}
3212 
3213 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3214 	act_offset += offset;
3215 
3216 	ret_val = 0;
3217 
3218 	for (i = 0; i < words; i += 2) {
3219 		if (words - i == 1) {
3220 			if (dev_spec->shadow_ram[offset + i].modified) {
3221 				data[i] =
3222 				    dev_spec->shadow_ram[offset + i].value;
3223 			} else {
3224 				offset_to_read = act_offset + i -
3225 				    ((act_offset + i) % 2);
3226 				ret_val =
3227 				  e1000_read_flash_dword_ich8lan(hw,
3228 								 offset_to_read,
3229 								 &dword);
3230 				if (ret_val)
3231 					break;
3232 				if ((act_offset + i) % 2 == 0)
3233 					data[i] = (u16)(dword & 0xFFFF);
3234 				else
3235 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3236 			}
3237 		} else {
3238 			offset_to_read = act_offset + i;
3239 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3240 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3241 				ret_val =
3242 				  e1000_read_flash_dword_ich8lan(hw,
3243 								 offset_to_read,
3244 								 &dword);
3245 				if (ret_val)
3246 					break;
3247 			}
3248 			if (dev_spec->shadow_ram[offset + i].modified)
3249 				data[i] =
3250 				    dev_spec->shadow_ram[offset + i].value;
3251 			else
3252 				data[i] = (u16)(dword & 0xFFFF);
3253 			if (dev_spec->shadow_ram[offset + i].modified)
3254 				data[i + 1] =
3255 				    dev_spec->shadow_ram[offset + i + 1].value;
3256 			else
3257 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3258 		}
3259 	}
3260 
3261 	nvm->ops.release(hw);
3262 
3263 out:
3264 	if (ret_val)
3265 		e_dbg("NVM read error: %d\n", ret_val);
3266 
3267 	return ret_val;
3268 }
3269 
3270 /**
3271  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3272  *  @hw: pointer to the HW structure
3273  *  @offset: The offset (in bytes) of the word(s) to read.
3274  *  @words: Size of data to read in words
3275  *  @data: Pointer to the word(s) to read at offset.
3276  *
3277  *  Reads a word(s) from the NVM using the flash access registers.
3278  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3279 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3280 				  u16 *data)
3281 {
3282 	struct e1000_nvm_info *nvm = &hw->nvm;
3283 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3284 	u32 act_offset;
3285 	s32 ret_val = 0;
3286 	u32 bank = 0;
3287 	u16 i, word;
3288 
3289 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3290 	    (words == 0)) {
3291 		e_dbg("nvm parameter(s) out of bounds\n");
3292 		ret_val = -E1000_ERR_NVM;
3293 		goto out;
3294 	}
3295 
3296 	nvm->ops.acquire(hw);
3297 
3298 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3299 	if (ret_val) {
3300 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3301 		bank = 0;
3302 	}
3303 
3304 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3305 	act_offset += offset;
3306 
3307 	ret_val = 0;
3308 	for (i = 0; i < words; i++) {
3309 		if (dev_spec->shadow_ram[offset + i].modified) {
3310 			data[i] = dev_spec->shadow_ram[offset + i].value;
3311 		} else {
3312 			ret_val = e1000_read_flash_word_ich8lan(hw,
3313 								act_offset + i,
3314 								&word);
3315 			if (ret_val)
3316 				break;
3317 			data[i] = word;
3318 		}
3319 	}
3320 
3321 	nvm->ops.release(hw);
3322 
3323 out:
3324 	if (ret_val)
3325 		e_dbg("NVM read error: %d\n", ret_val);
3326 
3327 	return ret_val;
3328 }
3329 
3330 /**
3331  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3332  *  @hw: pointer to the HW structure
3333  *
3334  *  This function does initial flash setup so that a new read/write/erase cycle
3335  *  can be started.
3336  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3337 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3338 {
3339 	union ich8_hws_flash_status hsfsts;
3340 	s32 ret_val = -E1000_ERR_NVM;
3341 
3342 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3343 
3344 	/* Check if the flash descriptor is valid */
3345 	if (!hsfsts.hsf_status.fldesvalid) {
3346 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3347 		return -E1000_ERR_NVM;
3348 	}
3349 
3350 	/* Clear FCERR and DAEL in hw status by writing 1 */
3351 	hsfsts.hsf_status.flcerr = 1;
3352 	hsfsts.hsf_status.dael = 1;
3353 	if (hw->mac.type == e1000_pch_spt)
3354 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3355 	else
3356 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3357 
3358 	/* Either we should have a hardware SPI cycle in progress
3359 	 * bit to check against, in order to start a new cycle or
3360 	 * FDONE bit should be changed in the hardware so that it
3361 	 * is 1 after hardware reset, which can then be used as an
3362 	 * indication whether a cycle is in progress or has been
3363 	 * completed.
3364 	 */
3365 
3366 	if (!hsfsts.hsf_status.flcinprog) {
3367 		/* There is no cycle running at present,
3368 		 * so we can start a cycle.
3369 		 * Begin by setting Flash Cycle Done.
3370 		 */
3371 		hsfsts.hsf_status.flcdone = 1;
3372 		if (hw->mac.type == e1000_pch_spt)
3373 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3374 		else
3375 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3376 		ret_val = 0;
3377 	} else {
3378 		s32 i;
3379 
3380 		/* Otherwise poll for sometime so the current
3381 		 * cycle has a chance to end before giving up.
3382 		 */
3383 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3385 			if (!hsfsts.hsf_status.flcinprog) {
3386 				ret_val = 0;
3387 				break;
3388 			}
3389 			udelay(1);
3390 		}
3391 		if (!ret_val) {
3392 			/* Successful in waiting for previous cycle to timeout,
3393 			 * now set the Flash Cycle Done.
3394 			 */
3395 			hsfsts.hsf_status.flcdone = 1;
3396 			if (hw->mac.type == e1000_pch_spt)
3397 				ew32flash(ICH_FLASH_HSFSTS,
3398 					  hsfsts.regval & 0xFFFF);
3399 			else
3400 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3401 		} else {
3402 			e_dbg("Flash controller busy, cannot get access\n");
3403 		}
3404 	}
3405 
3406 	return ret_val;
3407 }
3408 
3409 /**
3410  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3411  *  @hw: pointer to the HW structure
3412  *  @timeout: maximum time to wait for completion
3413  *
3414  *  This function starts a flash cycle and waits for its completion.
3415  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3416 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3417 {
3418 	union ich8_hws_flash_ctrl hsflctl;
3419 	union ich8_hws_flash_status hsfsts;
3420 	u32 i = 0;
3421 
3422 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423 	if (hw->mac.type == e1000_pch_spt)
3424 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3425 	else
3426 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3427 	hsflctl.hsf_ctrl.flcgo = 1;
3428 
3429 	if (hw->mac.type == e1000_pch_spt)
3430 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3431 	else
3432 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3433 
3434 	/* wait till FDONE bit is set to 1 */
3435 	do {
3436 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3437 		if (hsfsts.hsf_status.flcdone)
3438 			break;
3439 		udelay(1);
3440 	} while (i++ < timeout);
3441 
3442 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3443 		return 0;
3444 
3445 	return -E1000_ERR_NVM;
3446 }
3447 
3448 /**
3449  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3450  *  @hw: pointer to the HW structure
3451  *  @offset: offset to data location
3452  *  @data: pointer to the location for storing the data
3453  *
3454  *  Reads the flash dword at offset into data.  Offset is converted
3455  *  to bytes before read.
3456  **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3457 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3458 					  u32 *data)
3459 {
3460 	/* Must convert word offset into bytes. */
3461 	offset <<= 1;
3462 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3463 }
3464 
3465 /**
3466  *  e1000_read_flash_word_ich8lan - Read word from flash
3467  *  @hw: pointer to the HW structure
3468  *  @offset: offset to data location
3469  *  @data: pointer to the location for storing the data
3470  *
3471  *  Reads the flash word at offset into data.  Offset is converted
3472  *  to bytes before read.
3473  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3474 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3475 					 u16 *data)
3476 {
3477 	/* Must convert offset into bytes. */
3478 	offset <<= 1;
3479 
3480 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3481 }
3482 
3483 /**
3484  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3485  *  @hw: pointer to the HW structure
3486  *  @offset: The offset of the byte to read.
3487  *  @data: Pointer to a byte to store the value read.
3488  *
3489  *  Reads a single byte from the NVM using the flash access registers.
3490  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3491 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3492 					 u8 *data)
3493 {
3494 	s32 ret_val;
3495 	u16 word = 0;
3496 
3497 	/* In SPT, only 32 bits access is supported,
3498 	 * so this function should not be called.
3499 	 */
3500 	if (hw->mac.type == e1000_pch_spt)
3501 		return -E1000_ERR_NVM;
3502 	else
3503 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3504 
3505 	if (ret_val)
3506 		return ret_val;
3507 
3508 	*data = (u8)word;
3509 
3510 	return 0;
3511 }
3512 
3513 /**
3514  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3515  *  @hw: pointer to the HW structure
3516  *  @offset: The offset (in bytes) of the byte or word to read.
3517  *  @size: Size of data to read, 1=byte 2=word
3518  *  @data: Pointer to the word to store the value read.
3519  *
3520  *  Reads a byte or word from the NVM using the flash access registers.
3521  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3522 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3523 					 u8 size, u16 *data)
3524 {
3525 	union ich8_hws_flash_status hsfsts;
3526 	union ich8_hws_flash_ctrl hsflctl;
3527 	u32 flash_linear_addr;
3528 	u32 flash_data = 0;
3529 	s32 ret_val = -E1000_ERR_NVM;
3530 	u8 count = 0;
3531 
3532 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3533 		return -E1000_ERR_NVM;
3534 
3535 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3536 			     hw->nvm.flash_base_addr);
3537 
3538 	do {
3539 		udelay(1);
3540 		/* Steps */
3541 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3542 		if (ret_val)
3543 			break;
3544 
3545 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3546 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3547 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3548 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3549 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3550 
3551 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3552 
3553 		ret_val =
3554 		    e1000_flash_cycle_ich8lan(hw,
3555 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3556 
3557 		/* Check if FCERR is set to 1, if set to 1, clear it
3558 		 * and try the whole sequence a few more times, else
3559 		 * read in (shift in) the Flash Data0, the order is
3560 		 * least significant byte first msb to lsb
3561 		 */
3562 		if (!ret_val) {
3563 			flash_data = er32flash(ICH_FLASH_FDATA0);
3564 			if (size == 1)
3565 				*data = (u8)(flash_data & 0x000000FF);
3566 			else if (size == 2)
3567 				*data = (u16)(flash_data & 0x0000FFFF);
3568 			break;
3569 		} else {
3570 			/* If we've gotten here, then things are probably
3571 			 * completely hosed, but if the error condition is
3572 			 * detected, it won't hurt to give it another try...
3573 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3574 			 */
3575 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3576 			if (hsfsts.hsf_status.flcerr) {
3577 				/* Repeat for some time before giving up. */
3578 				continue;
3579 			} else if (!hsfsts.hsf_status.flcdone) {
3580 				e_dbg("Timeout error - flash cycle did not complete.\n");
3581 				break;
3582 			}
3583 		}
3584 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3585 
3586 	return ret_val;
3587 }
3588 
3589 /**
3590  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3591  *  @hw: pointer to the HW structure
3592  *  @offset: The offset (in bytes) of the dword to read.
3593  *  @data: Pointer to the dword to store the value read.
3594  *
3595  *  Reads a byte or word from the NVM using the flash access registers.
3596  **/
3597 
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3598 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3599 					   u32 *data)
3600 {
3601 	union ich8_hws_flash_status hsfsts;
3602 	union ich8_hws_flash_ctrl hsflctl;
3603 	u32 flash_linear_addr;
3604 	s32 ret_val = -E1000_ERR_NVM;
3605 	u8 count = 0;
3606 
3607 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3608 	    hw->mac.type != e1000_pch_spt)
3609 		return -E1000_ERR_NVM;
3610 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3611 			     hw->nvm.flash_base_addr);
3612 
3613 	do {
3614 		udelay(1);
3615 		/* Steps */
3616 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3617 		if (ret_val)
3618 			break;
3619 		/* In SPT, This register is in Lan memory space, not flash.
3620 		 * Therefore, only 32 bit access is supported
3621 		 */
3622 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3623 
3624 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3625 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3626 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3627 		/* In SPT, This register is in Lan memory space, not flash.
3628 		 * Therefore, only 32 bit access is supported
3629 		 */
3630 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3631 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3632 
3633 		ret_val =
3634 		   e1000_flash_cycle_ich8lan(hw,
3635 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3636 
3637 		/* Check if FCERR is set to 1, if set to 1, clear it
3638 		 * and try the whole sequence a few more times, else
3639 		 * read in (shift in) the Flash Data0, the order is
3640 		 * least significant byte first msb to lsb
3641 		 */
3642 		if (!ret_val) {
3643 			*data = er32flash(ICH_FLASH_FDATA0);
3644 			break;
3645 		} else {
3646 			/* If we've gotten here, then things are probably
3647 			 * completely hosed, but if the error condition is
3648 			 * detected, it won't hurt to give it another try...
3649 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3650 			 */
3651 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3652 			if (hsfsts.hsf_status.flcerr) {
3653 				/* Repeat for some time before giving up. */
3654 				continue;
3655 			} else if (!hsfsts.hsf_status.flcdone) {
3656 				e_dbg("Timeout error - flash cycle did not complete.\n");
3657 				break;
3658 			}
3659 		}
3660 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3661 
3662 	return ret_val;
3663 }
3664 
3665 /**
3666  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3667  *  @hw: pointer to the HW structure
3668  *  @offset: The offset (in bytes) of the word(s) to write.
3669  *  @words: Size of data to write in words
3670  *  @data: Pointer to the word(s) to write at offset.
3671  *
3672  *  Writes a byte or word to the NVM using the flash access registers.
3673  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3674 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3675 				   u16 *data)
3676 {
3677 	struct e1000_nvm_info *nvm = &hw->nvm;
3678 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3679 	u16 i;
3680 
3681 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3682 	    (words == 0)) {
3683 		e_dbg("nvm parameter(s) out of bounds\n");
3684 		return -E1000_ERR_NVM;
3685 	}
3686 
3687 	nvm->ops.acquire(hw);
3688 
3689 	for (i = 0; i < words; i++) {
3690 		dev_spec->shadow_ram[offset + i].modified = true;
3691 		dev_spec->shadow_ram[offset + i].value = data[i];
3692 	}
3693 
3694 	nvm->ops.release(hw);
3695 
3696 	return 0;
3697 }
3698 
3699 /**
3700  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3701  *  @hw: pointer to the HW structure
3702  *
3703  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3704  *  which writes the checksum to the shadow ram.  The changes in the shadow
3705  *  ram are then committed to the EEPROM by processing each bank at a time
3706  *  checking for the modified bit and writing only the pending changes.
3707  *  After a successful commit, the shadow ram is cleared and is ready for
3708  *  future writes.
3709  **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3710 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3711 {
3712 	struct e1000_nvm_info *nvm = &hw->nvm;
3713 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3714 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3715 	s32 ret_val;
3716 	u32 dword = 0;
3717 
3718 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3719 	if (ret_val)
3720 		goto out;
3721 
3722 	if (nvm->type != e1000_nvm_flash_sw)
3723 		goto out;
3724 
3725 	nvm->ops.acquire(hw);
3726 
3727 	/* We're writing to the opposite bank so if we're on bank 1,
3728 	 * write to bank 0 etc.  We also need to erase the segment that
3729 	 * is going to be written
3730 	 */
3731 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3732 	if (ret_val) {
3733 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3734 		bank = 0;
3735 	}
3736 
3737 	if (bank == 0) {
3738 		new_bank_offset = nvm->flash_bank_size;
3739 		old_bank_offset = 0;
3740 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3741 		if (ret_val)
3742 			goto release;
3743 	} else {
3744 		old_bank_offset = nvm->flash_bank_size;
3745 		new_bank_offset = 0;
3746 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3747 		if (ret_val)
3748 			goto release;
3749 	}
3750 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3751 		/* Determine whether to write the value stored
3752 		 * in the other NVM bank or a modified value stored
3753 		 * in the shadow RAM
3754 		 */
3755 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3756 							 i + old_bank_offset,
3757 							 &dword);
3758 
3759 		if (dev_spec->shadow_ram[i].modified) {
3760 			dword &= 0xffff0000;
3761 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3762 		}
3763 		if (dev_spec->shadow_ram[i + 1].modified) {
3764 			dword &= 0x0000ffff;
3765 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3766 				  << 16);
3767 		}
3768 		if (ret_val)
3769 			break;
3770 
3771 		/* If the word is 0x13, then make sure the signature bits
3772 		 * (15:14) are 11b until the commit has completed.
3773 		 * This will allow us to write 10b which indicates the
3774 		 * signature is valid.  We want to do this after the write
3775 		 * has completed so that we don't mark the segment valid
3776 		 * while the write is still in progress
3777 		 */
3778 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3779 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3780 
3781 		/* Convert offset to bytes. */
3782 		act_offset = (i + new_bank_offset) << 1;
3783 
3784 		usleep_range(100, 200);
3785 
3786 		/* Write the data to the new bank. Offset in words */
3787 		act_offset = i + new_bank_offset;
3788 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3789 								dword);
3790 		if (ret_val)
3791 			break;
3792 	}
3793 
3794 	/* Don't bother writing the segment valid bits if sector
3795 	 * programming failed.
3796 	 */
3797 	if (ret_val) {
3798 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3799 		e_dbg("Flash commit failed.\n");
3800 		goto release;
3801 	}
3802 
3803 	/* Finally validate the new segment by setting bit 15:14
3804 	 * to 10b in word 0x13 , this can be done without an
3805 	 * erase as well since these bits are 11 to start with
3806 	 * and we need to change bit 14 to 0b
3807 	 */
3808 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3809 
3810 	/*offset in words but we read dword */
3811 	--act_offset;
3812 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3813 
3814 	if (ret_val)
3815 		goto release;
3816 
3817 	dword &= 0xBFFFFFFF;
3818 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3819 
3820 	if (ret_val)
3821 		goto release;
3822 
3823 	/* And invalidate the previously valid segment by setting
3824 	 * its signature word (0x13) high_byte to 0b. This can be
3825 	 * done without an erase because flash erase sets all bits
3826 	 * to 1's. We can write 1's to 0's without an erase
3827 	 */
3828 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3829 
3830 	/* offset in words but we read dword */
3831 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3832 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3833 
3834 	if (ret_val)
3835 		goto release;
3836 
3837 	dword &= 0x00FFFFFF;
3838 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3839 
3840 	if (ret_val)
3841 		goto release;
3842 
3843 	/* Great!  Everything worked, we can now clear the cached entries. */
3844 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3845 		dev_spec->shadow_ram[i].modified = false;
3846 		dev_spec->shadow_ram[i].value = 0xFFFF;
3847 	}
3848 
3849 release:
3850 	nvm->ops.release(hw);
3851 
3852 	/* Reload the EEPROM, or else modifications will not appear
3853 	 * until after the next adapter reset.
3854 	 */
3855 	if (!ret_val) {
3856 		nvm->ops.reload(hw);
3857 		usleep_range(10000, 20000);
3858 	}
3859 
3860 out:
3861 	if (ret_val)
3862 		e_dbg("NVM update error: %d\n", ret_val);
3863 
3864 	return ret_val;
3865 }
3866 
3867 /**
3868  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3869  *  @hw: pointer to the HW structure
3870  *
3871  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3872  *  which writes the checksum to the shadow ram.  The changes in the shadow
3873  *  ram are then committed to the EEPROM by processing each bank at a time
3874  *  checking for the modified bit and writing only the pending changes.
3875  *  After a successful commit, the shadow ram is cleared and is ready for
3876  *  future writes.
3877  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)3878 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3879 {
3880 	struct e1000_nvm_info *nvm = &hw->nvm;
3881 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3882 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3883 	s32 ret_val;
3884 	u16 data = 0;
3885 
3886 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3887 	if (ret_val)
3888 		goto out;
3889 
3890 	if (nvm->type != e1000_nvm_flash_sw)
3891 		goto out;
3892 
3893 	nvm->ops.acquire(hw);
3894 
3895 	/* We're writing to the opposite bank so if we're on bank 1,
3896 	 * write to bank 0 etc.  We also need to erase the segment that
3897 	 * is going to be written
3898 	 */
3899 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3900 	if (ret_val) {
3901 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3902 		bank = 0;
3903 	}
3904 
3905 	if (bank == 0) {
3906 		new_bank_offset = nvm->flash_bank_size;
3907 		old_bank_offset = 0;
3908 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3909 		if (ret_val)
3910 			goto release;
3911 	} else {
3912 		old_bank_offset = nvm->flash_bank_size;
3913 		new_bank_offset = 0;
3914 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3915 		if (ret_val)
3916 			goto release;
3917 	}
3918 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3919 		if (dev_spec->shadow_ram[i].modified) {
3920 			data = dev_spec->shadow_ram[i].value;
3921 		} else {
3922 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3923 								old_bank_offset,
3924 								&data);
3925 			if (ret_val)
3926 				break;
3927 		}
3928 
3929 		/* If the word is 0x13, then make sure the signature bits
3930 		 * (15:14) are 11b until the commit has completed.
3931 		 * This will allow us to write 10b which indicates the
3932 		 * signature is valid.  We want to do this after the write
3933 		 * has completed so that we don't mark the segment valid
3934 		 * while the write is still in progress
3935 		 */
3936 		if (i == E1000_ICH_NVM_SIG_WORD)
3937 			data |= E1000_ICH_NVM_SIG_MASK;
3938 
3939 		/* Convert offset to bytes. */
3940 		act_offset = (i + new_bank_offset) << 1;
3941 
3942 		usleep_range(100, 200);
3943 		/* Write the bytes to the new bank. */
3944 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3945 							       act_offset,
3946 							       (u8)data);
3947 		if (ret_val)
3948 			break;
3949 
3950 		usleep_range(100, 200);
3951 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3952 							       act_offset + 1,
3953 							       (u8)(data >> 8));
3954 		if (ret_val)
3955 			break;
3956 	}
3957 
3958 	/* Don't bother writing the segment valid bits if sector
3959 	 * programming failed.
3960 	 */
3961 	if (ret_val) {
3962 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3963 		e_dbg("Flash commit failed.\n");
3964 		goto release;
3965 	}
3966 
3967 	/* Finally validate the new segment by setting bit 15:14
3968 	 * to 10b in word 0x13 , this can be done without an
3969 	 * erase as well since these bits are 11 to start with
3970 	 * and we need to change bit 14 to 0b
3971 	 */
3972 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3973 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3974 	if (ret_val)
3975 		goto release;
3976 
3977 	data &= 0xBFFF;
3978 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3979 						       act_offset * 2 + 1,
3980 						       (u8)(data >> 8));
3981 	if (ret_val)
3982 		goto release;
3983 
3984 	/* And invalidate the previously valid segment by setting
3985 	 * its signature word (0x13) high_byte to 0b. This can be
3986 	 * done without an erase because flash erase sets all bits
3987 	 * to 1's. We can write 1's to 0's without an erase
3988 	 */
3989 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3990 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3991 	if (ret_val)
3992 		goto release;
3993 
3994 	/* Great!  Everything worked, we can now clear the cached entries. */
3995 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3996 		dev_spec->shadow_ram[i].modified = false;
3997 		dev_spec->shadow_ram[i].value = 0xFFFF;
3998 	}
3999 
4000 release:
4001 	nvm->ops.release(hw);
4002 
4003 	/* Reload the EEPROM, or else modifications will not appear
4004 	 * until after the next adapter reset.
4005 	 */
4006 	if (!ret_val) {
4007 		nvm->ops.reload(hw);
4008 		usleep_range(10000, 20000);
4009 	}
4010 
4011 out:
4012 	if (ret_val)
4013 		e_dbg("NVM update error: %d\n", ret_val);
4014 
4015 	return ret_val;
4016 }
4017 
4018 /**
4019  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4020  *  @hw: pointer to the HW structure
4021  *
4022  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4023  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4024  *  calculated, in which case we need to calculate the checksum and set bit 6.
4025  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4026 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4027 {
4028 	s32 ret_val;
4029 	u16 data;
4030 	u16 word;
4031 	u16 valid_csum_mask;
4032 
4033 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4034 	 * the checksum needs to be fixed.  This bit is an indication that
4035 	 * the NVM was prepared by OEM software and did not calculate
4036 	 * the checksum...a likely scenario.
4037 	 */
4038 	switch (hw->mac.type) {
4039 	case e1000_pch_lpt:
4040 	case e1000_pch_spt:
4041 		word = NVM_COMPAT;
4042 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4043 		break;
4044 	default:
4045 		word = NVM_FUTURE_INIT_WORD1;
4046 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4047 		break;
4048 	}
4049 
4050 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4051 	if (ret_val)
4052 		return ret_val;
4053 
4054 	if (!(data & valid_csum_mask)) {
4055 		data |= valid_csum_mask;
4056 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4057 		if (ret_val)
4058 			return ret_val;
4059 		ret_val = e1000e_update_nvm_checksum(hw);
4060 		if (ret_val)
4061 			return ret_val;
4062 	}
4063 
4064 	return e1000e_validate_nvm_checksum_generic(hw);
4065 }
4066 
4067 /**
4068  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4069  *  @hw: pointer to the HW structure
4070  *
4071  *  To prevent malicious write/erase of the NVM, set it to be read-only
4072  *  so that the hardware ignores all write/erase cycles of the NVM via
4073  *  the flash control registers.  The shadow-ram copy of the NVM will
4074  *  still be updated, however any updates to this copy will not stick
4075  *  across driver reloads.
4076  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4077 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4078 {
4079 	struct e1000_nvm_info *nvm = &hw->nvm;
4080 	union ich8_flash_protected_range pr0;
4081 	union ich8_hws_flash_status hsfsts;
4082 	u32 gfpreg;
4083 
4084 	nvm->ops.acquire(hw);
4085 
4086 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4087 
4088 	/* Write-protect GbE Sector of NVM */
4089 	pr0.regval = er32flash(ICH_FLASH_PR0);
4090 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4091 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4092 	pr0.range.wpe = true;
4093 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4094 
4095 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4096 	 * PR0 to prevent the write-protection from being lifted.
4097 	 * Once FLOCKDN is set, the registers protected by it cannot
4098 	 * be written until FLOCKDN is cleared by a hardware reset.
4099 	 */
4100 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4101 	hsfsts.hsf_status.flockdn = true;
4102 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4103 
4104 	nvm->ops.release(hw);
4105 }
4106 
4107 /**
4108  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4109  *  @hw: pointer to the HW structure
4110  *  @offset: The offset (in bytes) of the byte/word to read.
4111  *  @size: Size of data to read, 1=byte 2=word
4112  *  @data: The byte(s) to write to the NVM.
4113  *
4114  *  Writes one/two bytes to the NVM using the flash access registers.
4115  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4116 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4117 					  u8 size, u16 data)
4118 {
4119 	union ich8_hws_flash_status hsfsts;
4120 	union ich8_hws_flash_ctrl hsflctl;
4121 	u32 flash_linear_addr;
4122 	u32 flash_data = 0;
4123 	s32 ret_val;
4124 	u8 count = 0;
4125 
4126 	if (hw->mac.type == e1000_pch_spt) {
4127 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4128 			return -E1000_ERR_NVM;
4129 	} else {
4130 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4131 			return -E1000_ERR_NVM;
4132 	}
4133 
4134 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4135 			     hw->nvm.flash_base_addr);
4136 
4137 	do {
4138 		udelay(1);
4139 		/* Steps */
4140 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4141 		if (ret_val)
4142 			break;
4143 		/* In SPT, This register is in Lan memory space, not
4144 		 * flash.  Therefore, only 32 bit access is supported
4145 		 */
4146 		if (hw->mac.type == e1000_pch_spt)
4147 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4148 		else
4149 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4150 
4151 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4152 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4153 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4154 		/* In SPT, This register is in Lan memory space,
4155 		 * not flash.  Therefore, only 32 bit access is
4156 		 * supported
4157 		 */
4158 		if (hw->mac.type == e1000_pch_spt)
4159 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4160 		else
4161 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4162 
4163 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4164 
4165 		if (size == 1)
4166 			flash_data = (u32)data & 0x00FF;
4167 		else
4168 			flash_data = (u32)data;
4169 
4170 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4171 
4172 		/* check if FCERR is set to 1 , if set to 1, clear it
4173 		 * and try the whole sequence a few more times else done
4174 		 */
4175 		ret_val =
4176 		    e1000_flash_cycle_ich8lan(hw,
4177 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4178 		if (!ret_val)
4179 			break;
4180 
4181 		/* If we're here, then things are most likely
4182 		 * completely hosed, but if the error condition
4183 		 * is detected, it won't hurt to give it another
4184 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4185 		 */
4186 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187 		if (hsfsts.hsf_status.flcerr)
4188 			/* Repeat for some time before giving up. */
4189 			continue;
4190 		if (!hsfsts.hsf_status.flcdone) {
4191 			e_dbg("Timeout error - flash cycle did not complete.\n");
4192 			break;
4193 		}
4194 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4195 
4196 	return ret_val;
4197 }
4198 
4199 /**
4200 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4201 *  @hw: pointer to the HW structure
4202 *  @offset: The offset (in bytes) of the dwords to read.
4203 *  @data: The 4 bytes to write to the NVM.
4204 *
4205 *  Writes one/two/four bytes to the NVM using the flash access registers.
4206 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4207 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4208 					    u32 data)
4209 {
4210 	union ich8_hws_flash_status hsfsts;
4211 	union ich8_hws_flash_ctrl hsflctl;
4212 	u32 flash_linear_addr;
4213 	s32 ret_val;
4214 	u8 count = 0;
4215 
4216 	if (hw->mac.type == e1000_pch_spt) {
4217 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4218 			return -E1000_ERR_NVM;
4219 	}
4220 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4221 			     hw->nvm.flash_base_addr);
4222 	do {
4223 		udelay(1);
4224 		/* Steps */
4225 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4226 		if (ret_val)
4227 			break;
4228 
4229 		/* In SPT, This register is in Lan memory space, not
4230 		 * flash.  Therefore, only 32 bit access is supported
4231 		 */
4232 		if (hw->mac.type == e1000_pch_spt)
4233 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4234 			    >> 16;
4235 		else
4236 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4237 
4238 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4239 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4240 
4241 		/* In SPT, This register is in Lan memory space,
4242 		 * not flash.  Therefore, only 32 bit access is
4243 		 * supported
4244 		 */
4245 		if (hw->mac.type == e1000_pch_spt)
4246 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4247 		else
4248 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4249 
4250 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4251 
4252 		ew32flash(ICH_FLASH_FDATA0, data);
4253 
4254 		/* check if FCERR is set to 1 , if set to 1, clear it
4255 		 * and try the whole sequence a few more times else done
4256 		 */
4257 		ret_val =
4258 		   e1000_flash_cycle_ich8lan(hw,
4259 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4260 
4261 		if (!ret_val)
4262 			break;
4263 
4264 		/* If we're here, then things are most likely
4265 		 * completely hosed, but if the error condition
4266 		 * is detected, it won't hurt to give it another
4267 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4268 		 */
4269 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4270 
4271 		if (hsfsts.hsf_status.flcerr)
4272 			/* Repeat for some time before giving up. */
4273 			continue;
4274 		if (!hsfsts.hsf_status.flcdone) {
4275 			e_dbg("Timeout error - flash cycle did not complete.\n");
4276 			break;
4277 		}
4278 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4279 
4280 	return ret_val;
4281 }
4282 
4283 /**
4284  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4285  *  @hw: pointer to the HW structure
4286  *  @offset: The index of the byte to read.
4287  *  @data: The byte to write to the NVM.
4288  *
4289  *  Writes a single byte to the NVM using the flash access registers.
4290  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4291 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4292 					  u8 data)
4293 {
4294 	u16 word = (u16)data;
4295 
4296 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4297 }
4298 
4299 /**
4300 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4301 *  @hw: pointer to the HW structure
4302 *  @offset: The offset of the word to write.
4303 *  @dword: The dword to write to the NVM.
4304 *
4305 *  Writes a single dword to the NVM using the flash access registers.
4306 *  Goes through a retry algorithm before giving up.
4307 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4308 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4309 						 u32 offset, u32 dword)
4310 {
4311 	s32 ret_val;
4312 	u16 program_retries;
4313 
4314 	/* Must convert word offset into bytes. */
4315 	offset <<= 1;
4316 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4317 
4318 	if (!ret_val)
4319 		return ret_val;
4320 	for (program_retries = 0; program_retries < 100; program_retries++) {
4321 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4322 		usleep_range(100, 200);
4323 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4324 		if (!ret_val)
4325 			break;
4326 	}
4327 	if (program_retries == 100)
4328 		return -E1000_ERR_NVM;
4329 
4330 	return 0;
4331 }
4332 
4333 /**
4334  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4335  *  @hw: pointer to the HW structure
4336  *  @offset: The offset of the byte to write.
4337  *  @byte: The byte to write to the NVM.
4338  *
4339  *  Writes a single byte to the NVM using the flash access registers.
4340  *  Goes through a retry algorithm before giving up.
4341  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4342 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4343 						u32 offset, u8 byte)
4344 {
4345 	s32 ret_val;
4346 	u16 program_retries;
4347 
4348 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4349 	if (!ret_val)
4350 		return ret_val;
4351 
4352 	for (program_retries = 0; program_retries < 100; program_retries++) {
4353 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4354 		usleep_range(100, 200);
4355 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4356 		if (!ret_val)
4357 			break;
4358 	}
4359 	if (program_retries == 100)
4360 		return -E1000_ERR_NVM;
4361 
4362 	return 0;
4363 }
4364 
4365 /**
4366  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4367  *  @hw: pointer to the HW structure
4368  *  @bank: 0 for first bank, 1 for second bank, etc.
4369  *
4370  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4371  *  bank N is 4096 * N + flash_reg_addr.
4372  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4373 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4374 {
4375 	struct e1000_nvm_info *nvm = &hw->nvm;
4376 	union ich8_hws_flash_status hsfsts;
4377 	union ich8_hws_flash_ctrl hsflctl;
4378 	u32 flash_linear_addr;
4379 	/* bank size is in 16bit words - adjust to bytes */
4380 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4381 	s32 ret_val;
4382 	s32 count = 0;
4383 	s32 j, iteration, sector_size;
4384 
4385 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4386 
4387 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4388 	 * register
4389 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4390 	 *     consecutive sectors.  The start index for the nth Hw sector
4391 	 *     can be calculated as = bank * 4096 + n * 256
4392 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4393 	 *     The start index for the nth Hw sector can be calculated
4394 	 *     as = bank * 4096
4395 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4396 	 *     (ich9 only, otherwise error condition)
4397 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4398 	 */
4399 	switch (hsfsts.hsf_status.berasesz) {
4400 	case 0:
4401 		/* Hw sector size 256 */
4402 		sector_size = ICH_FLASH_SEG_SIZE_256;
4403 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4404 		break;
4405 	case 1:
4406 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4407 		iteration = 1;
4408 		break;
4409 	case 2:
4410 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4411 		iteration = 1;
4412 		break;
4413 	case 3:
4414 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4415 		iteration = 1;
4416 		break;
4417 	default:
4418 		return -E1000_ERR_NVM;
4419 	}
4420 
4421 	/* Start with the base address, then add the sector offset. */
4422 	flash_linear_addr = hw->nvm.flash_base_addr;
4423 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4424 
4425 	for (j = 0; j < iteration; j++) {
4426 		do {
4427 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4428 
4429 			/* Steps */
4430 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4431 			if (ret_val)
4432 				return ret_val;
4433 
4434 			/* Write a value 11 (block Erase) in Flash
4435 			 * Cycle field in hw flash control
4436 			 */
4437 			if (hw->mac.type == e1000_pch_spt)
4438 				hsflctl.regval =
4439 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4440 			else
4441 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4442 
4443 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4444 			if (hw->mac.type == e1000_pch_spt)
4445 				ew32flash(ICH_FLASH_HSFSTS,
4446 					  hsflctl.regval << 16);
4447 			else
4448 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4449 
4450 			/* Write the last 24 bits of an index within the
4451 			 * block into Flash Linear address field in Flash
4452 			 * Address.
4453 			 */
4454 			flash_linear_addr += (j * sector_size);
4455 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4456 
4457 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4458 			if (!ret_val)
4459 				break;
4460 
4461 			/* Check if FCERR is set to 1.  If 1,
4462 			 * clear it and try the whole sequence
4463 			 * a few more times else Done
4464 			 */
4465 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4466 			if (hsfsts.hsf_status.flcerr)
4467 				/* repeat for some time before giving up */
4468 				continue;
4469 			else if (!hsfsts.hsf_status.flcdone)
4470 				return ret_val;
4471 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4472 	}
4473 
4474 	return 0;
4475 }
4476 
4477 /**
4478  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4479  *  @hw: pointer to the HW structure
4480  *  @data: Pointer to the LED settings
4481  *
4482  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4483  *  settings is all 0's or F's, set the LED default to a valid LED default
4484  *  setting.
4485  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4486 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4487 {
4488 	s32 ret_val;
4489 
4490 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4491 	if (ret_val) {
4492 		e_dbg("NVM Read Error\n");
4493 		return ret_val;
4494 	}
4495 
4496 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4497 		*data = ID_LED_DEFAULT_ICH8LAN;
4498 
4499 	return 0;
4500 }
4501 
4502 /**
4503  *  e1000_id_led_init_pchlan - store LED configurations
4504  *  @hw: pointer to the HW structure
4505  *
4506  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4507  *  the PHY LED configuration register.
4508  *
4509  *  PCH also does not have an "always on" or "always off" mode which
4510  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4511  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4512  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4513  *  link based on logic in e1000_led_[on|off]_pchlan().
4514  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4515 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4516 {
4517 	struct e1000_mac_info *mac = &hw->mac;
4518 	s32 ret_val;
4519 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4520 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4521 	u16 data, i, temp, shift;
4522 
4523 	/* Get default ID LED modes */
4524 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4525 	if (ret_val)
4526 		return ret_val;
4527 
4528 	mac->ledctl_default = er32(LEDCTL);
4529 	mac->ledctl_mode1 = mac->ledctl_default;
4530 	mac->ledctl_mode2 = mac->ledctl_default;
4531 
4532 	for (i = 0; i < 4; i++) {
4533 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4534 		shift = (i * 5);
4535 		switch (temp) {
4536 		case ID_LED_ON1_DEF2:
4537 		case ID_LED_ON1_ON2:
4538 		case ID_LED_ON1_OFF2:
4539 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4540 			mac->ledctl_mode1 |= (ledctl_on << shift);
4541 			break;
4542 		case ID_LED_OFF1_DEF2:
4543 		case ID_LED_OFF1_ON2:
4544 		case ID_LED_OFF1_OFF2:
4545 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4546 			mac->ledctl_mode1 |= (ledctl_off << shift);
4547 			break;
4548 		default:
4549 			/* Do nothing */
4550 			break;
4551 		}
4552 		switch (temp) {
4553 		case ID_LED_DEF1_ON2:
4554 		case ID_LED_ON1_ON2:
4555 		case ID_LED_OFF1_ON2:
4556 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4557 			mac->ledctl_mode2 |= (ledctl_on << shift);
4558 			break;
4559 		case ID_LED_DEF1_OFF2:
4560 		case ID_LED_ON1_OFF2:
4561 		case ID_LED_OFF1_OFF2:
4562 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4563 			mac->ledctl_mode2 |= (ledctl_off << shift);
4564 			break;
4565 		default:
4566 			/* Do nothing */
4567 			break;
4568 		}
4569 	}
4570 
4571 	return 0;
4572 }
4573 
4574 /**
4575  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4576  *  @hw: pointer to the HW structure
4577  *
4578  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4579  *  register, so the the bus width is hard coded.
4580  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4581 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4582 {
4583 	struct e1000_bus_info *bus = &hw->bus;
4584 	s32 ret_val;
4585 
4586 	ret_val = e1000e_get_bus_info_pcie(hw);
4587 
4588 	/* ICH devices are "PCI Express"-ish.  They have
4589 	 * a configuration space, but do not contain
4590 	 * PCI Express Capability registers, so bus width
4591 	 * must be hardcoded.
4592 	 */
4593 	if (bus->width == e1000_bus_width_unknown)
4594 		bus->width = e1000_bus_width_pcie_x1;
4595 
4596 	return ret_val;
4597 }
4598 
4599 /**
4600  *  e1000_reset_hw_ich8lan - Reset the hardware
4601  *  @hw: pointer to the HW structure
4602  *
4603  *  Does a full reset of the hardware which includes a reset of the PHY and
4604  *  MAC.
4605  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4606 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4607 {
4608 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4609 	u16 kum_cfg;
4610 	u32 ctrl, reg;
4611 	s32 ret_val;
4612 
4613 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4614 	 * on the last TLP read/write transaction when MAC is reset.
4615 	 */
4616 	ret_val = e1000e_disable_pcie_master(hw);
4617 	if (ret_val)
4618 		e_dbg("PCI-E Master disable polling has failed.\n");
4619 
4620 	e_dbg("Masking off all interrupts\n");
4621 	ew32(IMC, 0xffffffff);
4622 
4623 	/* Disable the Transmit and Receive units.  Then delay to allow
4624 	 * any pending transactions to complete before we hit the MAC
4625 	 * with the global reset.
4626 	 */
4627 	ew32(RCTL, 0);
4628 	ew32(TCTL, E1000_TCTL_PSP);
4629 	e1e_flush();
4630 
4631 	usleep_range(10000, 20000);
4632 
4633 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4634 	if (hw->mac.type == e1000_ich8lan) {
4635 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4636 		ew32(PBA, E1000_PBA_8K);
4637 		/* Set Packet Buffer Size to 16k. */
4638 		ew32(PBS, E1000_PBS_16K);
4639 	}
4640 
4641 	if (hw->mac.type == e1000_pchlan) {
4642 		/* Save the NVM K1 bit setting */
4643 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4644 		if (ret_val)
4645 			return ret_val;
4646 
4647 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4648 			dev_spec->nvm_k1_enabled = true;
4649 		else
4650 			dev_spec->nvm_k1_enabled = false;
4651 	}
4652 
4653 	ctrl = er32(CTRL);
4654 
4655 	if (!hw->phy.ops.check_reset_block(hw)) {
4656 		/* Full-chip reset requires MAC and PHY reset at the same
4657 		 * time to make sure the interface between MAC and the
4658 		 * external PHY is reset.
4659 		 */
4660 		ctrl |= E1000_CTRL_PHY_RST;
4661 
4662 		/* Gate automatic PHY configuration by hardware on
4663 		 * non-managed 82579
4664 		 */
4665 		if ((hw->mac.type == e1000_pch2lan) &&
4666 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4667 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4668 	}
4669 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4670 	e_dbg("Issuing a global reset to ich8lan\n");
4671 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4672 	/* cannot issue a flush here because it hangs the hardware */
4673 	msleep(20);
4674 
4675 	/* Set Phy Config Counter to 50msec */
4676 	if (hw->mac.type == e1000_pch2lan) {
4677 		reg = er32(FEXTNVM3);
4678 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4679 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4680 		ew32(FEXTNVM3, reg);
4681 	}
4682 
4683 	if (!ret_val)
4684 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4685 
4686 	if (ctrl & E1000_CTRL_PHY_RST) {
4687 		ret_val = hw->phy.ops.get_cfg_done(hw);
4688 		if (ret_val)
4689 			return ret_val;
4690 
4691 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4692 		if (ret_val)
4693 			return ret_val;
4694 	}
4695 
4696 	/* For PCH, this write will make sure that any noise
4697 	 * will be detected as a CRC error and be dropped rather than show up
4698 	 * as a bad packet to the DMA engine.
4699 	 */
4700 	if (hw->mac.type == e1000_pchlan)
4701 		ew32(CRC_OFFSET, 0x65656565);
4702 
4703 	ew32(IMC, 0xffffffff);
4704 	er32(ICR);
4705 
4706 	reg = er32(KABGTXD);
4707 	reg |= E1000_KABGTXD_BGSQLBIAS;
4708 	ew32(KABGTXD, reg);
4709 
4710 	return 0;
4711 }
4712 
4713 /**
4714  *  e1000_init_hw_ich8lan - Initialize the hardware
4715  *  @hw: pointer to the HW structure
4716  *
4717  *  Prepares the hardware for transmit and receive by doing the following:
4718  *   - initialize hardware bits
4719  *   - initialize LED identification
4720  *   - setup receive address registers
4721  *   - setup flow control
4722  *   - setup transmit descriptors
4723  *   - clear statistics
4724  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4725 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4726 {
4727 	struct e1000_mac_info *mac = &hw->mac;
4728 	u32 ctrl_ext, txdctl, snoop;
4729 	s32 ret_val;
4730 	u16 i;
4731 
4732 	e1000_initialize_hw_bits_ich8lan(hw);
4733 
4734 	/* Initialize identification LED */
4735 	ret_val = mac->ops.id_led_init(hw);
4736 	/* An error is not fatal and we should not stop init due to this */
4737 	if (ret_val)
4738 		e_dbg("Error initializing identification LED\n");
4739 
4740 	/* Setup the receive address. */
4741 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4742 
4743 	/* Zero out the Multicast HASH table */
4744 	e_dbg("Zeroing the MTA\n");
4745 	for (i = 0; i < mac->mta_reg_count; i++)
4746 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4747 
4748 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4749 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4750 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4751 	 */
4752 	if (hw->phy.type == e1000_phy_82578) {
4753 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4754 		i &= ~BM_WUC_HOST_WU_BIT;
4755 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4756 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4757 		if (ret_val)
4758 			return ret_val;
4759 	}
4760 
4761 	/* Setup link and flow control */
4762 	ret_val = mac->ops.setup_link(hw);
4763 
4764 	/* Set the transmit descriptor write-back policy for both queues */
4765 	txdctl = er32(TXDCTL(0));
4766 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4767 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4768 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4769 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4770 	ew32(TXDCTL(0), txdctl);
4771 	txdctl = er32(TXDCTL(1));
4772 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4773 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4774 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4775 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4776 	ew32(TXDCTL(1), txdctl);
4777 
4778 	/* ICH8 has opposite polarity of no_snoop bits.
4779 	 * By default, we should use snoop behavior.
4780 	 */
4781 	if (mac->type == e1000_ich8lan)
4782 		snoop = PCIE_ICH8_SNOOP_ALL;
4783 	else
4784 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4785 	e1000e_set_pcie_no_snoop(hw, snoop);
4786 
4787 	ctrl_ext = er32(CTRL_EXT);
4788 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4789 	ew32(CTRL_EXT, ctrl_ext);
4790 
4791 	/* Clear all of the statistics registers (clear on read).  It is
4792 	 * important that we do this after we have tried to establish link
4793 	 * because the symbol error count will increment wildly if there
4794 	 * is no link.
4795 	 */
4796 	e1000_clear_hw_cntrs_ich8lan(hw);
4797 
4798 	return ret_val;
4799 }
4800 
4801 /**
4802  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4803  *  @hw: pointer to the HW structure
4804  *
4805  *  Sets/Clears required hardware bits necessary for correctly setting up the
4806  *  hardware for transmit and receive.
4807  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4808 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4809 {
4810 	u32 reg;
4811 
4812 	/* Extended Device Control */
4813 	reg = er32(CTRL_EXT);
4814 	reg |= (1 << 22);
4815 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4816 	if (hw->mac.type >= e1000_pchlan)
4817 		reg |= E1000_CTRL_EXT_PHYPDEN;
4818 	ew32(CTRL_EXT, reg);
4819 
4820 	/* Transmit Descriptor Control 0 */
4821 	reg = er32(TXDCTL(0));
4822 	reg |= (1 << 22);
4823 	ew32(TXDCTL(0), reg);
4824 
4825 	/* Transmit Descriptor Control 1 */
4826 	reg = er32(TXDCTL(1));
4827 	reg |= (1 << 22);
4828 	ew32(TXDCTL(1), reg);
4829 
4830 	/* Transmit Arbitration Control 0 */
4831 	reg = er32(TARC(0));
4832 	if (hw->mac.type == e1000_ich8lan)
4833 		reg |= (1 << 28) | (1 << 29);
4834 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4835 	ew32(TARC(0), reg);
4836 
4837 	/* Transmit Arbitration Control 1 */
4838 	reg = er32(TARC(1));
4839 	if (er32(TCTL) & E1000_TCTL_MULR)
4840 		reg &= ~(1 << 28);
4841 	else
4842 		reg |= (1 << 28);
4843 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4844 	ew32(TARC(1), reg);
4845 
4846 	/* Device Status */
4847 	if (hw->mac.type == e1000_ich8lan) {
4848 		reg = er32(STATUS);
4849 		reg &= ~(1 << 31);
4850 		ew32(STATUS, reg);
4851 	}
4852 
4853 	/* work-around descriptor data corruption issue during nfs v2 udp
4854 	 * traffic, just disable the nfs filtering capability
4855 	 */
4856 	reg = er32(RFCTL);
4857 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4858 
4859 	/* Disable IPv6 extension header parsing because some malformed
4860 	 * IPv6 headers can hang the Rx.
4861 	 */
4862 	if (hw->mac.type == e1000_ich8lan)
4863 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4864 	ew32(RFCTL, reg);
4865 
4866 	/* Enable ECC on Lynxpoint */
4867 	if ((hw->mac.type == e1000_pch_lpt) ||
4868 	    (hw->mac.type == e1000_pch_spt)) {
4869 		reg = er32(PBECCSTS);
4870 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4871 		ew32(PBECCSTS, reg);
4872 
4873 		reg = er32(CTRL);
4874 		reg |= E1000_CTRL_MEHE;
4875 		ew32(CTRL, reg);
4876 	}
4877 }
4878 
4879 /**
4880  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4881  *  @hw: pointer to the HW structure
4882  *
4883  *  Determines which flow control settings to use, then configures flow
4884  *  control.  Calls the appropriate media-specific link configuration
4885  *  function.  Assuming the adapter has a valid link partner, a valid link
4886  *  should be established.  Assumes the hardware has previously been reset
4887  *  and the transmitter and receiver are not enabled.
4888  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)4889 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4890 {
4891 	s32 ret_val;
4892 
4893 	if (hw->phy.ops.check_reset_block(hw))
4894 		return 0;
4895 
4896 	/* ICH parts do not have a word in the NVM to determine
4897 	 * the default flow control setting, so we explicitly
4898 	 * set it to full.
4899 	 */
4900 	if (hw->fc.requested_mode == e1000_fc_default) {
4901 		/* Workaround h/w hang when Tx flow control enabled */
4902 		if (hw->mac.type == e1000_pchlan)
4903 			hw->fc.requested_mode = e1000_fc_rx_pause;
4904 		else
4905 			hw->fc.requested_mode = e1000_fc_full;
4906 	}
4907 
4908 	/* Save off the requested flow control mode for use later.  Depending
4909 	 * on the link partner's capabilities, we may or may not use this mode.
4910 	 */
4911 	hw->fc.current_mode = hw->fc.requested_mode;
4912 
4913 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4914 
4915 	/* Continue to configure the copper link. */
4916 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4917 	if (ret_val)
4918 		return ret_val;
4919 
4920 	ew32(FCTTV, hw->fc.pause_time);
4921 	if ((hw->phy.type == e1000_phy_82578) ||
4922 	    (hw->phy.type == e1000_phy_82579) ||
4923 	    (hw->phy.type == e1000_phy_i217) ||
4924 	    (hw->phy.type == e1000_phy_82577)) {
4925 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4926 
4927 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4928 				   hw->fc.pause_time);
4929 		if (ret_val)
4930 			return ret_val;
4931 	}
4932 
4933 	return e1000e_set_fc_watermarks(hw);
4934 }
4935 
4936 /**
4937  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4938  *  @hw: pointer to the HW structure
4939  *
4940  *  Configures the kumeran interface to the PHY to wait the appropriate time
4941  *  when polling the PHY, then call the generic setup_copper_link to finish
4942  *  configuring the copper link.
4943  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)4944 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4945 {
4946 	u32 ctrl;
4947 	s32 ret_val;
4948 	u16 reg_data;
4949 
4950 	ctrl = er32(CTRL);
4951 	ctrl |= E1000_CTRL_SLU;
4952 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4953 	ew32(CTRL, ctrl);
4954 
4955 	/* Set the mac to wait the maximum time between each iteration
4956 	 * and increase the max iterations when polling the phy;
4957 	 * this fixes erroneous timeouts at 10Mbps.
4958 	 */
4959 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4960 	if (ret_val)
4961 		return ret_val;
4962 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4963 				       &reg_data);
4964 	if (ret_val)
4965 		return ret_val;
4966 	reg_data |= 0x3F;
4967 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4968 					reg_data);
4969 	if (ret_val)
4970 		return ret_val;
4971 
4972 	switch (hw->phy.type) {
4973 	case e1000_phy_igp_3:
4974 		ret_val = e1000e_copper_link_setup_igp(hw);
4975 		if (ret_val)
4976 			return ret_val;
4977 		break;
4978 	case e1000_phy_bm:
4979 	case e1000_phy_82578:
4980 		ret_val = e1000e_copper_link_setup_m88(hw);
4981 		if (ret_val)
4982 			return ret_val;
4983 		break;
4984 	case e1000_phy_82577:
4985 	case e1000_phy_82579:
4986 		ret_val = e1000_copper_link_setup_82577(hw);
4987 		if (ret_val)
4988 			return ret_val;
4989 		break;
4990 	case e1000_phy_ife:
4991 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4992 		if (ret_val)
4993 			return ret_val;
4994 
4995 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4996 
4997 		switch (hw->phy.mdix) {
4998 		case 1:
4999 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5000 			break;
5001 		case 2:
5002 			reg_data |= IFE_PMC_FORCE_MDIX;
5003 			break;
5004 		case 0:
5005 		default:
5006 			reg_data |= IFE_PMC_AUTO_MDIX;
5007 			break;
5008 		}
5009 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5010 		if (ret_val)
5011 			return ret_val;
5012 		break;
5013 	default:
5014 		break;
5015 	}
5016 
5017 	return e1000e_setup_copper_link(hw);
5018 }
5019 
5020 /**
5021  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5022  *  @hw: pointer to the HW structure
5023  *
5024  *  Calls the PHY specific link setup function and then calls the
5025  *  generic setup_copper_link to finish configuring the link for
5026  *  Lynxpoint PCH devices
5027  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5028 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5029 {
5030 	u32 ctrl;
5031 	s32 ret_val;
5032 
5033 	ctrl = er32(CTRL);
5034 	ctrl |= E1000_CTRL_SLU;
5035 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5036 	ew32(CTRL, ctrl);
5037 
5038 	ret_val = e1000_copper_link_setup_82577(hw);
5039 	if (ret_val)
5040 		return ret_val;
5041 
5042 	return e1000e_setup_copper_link(hw);
5043 }
5044 
5045 /**
5046  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5047  *  @hw: pointer to the HW structure
5048  *  @speed: pointer to store current link speed
5049  *  @duplex: pointer to store the current link duplex
5050  *
5051  *  Calls the generic get_speed_and_duplex to retrieve the current link
5052  *  information and then calls the Kumeran lock loss workaround for links at
5053  *  gigabit speeds.
5054  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5055 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5056 					  u16 *duplex)
5057 {
5058 	s32 ret_val;
5059 
5060 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5061 	if (ret_val)
5062 		return ret_val;
5063 
5064 	if ((hw->mac.type == e1000_ich8lan) &&
5065 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5066 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5067 	}
5068 
5069 	return ret_val;
5070 }
5071 
5072 /**
5073  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5074  *  @hw: pointer to the HW structure
5075  *
5076  *  Work-around for 82566 Kumeran PCS lock loss:
5077  *  On link status change (i.e. PCI reset, speed change) and link is up and
5078  *  speed is gigabit-
5079  *    0) if workaround is optionally disabled do nothing
5080  *    1) wait 1ms for Kumeran link to come up
5081  *    2) check Kumeran Diagnostic register PCS lock loss bit
5082  *    3) if not set the link is locked (all is good), otherwise...
5083  *    4) reset the PHY
5084  *    5) repeat up to 10 times
5085  *  Note: this is only called for IGP3 copper when speed is 1gb.
5086  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5087 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5088 {
5089 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5090 	u32 phy_ctrl;
5091 	s32 ret_val;
5092 	u16 i, data;
5093 	bool link;
5094 
5095 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5096 		return 0;
5097 
5098 	/* Make sure link is up before proceeding.  If not just return.
5099 	 * Attempting this while link is negotiating fouled up link
5100 	 * stability
5101 	 */
5102 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5103 	if (!link)
5104 		return 0;
5105 
5106 	for (i = 0; i < 10; i++) {
5107 		/* read once to clear */
5108 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5109 		if (ret_val)
5110 			return ret_val;
5111 		/* and again to get new status */
5112 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5113 		if (ret_val)
5114 			return ret_val;
5115 
5116 		/* check for PCS lock */
5117 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5118 			return 0;
5119 
5120 		/* Issue PHY reset */
5121 		e1000_phy_hw_reset(hw);
5122 		mdelay(5);
5123 	}
5124 	/* Disable GigE link negotiation */
5125 	phy_ctrl = er32(PHY_CTRL);
5126 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5127 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5128 	ew32(PHY_CTRL, phy_ctrl);
5129 
5130 	/* Call gig speed drop workaround on Gig disable before accessing
5131 	 * any PHY registers
5132 	 */
5133 	e1000e_gig_downshift_workaround_ich8lan(hw);
5134 
5135 	/* unable to acquire PCS lock */
5136 	return -E1000_ERR_PHY;
5137 }
5138 
5139 /**
5140  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5141  *  @hw: pointer to the HW structure
5142  *  @state: boolean value used to set the current Kumeran workaround state
5143  *
5144  *  If ICH8, set the current Kumeran workaround state (enabled - true
5145  *  /disabled - false).
5146  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5147 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5148 						  bool state)
5149 {
5150 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5151 
5152 	if (hw->mac.type != e1000_ich8lan) {
5153 		e_dbg("Workaround applies to ICH8 only.\n");
5154 		return;
5155 	}
5156 
5157 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5158 }
5159 
5160 /**
5161  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5162  *  @hw: pointer to the HW structure
5163  *
5164  *  Workaround for 82566 power-down on D3 entry:
5165  *    1) disable gigabit link
5166  *    2) write VR power-down enable
5167  *    3) read it back
5168  *  Continue if successful, else issue LCD reset and repeat
5169  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5170 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5171 {
5172 	u32 reg;
5173 	u16 data;
5174 	u8 retry = 0;
5175 
5176 	if (hw->phy.type != e1000_phy_igp_3)
5177 		return;
5178 
5179 	/* Try the workaround twice (if needed) */
5180 	do {
5181 		/* Disable link */
5182 		reg = er32(PHY_CTRL);
5183 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5184 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5185 		ew32(PHY_CTRL, reg);
5186 
5187 		/* Call gig speed drop workaround on Gig disable before
5188 		 * accessing any PHY registers
5189 		 */
5190 		if (hw->mac.type == e1000_ich8lan)
5191 			e1000e_gig_downshift_workaround_ich8lan(hw);
5192 
5193 		/* Write VR power-down enable */
5194 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5195 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5196 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5197 
5198 		/* Read it back and test */
5199 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5200 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5201 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5202 			break;
5203 
5204 		/* Issue PHY reset and repeat at most one more time */
5205 		reg = er32(CTRL);
5206 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5207 		retry++;
5208 	} while (retry);
5209 }
5210 
5211 /**
5212  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5213  *  @hw: pointer to the HW structure
5214  *
5215  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5216  *  LPLU, Gig disable, MDIC PHY reset):
5217  *    1) Set Kumeran Near-end loopback
5218  *    2) Clear Kumeran Near-end loopback
5219  *  Should only be called for ICH8[m] devices with any 1G Phy.
5220  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5221 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5222 {
5223 	s32 ret_val;
5224 	u16 reg_data;
5225 
5226 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5227 		return;
5228 
5229 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5230 				       &reg_data);
5231 	if (ret_val)
5232 		return;
5233 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5234 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5235 					reg_data);
5236 	if (ret_val)
5237 		return;
5238 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5239 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5240 }
5241 
5242 /**
5243  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5244  *  @hw: pointer to the HW structure
5245  *
5246  *  During S0 to Sx transition, it is possible the link remains at gig
5247  *  instead of negotiating to a lower speed.  Before going to Sx, set
5248  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5249  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5250  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5251  *  needs to be written.
5252  *  Parts that support (and are linked to a partner which support) EEE in
5253  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5254  *  than 10Mbps w/o EEE.
5255  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5256 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5257 {
5258 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5259 	u32 phy_ctrl;
5260 	s32 ret_val;
5261 
5262 	phy_ctrl = er32(PHY_CTRL);
5263 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5264 
5265 	if (hw->phy.type == e1000_phy_i217) {
5266 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5267 
5268 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5269 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5270 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5271 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5272 		    (hw->mac.type == e1000_pch_spt)) {
5273 			u32 fextnvm6 = er32(FEXTNVM6);
5274 
5275 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5276 		}
5277 
5278 		ret_val = hw->phy.ops.acquire(hw);
5279 		if (ret_val)
5280 			goto out;
5281 
5282 		if (!dev_spec->eee_disable) {
5283 			u16 eee_advert;
5284 
5285 			ret_val =
5286 			    e1000_read_emi_reg_locked(hw,
5287 						      I217_EEE_ADVERTISEMENT,
5288 						      &eee_advert);
5289 			if (ret_val)
5290 				goto release;
5291 
5292 			/* Disable LPLU if both link partners support 100BaseT
5293 			 * EEE and 100Full is advertised on both ends of the
5294 			 * link, and enable Auto Enable LPI since there will
5295 			 * be no driver to enable LPI while in Sx.
5296 			 */
5297 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5298 			    (dev_spec->eee_lp_ability &
5299 			     I82579_EEE_100_SUPPORTED) &&
5300 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5301 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5302 					      E1000_PHY_CTRL_NOND0A_LPLU);
5303 
5304 				/* Set Auto Enable LPI after link up */
5305 				e1e_rphy_locked(hw,
5306 						I217_LPI_GPIO_CTRL, &phy_reg);
5307 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5308 				e1e_wphy_locked(hw,
5309 						I217_LPI_GPIO_CTRL, phy_reg);
5310 			}
5311 		}
5312 
5313 		/* For i217 Intel Rapid Start Technology support,
5314 		 * when the system is going into Sx and no manageability engine
5315 		 * is present, the driver must configure proxy to reset only on
5316 		 * power good.  LPI (Low Power Idle) state must also reset only
5317 		 * on power good, as well as the MTA (Multicast table array).
5318 		 * The SMBus release must also be disabled on LCD reset.
5319 		 */
5320 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5321 			/* Enable proxy to reset only on power good. */
5322 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5323 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5324 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5325 
5326 			/* Set bit enable LPI (EEE) to reset only on
5327 			 * power good.
5328 			 */
5329 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5330 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5331 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5332 
5333 			/* Disable the SMB release on LCD reset. */
5334 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5335 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5336 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5337 		}
5338 
5339 		/* Enable MTA to reset for Intel Rapid Start Technology
5340 		 * Support
5341 		 */
5342 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5343 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5344 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5345 
5346 release:
5347 		hw->phy.ops.release(hw);
5348 	}
5349 out:
5350 	ew32(PHY_CTRL, phy_ctrl);
5351 
5352 	if (hw->mac.type == e1000_ich8lan)
5353 		e1000e_gig_downshift_workaround_ich8lan(hw);
5354 
5355 	if (hw->mac.type >= e1000_pchlan) {
5356 		e1000_oem_bits_config_ich8lan(hw, false);
5357 
5358 		/* Reset PHY to activate OEM bits on 82577/8 */
5359 		if (hw->mac.type == e1000_pchlan)
5360 			e1000e_phy_hw_reset_generic(hw);
5361 
5362 		ret_val = hw->phy.ops.acquire(hw);
5363 		if (ret_val)
5364 			return;
5365 		e1000_write_smbus_addr(hw);
5366 		hw->phy.ops.release(hw);
5367 	}
5368 }
5369 
5370 /**
5371  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5372  *  @hw: pointer to the HW structure
5373  *
5374  *  During Sx to S0 transitions on non-managed devices or managed devices
5375  *  on which PHY resets are not blocked, if the PHY registers cannot be
5376  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5377  *  the PHY.
5378  *  On i217, setup Intel Rapid Start Technology.
5379  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5380 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5381 {
5382 	s32 ret_val;
5383 
5384 	if (hw->mac.type < e1000_pch2lan)
5385 		return;
5386 
5387 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5388 	if (ret_val) {
5389 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5390 		return;
5391 	}
5392 
5393 	/* For i217 Intel Rapid Start Technology support when the system
5394 	 * is transitioning from Sx and no manageability engine is present
5395 	 * configure SMBus to restore on reset, disable proxy, and enable
5396 	 * the reset on MTA (Multicast table array).
5397 	 */
5398 	if (hw->phy.type == e1000_phy_i217) {
5399 		u16 phy_reg;
5400 
5401 		ret_val = hw->phy.ops.acquire(hw);
5402 		if (ret_val) {
5403 			e_dbg("Failed to setup iRST\n");
5404 			return;
5405 		}
5406 
5407 		/* Clear Auto Enable LPI after link up */
5408 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5409 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5410 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5411 
5412 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5413 			/* Restore clear on SMB if no manageability engine
5414 			 * is present
5415 			 */
5416 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5417 			if (ret_val)
5418 				goto release;
5419 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5420 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5421 
5422 			/* Disable Proxy */
5423 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5424 		}
5425 		/* Enable reset on MTA */
5426 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5427 		if (ret_val)
5428 			goto release;
5429 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5430 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5431 release:
5432 		if (ret_val)
5433 			e_dbg("Error %d in resume workarounds\n", ret_val);
5434 		hw->phy.ops.release(hw);
5435 	}
5436 }
5437 
5438 /**
5439  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5440  *  @hw: pointer to the HW structure
5441  *
5442  *  Return the LED back to the default configuration.
5443  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5444 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5445 {
5446 	if (hw->phy.type == e1000_phy_ife)
5447 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5448 
5449 	ew32(LEDCTL, hw->mac.ledctl_default);
5450 	return 0;
5451 }
5452 
5453 /**
5454  *  e1000_led_on_ich8lan - Turn LEDs on
5455  *  @hw: pointer to the HW structure
5456  *
5457  *  Turn on the LEDs.
5458  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5459 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5460 {
5461 	if (hw->phy.type == e1000_phy_ife)
5462 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5463 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5464 
5465 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5466 	return 0;
5467 }
5468 
5469 /**
5470  *  e1000_led_off_ich8lan - Turn LEDs off
5471  *  @hw: pointer to the HW structure
5472  *
5473  *  Turn off the LEDs.
5474  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5475 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5476 {
5477 	if (hw->phy.type == e1000_phy_ife)
5478 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5479 				(IFE_PSCL_PROBE_MODE |
5480 				 IFE_PSCL_PROBE_LEDS_OFF));
5481 
5482 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5483 	return 0;
5484 }
5485 
5486 /**
5487  *  e1000_setup_led_pchlan - Configures SW controllable LED
5488  *  @hw: pointer to the HW structure
5489  *
5490  *  This prepares the SW controllable LED for use.
5491  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5492 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5493 {
5494 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5495 }
5496 
5497 /**
5498  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5499  *  @hw: pointer to the HW structure
5500  *
5501  *  Return the LED back to the default configuration.
5502  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5503 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5504 {
5505 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5506 }
5507 
5508 /**
5509  *  e1000_led_on_pchlan - Turn LEDs on
5510  *  @hw: pointer to the HW structure
5511  *
5512  *  Turn on the LEDs.
5513  **/
e1000_led_on_pchlan(struct e1000_hw * hw)5514 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5515 {
5516 	u16 data = (u16)hw->mac.ledctl_mode2;
5517 	u32 i, led;
5518 
5519 	/* If no link, then turn LED on by setting the invert bit
5520 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5521 	 */
5522 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5523 		for (i = 0; i < 3; i++) {
5524 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5525 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5526 			    E1000_LEDCTL_MODE_LINK_UP)
5527 				continue;
5528 			if (led & E1000_PHY_LED0_IVRT)
5529 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5530 			else
5531 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5532 		}
5533 	}
5534 
5535 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5536 }
5537 
5538 /**
5539  *  e1000_led_off_pchlan - Turn LEDs off
5540  *  @hw: pointer to the HW structure
5541  *
5542  *  Turn off the LEDs.
5543  **/
e1000_led_off_pchlan(struct e1000_hw * hw)5544 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5545 {
5546 	u16 data = (u16)hw->mac.ledctl_mode1;
5547 	u32 i, led;
5548 
5549 	/* If no link, then turn LED off by clearing the invert bit
5550 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5551 	 */
5552 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553 		for (i = 0; i < 3; i++) {
5554 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556 			    E1000_LEDCTL_MODE_LINK_UP)
5557 				continue;
5558 			if (led & E1000_PHY_LED0_IVRT)
5559 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560 			else
5561 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562 		}
5563 	}
5564 
5565 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5566 }
5567 
5568 /**
5569  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5570  *  @hw: pointer to the HW structure
5571  *
5572  *  Read appropriate register for the config done bit for completion status
5573  *  and configure the PHY through s/w for EEPROM-less parts.
5574  *
5575  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5576  *  config done bit, so only an error is logged and continues.  If we were
5577  *  to return with error, EEPROM-less silicon would not be able to be reset
5578  *  or change link.
5579  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5580 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5581 {
5582 	s32 ret_val = 0;
5583 	u32 bank = 0;
5584 	u32 status;
5585 
5586 	e1000e_get_cfg_done_generic(hw);
5587 
5588 	/* Wait for indication from h/w that it has completed basic config */
5589 	if (hw->mac.type >= e1000_ich10lan) {
5590 		e1000_lan_init_done_ich8lan(hw);
5591 	} else {
5592 		ret_val = e1000e_get_auto_rd_done(hw);
5593 		if (ret_val) {
5594 			/* When auto config read does not complete, do not
5595 			 * return with an error. This can happen in situations
5596 			 * where there is no eeprom and prevents getting link.
5597 			 */
5598 			e_dbg("Auto Read Done did not complete\n");
5599 			ret_val = 0;
5600 		}
5601 	}
5602 
5603 	/* Clear PHY Reset Asserted bit */
5604 	status = er32(STATUS);
5605 	if (status & E1000_STATUS_PHYRA)
5606 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5607 	else
5608 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5609 
5610 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5611 	if (hw->mac.type <= e1000_ich9lan) {
5612 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5613 		    (hw->phy.type == e1000_phy_igp_3)) {
5614 			e1000e_phy_init_script_igp3(hw);
5615 		}
5616 	} else {
5617 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5618 			/* Maybe we should do a basic PHY config */
5619 			e_dbg("EEPROM not present\n");
5620 			ret_val = -E1000_ERR_CONFIG;
5621 		}
5622 	}
5623 
5624 	return ret_val;
5625 }
5626 
5627 /**
5628  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5629  * @hw: pointer to the HW structure
5630  *
5631  * In the case of a PHY power down to save power, or to turn off link during a
5632  * driver unload, or wake on lan is not enabled, remove the link.
5633  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5634 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5635 {
5636 	/* If the management interface is not enabled, then power down */
5637 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5638 	      hw->phy.ops.check_reset_block(hw)))
5639 		e1000_power_down_phy_copper(hw);
5640 }
5641 
5642 /**
5643  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5644  *  @hw: pointer to the HW structure
5645  *
5646  *  Clears hardware counters specific to the silicon family and calls
5647  *  clear_hw_cntrs_generic to clear all general purpose counters.
5648  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5649 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5650 {
5651 	u16 phy_data;
5652 	s32 ret_val;
5653 
5654 	e1000e_clear_hw_cntrs_base(hw);
5655 
5656 	er32(ALGNERRC);
5657 	er32(RXERRC);
5658 	er32(TNCRS);
5659 	er32(CEXTERR);
5660 	er32(TSCTC);
5661 	er32(TSCTFC);
5662 
5663 	er32(MGTPRC);
5664 	er32(MGTPDC);
5665 	er32(MGTPTC);
5666 
5667 	er32(IAC);
5668 	er32(ICRXOC);
5669 
5670 	/* Clear PHY statistics registers */
5671 	if ((hw->phy.type == e1000_phy_82578) ||
5672 	    (hw->phy.type == e1000_phy_82579) ||
5673 	    (hw->phy.type == e1000_phy_i217) ||
5674 	    (hw->phy.type == e1000_phy_82577)) {
5675 		ret_val = hw->phy.ops.acquire(hw);
5676 		if (ret_val)
5677 			return;
5678 		ret_val = hw->phy.ops.set_page(hw,
5679 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5680 		if (ret_val)
5681 			goto release;
5682 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5683 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5684 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5685 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5686 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5687 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5688 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5689 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5690 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5691 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5692 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5693 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5694 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5695 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5696 release:
5697 		hw->phy.ops.release(hw);
5698 	}
5699 }
5700 
5701 static const struct e1000_mac_operations ich8_mac_ops = {
5702 	/* check_mng_mode dependent on mac type */
5703 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5704 	/* cleanup_led dependent on mac type */
5705 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5706 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5707 	.set_lan_id		= e1000_set_lan_id_single_port,
5708 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5709 	/* led_on dependent on mac type */
5710 	/* led_off dependent on mac type */
5711 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5712 	.reset_hw		= e1000_reset_hw_ich8lan,
5713 	.init_hw		= e1000_init_hw_ich8lan,
5714 	.setup_link		= e1000_setup_link_ich8lan,
5715 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5716 	/* id_led_init dependent on mac type */
5717 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5718 	.rar_set		= e1000e_rar_set_generic,
5719 	.rar_get_count		= e1000e_rar_get_count_generic,
5720 };
5721 
5722 static const struct e1000_phy_operations ich8_phy_ops = {
5723 	.acquire		= e1000_acquire_swflag_ich8lan,
5724 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5725 	.commit			= NULL,
5726 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5727 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5728 	.read_reg		= e1000e_read_phy_reg_igp,
5729 	.release		= e1000_release_swflag_ich8lan,
5730 	.reset			= e1000_phy_hw_reset_ich8lan,
5731 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5732 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5733 	.write_reg		= e1000e_write_phy_reg_igp,
5734 };
5735 
5736 static const struct e1000_nvm_operations ich8_nvm_ops = {
5737 	.acquire		= e1000_acquire_nvm_ich8lan,
5738 	.read			= e1000_read_nvm_ich8lan,
5739 	.release		= e1000_release_nvm_ich8lan,
5740 	.reload			= e1000e_reload_nvm_generic,
5741 	.update			= e1000_update_nvm_checksum_ich8lan,
5742 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5743 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5744 	.write			= e1000_write_nvm_ich8lan,
5745 };
5746 
5747 static const struct e1000_nvm_operations spt_nvm_ops = {
5748 	.acquire		= e1000_acquire_nvm_ich8lan,
5749 	.release		= e1000_release_nvm_ich8lan,
5750 	.read			= e1000_read_nvm_spt,
5751 	.update			= e1000_update_nvm_checksum_spt,
5752 	.reload			= e1000e_reload_nvm_generic,
5753 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5754 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5755 	.write			= e1000_write_nvm_ich8lan,
5756 };
5757 
5758 const struct e1000_info e1000_ich8_info = {
5759 	.mac			= e1000_ich8lan,
5760 	.flags			= FLAG_HAS_WOL
5761 				  | FLAG_IS_ICH
5762 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5763 				  | FLAG_HAS_AMT
5764 				  | FLAG_HAS_FLASH
5765 				  | FLAG_APME_IN_WUC,
5766 	.pba			= 8,
5767 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5768 	.get_variants		= e1000_get_variants_ich8lan,
5769 	.mac_ops		= &ich8_mac_ops,
5770 	.phy_ops		= &ich8_phy_ops,
5771 	.nvm_ops		= &ich8_nvm_ops,
5772 };
5773 
5774 const struct e1000_info e1000_ich9_info = {
5775 	.mac			= e1000_ich9lan,
5776 	.flags			= FLAG_HAS_JUMBO_FRAMES
5777 				  | FLAG_IS_ICH
5778 				  | FLAG_HAS_WOL
5779 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5780 				  | FLAG_HAS_AMT
5781 				  | FLAG_HAS_FLASH
5782 				  | FLAG_APME_IN_WUC,
5783 	.pba			= 18,
5784 	.max_hw_frame_size	= DEFAULT_JUMBO,
5785 	.get_variants		= e1000_get_variants_ich8lan,
5786 	.mac_ops		= &ich8_mac_ops,
5787 	.phy_ops		= &ich8_phy_ops,
5788 	.nvm_ops		= &ich8_nvm_ops,
5789 };
5790 
5791 const struct e1000_info e1000_ich10_info = {
5792 	.mac			= e1000_ich10lan,
5793 	.flags			= FLAG_HAS_JUMBO_FRAMES
5794 				  | FLAG_IS_ICH
5795 				  | FLAG_HAS_WOL
5796 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5797 				  | FLAG_HAS_AMT
5798 				  | FLAG_HAS_FLASH
5799 				  | FLAG_APME_IN_WUC,
5800 	.pba			= 18,
5801 	.max_hw_frame_size	= DEFAULT_JUMBO,
5802 	.get_variants		= e1000_get_variants_ich8lan,
5803 	.mac_ops		= &ich8_mac_ops,
5804 	.phy_ops		= &ich8_phy_ops,
5805 	.nvm_ops		= &ich8_nvm_ops,
5806 };
5807 
5808 const struct e1000_info e1000_pch_info = {
5809 	.mac			= e1000_pchlan,
5810 	.flags			= FLAG_IS_ICH
5811 				  | FLAG_HAS_WOL
5812 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5813 				  | FLAG_HAS_AMT
5814 				  | FLAG_HAS_FLASH
5815 				  | FLAG_HAS_JUMBO_FRAMES
5816 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5817 				  | FLAG_APME_IN_WUC,
5818 	.flags2			= FLAG2_HAS_PHY_STATS,
5819 	.pba			= 26,
5820 	.max_hw_frame_size	= 4096,
5821 	.get_variants		= e1000_get_variants_ich8lan,
5822 	.mac_ops		= &ich8_mac_ops,
5823 	.phy_ops		= &ich8_phy_ops,
5824 	.nvm_ops		= &ich8_nvm_ops,
5825 };
5826 
5827 const struct e1000_info e1000_pch2_info = {
5828 	.mac			= e1000_pch2lan,
5829 	.flags			= FLAG_IS_ICH
5830 				  | FLAG_HAS_WOL
5831 				  | FLAG_HAS_HW_TIMESTAMP
5832 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5833 				  | FLAG_HAS_AMT
5834 				  | FLAG_HAS_FLASH
5835 				  | FLAG_HAS_JUMBO_FRAMES
5836 				  | FLAG_APME_IN_WUC,
5837 	.flags2			= FLAG2_HAS_PHY_STATS
5838 				  | FLAG2_HAS_EEE,
5839 	.pba			= 26,
5840 	.max_hw_frame_size	= 9022,
5841 	.get_variants		= e1000_get_variants_ich8lan,
5842 	.mac_ops		= &ich8_mac_ops,
5843 	.phy_ops		= &ich8_phy_ops,
5844 	.nvm_ops		= &ich8_nvm_ops,
5845 };
5846 
5847 const struct e1000_info e1000_pch_lpt_info = {
5848 	.mac			= e1000_pch_lpt,
5849 	.flags			= FLAG_IS_ICH
5850 				  | FLAG_HAS_WOL
5851 				  | FLAG_HAS_HW_TIMESTAMP
5852 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5853 				  | FLAG_HAS_AMT
5854 				  | FLAG_HAS_FLASH
5855 				  | FLAG_HAS_JUMBO_FRAMES
5856 				  | FLAG_APME_IN_WUC,
5857 	.flags2			= FLAG2_HAS_PHY_STATS
5858 				  | FLAG2_HAS_EEE,
5859 	.pba			= 26,
5860 	.max_hw_frame_size	= 9022,
5861 	.get_variants		= e1000_get_variants_ich8lan,
5862 	.mac_ops		= &ich8_mac_ops,
5863 	.phy_ops		= &ich8_phy_ops,
5864 	.nvm_ops		= &ich8_nvm_ops,
5865 };
5866 
5867 const struct e1000_info e1000_pch_spt_info = {
5868 	.mac			= e1000_pch_spt,
5869 	.flags			= FLAG_IS_ICH
5870 				  | FLAG_HAS_WOL
5871 				  | FLAG_HAS_HW_TIMESTAMP
5872 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873 				  | FLAG_HAS_AMT
5874 				  | FLAG_HAS_FLASH
5875 				  | FLAG_HAS_JUMBO_FRAMES
5876 				  | FLAG_APME_IN_WUC,
5877 	.flags2			= FLAG2_HAS_PHY_STATS
5878 				  | FLAG2_HAS_EEE,
5879 	.pba			= 26,
5880 	.max_hw_frame_size	= 9022,
5881 	.get_variants		= e1000_get_variants_ich8lan,
5882 	.mac_ops		= &ich8_mac_ops,
5883 	.phy_ops		= &ich8_phy_ops,
5884 	.nvm_ops		= &spt_nvm_ops,
5885 };
5886