1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30 /**************************************************************************
31 *
32 * Configurable values
33 *
34 **************************************************************************
35 */
36
37 /* This is set to 16 for a good reason. In summary, if larger than
38 * 16, the descriptor cache holds more than a default socket
39 * buffer's worth of packets (for UDP we can only have at most one
40 * socket buffer's worth outstanding). This combined with the fact
41 * that we only get 1 TX event per descriptor cache means the NIC
42 * goes idle.
43 */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 * disable it.
53 */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
73 efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
76 efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
78 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
79 (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84 *
85 * Hardware access
86 *
87 **************************************************************************/
88
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 unsigned int index)
91 {
92 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 value, index);
94 }
95
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 const efx_oword_t *mask)
98 {
99 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)103 int efx_farch_test_registers(struct efx_nic *efx,
104 const struct efx_farch_register_test *regs,
105 size_t n_regs)
106 {
107 unsigned address = 0, i, j;
108 efx_oword_t mask, imask, original, reg, buf;
109
110 for (i = 0; i < n_regs; ++i) {
111 address = regs[i].address;
112 mask = imask = regs[i].mask;
113 EFX_INVERT_OWORD(imask);
114
115 efx_reado(efx, &original, address);
116
117 /* bit sweep on and off */
118 for (j = 0; j < 128; j++) {
119 if (!EFX_EXTRACT_OWORD32(mask, j, j))
120 continue;
121
122 /* Test this testable bit can be set in isolation */
123 EFX_AND_OWORD(reg, original, mask);
124 EFX_SET_OWORD32(reg, j, j, 1);
125
126 efx_writeo(efx, ®, address);
127 efx_reado(efx, &buf, address);
128
129 if (efx_masked_compare_oword(®, &buf, &mask))
130 goto fail;
131
132 /* Test this testable bit can be cleared in isolation */
133 EFX_OR_OWORD(reg, original, mask);
134 EFX_SET_OWORD32(reg, j, j, 0);
135
136 efx_writeo(efx, ®, address);
137 efx_reado(efx, &buf, address);
138
139 if (efx_masked_compare_oword(®, &buf, &mask))
140 goto fail;
141 }
142
143 efx_writeo(efx, &original, address);
144 }
145
146 return 0;
147
148 fail:
149 netif_err(efx, hw, efx->net_dev,
150 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153 return -EIO;
154 }
155
156 /**************************************************************************
157 *
158 * Special buffer handling
159 * Special buffers are used for event queues and the TX and RX
160 * descriptor rings.
161 *
162 *************************************************************************/
163
164 /*
165 * Initialise a special buffer
166 *
167 * This will define a buffer (previously allocated via
168 * efx_alloc_special_buffer()) in the buffer table, allowing
169 * it to be used for event queues, descriptor rings etc.
170 */
171 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 {
174 efx_qword_t buf_desc;
175 unsigned int index;
176 dma_addr_t dma_addr;
177 int i;
178
179 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
180
181 /* Write buffer descriptors to NIC */
182 for (i = 0; i < buffer->entries; i++) {
183 index = buffer->index + i;
184 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185 netif_dbg(efx, probe, efx->net_dev,
186 "mapping special buffer %d at %llx\n",
187 index, (unsigned long long)dma_addr);
188 EFX_POPULATE_QWORD_3(buf_desc,
189 FRF_AZ_BUF_ADR_REGION, 0,
190 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192 efx_write_buf_tbl(efx, &buf_desc, index);
193 }
194 }
195
196 /* Unmaps a buffer and clears the buffer table entries */
197 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 {
200 efx_oword_t buf_tbl_upd;
201 unsigned int start = buffer->index;
202 unsigned int end = (buffer->index + buffer->entries - 1);
203
204 if (!buffer->entries)
205 return;
206
207 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208 buffer->index, buffer->index + buffer->entries - 1);
209
210 EFX_POPULATE_OWORD_4(buf_tbl_upd,
211 FRF_AZ_BUF_UPD_CMD, 0,
212 FRF_AZ_BUF_CLR_CMD, 1,
213 FRF_AZ_BUF_CLR_END_ID, end,
214 FRF_AZ_BUF_CLR_START_ID, start);
215 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216 }
217
218 /*
219 * Allocate a new special buffer
220 *
221 * This allocates memory for a new buffer, clears it and allocates a
222 * new buffer ID range. It does not write into the buffer table.
223 *
224 * This call will allocate 4KB buffers, since 8KB buffers can't be
225 * used for event queues and descriptor rings.
226 */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)227 static int efx_alloc_special_buffer(struct efx_nic *efx,
228 struct efx_special_buffer *buffer,
229 unsigned int len)
230 {
231 #ifdef CONFIG_SFC_SRIOV
232 struct siena_nic_data *nic_data = efx->nic_data;
233 #endif
234 len = ALIGN(len, EFX_BUF_SIZE);
235
236 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237 return -ENOMEM;
238 buffer->entries = len / EFX_BUF_SIZE;
239 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240
241 /* Select new buffer ID */
242 buffer->index = efx->next_buffer_table;
243 efx->next_buffer_table += buffer->entries;
244 #ifdef CONFIG_SFC_SRIOV
245 BUG_ON(efx_siena_sriov_enabled(efx) &&
246 nic_data->vf_buftbl_base < efx->next_buffer_table);
247 #endif
248
249 netif_dbg(efx, probe, efx->net_dev,
250 "allocating special buffers %d-%d at %llx+%x "
251 "(virt %p phys %llx)\n", buffer->index,
252 buffer->index + buffer->entries - 1,
253 (u64)buffer->buf.dma_addr, len,
254 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255
256 return 0;
257 }
258
259 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 {
262 if (!buffer->buf.addr)
263 return;
264
265 netif_dbg(efx, hw, efx->net_dev,
266 "deallocating special buffers %d-%d at %llx+%x "
267 "(virt %p phys %llx)\n", buffer->index,
268 buffer->index + buffer->entries - 1,
269 (u64)buffer->buf.dma_addr, buffer->buf.len,
270 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271
272 efx_nic_free_buffer(efx, &buffer->buf);
273 buffer->entries = 0;
274 }
275
276 /**************************************************************************
277 *
278 * TX path
279 *
280 **************************************************************************/
281
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 {
285 unsigned write_ptr;
286 efx_dword_t reg;
287
288 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290 efx_writed_page(tx_queue->efx, ®,
291 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292 }
293
294 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296 const efx_qword_t *txd)
297 {
298 unsigned write_ptr;
299 efx_oword_t reg;
300
301 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303
304 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306 FRF_AZ_TX_DESC_WPTR, write_ptr);
307 reg.qword[0] = *txd;
308 efx_writeo_page(tx_queue->efx, ®,
309 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310 }
311
312
313 /* For each entry inserted into the software descriptor ring, create a
314 * descriptor in the hardware TX descriptor ring (in host memory), and
315 * write a doorbell.
316 */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 {
319 struct efx_tx_buffer *buffer;
320 efx_qword_t *txd;
321 unsigned write_ptr;
322 unsigned old_write_count = tx_queue->write_count;
323
324 tx_queue->xmit_more_available = false;
325 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326 return;
327
328 do {
329 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330 buffer = &tx_queue->buffer[write_ptr];
331 txd = efx_tx_desc(tx_queue, write_ptr);
332 ++tx_queue->write_count;
333
334 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335
336 /* Create TX descriptor ring entry */
337 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338 EFX_POPULATE_QWORD_4(*txd,
339 FSF_AZ_TX_KER_CONT,
340 buffer->flags & EFX_TX_BUF_CONT,
341 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342 FSF_AZ_TX_KER_BUF_REGION, 0,
343 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344 } while (tx_queue->write_count != tx_queue->insert_count);
345
346 wmb(); /* Ensure descriptors are written before they are fetched */
347
348 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349 txd = efx_tx_desc(tx_queue,
350 old_write_count & tx_queue->ptr_mask);
351 efx_farch_push_tx_desc(tx_queue, txd);
352 ++tx_queue->pushes;
353 } else {
354 efx_farch_notify_tx_desc(tx_queue);
355 }
356 }
357
358 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)359 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
360 {
361 struct efx_nic *efx = tx_queue->efx;
362 unsigned entries;
363
364 entries = tx_queue->ptr_mask + 1;
365 return efx_alloc_special_buffer(efx, &tx_queue->txd,
366 entries * sizeof(efx_qword_t));
367 }
368
efx_farch_tx_init(struct efx_tx_queue * tx_queue)369 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
370 {
371 struct efx_nic *efx = tx_queue->efx;
372 efx_oword_t reg;
373
374 /* Pin TX descriptor ring */
375 efx_init_special_buffer(efx, &tx_queue->txd);
376
377 /* Push TX descriptor ring to card */
378 EFX_POPULATE_OWORD_10(reg,
379 FRF_AZ_TX_DESCQ_EN, 1,
380 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
381 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
382 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
383 FRF_AZ_TX_DESCQ_EVQ_ID,
384 tx_queue->channel->channel,
385 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
386 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
387 FRF_AZ_TX_DESCQ_SIZE,
388 __ffs(tx_queue->txd.entries),
389 FRF_AZ_TX_DESCQ_TYPE, 0,
390 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
391
392 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
393 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
394 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
395 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
396 !csum);
397 }
398
399 efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base,
400 tx_queue->queue);
401
402 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
403 /* Only 128 bits in this register */
404 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
405
406 efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG);
407 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
408 __clear_bit_le(tx_queue->queue, ®);
409 else
410 __set_bit_le(tx_queue->queue, ®);
411 efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG);
412 }
413
414 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
415 EFX_POPULATE_OWORD_1(reg,
416 FRF_BZ_TX_PACE,
417 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
418 FFE_BZ_TX_PACE_OFF :
419 FFE_BZ_TX_PACE_RESERVED);
420 efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL,
421 tx_queue->queue);
422 }
423 }
424
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)425 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
426 {
427 struct efx_nic *efx = tx_queue->efx;
428 efx_oword_t tx_flush_descq;
429
430 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
431 atomic_set(&tx_queue->flush_outstanding, 1);
432
433 EFX_POPULATE_OWORD_2(tx_flush_descq,
434 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
435 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
436 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
437 }
438
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)439 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
440 {
441 struct efx_nic *efx = tx_queue->efx;
442 efx_oword_t tx_desc_ptr;
443
444 /* Remove TX descriptor ring from card */
445 EFX_ZERO_OWORD(tx_desc_ptr);
446 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
447 tx_queue->queue);
448
449 /* Unpin TX descriptor ring */
450 efx_fini_special_buffer(efx, &tx_queue->txd);
451 }
452
453 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)454 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
455 {
456 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
457 }
458
459 /**************************************************************************
460 *
461 * RX path
462 *
463 **************************************************************************/
464
465 /* This creates an entry in the RX descriptor queue */
466 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)467 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
468 {
469 struct efx_rx_buffer *rx_buf;
470 efx_qword_t *rxd;
471
472 rxd = efx_rx_desc(rx_queue, index);
473 rx_buf = efx_rx_buffer(rx_queue, index);
474 EFX_POPULATE_QWORD_3(*rxd,
475 FSF_AZ_RX_KER_BUF_SIZE,
476 rx_buf->len -
477 rx_queue->efx->type->rx_buffer_padding,
478 FSF_AZ_RX_KER_BUF_REGION, 0,
479 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
480 }
481
482 /* This writes to the RX_DESC_WPTR register for the specified receive
483 * descriptor ring.
484 */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)485 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
486 {
487 struct efx_nic *efx = rx_queue->efx;
488 efx_dword_t reg;
489 unsigned write_ptr;
490
491 while (rx_queue->notified_count != rx_queue->added_count) {
492 efx_farch_build_rx_desc(
493 rx_queue,
494 rx_queue->notified_count & rx_queue->ptr_mask);
495 ++rx_queue->notified_count;
496 }
497
498 wmb();
499 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
500 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
501 efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0,
502 efx_rx_queue_index(rx_queue));
503 }
504
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)505 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
506 {
507 struct efx_nic *efx = rx_queue->efx;
508 unsigned entries;
509
510 entries = rx_queue->ptr_mask + 1;
511 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
512 entries * sizeof(efx_qword_t));
513 }
514
efx_farch_rx_init(struct efx_rx_queue * rx_queue)515 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
516 {
517 efx_oword_t rx_desc_ptr;
518 struct efx_nic *efx = rx_queue->efx;
519 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
520 bool iscsi_digest_en = is_b0;
521 bool jumbo_en;
522
523 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
524 * DMA to continue after a PCIe page boundary (and scattering
525 * is not possible). In Falcon B0 and Siena, it enables
526 * scatter.
527 */
528 jumbo_en = !is_b0 || efx->rx_scatter;
529
530 netif_dbg(efx, hw, efx->net_dev,
531 "RX queue %d ring in special buffers %d-%d\n",
532 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
533 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
534
535 rx_queue->scatter_n = 0;
536
537 /* Pin RX descriptor ring */
538 efx_init_special_buffer(efx, &rx_queue->rxd);
539
540 /* Push RX descriptor ring to card */
541 EFX_POPULATE_OWORD_10(rx_desc_ptr,
542 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
543 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
544 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
545 FRF_AZ_RX_DESCQ_EVQ_ID,
546 efx_rx_queue_channel(rx_queue)->channel,
547 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
548 FRF_AZ_RX_DESCQ_LABEL,
549 efx_rx_queue_index(rx_queue),
550 FRF_AZ_RX_DESCQ_SIZE,
551 __ffs(rx_queue->rxd.entries),
552 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
553 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
554 FRF_AZ_RX_DESCQ_EN, 1);
555 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
556 efx_rx_queue_index(rx_queue));
557 }
558
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)559 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
560 {
561 struct efx_nic *efx = rx_queue->efx;
562 efx_oword_t rx_flush_descq;
563
564 EFX_POPULATE_OWORD_2(rx_flush_descq,
565 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
566 FRF_AZ_RX_FLUSH_DESCQ,
567 efx_rx_queue_index(rx_queue));
568 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
569 }
570
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)571 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
572 {
573 efx_oword_t rx_desc_ptr;
574 struct efx_nic *efx = rx_queue->efx;
575
576 /* Remove RX descriptor ring from card */
577 EFX_ZERO_OWORD(rx_desc_ptr);
578 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
579 efx_rx_queue_index(rx_queue));
580
581 /* Unpin RX descriptor ring */
582 efx_fini_special_buffer(efx, &rx_queue->rxd);
583 }
584
585 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)586 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
587 {
588 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
589 }
590
591 /**************************************************************************
592 *
593 * Flush handling
594 *
595 **************************************************************************/
596
597 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
598 * or more RX flushes can be kicked off.
599 */
efx_farch_flush_wake(struct efx_nic * efx)600 static bool efx_farch_flush_wake(struct efx_nic *efx)
601 {
602 /* Ensure that all updates are visible to efx_farch_flush_queues() */
603 smp_mb();
604
605 return (atomic_read(&efx->active_queues) == 0 ||
606 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
607 && atomic_read(&efx->rxq_flush_pending) > 0));
608 }
609
efx_check_tx_flush_complete(struct efx_nic * efx)610 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
611 {
612 bool i = true;
613 efx_oword_t txd_ptr_tbl;
614 struct efx_channel *channel;
615 struct efx_tx_queue *tx_queue;
616
617 efx_for_each_channel(channel, efx) {
618 efx_for_each_channel_tx_queue(tx_queue, channel) {
619 efx_reado_table(efx, &txd_ptr_tbl,
620 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
621 if (EFX_OWORD_FIELD(txd_ptr_tbl,
622 FRF_AZ_TX_DESCQ_FLUSH) ||
623 EFX_OWORD_FIELD(txd_ptr_tbl,
624 FRF_AZ_TX_DESCQ_EN)) {
625 netif_dbg(efx, hw, efx->net_dev,
626 "flush did not complete on TXQ %d\n",
627 tx_queue->queue);
628 i = false;
629 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
630 1, 0)) {
631 /* The flush is complete, but we didn't
632 * receive a flush completion event
633 */
634 netif_dbg(efx, hw, efx->net_dev,
635 "flush complete on TXQ %d, so drain "
636 "the queue\n", tx_queue->queue);
637 /* Don't need to increment active_queues as it
638 * has already been incremented for the queues
639 * which did not drain
640 */
641 efx_farch_magic_event(channel,
642 EFX_CHANNEL_MAGIC_TX_DRAIN(
643 tx_queue));
644 }
645 }
646 }
647
648 return i;
649 }
650
651 /* Flush all the transmit queues, and continue flushing receive queues until
652 * they're all flushed. Wait for the DRAIN events to be received so that there
653 * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)654 static int efx_farch_do_flush(struct efx_nic *efx)
655 {
656 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
657 struct efx_channel *channel;
658 struct efx_rx_queue *rx_queue;
659 struct efx_tx_queue *tx_queue;
660 int rc = 0;
661
662 efx_for_each_channel(channel, efx) {
663 efx_for_each_channel_tx_queue(tx_queue, channel) {
664 efx_farch_flush_tx_queue(tx_queue);
665 }
666 efx_for_each_channel_rx_queue(rx_queue, channel) {
667 rx_queue->flush_pending = true;
668 atomic_inc(&efx->rxq_flush_pending);
669 }
670 }
671
672 while (timeout && atomic_read(&efx->active_queues) > 0) {
673 /* If SRIOV is enabled, then offload receive queue flushing to
674 * the firmware (though we will still have to poll for
675 * completion). If that fails, fall back to the old scheme.
676 */
677 if (efx_siena_sriov_enabled(efx)) {
678 rc = efx_mcdi_flush_rxqs(efx);
679 if (!rc)
680 goto wait;
681 }
682
683 /* The hardware supports four concurrent rx flushes, each of
684 * which may need to be retried if there is an outstanding
685 * descriptor fetch
686 */
687 efx_for_each_channel(channel, efx) {
688 efx_for_each_channel_rx_queue(rx_queue, channel) {
689 if (atomic_read(&efx->rxq_flush_outstanding) >=
690 EFX_RX_FLUSH_COUNT)
691 break;
692
693 if (rx_queue->flush_pending) {
694 rx_queue->flush_pending = false;
695 atomic_dec(&efx->rxq_flush_pending);
696 atomic_inc(&efx->rxq_flush_outstanding);
697 efx_farch_flush_rx_queue(rx_queue);
698 }
699 }
700 }
701
702 wait:
703 timeout = wait_event_timeout(efx->flush_wq,
704 efx_farch_flush_wake(efx),
705 timeout);
706 }
707
708 if (atomic_read(&efx->active_queues) &&
709 !efx_check_tx_flush_complete(efx)) {
710 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
711 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
712 atomic_read(&efx->rxq_flush_outstanding),
713 atomic_read(&efx->rxq_flush_pending));
714 rc = -ETIMEDOUT;
715
716 atomic_set(&efx->active_queues, 0);
717 atomic_set(&efx->rxq_flush_pending, 0);
718 atomic_set(&efx->rxq_flush_outstanding, 0);
719 }
720
721 return rc;
722 }
723
efx_farch_fini_dmaq(struct efx_nic * efx)724 int efx_farch_fini_dmaq(struct efx_nic *efx)
725 {
726 struct efx_channel *channel;
727 struct efx_tx_queue *tx_queue;
728 struct efx_rx_queue *rx_queue;
729 int rc = 0;
730
731 /* Do not attempt to write to the NIC during EEH recovery */
732 if (efx->state != STATE_RECOVERY) {
733 /* Only perform flush if DMA is enabled */
734 if (efx->pci_dev->is_busmaster) {
735 efx->type->prepare_flush(efx);
736 rc = efx_farch_do_flush(efx);
737 efx->type->finish_flush(efx);
738 }
739
740 efx_for_each_channel(channel, efx) {
741 efx_for_each_channel_rx_queue(rx_queue, channel)
742 efx_farch_rx_fini(rx_queue);
743 efx_for_each_channel_tx_queue(tx_queue, channel)
744 efx_farch_tx_fini(tx_queue);
745 }
746 }
747
748 return rc;
749 }
750
751 /* Reset queue and flush accounting after FLR
752 *
753 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
754 * mastering was disabled), in which case we don't receive (RXQ) flush
755 * completion events. This means that efx->rxq_flush_outstanding remained at 4
756 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
757 * events were received, and we didn't go through efx_check_tx_flush_complete())
758 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
759 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
760 * for batched flush requests; and the efx->active_queues gets messed up because
761 * we keep incrementing for the newly initialised queues, but it never went to
762 * zero previously. Then we get a timeout every time we try to restart the
763 * queues, as it doesn't go back to zero when we should be flushing the queues.
764 */
efx_farch_finish_flr(struct efx_nic * efx)765 void efx_farch_finish_flr(struct efx_nic *efx)
766 {
767 atomic_set(&efx->rxq_flush_pending, 0);
768 atomic_set(&efx->rxq_flush_outstanding, 0);
769 atomic_set(&efx->active_queues, 0);
770 }
771
772
773 /**************************************************************************
774 *
775 * Event queue processing
776 * Event queues are processed by per-channel tasklets.
777 *
778 **************************************************************************/
779
780 /* Update a channel's event queue's read pointer (RPTR) register
781 *
782 * This writes the EVQ_RPTR_REG register for the specified channel's
783 * event queue.
784 */
efx_farch_ev_read_ack(struct efx_channel * channel)785 void efx_farch_ev_read_ack(struct efx_channel *channel)
786 {
787 efx_dword_t reg;
788 struct efx_nic *efx = channel->efx;
789
790 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
791 channel->eventq_read_ptr & channel->eventq_mask);
792
793 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
794 * of 4 bytes, but it is really 16 bytes just like later revisions.
795 */
796 efx_writed(efx, ®,
797 efx->type->evq_rptr_tbl_base +
798 FR_BZ_EVQ_RPTR_STEP * channel->channel);
799 }
800
801 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)802 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
803 efx_qword_t *event)
804 {
805 efx_oword_t drv_ev_reg;
806
807 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
808 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
809 drv_ev_reg.u32[0] = event->u32[0];
810 drv_ev_reg.u32[1] = event->u32[1];
811 drv_ev_reg.u32[2] = 0;
812 drv_ev_reg.u32[3] = 0;
813 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
814 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
815 }
816
efx_farch_magic_event(struct efx_channel * channel,u32 magic)817 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
818 {
819 efx_qword_t event;
820
821 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
822 FSE_AZ_EV_CODE_DRV_GEN_EV,
823 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
824 efx_farch_generate_event(channel->efx, channel->channel, &event);
825 }
826
827 /* Handle a transmit completion event
828 *
829 * The NIC batches TX completion events; the message we receive is of
830 * the form "complete all TX events up to this index".
831 */
832 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)833 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
834 {
835 unsigned int tx_ev_desc_ptr;
836 unsigned int tx_ev_q_label;
837 struct efx_tx_queue *tx_queue;
838 struct efx_nic *efx = channel->efx;
839 int tx_packets = 0;
840
841 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
842 return 0;
843
844 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
845 /* Transmit completion */
846 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
847 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
848 tx_queue = efx_channel_get_tx_queue(
849 channel, tx_ev_q_label % EFX_TXQ_TYPES);
850 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
851 tx_queue->ptr_mask);
852 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
853 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
854 /* Rewrite the FIFO write pointer */
855 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
856 tx_queue = efx_channel_get_tx_queue(
857 channel, tx_ev_q_label % EFX_TXQ_TYPES);
858
859 netif_tx_lock(efx->net_dev);
860 efx_farch_notify_tx_desc(tx_queue);
861 netif_tx_unlock(efx->net_dev);
862 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
863 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
864 } else {
865 netif_err(efx, tx_err, efx->net_dev,
866 "channel %d unexpected TX event "
867 EFX_QWORD_FMT"\n", channel->channel,
868 EFX_QWORD_VAL(*event));
869 }
870
871 return tx_packets;
872 }
873
874 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)875 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
876 const efx_qword_t *event)
877 {
878 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
879 struct efx_nic *efx = rx_queue->efx;
880 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
881 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
882 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
883 bool rx_ev_other_err, rx_ev_pause_frm;
884 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
885 unsigned rx_ev_pkt_type;
886
887 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
888 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
889 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
890 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
891 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
892 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
893 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
894 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
895 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
896 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
897 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
898 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
899 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
900 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
901 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
902
903 /* Every error apart from tobe_disc and pause_frm */
904 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
905 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
906 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
907
908 /* Count errors that are not in MAC stats. Ignore expected
909 * checksum errors during self-test. */
910 if (rx_ev_frm_trunc)
911 ++channel->n_rx_frm_trunc;
912 else if (rx_ev_tobe_disc)
913 ++channel->n_rx_tobe_disc;
914 else if (!efx->loopback_selftest) {
915 if (rx_ev_ip_hdr_chksum_err)
916 ++channel->n_rx_ip_hdr_chksum_err;
917 else if (rx_ev_tcp_udp_chksum_err)
918 ++channel->n_rx_tcp_udp_chksum_err;
919 }
920
921 /* TOBE_DISC is expected on unicast mismatches; don't print out an
922 * error message. FRM_TRUNC indicates RXDP dropped the packet due
923 * to a FIFO overflow.
924 */
925 #ifdef DEBUG
926 if (rx_ev_other_err && net_ratelimit()) {
927 netif_dbg(efx, rx_err, efx->net_dev,
928 " RX queue %d unexpected RX event "
929 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
930 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
931 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
932 rx_ev_ip_hdr_chksum_err ?
933 " [IP_HDR_CHKSUM_ERR]" : "",
934 rx_ev_tcp_udp_chksum_err ?
935 " [TCP_UDP_CHKSUM_ERR]" : "",
936 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
937 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
938 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
939 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
940 rx_ev_pause_frm ? " [PAUSE]" : "");
941 }
942 #endif
943
944 /* The frame must be discarded if any of these are true. */
945 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
946 rx_ev_tobe_disc | rx_ev_pause_frm) ?
947 EFX_RX_PKT_DISCARD : 0;
948 }
949
950 /* Handle receive events that are not in-order. Return true if this
951 * can be handled as a partial packet discard, false if it's more
952 * serious.
953 */
954 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)955 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
956 {
957 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
958 struct efx_nic *efx = rx_queue->efx;
959 unsigned expected, dropped;
960
961 if (rx_queue->scatter_n &&
962 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
963 rx_queue->ptr_mask)) {
964 ++channel->n_rx_nodesc_trunc;
965 return true;
966 }
967
968 expected = rx_queue->removed_count & rx_queue->ptr_mask;
969 dropped = (index - expected) & rx_queue->ptr_mask;
970 netif_info(efx, rx_err, efx->net_dev,
971 "dropped %d events (index=%d expected=%d)\n",
972 dropped, index, expected);
973
974 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
975 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
976 return false;
977 }
978
979 /* Handle a packet received event
980 *
981 * The NIC gives a "discard" flag if it's a unicast packet with the
982 * wrong destination address
983 * Also "is multicast" and "matches multicast filter" flags can be used to
984 * discard non-matching multicast packets.
985 */
986 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)987 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
988 {
989 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
990 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
991 unsigned expected_ptr;
992 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
993 u16 flags;
994 struct efx_rx_queue *rx_queue;
995 struct efx_nic *efx = channel->efx;
996
997 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
998 return;
999
1000 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1001 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1002 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1003 channel->channel);
1004
1005 rx_queue = efx_channel_get_rx_queue(channel);
1006
1007 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1008 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1009 rx_queue->ptr_mask);
1010
1011 /* Check for partial drops and other errors */
1012 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1013 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1014 if (rx_ev_desc_ptr != expected_ptr &&
1015 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1016 return;
1017
1018 /* Discard all pending fragments */
1019 if (rx_queue->scatter_n) {
1020 efx_rx_packet(
1021 rx_queue,
1022 rx_queue->removed_count & rx_queue->ptr_mask,
1023 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1024 rx_queue->removed_count += rx_queue->scatter_n;
1025 rx_queue->scatter_n = 0;
1026 }
1027
1028 /* Return if there is no new fragment */
1029 if (rx_ev_desc_ptr != expected_ptr)
1030 return;
1031
1032 /* Discard new fragment if not SOP */
1033 if (!rx_ev_sop) {
1034 efx_rx_packet(
1035 rx_queue,
1036 rx_queue->removed_count & rx_queue->ptr_mask,
1037 1, 0, EFX_RX_PKT_DISCARD);
1038 ++rx_queue->removed_count;
1039 return;
1040 }
1041 }
1042
1043 ++rx_queue->scatter_n;
1044 if (rx_ev_cont)
1045 return;
1046
1047 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1048 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1049 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1050
1051 if (likely(rx_ev_pkt_ok)) {
1052 /* If packet is marked as OK then we can rely on the
1053 * hardware checksum and classification.
1054 */
1055 flags = 0;
1056 switch (rx_ev_hdr_type) {
1057 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1058 flags |= EFX_RX_PKT_TCP;
1059 /* fall through */
1060 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1061 flags |= EFX_RX_PKT_CSUMMED;
1062 /* fall through */
1063 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1064 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1065 break;
1066 }
1067 } else {
1068 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1069 }
1070
1071 /* Detect multicast packets that didn't match the filter */
1072 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1073 if (rx_ev_mcast_pkt) {
1074 unsigned int rx_ev_mcast_hash_match =
1075 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1076
1077 if (unlikely(!rx_ev_mcast_hash_match)) {
1078 ++channel->n_rx_mcast_mismatch;
1079 flags |= EFX_RX_PKT_DISCARD;
1080 }
1081 }
1082
1083 channel->irq_mod_score += 2;
1084
1085 /* Handle received packet */
1086 efx_rx_packet(rx_queue,
1087 rx_queue->removed_count & rx_queue->ptr_mask,
1088 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1089 rx_queue->removed_count += rx_queue->scatter_n;
1090 rx_queue->scatter_n = 0;
1091 }
1092
1093 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1094 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1095 * of all transmit completions.
1096 */
1097 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1098 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1099 {
1100 struct efx_tx_queue *tx_queue;
1101 int qid;
1102
1103 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1104 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1105 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1106 qid % EFX_TXQ_TYPES);
1107 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1108 efx_farch_magic_event(tx_queue->channel,
1109 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1110 }
1111 }
1112 }
1113
1114 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1115 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1116 * the RX queue back to the mask of RX queues in need of flushing.
1117 */
1118 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1119 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1120 {
1121 struct efx_channel *channel;
1122 struct efx_rx_queue *rx_queue;
1123 int qid;
1124 bool failed;
1125
1126 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1127 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1128 if (qid >= efx->n_channels)
1129 return;
1130 channel = efx_get_channel(efx, qid);
1131 if (!efx_channel_has_rx_queue(channel))
1132 return;
1133 rx_queue = efx_channel_get_rx_queue(channel);
1134
1135 if (failed) {
1136 netif_info(efx, hw, efx->net_dev,
1137 "RXQ %d flush retry\n", qid);
1138 rx_queue->flush_pending = true;
1139 atomic_inc(&efx->rxq_flush_pending);
1140 } else {
1141 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1142 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1143 }
1144 atomic_dec(&efx->rxq_flush_outstanding);
1145 if (efx_farch_flush_wake(efx))
1146 wake_up(&efx->flush_wq);
1147 }
1148
1149 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1150 efx_farch_handle_drain_event(struct efx_channel *channel)
1151 {
1152 struct efx_nic *efx = channel->efx;
1153
1154 WARN_ON(atomic_read(&efx->active_queues) == 0);
1155 atomic_dec(&efx->active_queues);
1156 if (efx_farch_flush_wake(efx))
1157 wake_up(&efx->flush_wq);
1158 }
1159
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1160 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1161 efx_qword_t *event)
1162 {
1163 struct efx_nic *efx = channel->efx;
1164 struct efx_rx_queue *rx_queue =
1165 efx_channel_has_rx_queue(channel) ?
1166 efx_channel_get_rx_queue(channel) : NULL;
1167 unsigned magic, code;
1168
1169 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1170 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1171
1172 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1173 channel->event_test_cpu = raw_smp_processor_id();
1174 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1175 /* The queue must be empty, so we won't receive any rx
1176 * events, so efx_process_channel() won't refill the
1177 * queue. Refill it here */
1178 efx_fast_push_rx_descriptors(rx_queue, true);
1179 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1180 efx_farch_handle_drain_event(channel);
1181 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1182 efx_farch_handle_drain_event(channel);
1183 } else {
1184 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1185 "generated event "EFX_QWORD_FMT"\n",
1186 channel->channel, EFX_QWORD_VAL(*event));
1187 }
1188 }
1189
1190 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1191 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1192 {
1193 struct efx_nic *efx = channel->efx;
1194 unsigned int ev_sub_code;
1195 unsigned int ev_sub_data;
1196
1197 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1198 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1199
1200 switch (ev_sub_code) {
1201 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1202 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1203 channel->channel, ev_sub_data);
1204 efx_farch_handle_tx_flush_done(efx, event);
1205 #ifdef CONFIG_SFC_SRIOV
1206 efx_siena_sriov_tx_flush_done(efx, event);
1207 #endif
1208 break;
1209 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1210 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1211 channel->channel, ev_sub_data);
1212 efx_farch_handle_rx_flush_done(efx, event);
1213 #ifdef CONFIG_SFC_SRIOV
1214 efx_siena_sriov_rx_flush_done(efx, event);
1215 #endif
1216 break;
1217 case FSE_AZ_EVQ_INIT_DONE_EV:
1218 netif_dbg(efx, hw, efx->net_dev,
1219 "channel %d EVQ %d initialised\n",
1220 channel->channel, ev_sub_data);
1221 break;
1222 case FSE_AZ_SRM_UPD_DONE_EV:
1223 netif_vdbg(efx, hw, efx->net_dev,
1224 "channel %d SRAM update done\n", channel->channel);
1225 break;
1226 case FSE_AZ_WAKE_UP_EV:
1227 netif_vdbg(efx, hw, efx->net_dev,
1228 "channel %d RXQ %d wakeup event\n",
1229 channel->channel, ev_sub_data);
1230 break;
1231 case FSE_AZ_TIMER_EV:
1232 netif_vdbg(efx, hw, efx->net_dev,
1233 "channel %d RX queue %d timer expired\n",
1234 channel->channel, ev_sub_data);
1235 break;
1236 case FSE_AA_RX_RECOVER_EV:
1237 netif_err(efx, rx_err, efx->net_dev,
1238 "channel %d seen DRIVER RX_RESET event. "
1239 "Resetting.\n", channel->channel);
1240 atomic_inc(&efx->rx_reset);
1241 efx_schedule_reset(efx,
1242 EFX_WORKAROUND_6555(efx) ?
1243 RESET_TYPE_RX_RECOVERY :
1244 RESET_TYPE_DISABLE);
1245 break;
1246 case FSE_BZ_RX_DSC_ERROR_EV:
1247 if (ev_sub_data < EFX_VI_BASE) {
1248 netif_err(efx, rx_err, efx->net_dev,
1249 "RX DMA Q %d reports descriptor fetch error."
1250 " RX Q %d is disabled.\n", ev_sub_data,
1251 ev_sub_data);
1252 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1253 }
1254 #ifdef CONFIG_SFC_SRIOV
1255 else
1256 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257 #endif
1258 break;
1259 case FSE_BZ_TX_DSC_ERROR_EV:
1260 if (ev_sub_data < EFX_VI_BASE) {
1261 netif_err(efx, tx_err, efx->net_dev,
1262 "TX DMA Q %d reports descriptor fetch error."
1263 " TX Q %d is disabled.\n", ev_sub_data,
1264 ev_sub_data);
1265 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1266 }
1267 #ifdef CONFIG_SFC_SRIOV
1268 else
1269 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1270 #endif
1271 break;
1272 default:
1273 netif_vdbg(efx, hw, efx->net_dev,
1274 "channel %d unknown driver event code %d "
1275 "data %04x\n", channel->channel, ev_sub_code,
1276 ev_sub_data);
1277 break;
1278 }
1279 }
1280
efx_farch_ev_process(struct efx_channel * channel,int budget)1281 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1282 {
1283 struct efx_nic *efx = channel->efx;
1284 unsigned int read_ptr;
1285 efx_qword_t event, *p_event;
1286 int ev_code;
1287 int tx_packets = 0;
1288 int spent = 0;
1289
1290 if (budget <= 0)
1291 return spent;
1292
1293 read_ptr = channel->eventq_read_ptr;
1294
1295 for (;;) {
1296 p_event = efx_event(channel, read_ptr);
1297 event = *p_event;
1298
1299 if (!efx_event_present(&event))
1300 /* End of events */
1301 break;
1302
1303 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1304 "channel %d event is "EFX_QWORD_FMT"\n",
1305 channel->channel, EFX_QWORD_VAL(event));
1306
1307 /* Clear this event by marking it all ones */
1308 EFX_SET_QWORD(*p_event);
1309
1310 ++read_ptr;
1311
1312 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1313
1314 switch (ev_code) {
1315 case FSE_AZ_EV_CODE_RX_EV:
1316 efx_farch_handle_rx_event(channel, &event);
1317 if (++spent == budget)
1318 goto out;
1319 break;
1320 case FSE_AZ_EV_CODE_TX_EV:
1321 tx_packets += efx_farch_handle_tx_event(channel,
1322 &event);
1323 if (tx_packets > efx->txq_entries) {
1324 spent = budget;
1325 goto out;
1326 }
1327 break;
1328 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1329 efx_farch_handle_generated_event(channel, &event);
1330 break;
1331 case FSE_AZ_EV_CODE_DRIVER_EV:
1332 efx_farch_handle_driver_event(channel, &event);
1333 break;
1334 #ifdef CONFIG_SFC_SRIOV
1335 case FSE_CZ_EV_CODE_USER_EV:
1336 efx_siena_sriov_event(channel, &event);
1337 break;
1338 #endif
1339 case FSE_CZ_EV_CODE_MCDI_EV:
1340 efx_mcdi_process_event(channel, &event);
1341 break;
1342 case FSE_AZ_EV_CODE_GLOBAL_EV:
1343 if (efx->type->handle_global_event &&
1344 efx->type->handle_global_event(channel, &event))
1345 break;
1346 /* else fall through */
1347 default:
1348 netif_err(channel->efx, hw, channel->efx->net_dev,
1349 "channel %d unknown event type %d (data "
1350 EFX_QWORD_FMT ")\n", channel->channel,
1351 ev_code, EFX_QWORD_VAL(event));
1352 }
1353 }
1354
1355 out:
1356 channel->eventq_read_ptr = read_ptr;
1357 return spent;
1358 }
1359
1360 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1361 int efx_farch_ev_probe(struct efx_channel *channel)
1362 {
1363 struct efx_nic *efx = channel->efx;
1364 unsigned entries;
1365
1366 entries = channel->eventq_mask + 1;
1367 return efx_alloc_special_buffer(efx, &channel->eventq,
1368 entries * sizeof(efx_qword_t));
1369 }
1370
efx_farch_ev_init(struct efx_channel * channel)1371 int efx_farch_ev_init(struct efx_channel *channel)
1372 {
1373 efx_oword_t reg;
1374 struct efx_nic *efx = channel->efx;
1375
1376 netif_dbg(efx, hw, efx->net_dev,
1377 "channel %d event queue in special buffers %d-%d\n",
1378 channel->channel, channel->eventq.index,
1379 channel->eventq.index + channel->eventq.entries - 1);
1380
1381 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1382 EFX_POPULATE_OWORD_3(reg,
1383 FRF_CZ_TIMER_Q_EN, 1,
1384 FRF_CZ_HOST_NOTIFY_MODE, 0,
1385 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1386 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1387 }
1388
1389 /* Pin event queue buffer */
1390 efx_init_special_buffer(efx, &channel->eventq);
1391
1392 /* Fill event queue with all ones (i.e. empty events) */
1393 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1394
1395 /* Push event queue to card */
1396 EFX_POPULATE_OWORD_3(reg,
1397 FRF_AZ_EVQ_EN, 1,
1398 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1399 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1400 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1401 channel->channel);
1402
1403 return 0;
1404 }
1405
efx_farch_ev_fini(struct efx_channel * channel)1406 void efx_farch_ev_fini(struct efx_channel *channel)
1407 {
1408 efx_oword_t reg;
1409 struct efx_nic *efx = channel->efx;
1410
1411 /* Remove event queue from card */
1412 EFX_ZERO_OWORD(reg);
1413 efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base,
1414 channel->channel);
1415 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1416 efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel);
1417
1418 /* Unpin event queue */
1419 efx_fini_special_buffer(efx, &channel->eventq);
1420 }
1421
1422 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1423 void efx_farch_ev_remove(struct efx_channel *channel)
1424 {
1425 efx_free_special_buffer(channel->efx, &channel->eventq);
1426 }
1427
1428
efx_farch_ev_test_generate(struct efx_channel * channel)1429 void efx_farch_ev_test_generate(struct efx_channel *channel)
1430 {
1431 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1432 }
1433
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1434 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1435 {
1436 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1437 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1438 }
1439
1440 /**************************************************************************
1441 *
1442 * Hardware interrupts
1443 * The hardware interrupt handler does very little work; all the event
1444 * queue processing is carried out by per-channel tasklets.
1445 *
1446 **************************************************************************/
1447
1448 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1449 static inline void efx_farch_interrupts(struct efx_nic *efx,
1450 bool enabled, bool force)
1451 {
1452 efx_oword_t int_en_reg_ker;
1453
1454 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1455 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1456 FRF_AZ_KER_INT_KER, force,
1457 FRF_AZ_DRV_INT_EN_KER, enabled);
1458 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1459 }
1460
efx_farch_irq_enable_master(struct efx_nic * efx)1461 void efx_farch_irq_enable_master(struct efx_nic *efx)
1462 {
1463 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1464 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1465
1466 efx_farch_interrupts(efx, true, false);
1467 }
1468
efx_farch_irq_disable_master(struct efx_nic * efx)1469 void efx_farch_irq_disable_master(struct efx_nic *efx)
1470 {
1471 /* Disable interrupts */
1472 efx_farch_interrupts(efx, false, false);
1473 }
1474
1475 /* Generate a test interrupt
1476 * Interrupt must already have been enabled, otherwise nasty things
1477 * may happen.
1478 */
efx_farch_irq_test_generate(struct efx_nic * efx)1479 void efx_farch_irq_test_generate(struct efx_nic *efx)
1480 {
1481 efx_farch_interrupts(efx, true, true);
1482 }
1483
1484 /* Process a fatal interrupt
1485 * Disable bus mastering ASAP and schedule a reset
1486 */
efx_farch_fatal_interrupt(struct efx_nic * efx)1487 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1488 {
1489 struct falcon_nic_data *nic_data = efx->nic_data;
1490 efx_oword_t *int_ker = efx->irq_status.addr;
1491 efx_oword_t fatal_intr;
1492 int error, mem_perr;
1493
1494 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1495 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1496
1497 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1498 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1499 EFX_OWORD_VAL(fatal_intr),
1500 error ? "disabling bus mastering" : "no recognised error");
1501
1502 /* If this is a memory parity error dump which blocks are offending */
1503 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1504 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1505 if (mem_perr) {
1506 efx_oword_t reg;
1507 efx_reado(efx, ®, FR_AZ_MEM_STAT);
1508 netif_err(efx, hw, efx->net_dev,
1509 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1510 EFX_OWORD_VAL(reg));
1511 }
1512
1513 /* Disable both devices */
1514 pci_clear_master(efx->pci_dev);
1515 if (efx_nic_is_dual_func(efx))
1516 pci_clear_master(nic_data->pci_dev2);
1517 efx_farch_irq_disable_master(efx);
1518
1519 /* Count errors and reset or disable the NIC accordingly */
1520 if (efx->int_error_count == 0 ||
1521 time_after(jiffies, efx->int_error_expire)) {
1522 efx->int_error_count = 0;
1523 efx->int_error_expire =
1524 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1525 }
1526 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1527 netif_err(efx, hw, efx->net_dev,
1528 "SYSTEM ERROR - reset scheduled\n");
1529 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1530 } else {
1531 netif_err(efx, hw, efx->net_dev,
1532 "SYSTEM ERROR - max number of errors seen."
1533 "NIC will be disabled\n");
1534 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1535 }
1536
1537 return IRQ_HANDLED;
1538 }
1539
1540 /* Handle a legacy interrupt
1541 * Acknowledges the interrupt and schedule event queue processing.
1542 */
efx_farch_legacy_interrupt(int irq,void * dev_id)1543 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1544 {
1545 struct efx_nic *efx = dev_id;
1546 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1547 efx_oword_t *int_ker = efx->irq_status.addr;
1548 irqreturn_t result = IRQ_NONE;
1549 struct efx_channel *channel;
1550 efx_dword_t reg;
1551 u32 queues;
1552 int syserr;
1553
1554 /* Read the ISR which also ACKs the interrupts */
1555 efx_readd(efx, ®, FR_BZ_INT_ISR0);
1556 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1557
1558 /* Legacy interrupts are disabled too late by the EEH kernel
1559 * code. Disable them earlier.
1560 * If an EEH error occurred, the read will have returned all ones.
1561 */
1562 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1563 !efx->eeh_disabled_legacy_irq) {
1564 disable_irq_nosync(efx->legacy_irq);
1565 efx->eeh_disabled_legacy_irq = true;
1566 }
1567
1568 /* Handle non-event-queue sources */
1569 if (queues & (1U << efx->irq_level) && soft_enabled) {
1570 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1571 if (unlikely(syserr))
1572 return efx_farch_fatal_interrupt(efx);
1573 efx->last_irq_cpu = raw_smp_processor_id();
1574 }
1575
1576 if (queues != 0) {
1577 efx->irq_zero_count = 0;
1578
1579 /* Schedule processing of any interrupting queues */
1580 if (likely(soft_enabled)) {
1581 efx_for_each_channel(channel, efx) {
1582 if (queues & 1)
1583 efx_schedule_channel_irq(channel);
1584 queues >>= 1;
1585 }
1586 }
1587 result = IRQ_HANDLED;
1588
1589 } else {
1590 efx_qword_t *event;
1591
1592 /* Legacy ISR read can return zero once (SF bug 15783) */
1593
1594 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1595 * because this might be a shared interrupt. */
1596 if (efx->irq_zero_count++ == 0)
1597 result = IRQ_HANDLED;
1598
1599 /* Ensure we schedule or rearm all event queues */
1600 if (likely(soft_enabled)) {
1601 efx_for_each_channel(channel, efx) {
1602 event = efx_event(channel,
1603 channel->eventq_read_ptr);
1604 if (efx_event_present(event))
1605 efx_schedule_channel_irq(channel);
1606 else
1607 efx_farch_ev_read_ack(channel);
1608 }
1609 }
1610 }
1611
1612 if (result == IRQ_HANDLED)
1613 netif_vdbg(efx, intr, efx->net_dev,
1614 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1615 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1616
1617 return result;
1618 }
1619
1620 /* Handle an MSI interrupt
1621 *
1622 * Handle an MSI hardware interrupt. This routine schedules event
1623 * queue processing. No interrupt acknowledgement cycle is necessary.
1624 * Also, we never need to check that the interrupt is for us, since
1625 * MSI interrupts cannot be shared.
1626 */
efx_farch_msi_interrupt(int irq,void * dev_id)1627 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1628 {
1629 struct efx_msi_context *context = dev_id;
1630 struct efx_nic *efx = context->efx;
1631 efx_oword_t *int_ker = efx->irq_status.addr;
1632 int syserr;
1633
1634 netif_vdbg(efx, intr, efx->net_dev,
1635 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1636 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1637
1638 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1639 return IRQ_HANDLED;
1640
1641 /* Handle non-event-queue sources */
1642 if (context->index == efx->irq_level) {
1643 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1644 if (unlikely(syserr))
1645 return efx_farch_fatal_interrupt(efx);
1646 efx->last_irq_cpu = raw_smp_processor_id();
1647 }
1648
1649 /* Schedule processing of the channel */
1650 efx_schedule_channel_irq(efx->channel[context->index]);
1651
1652 return IRQ_HANDLED;
1653 }
1654
1655 /* Setup RSS indirection table.
1656 * This maps from the hash value of the packet to RXQ
1657 */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1658 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1659 {
1660 size_t i = 0;
1661 efx_dword_t dword;
1662
1663 BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1664
1665 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1666 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1667
1668 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1669 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1670 efx->rx_indir_table[i]);
1671 efx_writed(efx, &dword,
1672 FR_BZ_RX_INDIRECTION_TBL +
1673 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1674 }
1675 }
1676
1677 /* Looks at available SRAM resources and works out how many queues we
1678 * can support, and where things like descriptor caches should live.
1679 *
1680 * SRAM is split up as follows:
1681 * 0 buftbl entries for channels
1682 * efx->vf_buftbl_base buftbl entries for SR-IOV
1683 * efx->rx_dc_base RX descriptor caches
1684 * efx->tx_dc_base TX descriptor caches
1685 */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1686 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1687 {
1688 unsigned vi_count, buftbl_min;
1689
1690 #ifdef CONFIG_SFC_SRIOV
1691 struct siena_nic_data *nic_data = efx->nic_data;
1692 #endif
1693
1694 /* Account for the buffer table entries backing the datapath channels
1695 * and the descriptor caches for those channels.
1696 */
1697 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1698 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1699 efx->n_channels * EFX_MAX_EVQ_SIZE)
1700 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1701 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1702
1703 #ifdef CONFIG_SFC_SRIOV
1704 if (efx->type->sriov_wanted) {
1705 if (efx->type->sriov_wanted(efx)) {
1706 unsigned vi_dc_entries, buftbl_free;
1707 unsigned entries_per_vf, vf_limit;
1708
1709 nic_data->vf_buftbl_base = buftbl_min;
1710
1711 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1712 vi_count = max(vi_count, EFX_VI_BASE);
1713 buftbl_free = (sram_lim_qw - buftbl_min -
1714 vi_count * vi_dc_entries);
1715
1716 entries_per_vf = ((vi_dc_entries +
1717 EFX_VF_BUFTBL_PER_VI) *
1718 efx_vf_size(efx));
1719 vf_limit = min(buftbl_free / entries_per_vf,
1720 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1721
1722 if (efx->vf_count > vf_limit) {
1723 netif_err(efx, probe, efx->net_dev,
1724 "Reducing VF count from from %d to %d\n",
1725 efx->vf_count, vf_limit);
1726 efx->vf_count = vf_limit;
1727 }
1728 vi_count += efx->vf_count * efx_vf_size(efx);
1729 }
1730 }
1731 #endif
1732
1733 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1734 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1735 }
1736
efx_farch_fpga_ver(struct efx_nic * efx)1737 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1738 {
1739 efx_oword_t altera_build;
1740 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1741 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1742 }
1743
efx_farch_init_common(struct efx_nic * efx)1744 void efx_farch_init_common(struct efx_nic *efx)
1745 {
1746 efx_oword_t temp;
1747
1748 /* Set positions of descriptor caches in SRAM. */
1749 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1750 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1751 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1752 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1753
1754 /* Set TX descriptor cache size. */
1755 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1756 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1757 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1758
1759 /* Set RX descriptor cache size. Set low watermark to size-8, as
1760 * this allows most efficient prefetching.
1761 */
1762 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1763 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1764 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1765 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1766 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1767
1768 /* Program INT_KER address */
1769 EFX_POPULATE_OWORD_2(temp,
1770 FRF_AZ_NORM_INT_VEC_DIS_KER,
1771 EFX_INT_MODE_USE_MSI(efx),
1772 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1773 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1774
1775 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1776 /* Use an interrupt level unused by event queues */
1777 efx->irq_level = 0x1f;
1778 else
1779 /* Use a valid MSI-X vector */
1780 efx->irq_level = 0;
1781
1782 /* Enable all the genuinely fatal interrupts. (They are still
1783 * masked by the overall interrupt mask, controlled by
1784 * falcon_interrupts()).
1785 *
1786 * Note: All other fatal interrupts are enabled
1787 */
1788 EFX_POPULATE_OWORD_3(temp,
1789 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1790 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1791 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1792 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1793 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1794 EFX_INVERT_OWORD(temp);
1795 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1796
1797 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1798 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1799 */
1800 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1801 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1802 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1803 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1804 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1805 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1806 /* Enable SW_EV to inherit in char driver - assume harmless here */
1807 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1808 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1809 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1810 /* Disable hardware watchdog which can misfire */
1811 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1812 /* Squash TX of packets of 16 bytes or less */
1813 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1814 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1815 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1816
1817 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1818 EFX_POPULATE_OWORD_4(temp,
1819 /* Default values */
1820 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1821 FRF_BZ_TX_PACE_SB_AF, 0xb,
1822 FRF_BZ_TX_PACE_FB_BASE, 0,
1823 /* Allow large pace values in the
1824 * fast bin. */
1825 FRF_BZ_TX_PACE_BIN_TH,
1826 FFE_BZ_TX_PACE_RESERVED);
1827 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1828 }
1829 }
1830
1831 /**************************************************************************
1832 *
1833 * Filter tables
1834 *
1835 **************************************************************************
1836 */
1837
1838 /* "Fudge factors" - difference between programmed value and actual depth.
1839 * Due to pipelined implementation we need to program H/W with a value that
1840 * is larger than the hop limit we want.
1841 */
1842 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1843 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1844
1845 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1846 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1847 * table is full.
1848 */
1849 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1850
1851 /* Don't try very hard to find space for performance hints, as this is
1852 * counter-productive. */
1853 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1854
1855 enum efx_farch_filter_type {
1856 EFX_FARCH_FILTER_TCP_FULL = 0,
1857 EFX_FARCH_FILTER_TCP_WILD,
1858 EFX_FARCH_FILTER_UDP_FULL,
1859 EFX_FARCH_FILTER_UDP_WILD,
1860 EFX_FARCH_FILTER_MAC_FULL = 4,
1861 EFX_FARCH_FILTER_MAC_WILD,
1862 EFX_FARCH_FILTER_UC_DEF = 8,
1863 EFX_FARCH_FILTER_MC_DEF,
1864 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1865 };
1866
1867 enum efx_farch_filter_table_id {
1868 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1869 EFX_FARCH_FILTER_TABLE_RX_MAC,
1870 EFX_FARCH_FILTER_TABLE_RX_DEF,
1871 EFX_FARCH_FILTER_TABLE_TX_MAC,
1872 EFX_FARCH_FILTER_TABLE_COUNT,
1873 };
1874
1875 enum efx_farch_filter_index {
1876 EFX_FARCH_FILTER_INDEX_UC_DEF,
1877 EFX_FARCH_FILTER_INDEX_MC_DEF,
1878 EFX_FARCH_FILTER_SIZE_RX_DEF,
1879 };
1880
1881 struct efx_farch_filter_spec {
1882 u8 type:4;
1883 u8 priority:4;
1884 u8 flags;
1885 u16 dmaq_id;
1886 u32 data[3];
1887 };
1888
1889 struct efx_farch_filter_table {
1890 enum efx_farch_filter_table_id id;
1891 u32 offset; /* address of table relative to BAR */
1892 unsigned size; /* number of entries */
1893 unsigned step; /* step between entries */
1894 unsigned used; /* number currently used */
1895 unsigned long *used_bitmap;
1896 struct efx_farch_filter_spec *spec;
1897 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1898 };
1899
1900 struct efx_farch_filter_state {
1901 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1902 };
1903
1904 static void
1905 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1906 struct efx_farch_filter_table *table,
1907 unsigned int filter_idx);
1908
1909 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1910 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1911 static u16 efx_farch_filter_hash(u32 key)
1912 {
1913 u16 tmp;
1914
1915 /* First 16 rounds */
1916 tmp = 0x1fff ^ key >> 16;
1917 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1918 tmp = tmp ^ tmp >> 9;
1919 /* Last 16 rounds */
1920 tmp = tmp ^ tmp << 13 ^ key;
1921 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1922 return tmp ^ tmp >> 9;
1923 }
1924
1925 /* To allow for hash collisions, filter search continues at these
1926 * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1927 static u16 efx_farch_filter_increment(u32 key)
1928 {
1929 return key * 2 - 1;
1930 }
1931
1932 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1933 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1934 {
1935 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1937 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1939 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1941 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1943 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1945 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1947 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1948 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1949 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1950 }
1951
efx_farch_filter_push_rx_config(struct efx_nic * efx)1952 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1953 {
1954 struct efx_farch_filter_state *state = efx->filter_state;
1955 struct efx_farch_filter_table *table;
1956 efx_oword_t filter_ctl;
1957
1958 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1959
1960 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1961 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1962 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1963 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1964 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1965 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1966 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1968 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1969 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1970 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1971 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1972 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1973
1974 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1975 if (table->size) {
1976 EFX_SET_OWORD_FIELD(
1977 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1978 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1979 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1980 EFX_SET_OWORD_FIELD(
1981 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1982 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1983 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1984 }
1985
1986 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1987 if (table->size) {
1988 EFX_SET_OWORD_FIELD(
1989 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1990 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1991 EFX_SET_OWORD_FIELD(
1992 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1993 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1994 EFX_FILTER_FLAG_RX_RSS));
1995 EFX_SET_OWORD_FIELD(
1996 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1997 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1998 EFX_SET_OWORD_FIELD(
1999 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2000 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2001 EFX_FILTER_FLAG_RX_RSS));
2002
2003 /* There is a single bit to enable RX scatter for all
2004 * unmatched packets. Only set it if scatter is
2005 * enabled in both filter specs.
2006 */
2007 EFX_SET_OWORD_FIELD(
2008 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2009 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2010 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2011 EFX_FILTER_FLAG_RX_SCATTER));
2012 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2013 /* We don't expose 'default' filters because unmatched
2014 * packets always go to the queue number found in the
2015 * RSS table. But we still need to set the RX scatter
2016 * bit here.
2017 */
2018 EFX_SET_OWORD_FIELD(
2019 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2020 efx->rx_scatter);
2021 }
2022
2023 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2024 }
2025
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2026 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2027 {
2028 struct efx_farch_filter_state *state = efx->filter_state;
2029 struct efx_farch_filter_table *table;
2030 efx_oword_t tx_cfg;
2031
2032 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2033
2034 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2035 if (table->size) {
2036 EFX_SET_OWORD_FIELD(
2037 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2038 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2039 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2040 EFX_SET_OWORD_FIELD(
2041 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2042 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2043 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2044 }
2045
2046 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2047 }
2048
2049 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2050 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2051 const struct efx_filter_spec *gen_spec)
2052 {
2053 bool is_full = false;
2054
2055 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2056 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2057 return -EINVAL;
2058
2059 spec->priority = gen_spec->priority;
2060 spec->flags = gen_spec->flags;
2061 spec->dmaq_id = gen_spec->dmaq_id;
2062
2063 switch (gen_spec->match_flags) {
2064 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2065 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2066 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2067 is_full = true;
2068 /* fall through */
2069 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2070 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2071 __be32 rhost, host1, host2;
2072 __be16 rport, port1, port2;
2073
2074 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2075
2076 if (gen_spec->ether_type != htons(ETH_P_IP))
2077 return -EPROTONOSUPPORT;
2078 if (gen_spec->loc_port == 0 ||
2079 (is_full && gen_spec->rem_port == 0))
2080 return -EADDRNOTAVAIL;
2081 switch (gen_spec->ip_proto) {
2082 case IPPROTO_TCP:
2083 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2084 EFX_FARCH_FILTER_TCP_WILD);
2085 break;
2086 case IPPROTO_UDP:
2087 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2088 EFX_FARCH_FILTER_UDP_WILD);
2089 break;
2090 default:
2091 return -EPROTONOSUPPORT;
2092 }
2093
2094 /* Filter is constructed in terms of source and destination,
2095 * with the odd wrinkle that the ports are swapped in a UDP
2096 * wildcard filter. We need to convert from local and remote
2097 * (= zero for wildcard) addresses.
2098 */
2099 rhost = is_full ? gen_spec->rem_host[0] : 0;
2100 rport = is_full ? gen_spec->rem_port : 0;
2101 host1 = rhost;
2102 host2 = gen_spec->loc_host[0];
2103 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2104 port1 = gen_spec->loc_port;
2105 port2 = rport;
2106 } else {
2107 port1 = rport;
2108 port2 = gen_spec->loc_port;
2109 }
2110 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2111 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2112 spec->data[2] = ntohl(host2);
2113
2114 break;
2115 }
2116
2117 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2118 is_full = true;
2119 /* fall through */
2120 case EFX_FILTER_MATCH_LOC_MAC:
2121 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2122 EFX_FARCH_FILTER_MAC_WILD);
2123 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2124 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2125 gen_spec->loc_mac[3] << 16 |
2126 gen_spec->loc_mac[4] << 8 |
2127 gen_spec->loc_mac[5]);
2128 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2129 gen_spec->loc_mac[1]);
2130 break;
2131
2132 case EFX_FILTER_MATCH_LOC_MAC_IG:
2133 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2134 EFX_FARCH_FILTER_MC_DEF :
2135 EFX_FARCH_FILTER_UC_DEF);
2136 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2137 break;
2138
2139 default:
2140 return -EPROTONOSUPPORT;
2141 }
2142
2143 return 0;
2144 }
2145
2146 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2147 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2148 const struct efx_farch_filter_spec *spec)
2149 {
2150 bool is_full = false;
2151
2152 /* *gen_spec should be completely initialised, to be consistent
2153 * with efx_filter_init_{rx,tx}() and in case we want to copy
2154 * it back to userland.
2155 */
2156 memset(gen_spec, 0, sizeof(*gen_spec));
2157
2158 gen_spec->priority = spec->priority;
2159 gen_spec->flags = spec->flags;
2160 gen_spec->dmaq_id = spec->dmaq_id;
2161
2162 switch (spec->type) {
2163 case EFX_FARCH_FILTER_TCP_FULL:
2164 case EFX_FARCH_FILTER_UDP_FULL:
2165 is_full = true;
2166 /* fall through */
2167 case EFX_FARCH_FILTER_TCP_WILD:
2168 case EFX_FARCH_FILTER_UDP_WILD: {
2169 __be32 host1, host2;
2170 __be16 port1, port2;
2171
2172 gen_spec->match_flags =
2173 EFX_FILTER_MATCH_ETHER_TYPE |
2174 EFX_FILTER_MATCH_IP_PROTO |
2175 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2176 if (is_full)
2177 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2178 EFX_FILTER_MATCH_REM_PORT);
2179 gen_spec->ether_type = htons(ETH_P_IP);
2180 gen_spec->ip_proto =
2181 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2182 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2183 IPPROTO_TCP : IPPROTO_UDP;
2184
2185 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2186 port1 = htons(spec->data[0]);
2187 host2 = htonl(spec->data[2]);
2188 port2 = htons(spec->data[1] >> 16);
2189 if (spec->flags & EFX_FILTER_FLAG_TX) {
2190 gen_spec->loc_host[0] = host1;
2191 gen_spec->rem_host[0] = host2;
2192 } else {
2193 gen_spec->loc_host[0] = host2;
2194 gen_spec->rem_host[0] = host1;
2195 }
2196 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2197 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2198 gen_spec->loc_port = port1;
2199 gen_spec->rem_port = port2;
2200 } else {
2201 gen_spec->loc_port = port2;
2202 gen_spec->rem_port = port1;
2203 }
2204
2205 break;
2206 }
2207
2208 case EFX_FARCH_FILTER_MAC_FULL:
2209 is_full = true;
2210 /* fall through */
2211 case EFX_FARCH_FILTER_MAC_WILD:
2212 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2213 if (is_full)
2214 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2215 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2216 gen_spec->loc_mac[1] = spec->data[2];
2217 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2218 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2219 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2220 gen_spec->loc_mac[5] = spec->data[1];
2221 gen_spec->outer_vid = htons(spec->data[0]);
2222 break;
2223
2224 case EFX_FARCH_FILTER_UC_DEF:
2225 case EFX_FARCH_FILTER_MC_DEF:
2226 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2227 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2228 break;
2229
2230 default:
2231 WARN_ON(1);
2232 break;
2233 }
2234 }
2235
2236 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2237 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2238 struct efx_farch_filter_spec *spec)
2239 {
2240 /* If there's only one channel then disable RSS for non VF
2241 * traffic, thereby allowing VFs to use RSS when the PF can't.
2242 */
2243 spec->priority = EFX_FILTER_PRI_AUTO;
2244 spec->flags = (EFX_FILTER_FLAG_RX |
2245 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2246 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2247 spec->dmaq_id = 0;
2248 }
2249
2250 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2251 static u32 efx_farch_filter_build(efx_oword_t *filter,
2252 struct efx_farch_filter_spec *spec)
2253 {
2254 u32 data3;
2255
2256 switch (efx_farch_filter_spec_table_id(spec)) {
2257 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2258 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2259 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2260 EFX_POPULATE_OWORD_7(
2261 *filter,
2262 FRF_BZ_RSS_EN,
2263 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2264 FRF_BZ_SCATTER_EN,
2265 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2266 FRF_BZ_TCP_UDP, is_udp,
2267 FRF_BZ_RXQ_ID, spec->dmaq_id,
2268 EFX_DWORD_2, spec->data[2],
2269 EFX_DWORD_1, spec->data[1],
2270 EFX_DWORD_0, spec->data[0]);
2271 data3 = is_udp;
2272 break;
2273 }
2274
2275 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2276 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2277 EFX_POPULATE_OWORD_7(
2278 *filter,
2279 FRF_CZ_RMFT_RSS_EN,
2280 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2281 FRF_CZ_RMFT_SCATTER_EN,
2282 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2283 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2284 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2285 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2286 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2287 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2288 data3 = is_wild;
2289 break;
2290 }
2291
2292 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2293 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2294 EFX_POPULATE_OWORD_5(*filter,
2295 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2296 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2297 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2298 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2299 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2300 data3 = is_wild | spec->dmaq_id << 1;
2301 break;
2302 }
2303
2304 default:
2305 BUG();
2306 }
2307
2308 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2309 }
2310
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2311 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2312 const struct efx_farch_filter_spec *right)
2313 {
2314 if (left->type != right->type ||
2315 memcmp(left->data, right->data, sizeof(left->data)))
2316 return false;
2317
2318 if (left->flags & EFX_FILTER_FLAG_TX &&
2319 left->dmaq_id != right->dmaq_id)
2320 return false;
2321
2322 return true;
2323 }
2324
2325 /*
2326 * Construct/deconstruct external filter IDs. At least the RX filter
2327 * IDs must be ordered by matching priority, for RX NFC semantics.
2328 *
2329 * Deconstruction needs to be robust against invalid IDs so that
2330 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2331 * accept user-provided IDs.
2332 */
2333
2334 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2335
2336 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2337 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2338 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2339 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2340 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2341 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2342 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2343 [EFX_FARCH_FILTER_UC_DEF] = 4,
2344 [EFX_FARCH_FILTER_MC_DEF] = 4,
2345 };
2346
2347 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2348 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2349 EFX_FARCH_FILTER_TABLE_RX_IP,
2350 EFX_FARCH_FILTER_TABLE_RX_MAC,
2351 EFX_FARCH_FILTER_TABLE_RX_MAC,
2352 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2353 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2354 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2355 };
2356
2357 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2358 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2359
2360 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2361 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2362 unsigned int index)
2363 {
2364 unsigned int range;
2365
2366 range = efx_farch_filter_type_match_pri[spec->type];
2367 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2368 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2369
2370 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2371 }
2372
2373 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2374 efx_farch_filter_id_table_id(u32 id)
2375 {
2376 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2377
2378 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2379 return efx_farch_filter_range_table[range];
2380 else
2381 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2382 }
2383
efx_farch_filter_id_index(u32 id)2384 static inline unsigned int efx_farch_filter_id_index(u32 id)
2385 {
2386 return id & EFX_FARCH_FILTER_INDEX_MASK;
2387 }
2388
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2389 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2390 {
2391 struct efx_farch_filter_state *state = efx->filter_state;
2392 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2393 enum efx_farch_filter_table_id table_id;
2394
2395 do {
2396 table_id = efx_farch_filter_range_table[range];
2397 if (state->table[table_id].size != 0)
2398 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2399 state->table[table_id].size;
2400 } while (range--);
2401
2402 return 0;
2403 }
2404
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2405 s32 efx_farch_filter_insert(struct efx_nic *efx,
2406 struct efx_filter_spec *gen_spec,
2407 bool replace_equal)
2408 {
2409 struct efx_farch_filter_state *state = efx->filter_state;
2410 struct efx_farch_filter_table *table;
2411 struct efx_farch_filter_spec spec;
2412 efx_oword_t filter;
2413 int rep_index, ins_index;
2414 unsigned int depth = 0;
2415 int rc;
2416
2417 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2418 if (rc)
2419 return rc;
2420
2421 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2422 if (table->size == 0)
2423 return -EINVAL;
2424
2425 netif_vdbg(efx, hw, efx->net_dev,
2426 "%s: type %d search_limit=%d", __func__, spec.type,
2427 table->search_limit[spec.type]);
2428
2429 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2430 /* One filter spec per type */
2431 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2432 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2433 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2434 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2435 ins_index = rep_index;
2436
2437 spin_lock_bh(&efx->filter_lock);
2438 } else {
2439 /* Search concurrently for
2440 * (1) a filter to be replaced (rep_index): any filter
2441 * with the same match values, up to the current
2442 * search depth for this type, and
2443 * (2) the insertion point (ins_index): (1) or any
2444 * free slot before it or up to the maximum search
2445 * depth for this priority
2446 * We fail if we cannot find (2).
2447 *
2448 * We can stop once either
2449 * (a) we find (1), in which case we have definitely
2450 * found (2) as well; or
2451 * (b) we have searched exhaustively for (1), and have
2452 * either found (2) or searched exhaustively for it
2453 */
2454 u32 key = efx_farch_filter_build(&filter, &spec);
2455 unsigned int hash = efx_farch_filter_hash(key);
2456 unsigned int incr = efx_farch_filter_increment(key);
2457 unsigned int max_rep_depth = table->search_limit[spec.type];
2458 unsigned int max_ins_depth =
2459 spec.priority <= EFX_FILTER_PRI_HINT ?
2460 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2461 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2462 unsigned int i = hash & (table->size - 1);
2463
2464 ins_index = -1;
2465 depth = 1;
2466
2467 spin_lock_bh(&efx->filter_lock);
2468
2469 for (;;) {
2470 if (!test_bit(i, table->used_bitmap)) {
2471 if (ins_index < 0)
2472 ins_index = i;
2473 } else if (efx_farch_filter_equal(&spec,
2474 &table->spec[i])) {
2475 /* Case (a) */
2476 if (ins_index < 0)
2477 ins_index = i;
2478 rep_index = i;
2479 break;
2480 }
2481
2482 if (depth >= max_rep_depth &&
2483 (ins_index >= 0 || depth >= max_ins_depth)) {
2484 /* Case (b) */
2485 if (ins_index < 0) {
2486 rc = -EBUSY;
2487 goto out;
2488 }
2489 rep_index = -1;
2490 break;
2491 }
2492
2493 i = (i + incr) & (table->size - 1);
2494 ++depth;
2495 }
2496 }
2497
2498 /* If we found a filter to be replaced, check whether we
2499 * should do so
2500 */
2501 if (rep_index >= 0) {
2502 struct efx_farch_filter_spec *saved_spec =
2503 &table->spec[rep_index];
2504
2505 if (spec.priority == saved_spec->priority && !replace_equal) {
2506 rc = -EEXIST;
2507 goto out;
2508 }
2509 if (spec.priority < saved_spec->priority) {
2510 rc = -EPERM;
2511 goto out;
2512 }
2513 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2514 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2515 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2516 }
2517
2518 /* Insert the filter */
2519 if (ins_index != rep_index) {
2520 __set_bit(ins_index, table->used_bitmap);
2521 ++table->used;
2522 }
2523 table->spec[ins_index] = spec;
2524
2525 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2526 efx_farch_filter_push_rx_config(efx);
2527 } else {
2528 if (table->search_limit[spec.type] < depth) {
2529 table->search_limit[spec.type] = depth;
2530 if (spec.flags & EFX_FILTER_FLAG_TX)
2531 efx_farch_filter_push_tx_limits(efx);
2532 else
2533 efx_farch_filter_push_rx_config(efx);
2534 }
2535
2536 efx_writeo(efx, &filter,
2537 table->offset + table->step * ins_index);
2538
2539 /* If we were able to replace a filter by inserting
2540 * at a lower depth, clear the replaced filter
2541 */
2542 if (ins_index != rep_index && rep_index >= 0)
2543 efx_farch_filter_table_clear_entry(efx, table,
2544 rep_index);
2545 }
2546
2547 netif_vdbg(efx, hw, efx->net_dev,
2548 "%s: filter type %d index %d rxq %u set",
2549 __func__, spec.type, ins_index, spec.dmaq_id);
2550 rc = efx_farch_filter_make_id(&spec, ins_index);
2551
2552 out:
2553 spin_unlock_bh(&efx->filter_lock);
2554 return rc;
2555 }
2556
2557 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2558 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2559 struct efx_farch_filter_table *table,
2560 unsigned int filter_idx)
2561 {
2562 static efx_oword_t filter;
2563
2564 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2565 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2566
2567 __clear_bit(filter_idx, table->used_bitmap);
2568 --table->used;
2569 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2570
2571 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2572
2573 /* If this filter required a greater search depth than
2574 * any other, the search limit for its type can now be
2575 * decreased. However, it is hard to determine that
2576 * unless the table has become completely empty - in
2577 * which case, all its search limits can be set to 0.
2578 */
2579 if (unlikely(table->used == 0)) {
2580 memset(table->search_limit, 0, sizeof(table->search_limit));
2581 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2582 efx_farch_filter_push_tx_limits(efx);
2583 else
2584 efx_farch_filter_push_rx_config(efx);
2585 }
2586 }
2587
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2588 static int efx_farch_filter_remove(struct efx_nic *efx,
2589 struct efx_farch_filter_table *table,
2590 unsigned int filter_idx,
2591 enum efx_filter_priority priority)
2592 {
2593 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2594
2595 if (!test_bit(filter_idx, table->used_bitmap) ||
2596 spec->priority != priority)
2597 return -ENOENT;
2598
2599 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2600 efx_farch_filter_init_rx_auto(efx, spec);
2601 efx_farch_filter_push_rx_config(efx);
2602 } else {
2603 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2604 }
2605
2606 return 0;
2607 }
2608
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2609 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2610 enum efx_filter_priority priority,
2611 u32 filter_id)
2612 {
2613 struct efx_farch_filter_state *state = efx->filter_state;
2614 enum efx_farch_filter_table_id table_id;
2615 struct efx_farch_filter_table *table;
2616 unsigned int filter_idx;
2617 struct efx_farch_filter_spec *spec;
2618 int rc;
2619
2620 table_id = efx_farch_filter_id_table_id(filter_id);
2621 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2622 return -ENOENT;
2623 table = &state->table[table_id];
2624
2625 filter_idx = efx_farch_filter_id_index(filter_id);
2626 if (filter_idx >= table->size)
2627 return -ENOENT;
2628 spec = &table->spec[filter_idx];
2629
2630 spin_lock_bh(&efx->filter_lock);
2631 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2632 spin_unlock_bh(&efx->filter_lock);
2633
2634 return rc;
2635 }
2636
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2637 int efx_farch_filter_get_safe(struct efx_nic *efx,
2638 enum efx_filter_priority priority,
2639 u32 filter_id, struct efx_filter_spec *spec_buf)
2640 {
2641 struct efx_farch_filter_state *state = efx->filter_state;
2642 enum efx_farch_filter_table_id table_id;
2643 struct efx_farch_filter_table *table;
2644 struct efx_farch_filter_spec *spec;
2645 unsigned int filter_idx;
2646 int rc;
2647
2648 table_id = efx_farch_filter_id_table_id(filter_id);
2649 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2650 return -ENOENT;
2651 table = &state->table[table_id];
2652
2653 filter_idx = efx_farch_filter_id_index(filter_id);
2654 if (filter_idx >= table->size)
2655 return -ENOENT;
2656 spec = &table->spec[filter_idx];
2657
2658 spin_lock_bh(&efx->filter_lock);
2659
2660 if (test_bit(filter_idx, table->used_bitmap) &&
2661 spec->priority == priority) {
2662 efx_farch_filter_to_gen_spec(spec_buf, spec);
2663 rc = 0;
2664 } else {
2665 rc = -ENOENT;
2666 }
2667
2668 spin_unlock_bh(&efx->filter_lock);
2669
2670 return rc;
2671 }
2672
2673 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2674 efx_farch_filter_table_clear(struct efx_nic *efx,
2675 enum efx_farch_filter_table_id table_id,
2676 enum efx_filter_priority priority)
2677 {
2678 struct efx_farch_filter_state *state = efx->filter_state;
2679 struct efx_farch_filter_table *table = &state->table[table_id];
2680 unsigned int filter_idx;
2681
2682 spin_lock_bh(&efx->filter_lock);
2683 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2684 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2685 efx_farch_filter_remove(efx, table,
2686 filter_idx, priority);
2687 }
2688 spin_unlock_bh(&efx->filter_lock);
2689 }
2690
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2691 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2692 enum efx_filter_priority priority)
2693 {
2694 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2695 priority);
2696 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2697 priority);
2698 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2699 priority);
2700 return 0;
2701 }
2702
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2703 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2704 enum efx_filter_priority priority)
2705 {
2706 struct efx_farch_filter_state *state = efx->filter_state;
2707 enum efx_farch_filter_table_id table_id;
2708 struct efx_farch_filter_table *table;
2709 unsigned int filter_idx;
2710 u32 count = 0;
2711
2712 spin_lock_bh(&efx->filter_lock);
2713
2714 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2715 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2716 table_id++) {
2717 table = &state->table[table_id];
2718 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2719 if (test_bit(filter_idx, table->used_bitmap) &&
2720 table->spec[filter_idx].priority == priority)
2721 ++count;
2722 }
2723 }
2724
2725 spin_unlock_bh(&efx->filter_lock);
2726
2727 return count;
2728 }
2729
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2730 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2731 enum efx_filter_priority priority,
2732 u32 *buf, u32 size)
2733 {
2734 struct efx_farch_filter_state *state = efx->filter_state;
2735 enum efx_farch_filter_table_id table_id;
2736 struct efx_farch_filter_table *table;
2737 unsigned int filter_idx;
2738 s32 count = 0;
2739
2740 spin_lock_bh(&efx->filter_lock);
2741
2742 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2743 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2744 table_id++) {
2745 table = &state->table[table_id];
2746 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2747 if (test_bit(filter_idx, table->used_bitmap) &&
2748 table->spec[filter_idx].priority == priority) {
2749 if (count == size) {
2750 count = -EMSGSIZE;
2751 goto out;
2752 }
2753 buf[count++] = efx_farch_filter_make_id(
2754 &table->spec[filter_idx], filter_idx);
2755 }
2756 }
2757 }
2758 out:
2759 spin_unlock_bh(&efx->filter_lock);
2760
2761 return count;
2762 }
2763
2764 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2765 void efx_farch_filter_table_restore(struct efx_nic *efx)
2766 {
2767 struct efx_farch_filter_state *state = efx->filter_state;
2768 enum efx_farch_filter_table_id table_id;
2769 struct efx_farch_filter_table *table;
2770 efx_oword_t filter;
2771 unsigned int filter_idx;
2772
2773 spin_lock_bh(&efx->filter_lock);
2774
2775 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776 table = &state->table[table_id];
2777
2778 /* Check whether this is a regular register table */
2779 if (table->step == 0)
2780 continue;
2781
2782 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2783 if (!test_bit(filter_idx, table->used_bitmap))
2784 continue;
2785 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2786 efx_writeo(efx, &filter,
2787 table->offset + table->step * filter_idx);
2788 }
2789 }
2790
2791 efx_farch_filter_push_rx_config(efx);
2792 efx_farch_filter_push_tx_limits(efx);
2793
2794 spin_unlock_bh(&efx->filter_lock);
2795 }
2796
efx_farch_filter_table_remove(struct efx_nic * efx)2797 void efx_farch_filter_table_remove(struct efx_nic *efx)
2798 {
2799 struct efx_farch_filter_state *state = efx->filter_state;
2800 enum efx_farch_filter_table_id table_id;
2801
2802 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2803 kfree(state->table[table_id].used_bitmap);
2804 vfree(state->table[table_id].spec);
2805 }
2806 kfree(state);
2807 }
2808
efx_farch_filter_table_probe(struct efx_nic * efx)2809 int efx_farch_filter_table_probe(struct efx_nic *efx)
2810 {
2811 struct efx_farch_filter_state *state;
2812 struct efx_farch_filter_table *table;
2813 unsigned table_id;
2814
2815 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2816 if (!state)
2817 return -ENOMEM;
2818 efx->filter_state = state;
2819
2820 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2821 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2822 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2823 table->offset = FR_BZ_RX_FILTER_TBL0;
2824 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2825 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2826 }
2827
2828 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2829 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2830 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2831 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2832 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2833 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2834
2835 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2836 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2837 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2838
2839 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2840 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2841 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2842 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2843 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2844 }
2845
2846 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2847 table = &state->table[table_id];
2848 if (table->size == 0)
2849 continue;
2850 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2851 sizeof(unsigned long),
2852 GFP_KERNEL);
2853 if (!table->used_bitmap)
2854 goto fail;
2855 table->spec = vzalloc(table->size * sizeof(*table->spec));
2856 if (!table->spec)
2857 goto fail;
2858 }
2859
2860 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2861 if (table->size) {
2862 /* RX default filters must always exist */
2863 struct efx_farch_filter_spec *spec;
2864 unsigned i;
2865
2866 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2867 spec = &table->spec[i];
2868 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2869 efx_farch_filter_init_rx_auto(efx, spec);
2870 __set_bit(i, table->used_bitmap);
2871 }
2872 }
2873
2874 efx_farch_filter_push_rx_config(efx);
2875
2876 return 0;
2877
2878 fail:
2879 efx_farch_filter_table_remove(efx);
2880 return -ENOMEM;
2881 }
2882
2883 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2884 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2885 {
2886 struct efx_farch_filter_state *state = efx->filter_state;
2887 enum efx_farch_filter_table_id table_id;
2888 struct efx_farch_filter_table *table;
2889 efx_oword_t filter;
2890 unsigned int filter_idx;
2891
2892 spin_lock_bh(&efx->filter_lock);
2893
2894 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2895 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2896 table_id++) {
2897 table = &state->table[table_id];
2898
2899 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2900 if (!test_bit(filter_idx, table->used_bitmap) ||
2901 table->spec[filter_idx].dmaq_id >=
2902 efx->n_rx_channels)
2903 continue;
2904
2905 if (efx->rx_scatter)
2906 table->spec[filter_idx].flags |=
2907 EFX_FILTER_FLAG_RX_SCATTER;
2908 else
2909 table->spec[filter_idx].flags &=
2910 ~EFX_FILTER_FLAG_RX_SCATTER;
2911
2912 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2913 /* Pushed by efx_farch_filter_push_rx_config() */
2914 continue;
2915
2916 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2917 efx_writeo(efx, &filter,
2918 table->offset + table->step * filter_idx);
2919 }
2920 }
2921
2922 efx_farch_filter_push_rx_config(efx);
2923
2924 spin_unlock_bh(&efx->filter_lock);
2925 }
2926
2927 #ifdef CONFIG_RFS_ACCEL
2928
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2929 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2930 struct efx_filter_spec *gen_spec)
2931 {
2932 return efx_farch_filter_insert(efx, gen_spec, true);
2933 }
2934
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2935 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2936 unsigned int index)
2937 {
2938 struct efx_farch_filter_state *state = efx->filter_state;
2939 struct efx_farch_filter_table *table =
2940 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2941
2942 if (test_bit(index, table->used_bitmap) &&
2943 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2944 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2945 flow_id, index)) {
2946 efx_farch_filter_table_clear_entry(efx, table, index);
2947 return true;
2948 }
2949
2950 return false;
2951 }
2952
2953 #endif /* CONFIG_RFS_ACCEL */
2954
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2955 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956 {
2957 struct net_device *net_dev = efx->net_dev;
2958 struct netdev_hw_addr *ha;
2959 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960 u32 crc;
2961 int bit;
2962
2963 if (!efx_dev_registered(efx))
2964 return;
2965
2966 netif_addr_lock_bh(net_dev);
2967
2968 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969
2970 /* Build multicast hash table */
2971 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972 memset(mc_hash, 0xff, sizeof(*mc_hash));
2973 } else {
2974 memset(mc_hash, 0x00, sizeof(*mc_hash));
2975 netdev_for_each_mc_addr(ha, net_dev) {
2976 crc = ether_crc_le(ETH_ALEN, ha->addr);
2977 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978 __set_bit_le(bit, mc_hash);
2979 }
2980
2981 /* Broadcast packets go through the multicast hash filter.
2982 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983 * so we always add bit 0xff to the mask.
2984 */
2985 __set_bit_le(0xff, mc_hash);
2986 }
2987
2988 netif_addr_unlock_bh(net_dev);
2989 }
2990