1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
__er16flash(struct e1000_hw * hw,unsigned long reg)159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 return readw(hw->flash_address + reg);
162 }
163
__er32flash(struct e1000_hw * hw,unsigned long reg)164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 return readl(hw->flash_address + reg);
167 }
168
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 writew(val, hw->flash_address + reg);
172 }
173
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184 /**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239 out:
240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
252 }
253 }
254
255 return true;
256 }
257
258 /**
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
261 *
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
264 **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 u32 mac_reg;
268
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
274
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
285
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
290
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295 msleep(30);
296 }
297 }
298
299 /**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
311
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
314 */
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
319 */
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
322
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
327 }
328
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 */
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 if (e1000_phy_is_accessible_pchlan(hw))
337 break;
338
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
341 */
342 mac_reg = er32(CTRL_EXT);
343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 ew32(CTRL_EXT, mac_reg);
345
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
349 */
350 msleep(50);
351
352 /* fall-through */
353 case e1000_pch2lan:
354 if (e1000_phy_is_accessible_pchlan(hw))
355 break;
356
357 /* fall-through */
358 case e1000_pchlan:
359 if ((hw->mac.type == e1000_pchlan) &&
360 (fwsm & E1000_ICH_FWSM_FW_VALID))
361 break;
362
363 if (hw->phy.ops.check_reset_block(hw)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val = -E1000_ERR_PHY;
366 break;
367 }
368
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw);
371 if (hw->mac.type >= e1000_pch_lpt) {
372 if (e1000_phy_is_accessible_pchlan(hw))
373 break;
374
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
377 */
378 mac_reg = er32(CTRL_EXT);
379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 ew32(CTRL_EXT, mac_reg);
381
382 if (e1000_phy_is_accessible_pchlan(hw))
383 break;
384
385 ret_val = -E1000_ERR_PHY;
386 }
387 break;
388 default:
389 break;
390 }
391
392 hw->phy.ops.release(hw);
393 if (!ret_val) {
394
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw->phy.ops.check_reset_block(hw)) {
397 e_err("Reset blocked by ME\n");
398 goto out;
399 }
400
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
405 */
406 ret_val = e1000e_phy_hw_reset_generic(hw);
407 if (ret_val)
408 goto out;
409
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 * the PHY is in.
415 */
416 ret_val = hw->phy.ops.check_reset_block(hw);
417 if (ret_val)
418 e_err("ME blocked access to PHY after reset\n");
419 }
420
421 out:
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw->mac.type == e1000_pch2lan) &&
424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw, false);
427 }
428
429 return ret_val;
430 }
431
432 /**
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
435 *
436 * Initialize family-specific PHY parameters and function pointers.
437 **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439 {
440 struct e1000_phy_info *phy = &hw->phy;
441 s32 ret_val;
442
443 phy->addr = 1;
444 phy->reset_delay_us = 100;
445
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.write_reg = e1000_write_phy_reg_hv;
453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 phy->ops.power_up = e1000_power_up_phy_copper;
456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458
459 phy->id = e1000_phy_unknown;
460
461 ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 if (ret_val)
463 return ret_val;
464
465 if (phy->id == e1000_phy_unknown)
466 switch (hw->mac.type) {
467 default:
468 ret_val = e1000e_get_phy_id(hw);
469 if (ret_val)
470 return ret_val;
471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 break;
473 /* fall-through */
474 case e1000_pch2lan:
475 case e1000_pch_lpt:
476 case e1000_pch_spt:
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
479 */
480 ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 if (ret_val)
482 return ret_val;
483 ret_val = e1000e_get_phy_id(hw);
484 if (ret_val)
485 return ret_val;
486 break;
487 }
488 phy->type = e1000e_get_phy_type_from_id(phy->id);
489
490 switch (phy->type) {
491 case e1000_phy_82577:
492 case e1000_phy_82579:
493 case e1000_phy_i217:
494 phy->ops.check_polarity = e1000_check_polarity_82577;
495 phy->ops.force_speed_duplex =
496 e1000_phy_force_speed_duplex_82577;
497 phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 phy->ops.get_info = e1000_get_phy_info_82577;
499 phy->ops.commit = e1000e_phy_sw_reset;
500 break;
501 case e1000_phy_82578:
502 phy->ops.check_polarity = e1000_check_polarity_m88;
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 phy->ops.get_info = e1000e_get_phy_info_m88;
506 break;
507 default:
508 ret_val = -E1000_ERR_PHY;
509 break;
510 }
511
512 return ret_val;
513 }
514
515 /**
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
518 *
519 * Initialize family-specific PHY parameters and function pointers.
520 **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522 {
523 struct e1000_phy_info *phy = &hw->phy;
524 s32 ret_val;
525 u16 i = 0;
526
527 phy->addr = 1;
528 phy->reset_delay_us = 100;
529
530 phy->ops.power_up = e1000_power_up_phy_copper;
531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
535 */
536 ret_val = e1000e_determine_phy_address(hw);
537 if (ret_val) {
538 phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 ret_val = e1000e_determine_phy_address(hw);
541 if (ret_val) {
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
543 return ret_val;
544 }
545 }
546
547 phy->id = 0;
548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 (i++ < 100)) {
550 usleep_range(1000, 2000);
551 ret_val = e1000e_get_phy_id(hw);
552 if (ret_val)
553 return ret_val;
554 }
555
556 /* Verify phy id */
557 switch (phy->id) {
558 case IGP03E1000_E_PHY_ID:
559 phy->type = e1000_phy_igp_3;
560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 phy->ops.get_info = e1000e_get_phy_info_igp;
564 phy->ops.check_polarity = e1000_check_polarity_igp;
565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 break;
567 case IFE_E_PHY_ID:
568 case IFE_PLUS_E_PHY_ID:
569 case IFE_C_E_PHY_ID:
570 phy->type = e1000_phy_ife;
571 phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 phy->ops.get_info = e1000_get_phy_info_ife;
573 phy->ops.check_polarity = e1000_check_polarity_ife;
574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 break;
576 case BME1000_E_PHY_ID:
577 phy->type = e1000_phy_bm;
578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.commit = e1000e_phy_sw_reset;
582 phy->ops.get_info = e1000e_get_phy_info_m88;
583 phy->ops.check_polarity = e1000_check_polarity_m88;
584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 break;
586 default:
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591 }
592
593 /**
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
596 *
597 * Initialize family-specific NVM parameters and function
598 * pointers.
599 **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601 {
602 struct e1000_nvm_info *nvm = &hw->nvm;
603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 u32 gfpreg, sector_base_addr, sector_end_addr;
605 u16 i;
606 u32 nvm_size;
607
608 nvm->type = e1000_nvm_flash_sw;
609
610 if (hw->mac.type == e1000_pch_spt) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
616 */
617 nvm->flash_base_addr = 0;
618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER;
620 nvm->flash_bank_size = nvm_size / 2;
621 /* Adjust to word count */
622 nvm->flash_bank_size /= sizeof(u16);
623 /* Set the base address for flash register access */
624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 } else {
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw->flash_address) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG;
630 }
631
632 gfpreg = er32flash(ICH_FLASH_GFPREG);
633
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
636 * the overall size.
637 */
638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640
641 /* flash_base_addr is byte-aligned */
642 nvm->flash_base_addr = sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT;
644
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
647 */
648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 << FLASH_SECTOR_ADDR_SHIFT);
650 nvm->flash_bank_size /= 2;
651 /* Adjust to word count */
652 nvm->flash_bank_size /= sizeof(u16);
653 }
654
655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656
657 /* Clear shadow ram */
658 for (i = 0; i < nvm->word_size; i++) {
659 dev_spec->shadow_ram[i].modified = false;
660 dev_spec->shadow_ram[i].value = 0xFFFF;
661 }
662
663 return 0;
664 }
665
666 /**
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
669 *
670 * Initialize family-specific MAC parameters and function
671 * pointers.
672 **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674 {
675 struct e1000_mac_info *mac = &hw->mac;
676
677 /* Set media type function pointer */
678 hw->phy.media_type = e1000_media_type_copper;
679
680 /* Set mta register count */
681 mac->mta_reg_count = 32;
682 /* Set rar entry count */
683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 if (mac->type == e1000_ich8lan)
685 mac->rar_entry_count--;
686 /* FWSM register */
687 mac->has_fwsm = true;
688 /* ARC subsystem not supported */
689 mac->arc_subsystem_valid = false;
690 /* Adaptive IFS supported */
691 mac->adaptive_ifs = true;
692
693 /* LED and other operations */
694 switch (mac->type) {
695 case e1000_ich8lan:
696 case e1000_ich9lan:
697 case e1000_ich10lan:
698 /* check management mode */
699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 /* ID LED init */
701 mac->ops.id_led_init = e1000e_id_led_init_generic;
702 /* blink LED */
703 mac->ops.blink_led = e1000e_blink_led_generic;
704 /* setup LED */
705 mac->ops.setup_led = e1000e_setup_led_generic;
706 /* cleanup LED */
707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 /* turn on/off LED */
709 mac->ops.led_on = e1000_led_on_ich8lan;
710 mac->ops.led_off = e1000_led_off_ich8lan;
711 break;
712 case e1000_pch2lan:
713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 mac->ops.rar_set = e1000_rar_set_pch2lan;
715 /* fall-through */
716 case e1000_pch_lpt:
717 case e1000_pch_spt:
718 case e1000_pchlan:
719 /* check management mode */
720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 /* ID LED init */
722 mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 /* setup LED */
724 mac->ops.setup_led = e1000_setup_led_pchlan;
725 /* cleanup LED */
726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 /* turn on/off LED */
728 mac->ops.led_on = e1000_led_on_pchlan;
729 mac->ops.led_off = e1000_led_off_pchlan;
730 break;
731 default:
732 break;
733 }
734
735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 mac->ops.setup_physical_interface =
739 e1000_setup_copper_link_pch_lpt;
740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 }
742
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac->type == e1000_ich8lan)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746
747 return 0;
748 }
749
750 /**
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
756 *
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
758 **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 u16 *data, bool read)
761 {
762 s32 ret_val;
763
764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 if (ret_val)
766 return ret_val;
767
768 if (read)
769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 else
771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772
773 return ret_val;
774 }
775
776 /**
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
781 *
782 * Assumes the SW/FW/HW Semaphore is already acquired.
783 **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785 {
786 return __e1000_access_emi_reg_locked(hw, addr, data, true);
787 }
788
789 /**
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
794 *
795 * Assumes the SW/FW/HW Semaphore is already acquired.
796 **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798 {
799 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800 }
801
802 /**
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
805 *
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
809 *
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
815 **/
e1000_set_eee_pchlan(struct e1000_hw * hw)816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817 {
818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 s32 ret_val;
820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821
822 switch (hw->phy.type) {
823 case e1000_phy_82579:
824 lpa = I82579_EEE_LP_ABILITY;
825 pcs_status = I82579_EEE_PCS_STATUS;
826 adv_addr = I82579_EEE_ADVERTISEMENT;
827 break;
828 case e1000_phy_i217:
829 lpa = I217_EEE_LP_ABILITY;
830 pcs_status = I217_EEE_PCS_STATUS;
831 adv_addr = I217_EEE_ADVERTISEMENT;
832 break;
833 default:
834 return 0;
835 }
836
837 ret_val = hw->phy.ops.acquire(hw);
838 if (ret_val)
839 return ret_val;
840
841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 if (ret_val)
843 goto release;
844
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec->eee_disable) {
850 /* Save off link partner's EEE ability */
851 ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 &dev_spec->eee_lp_ability);
853 if (ret_val)
854 goto release;
855
856 /* Read EEE advertisement */
857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 if (ret_val)
859 goto release;
860
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
863 */
864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 e1e_rphy_locked(hw, MII_LPA, &data);
869 if (data & LPA_100FULL)
870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 else
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
874 * is not advertised.
875 */
876 dev_spec->eee_lp_ability &=
877 ~I82579_EEE_100_SUPPORTED;
878 }
879 }
880
881 if (hw->phy.type == e1000_phy_82579) {
882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 &data);
884 if (ret_val)
885 goto release;
886
887 data &= ~I82579_LPI_100_PLL_SHUT;
888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 data);
890 }
891
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 if (ret_val)
895 goto release;
896
897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 hw->phy.ops.release(hw);
900
901 return ret_val;
902 }
903
904 /**
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
908 *
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
914 **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916 {
917 u32 fextnvm6 = er32(FEXTNVM6);
918 u32 status = er32(STATUS);
919 s32 ret_val = 0;
920 u16 reg;
921
922 if (link && (status & E1000_STATUS_SPEED_1000)) {
923 ret_val = hw->phy.ops.acquire(hw);
924 if (ret_val)
925 return ret_val;
926
927 ret_val =
928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 ®);
930 if (ret_val)
931 goto release;
932
933 ret_val =
934 e1000e_write_kmrn_reg_locked(hw,
935 E1000_KMRNCTRLSTA_K1_CONFIG,
936 reg &
937 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 if (ret_val)
939 goto release;
940
941 usleep_range(10, 20);
942
943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944
945 ret_val =
946 e1000e_write_kmrn_reg_locked(hw,
947 E1000_KMRNCTRLSTA_K1_CONFIG,
948 reg);
949 release:
950 hw->phy.ops.release(hw);
951 } else {
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954
955 if ((hw->phy.revision > 5) || !link ||
956 ((status & E1000_STATUS_SPEED_100) &&
957 (status & E1000_STATUS_FD)))
958 goto update_fextnvm6;
959
960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
961 if (ret_val)
962 return ret_val;
963
964 /* Clear link status transmit timeout */
965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966
967 if (status & E1000_STATUS_SPEED_100) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 } else {
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
975 reg |= 50 <<
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 }
981
982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 if (ret_val)
984 return ret_val;
985
986 update_fextnvm6:
987 ew32(FEXTNVM6, fextnvm6);
988 }
989
990 return ret_val;
991 }
992
993 /**
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
997 *
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1008 **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010 {
1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 u16 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1014 u16 lat_enc_d = 0; /* latency decoded */
1015 u16 lat_enc = 0; /* latency encoded */
1016
1017 if (link) {
1018 u16 speed, duplex, scale = 0;
1019 u16 max_snoop, max_nosnoop;
1020 u16 max_ltr_enc; /* max LTR latency encoded */
1021 u64 value;
1022 u32 rxa;
1023
1024 if (!hw->adapter->max_frame_size) {
1025 e_dbg("max_frame_size not set.\n");
1026 return -E1000_ERR_CONFIG;
1027 }
1028
1029 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1030 if (!speed) {
1031 e_dbg("Speed not set.\n");
1032 return -E1000_ERR_CONFIG;
1033 }
1034
1035 /* Rx Packet Buffer Allocation size (KB) */
1036 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1037
1038 /* Determine the maximum latency tolerated by the device.
1039 *
1040 * Per the PCIe spec, the tolerated latencies are encoded as
1041 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1042 * a 10-bit value (0-1023) to provide a range from 1 ns to
1043 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1044 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1045 */
1046 rxa *= 512;
1047 value = (rxa > hw->adapter->max_frame_size) ?
1048 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1049 0;
1050
1051 while (value > PCI_LTR_VALUE_MASK) {
1052 scale++;
1053 value = DIV_ROUND_UP(value, (1 << 5));
1054 }
1055 if (scale > E1000_LTRV_SCALE_MAX) {
1056 e_dbg("Invalid LTR latency scale %d\n", scale);
1057 return -E1000_ERR_CONFIG;
1058 }
1059 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1060
1061 /* Determine the maximum latency tolerated by the platform */
1062 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1063 &max_snoop);
1064 pci_read_config_word(hw->adapter->pdev,
1065 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1067
1068 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1069 (1U << (E1000_LTRV_SCALE_FACTOR *
1070 ((lat_enc & E1000_LTRV_SCALE_MASK)
1071 >> E1000_LTRV_SCALE_SHIFT)));
1072
1073 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1074 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1076 >> E1000_LTRV_SCALE_SHIFT)));
1077
1078 if (lat_enc_d > max_ltr_enc_d)
1079 lat_enc = max_ltr_enc;
1080 }
1081
1082 /* Set Snoop and No-Snoop latencies the same */
1083 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1084 ew32(LTRV, reg);
1085
1086 return 0;
1087 }
1088
1089 /**
1090 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1091 * @hw: pointer to the HW structure
1092 * @to_sx: boolean indicating a system power state transition to Sx
1093 *
1094 * When link is down, configure ULP mode to significantly reduce the power
1095 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1096 * ME firmware to start the ULP configuration. If not on an ME enabled
1097 * system, configure the ULP mode by software.
1098 */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1099 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1100 {
1101 u32 mac_reg;
1102 s32 ret_val = 0;
1103 u16 phy_reg;
1104 u16 oem_reg = 0;
1105
1106 if ((hw->mac.type < e1000_pch_lpt) ||
1107 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1108 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1109 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1111 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1112 return 0;
1113
1114 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1115 /* Request ME configure ULP mode in the PHY */
1116 mac_reg = er32(H2ME);
1117 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1118 ew32(H2ME, mac_reg);
1119
1120 goto out;
1121 }
1122
1123 if (!to_sx) {
1124 int i = 0;
1125
1126 /* Poll up to 5 seconds for Cable Disconnected indication */
1127 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1128 /* Bail if link is re-acquired */
1129 if (er32(STATUS) & E1000_STATUS_LU)
1130 return -E1000_ERR_PHY;
1131
1132 if (i++ == 100)
1133 break;
1134
1135 msleep(50);
1136 }
1137 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1138 (er32(FEXT) &
1139 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1140 }
1141
1142 ret_val = hw->phy.ops.acquire(hw);
1143 if (ret_val)
1144 goto out;
1145
1146 /* Force SMBus mode in PHY */
1147 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1148 if (ret_val)
1149 goto release;
1150 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1151 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1152
1153 /* Force SMBus mode in MAC */
1154 mac_reg = er32(CTRL_EXT);
1155 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1156 ew32(CTRL_EXT, mac_reg);
1157
1158 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1159 * LPLU and disable Gig speed when entering ULP
1160 */
1161 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1162 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163 &oem_reg);
1164 if (ret_val)
1165 goto release;
1166
1167 phy_reg = oem_reg;
1168 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1169
1170 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1171 phy_reg);
1172
1173 if (ret_val)
1174 goto release;
1175 }
1176
1177 /* Set Inband ULP Exit, Reset to SMBus mode and
1178 * Disable SMBus Release on PERST# in PHY
1179 */
1180 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1181 if (ret_val)
1182 goto release;
1183 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1184 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1185 if (to_sx) {
1186 if (er32(WUFC) & E1000_WUFC_LNKC)
1187 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1188 else
1189 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1190
1191 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1192 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1193 } else {
1194 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1195 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1196 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1197 }
1198 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199
1200 /* Set Disable SMBus Release on PERST# in MAC */
1201 mac_reg = er32(FEXTNVM7);
1202 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1203 ew32(FEXTNVM7, mac_reg);
1204
1205 /* Commit ULP changes in PHY by starting auto ULP configuration */
1206 phy_reg |= I218_ULP_CONFIG1_START;
1207 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1208
1209 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1210 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1211 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1212 oem_reg);
1213 if (ret_val)
1214 goto release;
1215 }
1216
1217 release:
1218 hw->phy.ops.release(hw);
1219 out:
1220 if (ret_val)
1221 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1222 else
1223 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1224
1225 return ret_val;
1226 }
1227
1228 /**
1229 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1230 * @hw: pointer to the HW structure
1231 * @force: boolean indicating whether or not to force disabling ULP
1232 *
1233 * Un-configure ULP mode when link is up, the system is transitioned from
1234 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1235 * system, poll for an indication from ME that ULP has been un-configured.
1236 * If not on an ME enabled system, un-configure the ULP mode by software.
1237 *
1238 * During nominal operation, this function is called when link is acquired
1239 * to disable ULP mode (force=false); otherwise, for example when unloading
1240 * the driver or during Sx->S0 transitions, this is called with force=true
1241 * to forcibly disable ULP.
1242 */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1243 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1244 {
1245 s32 ret_val = 0;
1246 u32 mac_reg;
1247 u16 phy_reg;
1248 int i = 0;
1249
1250 if ((hw->mac.type < e1000_pch_lpt) ||
1251 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1252 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1253 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1255 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1256 return 0;
1257
1258 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1259 if (force) {
1260 /* Request ME un-configure ULP mode in the PHY */
1261 mac_reg = er32(H2ME);
1262 mac_reg &= ~E1000_H2ME_ULP;
1263 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1264 ew32(H2ME, mac_reg);
1265 }
1266
1267 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1268 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1269 if (i++ == 10) {
1270 ret_val = -E1000_ERR_PHY;
1271 goto out;
1272 }
1273
1274 usleep_range(10000, 20000);
1275 }
1276 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1277
1278 if (force) {
1279 mac_reg = er32(H2ME);
1280 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1281 ew32(H2ME, mac_reg);
1282 } else {
1283 /* Clear H2ME.ULP after ME ULP configuration */
1284 mac_reg = er32(H2ME);
1285 mac_reg &= ~E1000_H2ME_ULP;
1286 ew32(H2ME, mac_reg);
1287 }
1288
1289 goto out;
1290 }
1291
1292 ret_val = hw->phy.ops.acquire(hw);
1293 if (ret_val)
1294 goto out;
1295
1296 if (force)
1297 /* Toggle LANPHYPC Value bit */
1298 e1000_toggle_lanphypc_pch_lpt(hw);
1299
1300 /* Unforce SMBus mode in PHY */
1301 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1302 if (ret_val) {
1303 /* The MAC might be in PCIe mode, so temporarily force to
1304 * SMBus mode in order to access the PHY.
1305 */
1306 mac_reg = er32(CTRL_EXT);
1307 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1308 ew32(CTRL_EXT, mac_reg);
1309
1310 msleep(50);
1311
1312 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1313 &phy_reg);
1314 if (ret_val)
1315 goto release;
1316 }
1317 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1318 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1319
1320 /* Unforce SMBus mode in MAC */
1321 mac_reg = er32(CTRL_EXT);
1322 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1323 ew32(CTRL_EXT, mac_reg);
1324
1325 /* When ULP mode was previously entered, K1 was disabled by the
1326 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1327 */
1328 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1329 if (ret_val)
1330 goto release;
1331 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1332 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1333
1334 /* Clear ULP enabled configuration */
1335 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1336 if (ret_val)
1337 goto release;
1338 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1339 I218_ULP_CONFIG1_STICKY_ULP |
1340 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1341 I218_ULP_CONFIG1_WOL_HOST |
1342 I218_ULP_CONFIG1_INBAND_EXIT |
1343 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1344 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1345
1346 /* Commit ULP changes by starting auto ULP configuration */
1347 phy_reg |= I218_ULP_CONFIG1_START;
1348 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1349
1350 /* Clear Disable SMBus Release on PERST# in MAC */
1351 mac_reg = er32(FEXTNVM7);
1352 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1353 ew32(FEXTNVM7, mac_reg);
1354
1355 release:
1356 hw->phy.ops.release(hw);
1357 if (force) {
1358 e1000_phy_hw_reset(hw);
1359 msleep(50);
1360 }
1361 out:
1362 if (ret_val)
1363 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1364 else
1365 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1366
1367 return ret_val;
1368 }
1369
1370 /**
1371 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1372 * @hw: pointer to the HW structure
1373 *
1374 * Checks to see of the link status of the hardware has changed. If a
1375 * change in link status has been detected, then we read the PHY registers
1376 * to get the current speed/duplex if link exists.
1377 *
1378 * Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
1379 * up).
1380 **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1381 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1382 {
1383 struct e1000_mac_info *mac = &hw->mac;
1384 s32 ret_val, tipg_reg = 0;
1385 u16 emi_addr, emi_val = 0;
1386 bool link;
1387 u16 phy_reg;
1388
1389 /* We only want to go out to the PHY registers to see if Auto-Neg
1390 * has completed and/or if our link status has changed. The
1391 * get_link_status flag is set upon receiving a Link Status
1392 * Change or Rx Sequence Error interrupt.
1393 */
1394 if (!mac->get_link_status)
1395 return 1;
1396
1397 /* First we want to see if the MII Status Register reports
1398 * link. If so, then we want to get the current speed/duplex
1399 * of the PHY.
1400 */
1401 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1402 if (ret_val)
1403 return ret_val;
1404
1405 if (hw->mac.type == e1000_pchlan) {
1406 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1407 if (ret_val)
1408 return ret_val;
1409 }
1410
1411 /* When connected at 10Mbps half-duplex, some parts are excessively
1412 * aggressive resulting in many collisions. To avoid this, increase
1413 * the IPG and reduce Rx latency in the PHY.
1414 */
1415 if (((hw->mac.type == e1000_pch2lan) ||
1416 (hw->mac.type == e1000_pch_lpt) ||
1417 (hw->mac.type == e1000_pch_spt)) && link) {
1418 u16 speed, duplex;
1419
1420 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1421 tipg_reg = er32(TIPG);
1422 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1423
1424 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1425 tipg_reg |= 0xFF;
1426 /* Reduce Rx latency in analog PHY */
1427 emi_val = 0;
1428 } else if (hw->mac.type == e1000_pch_spt &&
1429 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1430 tipg_reg |= 0xC;
1431 emi_val = 1;
1432 } else {
1433
1434 /* Roll back the default values */
1435 tipg_reg |= 0x08;
1436 emi_val = 1;
1437 }
1438
1439 ew32(TIPG, tipg_reg);
1440
1441 ret_val = hw->phy.ops.acquire(hw);
1442 if (ret_val)
1443 return ret_val;
1444
1445 if (hw->mac.type == e1000_pch2lan)
1446 emi_addr = I82579_RX_CONFIG;
1447 else
1448 emi_addr = I217_RX_CONFIG;
1449 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1450
1451 hw->phy.ops.release(hw);
1452
1453 if (ret_val)
1454 return ret_val;
1455
1456 if (hw->mac.type == e1000_pch_spt) {
1457 u16 data;
1458 u16 ptr_gap;
1459
1460 if (speed == SPEED_1000) {
1461 ret_val = hw->phy.ops.acquire(hw);
1462 if (ret_val)
1463 return ret_val;
1464
1465 ret_val = e1e_rphy_locked(hw,
1466 PHY_REG(776, 20),
1467 &data);
1468 if (ret_val) {
1469 hw->phy.ops.release(hw);
1470 return ret_val;
1471 }
1472
1473 ptr_gap = (data & (0x3FF << 2)) >> 2;
1474 if (ptr_gap < 0x18) {
1475 data &= ~(0x3FF << 2);
1476 data |= (0x18 << 2);
1477 ret_val =
1478 e1e_wphy_locked(hw,
1479 PHY_REG(776, 20),
1480 data);
1481 }
1482 hw->phy.ops.release(hw);
1483 if (ret_val)
1484 return ret_val;
1485 }
1486 }
1487 }
1488
1489 /* I217 Packet Loss issue:
1490 * ensure that FEXTNVM4 Beacon Duration is set correctly
1491 * on power up.
1492 * Set the Beacon Duration for I217 to 8 usec
1493 */
1494 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1495 u32 mac_reg;
1496
1497 mac_reg = er32(FEXTNVM4);
1498 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1499 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1500 ew32(FEXTNVM4, mac_reg);
1501 }
1502
1503 /* Work-around I218 hang issue */
1504 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1505 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1506 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1507 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1508 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1509 if (ret_val)
1510 return ret_val;
1511 }
1512 if ((hw->mac.type == e1000_pch_lpt) ||
1513 (hw->mac.type == e1000_pch_spt)) {
1514 /* Set platform power management values for
1515 * Latency Tolerance Reporting (LTR)
1516 */
1517 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1518 if (ret_val)
1519 return ret_val;
1520 }
1521
1522 /* Clear link partner's EEE ability */
1523 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1524
1525 /* FEXTNVM6 K1-off workaround */
1526 if (hw->mac.type == e1000_pch_spt) {
1527 u32 pcieanacfg = er32(PCIEANACFG);
1528 u32 fextnvm6 = er32(FEXTNVM6);
1529
1530 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1531 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1532 else
1533 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1534
1535 ew32(FEXTNVM6, fextnvm6);
1536 }
1537
1538 if (!link)
1539 return 0; /* No link detected */
1540
1541 mac->get_link_status = false;
1542
1543 switch (hw->mac.type) {
1544 case e1000_pch2lan:
1545 ret_val = e1000_k1_workaround_lv(hw);
1546 if (ret_val)
1547 return ret_val;
1548 /* fall-thru */
1549 case e1000_pchlan:
1550 if (hw->phy.type == e1000_phy_82578) {
1551 ret_val = e1000_link_stall_workaround_hv(hw);
1552 if (ret_val)
1553 return ret_val;
1554 }
1555
1556 /* Workaround for PCHx parts in half-duplex:
1557 * Set the number of preambles removed from the packet
1558 * when it is passed from the PHY to the MAC to prevent
1559 * the MAC from misinterpreting the packet type.
1560 */
1561 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1562 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1563
1564 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1565 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1566
1567 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1568 break;
1569 default:
1570 break;
1571 }
1572
1573 /* Check if there was DownShift, must be checked
1574 * immediately after link-up
1575 */
1576 e1000e_check_downshift(hw);
1577
1578 /* Enable/Disable EEE after link up */
1579 if (hw->phy.type > e1000_phy_82579) {
1580 ret_val = e1000_set_eee_pchlan(hw);
1581 if (ret_val)
1582 return ret_val;
1583 }
1584
1585 /* If we are forcing speed/duplex, then we simply return since
1586 * we have already determined whether we have link or not.
1587 */
1588 if (!mac->autoneg)
1589 return 1;
1590
1591 /* Auto-Neg is enabled. Auto Speed Detection takes care
1592 * of MAC speed/duplex configuration. So we only need to
1593 * configure Collision Distance in the MAC.
1594 */
1595 mac->ops.config_collision_dist(hw);
1596
1597 /* Configure Flow Control now that Auto-Neg has completed.
1598 * First, we need to restore the desired flow control
1599 * settings because we may have had to re-autoneg with a
1600 * different link partner.
1601 */
1602 ret_val = e1000e_config_fc_after_link_up(hw);
1603 if (ret_val) {
1604 e_dbg("Error configuring flow control\n");
1605 return ret_val;
1606 }
1607
1608 return 1;
1609 }
1610
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1611 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1612 {
1613 struct e1000_hw *hw = &adapter->hw;
1614 s32 rc;
1615
1616 rc = e1000_init_mac_params_ich8lan(hw);
1617 if (rc)
1618 return rc;
1619
1620 rc = e1000_init_nvm_params_ich8lan(hw);
1621 if (rc)
1622 return rc;
1623
1624 switch (hw->mac.type) {
1625 case e1000_ich8lan:
1626 case e1000_ich9lan:
1627 case e1000_ich10lan:
1628 rc = e1000_init_phy_params_ich8lan(hw);
1629 break;
1630 case e1000_pchlan:
1631 case e1000_pch2lan:
1632 case e1000_pch_lpt:
1633 case e1000_pch_spt:
1634 rc = e1000_init_phy_params_pchlan(hw);
1635 break;
1636 default:
1637 break;
1638 }
1639 if (rc)
1640 return rc;
1641
1642 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1643 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1644 */
1645 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1646 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1647 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1648 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1649 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1650
1651 hw->mac.ops.blink_led = NULL;
1652 }
1653
1654 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1655 (adapter->hw.phy.type != e1000_phy_ife))
1656 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1657
1658 /* Enable workaround for 82579 w/ ME enabled */
1659 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1660 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1661 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1662
1663 return 0;
1664 }
1665
1666 static DEFINE_MUTEX(nvm_mutex);
1667
1668 /**
1669 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1670 * @hw: pointer to the HW structure
1671 *
1672 * Acquires the mutex for performing NVM operations.
1673 **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1674 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1675 {
1676 mutex_lock(&nvm_mutex);
1677
1678 return 0;
1679 }
1680
1681 /**
1682 * e1000_release_nvm_ich8lan - Release NVM mutex
1683 * @hw: pointer to the HW structure
1684 *
1685 * Releases the mutex used while performing NVM operations.
1686 **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1687 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1688 {
1689 mutex_unlock(&nvm_mutex);
1690 }
1691
1692 /**
1693 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1694 * @hw: pointer to the HW structure
1695 *
1696 * Acquires the software control flag for performing PHY and select
1697 * MAC CSR accesses.
1698 **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1699 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1700 {
1701 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1702 s32 ret_val = 0;
1703
1704 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1705 &hw->adapter->state)) {
1706 e_dbg("contention for Phy access\n");
1707 return -E1000_ERR_PHY;
1708 }
1709
1710 while (timeout) {
1711 extcnf_ctrl = er32(EXTCNF_CTRL);
1712 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1713 break;
1714
1715 mdelay(1);
1716 timeout--;
1717 }
1718
1719 if (!timeout) {
1720 e_dbg("SW has already locked the resource.\n");
1721 ret_val = -E1000_ERR_CONFIG;
1722 goto out;
1723 }
1724
1725 timeout = SW_FLAG_TIMEOUT;
1726
1727 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1728 ew32(EXTCNF_CTRL, extcnf_ctrl);
1729
1730 while (timeout) {
1731 extcnf_ctrl = er32(EXTCNF_CTRL);
1732 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1733 break;
1734
1735 mdelay(1);
1736 timeout--;
1737 }
1738
1739 if (!timeout) {
1740 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1741 er32(FWSM), extcnf_ctrl);
1742 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1743 ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 ret_val = -E1000_ERR_CONFIG;
1745 goto out;
1746 }
1747
1748 out:
1749 if (ret_val)
1750 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1751
1752 return ret_val;
1753 }
1754
1755 /**
1756 * e1000_release_swflag_ich8lan - Release software control flag
1757 * @hw: pointer to the HW structure
1758 *
1759 * Releases the software control flag for performing PHY and select
1760 * MAC CSR accesses.
1761 **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1762 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1763 {
1764 u32 extcnf_ctrl;
1765
1766 extcnf_ctrl = er32(EXTCNF_CTRL);
1767
1768 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1769 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1770 ew32(EXTCNF_CTRL, extcnf_ctrl);
1771 } else {
1772 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1773 }
1774
1775 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1776 }
1777
1778 /**
1779 * e1000_check_mng_mode_ich8lan - Checks management mode
1780 * @hw: pointer to the HW structure
1781 *
1782 * This checks if the adapter has any manageability enabled.
1783 * This is a function pointer entry point only called by read/write
1784 * routines for the PHY and NVM parts.
1785 **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1786 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1787 {
1788 u32 fwsm;
1789
1790 fwsm = er32(FWSM);
1791 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1792 ((fwsm & E1000_FWSM_MODE_MASK) ==
1793 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1794 }
1795
1796 /**
1797 * e1000_check_mng_mode_pchlan - Checks management mode
1798 * @hw: pointer to the HW structure
1799 *
1800 * This checks if the adapter has iAMT enabled.
1801 * This is a function pointer entry point only called by read/write
1802 * routines for the PHY and NVM parts.
1803 **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1804 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1805 {
1806 u32 fwsm;
1807
1808 fwsm = er32(FWSM);
1809 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812
1813 /**
1814 * e1000_rar_set_pch2lan - Set receive address register
1815 * @hw: pointer to the HW structure
1816 * @addr: pointer to the receive address
1817 * @index: receive address array register
1818 *
1819 * Sets the receive address array register at index to the address passed
1820 * in by addr. For 82579, RAR[0] is the base address register that is to
1821 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822 * Use SHRA[0-3] in place of those reserved for ME.
1823 **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1824 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825 {
1826 u32 rar_low, rar_high;
1827
1828 /* HW expects these in little endian so we reverse the byte order
1829 * from network order (big endian) to little endian
1830 */
1831 rar_low = ((u32)addr[0] |
1832 ((u32)addr[1] << 8) |
1833 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1834
1835 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1836
1837 /* If MAC address zero, no need to set the AV bit */
1838 if (rar_low || rar_high)
1839 rar_high |= E1000_RAH_AV;
1840
1841 if (index == 0) {
1842 ew32(RAL(index), rar_low);
1843 e1e_flush();
1844 ew32(RAH(index), rar_high);
1845 e1e_flush();
1846 return 0;
1847 }
1848
1849 /* RAR[1-6] are owned by manageability. Skip those and program the
1850 * next address into the SHRA register array.
1851 */
1852 if (index < (u32)(hw->mac.rar_entry_count)) {
1853 s32 ret_val;
1854
1855 ret_val = e1000_acquire_swflag_ich8lan(hw);
1856 if (ret_val)
1857 goto out;
1858
1859 ew32(SHRAL(index - 1), rar_low);
1860 e1e_flush();
1861 ew32(SHRAH(index - 1), rar_high);
1862 e1e_flush();
1863
1864 e1000_release_swflag_ich8lan(hw);
1865
1866 /* verify the register updates */
1867 if ((er32(SHRAL(index - 1)) == rar_low) &&
1868 (er32(SHRAH(index - 1)) == rar_high))
1869 return 0;
1870
1871 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1872 (index - 1), er32(FWSM));
1873 }
1874
1875 out:
1876 e_dbg("Failed to write receive address at index %d\n", index);
1877 return -E1000_ERR_CONFIG;
1878 }
1879
1880 /**
1881 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1882 * @hw: pointer to the HW structure
1883 *
1884 * Get the number of available receive registers that the Host can
1885 * program. SHRA[0-10] are the shared receive address registers
1886 * that are shared between the Host and manageability engine (ME).
1887 * ME can reserve any number of addresses and the host needs to be
1888 * able to tell how many available registers it has access to.
1889 **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1890 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1891 {
1892 u32 wlock_mac;
1893 u32 num_entries;
1894
1895 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1896 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1897
1898 switch (wlock_mac) {
1899 case 0:
1900 /* All SHRA[0..10] and RAR[0] available */
1901 num_entries = hw->mac.rar_entry_count;
1902 break;
1903 case 1:
1904 /* Only RAR[0] available */
1905 num_entries = 1;
1906 break;
1907 default:
1908 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1909 num_entries = wlock_mac + 1;
1910 break;
1911 }
1912
1913 return num_entries;
1914 }
1915
1916 /**
1917 * e1000_rar_set_pch_lpt - Set receive address registers
1918 * @hw: pointer to the HW structure
1919 * @addr: pointer to the receive address
1920 * @index: receive address array register
1921 *
1922 * Sets the receive address register array at index to the address passed
1923 * in by addr. For LPT, RAR[0] is the base address register that is to
1924 * contain the MAC address. SHRA[0-10] are the shared receive address
1925 * registers that are shared between the Host and manageability engine (ME).
1926 **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1927 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1928 {
1929 u32 rar_low, rar_high;
1930 u32 wlock_mac;
1931
1932 /* HW expects these in little endian so we reverse the byte order
1933 * from network order (big endian) to little endian
1934 */
1935 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1936 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1937
1938 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1939
1940 /* If MAC address zero, no need to set the AV bit */
1941 if (rar_low || rar_high)
1942 rar_high |= E1000_RAH_AV;
1943
1944 if (index == 0) {
1945 ew32(RAL(index), rar_low);
1946 e1e_flush();
1947 ew32(RAH(index), rar_high);
1948 e1e_flush();
1949 return 0;
1950 }
1951
1952 /* The manageability engine (ME) can lock certain SHRAR registers that
1953 * it is using - those registers are unavailable for use.
1954 */
1955 if (index < hw->mac.rar_entry_count) {
1956 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1957 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1958
1959 /* Check if all SHRAR registers are locked */
1960 if (wlock_mac == 1)
1961 goto out;
1962
1963 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1964 s32 ret_val;
1965
1966 ret_val = e1000_acquire_swflag_ich8lan(hw);
1967
1968 if (ret_val)
1969 goto out;
1970
1971 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1972 e1e_flush();
1973 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1974 e1e_flush();
1975
1976 e1000_release_swflag_ich8lan(hw);
1977
1978 /* verify the register updates */
1979 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1980 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1981 return 0;
1982 }
1983 }
1984
1985 out:
1986 e_dbg("Failed to write receive address at index %d\n", index);
1987 return -E1000_ERR_CONFIG;
1988 }
1989
1990 /**
1991 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1992 * @hw: pointer to the HW structure
1993 *
1994 * Checks if firmware is blocking the reset of the PHY.
1995 * This is a function pointer entry point only called by
1996 * reset routines.
1997 **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)1998 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1999 {
2000 bool blocked = false;
2001 int i = 0;
2002
2003 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2004 (i++ < 10))
2005 usleep_range(10000, 20000);
2006 return blocked ? E1000_BLK_PHY_RESET : 0;
2007 }
2008
2009 /**
2010 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2011 * @hw: pointer to the HW structure
2012 *
2013 * Assumes semaphore already acquired.
2014 *
2015 **/
e1000_write_smbus_addr(struct e1000_hw * hw)2016 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2017 {
2018 u16 phy_data;
2019 u32 strap = er32(STRAP);
2020 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2021 E1000_STRAP_SMT_FREQ_SHIFT;
2022 s32 ret_val;
2023
2024 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2025
2026 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2027 if (ret_val)
2028 return ret_val;
2029
2030 phy_data &= ~HV_SMB_ADDR_MASK;
2031 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2032 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2033
2034 if (hw->phy.type == e1000_phy_i217) {
2035 /* Restore SMBus frequency */
2036 if (freq--) {
2037 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2038 phy_data |= (freq & (1 << 0)) <<
2039 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2040 phy_data |= (freq & (1 << 1)) <<
2041 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2042 } else {
2043 e_dbg("Unsupported SMB frequency in PHY\n");
2044 }
2045 }
2046
2047 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2048 }
2049
2050 /**
2051 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2052 * @hw: pointer to the HW structure
2053 *
2054 * SW should configure the LCD from the NVM extended configuration region
2055 * as a workaround for certain parts.
2056 **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2057 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2058 {
2059 struct e1000_phy_info *phy = &hw->phy;
2060 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2061 s32 ret_val = 0;
2062 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2063
2064 /* Initialize the PHY from the NVM on ICH platforms. This
2065 * is needed due to an issue where the NVM configuration is
2066 * not properly autoloaded after power transitions.
2067 * Therefore, after each PHY reset, we will load the
2068 * configuration data out of the NVM manually.
2069 */
2070 switch (hw->mac.type) {
2071 case e1000_ich8lan:
2072 if (phy->type != e1000_phy_igp_3)
2073 return ret_val;
2074
2075 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2076 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2077 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2078 break;
2079 }
2080 /* Fall-thru */
2081 case e1000_pchlan:
2082 case e1000_pch2lan:
2083 case e1000_pch_lpt:
2084 case e1000_pch_spt:
2085 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2086 break;
2087 default:
2088 return ret_val;
2089 }
2090
2091 ret_val = hw->phy.ops.acquire(hw);
2092 if (ret_val)
2093 return ret_val;
2094
2095 data = er32(FEXTNVM);
2096 if (!(data & sw_cfg_mask))
2097 goto release;
2098
2099 /* Make sure HW does not configure LCD from PHY
2100 * extended configuration before SW configuration
2101 */
2102 data = er32(EXTCNF_CTRL);
2103 if ((hw->mac.type < e1000_pch2lan) &&
2104 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2105 goto release;
2106
2107 cnf_size = er32(EXTCNF_SIZE);
2108 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2109 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2110 if (!cnf_size)
2111 goto release;
2112
2113 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2114 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2115
2116 if (((hw->mac.type == e1000_pchlan) &&
2117 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2118 (hw->mac.type > e1000_pchlan)) {
2119 /* HW configures the SMBus address and LEDs when the
2120 * OEM and LCD Write Enable bits are set in the NVM.
2121 * When both NVM bits are cleared, SW will configure
2122 * them instead.
2123 */
2124 ret_val = e1000_write_smbus_addr(hw);
2125 if (ret_val)
2126 goto release;
2127
2128 data = er32(LEDCTL);
2129 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2130 (u16)data);
2131 if (ret_val)
2132 goto release;
2133 }
2134
2135 /* Configure LCD from extended configuration region. */
2136
2137 /* cnf_base_addr is in DWORD */
2138 word_addr = (u16)(cnf_base_addr << 1);
2139
2140 for (i = 0; i < cnf_size; i++) {
2141 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2142 if (ret_val)
2143 goto release;
2144
2145 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2146 1, ®_addr);
2147 if (ret_val)
2148 goto release;
2149
2150 /* Save off the PHY page for future writes. */
2151 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2152 phy_page = reg_data;
2153 continue;
2154 }
2155
2156 reg_addr &= PHY_REG_MASK;
2157 reg_addr |= phy_page;
2158
2159 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2160 if (ret_val)
2161 goto release;
2162 }
2163
2164 release:
2165 hw->phy.ops.release(hw);
2166 return ret_val;
2167 }
2168
2169 /**
2170 * e1000_k1_gig_workaround_hv - K1 Si workaround
2171 * @hw: pointer to the HW structure
2172 * @link: link up bool flag
2173 *
2174 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2175 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2176 * If link is down, the function will restore the default K1 setting located
2177 * in the NVM.
2178 **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2179 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2180 {
2181 s32 ret_val = 0;
2182 u16 status_reg = 0;
2183 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2184
2185 if (hw->mac.type != e1000_pchlan)
2186 return 0;
2187
2188 /* Wrap the whole flow with the sw flag */
2189 ret_val = hw->phy.ops.acquire(hw);
2190 if (ret_val)
2191 return ret_val;
2192
2193 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2194 if (link) {
2195 if (hw->phy.type == e1000_phy_82578) {
2196 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2197 &status_reg);
2198 if (ret_val)
2199 goto release;
2200
2201 status_reg &= (BM_CS_STATUS_LINK_UP |
2202 BM_CS_STATUS_RESOLVED |
2203 BM_CS_STATUS_SPEED_MASK);
2204
2205 if (status_reg == (BM_CS_STATUS_LINK_UP |
2206 BM_CS_STATUS_RESOLVED |
2207 BM_CS_STATUS_SPEED_1000))
2208 k1_enable = false;
2209 }
2210
2211 if (hw->phy.type == e1000_phy_82577) {
2212 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2213 if (ret_val)
2214 goto release;
2215
2216 status_reg &= (HV_M_STATUS_LINK_UP |
2217 HV_M_STATUS_AUTONEG_COMPLETE |
2218 HV_M_STATUS_SPEED_MASK);
2219
2220 if (status_reg == (HV_M_STATUS_LINK_UP |
2221 HV_M_STATUS_AUTONEG_COMPLETE |
2222 HV_M_STATUS_SPEED_1000))
2223 k1_enable = false;
2224 }
2225
2226 /* Link stall fix for link up */
2227 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2228 if (ret_val)
2229 goto release;
2230
2231 } else {
2232 /* Link stall fix for link down */
2233 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2234 if (ret_val)
2235 goto release;
2236 }
2237
2238 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2239
2240 release:
2241 hw->phy.ops.release(hw);
2242
2243 return ret_val;
2244 }
2245
2246 /**
2247 * e1000_configure_k1_ich8lan - Configure K1 power state
2248 * @hw: pointer to the HW structure
2249 * @enable: K1 state to configure
2250 *
2251 * Configure the K1 power state based on the provided parameter.
2252 * Assumes semaphore already acquired.
2253 *
2254 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2255 **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2256 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2257 {
2258 s32 ret_val;
2259 u32 ctrl_reg = 0;
2260 u32 ctrl_ext = 0;
2261 u32 reg = 0;
2262 u16 kmrn_reg = 0;
2263
2264 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2265 &kmrn_reg);
2266 if (ret_val)
2267 return ret_val;
2268
2269 if (k1_enable)
2270 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2271 else
2272 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2273
2274 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2275 kmrn_reg);
2276 if (ret_val)
2277 return ret_val;
2278
2279 usleep_range(20, 40);
2280 ctrl_ext = er32(CTRL_EXT);
2281 ctrl_reg = er32(CTRL);
2282
2283 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2284 reg |= E1000_CTRL_FRCSPD;
2285 ew32(CTRL, reg);
2286
2287 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2288 e1e_flush();
2289 usleep_range(20, 40);
2290 ew32(CTRL, ctrl_reg);
2291 ew32(CTRL_EXT, ctrl_ext);
2292 e1e_flush();
2293 usleep_range(20, 40);
2294
2295 return 0;
2296 }
2297
2298 /**
2299 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2300 * @hw: pointer to the HW structure
2301 * @d0_state: boolean if entering d0 or d3 device state
2302 *
2303 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2304 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2305 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2306 **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2307 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2308 {
2309 s32 ret_val = 0;
2310 u32 mac_reg;
2311 u16 oem_reg;
2312
2313 if (hw->mac.type < e1000_pchlan)
2314 return ret_val;
2315
2316 ret_val = hw->phy.ops.acquire(hw);
2317 if (ret_val)
2318 return ret_val;
2319
2320 if (hw->mac.type == e1000_pchlan) {
2321 mac_reg = er32(EXTCNF_CTRL);
2322 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2323 goto release;
2324 }
2325
2326 mac_reg = er32(FEXTNVM);
2327 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2328 goto release;
2329
2330 mac_reg = er32(PHY_CTRL);
2331
2332 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2333 if (ret_val)
2334 goto release;
2335
2336 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2337
2338 if (d0_state) {
2339 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2340 oem_reg |= HV_OEM_BITS_GBE_DIS;
2341
2342 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2343 oem_reg |= HV_OEM_BITS_LPLU;
2344 } else {
2345 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2346 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2347 oem_reg |= HV_OEM_BITS_GBE_DIS;
2348
2349 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2350 E1000_PHY_CTRL_NOND0A_LPLU))
2351 oem_reg |= HV_OEM_BITS_LPLU;
2352 }
2353
2354 /* Set Restart auto-neg to activate the bits */
2355 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2356 !hw->phy.ops.check_reset_block(hw))
2357 oem_reg |= HV_OEM_BITS_RESTART_AN;
2358
2359 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2360
2361 release:
2362 hw->phy.ops.release(hw);
2363
2364 return ret_val;
2365 }
2366
2367 /**
2368 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2369 * @hw: pointer to the HW structure
2370 **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2371 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2372 {
2373 s32 ret_val;
2374 u16 data;
2375
2376 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2377 if (ret_val)
2378 return ret_val;
2379
2380 data |= HV_KMRN_MDIO_SLOW;
2381
2382 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2383
2384 return ret_val;
2385 }
2386
2387 /**
2388 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2389 * done after every PHY reset.
2390 **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2391 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2392 {
2393 s32 ret_val = 0;
2394 u16 phy_data;
2395
2396 if (hw->mac.type != e1000_pchlan)
2397 return 0;
2398
2399 /* Set MDIO slow mode before any other MDIO access */
2400 if (hw->phy.type == e1000_phy_82577) {
2401 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2402 if (ret_val)
2403 return ret_val;
2404 }
2405
2406 if (((hw->phy.type == e1000_phy_82577) &&
2407 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2408 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2409 /* Disable generation of early preamble */
2410 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2411 if (ret_val)
2412 return ret_val;
2413
2414 /* Preamble tuning for SSC */
2415 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2416 if (ret_val)
2417 return ret_val;
2418 }
2419
2420 if (hw->phy.type == e1000_phy_82578) {
2421 /* Return registers to default by doing a soft reset then
2422 * writing 0x3140 to the control register.
2423 */
2424 if (hw->phy.revision < 2) {
2425 e1000e_phy_sw_reset(hw);
2426 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2427 }
2428 }
2429
2430 /* Select page 0 */
2431 ret_val = hw->phy.ops.acquire(hw);
2432 if (ret_val)
2433 return ret_val;
2434
2435 hw->phy.addr = 1;
2436 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2437 hw->phy.ops.release(hw);
2438 if (ret_val)
2439 return ret_val;
2440
2441 /* Configure the K1 Si workaround during phy reset assuming there is
2442 * link so that it disables K1 if link is in 1Gbps.
2443 */
2444 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2445 if (ret_val)
2446 return ret_val;
2447
2448 /* Workaround for link disconnects on a busy hub in half duplex */
2449 ret_val = hw->phy.ops.acquire(hw);
2450 if (ret_val)
2451 return ret_val;
2452 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2453 if (ret_val)
2454 goto release;
2455 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2456 if (ret_val)
2457 goto release;
2458
2459 /* set MSE higher to enable link to stay up when noise is high */
2460 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2461 release:
2462 hw->phy.ops.release(hw);
2463
2464 return ret_val;
2465 }
2466
2467 /**
2468 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2469 * @hw: pointer to the HW structure
2470 **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2471 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2472 {
2473 u32 mac_reg;
2474 u16 i, phy_reg = 0;
2475 s32 ret_val;
2476
2477 ret_val = hw->phy.ops.acquire(hw);
2478 if (ret_val)
2479 return;
2480 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2481 if (ret_val)
2482 goto release;
2483
2484 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2485 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2486 mac_reg = er32(RAL(i));
2487 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2488 (u16)(mac_reg & 0xFFFF));
2489 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2490 (u16)((mac_reg >> 16) & 0xFFFF));
2491
2492 mac_reg = er32(RAH(i));
2493 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2494 (u16)(mac_reg & 0xFFFF));
2495 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2496 (u16)((mac_reg & E1000_RAH_AV)
2497 >> 16));
2498 }
2499
2500 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501
2502 release:
2503 hw->phy.ops.release(hw);
2504 }
2505
2506 /**
2507 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2508 * with 82579 PHY
2509 * @hw: pointer to the HW structure
2510 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2511 **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2512 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2513 {
2514 s32 ret_val = 0;
2515 u16 phy_reg, data;
2516 u32 mac_reg;
2517 u16 i;
2518
2519 if (hw->mac.type < e1000_pch2lan)
2520 return 0;
2521
2522 /* disable Rx path while enabling/disabling workaround */
2523 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2524 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2525 if (ret_val)
2526 return ret_val;
2527
2528 if (enable) {
2529 /* Write Rx addresses (rar_entry_count for RAL/H, and
2530 * SHRAL/H) and initial CRC values to the MAC
2531 */
2532 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2533 u8 mac_addr[ETH_ALEN] = { 0 };
2534 u32 addr_high, addr_low;
2535
2536 addr_high = er32(RAH(i));
2537 if (!(addr_high & E1000_RAH_AV))
2538 continue;
2539 addr_low = er32(RAL(i));
2540 mac_addr[0] = (addr_low & 0xFF);
2541 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2542 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2543 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2544 mac_addr[4] = (addr_high & 0xFF);
2545 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2546
2547 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2548 }
2549
2550 /* Write Rx addresses to the PHY */
2551 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2552
2553 /* Enable jumbo frame workaround in the MAC */
2554 mac_reg = er32(FFLT_DBG);
2555 mac_reg &= ~(1 << 14);
2556 mac_reg |= (7 << 15);
2557 ew32(FFLT_DBG, mac_reg);
2558
2559 mac_reg = er32(RCTL);
2560 mac_reg |= E1000_RCTL_SECRC;
2561 ew32(RCTL, mac_reg);
2562
2563 ret_val = e1000e_read_kmrn_reg(hw,
2564 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2565 &data);
2566 if (ret_val)
2567 return ret_val;
2568 ret_val = e1000e_write_kmrn_reg(hw,
2569 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2570 data | (1 << 0));
2571 if (ret_val)
2572 return ret_val;
2573 ret_val = e1000e_read_kmrn_reg(hw,
2574 E1000_KMRNCTRLSTA_HD_CTRL,
2575 &data);
2576 if (ret_val)
2577 return ret_val;
2578 data &= ~(0xF << 8);
2579 data |= (0xB << 8);
2580 ret_val = e1000e_write_kmrn_reg(hw,
2581 E1000_KMRNCTRLSTA_HD_CTRL,
2582 data);
2583 if (ret_val)
2584 return ret_val;
2585
2586 /* Enable jumbo frame workaround in the PHY */
2587 e1e_rphy(hw, PHY_REG(769, 23), &data);
2588 data &= ~(0x7F << 5);
2589 data |= (0x37 << 5);
2590 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2591 if (ret_val)
2592 return ret_val;
2593 e1e_rphy(hw, PHY_REG(769, 16), &data);
2594 data &= ~(1 << 13);
2595 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2596 if (ret_val)
2597 return ret_val;
2598 e1e_rphy(hw, PHY_REG(776, 20), &data);
2599 data &= ~(0x3FF << 2);
2600 data |= (E1000_TX_PTR_GAP << 2);
2601 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2602 if (ret_val)
2603 return ret_val;
2604 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2605 if (ret_val)
2606 return ret_val;
2607 e1e_rphy(hw, HV_PM_CTRL, &data);
2608 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2609 if (ret_val)
2610 return ret_val;
2611 } else {
2612 /* Write MAC register values back to h/w defaults */
2613 mac_reg = er32(FFLT_DBG);
2614 mac_reg &= ~(0xF << 14);
2615 ew32(FFLT_DBG, mac_reg);
2616
2617 mac_reg = er32(RCTL);
2618 mac_reg &= ~E1000_RCTL_SECRC;
2619 ew32(RCTL, mac_reg);
2620
2621 ret_val = e1000e_read_kmrn_reg(hw,
2622 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2623 &data);
2624 if (ret_val)
2625 return ret_val;
2626 ret_val = e1000e_write_kmrn_reg(hw,
2627 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2628 data & ~(1 << 0));
2629 if (ret_val)
2630 return ret_val;
2631 ret_val = e1000e_read_kmrn_reg(hw,
2632 E1000_KMRNCTRLSTA_HD_CTRL,
2633 &data);
2634 if (ret_val)
2635 return ret_val;
2636 data &= ~(0xF << 8);
2637 data |= (0xB << 8);
2638 ret_val = e1000e_write_kmrn_reg(hw,
2639 E1000_KMRNCTRLSTA_HD_CTRL,
2640 data);
2641 if (ret_val)
2642 return ret_val;
2643
2644 /* Write PHY register values back to h/w defaults */
2645 e1e_rphy(hw, PHY_REG(769, 23), &data);
2646 data &= ~(0x7F << 5);
2647 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2648 if (ret_val)
2649 return ret_val;
2650 e1e_rphy(hw, PHY_REG(769, 16), &data);
2651 data |= (1 << 13);
2652 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2653 if (ret_val)
2654 return ret_val;
2655 e1e_rphy(hw, PHY_REG(776, 20), &data);
2656 data &= ~(0x3FF << 2);
2657 data |= (0x8 << 2);
2658 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2659 if (ret_val)
2660 return ret_val;
2661 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2662 if (ret_val)
2663 return ret_val;
2664 e1e_rphy(hw, HV_PM_CTRL, &data);
2665 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2666 if (ret_val)
2667 return ret_val;
2668 }
2669
2670 /* re-enable Rx path after enabling/disabling workaround */
2671 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2672 }
2673
2674 /**
2675 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2676 * done after every PHY reset.
2677 **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2678 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2679 {
2680 s32 ret_val = 0;
2681
2682 if (hw->mac.type != e1000_pch2lan)
2683 return 0;
2684
2685 /* Set MDIO slow mode before any other MDIO access */
2686 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2687 if (ret_val)
2688 return ret_val;
2689
2690 ret_val = hw->phy.ops.acquire(hw);
2691 if (ret_val)
2692 return ret_val;
2693 /* set MSE higher to enable link to stay up when noise is high */
2694 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2695 if (ret_val)
2696 goto release;
2697 /* drop link after 5 times MSE threshold was reached */
2698 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2699 release:
2700 hw->phy.ops.release(hw);
2701
2702 return ret_val;
2703 }
2704
2705 /**
2706 * e1000_k1_gig_workaround_lv - K1 Si workaround
2707 * @hw: pointer to the HW structure
2708 *
2709 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2710 * Disable K1 in 1000Mbps and 100Mbps
2711 **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2712 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2713 {
2714 s32 ret_val = 0;
2715 u16 status_reg = 0;
2716
2717 if (hw->mac.type != e1000_pch2lan)
2718 return 0;
2719
2720 /* Set K1 beacon duration based on 10Mbs speed */
2721 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2722 if (ret_val)
2723 return ret_val;
2724
2725 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2726 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2727 if (status_reg &
2728 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2729 u16 pm_phy_reg;
2730
2731 /* LV 1G/100 Packet drop issue wa */
2732 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2733 if (ret_val)
2734 return ret_val;
2735 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2736 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2737 if (ret_val)
2738 return ret_val;
2739 } else {
2740 u32 mac_reg;
2741
2742 mac_reg = er32(FEXTNVM4);
2743 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2744 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2745 ew32(FEXTNVM4, mac_reg);
2746 }
2747 }
2748
2749 return ret_val;
2750 }
2751
2752 /**
2753 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2754 * @hw: pointer to the HW structure
2755 * @gate: boolean set to true to gate, false to ungate
2756 *
2757 * Gate/ungate the automatic PHY configuration via hardware; perform
2758 * the configuration via software instead.
2759 **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2760 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2761 {
2762 u32 extcnf_ctrl;
2763
2764 if (hw->mac.type < e1000_pch2lan)
2765 return;
2766
2767 extcnf_ctrl = er32(EXTCNF_CTRL);
2768
2769 if (gate)
2770 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2771 else
2772 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2773
2774 ew32(EXTCNF_CTRL, extcnf_ctrl);
2775 }
2776
2777 /**
2778 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2779 * @hw: pointer to the HW structure
2780 *
2781 * Check the appropriate indication the MAC has finished configuring the
2782 * PHY after a software reset.
2783 **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2784 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2785 {
2786 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2787
2788 /* Wait for basic configuration completes before proceeding */
2789 do {
2790 data = er32(STATUS);
2791 data &= E1000_STATUS_LAN_INIT_DONE;
2792 usleep_range(100, 200);
2793 } while ((!data) && --loop);
2794
2795 /* If basic configuration is incomplete before the above loop
2796 * count reaches 0, loading the configuration from NVM will
2797 * leave the PHY in a bad state possibly resulting in no link.
2798 */
2799 if (loop == 0)
2800 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2801
2802 /* Clear the Init Done bit for the next init event */
2803 data = er32(STATUS);
2804 data &= ~E1000_STATUS_LAN_INIT_DONE;
2805 ew32(STATUS, data);
2806 }
2807
2808 /**
2809 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2810 * @hw: pointer to the HW structure
2811 **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2812 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2813 {
2814 s32 ret_val = 0;
2815 u16 reg;
2816
2817 if (hw->phy.ops.check_reset_block(hw))
2818 return 0;
2819
2820 /* Allow time for h/w to get to quiescent state after reset */
2821 usleep_range(10000, 20000);
2822
2823 /* Perform any necessary post-reset workarounds */
2824 switch (hw->mac.type) {
2825 case e1000_pchlan:
2826 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2827 if (ret_val)
2828 return ret_val;
2829 break;
2830 case e1000_pch2lan:
2831 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2832 if (ret_val)
2833 return ret_val;
2834 break;
2835 default:
2836 break;
2837 }
2838
2839 /* Clear the host wakeup bit after lcd reset */
2840 if (hw->mac.type >= e1000_pchlan) {
2841 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2842 reg &= ~BM_WUC_HOST_WU_BIT;
2843 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2844 }
2845
2846 /* Configure the LCD with the extended configuration region in NVM */
2847 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2848 if (ret_val)
2849 return ret_val;
2850
2851 /* Configure the LCD with the OEM bits in NVM */
2852 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2853
2854 if (hw->mac.type == e1000_pch2lan) {
2855 /* Ungate automatic PHY configuration on non-managed 82579 */
2856 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2857 usleep_range(10000, 20000);
2858 e1000_gate_hw_phy_config_ich8lan(hw, false);
2859 }
2860
2861 /* Set EEE LPI Update Timer to 200usec */
2862 ret_val = hw->phy.ops.acquire(hw);
2863 if (ret_val)
2864 return ret_val;
2865 ret_val = e1000_write_emi_reg_locked(hw,
2866 I82579_LPI_UPDATE_TIMER,
2867 0x1387);
2868 hw->phy.ops.release(hw);
2869 }
2870
2871 return ret_val;
2872 }
2873
2874 /**
2875 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2876 * @hw: pointer to the HW structure
2877 *
2878 * Resets the PHY
2879 * This is a function pointer entry point called by drivers
2880 * or other shared routines.
2881 **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2882 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2883 {
2884 s32 ret_val = 0;
2885
2886 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2887 if ((hw->mac.type == e1000_pch2lan) &&
2888 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2889 e1000_gate_hw_phy_config_ich8lan(hw, true);
2890
2891 ret_val = e1000e_phy_hw_reset_generic(hw);
2892 if (ret_val)
2893 return ret_val;
2894
2895 return e1000_post_phy_reset_ich8lan(hw);
2896 }
2897
2898 /**
2899 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2900 * @hw: pointer to the HW structure
2901 * @active: true to enable LPLU, false to disable
2902 *
2903 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2904 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2905 * the phy speed. This function will manually set the LPLU bit and restart
2906 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2907 * since it configures the same bit.
2908 **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2909 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2910 {
2911 s32 ret_val;
2912 u16 oem_reg;
2913
2914 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2915 if (ret_val)
2916 return ret_val;
2917
2918 if (active)
2919 oem_reg |= HV_OEM_BITS_LPLU;
2920 else
2921 oem_reg &= ~HV_OEM_BITS_LPLU;
2922
2923 if (!hw->phy.ops.check_reset_block(hw))
2924 oem_reg |= HV_OEM_BITS_RESTART_AN;
2925
2926 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2927 }
2928
2929 /**
2930 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2931 * @hw: pointer to the HW structure
2932 * @active: true to enable LPLU, false to disable
2933 *
2934 * Sets the LPLU D0 state according to the active flag. When
2935 * activating LPLU this function also disables smart speed
2936 * and vice versa. LPLU will not be activated unless the
2937 * device autonegotiation advertisement meets standards of
2938 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2939 * This is a function pointer entry point only called by
2940 * PHY setup routines.
2941 **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)2942 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2943 {
2944 struct e1000_phy_info *phy = &hw->phy;
2945 u32 phy_ctrl;
2946 s32 ret_val = 0;
2947 u16 data;
2948
2949 if (phy->type == e1000_phy_ife)
2950 return 0;
2951
2952 phy_ctrl = er32(PHY_CTRL);
2953
2954 if (active) {
2955 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2956 ew32(PHY_CTRL, phy_ctrl);
2957
2958 if (phy->type != e1000_phy_igp_3)
2959 return 0;
2960
2961 /* Call gig speed drop workaround on LPLU before accessing
2962 * any PHY registers
2963 */
2964 if (hw->mac.type == e1000_ich8lan)
2965 e1000e_gig_downshift_workaround_ich8lan(hw);
2966
2967 /* When LPLU is enabled, we should disable SmartSpeed */
2968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2969 if (ret_val)
2970 return ret_val;
2971 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2972 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2973 if (ret_val)
2974 return ret_val;
2975 } else {
2976 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2977 ew32(PHY_CTRL, phy_ctrl);
2978
2979 if (phy->type != e1000_phy_igp_3)
2980 return 0;
2981
2982 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2983 * during Dx states where the power conservation is most
2984 * important. During driver activity we should enable
2985 * SmartSpeed, so performance is maintained.
2986 */
2987 if (phy->smart_speed == e1000_smart_speed_on) {
2988 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989 &data);
2990 if (ret_val)
2991 return ret_val;
2992
2993 data |= IGP01E1000_PSCFR_SMART_SPEED;
2994 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2995 data);
2996 if (ret_val)
2997 return ret_val;
2998 } else if (phy->smart_speed == e1000_smart_speed_off) {
2999 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3000 &data);
3001 if (ret_val)
3002 return ret_val;
3003
3004 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3005 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3006 data);
3007 if (ret_val)
3008 return ret_val;
3009 }
3010 }
3011
3012 return 0;
3013 }
3014
3015 /**
3016 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3017 * @hw: pointer to the HW structure
3018 * @active: true to enable LPLU, false to disable
3019 *
3020 * Sets the LPLU D3 state according to the active flag. When
3021 * activating LPLU this function also disables smart speed
3022 * and vice versa. LPLU will not be activated unless the
3023 * device autonegotiation advertisement meets standards of
3024 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3025 * This is a function pointer entry point only called by
3026 * PHY setup routines.
3027 **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3028 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029 {
3030 struct e1000_phy_info *phy = &hw->phy;
3031 u32 phy_ctrl;
3032 s32 ret_val = 0;
3033 u16 data;
3034
3035 phy_ctrl = er32(PHY_CTRL);
3036
3037 if (!active) {
3038 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3039 ew32(PHY_CTRL, phy_ctrl);
3040
3041 if (phy->type != e1000_phy_igp_3)
3042 return 0;
3043
3044 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3045 * during Dx states where the power conservation is most
3046 * important. During driver activity we should enable
3047 * SmartSpeed, so performance is maintained.
3048 */
3049 if (phy->smart_speed == e1000_smart_speed_on) {
3050 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051 &data);
3052 if (ret_val)
3053 return ret_val;
3054
3055 data |= IGP01E1000_PSCFR_SMART_SPEED;
3056 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3057 data);
3058 if (ret_val)
3059 return ret_val;
3060 } else if (phy->smart_speed == e1000_smart_speed_off) {
3061 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062 &data);
3063 if (ret_val)
3064 return ret_val;
3065
3066 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3067 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3068 data);
3069 if (ret_val)
3070 return ret_val;
3071 }
3072 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3073 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3074 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3075 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3076 ew32(PHY_CTRL, phy_ctrl);
3077
3078 if (phy->type != e1000_phy_igp_3)
3079 return 0;
3080
3081 /* Call gig speed drop workaround on LPLU before accessing
3082 * any PHY registers
3083 */
3084 if (hw->mac.type == e1000_ich8lan)
3085 e1000e_gig_downshift_workaround_ich8lan(hw);
3086
3087 /* When LPLU is enabled, we should disable SmartSpeed */
3088 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3089 if (ret_val)
3090 return ret_val;
3091
3092 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3093 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3094 }
3095
3096 return ret_val;
3097 }
3098
3099 /**
3100 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3101 * @hw: pointer to the HW structure
3102 * @bank: pointer to the variable that returns the active bank
3103 *
3104 * Reads signature byte from the NVM using the flash access registers.
3105 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3106 **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3107 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3108 {
3109 u32 eecd;
3110 struct e1000_nvm_info *nvm = &hw->nvm;
3111 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3112 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3113 u8 sig_byte = 0;
3114 s32 ret_val;
3115
3116 switch (hw->mac.type) {
3117 /* In SPT, read from the CTRL_EXT reg instead of
3118 * accessing the sector valid bits from the nvm
3119 */
3120 case e1000_pch_spt:
3121 *bank = er32(CTRL_EXT)
3122 & E1000_CTRL_EXT_NVMVS;
3123 if ((*bank == 0) || (*bank == 1)) {
3124 e_dbg("ERROR: No valid NVM bank present\n");
3125 return -E1000_ERR_NVM;
3126 } else {
3127 *bank = *bank - 2;
3128 return 0;
3129 }
3130 break;
3131 case e1000_ich8lan:
3132 case e1000_ich9lan:
3133 eecd = er32(EECD);
3134 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3135 E1000_EECD_SEC1VAL_VALID_MASK) {
3136 if (eecd & E1000_EECD_SEC1VAL)
3137 *bank = 1;
3138 else
3139 *bank = 0;
3140
3141 return 0;
3142 }
3143 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3144 /* fall-thru */
3145 default:
3146 /* set bank to 0 in case flash read fails */
3147 *bank = 0;
3148
3149 /* Check bank 0 */
3150 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3151 &sig_byte);
3152 if (ret_val)
3153 return ret_val;
3154 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3155 E1000_ICH_NVM_SIG_VALUE) {
3156 *bank = 0;
3157 return 0;
3158 }
3159
3160 /* Check bank 1 */
3161 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3162 bank1_offset,
3163 &sig_byte);
3164 if (ret_val)
3165 return ret_val;
3166 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3167 E1000_ICH_NVM_SIG_VALUE) {
3168 *bank = 1;
3169 return 0;
3170 }
3171
3172 e_dbg("ERROR: No valid NVM bank present\n");
3173 return -E1000_ERR_NVM;
3174 }
3175 }
3176
3177 /**
3178 * e1000_read_nvm_spt - NVM access for SPT
3179 * @hw: pointer to the HW structure
3180 * @offset: The offset (in bytes) of the word(s) to read.
3181 * @words: Size of data to read in words.
3182 * @data: pointer to the word(s) to read at offset.
3183 *
3184 * Reads a word(s) from the NVM
3185 **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3186 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3187 u16 *data)
3188 {
3189 struct e1000_nvm_info *nvm = &hw->nvm;
3190 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3191 u32 act_offset;
3192 s32 ret_val = 0;
3193 u32 bank = 0;
3194 u32 dword = 0;
3195 u16 offset_to_read;
3196 u16 i;
3197
3198 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3199 (words == 0)) {
3200 e_dbg("nvm parameter(s) out of bounds\n");
3201 ret_val = -E1000_ERR_NVM;
3202 goto out;
3203 }
3204
3205 nvm->ops.acquire(hw);
3206
3207 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3208 if (ret_val) {
3209 e_dbg("Could not detect valid bank, assuming bank 0\n");
3210 bank = 0;
3211 }
3212
3213 act_offset = (bank) ? nvm->flash_bank_size : 0;
3214 act_offset += offset;
3215
3216 ret_val = 0;
3217
3218 for (i = 0; i < words; i += 2) {
3219 if (words - i == 1) {
3220 if (dev_spec->shadow_ram[offset + i].modified) {
3221 data[i] =
3222 dev_spec->shadow_ram[offset + i].value;
3223 } else {
3224 offset_to_read = act_offset + i -
3225 ((act_offset + i) % 2);
3226 ret_val =
3227 e1000_read_flash_dword_ich8lan(hw,
3228 offset_to_read,
3229 &dword);
3230 if (ret_val)
3231 break;
3232 if ((act_offset + i) % 2 == 0)
3233 data[i] = (u16)(dword & 0xFFFF);
3234 else
3235 data[i] = (u16)((dword >> 16) & 0xFFFF);
3236 }
3237 } else {
3238 offset_to_read = act_offset + i;
3239 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3240 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3241 ret_val =
3242 e1000_read_flash_dword_ich8lan(hw,
3243 offset_to_read,
3244 &dword);
3245 if (ret_val)
3246 break;
3247 }
3248 if (dev_spec->shadow_ram[offset + i].modified)
3249 data[i] =
3250 dev_spec->shadow_ram[offset + i].value;
3251 else
3252 data[i] = (u16)(dword & 0xFFFF);
3253 if (dev_spec->shadow_ram[offset + i].modified)
3254 data[i + 1] =
3255 dev_spec->shadow_ram[offset + i + 1].value;
3256 else
3257 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3258 }
3259 }
3260
3261 nvm->ops.release(hw);
3262
3263 out:
3264 if (ret_val)
3265 e_dbg("NVM read error: %d\n", ret_val);
3266
3267 return ret_val;
3268 }
3269
3270 /**
3271 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3272 * @hw: pointer to the HW structure
3273 * @offset: The offset (in bytes) of the word(s) to read.
3274 * @words: Size of data to read in words
3275 * @data: Pointer to the word(s) to read at offset.
3276 *
3277 * Reads a word(s) from the NVM using the flash access registers.
3278 **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3279 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3280 u16 *data)
3281 {
3282 struct e1000_nvm_info *nvm = &hw->nvm;
3283 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3284 u32 act_offset;
3285 s32 ret_val = 0;
3286 u32 bank = 0;
3287 u16 i, word;
3288
3289 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3290 (words == 0)) {
3291 e_dbg("nvm parameter(s) out of bounds\n");
3292 ret_val = -E1000_ERR_NVM;
3293 goto out;
3294 }
3295
3296 nvm->ops.acquire(hw);
3297
3298 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3299 if (ret_val) {
3300 e_dbg("Could not detect valid bank, assuming bank 0\n");
3301 bank = 0;
3302 }
3303
3304 act_offset = (bank) ? nvm->flash_bank_size : 0;
3305 act_offset += offset;
3306
3307 ret_val = 0;
3308 for (i = 0; i < words; i++) {
3309 if (dev_spec->shadow_ram[offset + i].modified) {
3310 data[i] = dev_spec->shadow_ram[offset + i].value;
3311 } else {
3312 ret_val = e1000_read_flash_word_ich8lan(hw,
3313 act_offset + i,
3314 &word);
3315 if (ret_val)
3316 break;
3317 data[i] = word;
3318 }
3319 }
3320
3321 nvm->ops.release(hw);
3322
3323 out:
3324 if (ret_val)
3325 e_dbg("NVM read error: %d\n", ret_val);
3326
3327 return ret_val;
3328 }
3329
3330 /**
3331 * e1000_flash_cycle_init_ich8lan - Initialize flash
3332 * @hw: pointer to the HW structure
3333 *
3334 * This function does initial flash setup so that a new read/write/erase cycle
3335 * can be started.
3336 **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3337 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3338 {
3339 union ich8_hws_flash_status hsfsts;
3340 s32 ret_val = -E1000_ERR_NVM;
3341
3342 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3343
3344 /* Check if the flash descriptor is valid */
3345 if (!hsfsts.hsf_status.fldesvalid) {
3346 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3347 return -E1000_ERR_NVM;
3348 }
3349
3350 /* Clear FCERR and DAEL in hw status by writing 1 */
3351 hsfsts.hsf_status.flcerr = 1;
3352 hsfsts.hsf_status.dael = 1;
3353 if (hw->mac.type == e1000_pch_spt)
3354 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3355 else
3356 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3357
3358 /* Either we should have a hardware SPI cycle in progress
3359 * bit to check against, in order to start a new cycle or
3360 * FDONE bit should be changed in the hardware so that it
3361 * is 1 after hardware reset, which can then be used as an
3362 * indication whether a cycle is in progress or has been
3363 * completed.
3364 */
3365
3366 if (!hsfsts.hsf_status.flcinprog) {
3367 /* There is no cycle running at present,
3368 * so we can start a cycle.
3369 * Begin by setting Flash Cycle Done.
3370 */
3371 hsfsts.hsf_status.flcdone = 1;
3372 if (hw->mac.type == e1000_pch_spt)
3373 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3374 else
3375 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3376 ret_val = 0;
3377 } else {
3378 s32 i;
3379
3380 /* Otherwise poll for sometime so the current
3381 * cycle has a chance to end before giving up.
3382 */
3383 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3385 if (!hsfsts.hsf_status.flcinprog) {
3386 ret_val = 0;
3387 break;
3388 }
3389 udelay(1);
3390 }
3391 if (!ret_val) {
3392 /* Successful in waiting for previous cycle to timeout,
3393 * now set the Flash Cycle Done.
3394 */
3395 hsfsts.hsf_status.flcdone = 1;
3396 if (hw->mac.type == e1000_pch_spt)
3397 ew32flash(ICH_FLASH_HSFSTS,
3398 hsfsts.regval & 0xFFFF);
3399 else
3400 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3401 } else {
3402 e_dbg("Flash controller busy, cannot get access\n");
3403 }
3404 }
3405
3406 return ret_val;
3407 }
3408
3409 /**
3410 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3411 * @hw: pointer to the HW structure
3412 * @timeout: maximum time to wait for completion
3413 *
3414 * This function starts a flash cycle and waits for its completion.
3415 **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3416 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3417 {
3418 union ich8_hws_flash_ctrl hsflctl;
3419 union ich8_hws_flash_status hsfsts;
3420 u32 i = 0;
3421
3422 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423 if (hw->mac.type == e1000_pch_spt)
3424 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3425 else
3426 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3427 hsflctl.hsf_ctrl.flcgo = 1;
3428
3429 if (hw->mac.type == e1000_pch_spt)
3430 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3431 else
3432 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3433
3434 /* wait till FDONE bit is set to 1 */
3435 do {
3436 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3437 if (hsfsts.hsf_status.flcdone)
3438 break;
3439 udelay(1);
3440 } while (i++ < timeout);
3441
3442 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3443 return 0;
3444
3445 return -E1000_ERR_NVM;
3446 }
3447
3448 /**
3449 * e1000_read_flash_dword_ich8lan - Read dword from flash
3450 * @hw: pointer to the HW structure
3451 * @offset: offset to data location
3452 * @data: pointer to the location for storing the data
3453 *
3454 * Reads the flash dword at offset into data. Offset is converted
3455 * to bytes before read.
3456 **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3457 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3458 u32 *data)
3459 {
3460 /* Must convert word offset into bytes. */
3461 offset <<= 1;
3462 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3463 }
3464
3465 /**
3466 * e1000_read_flash_word_ich8lan - Read word from flash
3467 * @hw: pointer to the HW structure
3468 * @offset: offset to data location
3469 * @data: pointer to the location for storing the data
3470 *
3471 * Reads the flash word at offset into data. Offset is converted
3472 * to bytes before read.
3473 **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3474 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3475 u16 *data)
3476 {
3477 /* Must convert offset into bytes. */
3478 offset <<= 1;
3479
3480 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3481 }
3482
3483 /**
3484 * e1000_read_flash_byte_ich8lan - Read byte from flash
3485 * @hw: pointer to the HW structure
3486 * @offset: The offset of the byte to read.
3487 * @data: Pointer to a byte to store the value read.
3488 *
3489 * Reads a single byte from the NVM using the flash access registers.
3490 **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3491 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3492 u8 *data)
3493 {
3494 s32 ret_val;
3495 u16 word = 0;
3496
3497 /* In SPT, only 32 bits access is supported,
3498 * so this function should not be called.
3499 */
3500 if (hw->mac.type == e1000_pch_spt)
3501 return -E1000_ERR_NVM;
3502 else
3503 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3504
3505 if (ret_val)
3506 return ret_val;
3507
3508 *data = (u8)word;
3509
3510 return 0;
3511 }
3512
3513 /**
3514 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3515 * @hw: pointer to the HW structure
3516 * @offset: The offset (in bytes) of the byte or word to read.
3517 * @size: Size of data to read, 1=byte 2=word
3518 * @data: Pointer to the word to store the value read.
3519 *
3520 * Reads a byte or word from the NVM using the flash access registers.
3521 **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3522 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3523 u8 size, u16 *data)
3524 {
3525 union ich8_hws_flash_status hsfsts;
3526 union ich8_hws_flash_ctrl hsflctl;
3527 u32 flash_linear_addr;
3528 u32 flash_data = 0;
3529 s32 ret_val = -E1000_ERR_NVM;
3530 u8 count = 0;
3531
3532 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3533 return -E1000_ERR_NVM;
3534
3535 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3536 hw->nvm.flash_base_addr);
3537
3538 do {
3539 udelay(1);
3540 /* Steps */
3541 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3542 if (ret_val)
3543 break;
3544
3545 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3546 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3547 hsflctl.hsf_ctrl.fldbcount = size - 1;
3548 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3549 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3550
3551 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3552
3553 ret_val =
3554 e1000_flash_cycle_ich8lan(hw,
3555 ICH_FLASH_READ_COMMAND_TIMEOUT);
3556
3557 /* Check if FCERR is set to 1, if set to 1, clear it
3558 * and try the whole sequence a few more times, else
3559 * read in (shift in) the Flash Data0, the order is
3560 * least significant byte first msb to lsb
3561 */
3562 if (!ret_val) {
3563 flash_data = er32flash(ICH_FLASH_FDATA0);
3564 if (size == 1)
3565 *data = (u8)(flash_data & 0x000000FF);
3566 else if (size == 2)
3567 *data = (u16)(flash_data & 0x0000FFFF);
3568 break;
3569 } else {
3570 /* If we've gotten here, then things are probably
3571 * completely hosed, but if the error condition is
3572 * detected, it won't hurt to give it another try...
3573 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3574 */
3575 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3576 if (hsfsts.hsf_status.flcerr) {
3577 /* Repeat for some time before giving up. */
3578 continue;
3579 } else if (!hsfsts.hsf_status.flcdone) {
3580 e_dbg("Timeout error - flash cycle did not complete.\n");
3581 break;
3582 }
3583 }
3584 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3585
3586 return ret_val;
3587 }
3588
3589 /**
3590 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3591 * @hw: pointer to the HW structure
3592 * @offset: The offset (in bytes) of the dword to read.
3593 * @data: Pointer to the dword to store the value read.
3594 *
3595 * Reads a byte or word from the NVM using the flash access registers.
3596 **/
3597
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3598 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3599 u32 *data)
3600 {
3601 union ich8_hws_flash_status hsfsts;
3602 union ich8_hws_flash_ctrl hsflctl;
3603 u32 flash_linear_addr;
3604 s32 ret_val = -E1000_ERR_NVM;
3605 u8 count = 0;
3606
3607 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3608 hw->mac.type != e1000_pch_spt)
3609 return -E1000_ERR_NVM;
3610 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3611 hw->nvm.flash_base_addr);
3612
3613 do {
3614 udelay(1);
3615 /* Steps */
3616 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3617 if (ret_val)
3618 break;
3619 /* In SPT, This register is in Lan memory space, not flash.
3620 * Therefore, only 32 bit access is supported
3621 */
3622 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3623
3624 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3625 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3626 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3627 /* In SPT, This register is in Lan memory space, not flash.
3628 * Therefore, only 32 bit access is supported
3629 */
3630 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3631 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3632
3633 ret_val =
3634 e1000_flash_cycle_ich8lan(hw,
3635 ICH_FLASH_READ_COMMAND_TIMEOUT);
3636
3637 /* Check if FCERR is set to 1, if set to 1, clear it
3638 * and try the whole sequence a few more times, else
3639 * read in (shift in) the Flash Data0, the order is
3640 * least significant byte first msb to lsb
3641 */
3642 if (!ret_val) {
3643 *data = er32flash(ICH_FLASH_FDATA0);
3644 break;
3645 } else {
3646 /* If we've gotten here, then things are probably
3647 * completely hosed, but if the error condition is
3648 * detected, it won't hurt to give it another try...
3649 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3650 */
3651 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3652 if (hsfsts.hsf_status.flcerr) {
3653 /* Repeat for some time before giving up. */
3654 continue;
3655 } else if (!hsfsts.hsf_status.flcdone) {
3656 e_dbg("Timeout error - flash cycle did not complete.\n");
3657 break;
3658 }
3659 }
3660 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3661
3662 return ret_val;
3663 }
3664
3665 /**
3666 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3667 * @hw: pointer to the HW structure
3668 * @offset: The offset (in bytes) of the word(s) to write.
3669 * @words: Size of data to write in words
3670 * @data: Pointer to the word(s) to write at offset.
3671 *
3672 * Writes a byte or word to the NVM using the flash access registers.
3673 **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3674 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3675 u16 *data)
3676 {
3677 struct e1000_nvm_info *nvm = &hw->nvm;
3678 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3679 u16 i;
3680
3681 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3682 (words == 0)) {
3683 e_dbg("nvm parameter(s) out of bounds\n");
3684 return -E1000_ERR_NVM;
3685 }
3686
3687 nvm->ops.acquire(hw);
3688
3689 for (i = 0; i < words; i++) {
3690 dev_spec->shadow_ram[offset + i].modified = true;
3691 dev_spec->shadow_ram[offset + i].value = data[i];
3692 }
3693
3694 nvm->ops.release(hw);
3695
3696 return 0;
3697 }
3698
3699 /**
3700 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3701 * @hw: pointer to the HW structure
3702 *
3703 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3704 * which writes the checksum to the shadow ram. The changes in the shadow
3705 * ram are then committed to the EEPROM by processing each bank at a time
3706 * checking for the modified bit and writing only the pending changes.
3707 * After a successful commit, the shadow ram is cleared and is ready for
3708 * future writes.
3709 **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3710 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3711 {
3712 struct e1000_nvm_info *nvm = &hw->nvm;
3713 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3714 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3715 s32 ret_val;
3716 u32 dword = 0;
3717
3718 ret_val = e1000e_update_nvm_checksum_generic(hw);
3719 if (ret_val)
3720 goto out;
3721
3722 if (nvm->type != e1000_nvm_flash_sw)
3723 goto out;
3724
3725 nvm->ops.acquire(hw);
3726
3727 /* We're writing to the opposite bank so if we're on bank 1,
3728 * write to bank 0 etc. We also need to erase the segment that
3729 * is going to be written
3730 */
3731 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3732 if (ret_val) {
3733 e_dbg("Could not detect valid bank, assuming bank 0\n");
3734 bank = 0;
3735 }
3736
3737 if (bank == 0) {
3738 new_bank_offset = nvm->flash_bank_size;
3739 old_bank_offset = 0;
3740 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3741 if (ret_val)
3742 goto release;
3743 } else {
3744 old_bank_offset = nvm->flash_bank_size;
3745 new_bank_offset = 0;
3746 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3747 if (ret_val)
3748 goto release;
3749 }
3750 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3751 /* Determine whether to write the value stored
3752 * in the other NVM bank or a modified value stored
3753 * in the shadow RAM
3754 */
3755 ret_val = e1000_read_flash_dword_ich8lan(hw,
3756 i + old_bank_offset,
3757 &dword);
3758
3759 if (dev_spec->shadow_ram[i].modified) {
3760 dword &= 0xffff0000;
3761 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3762 }
3763 if (dev_spec->shadow_ram[i + 1].modified) {
3764 dword &= 0x0000ffff;
3765 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3766 << 16);
3767 }
3768 if (ret_val)
3769 break;
3770
3771 /* If the word is 0x13, then make sure the signature bits
3772 * (15:14) are 11b until the commit has completed.
3773 * This will allow us to write 10b which indicates the
3774 * signature is valid. We want to do this after the write
3775 * has completed so that we don't mark the segment valid
3776 * while the write is still in progress
3777 */
3778 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3779 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3780
3781 /* Convert offset to bytes. */
3782 act_offset = (i + new_bank_offset) << 1;
3783
3784 usleep_range(100, 200);
3785
3786 /* Write the data to the new bank. Offset in words */
3787 act_offset = i + new_bank_offset;
3788 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3789 dword);
3790 if (ret_val)
3791 break;
3792 }
3793
3794 /* Don't bother writing the segment valid bits if sector
3795 * programming failed.
3796 */
3797 if (ret_val) {
3798 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3799 e_dbg("Flash commit failed.\n");
3800 goto release;
3801 }
3802
3803 /* Finally validate the new segment by setting bit 15:14
3804 * to 10b in word 0x13 , this can be done without an
3805 * erase as well since these bits are 11 to start with
3806 * and we need to change bit 14 to 0b
3807 */
3808 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3809
3810 /*offset in words but we read dword */
3811 --act_offset;
3812 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3813
3814 if (ret_val)
3815 goto release;
3816
3817 dword &= 0xBFFFFFFF;
3818 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3819
3820 if (ret_val)
3821 goto release;
3822
3823 /* And invalidate the previously valid segment by setting
3824 * its signature word (0x13) high_byte to 0b. This can be
3825 * done without an erase because flash erase sets all bits
3826 * to 1's. We can write 1's to 0's without an erase
3827 */
3828 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3829
3830 /* offset in words but we read dword */
3831 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3832 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3833
3834 if (ret_val)
3835 goto release;
3836
3837 dword &= 0x00FFFFFF;
3838 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3839
3840 if (ret_val)
3841 goto release;
3842
3843 /* Great! Everything worked, we can now clear the cached entries. */
3844 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3845 dev_spec->shadow_ram[i].modified = false;
3846 dev_spec->shadow_ram[i].value = 0xFFFF;
3847 }
3848
3849 release:
3850 nvm->ops.release(hw);
3851
3852 /* Reload the EEPROM, or else modifications will not appear
3853 * until after the next adapter reset.
3854 */
3855 if (!ret_val) {
3856 nvm->ops.reload(hw);
3857 usleep_range(10000, 20000);
3858 }
3859
3860 out:
3861 if (ret_val)
3862 e_dbg("NVM update error: %d\n", ret_val);
3863
3864 return ret_val;
3865 }
3866
3867 /**
3868 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3869 * @hw: pointer to the HW structure
3870 *
3871 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3872 * which writes the checksum to the shadow ram. The changes in the shadow
3873 * ram are then committed to the EEPROM by processing each bank at a time
3874 * checking for the modified bit and writing only the pending changes.
3875 * After a successful commit, the shadow ram is cleared and is ready for
3876 * future writes.
3877 **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)3878 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3879 {
3880 struct e1000_nvm_info *nvm = &hw->nvm;
3881 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3882 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3883 s32 ret_val;
3884 u16 data = 0;
3885
3886 ret_val = e1000e_update_nvm_checksum_generic(hw);
3887 if (ret_val)
3888 goto out;
3889
3890 if (nvm->type != e1000_nvm_flash_sw)
3891 goto out;
3892
3893 nvm->ops.acquire(hw);
3894
3895 /* We're writing to the opposite bank so if we're on bank 1,
3896 * write to bank 0 etc. We also need to erase the segment that
3897 * is going to be written
3898 */
3899 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3900 if (ret_val) {
3901 e_dbg("Could not detect valid bank, assuming bank 0\n");
3902 bank = 0;
3903 }
3904
3905 if (bank == 0) {
3906 new_bank_offset = nvm->flash_bank_size;
3907 old_bank_offset = 0;
3908 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3909 if (ret_val)
3910 goto release;
3911 } else {
3912 old_bank_offset = nvm->flash_bank_size;
3913 new_bank_offset = 0;
3914 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3915 if (ret_val)
3916 goto release;
3917 }
3918 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3919 if (dev_spec->shadow_ram[i].modified) {
3920 data = dev_spec->shadow_ram[i].value;
3921 } else {
3922 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3923 old_bank_offset,
3924 &data);
3925 if (ret_val)
3926 break;
3927 }
3928
3929 /* If the word is 0x13, then make sure the signature bits
3930 * (15:14) are 11b until the commit has completed.
3931 * This will allow us to write 10b which indicates the
3932 * signature is valid. We want to do this after the write
3933 * has completed so that we don't mark the segment valid
3934 * while the write is still in progress
3935 */
3936 if (i == E1000_ICH_NVM_SIG_WORD)
3937 data |= E1000_ICH_NVM_SIG_MASK;
3938
3939 /* Convert offset to bytes. */
3940 act_offset = (i + new_bank_offset) << 1;
3941
3942 usleep_range(100, 200);
3943 /* Write the bytes to the new bank. */
3944 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3945 act_offset,
3946 (u8)data);
3947 if (ret_val)
3948 break;
3949
3950 usleep_range(100, 200);
3951 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3952 act_offset + 1,
3953 (u8)(data >> 8));
3954 if (ret_val)
3955 break;
3956 }
3957
3958 /* Don't bother writing the segment valid bits if sector
3959 * programming failed.
3960 */
3961 if (ret_val) {
3962 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3963 e_dbg("Flash commit failed.\n");
3964 goto release;
3965 }
3966
3967 /* Finally validate the new segment by setting bit 15:14
3968 * to 10b in word 0x13 , this can be done without an
3969 * erase as well since these bits are 11 to start with
3970 * and we need to change bit 14 to 0b
3971 */
3972 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3973 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3974 if (ret_val)
3975 goto release;
3976
3977 data &= 0xBFFF;
3978 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3979 act_offset * 2 + 1,
3980 (u8)(data >> 8));
3981 if (ret_val)
3982 goto release;
3983
3984 /* And invalidate the previously valid segment by setting
3985 * its signature word (0x13) high_byte to 0b. This can be
3986 * done without an erase because flash erase sets all bits
3987 * to 1's. We can write 1's to 0's without an erase
3988 */
3989 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3990 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3991 if (ret_val)
3992 goto release;
3993
3994 /* Great! Everything worked, we can now clear the cached entries. */
3995 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3996 dev_spec->shadow_ram[i].modified = false;
3997 dev_spec->shadow_ram[i].value = 0xFFFF;
3998 }
3999
4000 release:
4001 nvm->ops.release(hw);
4002
4003 /* Reload the EEPROM, or else modifications will not appear
4004 * until after the next adapter reset.
4005 */
4006 if (!ret_val) {
4007 nvm->ops.reload(hw);
4008 usleep_range(10000, 20000);
4009 }
4010
4011 out:
4012 if (ret_val)
4013 e_dbg("NVM update error: %d\n", ret_val);
4014
4015 return ret_val;
4016 }
4017
4018 /**
4019 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4020 * @hw: pointer to the HW structure
4021 *
4022 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4023 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4024 * calculated, in which case we need to calculate the checksum and set bit 6.
4025 **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4026 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4027 {
4028 s32 ret_val;
4029 u16 data;
4030 u16 word;
4031 u16 valid_csum_mask;
4032
4033 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4034 * the checksum needs to be fixed. This bit is an indication that
4035 * the NVM was prepared by OEM software and did not calculate
4036 * the checksum...a likely scenario.
4037 */
4038 switch (hw->mac.type) {
4039 case e1000_pch_lpt:
4040 case e1000_pch_spt:
4041 word = NVM_COMPAT;
4042 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4043 break;
4044 default:
4045 word = NVM_FUTURE_INIT_WORD1;
4046 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4047 break;
4048 }
4049
4050 ret_val = e1000_read_nvm(hw, word, 1, &data);
4051 if (ret_val)
4052 return ret_val;
4053
4054 if (!(data & valid_csum_mask)) {
4055 data |= valid_csum_mask;
4056 ret_val = e1000_write_nvm(hw, word, 1, &data);
4057 if (ret_val)
4058 return ret_val;
4059 ret_val = e1000e_update_nvm_checksum(hw);
4060 if (ret_val)
4061 return ret_val;
4062 }
4063
4064 return e1000e_validate_nvm_checksum_generic(hw);
4065 }
4066
4067 /**
4068 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4069 * @hw: pointer to the HW structure
4070 *
4071 * To prevent malicious write/erase of the NVM, set it to be read-only
4072 * so that the hardware ignores all write/erase cycles of the NVM via
4073 * the flash control registers. The shadow-ram copy of the NVM will
4074 * still be updated, however any updates to this copy will not stick
4075 * across driver reloads.
4076 **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4077 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4078 {
4079 struct e1000_nvm_info *nvm = &hw->nvm;
4080 union ich8_flash_protected_range pr0;
4081 union ich8_hws_flash_status hsfsts;
4082 u32 gfpreg;
4083
4084 nvm->ops.acquire(hw);
4085
4086 gfpreg = er32flash(ICH_FLASH_GFPREG);
4087
4088 /* Write-protect GbE Sector of NVM */
4089 pr0.regval = er32flash(ICH_FLASH_PR0);
4090 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4091 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4092 pr0.range.wpe = true;
4093 ew32flash(ICH_FLASH_PR0, pr0.regval);
4094
4095 /* Lock down a subset of GbE Flash Control Registers, e.g.
4096 * PR0 to prevent the write-protection from being lifted.
4097 * Once FLOCKDN is set, the registers protected by it cannot
4098 * be written until FLOCKDN is cleared by a hardware reset.
4099 */
4100 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4101 hsfsts.hsf_status.flockdn = true;
4102 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4103
4104 nvm->ops.release(hw);
4105 }
4106
4107 /**
4108 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4109 * @hw: pointer to the HW structure
4110 * @offset: The offset (in bytes) of the byte/word to read.
4111 * @size: Size of data to read, 1=byte 2=word
4112 * @data: The byte(s) to write to the NVM.
4113 *
4114 * Writes one/two bytes to the NVM using the flash access registers.
4115 **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4116 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4117 u8 size, u16 data)
4118 {
4119 union ich8_hws_flash_status hsfsts;
4120 union ich8_hws_flash_ctrl hsflctl;
4121 u32 flash_linear_addr;
4122 u32 flash_data = 0;
4123 s32 ret_val;
4124 u8 count = 0;
4125
4126 if (hw->mac.type == e1000_pch_spt) {
4127 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4128 return -E1000_ERR_NVM;
4129 } else {
4130 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4131 return -E1000_ERR_NVM;
4132 }
4133
4134 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4135 hw->nvm.flash_base_addr);
4136
4137 do {
4138 udelay(1);
4139 /* Steps */
4140 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4141 if (ret_val)
4142 break;
4143 /* In SPT, This register is in Lan memory space, not
4144 * flash. Therefore, only 32 bit access is supported
4145 */
4146 if (hw->mac.type == e1000_pch_spt)
4147 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4148 else
4149 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4150
4151 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4152 hsflctl.hsf_ctrl.fldbcount = size - 1;
4153 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4154 /* In SPT, This register is in Lan memory space,
4155 * not flash. Therefore, only 32 bit access is
4156 * supported
4157 */
4158 if (hw->mac.type == e1000_pch_spt)
4159 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4160 else
4161 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4162
4163 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4164
4165 if (size == 1)
4166 flash_data = (u32)data & 0x00FF;
4167 else
4168 flash_data = (u32)data;
4169
4170 ew32flash(ICH_FLASH_FDATA0, flash_data);
4171
4172 /* check if FCERR is set to 1 , if set to 1, clear it
4173 * and try the whole sequence a few more times else done
4174 */
4175 ret_val =
4176 e1000_flash_cycle_ich8lan(hw,
4177 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4178 if (!ret_val)
4179 break;
4180
4181 /* If we're here, then things are most likely
4182 * completely hosed, but if the error condition
4183 * is detected, it won't hurt to give it another
4184 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4185 */
4186 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187 if (hsfsts.hsf_status.flcerr)
4188 /* Repeat for some time before giving up. */
4189 continue;
4190 if (!hsfsts.hsf_status.flcdone) {
4191 e_dbg("Timeout error - flash cycle did not complete.\n");
4192 break;
4193 }
4194 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4195
4196 return ret_val;
4197 }
4198
4199 /**
4200 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4201 * @hw: pointer to the HW structure
4202 * @offset: The offset (in bytes) of the dwords to read.
4203 * @data: The 4 bytes to write to the NVM.
4204 *
4205 * Writes one/two/four bytes to the NVM using the flash access registers.
4206 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4207 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4208 u32 data)
4209 {
4210 union ich8_hws_flash_status hsfsts;
4211 union ich8_hws_flash_ctrl hsflctl;
4212 u32 flash_linear_addr;
4213 s32 ret_val;
4214 u8 count = 0;
4215
4216 if (hw->mac.type == e1000_pch_spt) {
4217 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4218 return -E1000_ERR_NVM;
4219 }
4220 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4221 hw->nvm.flash_base_addr);
4222 do {
4223 udelay(1);
4224 /* Steps */
4225 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4226 if (ret_val)
4227 break;
4228
4229 /* In SPT, This register is in Lan memory space, not
4230 * flash. Therefore, only 32 bit access is supported
4231 */
4232 if (hw->mac.type == e1000_pch_spt)
4233 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4234 >> 16;
4235 else
4236 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4237
4238 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4239 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4240
4241 /* In SPT, This register is in Lan memory space,
4242 * not flash. Therefore, only 32 bit access is
4243 * supported
4244 */
4245 if (hw->mac.type == e1000_pch_spt)
4246 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4247 else
4248 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4249
4250 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4251
4252 ew32flash(ICH_FLASH_FDATA0, data);
4253
4254 /* check if FCERR is set to 1 , if set to 1, clear it
4255 * and try the whole sequence a few more times else done
4256 */
4257 ret_val =
4258 e1000_flash_cycle_ich8lan(hw,
4259 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4260
4261 if (!ret_val)
4262 break;
4263
4264 /* If we're here, then things are most likely
4265 * completely hosed, but if the error condition
4266 * is detected, it won't hurt to give it another
4267 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4268 */
4269 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4270
4271 if (hsfsts.hsf_status.flcerr)
4272 /* Repeat for some time before giving up. */
4273 continue;
4274 if (!hsfsts.hsf_status.flcdone) {
4275 e_dbg("Timeout error - flash cycle did not complete.\n");
4276 break;
4277 }
4278 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4279
4280 return ret_val;
4281 }
4282
4283 /**
4284 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4285 * @hw: pointer to the HW structure
4286 * @offset: The index of the byte to read.
4287 * @data: The byte to write to the NVM.
4288 *
4289 * Writes a single byte to the NVM using the flash access registers.
4290 **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4291 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4292 u8 data)
4293 {
4294 u16 word = (u16)data;
4295
4296 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4297 }
4298
4299 /**
4300 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4301 * @hw: pointer to the HW structure
4302 * @offset: The offset of the word to write.
4303 * @dword: The dword to write to the NVM.
4304 *
4305 * Writes a single dword to the NVM using the flash access registers.
4306 * Goes through a retry algorithm before giving up.
4307 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4308 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4309 u32 offset, u32 dword)
4310 {
4311 s32 ret_val;
4312 u16 program_retries;
4313
4314 /* Must convert word offset into bytes. */
4315 offset <<= 1;
4316 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4317
4318 if (!ret_val)
4319 return ret_val;
4320 for (program_retries = 0; program_retries < 100; program_retries++) {
4321 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4322 usleep_range(100, 200);
4323 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4324 if (!ret_val)
4325 break;
4326 }
4327 if (program_retries == 100)
4328 return -E1000_ERR_NVM;
4329
4330 return 0;
4331 }
4332
4333 /**
4334 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4335 * @hw: pointer to the HW structure
4336 * @offset: The offset of the byte to write.
4337 * @byte: The byte to write to the NVM.
4338 *
4339 * Writes a single byte to the NVM using the flash access registers.
4340 * Goes through a retry algorithm before giving up.
4341 **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4342 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4343 u32 offset, u8 byte)
4344 {
4345 s32 ret_val;
4346 u16 program_retries;
4347
4348 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4349 if (!ret_val)
4350 return ret_val;
4351
4352 for (program_retries = 0; program_retries < 100; program_retries++) {
4353 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4354 usleep_range(100, 200);
4355 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4356 if (!ret_val)
4357 break;
4358 }
4359 if (program_retries == 100)
4360 return -E1000_ERR_NVM;
4361
4362 return 0;
4363 }
4364
4365 /**
4366 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4367 * @hw: pointer to the HW structure
4368 * @bank: 0 for first bank, 1 for second bank, etc.
4369 *
4370 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4371 * bank N is 4096 * N + flash_reg_addr.
4372 **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4373 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4374 {
4375 struct e1000_nvm_info *nvm = &hw->nvm;
4376 union ich8_hws_flash_status hsfsts;
4377 union ich8_hws_flash_ctrl hsflctl;
4378 u32 flash_linear_addr;
4379 /* bank size is in 16bit words - adjust to bytes */
4380 u32 flash_bank_size = nvm->flash_bank_size * 2;
4381 s32 ret_val;
4382 s32 count = 0;
4383 s32 j, iteration, sector_size;
4384
4385 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4386
4387 /* Determine HW Sector size: Read BERASE bits of hw flash status
4388 * register
4389 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4390 * consecutive sectors. The start index for the nth Hw sector
4391 * can be calculated as = bank * 4096 + n * 256
4392 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4393 * The start index for the nth Hw sector can be calculated
4394 * as = bank * 4096
4395 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4396 * (ich9 only, otherwise error condition)
4397 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4398 */
4399 switch (hsfsts.hsf_status.berasesz) {
4400 case 0:
4401 /* Hw sector size 256 */
4402 sector_size = ICH_FLASH_SEG_SIZE_256;
4403 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4404 break;
4405 case 1:
4406 sector_size = ICH_FLASH_SEG_SIZE_4K;
4407 iteration = 1;
4408 break;
4409 case 2:
4410 sector_size = ICH_FLASH_SEG_SIZE_8K;
4411 iteration = 1;
4412 break;
4413 case 3:
4414 sector_size = ICH_FLASH_SEG_SIZE_64K;
4415 iteration = 1;
4416 break;
4417 default:
4418 return -E1000_ERR_NVM;
4419 }
4420
4421 /* Start with the base address, then add the sector offset. */
4422 flash_linear_addr = hw->nvm.flash_base_addr;
4423 flash_linear_addr += (bank) ? flash_bank_size : 0;
4424
4425 for (j = 0; j < iteration; j++) {
4426 do {
4427 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4428
4429 /* Steps */
4430 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4431 if (ret_val)
4432 return ret_val;
4433
4434 /* Write a value 11 (block Erase) in Flash
4435 * Cycle field in hw flash control
4436 */
4437 if (hw->mac.type == e1000_pch_spt)
4438 hsflctl.regval =
4439 er32flash(ICH_FLASH_HSFSTS) >> 16;
4440 else
4441 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4442
4443 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4444 if (hw->mac.type == e1000_pch_spt)
4445 ew32flash(ICH_FLASH_HSFSTS,
4446 hsflctl.regval << 16);
4447 else
4448 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4449
4450 /* Write the last 24 bits of an index within the
4451 * block into Flash Linear address field in Flash
4452 * Address.
4453 */
4454 flash_linear_addr += (j * sector_size);
4455 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4456
4457 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4458 if (!ret_val)
4459 break;
4460
4461 /* Check if FCERR is set to 1. If 1,
4462 * clear it and try the whole sequence
4463 * a few more times else Done
4464 */
4465 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4466 if (hsfsts.hsf_status.flcerr)
4467 /* repeat for some time before giving up */
4468 continue;
4469 else if (!hsfsts.hsf_status.flcdone)
4470 return ret_val;
4471 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4472 }
4473
4474 return 0;
4475 }
4476
4477 /**
4478 * e1000_valid_led_default_ich8lan - Set the default LED settings
4479 * @hw: pointer to the HW structure
4480 * @data: Pointer to the LED settings
4481 *
4482 * Reads the LED default settings from the NVM to data. If the NVM LED
4483 * settings is all 0's or F's, set the LED default to a valid LED default
4484 * setting.
4485 **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4486 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4487 {
4488 s32 ret_val;
4489
4490 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4491 if (ret_val) {
4492 e_dbg("NVM Read Error\n");
4493 return ret_val;
4494 }
4495
4496 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4497 *data = ID_LED_DEFAULT_ICH8LAN;
4498
4499 return 0;
4500 }
4501
4502 /**
4503 * e1000_id_led_init_pchlan - store LED configurations
4504 * @hw: pointer to the HW structure
4505 *
4506 * PCH does not control LEDs via the LEDCTL register, rather it uses
4507 * the PHY LED configuration register.
4508 *
4509 * PCH also does not have an "always on" or "always off" mode which
4510 * complicates the ID feature. Instead of using the "on" mode to indicate
4511 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4512 * use "link_up" mode. The LEDs will still ID on request if there is no
4513 * link based on logic in e1000_led_[on|off]_pchlan().
4514 **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4515 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4516 {
4517 struct e1000_mac_info *mac = &hw->mac;
4518 s32 ret_val;
4519 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4520 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4521 u16 data, i, temp, shift;
4522
4523 /* Get default ID LED modes */
4524 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4525 if (ret_val)
4526 return ret_val;
4527
4528 mac->ledctl_default = er32(LEDCTL);
4529 mac->ledctl_mode1 = mac->ledctl_default;
4530 mac->ledctl_mode2 = mac->ledctl_default;
4531
4532 for (i = 0; i < 4; i++) {
4533 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4534 shift = (i * 5);
4535 switch (temp) {
4536 case ID_LED_ON1_DEF2:
4537 case ID_LED_ON1_ON2:
4538 case ID_LED_ON1_OFF2:
4539 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4540 mac->ledctl_mode1 |= (ledctl_on << shift);
4541 break;
4542 case ID_LED_OFF1_DEF2:
4543 case ID_LED_OFF1_ON2:
4544 case ID_LED_OFF1_OFF2:
4545 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4546 mac->ledctl_mode1 |= (ledctl_off << shift);
4547 break;
4548 default:
4549 /* Do nothing */
4550 break;
4551 }
4552 switch (temp) {
4553 case ID_LED_DEF1_ON2:
4554 case ID_LED_ON1_ON2:
4555 case ID_LED_OFF1_ON2:
4556 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4557 mac->ledctl_mode2 |= (ledctl_on << shift);
4558 break;
4559 case ID_LED_DEF1_OFF2:
4560 case ID_LED_ON1_OFF2:
4561 case ID_LED_OFF1_OFF2:
4562 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4563 mac->ledctl_mode2 |= (ledctl_off << shift);
4564 break;
4565 default:
4566 /* Do nothing */
4567 break;
4568 }
4569 }
4570
4571 return 0;
4572 }
4573
4574 /**
4575 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4576 * @hw: pointer to the HW structure
4577 *
4578 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4579 * register, so the the bus width is hard coded.
4580 **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4581 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4582 {
4583 struct e1000_bus_info *bus = &hw->bus;
4584 s32 ret_val;
4585
4586 ret_val = e1000e_get_bus_info_pcie(hw);
4587
4588 /* ICH devices are "PCI Express"-ish. They have
4589 * a configuration space, but do not contain
4590 * PCI Express Capability registers, so bus width
4591 * must be hardcoded.
4592 */
4593 if (bus->width == e1000_bus_width_unknown)
4594 bus->width = e1000_bus_width_pcie_x1;
4595
4596 return ret_val;
4597 }
4598
4599 /**
4600 * e1000_reset_hw_ich8lan - Reset the hardware
4601 * @hw: pointer to the HW structure
4602 *
4603 * Does a full reset of the hardware which includes a reset of the PHY and
4604 * MAC.
4605 **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4606 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4607 {
4608 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4609 u16 kum_cfg;
4610 u32 ctrl, reg;
4611 s32 ret_val;
4612
4613 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4614 * on the last TLP read/write transaction when MAC is reset.
4615 */
4616 ret_val = e1000e_disable_pcie_master(hw);
4617 if (ret_val)
4618 e_dbg("PCI-E Master disable polling has failed.\n");
4619
4620 e_dbg("Masking off all interrupts\n");
4621 ew32(IMC, 0xffffffff);
4622
4623 /* Disable the Transmit and Receive units. Then delay to allow
4624 * any pending transactions to complete before we hit the MAC
4625 * with the global reset.
4626 */
4627 ew32(RCTL, 0);
4628 ew32(TCTL, E1000_TCTL_PSP);
4629 e1e_flush();
4630
4631 usleep_range(10000, 20000);
4632
4633 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4634 if (hw->mac.type == e1000_ich8lan) {
4635 /* Set Tx and Rx buffer allocation to 8k apiece. */
4636 ew32(PBA, E1000_PBA_8K);
4637 /* Set Packet Buffer Size to 16k. */
4638 ew32(PBS, E1000_PBS_16K);
4639 }
4640
4641 if (hw->mac.type == e1000_pchlan) {
4642 /* Save the NVM K1 bit setting */
4643 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4644 if (ret_val)
4645 return ret_val;
4646
4647 if (kum_cfg & E1000_NVM_K1_ENABLE)
4648 dev_spec->nvm_k1_enabled = true;
4649 else
4650 dev_spec->nvm_k1_enabled = false;
4651 }
4652
4653 ctrl = er32(CTRL);
4654
4655 if (!hw->phy.ops.check_reset_block(hw)) {
4656 /* Full-chip reset requires MAC and PHY reset at the same
4657 * time to make sure the interface between MAC and the
4658 * external PHY is reset.
4659 */
4660 ctrl |= E1000_CTRL_PHY_RST;
4661
4662 /* Gate automatic PHY configuration by hardware on
4663 * non-managed 82579
4664 */
4665 if ((hw->mac.type == e1000_pch2lan) &&
4666 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4667 e1000_gate_hw_phy_config_ich8lan(hw, true);
4668 }
4669 ret_val = e1000_acquire_swflag_ich8lan(hw);
4670 e_dbg("Issuing a global reset to ich8lan\n");
4671 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4672 /* cannot issue a flush here because it hangs the hardware */
4673 msleep(20);
4674
4675 /* Set Phy Config Counter to 50msec */
4676 if (hw->mac.type == e1000_pch2lan) {
4677 reg = er32(FEXTNVM3);
4678 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4679 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4680 ew32(FEXTNVM3, reg);
4681 }
4682
4683 if (!ret_val)
4684 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4685
4686 if (ctrl & E1000_CTRL_PHY_RST) {
4687 ret_val = hw->phy.ops.get_cfg_done(hw);
4688 if (ret_val)
4689 return ret_val;
4690
4691 ret_val = e1000_post_phy_reset_ich8lan(hw);
4692 if (ret_val)
4693 return ret_val;
4694 }
4695
4696 /* For PCH, this write will make sure that any noise
4697 * will be detected as a CRC error and be dropped rather than show up
4698 * as a bad packet to the DMA engine.
4699 */
4700 if (hw->mac.type == e1000_pchlan)
4701 ew32(CRC_OFFSET, 0x65656565);
4702
4703 ew32(IMC, 0xffffffff);
4704 er32(ICR);
4705
4706 reg = er32(KABGTXD);
4707 reg |= E1000_KABGTXD_BGSQLBIAS;
4708 ew32(KABGTXD, reg);
4709
4710 return 0;
4711 }
4712
4713 /**
4714 * e1000_init_hw_ich8lan - Initialize the hardware
4715 * @hw: pointer to the HW structure
4716 *
4717 * Prepares the hardware for transmit and receive by doing the following:
4718 * - initialize hardware bits
4719 * - initialize LED identification
4720 * - setup receive address registers
4721 * - setup flow control
4722 * - setup transmit descriptors
4723 * - clear statistics
4724 **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4725 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4726 {
4727 struct e1000_mac_info *mac = &hw->mac;
4728 u32 ctrl_ext, txdctl, snoop;
4729 s32 ret_val;
4730 u16 i;
4731
4732 e1000_initialize_hw_bits_ich8lan(hw);
4733
4734 /* Initialize identification LED */
4735 ret_val = mac->ops.id_led_init(hw);
4736 /* An error is not fatal and we should not stop init due to this */
4737 if (ret_val)
4738 e_dbg("Error initializing identification LED\n");
4739
4740 /* Setup the receive address. */
4741 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4742
4743 /* Zero out the Multicast HASH table */
4744 e_dbg("Zeroing the MTA\n");
4745 for (i = 0; i < mac->mta_reg_count; i++)
4746 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4747
4748 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4749 * the ME. Disable wakeup by clearing the host wakeup bit.
4750 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4751 */
4752 if (hw->phy.type == e1000_phy_82578) {
4753 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4754 i &= ~BM_WUC_HOST_WU_BIT;
4755 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4756 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4757 if (ret_val)
4758 return ret_val;
4759 }
4760
4761 /* Setup link and flow control */
4762 ret_val = mac->ops.setup_link(hw);
4763
4764 /* Set the transmit descriptor write-back policy for both queues */
4765 txdctl = er32(TXDCTL(0));
4766 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4767 E1000_TXDCTL_FULL_TX_DESC_WB);
4768 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4769 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4770 ew32(TXDCTL(0), txdctl);
4771 txdctl = er32(TXDCTL(1));
4772 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4773 E1000_TXDCTL_FULL_TX_DESC_WB);
4774 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4775 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4776 ew32(TXDCTL(1), txdctl);
4777
4778 /* ICH8 has opposite polarity of no_snoop bits.
4779 * By default, we should use snoop behavior.
4780 */
4781 if (mac->type == e1000_ich8lan)
4782 snoop = PCIE_ICH8_SNOOP_ALL;
4783 else
4784 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4785 e1000e_set_pcie_no_snoop(hw, snoop);
4786
4787 ctrl_ext = er32(CTRL_EXT);
4788 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4789 ew32(CTRL_EXT, ctrl_ext);
4790
4791 /* Clear all of the statistics registers (clear on read). It is
4792 * important that we do this after we have tried to establish link
4793 * because the symbol error count will increment wildly if there
4794 * is no link.
4795 */
4796 e1000_clear_hw_cntrs_ich8lan(hw);
4797
4798 return ret_val;
4799 }
4800
4801 /**
4802 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4803 * @hw: pointer to the HW structure
4804 *
4805 * Sets/Clears required hardware bits necessary for correctly setting up the
4806 * hardware for transmit and receive.
4807 **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4808 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4809 {
4810 u32 reg;
4811
4812 /* Extended Device Control */
4813 reg = er32(CTRL_EXT);
4814 reg |= (1 << 22);
4815 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4816 if (hw->mac.type >= e1000_pchlan)
4817 reg |= E1000_CTRL_EXT_PHYPDEN;
4818 ew32(CTRL_EXT, reg);
4819
4820 /* Transmit Descriptor Control 0 */
4821 reg = er32(TXDCTL(0));
4822 reg |= (1 << 22);
4823 ew32(TXDCTL(0), reg);
4824
4825 /* Transmit Descriptor Control 1 */
4826 reg = er32(TXDCTL(1));
4827 reg |= (1 << 22);
4828 ew32(TXDCTL(1), reg);
4829
4830 /* Transmit Arbitration Control 0 */
4831 reg = er32(TARC(0));
4832 if (hw->mac.type == e1000_ich8lan)
4833 reg |= (1 << 28) | (1 << 29);
4834 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4835 ew32(TARC(0), reg);
4836
4837 /* Transmit Arbitration Control 1 */
4838 reg = er32(TARC(1));
4839 if (er32(TCTL) & E1000_TCTL_MULR)
4840 reg &= ~(1 << 28);
4841 else
4842 reg |= (1 << 28);
4843 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4844 ew32(TARC(1), reg);
4845
4846 /* Device Status */
4847 if (hw->mac.type == e1000_ich8lan) {
4848 reg = er32(STATUS);
4849 reg &= ~(1 << 31);
4850 ew32(STATUS, reg);
4851 }
4852
4853 /* work-around descriptor data corruption issue during nfs v2 udp
4854 * traffic, just disable the nfs filtering capability
4855 */
4856 reg = er32(RFCTL);
4857 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4858
4859 /* Disable IPv6 extension header parsing because some malformed
4860 * IPv6 headers can hang the Rx.
4861 */
4862 if (hw->mac.type == e1000_ich8lan)
4863 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4864 ew32(RFCTL, reg);
4865
4866 /* Enable ECC on Lynxpoint */
4867 if ((hw->mac.type == e1000_pch_lpt) ||
4868 (hw->mac.type == e1000_pch_spt)) {
4869 reg = er32(PBECCSTS);
4870 reg |= E1000_PBECCSTS_ECC_ENABLE;
4871 ew32(PBECCSTS, reg);
4872
4873 reg = er32(CTRL);
4874 reg |= E1000_CTRL_MEHE;
4875 ew32(CTRL, reg);
4876 }
4877 }
4878
4879 /**
4880 * e1000_setup_link_ich8lan - Setup flow control and link settings
4881 * @hw: pointer to the HW structure
4882 *
4883 * Determines which flow control settings to use, then configures flow
4884 * control. Calls the appropriate media-specific link configuration
4885 * function. Assuming the adapter has a valid link partner, a valid link
4886 * should be established. Assumes the hardware has previously been reset
4887 * and the transmitter and receiver are not enabled.
4888 **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)4889 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4890 {
4891 s32 ret_val;
4892
4893 if (hw->phy.ops.check_reset_block(hw))
4894 return 0;
4895
4896 /* ICH parts do not have a word in the NVM to determine
4897 * the default flow control setting, so we explicitly
4898 * set it to full.
4899 */
4900 if (hw->fc.requested_mode == e1000_fc_default) {
4901 /* Workaround h/w hang when Tx flow control enabled */
4902 if (hw->mac.type == e1000_pchlan)
4903 hw->fc.requested_mode = e1000_fc_rx_pause;
4904 else
4905 hw->fc.requested_mode = e1000_fc_full;
4906 }
4907
4908 /* Save off the requested flow control mode for use later. Depending
4909 * on the link partner's capabilities, we may or may not use this mode.
4910 */
4911 hw->fc.current_mode = hw->fc.requested_mode;
4912
4913 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4914
4915 /* Continue to configure the copper link. */
4916 ret_val = hw->mac.ops.setup_physical_interface(hw);
4917 if (ret_val)
4918 return ret_val;
4919
4920 ew32(FCTTV, hw->fc.pause_time);
4921 if ((hw->phy.type == e1000_phy_82578) ||
4922 (hw->phy.type == e1000_phy_82579) ||
4923 (hw->phy.type == e1000_phy_i217) ||
4924 (hw->phy.type == e1000_phy_82577)) {
4925 ew32(FCRTV_PCH, hw->fc.refresh_time);
4926
4927 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4928 hw->fc.pause_time);
4929 if (ret_val)
4930 return ret_val;
4931 }
4932
4933 return e1000e_set_fc_watermarks(hw);
4934 }
4935
4936 /**
4937 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4938 * @hw: pointer to the HW structure
4939 *
4940 * Configures the kumeran interface to the PHY to wait the appropriate time
4941 * when polling the PHY, then call the generic setup_copper_link to finish
4942 * configuring the copper link.
4943 **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)4944 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4945 {
4946 u32 ctrl;
4947 s32 ret_val;
4948 u16 reg_data;
4949
4950 ctrl = er32(CTRL);
4951 ctrl |= E1000_CTRL_SLU;
4952 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4953 ew32(CTRL, ctrl);
4954
4955 /* Set the mac to wait the maximum time between each iteration
4956 * and increase the max iterations when polling the phy;
4957 * this fixes erroneous timeouts at 10Mbps.
4958 */
4959 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4960 if (ret_val)
4961 return ret_val;
4962 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4963 ®_data);
4964 if (ret_val)
4965 return ret_val;
4966 reg_data |= 0x3F;
4967 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4968 reg_data);
4969 if (ret_val)
4970 return ret_val;
4971
4972 switch (hw->phy.type) {
4973 case e1000_phy_igp_3:
4974 ret_val = e1000e_copper_link_setup_igp(hw);
4975 if (ret_val)
4976 return ret_val;
4977 break;
4978 case e1000_phy_bm:
4979 case e1000_phy_82578:
4980 ret_val = e1000e_copper_link_setup_m88(hw);
4981 if (ret_val)
4982 return ret_val;
4983 break;
4984 case e1000_phy_82577:
4985 case e1000_phy_82579:
4986 ret_val = e1000_copper_link_setup_82577(hw);
4987 if (ret_val)
4988 return ret_val;
4989 break;
4990 case e1000_phy_ife:
4991 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
4992 if (ret_val)
4993 return ret_val;
4994
4995 reg_data &= ~IFE_PMC_AUTO_MDIX;
4996
4997 switch (hw->phy.mdix) {
4998 case 1:
4999 reg_data &= ~IFE_PMC_FORCE_MDIX;
5000 break;
5001 case 2:
5002 reg_data |= IFE_PMC_FORCE_MDIX;
5003 break;
5004 case 0:
5005 default:
5006 reg_data |= IFE_PMC_AUTO_MDIX;
5007 break;
5008 }
5009 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5010 if (ret_val)
5011 return ret_val;
5012 break;
5013 default:
5014 break;
5015 }
5016
5017 return e1000e_setup_copper_link(hw);
5018 }
5019
5020 /**
5021 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5022 * @hw: pointer to the HW structure
5023 *
5024 * Calls the PHY specific link setup function and then calls the
5025 * generic setup_copper_link to finish configuring the link for
5026 * Lynxpoint PCH devices
5027 **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5028 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5029 {
5030 u32 ctrl;
5031 s32 ret_val;
5032
5033 ctrl = er32(CTRL);
5034 ctrl |= E1000_CTRL_SLU;
5035 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5036 ew32(CTRL, ctrl);
5037
5038 ret_val = e1000_copper_link_setup_82577(hw);
5039 if (ret_val)
5040 return ret_val;
5041
5042 return e1000e_setup_copper_link(hw);
5043 }
5044
5045 /**
5046 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5047 * @hw: pointer to the HW structure
5048 * @speed: pointer to store current link speed
5049 * @duplex: pointer to store the current link duplex
5050 *
5051 * Calls the generic get_speed_and_duplex to retrieve the current link
5052 * information and then calls the Kumeran lock loss workaround for links at
5053 * gigabit speeds.
5054 **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5055 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5056 u16 *duplex)
5057 {
5058 s32 ret_val;
5059
5060 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5061 if (ret_val)
5062 return ret_val;
5063
5064 if ((hw->mac.type == e1000_ich8lan) &&
5065 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5066 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5067 }
5068
5069 return ret_val;
5070 }
5071
5072 /**
5073 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5074 * @hw: pointer to the HW structure
5075 *
5076 * Work-around for 82566 Kumeran PCS lock loss:
5077 * On link status change (i.e. PCI reset, speed change) and link is up and
5078 * speed is gigabit-
5079 * 0) if workaround is optionally disabled do nothing
5080 * 1) wait 1ms for Kumeran link to come up
5081 * 2) check Kumeran Diagnostic register PCS lock loss bit
5082 * 3) if not set the link is locked (all is good), otherwise...
5083 * 4) reset the PHY
5084 * 5) repeat up to 10 times
5085 * Note: this is only called for IGP3 copper when speed is 1gb.
5086 **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5087 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5088 {
5089 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5090 u32 phy_ctrl;
5091 s32 ret_val;
5092 u16 i, data;
5093 bool link;
5094
5095 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5096 return 0;
5097
5098 /* Make sure link is up before proceeding. If not just return.
5099 * Attempting this while link is negotiating fouled up link
5100 * stability
5101 */
5102 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5103 if (!link)
5104 return 0;
5105
5106 for (i = 0; i < 10; i++) {
5107 /* read once to clear */
5108 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5109 if (ret_val)
5110 return ret_val;
5111 /* and again to get new status */
5112 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5113 if (ret_val)
5114 return ret_val;
5115
5116 /* check for PCS lock */
5117 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5118 return 0;
5119
5120 /* Issue PHY reset */
5121 e1000_phy_hw_reset(hw);
5122 mdelay(5);
5123 }
5124 /* Disable GigE link negotiation */
5125 phy_ctrl = er32(PHY_CTRL);
5126 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5127 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5128 ew32(PHY_CTRL, phy_ctrl);
5129
5130 /* Call gig speed drop workaround on Gig disable before accessing
5131 * any PHY registers
5132 */
5133 e1000e_gig_downshift_workaround_ich8lan(hw);
5134
5135 /* unable to acquire PCS lock */
5136 return -E1000_ERR_PHY;
5137 }
5138
5139 /**
5140 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5141 * @hw: pointer to the HW structure
5142 * @state: boolean value used to set the current Kumeran workaround state
5143 *
5144 * If ICH8, set the current Kumeran workaround state (enabled - true
5145 * /disabled - false).
5146 **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5147 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5148 bool state)
5149 {
5150 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5151
5152 if (hw->mac.type != e1000_ich8lan) {
5153 e_dbg("Workaround applies to ICH8 only.\n");
5154 return;
5155 }
5156
5157 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5158 }
5159
5160 /**
5161 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5162 * @hw: pointer to the HW structure
5163 *
5164 * Workaround for 82566 power-down on D3 entry:
5165 * 1) disable gigabit link
5166 * 2) write VR power-down enable
5167 * 3) read it back
5168 * Continue if successful, else issue LCD reset and repeat
5169 **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5170 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5171 {
5172 u32 reg;
5173 u16 data;
5174 u8 retry = 0;
5175
5176 if (hw->phy.type != e1000_phy_igp_3)
5177 return;
5178
5179 /* Try the workaround twice (if needed) */
5180 do {
5181 /* Disable link */
5182 reg = er32(PHY_CTRL);
5183 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5184 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5185 ew32(PHY_CTRL, reg);
5186
5187 /* Call gig speed drop workaround on Gig disable before
5188 * accessing any PHY registers
5189 */
5190 if (hw->mac.type == e1000_ich8lan)
5191 e1000e_gig_downshift_workaround_ich8lan(hw);
5192
5193 /* Write VR power-down enable */
5194 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5195 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5196 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5197
5198 /* Read it back and test */
5199 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5200 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5201 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5202 break;
5203
5204 /* Issue PHY reset and repeat at most one more time */
5205 reg = er32(CTRL);
5206 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5207 retry++;
5208 } while (retry);
5209 }
5210
5211 /**
5212 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5213 * @hw: pointer to the HW structure
5214 *
5215 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5216 * LPLU, Gig disable, MDIC PHY reset):
5217 * 1) Set Kumeran Near-end loopback
5218 * 2) Clear Kumeran Near-end loopback
5219 * Should only be called for ICH8[m] devices with any 1G Phy.
5220 **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5221 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5222 {
5223 s32 ret_val;
5224 u16 reg_data;
5225
5226 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5227 return;
5228
5229 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5230 ®_data);
5231 if (ret_val)
5232 return;
5233 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5234 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5235 reg_data);
5236 if (ret_val)
5237 return;
5238 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5239 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5240 }
5241
5242 /**
5243 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5244 * @hw: pointer to the HW structure
5245 *
5246 * During S0 to Sx transition, it is possible the link remains at gig
5247 * instead of negotiating to a lower speed. Before going to Sx, set
5248 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5249 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5250 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5251 * needs to be written.
5252 * Parts that support (and are linked to a partner which support) EEE in
5253 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5254 * than 10Mbps w/o EEE.
5255 **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5256 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5257 {
5258 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5259 u32 phy_ctrl;
5260 s32 ret_val;
5261
5262 phy_ctrl = er32(PHY_CTRL);
5263 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5264
5265 if (hw->phy.type == e1000_phy_i217) {
5266 u16 phy_reg, device_id = hw->adapter->pdev->device;
5267
5268 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5269 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5270 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5271 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5272 (hw->mac.type == e1000_pch_spt)) {
5273 u32 fextnvm6 = er32(FEXTNVM6);
5274
5275 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5276 }
5277
5278 ret_val = hw->phy.ops.acquire(hw);
5279 if (ret_val)
5280 goto out;
5281
5282 if (!dev_spec->eee_disable) {
5283 u16 eee_advert;
5284
5285 ret_val =
5286 e1000_read_emi_reg_locked(hw,
5287 I217_EEE_ADVERTISEMENT,
5288 &eee_advert);
5289 if (ret_val)
5290 goto release;
5291
5292 /* Disable LPLU if both link partners support 100BaseT
5293 * EEE and 100Full is advertised on both ends of the
5294 * link, and enable Auto Enable LPI since there will
5295 * be no driver to enable LPI while in Sx.
5296 */
5297 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5298 (dev_spec->eee_lp_ability &
5299 I82579_EEE_100_SUPPORTED) &&
5300 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5301 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5302 E1000_PHY_CTRL_NOND0A_LPLU);
5303
5304 /* Set Auto Enable LPI after link up */
5305 e1e_rphy_locked(hw,
5306 I217_LPI_GPIO_CTRL, &phy_reg);
5307 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5308 e1e_wphy_locked(hw,
5309 I217_LPI_GPIO_CTRL, phy_reg);
5310 }
5311 }
5312
5313 /* For i217 Intel Rapid Start Technology support,
5314 * when the system is going into Sx and no manageability engine
5315 * is present, the driver must configure proxy to reset only on
5316 * power good. LPI (Low Power Idle) state must also reset only
5317 * on power good, as well as the MTA (Multicast table array).
5318 * The SMBus release must also be disabled on LCD reset.
5319 */
5320 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5321 /* Enable proxy to reset only on power good. */
5322 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5323 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5324 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5325
5326 /* Set bit enable LPI (EEE) to reset only on
5327 * power good.
5328 */
5329 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5330 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5331 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5332
5333 /* Disable the SMB release on LCD reset. */
5334 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5335 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5336 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5337 }
5338
5339 /* Enable MTA to reset for Intel Rapid Start Technology
5340 * Support
5341 */
5342 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5343 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5344 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5345
5346 release:
5347 hw->phy.ops.release(hw);
5348 }
5349 out:
5350 ew32(PHY_CTRL, phy_ctrl);
5351
5352 if (hw->mac.type == e1000_ich8lan)
5353 e1000e_gig_downshift_workaround_ich8lan(hw);
5354
5355 if (hw->mac.type >= e1000_pchlan) {
5356 e1000_oem_bits_config_ich8lan(hw, false);
5357
5358 /* Reset PHY to activate OEM bits on 82577/8 */
5359 if (hw->mac.type == e1000_pchlan)
5360 e1000e_phy_hw_reset_generic(hw);
5361
5362 ret_val = hw->phy.ops.acquire(hw);
5363 if (ret_val)
5364 return;
5365 e1000_write_smbus_addr(hw);
5366 hw->phy.ops.release(hw);
5367 }
5368 }
5369
5370 /**
5371 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5372 * @hw: pointer to the HW structure
5373 *
5374 * During Sx to S0 transitions on non-managed devices or managed devices
5375 * on which PHY resets are not blocked, if the PHY registers cannot be
5376 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5377 * the PHY.
5378 * On i217, setup Intel Rapid Start Technology.
5379 **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5380 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5381 {
5382 s32 ret_val;
5383
5384 if (hw->mac.type < e1000_pch2lan)
5385 return;
5386
5387 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5388 if (ret_val) {
5389 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5390 return;
5391 }
5392
5393 /* For i217 Intel Rapid Start Technology support when the system
5394 * is transitioning from Sx and no manageability engine is present
5395 * configure SMBus to restore on reset, disable proxy, and enable
5396 * the reset on MTA (Multicast table array).
5397 */
5398 if (hw->phy.type == e1000_phy_i217) {
5399 u16 phy_reg;
5400
5401 ret_val = hw->phy.ops.acquire(hw);
5402 if (ret_val) {
5403 e_dbg("Failed to setup iRST\n");
5404 return;
5405 }
5406
5407 /* Clear Auto Enable LPI after link up */
5408 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5409 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5410 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5411
5412 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5413 /* Restore clear on SMB if no manageability engine
5414 * is present
5415 */
5416 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5417 if (ret_val)
5418 goto release;
5419 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5420 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5421
5422 /* Disable Proxy */
5423 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5424 }
5425 /* Enable reset on MTA */
5426 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5427 if (ret_val)
5428 goto release;
5429 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5430 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5431 release:
5432 if (ret_val)
5433 e_dbg("Error %d in resume workarounds\n", ret_val);
5434 hw->phy.ops.release(hw);
5435 }
5436 }
5437
5438 /**
5439 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5440 * @hw: pointer to the HW structure
5441 *
5442 * Return the LED back to the default configuration.
5443 **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5444 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5445 {
5446 if (hw->phy.type == e1000_phy_ife)
5447 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5448
5449 ew32(LEDCTL, hw->mac.ledctl_default);
5450 return 0;
5451 }
5452
5453 /**
5454 * e1000_led_on_ich8lan - Turn LEDs on
5455 * @hw: pointer to the HW structure
5456 *
5457 * Turn on the LEDs.
5458 **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5459 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5460 {
5461 if (hw->phy.type == e1000_phy_ife)
5462 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5463 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5464
5465 ew32(LEDCTL, hw->mac.ledctl_mode2);
5466 return 0;
5467 }
5468
5469 /**
5470 * e1000_led_off_ich8lan - Turn LEDs off
5471 * @hw: pointer to the HW structure
5472 *
5473 * Turn off the LEDs.
5474 **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5475 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5476 {
5477 if (hw->phy.type == e1000_phy_ife)
5478 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5479 (IFE_PSCL_PROBE_MODE |
5480 IFE_PSCL_PROBE_LEDS_OFF));
5481
5482 ew32(LEDCTL, hw->mac.ledctl_mode1);
5483 return 0;
5484 }
5485
5486 /**
5487 * e1000_setup_led_pchlan - Configures SW controllable LED
5488 * @hw: pointer to the HW structure
5489 *
5490 * This prepares the SW controllable LED for use.
5491 **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5492 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5493 {
5494 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5495 }
5496
5497 /**
5498 * e1000_cleanup_led_pchlan - Restore the default LED operation
5499 * @hw: pointer to the HW structure
5500 *
5501 * Return the LED back to the default configuration.
5502 **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5503 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5504 {
5505 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5506 }
5507
5508 /**
5509 * e1000_led_on_pchlan - Turn LEDs on
5510 * @hw: pointer to the HW structure
5511 *
5512 * Turn on the LEDs.
5513 **/
e1000_led_on_pchlan(struct e1000_hw * hw)5514 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5515 {
5516 u16 data = (u16)hw->mac.ledctl_mode2;
5517 u32 i, led;
5518
5519 /* If no link, then turn LED on by setting the invert bit
5520 * for each LED that's mode is "link_up" in ledctl_mode2.
5521 */
5522 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5523 for (i = 0; i < 3; i++) {
5524 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5525 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5526 E1000_LEDCTL_MODE_LINK_UP)
5527 continue;
5528 if (led & E1000_PHY_LED0_IVRT)
5529 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5530 else
5531 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5532 }
5533 }
5534
5535 return e1e_wphy(hw, HV_LED_CONFIG, data);
5536 }
5537
5538 /**
5539 * e1000_led_off_pchlan - Turn LEDs off
5540 * @hw: pointer to the HW structure
5541 *
5542 * Turn off the LEDs.
5543 **/
e1000_led_off_pchlan(struct e1000_hw * hw)5544 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5545 {
5546 u16 data = (u16)hw->mac.ledctl_mode1;
5547 u32 i, led;
5548
5549 /* If no link, then turn LED off by clearing the invert bit
5550 * for each LED that's mode is "link_up" in ledctl_mode1.
5551 */
5552 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553 for (i = 0; i < 3; i++) {
5554 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556 E1000_LEDCTL_MODE_LINK_UP)
5557 continue;
5558 if (led & E1000_PHY_LED0_IVRT)
5559 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560 else
5561 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562 }
5563 }
5564
5565 return e1e_wphy(hw, HV_LED_CONFIG, data);
5566 }
5567
5568 /**
5569 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5570 * @hw: pointer to the HW structure
5571 *
5572 * Read appropriate register for the config done bit for completion status
5573 * and configure the PHY through s/w for EEPROM-less parts.
5574 *
5575 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5576 * config done bit, so only an error is logged and continues. If we were
5577 * to return with error, EEPROM-less silicon would not be able to be reset
5578 * or change link.
5579 **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5580 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5581 {
5582 s32 ret_val = 0;
5583 u32 bank = 0;
5584 u32 status;
5585
5586 e1000e_get_cfg_done_generic(hw);
5587
5588 /* Wait for indication from h/w that it has completed basic config */
5589 if (hw->mac.type >= e1000_ich10lan) {
5590 e1000_lan_init_done_ich8lan(hw);
5591 } else {
5592 ret_val = e1000e_get_auto_rd_done(hw);
5593 if (ret_val) {
5594 /* When auto config read does not complete, do not
5595 * return with an error. This can happen in situations
5596 * where there is no eeprom and prevents getting link.
5597 */
5598 e_dbg("Auto Read Done did not complete\n");
5599 ret_val = 0;
5600 }
5601 }
5602
5603 /* Clear PHY Reset Asserted bit */
5604 status = er32(STATUS);
5605 if (status & E1000_STATUS_PHYRA)
5606 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5607 else
5608 e_dbg("PHY Reset Asserted not set - needs delay\n");
5609
5610 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5611 if (hw->mac.type <= e1000_ich9lan) {
5612 if (!(er32(EECD) & E1000_EECD_PRES) &&
5613 (hw->phy.type == e1000_phy_igp_3)) {
5614 e1000e_phy_init_script_igp3(hw);
5615 }
5616 } else {
5617 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5618 /* Maybe we should do a basic PHY config */
5619 e_dbg("EEPROM not present\n");
5620 ret_val = -E1000_ERR_CONFIG;
5621 }
5622 }
5623
5624 return ret_val;
5625 }
5626
5627 /**
5628 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5629 * @hw: pointer to the HW structure
5630 *
5631 * In the case of a PHY power down to save power, or to turn off link during a
5632 * driver unload, or wake on lan is not enabled, remove the link.
5633 **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5634 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5635 {
5636 /* If the management interface is not enabled, then power down */
5637 if (!(hw->mac.ops.check_mng_mode(hw) ||
5638 hw->phy.ops.check_reset_block(hw)))
5639 e1000_power_down_phy_copper(hw);
5640 }
5641
5642 /**
5643 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5644 * @hw: pointer to the HW structure
5645 *
5646 * Clears hardware counters specific to the silicon family and calls
5647 * clear_hw_cntrs_generic to clear all general purpose counters.
5648 **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5649 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5650 {
5651 u16 phy_data;
5652 s32 ret_val;
5653
5654 e1000e_clear_hw_cntrs_base(hw);
5655
5656 er32(ALGNERRC);
5657 er32(RXERRC);
5658 er32(TNCRS);
5659 er32(CEXTERR);
5660 er32(TSCTC);
5661 er32(TSCTFC);
5662
5663 er32(MGTPRC);
5664 er32(MGTPDC);
5665 er32(MGTPTC);
5666
5667 er32(IAC);
5668 er32(ICRXOC);
5669
5670 /* Clear PHY statistics registers */
5671 if ((hw->phy.type == e1000_phy_82578) ||
5672 (hw->phy.type == e1000_phy_82579) ||
5673 (hw->phy.type == e1000_phy_i217) ||
5674 (hw->phy.type == e1000_phy_82577)) {
5675 ret_val = hw->phy.ops.acquire(hw);
5676 if (ret_val)
5677 return;
5678 ret_val = hw->phy.ops.set_page(hw,
5679 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5680 if (ret_val)
5681 goto release;
5682 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5683 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5684 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5685 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5686 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5687 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5688 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5689 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5690 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5691 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5692 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5693 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5694 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5695 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5696 release:
5697 hw->phy.ops.release(hw);
5698 }
5699 }
5700
5701 static const struct e1000_mac_operations ich8_mac_ops = {
5702 /* check_mng_mode dependent on mac type */
5703 .check_for_link = e1000_check_for_copper_link_ich8lan,
5704 /* cleanup_led dependent on mac type */
5705 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5706 .get_bus_info = e1000_get_bus_info_ich8lan,
5707 .set_lan_id = e1000_set_lan_id_single_port,
5708 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5709 /* led_on dependent on mac type */
5710 /* led_off dependent on mac type */
5711 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5712 .reset_hw = e1000_reset_hw_ich8lan,
5713 .init_hw = e1000_init_hw_ich8lan,
5714 .setup_link = e1000_setup_link_ich8lan,
5715 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5716 /* id_led_init dependent on mac type */
5717 .config_collision_dist = e1000e_config_collision_dist_generic,
5718 .rar_set = e1000e_rar_set_generic,
5719 .rar_get_count = e1000e_rar_get_count_generic,
5720 };
5721
5722 static const struct e1000_phy_operations ich8_phy_ops = {
5723 .acquire = e1000_acquire_swflag_ich8lan,
5724 .check_reset_block = e1000_check_reset_block_ich8lan,
5725 .commit = NULL,
5726 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5727 .get_cable_length = e1000e_get_cable_length_igp_2,
5728 .read_reg = e1000e_read_phy_reg_igp,
5729 .release = e1000_release_swflag_ich8lan,
5730 .reset = e1000_phy_hw_reset_ich8lan,
5731 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5732 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5733 .write_reg = e1000e_write_phy_reg_igp,
5734 };
5735
5736 static const struct e1000_nvm_operations ich8_nvm_ops = {
5737 .acquire = e1000_acquire_nvm_ich8lan,
5738 .read = e1000_read_nvm_ich8lan,
5739 .release = e1000_release_nvm_ich8lan,
5740 .reload = e1000e_reload_nvm_generic,
5741 .update = e1000_update_nvm_checksum_ich8lan,
5742 .valid_led_default = e1000_valid_led_default_ich8lan,
5743 .validate = e1000_validate_nvm_checksum_ich8lan,
5744 .write = e1000_write_nvm_ich8lan,
5745 };
5746
5747 static const struct e1000_nvm_operations spt_nvm_ops = {
5748 .acquire = e1000_acquire_nvm_ich8lan,
5749 .release = e1000_release_nvm_ich8lan,
5750 .read = e1000_read_nvm_spt,
5751 .update = e1000_update_nvm_checksum_spt,
5752 .reload = e1000e_reload_nvm_generic,
5753 .valid_led_default = e1000_valid_led_default_ich8lan,
5754 .validate = e1000_validate_nvm_checksum_ich8lan,
5755 .write = e1000_write_nvm_ich8lan,
5756 };
5757
5758 const struct e1000_info e1000_ich8_info = {
5759 .mac = e1000_ich8lan,
5760 .flags = FLAG_HAS_WOL
5761 | FLAG_IS_ICH
5762 | FLAG_HAS_CTRLEXT_ON_LOAD
5763 | FLAG_HAS_AMT
5764 | FLAG_HAS_FLASH
5765 | FLAG_APME_IN_WUC,
5766 .pba = 8,
5767 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5768 .get_variants = e1000_get_variants_ich8lan,
5769 .mac_ops = &ich8_mac_ops,
5770 .phy_ops = &ich8_phy_ops,
5771 .nvm_ops = &ich8_nvm_ops,
5772 };
5773
5774 const struct e1000_info e1000_ich9_info = {
5775 .mac = e1000_ich9lan,
5776 .flags = FLAG_HAS_JUMBO_FRAMES
5777 | FLAG_IS_ICH
5778 | FLAG_HAS_WOL
5779 | FLAG_HAS_CTRLEXT_ON_LOAD
5780 | FLAG_HAS_AMT
5781 | FLAG_HAS_FLASH
5782 | FLAG_APME_IN_WUC,
5783 .pba = 18,
5784 .max_hw_frame_size = DEFAULT_JUMBO,
5785 .get_variants = e1000_get_variants_ich8lan,
5786 .mac_ops = &ich8_mac_ops,
5787 .phy_ops = &ich8_phy_ops,
5788 .nvm_ops = &ich8_nvm_ops,
5789 };
5790
5791 const struct e1000_info e1000_ich10_info = {
5792 .mac = e1000_ich10lan,
5793 .flags = FLAG_HAS_JUMBO_FRAMES
5794 | FLAG_IS_ICH
5795 | FLAG_HAS_WOL
5796 | FLAG_HAS_CTRLEXT_ON_LOAD
5797 | FLAG_HAS_AMT
5798 | FLAG_HAS_FLASH
5799 | FLAG_APME_IN_WUC,
5800 .pba = 18,
5801 .max_hw_frame_size = DEFAULT_JUMBO,
5802 .get_variants = e1000_get_variants_ich8lan,
5803 .mac_ops = &ich8_mac_ops,
5804 .phy_ops = &ich8_phy_ops,
5805 .nvm_ops = &ich8_nvm_ops,
5806 };
5807
5808 const struct e1000_info e1000_pch_info = {
5809 .mac = e1000_pchlan,
5810 .flags = FLAG_IS_ICH
5811 | FLAG_HAS_WOL
5812 | FLAG_HAS_CTRLEXT_ON_LOAD
5813 | FLAG_HAS_AMT
5814 | FLAG_HAS_FLASH
5815 | FLAG_HAS_JUMBO_FRAMES
5816 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5817 | FLAG_APME_IN_WUC,
5818 .flags2 = FLAG2_HAS_PHY_STATS,
5819 .pba = 26,
5820 .max_hw_frame_size = 4096,
5821 .get_variants = e1000_get_variants_ich8lan,
5822 .mac_ops = &ich8_mac_ops,
5823 .phy_ops = &ich8_phy_ops,
5824 .nvm_ops = &ich8_nvm_ops,
5825 };
5826
5827 const struct e1000_info e1000_pch2_info = {
5828 .mac = e1000_pch2lan,
5829 .flags = FLAG_IS_ICH
5830 | FLAG_HAS_WOL
5831 | FLAG_HAS_HW_TIMESTAMP
5832 | FLAG_HAS_CTRLEXT_ON_LOAD
5833 | FLAG_HAS_AMT
5834 | FLAG_HAS_FLASH
5835 | FLAG_HAS_JUMBO_FRAMES
5836 | FLAG_APME_IN_WUC,
5837 .flags2 = FLAG2_HAS_PHY_STATS
5838 | FLAG2_HAS_EEE,
5839 .pba = 26,
5840 .max_hw_frame_size = 9022,
5841 .get_variants = e1000_get_variants_ich8lan,
5842 .mac_ops = &ich8_mac_ops,
5843 .phy_ops = &ich8_phy_ops,
5844 .nvm_ops = &ich8_nvm_ops,
5845 };
5846
5847 const struct e1000_info e1000_pch_lpt_info = {
5848 .mac = e1000_pch_lpt,
5849 .flags = FLAG_IS_ICH
5850 | FLAG_HAS_WOL
5851 | FLAG_HAS_HW_TIMESTAMP
5852 | FLAG_HAS_CTRLEXT_ON_LOAD
5853 | FLAG_HAS_AMT
5854 | FLAG_HAS_FLASH
5855 | FLAG_HAS_JUMBO_FRAMES
5856 | FLAG_APME_IN_WUC,
5857 .flags2 = FLAG2_HAS_PHY_STATS
5858 | FLAG2_HAS_EEE,
5859 .pba = 26,
5860 .max_hw_frame_size = 9022,
5861 .get_variants = e1000_get_variants_ich8lan,
5862 .mac_ops = &ich8_mac_ops,
5863 .phy_ops = &ich8_phy_ops,
5864 .nvm_ops = &ich8_nvm_ops,
5865 };
5866
5867 const struct e1000_info e1000_pch_spt_info = {
5868 .mac = e1000_pch_spt,
5869 .flags = FLAG_IS_ICH
5870 | FLAG_HAS_WOL
5871 | FLAG_HAS_HW_TIMESTAMP
5872 | FLAG_HAS_CTRLEXT_ON_LOAD
5873 | FLAG_HAS_AMT
5874 | FLAG_HAS_FLASH
5875 | FLAG_HAS_JUMBO_FRAMES
5876 | FLAG_APME_IN_WUC,
5877 .flags2 = FLAG2_HAS_PHY_STATS
5878 | FLAG2_HAS_EEE,
5879 .pba = 26,
5880 .max_hw_frame_size = 9022,
5881 .get_variants = e1000_get_variants_ich8lan,
5882 .mac_ops = &ich8_mac_ops,
5883 .phy_ops = &ich8_phy_ops,
5884 .nvm_ops = &spt_nvm_ops,
5885 };
5886