• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27 
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29 
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36 
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46 
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49 
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56 
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59 
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
65 
66 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
68 
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
72 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
73 			   efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
75 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
76 			   efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
78 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
79 			   (_tx_queue)->queue)
80 
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82 
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 				     unsigned int index)
91 {
92 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 			value, index);
94 }
95 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 				     const efx_oword_t *mask)
98 {
99 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)103 int efx_farch_test_registers(struct efx_nic *efx,
104 			     const struct efx_farch_register_test *regs,
105 			     size_t n_regs)
106 {
107 	unsigned address = 0, i, j;
108 	efx_oword_t mask, imask, original, reg, buf;
109 
110 	for (i = 0; i < n_regs; ++i) {
111 		address = regs[i].address;
112 		mask = imask = regs[i].mask;
113 		EFX_INVERT_OWORD(imask);
114 
115 		efx_reado(efx, &original, address);
116 
117 		/* bit sweep on and off */
118 		for (j = 0; j < 128; j++) {
119 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
120 				continue;
121 
122 			/* Test this testable bit can be set in isolation */
123 			EFX_AND_OWORD(reg, original, mask);
124 			EFX_SET_OWORD32(reg, j, j, 1);
125 
126 			efx_writeo(efx, &reg, address);
127 			efx_reado(efx, &buf, address);
128 
129 			if (efx_masked_compare_oword(&reg, &buf, &mask))
130 				goto fail;
131 
132 			/* Test this testable bit can be cleared in isolation */
133 			EFX_OR_OWORD(reg, original, mask);
134 			EFX_SET_OWORD32(reg, j, j, 0);
135 
136 			efx_writeo(efx, &reg, address);
137 			efx_reado(efx, &buf, address);
138 
139 			if (efx_masked_compare_oword(&reg, &buf, &mask))
140 				goto fail;
141 		}
142 
143 		efx_writeo(efx, &original, address);
144 	}
145 
146 	return 0;
147 
148 fail:
149 	netif_err(efx, hw, efx->net_dev,
150 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
151 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
152 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
153 	return -EIO;
154 }
155 
156 /**************************************************************************
157  *
158  * Special buffer handling
159  * Special buffers are used for event queues and the TX and RX
160  * descriptor rings.
161  *
162  *************************************************************************/
163 
164 /*
165  * Initialise a special buffer
166  *
167  * This will define a buffer (previously allocated via
168  * efx_alloc_special_buffer()) in the buffer table, allowing
169  * it to be used for event queues, descriptor rings etc.
170  */
171 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)172 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
173 {
174 	efx_qword_t buf_desc;
175 	unsigned int index;
176 	dma_addr_t dma_addr;
177 	int i;
178 
179 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
180 
181 	/* Write buffer descriptors to NIC */
182 	for (i = 0; i < buffer->entries; i++) {
183 		index = buffer->index + i;
184 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
185 		netif_dbg(efx, probe, efx->net_dev,
186 			  "mapping special buffer %d at %llx\n",
187 			  index, (unsigned long long)dma_addr);
188 		EFX_POPULATE_QWORD_3(buf_desc,
189 				     FRF_AZ_BUF_ADR_REGION, 0,
190 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
191 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
192 		efx_write_buf_tbl(efx, &buf_desc, index);
193 	}
194 }
195 
196 /* Unmaps a buffer and clears the buffer table entries */
197 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)198 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
199 {
200 	efx_oword_t buf_tbl_upd;
201 	unsigned int start = buffer->index;
202 	unsigned int end = (buffer->index + buffer->entries - 1);
203 
204 	if (!buffer->entries)
205 		return;
206 
207 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
208 		  buffer->index, buffer->index + buffer->entries - 1);
209 
210 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
211 			     FRF_AZ_BUF_UPD_CMD, 0,
212 			     FRF_AZ_BUF_CLR_CMD, 1,
213 			     FRF_AZ_BUF_CLR_END_ID, end,
214 			     FRF_AZ_BUF_CLR_START_ID, start);
215 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
216 }
217 
218 /*
219  * Allocate a new special buffer
220  *
221  * This allocates memory for a new buffer, clears it and allocates a
222  * new buffer ID range.  It does not write into the buffer table.
223  *
224  * This call will allocate 4KB buffers, since 8KB buffers can't be
225  * used for event queues and descriptor rings.
226  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)227 static int efx_alloc_special_buffer(struct efx_nic *efx,
228 				    struct efx_special_buffer *buffer,
229 				    unsigned int len)
230 {
231 #ifdef CONFIG_SFC_SRIOV
232 	struct siena_nic_data *nic_data = efx->nic_data;
233 #endif
234 	len = ALIGN(len, EFX_BUF_SIZE);
235 
236 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
237 		return -ENOMEM;
238 	buffer->entries = len / EFX_BUF_SIZE;
239 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
240 
241 	/* Select new buffer ID */
242 	buffer->index = efx->next_buffer_table;
243 	efx->next_buffer_table += buffer->entries;
244 #ifdef CONFIG_SFC_SRIOV
245 	BUG_ON(efx_siena_sriov_enabled(efx) &&
246 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
247 #endif
248 
249 	netif_dbg(efx, probe, efx->net_dev,
250 		  "allocating special buffers %d-%d at %llx+%x "
251 		  "(virt %p phys %llx)\n", buffer->index,
252 		  buffer->index + buffer->entries - 1,
253 		  (u64)buffer->buf.dma_addr, len,
254 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
255 
256 	return 0;
257 }
258 
259 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)260 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
261 {
262 	if (!buffer->buf.addr)
263 		return;
264 
265 	netif_dbg(efx, hw, efx->net_dev,
266 		  "deallocating special buffers %d-%d at %llx+%x "
267 		  "(virt %p phys %llx)\n", buffer->index,
268 		  buffer->index + buffer->entries - 1,
269 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
270 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
271 
272 	efx_nic_free_buffer(efx, &buffer->buf);
273 	buffer->entries = 0;
274 }
275 
276 /**************************************************************************
277  *
278  * TX path
279  *
280  **************************************************************************/
281 
282 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)283 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
284 {
285 	unsigned write_ptr;
286 	efx_dword_t reg;
287 
288 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
289 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
290 	efx_writed_page(tx_queue->efx, &reg,
291 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
292 }
293 
294 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)295 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
296 					  const efx_qword_t *txd)
297 {
298 	unsigned write_ptr;
299 	efx_oword_t reg;
300 
301 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
302 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
303 
304 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
305 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
306 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
307 	reg.qword[0] = *txd;
308 	efx_writeo_page(tx_queue->efx, &reg,
309 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
310 }
311 
312 
313 /* For each entry inserted into the software descriptor ring, create a
314  * descriptor in the hardware TX descriptor ring (in host memory), and
315  * write a doorbell.
316  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)317 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
318 {
319 	struct efx_tx_buffer *buffer;
320 	efx_qword_t *txd;
321 	unsigned write_ptr;
322 	unsigned old_write_count = tx_queue->write_count;
323 
324 	tx_queue->xmit_more_available = false;
325 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
326 		return;
327 
328 	do {
329 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
330 		buffer = &tx_queue->buffer[write_ptr];
331 		txd = efx_tx_desc(tx_queue, write_ptr);
332 		++tx_queue->write_count;
333 
334 		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
335 
336 		/* Create TX descriptor ring entry */
337 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
338 		EFX_POPULATE_QWORD_4(*txd,
339 				     FSF_AZ_TX_KER_CONT,
340 				     buffer->flags & EFX_TX_BUF_CONT,
341 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
342 				     FSF_AZ_TX_KER_BUF_REGION, 0,
343 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
344 	} while (tx_queue->write_count != tx_queue->insert_count);
345 
346 	wmb(); /* Ensure descriptors are written before they are fetched */
347 
348 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
349 		txd = efx_tx_desc(tx_queue,
350 				  old_write_count & tx_queue->ptr_mask);
351 		efx_farch_push_tx_desc(tx_queue, txd);
352 		++tx_queue->pushes;
353 	} else {
354 		efx_farch_notify_tx_desc(tx_queue);
355 	}
356 }
357 
358 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)359 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
360 {
361 	struct efx_nic *efx = tx_queue->efx;
362 	unsigned entries;
363 
364 	entries = tx_queue->ptr_mask + 1;
365 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
366 					entries * sizeof(efx_qword_t));
367 }
368 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)369 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
370 {
371 	struct efx_nic *efx = tx_queue->efx;
372 	efx_oword_t reg;
373 
374 	/* Pin TX descriptor ring */
375 	efx_init_special_buffer(efx, &tx_queue->txd);
376 
377 	/* Push TX descriptor ring to card */
378 	EFX_POPULATE_OWORD_10(reg,
379 			      FRF_AZ_TX_DESCQ_EN, 1,
380 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
381 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
382 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
383 			      FRF_AZ_TX_DESCQ_EVQ_ID,
384 			      tx_queue->channel->channel,
385 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
386 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
387 			      FRF_AZ_TX_DESCQ_SIZE,
388 			      __ffs(tx_queue->txd.entries),
389 			      FRF_AZ_TX_DESCQ_TYPE, 0,
390 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
391 
392 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
393 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
394 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
395 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
396 				    !csum);
397 	}
398 
399 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
400 			 tx_queue->queue);
401 
402 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
403 		/* Only 128 bits in this register */
404 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
405 
406 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
407 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
408 			__clear_bit_le(tx_queue->queue, &reg);
409 		else
410 			__set_bit_le(tx_queue->queue, &reg);
411 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
412 	}
413 
414 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
415 		EFX_POPULATE_OWORD_1(reg,
416 				     FRF_BZ_TX_PACE,
417 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
418 				     FFE_BZ_TX_PACE_OFF :
419 				     FFE_BZ_TX_PACE_RESERVED);
420 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
421 				 tx_queue->queue);
422 	}
423 }
424 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)425 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
426 {
427 	struct efx_nic *efx = tx_queue->efx;
428 	efx_oword_t tx_flush_descq;
429 
430 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
431 	atomic_set(&tx_queue->flush_outstanding, 1);
432 
433 	EFX_POPULATE_OWORD_2(tx_flush_descq,
434 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
435 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
436 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
437 }
438 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)439 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
440 {
441 	struct efx_nic *efx = tx_queue->efx;
442 	efx_oword_t tx_desc_ptr;
443 
444 	/* Remove TX descriptor ring from card */
445 	EFX_ZERO_OWORD(tx_desc_ptr);
446 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
447 			 tx_queue->queue);
448 
449 	/* Unpin TX descriptor ring */
450 	efx_fini_special_buffer(efx, &tx_queue->txd);
451 }
452 
453 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)454 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
455 {
456 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
457 }
458 
459 /**************************************************************************
460  *
461  * RX path
462  *
463  **************************************************************************/
464 
465 /* This creates an entry in the RX descriptor queue */
466 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)467 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
468 {
469 	struct efx_rx_buffer *rx_buf;
470 	efx_qword_t *rxd;
471 
472 	rxd = efx_rx_desc(rx_queue, index);
473 	rx_buf = efx_rx_buffer(rx_queue, index);
474 	EFX_POPULATE_QWORD_3(*rxd,
475 			     FSF_AZ_RX_KER_BUF_SIZE,
476 			     rx_buf->len -
477 			     rx_queue->efx->type->rx_buffer_padding,
478 			     FSF_AZ_RX_KER_BUF_REGION, 0,
479 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
480 }
481 
482 /* This writes to the RX_DESC_WPTR register for the specified receive
483  * descriptor ring.
484  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)485 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
486 {
487 	struct efx_nic *efx = rx_queue->efx;
488 	efx_dword_t reg;
489 	unsigned write_ptr;
490 
491 	while (rx_queue->notified_count != rx_queue->added_count) {
492 		efx_farch_build_rx_desc(
493 			rx_queue,
494 			rx_queue->notified_count & rx_queue->ptr_mask);
495 		++rx_queue->notified_count;
496 	}
497 
498 	wmb();
499 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
500 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
501 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
502 			efx_rx_queue_index(rx_queue));
503 }
504 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)505 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
506 {
507 	struct efx_nic *efx = rx_queue->efx;
508 	unsigned entries;
509 
510 	entries = rx_queue->ptr_mask + 1;
511 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
512 					entries * sizeof(efx_qword_t));
513 }
514 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)515 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
516 {
517 	efx_oword_t rx_desc_ptr;
518 	struct efx_nic *efx = rx_queue->efx;
519 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
520 	bool iscsi_digest_en = is_b0;
521 	bool jumbo_en;
522 
523 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
524 	 * DMA to continue after a PCIe page boundary (and scattering
525 	 * is not possible).  In Falcon B0 and Siena, it enables
526 	 * scatter.
527 	 */
528 	jumbo_en = !is_b0 || efx->rx_scatter;
529 
530 	netif_dbg(efx, hw, efx->net_dev,
531 		  "RX queue %d ring in special buffers %d-%d\n",
532 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
533 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
534 
535 	rx_queue->scatter_n = 0;
536 
537 	/* Pin RX descriptor ring */
538 	efx_init_special_buffer(efx, &rx_queue->rxd);
539 
540 	/* Push RX descriptor ring to card */
541 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
542 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
543 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
544 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
545 			      FRF_AZ_RX_DESCQ_EVQ_ID,
546 			      efx_rx_queue_channel(rx_queue)->channel,
547 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
548 			      FRF_AZ_RX_DESCQ_LABEL,
549 			      efx_rx_queue_index(rx_queue),
550 			      FRF_AZ_RX_DESCQ_SIZE,
551 			      __ffs(rx_queue->rxd.entries),
552 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
553 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
554 			      FRF_AZ_RX_DESCQ_EN, 1);
555 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
556 			 efx_rx_queue_index(rx_queue));
557 }
558 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)559 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
560 {
561 	struct efx_nic *efx = rx_queue->efx;
562 	efx_oword_t rx_flush_descq;
563 
564 	EFX_POPULATE_OWORD_2(rx_flush_descq,
565 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
566 			     FRF_AZ_RX_FLUSH_DESCQ,
567 			     efx_rx_queue_index(rx_queue));
568 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
569 }
570 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)571 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
572 {
573 	efx_oword_t rx_desc_ptr;
574 	struct efx_nic *efx = rx_queue->efx;
575 
576 	/* Remove RX descriptor ring from card */
577 	EFX_ZERO_OWORD(rx_desc_ptr);
578 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
579 			 efx_rx_queue_index(rx_queue));
580 
581 	/* Unpin RX descriptor ring */
582 	efx_fini_special_buffer(efx, &rx_queue->rxd);
583 }
584 
585 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)586 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
587 {
588 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
589 }
590 
591 /**************************************************************************
592  *
593  * Flush handling
594  *
595  **************************************************************************/
596 
597 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
598  * or more RX flushes can be kicked off.
599  */
efx_farch_flush_wake(struct efx_nic * efx)600 static bool efx_farch_flush_wake(struct efx_nic *efx)
601 {
602 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
603 	smp_mb();
604 
605 	return (atomic_read(&efx->active_queues) == 0 ||
606 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
607 		 && atomic_read(&efx->rxq_flush_pending) > 0));
608 }
609 
efx_check_tx_flush_complete(struct efx_nic * efx)610 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
611 {
612 	bool i = true;
613 	efx_oword_t txd_ptr_tbl;
614 	struct efx_channel *channel;
615 	struct efx_tx_queue *tx_queue;
616 
617 	efx_for_each_channel(channel, efx) {
618 		efx_for_each_channel_tx_queue(tx_queue, channel) {
619 			efx_reado_table(efx, &txd_ptr_tbl,
620 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
621 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
622 					    FRF_AZ_TX_DESCQ_FLUSH) ||
623 			    EFX_OWORD_FIELD(txd_ptr_tbl,
624 					    FRF_AZ_TX_DESCQ_EN)) {
625 				netif_dbg(efx, hw, efx->net_dev,
626 					  "flush did not complete on TXQ %d\n",
627 					  tx_queue->queue);
628 				i = false;
629 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
630 						  1, 0)) {
631 				/* The flush is complete, but we didn't
632 				 * receive a flush completion event
633 				 */
634 				netif_dbg(efx, hw, efx->net_dev,
635 					  "flush complete on TXQ %d, so drain "
636 					  "the queue\n", tx_queue->queue);
637 				/* Don't need to increment active_queues as it
638 				 * has already been incremented for the queues
639 				 * which did not drain
640 				 */
641 				efx_farch_magic_event(channel,
642 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
643 							      tx_queue));
644 			}
645 		}
646 	}
647 
648 	return i;
649 }
650 
651 /* Flush all the transmit queues, and continue flushing receive queues until
652  * they're all flushed. Wait for the DRAIN events to be received so that there
653  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)654 static int efx_farch_do_flush(struct efx_nic *efx)
655 {
656 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
657 	struct efx_channel *channel;
658 	struct efx_rx_queue *rx_queue;
659 	struct efx_tx_queue *tx_queue;
660 	int rc = 0;
661 
662 	efx_for_each_channel(channel, efx) {
663 		efx_for_each_channel_tx_queue(tx_queue, channel) {
664 			efx_farch_flush_tx_queue(tx_queue);
665 		}
666 		efx_for_each_channel_rx_queue(rx_queue, channel) {
667 			rx_queue->flush_pending = true;
668 			atomic_inc(&efx->rxq_flush_pending);
669 		}
670 	}
671 
672 	while (timeout && atomic_read(&efx->active_queues) > 0) {
673 		/* If SRIOV is enabled, then offload receive queue flushing to
674 		 * the firmware (though we will still have to poll for
675 		 * completion). If that fails, fall back to the old scheme.
676 		 */
677 		if (efx_siena_sriov_enabled(efx)) {
678 			rc = efx_mcdi_flush_rxqs(efx);
679 			if (!rc)
680 				goto wait;
681 		}
682 
683 		/* The hardware supports four concurrent rx flushes, each of
684 		 * which may need to be retried if there is an outstanding
685 		 * descriptor fetch
686 		 */
687 		efx_for_each_channel(channel, efx) {
688 			efx_for_each_channel_rx_queue(rx_queue, channel) {
689 				if (atomic_read(&efx->rxq_flush_outstanding) >=
690 				    EFX_RX_FLUSH_COUNT)
691 					break;
692 
693 				if (rx_queue->flush_pending) {
694 					rx_queue->flush_pending = false;
695 					atomic_dec(&efx->rxq_flush_pending);
696 					atomic_inc(&efx->rxq_flush_outstanding);
697 					efx_farch_flush_rx_queue(rx_queue);
698 				}
699 			}
700 		}
701 
702 	wait:
703 		timeout = wait_event_timeout(efx->flush_wq,
704 					     efx_farch_flush_wake(efx),
705 					     timeout);
706 	}
707 
708 	if (atomic_read(&efx->active_queues) &&
709 	    !efx_check_tx_flush_complete(efx)) {
710 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
711 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
712 			  atomic_read(&efx->rxq_flush_outstanding),
713 			  atomic_read(&efx->rxq_flush_pending));
714 		rc = -ETIMEDOUT;
715 
716 		atomic_set(&efx->active_queues, 0);
717 		atomic_set(&efx->rxq_flush_pending, 0);
718 		atomic_set(&efx->rxq_flush_outstanding, 0);
719 	}
720 
721 	return rc;
722 }
723 
efx_farch_fini_dmaq(struct efx_nic * efx)724 int efx_farch_fini_dmaq(struct efx_nic *efx)
725 {
726 	struct efx_channel *channel;
727 	struct efx_tx_queue *tx_queue;
728 	struct efx_rx_queue *rx_queue;
729 	int rc = 0;
730 
731 	/* Do not attempt to write to the NIC during EEH recovery */
732 	if (efx->state != STATE_RECOVERY) {
733 		/* Only perform flush if DMA is enabled */
734 		if (efx->pci_dev->is_busmaster) {
735 			efx->type->prepare_flush(efx);
736 			rc = efx_farch_do_flush(efx);
737 			efx->type->finish_flush(efx);
738 		}
739 
740 		efx_for_each_channel(channel, efx) {
741 			efx_for_each_channel_rx_queue(rx_queue, channel)
742 				efx_farch_rx_fini(rx_queue);
743 			efx_for_each_channel_tx_queue(tx_queue, channel)
744 				efx_farch_tx_fini(tx_queue);
745 		}
746 	}
747 
748 	return rc;
749 }
750 
751 /* Reset queue and flush accounting after FLR
752  *
753  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
754  * mastering was disabled), in which case we don't receive (RXQ) flush
755  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
756  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
757  * events were received, and we didn't go through efx_check_tx_flush_complete())
758  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
759  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
760  * for batched flush requests; and the efx->active_queues gets messed up because
761  * we keep incrementing for the newly initialised queues, but it never went to
762  * zero previously.  Then we get a timeout every time we try to restart the
763  * queues, as it doesn't go back to zero when we should be flushing the queues.
764  */
efx_farch_finish_flr(struct efx_nic * efx)765 void efx_farch_finish_flr(struct efx_nic *efx)
766 {
767 	atomic_set(&efx->rxq_flush_pending, 0);
768 	atomic_set(&efx->rxq_flush_outstanding, 0);
769 	atomic_set(&efx->active_queues, 0);
770 }
771 
772 
773 /**************************************************************************
774  *
775  * Event queue processing
776  * Event queues are processed by per-channel tasklets.
777  *
778  **************************************************************************/
779 
780 /* Update a channel's event queue's read pointer (RPTR) register
781  *
782  * This writes the EVQ_RPTR_REG register for the specified channel's
783  * event queue.
784  */
efx_farch_ev_read_ack(struct efx_channel * channel)785 void efx_farch_ev_read_ack(struct efx_channel *channel)
786 {
787 	efx_dword_t reg;
788 	struct efx_nic *efx = channel->efx;
789 
790 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
791 			     channel->eventq_read_ptr & channel->eventq_mask);
792 
793 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
794 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
795 	 */
796 	efx_writed(efx, &reg,
797 		   efx->type->evq_rptr_tbl_base +
798 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
799 }
800 
801 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)802 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
803 			      efx_qword_t *event)
804 {
805 	efx_oword_t drv_ev_reg;
806 
807 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
808 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
809 	drv_ev_reg.u32[0] = event->u32[0];
810 	drv_ev_reg.u32[1] = event->u32[1];
811 	drv_ev_reg.u32[2] = 0;
812 	drv_ev_reg.u32[3] = 0;
813 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
814 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
815 }
816 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)817 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
818 {
819 	efx_qword_t event;
820 
821 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
822 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
823 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
824 	efx_farch_generate_event(channel->efx, channel->channel, &event);
825 }
826 
827 /* Handle a transmit completion event
828  *
829  * The NIC batches TX completion events; the message we receive is of
830  * the form "complete all TX events up to this index".
831  */
832 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)833 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
834 {
835 	unsigned int tx_ev_desc_ptr;
836 	unsigned int tx_ev_q_label;
837 	struct efx_tx_queue *tx_queue;
838 	struct efx_nic *efx = channel->efx;
839 	int tx_packets = 0;
840 
841 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
842 		return 0;
843 
844 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
845 		/* Transmit completion */
846 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
847 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
848 		tx_queue = efx_channel_get_tx_queue(
849 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
850 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
851 			      tx_queue->ptr_mask);
852 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
853 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
854 		/* Rewrite the FIFO write pointer */
855 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
856 		tx_queue = efx_channel_get_tx_queue(
857 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
858 
859 		netif_tx_lock(efx->net_dev);
860 		efx_farch_notify_tx_desc(tx_queue);
861 		netif_tx_unlock(efx->net_dev);
862 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
863 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
864 	} else {
865 		netif_err(efx, tx_err, efx->net_dev,
866 			  "channel %d unexpected TX event "
867 			  EFX_QWORD_FMT"\n", channel->channel,
868 			  EFX_QWORD_VAL(*event));
869 	}
870 
871 	return tx_packets;
872 }
873 
874 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)875 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
876 				      const efx_qword_t *event)
877 {
878 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
879 	struct efx_nic *efx = rx_queue->efx;
880 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
881 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
882 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
883 	bool rx_ev_other_err, rx_ev_pause_frm;
884 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
885 	unsigned rx_ev_pkt_type;
886 
887 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
888 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
889 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
890 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
891 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
892 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
893 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
894 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
895 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
896 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
897 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
898 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
899 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
900 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
901 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
902 
903 	/* Every error apart from tobe_disc and pause_frm */
904 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
905 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
906 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
907 
908 	/* Count errors that are not in MAC stats.  Ignore expected
909 	 * checksum errors during self-test. */
910 	if (rx_ev_frm_trunc)
911 		++channel->n_rx_frm_trunc;
912 	else if (rx_ev_tobe_disc)
913 		++channel->n_rx_tobe_disc;
914 	else if (!efx->loopback_selftest) {
915 		if (rx_ev_ip_hdr_chksum_err)
916 			++channel->n_rx_ip_hdr_chksum_err;
917 		else if (rx_ev_tcp_udp_chksum_err)
918 			++channel->n_rx_tcp_udp_chksum_err;
919 	}
920 
921 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
922 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
923 	 * to a FIFO overflow.
924 	 */
925 #ifdef DEBUG
926 	if (rx_ev_other_err && net_ratelimit()) {
927 		netif_dbg(efx, rx_err, efx->net_dev,
928 			  " RX queue %d unexpected RX event "
929 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
930 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
931 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
932 			  rx_ev_ip_hdr_chksum_err ?
933 			  " [IP_HDR_CHKSUM_ERR]" : "",
934 			  rx_ev_tcp_udp_chksum_err ?
935 			  " [TCP_UDP_CHKSUM_ERR]" : "",
936 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
937 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
938 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
939 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
940 			  rx_ev_pause_frm ? " [PAUSE]" : "");
941 	}
942 #endif
943 
944 	/* The frame must be discarded if any of these are true. */
945 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
946 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
947 		EFX_RX_PKT_DISCARD : 0;
948 }
949 
950 /* Handle receive events that are not in-order. Return true if this
951  * can be handled as a partial packet discard, false if it's more
952  * serious.
953  */
954 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)955 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
956 {
957 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
958 	struct efx_nic *efx = rx_queue->efx;
959 	unsigned expected, dropped;
960 
961 	if (rx_queue->scatter_n &&
962 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
963 		      rx_queue->ptr_mask)) {
964 		++channel->n_rx_nodesc_trunc;
965 		return true;
966 	}
967 
968 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
969 	dropped = (index - expected) & rx_queue->ptr_mask;
970 	netif_info(efx, rx_err, efx->net_dev,
971 		   "dropped %d events (index=%d expected=%d)\n",
972 		   dropped, index, expected);
973 
974 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
975 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
976 	return false;
977 }
978 
979 /* Handle a packet received event
980  *
981  * The NIC gives a "discard" flag if it's a unicast packet with the
982  * wrong destination address
983  * Also "is multicast" and "matches multicast filter" flags can be used to
984  * discard non-matching multicast packets.
985  */
986 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)987 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
988 {
989 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
990 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
991 	unsigned expected_ptr;
992 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
993 	u16 flags;
994 	struct efx_rx_queue *rx_queue;
995 	struct efx_nic *efx = channel->efx;
996 
997 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
998 		return;
999 
1000 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1001 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1002 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1003 		channel->channel);
1004 
1005 	rx_queue = efx_channel_get_rx_queue(channel);
1006 
1007 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1008 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1009 			rx_queue->ptr_mask);
1010 
1011 	/* Check for partial drops and other errors */
1012 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1013 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1014 		if (rx_ev_desc_ptr != expected_ptr &&
1015 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1016 			return;
1017 
1018 		/* Discard all pending fragments */
1019 		if (rx_queue->scatter_n) {
1020 			efx_rx_packet(
1021 				rx_queue,
1022 				rx_queue->removed_count & rx_queue->ptr_mask,
1023 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1024 			rx_queue->removed_count += rx_queue->scatter_n;
1025 			rx_queue->scatter_n = 0;
1026 		}
1027 
1028 		/* Return if there is no new fragment */
1029 		if (rx_ev_desc_ptr != expected_ptr)
1030 			return;
1031 
1032 		/* Discard new fragment if not SOP */
1033 		if (!rx_ev_sop) {
1034 			efx_rx_packet(
1035 				rx_queue,
1036 				rx_queue->removed_count & rx_queue->ptr_mask,
1037 				1, 0, EFX_RX_PKT_DISCARD);
1038 			++rx_queue->removed_count;
1039 			return;
1040 		}
1041 	}
1042 
1043 	++rx_queue->scatter_n;
1044 	if (rx_ev_cont)
1045 		return;
1046 
1047 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1048 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1049 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1050 
1051 	if (likely(rx_ev_pkt_ok)) {
1052 		/* If packet is marked as OK then we can rely on the
1053 		 * hardware checksum and classification.
1054 		 */
1055 		flags = 0;
1056 		switch (rx_ev_hdr_type) {
1057 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1058 			flags |= EFX_RX_PKT_TCP;
1059 			/* fall through */
1060 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1061 			flags |= EFX_RX_PKT_CSUMMED;
1062 			/* fall through */
1063 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1064 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1065 			break;
1066 		}
1067 	} else {
1068 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1069 	}
1070 
1071 	/* Detect multicast packets that didn't match the filter */
1072 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1073 	if (rx_ev_mcast_pkt) {
1074 		unsigned int rx_ev_mcast_hash_match =
1075 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1076 
1077 		if (unlikely(!rx_ev_mcast_hash_match)) {
1078 			++channel->n_rx_mcast_mismatch;
1079 			flags |= EFX_RX_PKT_DISCARD;
1080 		}
1081 	}
1082 
1083 	channel->irq_mod_score += 2;
1084 
1085 	/* Handle received packet */
1086 	efx_rx_packet(rx_queue,
1087 		      rx_queue->removed_count & rx_queue->ptr_mask,
1088 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1089 	rx_queue->removed_count += rx_queue->scatter_n;
1090 	rx_queue->scatter_n = 0;
1091 }
1092 
1093 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1094  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1095  * of all transmit completions.
1096  */
1097 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1098 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1099 {
1100 	struct efx_tx_queue *tx_queue;
1101 	int qid;
1102 
1103 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1104 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1105 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1106 					    qid % EFX_TXQ_TYPES);
1107 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1108 			efx_farch_magic_event(tx_queue->channel,
1109 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1110 		}
1111 	}
1112 }
1113 
1114 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1115  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1116  * the RX queue back to the mask of RX queues in need of flushing.
1117  */
1118 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1119 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1120 {
1121 	struct efx_channel *channel;
1122 	struct efx_rx_queue *rx_queue;
1123 	int qid;
1124 	bool failed;
1125 
1126 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1127 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1128 	if (qid >= efx->n_channels)
1129 		return;
1130 	channel = efx_get_channel(efx, qid);
1131 	if (!efx_channel_has_rx_queue(channel))
1132 		return;
1133 	rx_queue = efx_channel_get_rx_queue(channel);
1134 
1135 	if (failed) {
1136 		netif_info(efx, hw, efx->net_dev,
1137 			   "RXQ %d flush retry\n", qid);
1138 		rx_queue->flush_pending = true;
1139 		atomic_inc(&efx->rxq_flush_pending);
1140 	} else {
1141 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1142 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1143 	}
1144 	atomic_dec(&efx->rxq_flush_outstanding);
1145 	if (efx_farch_flush_wake(efx))
1146 		wake_up(&efx->flush_wq);
1147 }
1148 
1149 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1150 efx_farch_handle_drain_event(struct efx_channel *channel)
1151 {
1152 	struct efx_nic *efx = channel->efx;
1153 
1154 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1155 	atomic_dec(&efx->active_queues);
1156 	if (efx_farch_flush_wake(efx))
1157 		wake_up(&efx->flush_wq);
1158 }
1159 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1160 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1161 					     efx_qword_t *event)
1162 {
1163 	struct efx_nic *efx = channel->efx;
1164 	struct efx_rx_queue *rx_queue =
1165 		efx_channel_has_rx_queue(channel) ?
1166 		efx_channel_get_rx_queue(channel) : NULL;
1167 	unsigned magic, code;
1168 
1169 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1170 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1171 
1172 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1173 		channel->event_test_cpu = raw_smp_processor_id();
1174 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1175 		/* The queue must be empty, so we won't receive any rx
1176 		 * events, so efx_process_channel() won't refill the
1177 		 * queue. Refill it here */
1178 		efx_fast_push_rx_descriptors(rx_queue, true);
1179 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1180 		efx_farch_handle_drain_event(channel);
1181 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1182 		efx_farch_handle_drain_event(channel);
1183 	} else {
1184 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1185 			  "generated event "EFX_QWORD_FMT"\n",
1186 			  channel->channel, EFX_QWORD_VAL(*event));
1187 	}
1188 }
1189 
1190 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1191 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1192 {
1193 	struct efx_nic *efx = channel->efx;
1194 	unsigned int ev_sub_code;
1195 	unsigned int ev_sub_data;
1196 
1197 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1198 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1199 
1200 	switch (ev_sub_code) {
1201 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1202 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1203 			   channel->channel, ev_sub_data);
1204 		efx_farch_handle_tx_flush_done(efx, event);
1205 #ifdef CONFIG_SFC_SRIOV
1206 		efx_siena_sriov_tx_flush_done(efx, event);
1207 #endif
1208 		break;
1209 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1210 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1211 			   channel->channel, ev_sub_data);
1212 		efx_farch_handle_rx_flush_done(efx, event);
1213 #ifdef CONFIG_SFC_SRIOV
1214 		efx_siena_sriov_rx_flush_done(efx, event);
1215 #endif
1216 		break;
1217 	case FSE_AZ_EVQ_INIT_DONE_EV:
1218 		netif_dbg(efx, hw, efx->net_dev,
1219 			  "channel %d EVQ %d initialised\n",
1220 			  channel->channel, ev_sub_data);
1221 		break;
1222 	case FSE_AZ_SRM_UPD_DONE_EV:
1223 		netif_vdbg(efx, hw, efx->net_dev,
1224 			   "channel %d SRAM update done\n", channel->channel);
1225 		break;
1226 	case FSE_AZ_WAKE_UP_EV:
1227 		netif_vdbg(efx, hw, efx->net_dev,
1228 			   "channel %d RXQ %d wakeup event\n",
1229 			   channel->channel, ev_sub_data);
1230 		break;
1231 	case FSE_AZ_TIMER_EV:
1232 		netif_vdbg(efx, hw, efx->net_dev,
1233 			   "channel %d RX queue %d timer expired\n",
1234 			   channel->channel, ev_sub_data);
1235 		break;
1236 	case FSE_AA_RX_RECOVER_EV:
1237 		netif_err(efx, rx_err, efx->net_dev,
1238 			  "channel %d seen DRIVER RX_RESET event. "
1239 			"Resetting.\n", channel->channel);
1240 		atomic_inc(&efx->rx_reset);
1241 		efx_schedule_reset(efx,
1242 				   EFX_WORKAROUND_6555(efx) ?
1243 				   RESET_TYPE_RX_RECOVERY :
1244 				   RESET_TYPE_DISABLE);
1245 		break;
1246 	case FSE_BZ_RX_DSC_ERROR_EV:
1247 		if (ev_sub_data < EFX_VI_BASE) {
1248 			netif_err(efx, rx_err, efx->net_dev,
1249 				  "RX DMA Q %d reports descriptor fetch error."
1250 				  " RX Q %d is disabled.\n", ev_sub_data,
1251 				  ev_sub_data);
1252 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1253 		}
1254 #ifdef CONFIG_SFC_SRIOV
1255 		else
1256 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257 #endif
1258 		break;
1259 	case FSE_BZ_TX_DSC_ERROR_EV:
1260 		if (ev_sub_data < EFX_VI_BASE) {
1261 			netif_err(efx, tx_err, efx->net_dev,
1262 				  "TX DMA Q %d reports descriptor fetch error."
1263 				  " TX Q %d is disabled.\n", ev_sub_data,
1264 				  ev_sub_data);
1265 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1266 		}
1267 #ifdef CONFIG_SFC_SRIOV
1268 		else
1269 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1270 #endif
1271 		break;
1272 	default:
1273 		netif_vdbg(efx, hw, efx->net_dev,
1274 			   "channel %d unknown driver event code %d "
1275 			   "data %04x\n", channel->channel, ev_sub_code,
1276 			   ev_sub_data);
1277 		break;
1278 	}
1279 }
1280 
efx_farch_ev_process(struct efx_channel * channel,int budget)1281 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1282 {
1283 	struct efx_nic *efx = channel->efx;
1284 	unsigned int read_ptr;
1285 	efx_qword_t event, *p_event;
1286 	int ev_code;
1287 	int tx_packets = 0;
1288 	int spent = 0;
1289 
1290 	if (budget <= 0)
1291 		return spent;
1292 
1293 	read_ptr = channel->eventq_read_ptr;
1294 
1295 	for (;;) {
1296 		p_event = efx_event(channel, read_ptr);
1297 		event = *p_event;
1298 
1299 		if (!efx_event_present(&event))
1300 			/* End of events */
1301 			break;
1302 
1303 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1304 			   "channel %d event is "EFX_QWORD_FMT"\n",
1305 			   channel->channel, EFX_QWORD_VAL(event));
1306 
1307 		/* Clear this event by marking it all ones */
1308 		EFX_SET_QWORD(*p_event);
1309 
1310 		++read_ptr;
1311 
1312 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1313 
1314 		switch (ev_code) {
1315 		case FSE_AZ_EV_CODE_RX_EV:
1316 			efx_farch_handle_rx_event(channel, &event);
1317 			if (++spent == budget)
1318 				goto out;
1319 			break;
1320 		case FSE_AZ_EV_CODE_TX_EV:
1321 			tx_packets += efx_farch_handle_tx_event(channel,
1322 								&event);
1323 			if (tx_packets > efx->txq_entries) {
1324 				spent = budget;
1325 				goto out;
1326 			}
1327 			break;
1328 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1329 			efx_farch_handle_generated_event(channel, &event);
1330 			break;
1331 		case FSE_AZ_EV_CODE_DRIVER_EV:
1332 			efx_farch_handle_driver_event(channel, &event);
1333 			break;
1334 #ifdef CONFIG_SFC_SRIOV
1335 		case FSE_CZ_EV_CODE_USER_EV:
1336 			efx_siena_sriov_event(channel, &event);
1337 			break;
1338 #endif
1339 		case FSE_CZ_EV_CODE_MCDI_EV:
1340 			efx_mcdi_process_event(channel, &event);
1341 			break;
1342 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1343 			if (efx->type->handle_global_event &&
1344 			    efx->type->handle_global_event(channel, &event))
1345 				break;
1346 			/* else fall through */
1347 		default:
1348 			netif_err(channel->efx, hw, channel->efx->net_dev,
1349 				  "channel %d unknown event type %d (data "
1350 				  EFX_QWORD_FMT ")\n", channel->channel,
1351 				  ev_code, EFX_QWORD_VAL(event));
1352 		}
1353 	}
1354 
1355 out:
1356 	channel->eventq_read_ptr = read_ptr;
1357 	return spent;
1358 }
1359 
1360 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1361 int efx_farch_ev_probe(struct efx_channel *channel)
1362 {
1363 	struct efx_nic *efx = channel->efx;
1364 	unsigned entries;
1365 
1366 	entries = channel->eventq_mask + 1;
1367 	return efx_alloc_special_buffer(efx, &channel->eventq,
1368 					entries * sizeof(efx_qword_t));
1369 }
1370 
efx_farch_ev_init(struct efx_channel * channel)1371 int efx_farch_ev_init(struct efx_channel *channel)
1372 {
1373 	efx_oword_t reg;
1374 	struct efx_nic *efx = channel->efx;
1375 
1376 	netif_dbg(efx, hw, efx->net_dev,
1377 		  "channel %d event queue in special buffers %d-%d\n",
1378 		  channel->channel, channel->eventq.index,
1379 		  channel->eventq.index + channel->eventq.entries - 1);
1380 
1381 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1382 		EFX_POPULATE_OWORD_3(reg,
1383 				     FRF_CZ_TIMER_Q_EN, 1,
1384 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1385 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1386 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1387 	}
1388 
1389 	/* Pin event queue buffer */
1390 	efx_init_special_buffer(efx, &channel->eventq);
1391 
1392 	/* Fill event queue with all ones (i.e. empty events) */
1393 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1394 
1395 	/* Push event queue to card */
1396 	EFX_POPULATE_OWORD_3(reg,
1397 			     FRF_AZ_EVQ_EN, 1,
1398 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1399 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1400 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1401 			 channel->channel);
1402 
1403 	return 0;
1404 }
1405 
efx_farch_ev_fini(struct efx_channel * channel)1406 void efx_farch_ev_fini(struct efx_channel *channel)
1407 {
1408 	efx_oword_t reg;
1409 	struct efx_nic *efx = channel->efx;
1410 
1411 	/* Remove event queue from card */
1412 	EFX_ZERO_OWORD(reg);
1413 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1414 			 channel->channel);
1415 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1416 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1417 
1418 	/* Unpin event queue */
1419 	efx_fini_special_buffer(efx, &channel->eventq);
1420 }
1421 
1422 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1423 void efx_farch_ev_remove(struct efx_channel *channel)
1424 {
1425 	efx_free_special_buffer(channel->efx, &channel->eventq);
1426 }
1427 
1428 
efx_farch_ev_test_generate(struct efx_channel * channel)1429 void efx_farch_ev_test_generate(struct efx_channel *channel)
1430 {
1431 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1432 }
1433 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1434 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1435 {
1436 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1437 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1438 }
1439 
1440 /**************************************************************************
1441  *
1442  * Hardware interrupts
1443  * The hardware interrupt handler does very little work; all the event
1444  * queue processing is carried out by per-channel tasklets.
1445  *
1446  **************************************************************************/
1447 
1448 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1449 static inline void efx_farch_interrupts(struct efx_nic *efx,
1450 				      bool enabled, bool force)
1451 {
1452 	efx_oword_t int_en_reg_ker;
1453 
1454 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1455 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1456 			     FRF_AZ_KER_INT_KER, force,
1457 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1458 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1459 }
1460 
efx_farch_irq_enable_master(struct efx_nic * efx)1461 void efx_farch_irq_enable_master(struct efx_nic *efx)
1462 {
1463 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1464 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1465 
1466 	efx_farch_interrupts(efx, true, false);
1467 }
1468 
efx_farch_irq_disable_master(struct efx_nic * efx)1469 void efx_farch_irq_disable_master(struct efx_nic *efx)
1470 {
1471 	/* Disable interrupts */
1472 	efx_farch_interrupts(efx, false, false);
1473 }
1474 
1475 /* Generate a test interrupt
1476  * Interrupt must already have been enabled, otherwise nasty things
1477  * may happen.
1478  */
efx_farch_irq_test_generate(struct efx_nic * efx)1479 void efx_farch_irq_test_generate(struct efx_nic *efx)
1480 {
1481 	efx_farch_interrupts(efx, true, true);
1482 }
1483 
1484 /* Process a fatal interrupt
1485  * Disable bus mastering ASAP and schedule a reset
1486  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1487 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1488 {
1489 	struct falcon_nic_data *nic_data = efx->nic_data;
1490 	efx_oword_t *int_ker = efx->irq_status.addr;
1491 	efx_oword_t fatal_intr;
1492 	int error, mem_perr;
1493 
1494 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1495 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1496 
1497 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1498 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1499 		  EFX_OWORD_VAL(fatal_intr),
1500 		  error ? "disabling bus mastering" : "no recognised error");
1501 
1502 	/* If this is a memory parity error dump which blocks are offending */
1503 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1504 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1505 	if (mem_perr) {
1506 		efx_oword_t reg;
1507 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1508 		netif_err(efx, hw, efx->net_dev,
1509 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1510 			  EFX_OWORD_VAL(reg));
1511 	}
1512 
1513 	/* Disable both devices */
1514 	pci_clear_master(efx->pci_dev);
1515 	if (efx_nic_is_dual_func(efx))
1516 		pci_clear_master(nic_data->pci_dev2);
1517 	efx_farch_irq_disable_master(efx);
1518 
1519 	/* Count errors and reset or disable the NIC accordingly */
1520 	if (efx->int_error_count == 0 ||
1521 	    time_after(jiffies, efx->int_error_expire)) {
1522 		efx->int_error_count = 0;
1523 		efx->int_error_expire =
1524 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1525 	}
1526 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1527 		netif_err(efx, hw, efx->net_dev,
1528 			  "SYSTEM ERROR - reset scheduled\n");
1529 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1530 	} else {
1531 		netif_err(efx, hw, efx->net_dev,
1532 			  "SYSTEM ERROR - max number of errors seen."
1533 			  "NIC will be disabled\n");
1534 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1535 	}
1536 
1537 	return IRQ_HANDLED;
1538 }
1539 
1540 /* Handle a legacy interrupt
1541  * Acknowledges the interrupt and schedule event queue processing.
1542  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1543 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1544 {
1545 	struct efx_nic *efx = dev_id;
1546 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1547 	efx_oword_t *int_ker = efx->irq_status.addr;
1548 	irqreturn_t result = IRQ_NONE;
1549 	struct efx_channel *channel;
1550 	efx_dword_t reg;
1551 	u32 queues;
1552 	int syserr;
1553 
1554 	/* Read the ISR which also ACKs the interrupts */
1555 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1556 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1557 
1558 	/* Legacy interrupts are disabled too late by the EEH kernel
1559 	 * code. Disable them earlier.
1560 	 * If an EEH error occurred, the read will have returned all ones.
1561 	 */
1562 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1563 	    !efx->eeh_disabled_legacy_irq) {
1564 		disable_irq_nosync(efx->legacy_irq);
1565 		efx->eeh_disabled_legacy_irq = true;
1566 	}
1567 
1568 	/* Handle non-event-queue sources */
1569 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1570 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1571 		if (unlikely(syserr))
1572 			return efx_farch_fatal_interrupt(efx);
1573 		efx->last_irq_cpu = raw_smp_processor_id();
1574 	}
1575 
1576 	if (queues != 0) {
1577 		efx->irq_zero_count = 0;
1578 
1579 		/* Schedule processing of any interrupting queues */
1580 		if (likely(soft_enabled)) {
1581 			efx_for_each_channel(channel, efx) {
1582 				if (queues & 1)
1583 					efx_schedule_channel_irq(channel);
1584 				queues >>= 1;
1585 			}
1586 		}
1587 		result = IRQ_HANDLED;
1588 
1589 	} else {
1590 		efx_qword_t *event;
1591 
1592 		/* Legacy ISR read can return zero once (SF bug 15783) */
1593 
1594 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1595 		 * because this might be a shared interrupt. */
1596 		if (efx->irq_zero_count++ == 0)
1597 			result = IRQ_HANDLED;
1598 
1599 		/* Ensure we schedule or rearm all event queues */
1600 		if (likely(soft_enabled)) {
1601 			efx_for_each_channel(channel, efx) {
1602 				event = efx_event(channel,
1603 						  channel->eventq_read_ptr);
1604 				if (efx_event_present(event))
1605 					efx_schedule_channel_irq(channel);
1606 				else
1607 					efx_farch_ev_read_ack(channel);
1608 			}
1609 		}
1610 	}
1611 
1612 	if (result == IRQ_HANDLED)
1613 		netif_vdbg(efx, intr, efx->net_dev,
1614 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1615 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1616 
1617 	return result;
1618 }
1619 
1620 /* Handle an MSI interrupt
1621  *
1622  * Handle an MSI hardware interrupt.  This routine schedules event
1623  * queue processing.  No interrupt acknowledgement cycle is necessary.
1624  * Also, we never need to check that the interrupt is for us, since
1625  * MSI interrupts cannot be shared.
1626  */
efx_farch_msi_interrupt(int irq,void * dev_id)1627 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1628 {
1629 	struct efx_msi_context *context = dev_id;
1630 	struct efx_nic *efx = context->efx;
1631 	efx_oword_t *int_ker = efx->irq_status.addr;
1632 	int syserr;
1633 
1634 	netif_vdbg(efx, intr, efx->net_dev,
1635 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1636 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1637 
1638 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1639 		return IRQ_HANDLED;
1640 
1641 	/* Handle non-event-queue sources */
1642 	if (context->index == efx->irq_level) {
1643 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1644 		if (unlikely(syserr))
1645 			return efx_farch_fatal_interrupt(efx);
1646 		efx->last_irq_cpu = raw_smp_processor_id();
1647 	}
1648 
1649 	/* Schedule processing of the channel */
1650 	efx_schedule_channel_irq(efx->channel[context->index]);
1651 
1652 	return IRQ_HANDLED;
1653 }
1654 
1655 /* Setup RSS indirection table.
1656  * This maps from the hash value of the packet to RXQ
1657  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1658 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1659 {
1660 	size_t i = 0;
1661 	efx_dword_t dword;
1662 
1663 	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1664 
1665 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1666 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1667 
1668 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1669 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1670 				     efx->rx_indir_table[i]);
1671 		efx_writed(efx, &dword,
1672 			   FR_BZ_RX_INDIRECTION_TBL +
1673 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1674 	}
1675 }
1676 
1677 /* Looks at available SRAM resources and works out how many queues we
1678  * can support, and where things like descriptor caches should live.
1679  *
1680  * SRAM is split up as follows:
1681  * 0                          buftbl entries for channels
1682  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1683  * efx->rx_dc_base            RX descriptor caches
1684  * efx->tx_dc_base            TX descriptor caches
1685  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1686 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1687 {
1688 	unsigned vi_count, buftbl_min;
1689 
1690 #ifdef CONFIG_SFC_SRIOV
1691 	struct siena_nic_data *nic_data = efx->nic_data;
1692 #endif
1693 
1694 	/* Account for the buffer table entries backing the datapath channels
1695 	 * and the descriptor caches for those channels.
1696 	 */
1697 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1698 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1699 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1700 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1701 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1702 
1703 #ifdef CONFIG_SFC_SRIOV
1704 	if (efx->type->sriov_wanted) {
1705 		if (efx->type->sriov_wanted(efx)) {
1706 			unsigned vi_dc_entries, buftbl_free;
1707 			unsigned entries_per_vf, vf_limit;
1708 
1709 			nic_data->vf_buftbl_base = buftbl_min;
1710 
1711 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1712 			vi_count = max(vi_count, EFX_VI_BASE);
1713 			buftbl_free = (sram_lim_qw - buftbl_min -
1714 				       vi_count * vi_dc_entries);
1715 
1716 			entries_per_vf = ((vi_dc_entries +
1717 					   EFX_VF_BUFTBL_PER_VI) *
1718 					  efx_vf_size(efx));
1719 			vf_limit = min(buftbl_free / entries_per_vf,
1720 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1721 
1722 			if (efx->vf_count > vf_limit) {
1723 				netif_err(efx, probe, efx->net_dev,
1724 					  "Reducing VF count from from %d to %d\n",
1725 					  efx->vf_count, vf_limit);
1726 				efx->vf_count = vf_limit;
1727 			}
1728 			vi_count += efx->vf_count * efx_vf_size(efx);
1729 		}
1730 	}
1731 #endif
1732 
1733 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1734 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1735 }
1736 
efx_farch_fpga_ver(struct efx_nic * efx)1737 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1738 {
1739 	efx_oword_t altera_build;
1740 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1741 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1742 }
1743 
efx_farch_init_common(struct efx_nic * efx)1744 void efx_farch_init_common(struct efx_nic *efx)
1745 {
1746 	efx_oword_t temp;
1747 
1748 	/* Set positions of descriptor caches in SRAM. */
1749 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1750 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1751 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1752 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1753 
1754 	/* Set TX descriptor cache size. */
1755 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1756 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1757 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1758 
1759 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1760 	 * this allows most efficient prefetching.
1761 	 */
1762 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1763 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1764 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1765 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1766 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1767 
1768 	/* Program INT_KER address */
1769 	EFX_POPULATE_OWORD_2(temp,
1770 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1771 			     EFX_INT_MODE_USE_MSI(efx),
1772 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1773 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1774 
1775 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1776 		/* Use an interrupt level unused by event queues */
1777 		efx->irq_level = 0x1f;
1778 	else
1779 		/* Use a valid MSI-X vector */
1780 		efx->irq_level = 0;
1781 
1782 	/* Enable all the genuinely fatal interrupts.  (They are still
1783 	 * masked by the overall interrupt mask, controlled by
1784 	 * falcon_interrupts()).
1785 	 *
1786 	 * Note: All other fatal interrupts are enabled
1787 	 */
1788 	EFX_POPULATE_OWORD_3(temp,
1789 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1790 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1791 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1792 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1793 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1794 	EFX_INVERT_OWORD(temp);
1795 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1796 
1797 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1798 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1799 	 */
1800 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1801 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1802 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1803 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1804 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1805 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1806 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1807 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1808 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1809 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1810 	/* Disable hardware watchdog which can misfire */
1811 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1812 	/* Squash TX of packets of 16 bytes or less */
1813 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1814 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1815 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1816 
1817 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1818 		EFX_POPULATE_OWORD_4(temp,
1819 				     /* Default values */
1820 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1821 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1822 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1823 				     /* Allow large pace values in the
1824 				      * fast bin. */
1825 				     FRF_BZ_TX_PACE_BIN_TH,
1826 				     FFE_BZ_TX_PACE_RESERVED);
1827 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1828 	}
1829 }
1830 
1831 /**************************************************************************
1832  *
1833  * Filter tables
1834  *
1835  **************************************************************************
1836  */
1837 
1838 /* "Fudge factors" - difference between programmed value and actual depth.
1839  * Due to pipelined implementation we need to program H/W with a value that
1840  * is larger than the hop limit we want.
1841  */
1842 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1843 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1844 
1845 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1846  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1847  * table is full.
1848  */
1849 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1850 
1851 /* Don't try very hard to find space for performance hints, as this is
1852  * counter-productive. */
1853 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1854 
1855 enum efx_farch_filter_type {
1856 	EFX_FARCH_FILTER_TCP_FULL = 0,
1857 	EFX_FARCH_FILTER_TCP_WILD,
1858 	EFX_FARCH_FILTER_UDP_FULL,
1859 	EFX_FARCH_FILTER_UDP_WILD,
1860 	EFX_FARCH_FILTER_MAC_FULL = 4,
1861 	EFX_FARCH_FILTER_MAC_WILD,
1862 	EFX_FARCH_FILTER_UC_DEF = 8,
1863 	EFX_FARCH_FILTER_MC_DEF,
1864 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1865 };
1866 
1867 enum efx_farch_filter_table_id {
1868 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1869 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1870 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1871 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1872 	EFX_FARCH_FILTER_TABLE_COUNT,
1873 };
1874 
1875 enum efx_farch_filter_index {
1876 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1877 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1878 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1879 };
1880 
1881 struct efx_farch_filter_spec {
1882 	u8	type:4;
1883 	u8	priority:4;
1884 	u8	flags;
1885 	u16	dmaq_id;
1886 	u32	data[3];
1887 };
1888 
1889 struct efx_farch_filter_table {
1890 	enum efx_farch_filter_table_id id;
1891 	u32		offset;		/* address of table relative to BAR */
1892 	unsigned	size;		/* number of entries */
1893 	unsigned	step;		/* step between entries */
1894 	unsigned	used;		/* number currently used */
1895 	unsigned long	*used_bitmap;
1896 	struct efx_farch_filter_spec *spec;
1897 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1898 };
1899 
1900 struct efx_farch_filter_state {
1901 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1902 };
1903 
1904 static void
1905 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1906 				   struct efx_farch_filter_table *table,
1907 				   unsigned int filter_idx);
1908 
1909 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1910  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1911 static u16 efx_farch_filter_hash(u32 key)
1912 {
1913 	u16 tmp;
1914 
1915 	/* First 16 rounds */
1916 	tmp = 0x1fff ^ key >> 16;
1917 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1918 	tmp = tmp ^ tmp >> 9;
1919 	/* Last 16 rounds */
1920 	tmp = tmp ^ tmp << 13 ^ key;
1921 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1922 	return tmp ^ tmp >> 9;
1923 }
1924 
1925 /* To allow for hash collisions, filter search continues at these
1926  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1927 static u16 efx_farch_filter_increment(u32 key)
1928 {
1929 	return key * 2 - 1;
1930 }
1931 
1932 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1933 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1934 {
1935 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1937 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1939 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1941 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1943 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1945 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1947 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1948 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1949 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1950 }
1951 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1952 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1953 {
1954 	struct efx_farch_filter_state *state = efx->filter_state;
1955 	struct efx_farch_filter_table *table;
1956 	efx_oword_t filter_ctl;
1957 
1958 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1959 
1960 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1961 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1962 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1963 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1964 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1965 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1966 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1967 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1968 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1969 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1970 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1971 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1972 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1973 
1974 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1975 	if (table->size) {
1976 		EFX_SET_OWORD_FIELD(
1977 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1978 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1979 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1980 		EFX_SET_OWORD_FIELD(
1981 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1982 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1983 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1984 	}
1985 
1986 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1987 	if (table->size) {
1988 		EFX_SET_OWORD_FIELD(
1989 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1990 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1991 		EFX_SET_OWORD_FIELD(
1992 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1993 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1994 			   EFX_FILTER_FLAG_RX_RSS));
1995 		EFX_SET_OWORD_FIELD(
1996 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1997 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1998 		EFX_SET_OWORD_FIELD(
1999 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2000 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2001 			   EFX_FILTER_FLAG_RX_RSS));
2002 
2003 		/* There is a single bit to enable RX scatter for all
2004 		 * unmatched packets.  Only set it if scatter is
2005 		 * enabled in both filter specs.
2006 		 */
2007 		EFX_SET_OWORD_FIELD(
2008 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2009 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2010 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2011 			   EFX_FILTER_FLAG_RX_SCATTER));
2012 	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2013 		/* We don't expose 'default' filters because unmatched
2014 		 * packets always go to the queue number found in the
2015 		 * RSS table.  But we still need to set the RX scatter
2016 		 * bit here.
2017 		 */
2018 		EFX_SET_OWORD_FIELD(
2019 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2020 			efx->rx_scatter);
2021 	}
2022 
2023 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2024 }
2025 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2026 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2027 {
2028 	struct efx_farch_filter_state *state = efx->filter_state;
2029 	struct efx_farch_filter_table *table;
2030 	efx_oword_t tx_cfg;
2031 
2032 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2033 
2034 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2035 	if (table->size) {
2036 		EFX_SET_OWORD_FIELD(
2037 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2038 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2039 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2040 		EFX_SET_OWORD_FIELD(
2041 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2042 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2043 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2044 	}
2045 
2046 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2047 }
2048 
2049 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2050 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2051 			       const struct efx_filter_spec *gen_spec)
2052 {
2053 	bool is_full = false;
2054 
2055 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2056 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2057 		return -EINVAL;
2058 
2059 	spec->priority = gen_spec->priority;
2060 	spec->flags = gen_spec->flags;
2061 	spec->dmaq_id = gen_spec->dmaq_id;
2062 
2063 	switch (gen_spec->match_flags) {
2064 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2065 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2066 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2067 		is_full = true;
2068 		/* fall through */
2069 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2070 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2071 		__be32 rhost, host1, host2;
2072 		__be16 rport, port1, port2;
2073 
2074 		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2075 
2076 		if (gen_spec->ether_type != htons(ETH_P_IP))
2077 			return -EPROTONOSUPPORT;
2078 		if (gen_spec->loc_port == 0 ||
2079 		    (is_full && gen_spec->rem_port == 0))
2080 			return -EADDRNOTAVAIL;
2081 		switch (gen_spec->ip_proto) {
2082 		case IPPROTO_TCP:
2083 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2084 				      EFX_FARCH_FILTER_TCP_WILD);
2085 			break;
2086 		case IPPROTO_UDP:
2087 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2088 				      EFX_FARCH_FILTER_UDP_WILD);
2089 			break;
2090 		default:
2091 			return -EPROTONOSUPPORT;
2092 		}
2093 
2094 		/* Filter is constructed in terms of source and destination,
2095 		 * with the odd wrinkle that the ports are swapped in a UDP
2096 		 * wildcard filter.  We need to convert from local and remote
2097 		 * (= zero for wildcard) addresses.
2098 		 */
2099 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2100 		rport = is_full ? gen_spec->rem_port : 0;
2101 		host1 = rhost;
2102 		host2 = gen_spec->loc_host[0];
2103 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2104 			port1 = gen_spec->loc_port;
2105 			port2 = rport;
2106 		} else {
2107 			port1 = rport;
2108 			port2 = gen_spec->loc_port;
2109 		}
2110 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2111 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2112 		spec->data[2] = ntohl(host2);
2113 
2114 		break;
2115 	}
2116 
2117 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2118 		is_full = true;
2119 		/* fall through */
2120 	case EFX_FILTER_MATCH_LOC_MAC:
2121 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2122 			      EFX_FARCH_FILTER_MAC_WILD);
2123 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2124 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2125 				 gen_spec->loc_mac[3] << 16 |
2126 				 gen_spec->loc_mac[4] << 8 |
2127 				 gen_spec->loc_mac[5]);
2128 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2129 				 gen_spec->loc_mac[1]);
2130 		break;
2131 
2132 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2133 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2134 			      EFX_FARCH_FILTER_MC_DEF :
2135 			      EFX_FARCH_FILTER_UC_DEF);
2136 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2137 		break;
2138 
2139 	default:
2140 		return -EPROTONOSUPPORT;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2147 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2148 			     const struct efx_farch_filter_spec *spec)
2149 {
2150 	bool is_full = false;
2151 
2152 	/* *gen_spec should be completely initialised, to be consistent
2153 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2154 	 * it back to userland.
2155 	 */
2156 	memset(gen_spec, 0, sizeof(*gen_spec));
2157 
2158 	gen_spec->priority = spec->priority;
2159 	gen_spec->flags = spec->flags;
2160 	gen_spec->dmaq_id = spec->dmaq_id;
2161 
2162 	switch (spec->type) {
2163 	case EFX_FARCH_FILTER_TCP_FULL:
2164 	case EFX_FARCH_FILTER_UDP_FULL:
2165 		is_full = true;
2166 		/* fall through */
2167 	case EFX_FARCH_FILTER_TCP_WILD:
2168 	case EFX_FARCH_FILTER_UDP_WILD: {
2169 		__be32 host1, host2;
2170 		__be16 port1, port2;
2171 
2172 		gen_spec->match_flags =
2173 			EFX_FILTER_MATCH_ETHER_TYPE |
2174 			EFX_FILTER_MATCH_IP_PROTO |
2175 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2176 		if (is_full)
2177 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2178 						  EFX_FILTER_MATCH_REM_PORT);
2179 		gen_spec->ether_type = htons(ETH_P_IP);
2180 		gen_spec->ip_proto =
2181 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2182 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2183 			IPPROTO_TCP : IPPROTO_UDP;
2184 
2185 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2186 		port1 = htons(spec->data[0]);
2187 		host2 = htonl(spec->data[2]);
2188 		port2 = htons(spec->data[1] >> 16);
2189 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2190 			gen_spec->loc_host[0] = host1;
2191 			gen_spec->rem_host[0] = host2;
2192 		} else {
2193 			gen_spec->loc_host[0] = host2;
2194 			gen_spec->rem_host[0] = host1;
2195 		}
2196 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2197 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2198 			gen_spec->loc_port = port1;
2199 			gen_spec->rem_port = port2;
2200 		} else {
2201 			gen_spec->loc_port = port2;
2202 			gen_spec->rem_port = port1;
2203 		}
2204 
2205 		break;
2206 	}
2207 
2208 	case EFX_FARCH_FILTER_MAC_FULL:
2209 		is_full = true;
2210 		/* fall through */
2211 	case EFX_FARCH_FILTER_MAC_WILD:
2212 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2213 		if (is_full)
2214 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2215 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2216 		gen_spec->loc_mac[1] = spec->data[2];
2217 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2218 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2219 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2220 		gen_spec->loc_mac[5] = spec->data[1];
2221 		gen_spec->outer_vid = htons(spec->data[0]);
2222 		break;
2223 
2224 	case EFX_FARCH_FILTER_UC_DEF:
2225 	case EFX_FARCH_FILTER_MC_DEF:
2226 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2227 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2228 		break;
2229 
2230 	default:
2231 		WARN_ON(1);
2232 		break;
2233 	}
2234 }
2235 
2236 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2237 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2238 			      struct efx_farch_filter_spec *spec)
2239 {
2240 	/* If there's only one channel then disable RSS for non VF
2241 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2242 	 */
2243 	spec->priority = EFX_FILTER_PRI_AUTO;
2244 	spec->flags = (EFX_FILTER_FLAG_RX |
2245 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2246 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2247 	spec->dmaq_id = 0;
2248 }
2249 
2250 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2251 static u32 efx_farch_filter_build(efx_oword_t *filter,
2252 				  struct efx_farch_filter_spec *spec)
2253 {
2254 	u32 data3;
2255 
2256 	switch (efx_farch_filter_spec_table_id(spec)) {
2257 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2258 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2259 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2260 		EFX_POPULATE_OWORD_7(
2261 			*filter,
2262 			FRF_BZ_RSS_EN,
2263 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2264 			FRF_BZ_SCATTER_EN,
2265 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2266 			FRF_BZ_TCP_UDP, is_udp,
2267 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2268 			EFX_DWORD_2, spec->data[2],
2269 			EFX_DWORD_1, spec->data[1],
2270 			EFX_DWORD_0, spec->data[0]);
2271 		data3 = is_udp;
2272 		break;
2273 	}
2274 
2275 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2276 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2277 		EFX_POPULATE_OWORD_7(
2278 			*filter,
2279 			FRF_CZ_RMFT_RSS_EN,
2280 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2281 			FRF_CZ_RMFT_SCATTER_EN,
2282 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2283 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2284 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2285 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2286 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2287 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2288 		data3 = is_wild;
2289 		break;
2290 	}
2291 
2292 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2293 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2294 		EFX_POPULATE_OWORD_5(*filter,
2295 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2296 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2297 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2298 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2299 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2300 		data3 = is_wild | spec->dmaq_id << 1;
2301 		break;
2302 	}
2303 
2304 	default:
2305 		BUG();
2306 	}
2307 
2308 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2309 }
2310 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2311 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2312 				   const struct efx_farch_filter_spec *right)
2313 {
2314 	if (left->type != right->type ||
2315 	    memcmp(left->data, right->data, sizeof(left->data)))
2316 		return false;
2317 
2318 	if (left->flags & EFX_FILTER_FLAG_TX &&
2319 	    left->dmaq_id != right->dmaq_id)
2320 		return false;
2321 
2322 	return true;
2323 }
2324 
2325 /*
2326  * Construct/deconstruct external filter IDs.  At least the RX filter
2327  * IDs must be ordered by matching priority, for RX NFC semantics.
2328  *
2329  * Deconstruction needs to be robust against invalid IDs so that
2330  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2331  * accept user-provided IDs.
2332  */
2333 
2334 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2335 
2336 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2337 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2338 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2339 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2340 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2341 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2342 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2343 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2344 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2345 };
2346 
2347 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2348 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2349 	EFX_FARCH_FILTER_TABLE_RX_IP,
2350 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2351 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2352 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2353 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2354 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2355 };
2356 
2357 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2358 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2359 
2360 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2361 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2362 			 unsigned int index)
2363 {
2364 	unsigned int range;
2365 
2366 	range = efx_farch_filter_type_match_pri[spec->type];
2367 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2368 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2369 
2370 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2371 }
2372 
2373 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2374 efx_farch_filter_id_table_id(u32 id)
2375 {
2376 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2377 
2378 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2379 		return efx_farch_filter_range_table[range];
2380 	else
2381 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2382 }
2383 
efx_farch_filter_id_index(u32 id)2384 static inline unsigned int efx_farch_filter_id_index(u32 id)
2385 {
2386 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2387 }
2388 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2389 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2390 {
2391 	struct efx_farch_filter_state *state = efx->filter_state;
2392 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2393 	enum efx_farch_filter_table_id table_id;
2394 
2395 	do {
2396 		table_id = efx_farch_filter_range_table[range];
2397 		if (state->table[table_id].size != 0)
2398 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2399 				state->table[table_id].size;
2400 	} while (range--);
2401 
2402 	return 0;
2403 }
2404 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2405 s32 efx_farch_filter_insert(struct efx_nic *efx,
2406 			    struct efx_filter_spec *gen_spec,
2407 			    bool replace_equal)
2408 {
2409 	struct efx_farch_filter_state *state = efx->filter_state;
2410 	struct efx_farch_filter_table *table;
2411 	struct efx_farch_filter_spec spec;
2412 	efx_oword_t filter;
2413 	int rep_index, ins_index;
2414 	unsigned int depth = 0;
2415 	int rc;
2416 
2417 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2418 	if (rc)
2419 		return rc;
2420 
2421 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2422 	if (table->size == 0)
2423 		return -EINVAL;
2424 
2425 	netif_vdbg(efx, hw, efx->net_dev,
2426 		   "%s: type %d search_limit=%d", __func__, spec.type,
2427 		   table->search_limit[spec.type]);
2428 
2429 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2430 		/* One filter spec per type */
2431 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2432 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2433 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2434 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2435 		ins_index = rep_index;
2436 
2437 		spin_lock_bh(&efx->filter_lock);
2438 	} else {
2439 		/* Search concurrently for
2440 		 * (1) a filter to be replaced (rep_index): any filter
2441 		 *     with the same match values, up to the current
2442 		 *     search depth for this type, and
2443 		 * (2) the insertion point (ins_index): (1) or any
2444 		 *     free slot before it or up to the maximum search
2445 		 *     depth for this priority
2446 		 * We fail if we cannot find (2).
2447 		 *
2448 		 * We can stop once either
2449 		 * (a) we find (1), in which case we have definitely
2450 		 *     found (2) as well; or
2451 		 * (b) we have searched exhaustively for (1), and have
2452 		 *     either found (2) or searched exhaustively for it
2453 		 */
2454 		u32 key = efx_farch_filter_build(&filter, &spec);
2455 		unsigned int hash = efx_farch_filter_hash(key);
2456 		unsigned int incr = efx_farch_filter_increment(key);
2457 		unsigned int max_rep_depth = table->search_limit[spec.type];
2458 		unsigned int max_ins_depth =
2459 			spec.priority <= EFX_FILTER_PRI_HINT ?
2460 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2461 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2462 		unsigned int i = hash & (table->size - 1);
2463 
2464 		ins_index = -1;
2465 		depth = 1;
2466 
2467 		spin_lock_bh(&efx->filter_lock);
2468 
2469 		for (;;) {
2470 			if (!test_bit(i, table->used_bitmap)) {
2471 				if (ins_index < 0)
2472 					ins_index = i;
2473 			} else if (efx_farch_filter_equal(&spec,
2474 							  &table->spec[i])) {
2475 				/* Case (a) */
2476 				if (ins_index < 0)
2477 					ins_index = i;
2478 				rep_index = i;
2479 				break;
2480 			}
2481 
2482 			if (depth >= max_rep_depth &&
2483 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2484 				/* Case (b) */
2485 				if (ins_index < 0) {
2486 					rc = -EBUSY;
2487 					goto out;
2488 				}
2489 				rep_index = -1;
2490 				break;
2491 			}
2492 
2493 			i = (i + incr) & (table->size - 1);
2494 			++depth;
2495 		}
2496 	}
2497 
2498 	/* If we found a filter to be replaced, check whether we
2499 	 * should do so
2500 	 */
2501 	if (rep_index >= 0) {
2502 		struct efx_farch_filter_spec *saved_spec =
2503 			&table->spec[rep_index];
2504 
2505 		if (spec.priority == saved_spec->priority && !replace_equal) {
2506 			rc = -EEXIST;
2507 			goto out;
2508 		}
2509 		if (spec.priority < saved_spec->priority) {
2510 			rc = -EPERM;
2511 			goto out;
2512 		}
2513 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2514 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2515 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2516 	}
2517 
2518 	/* Insert the filter */
2519 	if (ins_index != rep_index) {
2520 		__set_bit(ins_index, table->used_bitmap);
2521 		++table->used;
2522 	}
2523 	table->spec[ins_index] = spec;
2524 
2525 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2526 		efx_farch_filter_push_rx_config(efx);
2527 	} else {
2528 		if (table->search_limit[spec.type] < depth) {
2529 			table->search_limit[spec.type] = depth;
2530 			if (spec.flags & EFX_FILTER_FLAG_TX)
2531 				efx_farch_filter_push_tx_limits(efx);
2532 			else
2533 				efx_farch_filter_push_rx_config(efx);
2534 		}
2535 
2536 		efx_writeo(efx, &filter,
2537 			   table->offset + table->step * ins_index);
2538 
2539 		/* If we were able to replace a filter by inserting
2540 		 * at a lower depth, clear the replaced filter
2541 		 */
2542 		if (ins_index != rep_index && rep_index >= 0)
2543 			efx_farch_filter_table_clear_entry(efx, table,
2544 							   rep_index);
2545 	}
2546 
2547 	netif_vdbg(efx, hw, efx->net_dev,
2548 		   "%s: filter type %d index %d rxq %u set",
2549 		   __func__, spec.type, ins_index, spec.dmaq_id);
2550 	rc = efx_farch_filter_make_id(&spec, ins_index);
2551 
2552 out:
2553 	spin_unlock_bh(&efx->filter_lock);
2554 	return rc;
2555 }
2556 
2557 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2558 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2559 				   struct efx_farch_filter_table *table,
2560 				   unsigned int filter_idx)
2561 {
2562 	static efx_oword_t filter;
2563 
2564 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2565 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2566 
2567 	__clear_bit(filter_idx, table->used_bitmap);
2568 	--table->used;
2569 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2570 
2571 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2572 
2573 	/* If this filter required a greater search depth than
2574 	 * any other, the search limit for its type can now be
2575 	 * decreased.  However, it is hard to determine that
2576 	 * unless the table has become completely empty - in
2577 	 * which case, all its search limits can be set to 0.
2578 	 */
2579 	if (unlikely(table->used == 0)) {
2580 		memset(table->search_limit, 0, sizeof(table->search_limit));
2581 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2582 			efx_farch_filter_push_tx_limits(efx);
2583 		else
2584 			efx_farch_filter_push_rx_config(efx);
2585 	}
2586 }
2587 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2588 static int efx_farch_filter_remove(struct efx_nic *efx,
2589 				   struct efx_farch_filter_table *table,
2590 				   unsigned int filter_idx,
2591 				   enum efx_filter_priority priority)
2592 {
2593 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2594 
2595 	if (!test_bit(filter_idx, table->used_bitmap) ||
2596 	    spec->priority != priority)
2597 		return -ENOENT;
2598 
2599 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2600 		efx_farch_filter_init_rx_auto(efx, spec);
2601 		efx_farch_filter_push_rx_config(efx);
2602 	} else {
2603 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2604 	}
2605 
2606 	return 0;
2607 }
2608 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2609 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2610 				 enum efx_filter_priority priority,
2611 				 u32 filter_id)
2612 {
2613 	struct efx_farch_filter_state *state = efx->filter_state;
2614 	enum efx_farch_filter_table_id table_id;
2615 	struct efx_farch_filter_table *table;
2616 	unsigned int filter_idx;
2617 	struct efx_farch_filter_spec *spec;
2618 	int rc;
2619 
2620 	table_id = efx_farch_filter_id_table_id(filter_id);
2621 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2622 		return -ENOENT;
2623 	table = &state->table[table_id];
2624 
2625 	filter_idx = efx_farch_filter_id_index(filter_id);
2626 	if (filter_idx >= table->size)
2627 		return -ENOENT;
2628 	spec = &table->spec[filter_idx];
2629 
2630 	spin_lock_bh(&efx->filter_lock);
2631 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2632 	spin_unlock_bh(&efx->filter_lock);
2633 
2634 	return rc;
2635 }
2636 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2637 int efx_farch_filter_get_safe(struct efx_nic *efx,
2638 			      enum efx_filter_priority priority,
2639 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2640 {
2641 	struct efx_farch_filter_state *state = efx->filter_state;
2642 	enum efx_farch_filter_table_id table_id;
2643 	struct efx_farch_filter_table *table;
2644 	struct efx_farch_filter_spec *spec;
2645 	unsigned int filter_idx;
2646 	int rc;
2647 
2648 	table_id = efx_farch_filter_id_table_id(filter_id);
2649 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2650 		return -ENOENT;
2651 	table = &state->table[table_id];
2652 
2653 	filter_idx = efx_farch_filter_id_index(filter_id);
2654 	if (filter_idx >= table->size)
2655 		return -ENOENT;
2656 	spec = &table->spec[filter_idx];
2657 
2658 	spin_lock_bh(&efx->filter_lock);
2659 
2660 	if (test_bit(filter_idx, table->used_bitmap) &&
2661 	    spec->priority == priority) {
2662 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2663 		rc = 0;
2664 	} else {
2665 		rc = -ENOENT;
2666 	}
2667 
2668 	spin_unlock_bh(&efx->filter_lock);
2669 
2670 	return rc;
2671 }
2672 
2673 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2674 efx_farch_filter_table_clear(struct efx_nic *efx,
2675 			     enum efx_farch_filter_table_id table_id,
2676 			     enum efx_filter_priority priority)
2677 {
2678 	struct efx_farch_filter_state *state = efx->filter_state;
2679 	struct efx_farch_filter_table *table = &state->table[table_id];
2680 	unsigned int filter_idx;
2681 
2682 	spin_lock_bh(&efx->filter_lock);
2683 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2684 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2685 			efx_farch_filter_remove(efx, table,
2686 						filter_idx, priority);
2687 	}
2688 	spin_unlock_bh(&efx->filter_lock);
2689 }
2690 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2691 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2692 			       enum efx_filter_priority priority)
2693 {
2694 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2695 				     priority);
2696 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2697 				     priority);
2698 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2699 				     priority);
2700 	return 0;
2701 }
2702 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2703 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2704 				   enum efx_filter_priority priority)
2705 {
2706 	struct efx_farch_filter_state *state = efx->filter_state;
2707 	enum efx_farch_filter_table_id table_id;
2708 	struct efx_farch_filter_table *table;
2709 	unsigned int filter_idx;
2710 	u32 count = 0;
2711 
2712 	spin_lock_bh(&efx->filter_lock);
2713 
2714 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2715 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2716 	     table_id++) {
2717 		table = &state->table[table_id];
2718 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2719 			if (test_bit(filter_idx, table->used_bitmap) &&
2720 			    table->spec[filter_idx].priority == priority)
2721 				++count;
2722 		}
2723 	}
2724 
2725 	spin_unlock_bh(&efx->filter_lock);
2726 
2727 	return count;
2728 }
2729 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2730 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2731 				enum efx_filter_priority priority,
2732 				u32 *buf, u32 size)
2733 {
2734 	struct efx_farch_filter_state *state = efx->filter_state;
2735 	enum efx_farch_filter_table_id table_id;
2736 	struct efx_farch_filter_table *table;
2737 	unsigned int filter_idx;
2738 	s32 count = 0;
2739 
2740 	spin_lock_bh(&efx->filter_lock);
2741 
2742 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2743 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2744 	     table_id++) {
2745 		table = &state->table[table_id];
2746 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2747 			if (test_bit(filter_idx, table->used_bitmap) &&
2748 			    table->spec[filter_idx].priority == priority) {
2749 				if (count == size) {
2750 					count = -EMSGSIZE;
2751 					goto out;
2752 				}
2753 				buf[count++] = efx_farch_filter_make_id(
2754 					&table->spec[filter_idx], filter_idx);
2755 			}
2756 		}
2757 	}
2758 out:
2759 	spin_unlock_bh(&efx->filter_lock);
2760 
2761 	return count;
2762 }
2763 
2764 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2765 void efx_farch_filter_table_restore(struct efx_nic *efx)
2766 {
2767 	struct efx_farch_filter_state *state = efx->filter_state;
2768 	enum efx_farch_filter_table_id table_id;
2769 	struct efx_farch_filter_table *table;
2770 	efx_oword_t filter;
2771 	unsigned int filter_idx;
2772 
2773 	spin_lock_bh(&efx->filter_lock);
2774 
2775 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2776 		table = &state->table[table_id];
2777 
2778 		/* Check whether this is a regular register table */
2779 		if (table->step == 0)
2780 			continue;
2781 
2782 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2783 			if (!test_bit(filter_idx, table->used_bitmap))
2784 				continue;
2785 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2786 			efx_writeo(efx, &filter,
2787 				   table->offset + table->step * filter_idx);
2788 		}
2789 	}
2790 
2791 	efx_farch_filter_push_rx_config(efx);
2792 	efx_farch_filter_push_tx_limits(efx);
2793 
2794 	spin_unlock_bh(&efx->filter_lock);
2795 }
2796 
efx_farch_filter_table_remove(struct efx_nic * efx)2797 void efx_farch_filter_table_remove(struct efx_nic *efx)
2798 {
2799 	struct efx_farch_filter_state *state = efx->filter_state;
2800 	enum efx_farch_filter_table_id table_id;
2801 
2802 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2803 		kfree(state->table[table_id].used_bitmap);
2804 		vfree(state->table[table_id].spec);
2805 	}
2806 	kfree(state);
2807 }
2808 
efx_farch_filter_table_probe(struct efx_nic * efx)2809 int efx_farch_filter_table_probe(struct efx_nic *efx)
2810 {
2811 	struct efx_farch_filter_state *state;
2812 	struct efx_farch_filter_table *table;
2813 	unsigned table_id;
2814 
2815 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2816 	if (!state)
2817 		return -ENOMEM;
2818 	efx->filter_state = state;
2819 
2820 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2821 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2822 		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2823 		table->offset = FR_BZ_RX_FILTER_TBL0;
2824 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2825 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2826 	}
2827 
2828 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2829 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2830 		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2831 		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2832 		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2833 		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2834 
2835 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2836 		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2837 		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2838 
2839 		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2840 		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2841 		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2842 		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2843 		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2844 	}
2845 
2846 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2847 		table = &state->table[table_id];
2848 		if (table->size == 0)
2849 			continue;
2850 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2851 					     sizeof(unsigned long),
2852 					     GFP_KERNEL);
2853 		if (!table->used_bitmap)
2854 			goto fail;
2855 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2856 		if (!table->spec)
2857 			goto fail;
2858 	}
2859 
2860 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2861 	if (table->size) {
2862 		/* RX default filters must always exist */
2863 		struct efx_farch_filter_spec *spec;
2864 		unsigned i;
2865 
2866 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2867 			spec = &table->spec[i];
2868 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2869 			efx_farch_filter_init_rx_auto(efx, spec);
2870 			__set_bit(i, table->used_bitmap);
2871 		}
2872 	}
2873 
2874 	efx_farch_filter_push_rx_config(efx);
2875 
2876 	return 0;
2877 
2878 fail:
2879 	efx_farch_filter_table_remove(efx);
2880 	return -ENOMEM;
2881 }
2882 
2883 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2884 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2885 {
2886 	struct efx_farch_filter_state *state = efx->filter_state;
2887 	enum efx_farch_filter_table_id table_id;
2888 	struct efx_farch_filter_table *table;
2889 	efx_oword_t filter;
2890 	unsigned int filter_idx;
2891 
2892 	spin_lock_bh(&efx->filter_lock);
2893 
2894 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2895 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2896 	     table_id++) {
2897 		table = &state->table[table_id];
2898 
2899 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2900 			if (!test_bit(filter_idx, table->used_bitmap) ||
2901 			    table->spec[filter_idx].dmaq_id >=
2902 			    efx->n_rx_channels)
2903 				continue;
2904 
2905 			if (efx->rx_scatter)
2906 				table->spec[filter_idx].flags |=
2907 					EFX_FILTER_FLAG_RX_SCATTER;
2908 			else
2909 				table->spec[filter_idx].flags &=
2910 					~EFX_FILTER_FLAG_RX_SCATTER;
2911 
2912 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2913 				/* Pushed by efx_farch_filter_push_rx_config() */
2914 				continue;
2915 
2916 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2917 			efx_writeo(efx, &filter,
2918 				   table->offset + table->step * filter_idx);
2919 		}
2920 	}
2921 
2922 	efx_farch_filter_push_rx_config(efx);
2923 
2924 	spin_unlock_bh(&efx->filter_lock);
2925 }
2926 
2927 #ifdef CONFIG_RFS_ACCEL
2928 
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2929 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2930 				struct efx_filter_spec *gen_spec)
2931 {
2932 	return efx_farch_filter_insert(efx, gen_spec, true);
2933 }
2934 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2935 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2936 				     unsigned int index)
2937 {
2938 	struct efx_farch_filter_state *state = efx->filter_state;
2939 	struct efx_farch_filter_table *table =
2940 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2941 
2942 	if (test_bit(index, table->used_bitmap) &&
2943 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2944 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2945 				flow_id, index)) {
2946 		efx_farch_filter_table_clear_entry(efx, table, index);
2947 		return true;
2948 	}
2949 
2950 	return false;
2951 }
2952 
2953 #endif /* CONFIG_RFS_ACCEL */
2954 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2955 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956 {
2957 	struct net_device *net_dev = efx->net_dev;
2958 	struct netdev_hw_addr *ha;
2959 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960 	u32 crc;
2961 	int bit;
2962 
2963 	if (!efx_dev_registered(efx))
2964 		return;
2965 
2966 	netif_addr_lock_bh(net_dev);
2967 
2968 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969 
2970 	/* Build multicast hash table */
2971 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2973 	} else {
2974 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2975 		netdev_for_each_mc_addr(ha, net_dev) {
2976 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2977 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978 			__set_bit_le(bit, mc_hash);
2979 		}
2980 
2981 		/* Broadcast packets go through the multicast hash filter.
2982 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983 		 * so we always add bit 0xff to the mask.
2984 		 */
2985 		__set_bit_le(0xff, mc_hash);
2986 	}
2987 
2988 	netif_addr_unlock_bh(net_dev);
2989 }
2990