• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30 
31 #include "mcdi.h"
32 #include "workarounds.h"
33 
34 /**************************************************************************
35  *
36  * Type name strings
37  *
38  **************************************************************************
39  */
40 
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 	[LOOPBACK_NONE]		= "NONE",
45 	[LOOPBACK_DATA]		= "DATAPATH",
46 	[LOOPBACK_GMAC]		= "GMAC",
47 	[LOOPBACK_XGMII]	= "XGMII",
48 	[LOOPBACK_XGXS]		= "XGXS",
49 	[LOOPBACK_XAUI]		= "XAUI",
50 	[LOOPBACK_GMII]		= "GMII",
51 	[LOOPBACK_SGMII]	= "SGMII",
52 	[LOOPBACK_XGBR]		= "XGBR",
53 	[LOOPBACK_XFI]		= "XFI",
54 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
55 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
56 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
57 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 	[LOOPBACK_GPHY]		= "GPHY",
59 	[LOOPBACK_PHYXS]	= "PHYXS",
60 	[LOOPBACK_PCS]		= "PCS",
61 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 	[LOOPBACK_XPORT]	= "XPORT",
63 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
66 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 	[LOOPBACK_XFI_WS]	= "XFI_WS",
69 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 };
72 
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
76 	[RESET_TYPE_ALL]                = "ALL",
77 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
78 	[RESET_TYPE_WORLD]              = "WORLD",
79 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 	[RESET_TYPE_DISABLE]            = "DISABLE",
83 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
84 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 };
91 
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93  * queued onto this work queue. This is not a per-nic work queue, because
94  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95  */
96 static struct workqueue_struct *reset_workqueue;
97 
98 /* How often and how many times to poll for a reset while waiting for a
99  * BIST that another function started to complete.
100  */
101 #define BIST_WAIT_DELAY_MS	100
102 #define BIST_WAIT_DELAY_COUNT	100
103 
104 /**************************************************************************
105  *
106  * Configurable values
107  *
108  *************************************************************************/
109 
110 /*
111  * Use separate channels for TX and RX events
112  *
113  * Set this to 1 to use separate channels for TX and RX. It allows us
114  * to control interrupt affinity separately for TX and RX.
115  *
116  * This is only used in MSI-X interrupt mode
117  */
118 bool efx_separate_tx_channels;
119 module_param(efx_separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(efx_separate_tx_channels,
121 		 "Use separate channels for TX and RX");
122 
123 /* This is the weight assigned to each of the (per-channel) virtual
124  * NAPI devices.
125  */
126 static int napi_weight = 64;
127 
128 /* This is the time (in jiffies) between invocations of the hardware
129  * monitor.
130  * On Falcon-based NICs, this will:
131  * - Check the on-board hardware monitor;
132  * - Poll the link state and reconfigure the hardware as necessary.
133  * On Siena-based NICs for power systems with EEH support, this will give EEH a
134  * chance to start.
135  */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * The default for RX should strike a balance between increasing the
142  * round-trip latency and reducing overhead.
143  */
144 static unsigned int rx_irq_mod_usec = 60;
145 
146 /* Initial interrupt moderation settings.  They can be modified after
147  * module load with ethtool.
148  *
149  * This default is chosen to ensure that a 10G link does not go idle
150  * while a TX queue is stopped after it has become full.  A queue is
151  * restarted when it drops below half full.  The time this takes (assuming
152  * worst case 3 descriptors per packet and 1024 descriptors) is
153  *   512 / 3 * 1.2 = 205 usec.
154  */
155 static unsigned int tx_irq_mod_usec = 150;
156 
157 /* This is the first interrupt mode to try out of:
158  * 0 => MSI-X
159  * 1 => MSI
160  * 2 => legacy
161  */
162 static unsigned int interrupt_mode;
163 
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165  * i.e. the number of CPUs among which we may distribute simultaneous
166  * interrupt handling.
167  *
168  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169  * The default (0) means to assign an interrupt to each core.
170  */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174 
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178 
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 		 "Threshold score for reducing IRQ moderation");
183 
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 		 "Threshold score for increasing IRQ moderation");
188 
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195 
196 /**************************************************************************
197  *
198  * Utility functions and prototypes
199  *
200  *************************************************************************/
201 
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214 
215 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
216 	do {						\
217 		if ((efx->state == STATE_READY) ||	\
218 		    (efx->state == STATE_RECOVERY) ||	\
219 		    (efx->state == STATE_DISABLED))	\
220 			ASSERT_RTNL();			\
221 	} while (0)
222 
efx_check_disabled(struct efx_nic * efx)223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 		netif_err(efx, drv, efx->net_dev,
227 			  "device is disabled due to earlier errors\n");
228 		return -EIO;
229 	}
230 	return 0;
231 }
232 
233 /**************************************************************************
234  *
235  * Event queue processing
236  *
237  *************************************************************************/
238 
239 /* Process channel's event queue
240  *
241  * This function is responsible for processing the event queue of a
242  * single channel.  The caller must guarantee that this function will
243  * never be concurrently called more than once on the same channel,
244  * though different channels may be being processed concurrently.
245  */
efx_process_channel(struct efx_channel * channel,int budget)246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 	struct efx_tx_queue *tx_queue;
249 	int spent;
250 
251 	if (unlikely(!channel->enabled))
252 		return 0;
253 
254 	efx_for_each_channel_tx_queue(tx_queue, channel) {
255 		tx_queue->pkts_compl = 0;
256 		tx_queue->bytes_compl = 0;
257 	}
258 
259 	spent = efx_nic_process_eventq(channel, budget);
260 	if (spent && efx_channel_has_rx_queue(channel)) {
261 		struct efx_rx_queue *rx_queue =
262 			efx_channel_get_rx_queue(channel);
263 
264 		efx_rx_flush_packet(channel);
265 		efx_fast_push_rx_descriptors(rx_queue, true);
266 	}
267 
268 	/* Update BQL */
269 	efx_for_each_channel_tx_queue(tx_queue, channel) {
270 		if (tx_queue->bytes_compl) {
271 			netdev_tx_completed_queue(tx_queue->core_txq,
272 				tx_queue->pkts_compl, tx_queue->bytes_compl);
273 		}
274 	}
275 
276 	return spent;
277 }
278 
279 /* NAPI poll handler
280  *
281  * NAPI guarantees serialisation of polls of the same device, which
282  * provides the guarantee required by efx_process_channel().
283  */
efx_poll(struct napi_struct * napi,int budget)284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 	struct efx_channel *channel =
287 		container_of(napi, struct efx_channel, napi_str);
288 	struct efx_nic *efx = channel->efx;
289 	int spent;
290 
291 	if (!efx_channel_lock_napi(channel))
292 		return budget;
293 
294 	netif_vdbg(efx, intr, efx->net_dev,
295 		   "channel %d NAPI poll executing on CPU %d\n",
296 		   channel->channel, raw_smp_processor_id());
297 
298 	spent = efx_process_channel(channel, budget);
299 
300 	if (spent < budget) {
301 		if (efx_channel_has_rx_queue(channel) &&
302 		    efx->irq_rx_adaptive &&
303 		    unlikely(++channel->irq_count == 1000)) {
304 			if (unlikely(channel->irq_mod_score <
305 				     irq_adapt_low_thresh)) {
306 				if (channel->irq_moderation > 1) {
307 					channel->irq_moderation -= 1;
308 					efx->type->push_irq_moderation(channel);
309 				}
310 			} else if (unlikely(channel->irq_mod_score >
311 					    irq_adapt_high_thresh)) {
312 				if (channel->irq_moderation <
313 				    efx->irq_rx_moderation) {
314 					channel->irq_moderation += 1;
315 					efx->type->push_irq_moderation(channel);
316 				}
317 			}
318 			channel->irq_count = 0;
319 			channel->irq_mod_score = 0;
320 		}
321 
322 		efx_filter_rfs_expire(channel);
323 
324 		/* There is no race here; although napi_disable() will
325 		 * only wait for napi_complete(), this isn't a problem
326 		 * since efx_nic_eventq_read_ack() will have no effect if
327 		 * interrupts have already been disabled.
328 		 */
329 		napi_complete(napi);
330 		efx_nic_eventq_read_ack(channel);
331 	}
332 
333 	efx_channel_unlock_napi(channel);
334 	return spent;
335 }
336 
337 /* Create event queue
338  * Event queue memory allocations are done only once.  If the channel
339  * is reset, the memory buffer will be reused; this guards against
340  * errors during channel reset and also simplifies interrupt handling.
341  */
efx_probe_eventq(struct efx_channel * channel)342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 	struct efx_nic *efx = channel->efx;
345 	unsigned long entries;
346 
347 	netif_dbg(efx, probe, efx->net_dev,
348 		  "chan %d create event queue\n", channel->channel);
349 
350 	/* Build an event queue with room for one event per tx and rx buffer,
351 	 * plus some extra for link state events and MCDI completions. */
352 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355 
356 	return efx_nic_probe_eventq(channel);
357 }
358 
359 /* Prepare channel's event queue */
efx_init_eventq(struct efx_channel * channel)360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 	struct efx_nic *efx = channel->efx;
363 	int rc;
364 
365 	EFX_WARN_ON_PARANOID(channel->eventq_init);
366 
367 	netif_dbg(efx, drv, efx->net_dev,
368 		  "chan %d init event queue\n", channel->channel);
369 
370 	rc = efx_nic_init_eventq(channel);
371 	if (rc == 0) {
372 		efx->type->push_irq_moderation(channel);
373 		channel->eventq_read_ptr = 0;
374 		channel->eventq_init = true;
375 	}
376 	return rc;
377 }
378 
379 /* Enable event queue processing and NAPI */
efx_start_eventq(struct efx_channel * channel)380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 		  "chan %d start event queue\n", channel->channel);
384 
385 	/* Make sure the NAPI handler sees the enabled flag set */
386 	channel->enabled = true;
387 	smp_wmb();
388 
389 	efx_channel_enable(channel);
390 	napi_enable(&channel->napi_str);
391 	efx_nic_eventq_read_ack(channel);
392 }
393 
394 /* Disable event queue processing and NAPI */
efx_stop_eventq(struct efx_channel * channel)395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 	if (!channel->enabled)
398 		return;
399 
400 	napi_disable(&channel->napi_str);
401 	while (!efx_channel_disable(channel))
402 		usleep_range(1000, 20000);
403 	channel->enabled = false;
404 }
405 
efx_fini_eventq(struct efx_channel * channel)406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 	if (!channel->eventq_init)
409 		return;
410 
411 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 		  "chan %d fini event queue\n", channel->channel);
413 
414 	efx_nic_fini_eventq(channel);
415 	channel->eventq_init = false;
416 }
417 
efx_remove_eventq(struct efx_channel * channel)418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 		  "chan %d remove event queue\n", channel->channel);
422 
423 	efx_nic_remove_eventq(channel);
424 }
425 
426 /**************************************************************************
427  *
428  * Channel handling
429  *
430  *************************************************************************/
431 
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
efx_alloc_channel(struct efx_nic * efx,int i,struct efx_channel * old_channel)434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 	struct efx_channel *channel;
437 	struct efx_rx_queue *rx_queue;
438 	struct efx_tx_queue *tx_queue;
439 	int j;
440 
441 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 	if (!channel)
443 		return NULL;
444 
445 	channel->efx = efx;
446 	channel->channel = i;
447 	channel->type = &efx_default_channel_type;
448 
449 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 		tx_queue = &channel->tx_queue[j];
451 		tx_queue->efx = efx;
452 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 		tx_queue->channel = channel;
454 	}
455 
456 	rx_queue = &channel->rx_queue;
457 	rx_queue->efx = efx;
458 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 		    (unsigned long)rx_queue);
460 
461 	return channel;
462 }
463 
464 /* Allocate and initialise a channel structure, copying parameters
465  * (but not resources) from an old channel structure.
466  */
467 static struct efx_channel *
efx_copy_channel(const struct efx_channel * old_channel)468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 	struct efx_channel *channel;
471 	struct efx_rx_queue *rx_queue;
472 	struct efx_tx_queue *tx_queue;
473 	int j;
474 
475 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 	if (!channel)
477 		return NULL;
478 
479 	*channel = *old_channel;
480 
481 	channel->napi_dev = NULL;
482 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
483 	channel->napi_str.napi_id = 0;
484 	channel->napi_str.state = 0;
485 	memset(&channel->eventq, 0, sizeof(channel->eventq));
486 
487 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
488 		tx_queue = &channel->tx_queue[j];
489 		if (tx_queue->channel)
490 			tx_queue->channel = channel;
491 		tx_queue->buffer = NULL;
492 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
493 	}
494 
495 	rx_queue = &channel->rx_queue;
496 	rx_queue->buffer = NULL;
497 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
498 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
499 		    (unsigned long)rx_queue);
500 
501 	return channel;
502 }
503 
efx_probe_channel(struct efx_channel * channel)504 static int efx_probe_channel(struct efx_channel *channel)
505 {
506 	struct efx_tx_queue *tx_queue;
507 	struct efx_rx_queue *rx_queue;
508 	int rc;
509 
510 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
511 		  "creating channel %d\n", channel->channel);
512 
513 	rc = channel->type->pre_probe(channel);
514 	if (rc)
515 		goto fail;
516 
517 	rc = efx_probe_eventq(channel);
518 	if (rc)
519 		goto fail;
520 
521 	efx_for_each_channel_tx_queue(tx_queue, channel) {
522 		rc = efx_probe_tx_queue(tx_queue);
523 		if (rc)
524 			goto fail;
525 	}
526 
527 	efx_for_each_channel_rx_queue(rx_queue, channel) {
528 		rc = efx_probe_rx_queue(rx_queue);
529 		if (rc)
530 			goto fail;
531 	}
532 
533 	return 0;
534 
535 fail:
536 	efx_remove_channel(channel);
537 	return rc;
538 }
539 
540 static void
efx_get_channel_name(struct efx_channel * channel,char * buf,size_t len)541 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
542 {
543 	struct efx_nic *efx = channel->efx;
544 	const char *type;
545 	int number;
546 
547 	number = channel->channel;
548 	if (efx->tx_channel_offset == 0) {
549 		type = "";
550 	} else if (channel->channel < efx->tx_channel_offset) {
551 		type = "-rx";
552 	} else {
553 		type = "-tx";
554 		number -= efx->tx_channel_offset;
555 	}
556 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
557 }
558 
efx_set_channel_names(struct efx_nic * efx)559 static void efx_set_channel_names(struct efx_nic *efx)
560 {
561 	struct efx_channel *channel;
562 
563 	efx_for_each_channel(channel, efx)
564 		channel->type->get_name(channel,
565 					efx->msi_context[channel->channel].name,
566 					sizeof(efx->msi_context[0].name));
567 }
568 
efx_probe_channels(struct efx_nic * efx)569 static int efx_probe_channels(struct efx_nic *efx)
570 {
571 	struct efx_channel *channel;
572 	int rc;
573 
574 	/* Restart special buffer allocation */
575 	efx->next_buffer_table = 0;
576 
577 	/* Probe channels in reverse, so that any 'extra' channels
578 	 * use the start of the buffer table. This allows the traffic
579 	 * channels to be resized without moving them or wasting the
580 	 * entries before them.
581 	 */
582 	efx_for_each_channel_rev(channel, efx) {
583 		rc = efx_probe_channel(channel);
584 		if (rc) {
585 			netif_err(efx, probe, efx->net_dev,
586 				  "failed to create channel %d\n",
587 				  channel->channel);
588 			goto fail;
589 		}
590 	}
591 	efx_set_channel_names(efx);
592 
593 	return 0;
594 
595 fail:
596 	efx_remove_channels(efx);
597 	return rc;
598 }
599 
600 /* Channels are shutdown and reinitialised whilst the NIC is running
601  * to propagate configuration changes (mtu, checksum offload), or
602  * to clear hardware error conditions
603  */
efx_start_datapath(struct efx_nic * efx)604 static void efx_start_datapath(struct efx_nic *efx)
605 {
606 	bool old_rx_scatter = efx->rx_scatter;
607 	struct efx_tx_queue *tx_queue;
608 	struct efx_rx_queue *rx_queue;
609 	struct efx_channel *channel;
610 	size_t rx_buf_len;
611 
612 	/* Calculate the rx buffer allocation parameters required to
613 	 * support the current MTU, including padding for header
614 	 * alignment and overruns.
615 	 */
616 	efx->rx_dma_len = (efx->rx_prefix_size +
617 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
618 			   efx->type->rx_buffer_padding);
619 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
620 		      efx->rx_ip_align + efx->rx_dma_len);
621 	if (rx_buf_len <= PAGE_SIZE) {
622 		efx->rx_scatter = efx->type->always_rx_scatter;
623 		efx->rx_buffer_order = 0;
624 	} else if (efx->type->can_rx_scatter) {
625 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
626 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
627 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
628 				       EFX_RX_BUF_ALIGNMENT) >
629 			     PAGE_SIZE);
630 		efx->rx_scatter = true;
631 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
632 		efx->rx_buffer_order = 0;
633 	} else {
634 		efx->rx_scatter = false;
635 		efx->rx_buffer_order = get_order(rx_buf_len);
636 	}
637 
638 	efx_rx_config_page_split(efx);
639 	if (efx->rx_buffer_order)
640 		netif_dbg(efx, drv, efx->net_dev,
641 			  "RX buf len=%u; page order=%u batch=%u\n",
642 			  efx->rx_dma_len, efx->rx_buffer_order,
643 			  efx->rx_pages_per_batch);
644 	else
645 		netif_dbg(efx, drv, efx->net_dev,
646 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
647 			  efx->rx_dma_len, efx->rx_page_buf_step,
648 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
649 
650 	/* RX filters may also have scatter-enabled flags */
651 	if (efx->rx_scatter != old_rx_scatter)
652 		efx->type->filter_update_rx_scatter(efx);
653 
654 	/* We must keep at least one descriptor in a TX ring empty.
655 	 * We could avoid this when the queue size does not exactly
656 	 * match the hardware ring size, but it's not that important.
657 	 * Therefore we stop the queue when one more skb might fill
658 	 * the ring completely.  We wake it when half way back to
659 	 * empty.
660 	 */
661 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
662 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
663 
664 	/* Initialise the channels */
665 	efx_for_each_channel(channel, efx) {
666 		efx_for_each_channel_tx_queue(tx_queue, channel) {
667 			efx_init_tx_queue(tx_queue);
668 			atomic_inc(&efx->active_queues);
669 		}
670 
671 		efx_for_each_channel_rx_queue(rx_queue, channel) {
672 			efx_init_rx_queue(rx_queue);
673 			atomic_inc(&efx->active_queues);
674 			efx_stop_eventq(channel);
675 			efx_fast_push_rx_descriptors(rx_queue, false);
676 			efx_start_eventq(channel);
677 		}
678 
679 		WARN_ON(channel->rx_pkt_n_frags);
680 	}
681 
682 	efx_ptp_start_datapath(efx);
683 
684 	if (netif_device_present(efx->net_dev))
685 		netif_tx_wake_all_queues(efx->net_dev);
686 }
687 
efx_stop_datapath(struct efx_nic * efx)688 static void efx_stop_datapath(struct efx_nic *efx)
689 {
690 	struct efx_channel *channel;
691 	struct efx_tx_queue *tx_queue;
692 	struct efx_rx_queue *rx_queue;
693 	int rc;
694 
695 	EFX_ASSERT_RESET_SERIALISED(efx);
696 	BUG_ON(efx->port_enabled);
697 
698 	efx_ptp_stop_datapath(efx);
699 
700 	/* Stop RX refill */
701 	efx_for_each_channel(channel, efx) {
702 		efx_for_each_channel_rx_queue(rx_queue, channel)
703 			rx_queue->refill_enabled = false;
704 	}
705 
706 	efx_for_each_channel(channel, efx) {
707 		/* RX packet processing is pipelined, so wait for the
708 		 * NAPI handler to complete.  At least event queue 0
709 		 * might be kept active by non-data events, so don't
710 		 * use napi_synchronize() but actually disable NAPI
711 		 * temporarily.
712 		 */
713 		if (efx_channel_has_rx_queue(channel)) {
714 			efx_stop_eventq(channel);
715 			efx_start_eventq(channel);
716 		}
717 	}
718 
719 	rc = efx->type->fini_dmaq(efx);
720 	if (rc && EFX_WORKAROUND_7803(efx)) {
721 		/* Schedule a reset to recover from the flush failure. The
722 		 * descriptor caches reference memory we're about to free,
723 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
724 		 * the MACs because of the pending reset.
725 		 */
726 		netif_err(efx, drv, efx->net_dev,
727 			  "Resetting to recover from flush failure\n");
728 		efx_schedule_reset(efx, RESET_TYPE_ALL);
729 	} else if (rc) {
730 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
731 	} else {
732 		netif_dbg(efx, drv, efx->net_dev,
733 			  "successfully flushed all queues\n");
734 	}
735 
736 	efx_for_each_channel(channel, efx) {
737 		efx_for_each_channel_rx_queue(rx_queue, channel)
738 			efx_fini_rx_queue(rx_queue);
739 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
740 			efx_fini_tx_queue(tx_queue);
741 	}
742 }
743 
efx_remove_channel(struct efx_channel * channel)744 static void efx_remove_channel(struct efx_channel *channel)
745 {
746 	struct efx_tx_queue *tx_queue;
747 	struct efx_rx_queue *rx_queue;
748 
749 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
750 		  "destroy chan %d\n", channel->channel);
751 
752 	efx_for_each_channel_rx_queue(rx_queue, channel)
753 		efx_remove_rx_queue(rx_queue);
754 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
755 		efx_remove_tx_queue(tx_queue);
756 	efx_remove_eventq(channel);
757 	channel->type->post_remove(channel);
758 }
759 
efx_remove_channels(struct efx_nic * efx)760 static void efx_remove_channels(struct efx_nic *efx)
761 {
762 	struct efx_channel *channel;
763 
764 	efx_for_each_channel(channel, efx)
765 		efx_remove_channel(channel);
766 }
767 
768 int
efx_realloc_channels(struct efx_nic * efx,u32 rxq_entries,u32 txq_entries)769 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
770 {
771 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
772 	u32 old_rxq_entries, old_txq_entries;
773 	unsigned i, next_buffer_table = 0;
774 	int rc, rc2;
775 
776 	rc = efx_check_disabled(efx);
777 	if (rc)
778 		return rc;
779 
780 	/* Not all channels should be reallocated. We must avoid
781 	 * reallocating their buffer table entries.
782 	 */
783 	efx_for_each_channel(channel, efx) {
784 		struct efx_rx_queue *rx_queue;
785 		struct efx_tx_queue *tx_queue;
786 
787 		if (channel->type->copy)
788 			continue;
789 		next_buffer_table = max(next_buffer_table,
790 					channel->eventq.index +
791 					channel->eventq.entries);
792 		efx_for_each_channel_rx_queue(rx_queue, channel)
793 			next_buffer_table = max(next_buffer_table,
794 						rx_queue->rxd.index +
795 						rx_queue->rxd.entries);
796 		efx_for_each_channel_tx_queue(tx_queue, channel)
797 			next_buffer_table = max(next_buffer_table,
798 						tx_queue->txd.index +
799 						tx_queue->txd.entries);
800 	}
801 
802 	efx_device_detach_sync(efx);
803 	efx_stop_all(efx);
804 	efx_soft_disable_interrupts(efx);
805 
806 	/* Clone channels (where possible) */
807 	memset(other_channel, 0, sizeof(other_channel));
808 	for (i = 0; i < efx->n_channels; i++) {
809 		channel = efx->channel[i];
810 		if (channel->type->copy)
811 			channel = channel->type->copy(channel);
812 		if (!channel) {
813 			rc = -ENOMEM;
814 			goto out;
815 		}
816 		other_channel[i] = channel;
817 	}
818 
819 	/* Swap entry counts and channel pointers */
820 	old_rxq_entries = efx->rxq_entries;
821 	old_txq_entries = efx->txq_entries;
822 	efx->rxq_entries = rxq_entries;
823 	efx->txq_entries = txq_entries;
824 	for (i = 0; i < efx->n_channels; i++) {
825 		channel = efx->channel[i];
826 		efx->channel[i] = other_channel[i];
827 		other_channel[i] = channel;
828 	}
829 
830 	/* Restart buffer table allocation */
831 	efx->next_buffer_table = next_buffer_table;
832 
833 	for (i = 0; i < efx->n_channels; i++) {
834 		channel = efx->channel[i];
835 		if (!channel->type->copy)
836 			continue;
837 		rc = efx_probe_channel(channel);
838 		if (rc)
839 			goto rollback;
840 		efx_init_napi_channel(efx->channel[i]);
841 	}
842 
843 out:
844 	/* Destroy unused channel structures */
845 	for (i = 0; i < efx->n_channels; i++) {
846 		channel = other_channel[i];
847 		if (channel && channel->type->copy) {
848 			efx_fini_napi_channel(channel);
849 			efx_remove_channel(channel);
850 			kfree(channel);
851 		}
852 	}
853 
854 	rc2 = efx_soft_enable_interrupts(efx);
855 	if (rc2) {
856 		rc = rc ? rc : rc2;
857 		netif_err(efx, drv, efx->net_dev,
858 			  "unable to restart interrupts on channel reallocation\n");
859 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
860 	} else {
861 		efx_start_all(efx);
862 		netif_device_attach(efx->net_dev);
863 	}
864 	return rc;
865 
866 rollback:
867 	/* Swap back */
868 	efx->rxq_entries = old_rxq_entries;
869 	efx->txq_entries = old_txq_entries;
870 	for (i = 0; i < efx->n_channels; i++) {
871 		channel = efx->channel[i];
872 		efx->channel[i] = other_channel[i];
873 		other_channel[i] = channel;
874 	}
875 	goto out;
876 }
877 
efx_schedule_slow_fill(struct efx_rx_queue * rx_queue)878 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
879 {
880 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
881 }
882 
883 static const struct efx_channel_type efx_default_channel_type = {
884 	.pre_probe		= efx_channel_dummy_op_int,
885 	.post_remove		= efx_channel_dummy_op_void,
886 	.get_name		= efx_get_channel_name,
887 	.copy			= efx_copy_channel,
888 	.keep_eventq		= false,
889 };
890 
efx_channel_dummy_op_int(struct efx_channel * channel)891 int efx_channel_dummy_op_int(struct efx_channel *channel)
892 {
893 	return 0;
894 }
895 
efx_channel_dummy_op_void(struct efx_channel * channel)896 void efx_channel_dummy_op_void(struct efx_channel *channel)
897 {
898 }
899 
900 /**************************************************************************
901  *
902  * Port handling
903  *
904  **************************************************************************/
905 
906 /* This ensures that the kernel is kept informed (via
907  * netif_carrier_on/off) of the link status, and also maintains the
908  * link status's stop on the port's TX queue.
909  */
efx_link_status_changed(struct efx_nic * efx)910 void efx_link_status_changed(struct efx_nic *efx)
911 {
912 	struct efx_link_state *link_state = &efx->link_state;
913 
914 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
915 	 * that no events are triggered between unregister_netdev() and the
916 	 * driver unloading. A more general condition is that NETDEV_CHANGE
917 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
918 	if (!netif_running(efx->net_dev))
919 		return;
920 
921 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
922 		efx->n_link_state_changes++;
923 
924 		if (link_state->up)
925 			netif_carrier_on(efx->net_dev);
926 		else
927 			netif_carrier_off(efx->net_dev);
928 	}
929 
930 	/* Status message for kernel log */
931 	if (link_state->up)
932 		netif_info(efx, link, efx->net_dev,
933 			   "link up at %uMbps %s-duplex (MTU %d)\n",
934 			   link_state->speed, link_state->fd ? "full" : "half",
935 			   efx->net_dev->mtu);
936 	else
937 		netif_info(efx, link, efx->net_dev, "link down\n");
938 }
939 
efx_link_set_advertising(struct efx_nic * efx,u32 advertising)940 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
941 {
942 	efx->link_advertising = advertising;
943 	if (advertising) {
944 		if (advertising & ADVERTISED_Pause)
945 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
946 		else
947 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
948 		if (advertising & ADVERTISED_Asym_Pause)
949 			efx->wanted_fc ^= EFX_FC_TX;
950 	}
951 }
952 
efx_link_set_wanted_fc(struct efx_nic * efx,u8 wanted_fc)953 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
954 {
955 	efx->wanted_fc = wanted_fc;
956 	if (efx->link_advertising) {
957 		if (wanted_fc & EFX_FC_RX)
958 			efx->link_advertising |= (ADVERTISED_Pause |
959 						  ADVERTISED_Asym_Pause);
960 		else
961 			efx->link_advertising &= ~(ADVERTISED_Pause |
962 						   ADVERTISED_Asym_Pause);
963 		if (wanted_fc & EFX_FC_TX)
964 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
965 	}
966 }
967 
968 static void efx_fini_port(struct efx_nic *efx);
969 
970 /* We assume that efx->type->reconfigure_mac will always try to sync RX
971  * filters and therefore needs to read-lock the filter table against freeing
972  */
efx_mac_reconfigure(struct efx_nic * efx)973 void efx_mac_reconfigure(struct efx_nic *efx)
974 {
975 	down_read(&efx->filter_sem);
976 	efx->type->reconfigure_mac(efx);
977 	up_read(&efx->filter_sem);
978 }
979 
980 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
981  * the MAC appropriately. All other PHY configuration changes are pushed
982  * through phy_op->set_settings(), and pushed asynchronously to the MAC
983  * through efx_monitor().
984  *
985  * Callers must hold the mac_lock
986  */
__efx_reconfigure_port(struct efx_nic * efx)987 int __efx_reconfigure_port(struct efx_nic *efx)
988 {
989 	enum efx_phy_mode phy_mode;
990 	int rc;
991 
992 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
993 
994 	/* Disable PHY transmit in mac level loopbacks */
995 	phy_mode = efx->phy_mode;
996 	if (LOOPBACK_INTERNAL(efx))
997 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
998 	else
999 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1000 
1001 	rc = efx->type->reconfigure_port(efx);
1002 
1003 	if (rc)
1004 		efx->phy_mode = phy_mode;
1005 
1006 	return rc;
1007 }
1008 
1009 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1010  * disabled. */
efx_reconfigure_port(struct efx_nic * efx)1011 int efx_reconfigure_port(struct efx_nic *efx)
1012 {
1013 	int rc;
1014 
1015 	EFX_ASSERT_RESET_SERIALISED(efx);
1016 
1017 	mutex_lock(&efx->mac_lock);
1018 	rc = __efx_reconfigure_port(efx);
1019 	mutex_unlock(&efx->mac_lock);
1020 
1021 	return rc;
1022 }
1023 
1024 /* Asynchronous work item for changing MAC promiscuity and multicast
1025  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1026  * MAC directly. */
efx_mac_work(struct work_struct * data)1027 static void efx_mac_work(struct work_struct *data)
1028 {
1029 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1030 
1031 	mutex_lock(&efx->mac_lock);
1032 	if (efx->port_enabled)
1033 		efx_mac_reconfigure(efx);
1034 	mutex_unlock(&efx->mac_lock);
1035 }
1036 
efx_probe_port(struct efx_nic * efx)1037 static int efx_probe_port(struct efx_nic *efx)
1038 {
1039 	int rc;
1040 
1041 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1042 
1043 	if (phy_flash_cfg)
1044 		efx->phy_mode = PHY_MODE_SPECIAL;
1045 
1046 	/* Connect up MAC/PHY operations table */
1047 	rc = efx->type->probe_port(efx);
1048 	if (rc)
1049 		return rc;
1050 
1051 	/* Initialise MAC address to permanent address */
1052 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1053 
1054 	return 0;
1055 }
1056 
efx_init_port(struct efx_nic * efx)1057 static int efx_init_port(struct efx_nic *efx)
1058 {
1059 	int rc;
1060 
1061 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1062 
1063 	mutex_lock(&efx->mac_lock);
1064 
1065 	rc = efx->phy_op->init(efx);
1066 	if (rc)
1067 		goto fail1;
1068 
1069 	efx->port_initialized = true;
1070 
1071 	/* Reconfigure the MAC before creating dma queues (required for
1072 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1073 	efx_mac_reconfigure(efx);
1074 
1075 	/* Ensure the PHY advertises the correct flow control settings */
1076 	rc = efx->phy_op->reconfigure(efx);
1077 	if (rc && rc != -EPERM)
1078 		goto fail2;
1079 
1080 	mutex_unlock(&efx->mac_lock);
1081 	return 0;
1082 
1083 fail2:
1084 	efx->phy_op->fini(efx);
1085 fail1:
1086 	mutex_unlock(&efx->mac_lock);
1087 	return rc;
1088 }
1089 
efx_start_port(struct efx_nic * efx)1090 static void efx_start_port(struct efx_nic *efx)
1091 {
1092 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1093 	BUG_ON(efx->port_enabled);
1094 
1095 	mutex_lock(&efx->mac_lock);
1096 	efx->port_enabled = true;
1097 
1098 	/* Ensure MAC ingress/egress is enabled */
1099 	efx_mac_reconfigure(efx);
1100 
1101 	mutex_unlock(&efx->mac_lock);
1102 }
1103 
1104 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1105  * and the async self-test, wait for them to finish and prevent them
1106  * being scheduled again.  This doesn't cover online resets, which
1107  * should only be cancelled when removing the device.
1108  */
efx_stop_port(struct efx_nic * efx)1109 static void efx_stop_port(struct efx_nic *efx)
1110 {
1111 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1112 
1113 	EFX_ASSERT_RESET_SERIALISED(efx);
1114 
1115 	mutex_lock(&efx->mac_lock);
1116 	efx->port_enabled = false;
1117 	mutex_unlock(&efx->mac_lock);
1118 
1119 	/* Serialise against efx_set_multicast_list() */
1120 	netif_addr_lock_bh(efx->net_dev);
1121 	netif_addr_unlock_bh(efx->net_dev);
1122 
1123 	cancel_delayed_work_sync(&efx->monitor_work);
1124 	efx_selftest_async_cancel(efx);
1125 	cancel_work_sync(&efx->mac_work);
1126 }
1127 
efx_fini_port(struct efx_nic * efx)1128 static void efx_fini_port(struct efx_nic *efx)
1129 {
1130 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1131 
1132 	if (!efx->port_initialized)
1133 		return;
1134 
1135 	efx->phy_op->fini(efx);
1136 	efx->port_initialized = false;
1137 
1138 	efx->link_state.up = false;
1139 	efx_link_status_changed(efx);
1140 }
1141 
efx_remove_port(struct efx_nic * efx)1142 static void efx_remove_port(struct efx_nic *efx)
1143 {
1144 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1145 
1146 	efx->type->remove_port(efx);
1147 }
1148 
1149 /**************************************************************************
1150  *
1151  * NIC handling
1152  *
1153  **************************************************************************/
1154 
1155 static LIST_HEAD(efx_primary_list);
1156 static LIST_HEAD(efx_unassociated_list);
1157 
efx_same_controller(struct efx_nic * left,struct efx_nic * right)1158 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1159 {
1160 	return left->type == right->type &&
1161 		left->vpd_sn && right->vpd_sn &&
1162 		!strcmp(left->vpd_sn, right->vpd_sn);
1163 }
1164 
efx_associate(struct efx_nic * efx)1165 static void efx_associate(struct efx_nic *efx)
1166 {
1167 	struct efx_nic *other, *next;
1168 
1169 	if (efx->primary == efx) {
1170 		/* Adding primary function; look for secondaries */
1171 
1172 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1173 		list_add_tail(&efx->node, &efx_primary_list);
1174 
1175 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1176 					 node) {
1177 			if (efx_same_controller(efx, other)) {
1178 				list_del(&other->node);
1179 				netif_dbg(other, probe, other->net_dev,
1180 					  "moving to secondary list of %s %s\n",
1181 					  pci_name(efx->pci_dev),
1182 					  efx->net_dev->name);
1183 				list_add_tail(&other->node,
1184 					      &efx->secondary_list);
1185 				other->primary = efx;
1186 			}
1187 		}
1188 	} else {
1189 		/* Adding secondary function; look for primary */
1190 
1191 		list_for_each_entry(other, &efx_primary_list, node) {
1192 			if (efx_same_controller(efx, other)) {
1193 				netif_dbg(efx, probe, efx->net_dev,
1194 					  "adding to secondary list of %s %s\n",
1195 					  pci_name(other->pci_dev),
1196 					  other->net_dev->name);
1197 				list_add_tail(&efx->node,
1198 					      &other->secondary_list);
1199 				efx->primary = other;
1200 				return;
1201 			}
1202 		}
1203 
1204 		netif_dbg(efx, probe, efx->net_dev,
1205 			  "adding to unassociated list\n");
1206 		list_add_tail(&efx->node, &efx_unassociated_list);
1207 	}
1208 }
1209 
efx_dissociate(struct efx_nic * efx)1210 static void efx_dissociate(struct efx_nic *efx)
1211 {
1212 	struct efx_nic *other, *next;
1213 
1214 	list_del(&efx->node);
1215 	efx->primary = NULL;
1216 
1217 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1218 		list_del(&other->node);
1219 		netif_dbg(other, probe, other->net_dev,
1220 			  "moving to unassociated list\n");
1221 		list_add_tail(&other->node, &efx_unassociated_list);
1222 		other->primary = NULL;
1223 	}
1224 }
1225 
1226 /* This configures the PCI device to enable I/O and DMA. */
efx_init_io(struct efx_nic * efx)1227 static int efx_init_io(struct efx_nic *efx)
1228 {
1229 	struct pci_dev *pci_dev = efx->pci_dev;
1230 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1231 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1232 	int rc, bar;
1233 
1234 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1235 
1236 	bar = efx->type->mem_bar;
1237 
1238 	rc = pci_enable_device(pci_dev);
1239 	if (rc) {
1240 		netif_err(efx, probe, efx->net_dev,
1241 			  "failed to enable PCI device\n");
1242 		goto fail1;
1243 	}
1244 
1245 	pci_set_master(pci_dev);
1246 
1247 	/* Set the PCI DMA mask.  Try all possibilities from our
1248 	 * genuine mask down to 32 bits, because some architectures
1249 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1250 	 * masks event though they reject 46 bit masks.
1251 	 */
1252 	while (dma_mask > 0x7fffffffUL) {
1253 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1254 		if (rc == 0)
1255 			break;
1256 		dma_mask >>= 1;
1257 	}
1258 	if (rc) {
1259 		netif_err(efx, probe, efx->net_dev,
1260 			  "could not find a suitable DMA mask\n");
1261 		goto fail2;
1262 	}
1263 	netif_dbg(efx, probe, efx->net_dev,
1264 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1265 
1266 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1267 	rc = pci_request_region(pci_dev, bar, "sfc");
1268 	if (rc) {
1269 		netif_err(efx, probe, efx->net_dev,
1270 			  "request for memory BAR failed\n");
1271 		rc = -EIO;
1272 		goto fail3;
1273 	}
1274 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1275 	if (!efx->membase) {
1276 		netif_err(efx, probe, efx->net_dev,
1277 			  "could not map memory BAR at %llx+%x\n",
1278 			  (unsigned long long)efx->membase_phys, mem_map_size);
1279 		rc = -ENOMEM;
1280 		goto fail4;
1281 	}
1282 	netif_dbg(efx, probe, efx->net_dev,
1283 		  "memory BAR at %llx+%x (virtual %p)\n",
1284 		  (unsigned long long)efx->membase_phys, mem_map_size,
1285 		  efx->membase);
1286 
1287 	return 0;
1288 
1289  fail4:
1290 	pci_release_region(efx->pci_dev, bar);
1291  fail3:
1292 	efx->membase_phys = 0;
1293  fail2:
1294 	pci_disable_device(efx->pci_dev);
1295  fail1:
1296 	return rc;
1297 }
1298 
efx_fini_io(struct efx_nic * efx)1299 static void efx_fini_io(struct efx_nic *efx)
1300 {
1301 	int bar;
1302 
1303 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1304 
1305 	if (efx->membase) {
1306 		iounmap(efx->membase);
1307 		efx->membase = NULL;
1308 	}
1309 
1310 	if (efx->membase_phys) {
1311 		bar = efx->type->mem_bar;
1312 		pci_release_region(efx->pci_dev, bar);
1313 		efx->membase_phys = 0;
1314 	}
1315 
1316 	/* Don't disable bus-mastering if VFs are assigned */
1317 	if (!pci_vfs_assigned(efx->pci_dev))
1318 		pci_disable_device(efx->pci_dev);
1319 }
1320 
efx_set_default_rx_indir_table(struct efx_nic * efx)1321 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1322 {
1323 	size_t i;
1324 
1325 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1326 		efx->rx_indir_table[i] =
1327 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1328 }
1329 
efx_wanted_parallelism(struct efx_nic * efx)1330 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1331 {
1332 	cpumask_var_t thread_mask;
1333 	unsigned int count;
1334 	int cpu;
1335 
1336 	if (rss_cpus) {
1337 		count = rss_cpus;
1338 	} else {
1339 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1340 			netif_warn(efx, probe, efx->net_dev,
1341 				   "RSS disabled due to allocation failure\n");
1342 			return 1;
1343 		}
1344 
1345 		count = 0;
1346 		for_each_online_cpu(cpu) {
1347 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1348 				++count;
1349 				cpumask_or(thread_mask, thread_mask,
1350 					   topology_sibling_cpumask(cpu));
1351 			}
1352 		}
1353 
1354 		free_cpumask_var(thread_mask);
1355 	}
1356 
1357 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1358 	 * table entries that are inaccessible to VFs
1359 	 */
1360 #ifdef CONFIG_SFC_SRIOV
1361 	if (efx->type->sriov_wanted) {
1362 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1363 		    count > efx_vf_size(efx)) {
1364 			netif_warn(efx, probe, efx->net_dev,
1365 				   "Reducing number of RSS channels from %u to %u for "
1366 				   "VF support. Increase vf-msix-limit to use more "
1367 				   "channels on the PF.\n",
1368 				   count, efx_vf_size(efx));
1369 			count = efx_vf_size(efx);
1370 		}
1371 	}
1372 #endif
1373 
1374 	return count;
1375 }
1376 
1377 /* Probe the number and type of interrupts we are able to obtain, and
1378  * the resulting numbers of channels and RX queues.
1379  */
efx_probe_interrupts(struct efx_nic * efx)1380 static int efx_probe_interrupts(struct efx_nic *efx)
1381 {
1382 	unsigned int extra_channels = 0;
1383 	unsigned int i, j;
1384 	int rc;
1385 
1386 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1387 		if (efx->extra_channel_type[i])
1388 			++extra_channels;
1389 
1390 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1391 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1392 		unsigned int n_channels;
1393 
1394 		n_channels = efx_wanted_parallelism(efx);
1395 		if (efx_separate_tx_channels)
1396 			n_channels *= 2;
1397 		n_channels += extra_channels;
1398 		n_channels = min(n_channels, efx->max_channels);
1399 
1400 		for (i = 0; i < n_channels; i++)
1401 			xentries[i].entry = i;
1402 		rc = pci_enable_msix_range(efx->pci_dev,
1403 					   xentries, 1, n_channels);
1404 		if (rc < 0) {
1405 			/* Fall back to single channel MSI */
1406 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1407 			netif_err(efx, drv, efx->net_dev,
1408 				  "could not enable MSI-X\n");
1409 		} else if (rc < n_channels) {
1410 			netif_err(efx, drv, efx->net_dev,
1411 				  "WARNING: Insufficient MSI-X vectors"
1412 				  " available (%d < %u).\n", rc, n_channels);
1413 			netif_err(efx, drv, efx->net_dev,
1414 				  "WARNING: Performance may be reduced.\n");
1415 			n_channels = rc;
1416 		}
1417 
1418 		if (rc > 0) {
1419 			efx->n_channels = n_channels;
1420 			if (n_channels > extra_channels)
1421 				n_channels -= extra_channels;
1422 			if (efx_separate_tx_channels) {
1423 				efx->n_tx_channels = min(max(n_channels / 2,
1424 							     1U),
1425 							 efx->max_tx_channels);
1426 				efx->n_rx_channels = max(n_channels -
1427 							 efx->n_tx_channels,
1428 							 1U);
1429 			} else {
1430 				efx->n_tx_channels = min(n_channels,
1431 							 efx->max_tx_channels);
1432 				efx->n_rx_channels = n_channels;
1433 			}
1434 			for (i = 0; i < efx->n_channels; i++)
1435 				efx_get_channel(efx, i)->irq =
1436 					xentries[i].vector;
1437 		}
1438 	}
1439 
1440 	/* Try single interrupt MSI */
1441 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1442 		efx->n_channels = 1;
1443 		efx->n_rx_channels = 1;
1444 		efx->n_tx_channels = 1;
1445 		rc = pci_enable_msi(efx->pci_dev);
1446 		if (rc == 0) {
1447 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1448 		} else {
1449 			netif_err(efx, drv, efx->net_dev,
1450 				  "could not enable MSI\n");
1451 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1452 		}
1453 	}
1454 
1455 	/* Assume legacy interrupts */
1456 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1457 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1458 		efx->n_rx_channels = 1;
1459 		efx->n_tx_channels = 1;
1460 		efx->legacy_irq = efx->pci_dev->irq;
1461 	}
1462 
1463 	/* Assign extra channels if possible */
1464 	j = efx->n_channels;
1465 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1466 		if (!efx->extra_channel_type[i])
1467 			continue;
1468 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1469 		    efx->n_channels <= extra_channels) {
1470 			efx->extra_channel_type[i]->handle_no_channel(efx);
1471 		} else {
1472 			--j;
1473 			efx_get_channel(efx, j)->type =
1474 				efx->extra_channel_type[i];
1475 		}
1476 	}
1477 
1478 	/* RSS might be usable on VFs even if it is disabled on the PF */
1479 #ifdef CONFIG_SFC_SRIOV
1480 	if (efx->type->sriov_wanted) {
1481 		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1482 				    !efx->type->sriov_wanted(efx)) ?
1483 				   efx->n_rx_channels : efx_vf_size(efx));
1484 		return 0;
1485 	}
1486 #endif
1487 	efx->rss_spread = efx->n_rx_channels;
1488 
1489 	return 0;
1490 }
1491 
efx_soft_enable_interrupts(struct efx_nic * efx)1492 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1493 {
1494 	struct efx_channel *channel, *end_channel;
1495 	int rc;
1496 
1497 	BUG_ON(efx->state == STATE_DISABLED);
1498 
1499 	efx->irq_soft_enabled = true;
1500 	smp_wmb();
1501 
1502 	efx_for_each_channel(channel, efx) {
1503 		if (!channel->type->keep_eventq) {
1504 			rc = efx_init_eventq(channel);
1505 			if (rc)
1506 				goto fail;
1507 		}
1508 		efx_start_eventq(channel);
1509 	}
1510 
1511 	efx_mcdi_mode_event(efx);
1512 
1513 	return 0;
1514 fail:
1515 	end_channel = channel;
1516 	efx_for_each_channel(channel, efx) {
1517 		if (channel == end_channel)
1518 			break;
1519 		efx_stop_eventq(channel);
1520 		if (!channel->type->keep_eventq)
1521 			efx_fini_eventq(channel);
1522 	}
1523 
1524 	return rc;
1525 }
1526 
efx_soft_disable_interrupts(struct efx_nic * efx)1527 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1528 {
1529 	struct efx_channel *channel;
1530 
1531 	if (efx->state == STATE_DISABLED)
1532 		return;
1533 
1534 	efx_mcdi_mode_poll(efx);
1535 
1536 	efx->irq_soft_enabled = false;
1537 	smp_wmb();
1538 
1539 	if (efx->legacy_irq)
1540 		synchronize_irq(efx->legacy_irq);
1541 
1542 	efx_for_each_channel(channel, efx) {
1543 		if (channel->irq)
1544 			synchronize_irq(channel->irq);
1545 
1546 		efx_stop_eventq(channel);
1547 		if (!channel->type->keep_eventq)
1548 			efx_fini_eventq(channel);
1549 	}
1550 
1551 	/* Flush the asynchronous MCDI request queue */
1552 	efx_mcdi_flush_async(efx);
1553 }
1554 
efx_enable_interrupts(struct efx_nic * efx)1555 static int efx_enable_interrupts(struct efx_nic *efx)
1556 {
1557 	struct efx_channel *channel, *end_channel;
1558 	int rc;
1559 
1560 	BUG_ON(efx->state == STATE_DISABLED);
1561 
1562 	if (efx->eeh_disabled_legacy_irq) {
1563 		enable_irq(efx->legacy_irq);
1564 		efx->eeh_disabled_legacy_irq = false;
1565 	}
1566 
1567 	efx->type->irq_enable_master(efx);
1568 
1569 	efx_for_each_channel(channel, efx) {
1570 		if (channel->type->keep_eventq) {
1571 			rc = efx_init_eventq(channel);
1572 			if (rc)
1573 				goto fail;
1574 		}
1575 	}
1576 
1577 	rc = efx_soft_enable_interrupts(efx);
1578 	if (rc)
1579 		goto fail;
1580 
1581 	return 0;
1582 
1583 fail:
1584 	end_channel = channel;
1585 	efx_for_each_channel(channel, efx) {
1586 		if (channel == end_channel)
1587 			break;
1588 		if (channel->type->keep_eventq)
1589 			efx_fini_eventq(channel);
1590 	}
1591 
1592 	efx->type->irq_disable_non_ev(efx);
1593 
1594 	return rc;
1595 }
1596 
efx_disable_interrupts(struct efx_nic * efx)1597 static void efx_disable_interrupts(struct efx_nic *efx)
1598 {
1599 	struct efx_channel *channel;
1600 
1601 	efx_soft_disable_interrupts(efx);
1602 
1603 	efx_for_each_channel(channel, efx) {
1604 		if (channel->type->keep_eventq)
1605 			efx_fini_eventq(channel);
1606 	}
1607 
1608 	efx->type->irq_disable_non_ev(efx);
1609 }
1610 
efx_remove_interrupts(struct efx_nic * efx)1611 static void efx_remove_interrupts(struct efx_nic *efx)
1612 {
1613 	struct efx_channel *channel;
1614 
1615 	/* Remove MSI/MSI-X interrupts */
1616 	efx_for_each_channel(channel, efx)
1617 		channel->irq = 0;
1618 	pci_disable_msi(efx->pci_dev);
1619 	pci_disable_msix(efx->pci_dev);
1620 
1621 	/* Remove legacy interrupt */
1622 	efx->legacy_irq = 0;
1623 }
1624 
efx_set_channels(struct efx_nic * efx)1625 static void efx_set_channels(struct efx_nic *efx)
1626 {
1627 	struct efx_channel *channel;
1628 	struct efx_tx_queue *tx_queue;
1629 
1630 	efx->tx_channel_offset =
1631 		efx_separate_tx_channels ?
1632 		efx->n_channels - efx->n_tx_channels : 0;
1633 
1634 	/* We need to mark which channels really have RX and TX
1635 	 * queues, and adjust the TX queue numbers if we have separate
1636 	 * RX-only and TX-only channels.
1637 	 */
1638 	efx_for_each_channel(channel, efx) {
1639 		if (channel->channel < efx->n_rx_channels)
1640 			channel->rx_queue.core_index = channel->channel;
1641 		else
1642 			channel->rx_queue.core_index = -1;
1643 
1644 		efx_for_each_channel_tx_queue(tx_queue, channel)
1645 			tx_queue->queue -= (efx->tx_channel_offset *
1646 					    EFX_TXQ_TYPES);
1647 	}
1648 }
1649 
efx_probe_nic(struct efx_nic * efx)1650 static int efx_probe_nic(struct efx_nic *efx)
1651 {
1652 	int rc;
1653 
1654 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1655 
1656 	/* Carry out hardware-type specific initialisation */
1657 	rc = efx->type->probe(efx);
1658 	if (rc)
1659 		return rc;
1660 
1661 	do {
1662 		if (!efx->max_channels || !efx->max_tx_channels) {
1663 			netif_err(efx, drv, efx->net_dev,
1664 				  "Insufficient resources to allocate"
1665 				  " any channels\n");
1666 			rc = -ENOSPC;
1667 			goto fail1;
1668 		}
1669 
1670 		/* Determine the number of channels and queues by trying
1671 		 * to hook in MSI-X interrupts.
1672 		 */
1673 		rc = efx_probe_interrupts(efx);
1674 		if (rc)
1675 			goto fail1;
1676 
1677 		efx_set_channels(efx);
1678 
1679 		/* dimension_resources can fail with EAGAIN */
1680 		rc = efx->type->dimension_resources(efx);
1681 		if (rc != 0 && rc != -EAGAIN)
1682 			goto fail2;
1683 
1684 		if (rc == -EAGAIN)
1685 			/* try again with new max_channels */
1686 			efx_remove_interrupts(efx);
1687 
1688 	} while (rc == -EAGAIN);
1689 
1690 	if (efx->n_channels > 1)
1691 		netdev_rss_key_fill(&efx->rx_hash_key,
1692 				    sizeof(efx->rx_hash_key));
1693 	efx_set_default_rx_indir_table(efx);
1694 
1695 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1696 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1697 
1698 	/* Initialise the interrupt moderation settings */
1699 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1700 				true);
1701 
1702 	return 0;
1703 
1704 fail2:
1705 	efx_remove_interrupts(efx);
1706 fail1:
1707 	efx->type->remove(efx);
1708 	return rc;
1709 }
1710 
efx_remove_nic(struct efx_nic * efx)1711 static void efx_remove_nic(struct efx_nic *efx)
1712 {
1713 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1714 
1715 	efx_remove_interrupts(efx);
1716 	efx->type->remove(efx);
1717 }
1718 
efx_probe_filters(struct efx_nic * efx)1719 static int efx_probe_filters(struct efx_nic *efx)
1720 {
1721 	int rc;
1722 
1723 	spin_lock_init(&efx->filter_lock);
1724 	init_rwsem(&efx->filter_sem);
1725 	down_write(&efx->filter_sem);
1726 	rc = efx->type->filter_table_probe(efx);
1727 	if (rc)
1728 		goto out_unlock;
1729 
1730 #ifdef CONFIG_RFS_ACCEL
1731 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1732 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1733 					   sizeof(*efx->rps_flow_id),
1734 					   GFP_KERNEL);
1735 		if (!efx->rps_flow_id) {
1736 			efx->type->filter_table_remove(efx);
1737 			rc = -ENOMEM;
1738 			goto out_unlock;
1739 		}
1740 	}
1741 #endif
1742 out_unlock:
1743 	up_write(&efx->filter_sem);
1744 	return rc;
1745 }
1746 
efx_remove_filters(struct efx_nic * efx)1747 static void efx_remove_filters(struct efx_nic *efx)
1748 {
1749 #ifdef CONFIG_RFS_ACCEL
1750 	kfree(efx->rps_flow_id);
1751 #endif
1752 	down_write(&efx->filter_sem);
1753 	efx->type->filter_table_remove(efx);
1754 	up_write(&efx->filter_sem);
1755 }
1756 
efx_restore_filters(struct efx_nic * efx)1757 static void efx_restore_filters(struct efx_nic *efx)
1758 {
1759 	down_read(&efx->filter_sem);
1760 	efx->type->filter_table_restore(efx);
1761 	up_read(&efx->filter_sem);
1762 }
1763 
1764 /**************************************************************************
1765  *
1766  * NIC startup/shutdown
1767  *
1768  *************************************************************************/
1769 
efx_probe_all(struct efx_nic * efx)1770 static int efx_probe_all(struct efx_nic *efx)
1771 {
1772 	int rc;
1773 
1774 	rc = efx_probe_nic(efx);
1775 	if (rc) {
1776 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1777 		goto fail1;
1778 	}
1779 
1780 	rc = efx_probe_port(efx);
1781 	if (rc) {
1782 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1783 		goto fail2;
1784 	}
1785 
1786 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1787 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1788 		rc = -EINVAL;
1789 		goto fail3;
1790 	}
1791 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1792 
1793 #ifdef CONFIG_SFC_SRIOV
1794 	rc = efx->type->vswitching_probe(efx);
1795 	if (rc) /* not fatal; the PF will still work fine */
1796 		netif_warn(efx, probe, efx->net_dev,
1797 			   "failed to setup vswitching rc=%d;"
1798 			   " VFs may not function\n", rc);
1799 #endif
1800 
1801 	rc = efx_probe_filters(efx);
1802 	if (rc) {
1803 		netif_err(efx, probe, efx->net_dev,
1804 			  "failed to create filter tables\n");
1805 		goto fail4;
1806 	}
1807 
1808 	rc = efx_probe_channels(efx);
1809 	if (rc)
1810 		goto fail5;
1811 
1812 	return 0;
1813 
1814  fail5:
1815 	efx_remove_filters(efx);
1816  fail4:
1817 #ifdef CONFIG_SFC_SRIOV
1818 	efx->type->vswitching_remove(efx);
1819 #endif
1820  fail3:
1821 	efx_remove_port(efx);
1822  fail2:
1823 	efx_remove_nic(efx);
1824  fail1:
1825 	return rc;
1826 }
1827 
1828 /* If the interface is supposed to be running but is not, start
1829  * the hardware and software data path, regular activity for the port
1830  * (MAC statistics, link polling, etc.) and schedule the port to be
1831  * reconfigured.  Interrupts must already be enabled.  This function
1832  * is safe to call multiple times, so long as the NIC is not disabled.
1833  * Requires the RTNL lock.
1834  */
efx_start_all(struct efx_nic * efx)1835 static void efx_start_all(struct efx_nic *efx)
1836 {
1837 	EFX_ASSERT_RESET_SERIALISED(efx);
1838 	BUG_ON(efx->state == STATE_DISABLED);
1839 
1840 	/* Check that it is appropriate to restart the interface. All
1841 	 * of these flags are safe to read under just the rtnl lock */
1842 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1843 	    efx->reset_pending)
1844 		return;
1845 
1846 	efx_start_port(efx);
1847 	efx_start_datapath(efx);
1848 
1849 	/* Start the hardware monitor if there is one */
1850 	if (efx->type->monitor != NULL)
1851 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1852 				   efx_monitor_interval);
1853 
1854 	/* If link state detection is normally event-driven, we have
1855 	 * to poll now because we could have missed a change
1856 	 */
1857 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1858 		mutex_lock(&efx->mac_lock);
1859 		if (efx->phy_op->poll(efx))
1860 			efx_link_status_changed(efx);
1861 		mutex_unlock(&efx->mac_lock);
1862 	}
1863 
1864 	efx->type->start_stats(efx);
1865 	efx->type->pull_stats(efx);
1866 	spin_lock_bh(&efx->stats_lock);
1867 	efx->type->update_stats(efx, NULL, NULL);
1868 	spin_unlock_bh(&efx->stats_lock);
1869 }
1870 
1871 /* Quiesce the hardware and software data path, and regular activity
1872  * for the port without bringing the link down.  Safe to call multiple
1873  * times with the NIC in almost any state, but interrupts should be
1874  * enabled.  Requires the RTNL lock.
1875  */
efx_stop_all(struct efx_nic * efx)1876 static void efx_stop_all(struct efx_nic *efx)
1877 {
1878 	EFX_ASSERT_RESET_SERIALISED(efx);
1879 
1880 	/* port_enabled can be read safely under the rtnl lock */
1881 	if (!efx->port_enabled)
1882 		return;
1883 
1884 	/* update stats before we go down so we can accurately count
1885 	 * rx_nodesc_drops
1886 	 */
1887 	efx->type->pull_stats(efx);
1888 	spin_lock_bh(&efx->stats_lock);
1889 	efx->type->update_stats(efx, NULL, NULL);
1890 	spin_unlock_bh(&efx->stats_lock);
1891 	efx->type->stop_stats(efx);
1892 	efx_stop_port(efx);
1893 
1894 	/* Stop the kernel transmit interface.  This is only valid if
1895 	 * the device is stopped or detached; otherwise the watchdog
1896 	 * may fire immediately.
1897 	 */
1898 	WARN_ON(netif_running(efx->net_dev) &&
1899 		netif_device_present(efx->net_dev));
1900 	netif_tx_disable(efx->net_dev);
1901 
1902 	efx_stop_datapath(efx);
1903 }
1904 
efx_remove_all(struct efx_nic * efx)1905 static void efx_remove_all(struct efx_nic *efx)
1906 {
1907 	efx_remove_channels(efx);
1908 	efx_remove_filters(efx);
1909 #ifdef CONFIG_SFC_SRIOV
1910 	efx->type->vswitching_remove(efx);
1911 #endif
1912 	efx_remove_port(efx);
1913 	efx_remove_nic(efx);
1914 }
1915 
1916 /**************************************************************************
1917  *
1918  * Interrupt moderation
1919  *
1920  **************************************************************************/
1921 
irq_mod_ticks(unsigned int usecs,unsigned int quantum_ns)1922 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1923 {
1924 	if (usecs == 0)
1925 		return 0;
1926 	if (usecs * 1000 < quantum_ns)
1927 		return 1; /* never round down to 0 */
1928 	return usecs * 1000 / quantum_ns;
1929 }
1930 
1931 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)1932 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1933 			    unsigned int rx_usecs, bool rx_adaptive,
1934 			    bool rx_may_override_tx)
1935 {
1936 	struct efx_channel *channel;
1937 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1938 						efx->timer_quantum_ns,
1939 						1000);
1940 	unsigned int tx_ticks;
1941 	unsigned int rx_ticks;
1942 
1943 	EFX_ASSERT_RESET_SERIALISED(efx);
1944 
1945 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1946 		return -EINVAL;
1947 
1948 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1949 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1950 
1951 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1952 	    !rx_may_override_tx) {
1953 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1954 			  "RX and TX IRQ moderation must be equal\n");
1955 		return -EINVAL;
1956 	}
1957 
1958 	efx->irq_rx_adaptive = rx_adaptive;
1959 	efx->irq_rx_moderation = rx_ticks;
1960 	efx_for_each_channel(channel, efx) {
1961 		if (efx_channel_has_rx_queue(channel))
1962 			channel->irq_moderation = rx_ticks;
1963 		else if (efx_channel_has_tx_queues(channel))
1964 			channel->irq_moderation = tx_ticks;
1965 	}
1966 
1967 	return 0;
1968 }
1969 
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)1970 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1971 			    unsigned int *rx_usecs, bool *rx_adaptive)
1972 {
1973 	/* We must round up when converting ticks to microseconds
1974 	 * because we round down when converting the other way.
1975 	 */
1976 
1977 	*rx_adaptive = efx->irq_rx_adaptive;
1978 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1979 				 efx->timer_quantum_ns,
1980 				 1000);
1981 
1982 	/* If channels are shared between RX and TX, so is IRQ
1983 	 * moderation.  Otherwise, IRQ moderation is the same for all
1984 	 * TX channels and is not adaptive.
1985 	 */
1986 	if (efx->tx_channel_offset == 0)
1987 		*tx_usecs = *rx_usecs;
1988 	else
1989 		*tx_usecs = DIV_ROUND_UP(
1990 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1991 			efx->timer_quantum_ns,
1992 			1000);
1993 }
1994 
1995 /**************************************************************************
1996  *
1997  * Hardware monitor
1998  *
1999  **************************************************************************/
2000 
2001 /* Run periodically off the general workqueue */
efx_monitor(struct work_struct * data)2002 static void efx_monitor(struct work_struct *data)
2003 {
2004 	struct efx_nic *efx = container_of(data, struct efx_nic,
2005 					   monitor_work.work);
2006 
2007 	netif_vdbg(efx, timer, efx->net_dev,
2008 		   "hardware monitor executing on CPU %d\n",
2009 		   raw_smp_processor_id());
2010 	BUG_ON(efx->type->monitor == NULL);
2011 
2012 	/* If the mac_lock is already held then it is likely a port
2013 	 * reconfiguration is already in place, which will likely do
2014 	 * most of the work of monitor() anyway. */
2015 	if (mutex_trylock(&efx->mac_lock)) {
2016 		if (efx->port_enabled)
2017 			efx->type->monitor(efx);
2018 		mutex_unlock(&efx->mac_lock);
2019 	}
2020 
2021 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2022 			   efx_monitor_interval);
2023 }
2024 
2025 /**************************************************************************
2026  *
2027  * ioctls
2028  *
2029  *************************************************************************/
2030 
2031 /* Net device ioctl
2032  * Context: process, rtnl_lock() held.
2033  */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)2034 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2035 {
2036 	struct efx_nic *efx = netdev_priv(net_dev);
2037 	struct mii_ioctl_data *data = if_mii(ifr);
2038 
2039 	if (cmd == SIOCSHWTSTAMP)
2040 		return efx_ptp_set_ts_config(efx, ifr);
2041 	if (cmd == SIOCGHWTSTAMP)
2042 		return efx_ptp_get_ts_config(efx, ifr);
2043 
2044 	/* Convert phy_id from older PRTAD/DEVAD format */
2045 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2046 	    (data->phy_id & 0xfc00) == 0x0400)
2047 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2048 
2049 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2050 }
2051 
2052 /**************************************************************************
2053  *
2054  * NAPI interface
2055  *
2056  **************************************************************************/
2057 
efx_init_napi_channel(struct efx_channel * channel)2058 static void efx_init_napi_channel(struct efx_channel *channel)
2059 {
2060 	struct efx_nic *efx = channel->efx;
2061 
2062 	channel->napi_dev = efx->net_dev;
2063 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2064 		       efx_poll, napi_weight);
2065 	napi_hash_add(&channel->napi_str);
2066 	efx_channel_busy_poll_init(channel);
2067 }
2068 
efx_init_napi(struct efx_nic * efx)2069 static void efx_init_napi(struct efx_nic *efx)
2070 {
2071 	struct efx_channel *channel;
2072 
2073 	efx_for_each_channel(channel, efx)
2074 		efx_init_napi_channel(channel);
2075 }
2076 
efx_fini_napi_channel(struct efx_channel * channel)2077 static void efx_fini_napi_channel(struct efx_channel *channel)
2078 {
2079 	if (channel->napi_dev) {
2080 		netif_napi_del(&channel->napi_str);
2081 		napi_hash_del(&channel->napi_str);
2082 	}
2083 	channel->napi_dev = NULL;
2084 }
2085 
efx_fini_napi(struct efx_nic * efx)2086 static void efx_fini_napi(struct efx_nic *efx)
2087 {
2088 	struct efx_channel *channel;
2089 
2090 	efx_for_each_channel(channel, efx)
2091 		efx_fini_napi_channel(channel);
2092 }
2093 
2094 /**************************************************************************
2095  *
2096  * Kernel netpoll interface
2097  *
2098  *************************************************************************/
2099 
2100 #ifdef CONFIG_NET_POLL_CONTROLLER
2101 
2102 /* Although in the common case interrupts will be disabled, this is not
2103  * guaranteed. However, all our work happens inside the NAPI callback,
2104  * so no locking is required.
2105  */
efx_netpoll(struct net_device * net_dev)2106 static void efx_netpoll(struct net_device *net_dev)
2107 {
2108 	struct efx_nic *efx = netdev_priv(net_dev);
2109 	struct efx_channel *channel;
2110 
2111 	efx_for_each_channel(channel, efx)
2112 		efx_schedule_channel(channel);
2113 }
2114 
2115 #endif
2116 
2117 #ifdef CONFIG_NET_RX_BUSY_POLL
efx_busy_poll(struct napi_struct * napi)2118 static int efx_busy_poll(struct napi_struct *napi)
2119 {
2120 	struct efx_channel *channel =
2121 		container_of(napi, struct efx_channel, napi_str);
2122 	struct efx_nic *efx = channel->efx;
2123 	int budget = 4;
2124 	int old_rx_packets, rx_packets;
2125 
2126 	if (!netif_running(efx->net_dev))
2127 		return LL_FLUSH_FAILED;
2128 
2129 	if (!efx_channel_try_lock_poll(channel))
2130 		return LL_FLUSH_BUSY;
2131 
2132 	old_rx_packets = channel->rx_queue.rx_packets;
2133 	efx_process_channel(channel, budget);
2134 
2135 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2136 
2137 	/* There is no race condition with NAPI here.
2138 	 * NAPI will automatically be rescheduled if it yielded during busy
2139 	 * polling, because it was not able to take the lock and thus returned
2140 	 * the full budget.
2141 	 */
2142 	efx_channel_unlock_poll(channel);
2143 
2144 	return rx_packets;
2145 }
2146 #endif
2147 
2148 /**************************************************************************
2149  *
2150  * Kernel net device interface
2151  *
2152  *************************************************************************/
2153 
2154 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)2155 int efx_net_open(struct net_device *net_dev)
2156 {
2157 	struct efx_nic *efx = netdev_priv(net_dev);
2158 	int rc;
2159 
2160 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2161 		  raw_smp_processor_id());
2162 
2163 	rc = efx_check_disabled(efx);
2164 	if (rc)
2165 		return rc;
2166 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2167 		return -EBUSY;
2168 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2169 		return -EIO;
2170 
2171 	/* Notify the kernel of the link state polled during driver load,
2172 	 * before the monitor starts running */
2173 	efx_link_status_changed(efx);
2174 
2175 	efx_start_all(efx);
2176 	efx_selftest_async_start(efx);
2177 	return 0;
2178 }
2179 
2180 /* Context: process, rtnl_lock() held.
2181  * Note that the kernel will ignore our return code; this method
2182  * should really be a void.
2183  */
efx_net_stop(struct net_device * net_dev)2184 int efx_net_stop(struct net_device *net_dev)
2185 {
2186 	struct efx_nic *efx = netdev_priv(net_dev);
2187 
2188 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2189 		  raw_smp_processor_id());
2190 
2191 	/* Stop the device and flush all the channels */
2192 	efx_stop_all(efx);
2193 
2194 	return 0;
2195 }
2196 
2197 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)2198 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2199 					       struct rtnl_link_stats64 *stats)
2200 {
2201 	struct efx_nic *efx = netdev_priv(net_dev);
2202 
2203 	spin_lock_bh(&efx->stats_lock);
2204 	efx->type->update_stats(efx, NULL, stats);
2205 	spin_unlock_bh(&efx->stats_lock);
2206 
2207 	return stats;
2208 }
2209 
2210 /* Context: netif_tx_lock held, BHs disabled. */
efx_watchdog(struct net_device * net_dev)2211 static void efx_watchdog(struct net_device *net_dev)
2212 {
2213 	struct efx_nic *efx = netdev_priv(net_dev);
2214 
2215 	netif_err(efx, tx_err, efx->net_dev,
2216 		  "TX stuck with port_enabled=%d: resetting channels\n",
2217 		  efx->port_enabled);
2218 
2219 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2220 }
2221 
2222 
2223 /* Context: process, rtnl_lock() held. */
efx_change_mtu(struct net_device * net_dev,int new_mtu)2224 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2225 {
2226 	struct efx_nic *efx = netdev_priv(net_dev);
2227 	int rc;
2228 
2229 	rc = efx_check_disabled(efx);
2230 	if (rc)
2231 		return rc;
2232 	if (new_mtu > EFX_MAX_MTU)
2233 		return -EINVAL;
2234 
2235 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2236 
2237 	efx_device_detach_sync(efx);
2238 	efx_stop_all(efx);
2239 
2240 	mutex_lock(&efx->mac_lock);
2241 	net_dev->mtu = new_mtu;
2242 	efx_mac_reconfigure(efx);
2243 	mutex_unlock(&efx->mac_lock);
2244 
2245 	efx_start_all(efx);
2246 	netif_device_attach(efx->net_dev);
2247 	return 0;
2248 }
2249 
efx_set_mac_address(struct net_device * net_dev,void * data)2250 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2251 {
2252 	struct efx_nic *efx = netdev_priv(net_dev);
2253 	struct sockaddr *addr = data;
2254 	u8 *new_addr = addr->sa_data;
2255 	u8 old_addr[6];
2256 	int rc;
2257 
2258 	if (!is_valid_ether_addr(new_addr)) {
2259 		netif_err(efx, drv, efx->net_dev,
2260 			  "invalid ethernet MAC address requested: %pM\n",
2261 			  new_addr);
2262 		return -EADDRNOTAVAIL;
2263 	}
2264 
2265 	/* save old address */
2266 	ether_addr_copy(old_addr, net_dev->dev_addr);
2267 	ether_addr_copy(net_dev->dev_addr, new_addr);
2268 	if (efx->type->set_mac_address) {
2269 		rc = efx->type->set_mac_address(efx);
2270 		if (rc) {
2271 			ether_addr_copy(net_dev->dev_addr, old_addr);
2272 			return rc;
2273 		}
2274 	}
2275 
2276 	/* Reconfigure the MAC */
2277 	mutex_lock(&efx->mac_lock);
2278 	efx_mac_reconfigure(efx);
2279 	mutex_unlock(&efx->mac_lock);
2280 
2281 	return 0;
2282 }
2283 
2284 /* Context: netif_addr_lock held, BHs disabled. */
efx_set_rx_mode(struct net_device * net_dev)2285 static void efx_set_rx_mode(struct net_device *net_dev)
2286 {
2287 	struct efx_nic *efx = netdev_priv(net_dev);
2288 
2289 	if (efx->port_enabled)
2290 		queue_work(efx->workqueue, &efx->mac_work);
2291 	/* Otherwise efx_start_port() will do this */
2292 }
2293 
efx_set_features(struct net_device * net_dev,netdev_features_t data)2294 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2295 {
2296 	struct efx_nic *efx = netdev_priv(net_dev);
2297 
2298 	/* If disabling RX n-tuple filtering, clear existing filters */
2299 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2300 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2301 
2302 	return 0;
2303 }
2304 
2305 static const struct net_device_ops efx_netdev_ops = {
2306 	.ndo_open		= efx_net_open,
2307 	.ndo_stop		= efx_net_stop,
2308 	.ndo_get_stats64	= efx_net_stats,
2309 	.ndo_tx_timeout		= efx_watchdog,
2310 	.ndo_start_xmit		= efx_hard_start_xmit,
2311 	.ndo_validate_addr	= eth_validate_addr,
2312 	.ndo_do_ioctl		= efx_ioctl,
2313 	.ndo_change_mtu		= efx_change_mtu,
2314 	.ndo_set_mac_address	= efx_set_mac_address,
2315 	.ndo_set_rx_mode	= efx_set_rx_mode,
2316 	.ndo_set_features	= efx_set_features,
2317 #ifdef CONFIG_SFC_SRIOV
2318 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2319 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2320 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2321 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2322 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2323 	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2324 #endif
2325 #ifdef CONFIG_NET_POLL_CONTROLLER
2326 	.ndo_poll_controller = efx_netpoll,
2327 #endif
2328 	.ndo_setup_tc		= efx_setup_tc,
2329 #ifdef CONFIG_NET_RX_BUSY_POLL
2330 	.ndo_busy_poll		= efx_busy_poll,
2331 #endif
2332 #ifdef CONFIG_RFS_ACCEL
2333 	.ndo_rx_flow_steer	= efx_filter_rfs,
2334 #endif
2335 };
2336 
efx_update_name(struct efx_nic * efx)2337 static void efx_update_name(struct efx_nic *efx)
2338 {
2339 	strcpy(efx->name, efx->net_dev->name);
2340 	efx_mtd_rename(efx);
2341 	efx_set_channel_names(efx);
2342 }
2343 
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2344 static int efx_netdev_event(struct notifier_block *this,
2345 			    unsigned long event, void *ptr)
2346 {
2347 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2348 
2349 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2350 	    event == NETDEV_CHANGENAME)
2351 		efx_update_name(netdev_priv(net_dev));
2352 
2353 	return NOTIFY_DONE;
2354 }
2355 
2356 static struct notifier_block efx_netdev_notifier = {
2357 	.notifier_call = efx_netdev_event,
2358 };
2359 
2360 static ssize_t
show_phy_type(struct device * dev,struct device_attribute * attr,char * buf)2361 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2362 {
2363 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2364 	return sprintf(buf, "%d\n", efx->phy_type);
2365 }
2366 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2367 
2368 #ifdef CONFIG_SFC_MCDI_LOGGING
show_mcdi_log(struct device * dev,struct device_attribute * attr,char * buf)2369 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2370 			     char *buf)
2371 {
2372 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2373 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2374 
2375 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2376 }
set_mcdi_log(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2377 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2378 			    const char *buf, size_t count)
2379 {
2380 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2381 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2382 	bool enable = count > 0 && *buf != '0';
2383 
2384 	mcdi->logging_enabled = enable;
2385 	return count;
2386 }
2387 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2388 #endif
2389 
efx_register_netdev(struct efx_nic * efx)2390 static int efx_register_netdev(struct efx_nic *efx)
2391 {
2392 	struct net_device *net_dev = efx->net_dev;
2393 	struct efx_channel *channel;
2394 	int rc;
2395 
2396 	net_dev->watchdog_timeo = 5 * HZ;
2397 	net_dev->irq = efx->pci_dev->irq;
2398 	net_dev->netdev_ops = &efx_netdev_ops;
2399 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2400 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2401 	net_dev->ethtool_ops = &efx_ethtool_ops;
2402 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2403 
2404 	rtnl_lock();
2405 
2406 	/* Enable resets to be scheduled and check whether any were
2407 	 * already requested.  If so, the NIC is probably hosed so we
2408 	 * abort.
2409 	 */
2410 	efx->state = STATE_READY;
2411 	smp_mb(); /* ensure we change state before checking reset_pending */
2412 	if (efx->reset_pending) {
2413 		netif_err(efx, probe, efx->net_dev,
2414 			  "aborting probe due to scheduled reset\n");
2415 		rc = -EIO;
2416 		goto fail_locked;
2417 	}
2418 
2419 	rc = dev_alloc_name(net_dev, net_dev->name);
2420 	if (rc < 0)
2421 		goto fail_locked;
2422 	efx_update_name(efx);
2423 
2424 	/* Always start with carrier off; PHY events will detect the link */
2425 	netif_carrier_off(net_dev);
2426 
2427 	rc = register_netdevice(net_dev);
2428 	if (rc)
2429 		goto fail_locked;
2430 
2431 	efx_for_each_channel(channel, efx) {
2432 		struct efx_tx_queue *tx_queue;
2433 		efx_for_each_channel_tx_queue(tx_queue, channel)
2434 			efx_init_tx_queue_core_txq(tx_queue);
2435 	}
2436 
2437 	efx_associate(efx);
2438 
2439 	rtnl_unlock();
2440 
2441 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2442 	if (rc) {
2443 		netif_err(efx, drv, efx->net_dev,
2444 			  "failed to init net dev attributes\n");
2445 		goto fail_registered;
2446 	}
2447 #ifdef CONFIG_SFC_MCDI_LOGGING
2448 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2449 	if (rc) {
2450 		netif_err(efx, drv, efx->net_dev,
2451 			  "failed to init net dev attributes\n");
2452 		goto fail_attr_mcdi_logging;
2453 	}
2454 #endif
2455 
2456 	return 0;
2457 
2458 #ifdef CONFIG_SFC_MCDI_LOGGING
2459 fail_attr_mcdi_logging:
2460 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2461 #endif
2462 fail_registered:
2463 	rtnl_lock();
2464 	efx_dissociate(efx);
2465 	unregister_netdevice(net_dev);
2466 fail_locked:
2467 	efx->state = STATE_UNINIT;
2468 	rtnl_unlock();
2469 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2470 	return rc;
2471 }
2472 
efx_unregister_netdev(struct efx_nic * efx)2473 static void efx_unregister_netdev(struct efx_nic *efx)
2474 {
2475 	if (!efx->net_dev)
2476 		return;
2477 
2478 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2479 
2480 	if (efx_dev_registered(efx)) {
2481 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2482 #ifdef CONFIG_SFC_MCDI_LOGGING
2483 		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2484 #endif
2485 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2486 		unregister_netdev(efx->net_dev);
2487 	}
2488 }
2489 
2490 /**************************************************************************
2491  *
2492  * Device reset and suspend
2493  *
2494  **************************************************************************/
2495 
2496 /* Tears down the entire software state and most of the hardware state
2497  * before reset.  */
efx_reset_down(struct efx_nic * efx,enum reset_type method)2498 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2499 {
2500 	EFX_ASSERT_RESET_SERIALISED(efx);
2501 
2502 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2503 		efx->type->prepare_flr(efx);
2504 
2505 	efx_stop_all(efx);
2506 	efx_disable_interrupts(efx);
2507 
2508 	mutex_lock(&efx->mac_lock);
2509 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2510 	    method != RESET_TYPE_DATAPATH)
2511 		efx->phy_op->fini(efx);
2512 	efx->type->fini(efx);
2513 }
2514 
2515 /* This function will always ensure that the locks acquired in
2516  * efx_reset_down() are released. A failure return code indicates
2517  * that we were unable to reinitialise the hardware, and the
2518  * driver should be disabled. If ok is false, then the rx and tx
2519  * engines are not restarted, pending a RESET_DISABLE. */
efx_reset_up(struct efx_nic * efx,enum reset_type method,bool ok)2520 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2521 {
2522 	int rc;
2523 
2524 	EFX_ASSERT_RESET_SERIALISED(efx);
2525 
2526 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2527 		efx->type->finish_flr(efx);
2528 
2529 	/* Ensure that SRAM is initialised even if we're disabling the device */
2530 	rc = efx->type->init(efx);
2531 	if (rc) {
2532 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2533 		goto fail;
2534 	}
2535 
2536 	if (!ok)
2537 		goto fail;
2538 
2539 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2540 	    method != RESET_TYPE_DATAPATH) {
2541 		rc = efx->phy_op->init(efx);
2542 		if (rc)
2543 			goto fail;
2544 		rc = efx->phy_op->reconfigure(efx);
2545 		if (rc && rc != -EPERM)
2546 			netif_err(efx, drv, efx->net_dev,
2547 				  "could not restore PHY settings\n");
2548 	}
2549 
2550 	rc = efx_enable_interrupts(efx);
2551 	if (rc)
2552 		goto fail;
2553 
2554 #ifdef CONFIG_SFC_SRIOV
2555 	rc = efx->type->vswitching_restore(efx);
2556 	if (rc) /* not fatal; the PF will still work fine */
2557 		netif_warn(efx, probe, efx->net_dev,
2558 			   "failed to restore vswitching rc=%d;"
2559 			   " VFs may not function\n", rc);
2560 #endif
2561 
2562 	down_read(&efx->filter_sem);
2563 	efx_restore_filters(efx);
2564 	up_read(&efx->filter_sem);
2565 	if (efx->type->sriov_reset)
2566 		efx->type->sriov_reset(efx);
2567 
2568 	mutex_unlock(&efx->mac_lock);
2569 
2570 	efx_start_all(efx);
2571 
2572 	return 0;
2573 
2574 fail:
2575 	efx->port_initialized = false;
2576 
2577 	mutex_unlock(&efx->mac_lock);
2578 
2579 	return rc;
2580 }
2581 
2582 /* Reset the NIC using the specified method.  Note that the reset may
2583  * fail, in which case the card will be left in an unusable state.
2584  *
2585  * Caller must hold the rtnl_lock.
2586  */
efx_reset(struct efx_nic * efx,enum reset_type method)2587 int efx_reset(struct efx_nic *efx, enum reset_type method)
2588 {
2589 	int rc, rc2;
2590 	bool disabled;
2591 
2592 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2593 		   RESET_TYPE(method));
2594 
2595 	efx_device_detach_sync(efx);
2596 	efx_reset_down(efx, method);
2597 
2598 	rc = efx->type->reset(efx, method);
2599 	if (rc) {
2600 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2601 		goto out;
2602 	}
2603 
2604 	/* Clear flags for the scopes we covered.  We assume the NIC and
2605 	 * driver are now quiescent so that there is no race here.
2606 	 */
2607 	if (method < RESET_TYPE_MAX_METHOD)
2608 		efx->reset_pending &= -(1 << (method + 1));
2609 	else /* it doesn't fit into the well-ordered scope hierarchy */
2610 		__clear_bit(method, &efx->reset_pending);
2611 
2612 	/* Reinitialise bus-mastering, which may have been turned off before
2613 	 * the reset was scheduled. This is still appropriate, even in the
2614 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2615 	 * can respond to requests. */
2616 	pci_set_master(efx->pci_dev);
2617 
2618 out:
2619 	/* Leave device stopped if necessary */
2620 	disabled = rc ||
2621 		method == RESET_TYPE_DISABLE ||
2622 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2623 	rc2 = efx_reset_up(efx, method, !disabled);
2624 	if (rc2) {
2625 		disabled = true;
2626 		if (!rc)
2627 			rc = rc2;
2628 	}
2629 
2630 	if (disabled) {
2631 		dev_close(efx->net_dev);
2632 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2633 		efx->state = STATE_DISABLED;
2634 	} else {
2635 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2636 		netif_device_attach(efx->net_dev);
2637 	}
2638 	return rc;
2639 }
2640 
2641 /* Try recovery mechanisms.
2642  * For now only EEH is supported.
2643  * Returns 0 if the recovery mechanisms are unsuccessful.
2644  * Returns a non-zero value otherwise.
2645  */
efx_try_recovery(struct efx_nic * efx)2646 int efx_try_recovery(struct efx_nic *efx)
2647 {
2648 #ifdef CONFIG_EEH
2649 	/* A PCI error can occur and not be seen by EEH because nothing
2650 	 * happens on the PCI bus. In this case the driver may fail and
2651 	 * schedule a 'recover or reset', leading to this recovery handler.
2652 	 * Manually call the eeh failure check function.
2653 	 */
2654 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2655 	if (eeh_dev_check_failure(eehdev)) {
2656 		/* The EEH mechanisms will handle the error and reset the
2657 		 * device if necessary.
2658 		 */
2659 		return 1;
2660 	}
2661 #endif
2662 	return 0;
2663 }
2664 
efx_wait_for_bist_end(struct efx_nic * efx)2665 static void efx_wait_for_bist_end(struct efx_nic *efx)
2666 {
2667 	int i;
2668 
2669 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2670 		if (efx_mcdi_poll_reboot(efx))
2671 			goto out;
2672 		msleep(BIST_WAIT_DELAY_MS);
2673 	}
2674 
2675 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2676 out:
2677 	/* Either way unset the BIST flag. If we found no reboot we probably
2678 	 * won't recover, but we should try.
2679 	 */
2680 	efx->mc_bist_for_other_fn = false;
2681 }
2682 
2683 /* The worker thread exists so that code that cannot sleep can
2684  * schedule a reset for later.
2685  */
efx_reset_work(struct work_struct * data)2686 static void efx_reset_work(struct work_struct *data)
2687 {
2688 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2689 	unsigned long pending;
2690 	enum reset_type method;
2691 
2692 	pending = ACCESS_ONCE(efx->reset_pending);
2693 	method = fls(pending) - 1;
2694 
2695 	if (method == RESET_TYPE_MC_BIST)
2696 		efx_wait_for_bist_end(efx);
2697 
2698 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2699 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2700 	    efx_try_recovery(efx))
2701 		return;
2702 
2703 	if (!pending)
2704 		return;
2705 
2706 	rtnl_lock();
2707 
2708 	/* We checked the state in efx_schedule_reset() but it may
2709 	 * have changed by now.  Now that we have the RTNL lock,
2710 	 * it cannot change again.
2711 	 */
2712 	if (efx->state == STATE_READY)
2713 		(void)efx_reset(efx, method);
2714 
2715 	rtnl_unlock();
2716 }
2717 
efx_schedule_reset(struct efx_nic * efx,enum reset_type type)2718 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2719 {
2720 	enum reset_type method;
2721 
2722 	if (efx->state == STATE_RECOVERY) {
2723 		netif_dbg(efx, drv, efx->net_dev,
2724 			  "recovering: skip scheduling %s reset\n",
2725 			  RESET_TYPE(type));
2726 		return;
2727 	}
2728 
2729 	switch (type) {
2730 	case RESET_TYPE_INVISIBLE:
2731 	case RESET_TYPE_ALL:
2732 	case RESET_TYPE_RECOVER_OR_ALL:
2733 	case RESET_TYPE_WORLD:
2734 	case RESET_TYPE_DISABLE:
2735 	case RESET_TYPE_RECOVER_OR_DISABLE:
2736 	case RESET_TYPE_DATAPATH:
2737 	case RESET_TYPE_MC_BIST:
2738 	case RESET_TYPE_MCDI_TIMEOUT:
2739 		method = type;
2740 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2741 			  RESET_TYPE(method));
2742 		break;
2743 	default:
2744 		method = efx->type->map_reset_reason(type);
2745 		netif_dbg(efx, drv, efx->net_dev,
2746 			  "scheduling %s reset for %s\n",
2747 			  RESET_TYPE(method), RESET_TYPE(type));
2748 		break;
2749 	}
2750 
2751 	set_bit(method, &efx->reset_pending);
2752 	smp_mb(); /* ensure we change reset_pending before checking state */
2753 
2754 	/* If we're not READY then just leave the flags set as the cue
2755 	 * to abort probing or reschedule the reset later.
2756 	 */
2757 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2758 		return;
2759 
2760 	/* efx_process_channel() will no longer read events once a
2761 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2762 	efx_mcdi_mode_poll(efx);
2763 
2764 	queue_work(reset_workqueue, &efx->reset_work);
2765 }
2766 
2767 /**************************************************************************
2768  *
2769  * List of NICs we support
2770  *
2771  **************************************************************************/
2772 
2773 /* PCI device ID table */
2774 static const struct pci_device_id efx_pci_table[] = {
2775 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2776 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2777 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2778 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2779 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2780 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2781 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2782 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2783 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2784 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2785 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2786 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2787 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2788 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2789 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2790 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2791 	{0}			/* end of list */
2792 };
2793 
2794 /**************************************************************************
2795  *
2796  * Dummy PHY/MAC operations
2797  *
2798  * Can be used for some unimplemented operations
2799  * Needed so all function pointers are valid and do not have to be tested
2800  * before use
2801  *
2802  **************************************************************************/
efx_port_dummy_op_int(struct efx_nic * efx)2803 int efx_port_dummy_op_int(struct efx_nic *efx)
2804 {
2805 	return 0;
2806 }
efx_port_dummy_op_void(struct efx_nic * efx)2807 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2808 
efx_port_dummy_op_poll(struct efx_nic * efx)2809 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2810 {
2811 	return false;
2812 }
2813 
2814 static const struct efx_phy_operations efx_dummy_phy_operations = {
2815 	.init		 = efx_port_dummy_op_int,
2816 	.reconfigure	 = efx_port_dummy_op_int,
2817 	.poll		 = efx_port_dummy_op_poll,
2818 	.fini		 = efx_port_dummy_op_void,
2819 };
2820 
2821 /**************************************************************************
2822  *
2823  * Data housekeeping
2824  *
2825  **************************************************************************/
2826 
2827 /* This zeroes out and then fills in the invariants in a struct
2828  * efx_nic (including all sub-structures).
2829  */
efx_init_struct(struct efx_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)2830 static int efx_init_struct(struct efx_nic *efx,
2831 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2832 {
2833 	int i;
2834 
2835 	/* Initialise common structures */
2836 	INIT_LIST_HEAD(&efx->node);
2837 	INIT_LIST_HEAD(&efx->secondary_list);
2838 	spin_lock_init(&efx->biu_lock);
2839 #ifdef CONFIG_SFC_MTD
2840 	INIT_LIST_HEAD(&efx->mtd_list);
2841 #endif
2842 	INIT_WORK(&efx->reset_work, efx_reset_work);
2843 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2844 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2845 	efx->pci_dev = pci_dev;
2846 	efx->msg_enable = debug;
2847 	efx->state = STATE_UNINIT;
2848 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2849 
2850 	efx->net_dev = net_dev;
2851 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2852 	efx->rx_ip_align =
2853 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2854 	efx->rx_packet_hash_offset =
2855 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2856 	efx->rx_packet_ts_offset =
2857 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2858 	spin_lock_init(&efx->stats_lock);
2859 	mutex_init(&efx->mac_lock);
2860 	efx->phy_op = &efx_dummy_phy_operations;
2861 	efx->mdio.dev = net_dev;
2862 	INIT_WORK(&efx->mac_work, efx_mac_work);
2863 	init_waitqueue_head(&efx->flush_wq);
2864 
2865 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2866 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2867 		if (!efx->channel[i])
2868 			goto fail;
2869 		efx->msi_context[i].efx = efx;
2870 		efx->msi_context[i].index = i;
2871 	}
2872 
2873 	/* Higher numbered interrupt modes are less capable! */
2874 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2875 				  interrupt_mode);
2876 
2877 	/* Would be good to use the net_dev name, but we're too early */
2878 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2879 		 pci_name(pci_dev));
2880 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2881 	if (!efx->workqueue)
2882 		goto fail;
2883 
2884 	return 0;
2885 
2886 fail:
2887 	efx_fini_struct(efx);
2888 	return -ENOMEM;
2889 }
2890 
efx_fini_struct(struct efx_nic * efx)2891 static void efx_fini_struct(struct efx_nic *efx)
2892 {
2893 	int i;
2894 
2895 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2896 		kfree(efx->channel[i]);
2897 
2898 	kfree(efx->vpd_sn);
2899 
2900 	if (efx->workqueue) {
2901 		destroy_workqueue(efx->workqueue);
2902 		efx->workqueue = NULL;
2903 	}
2904 }
2905 
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)2906 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2907 {
2908 	u64 n_rx_nodesc_trunc = 0;
2909 	struct efx_channel *channel;
2910 
2911 	efx_for_each_channel(channel, efx)
2912 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2913 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2914 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2915 }
2916 
2917 /**************************************************************************
2918  *
2919  * PCI interface
2920  *
2921  **************************************************************************/
2922 
2923 /* Main body of final NIC shutdown code
2924  * This is called only at module unload (or hotplug removal).
2925  */
efx_pci_remove_main(struct efx_nic * efx)2926 static void efx_pci_remove_main(struct efx_nic *efx)
2927 {
2928 	/* Flush reset_work. It can no longer be scheduled since we
2929 	 * are not READY.
2930 	 */
2931 	BUG_ON(efx->state == STATE_READY);
2932 	cancel_work_sync(&efx->reset_work);
2933 
2934 	efx_disable_interrupts(efx);
2935 	efx_nic_fini_interrupt(efx);
2936 	efx_fini_port(efx);
2937 	efx->type->fini(efx);
2938 	efx_fini_napi(efx);
2939 	efx_remove_all(efx);
2940 }
2941 
2942 /* Final NIC shutdown
2943  * This is called only at module unload (or hotplug removal).  A PF can call
2944  * this on its VFs to ensure they are unbound first.
2945  */
efx_pci_remove(struct pci_dev * pci_dev)2946 static void efx_pci_remove(struct pci_dev *pci_dev)
2947 {
2948 	struct efx_nic *efx;
2949 
2950 	efx = pci_get_drvdata(pci_dev);
2951 	if (!efx)
2952 		return;
2953 
2954 	/* Mark the NIC as fini, then stop the interface */
2955 	rtnl_lock();
2956 	efx_dissociate(efx);
2957 	dev_close(efx->net_dev);
2958 	efx_disable_interrupts(efx);
2959 	efx->state = STATE_UNINIT;
2960 	rtnl_unlock();
2961 
2962 	if (efx->type->sriov_fini)
2963 		efx->type->sriov_fini(efx);
2964 
2965 	efx_unregister_netdev(efx);
2966 
2967 	efx_mtd_remove(efx);
2968 
2969 	efx_pci_remove_main(efx);
2970 
2971 	efx_fini_io(efx);
2972 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2973 
2974 	efx_fini_struct(efx);
2975 	free_netdev(efx->net_dev);
2976 
2977 	pci_disable_pcie_error_reporting(pci_dev);
2978 };
2979 
2980 /* NIC VPD information
2981  * Called during probe to display the part number of the
2982  * installed NIC.  VPD is potentially very large but this should
2983  * always appear within the first 512 bytes.
2984  */
2985 #define SFC_VPD_LEN 512
efx_probe_vpd_strings(struct efx_nic * efx)2986 static void efx_probe_vpd_strings(struct efx_nic *efx)
2987 {
2988 	struct pci_dev *dev = efx->pci_dev;
2989 	char vpd_data[SFC_VPD_LEN];
2990 	ssize_t vpd_size;
2991 	int ro_start, ro_size, i, j;
2992 
2993 	/* Get the vpd data from the device */
2994 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2995 	if (vpd_size <= 0) {
2996 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2997 		return;
2998 	}
2999 
3000 	/* Get the Read only section */
3001 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3002 	if (ro_start < 0) {
3003 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3004 		return;
3005 	}
3006 
3007 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3008 	j = ro_size;
3009 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3010 	if (i + j > vpd_size)
3011 		j = vpd_size - i;
3012 
3013 	/* Get the Part number */
3014 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3015 	if (i < 0) {
3016 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3017 		return;
3018 	}
3019 
3020 	j = pci_vpd_info_field_size(&vpd_data[i]);
3021 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3022 	if (i + j > vpd_size) {
3023 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3024 		return;
3025 	}
3026 
3027 	netif_info(efx, drv, efx->net_dev,
3028 		   "Part Number : %.*s\n", j, &vpd_data[i]);
3029 
3030 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3031 	j = ro_size;
3032 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3033 	if (i < 0) {
3034 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3035 		return;
3036 	}
3037 
3038 	j = pci_vpd_info_field_size(&vpd_data[i]);
3039 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3040 	if (i + j > vpd_size) {
3041 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3042 		return;
3043 	}
3044 
3045 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3046 	if (!efx->vpd_sn)
3047 		return;
3048 
3049 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3050 }
3051 
3052 
3053 /* Main body of NIC initialisation
3054  * This is called at module load (or hotplug insertion, theoretically).
3055  */
efx_pci_probe_main(struct efx_nic * efx)3056 static int efx_pci_probe_main(struct efx_nic *efx)
3057 {
3058 	int rc;
3059 
3060 	/* Do start-of-day initialisation */
3061 	rc = efx_probe_all(efx);
3062 	if (rc)
3063 		goto fail1;
3064 
3065 	efx_init_napi(efx);
3066 
3067 	rc = efx->type->init(efx);
3068 	if (rc) {
3069 		netif_err(efx, probe, efx->net_dev,
3070 			  "failed to initialise NIC\n");
3071 		goto fail3;
3072 	}
3073 
3074 	rc = efx_init_port(efx);
3075 	if (rc) {
3076 		netif_err(efx, probe, efx->net_dev,
3077 			  "failed to initialise port\n");
3078 		goto fail4;
3079 	}
3080 
3081 	rc = efx_nic_init_interrupt(efx);
3082 	if (rc)
3083 		goto fail5;
3084 	rc = efx_enable_interrupts(efx);
3085 	if (rc)
3086 		goto fail6;
3087 
3088 	return 0;
3089 
3090  fail6:
3091 	efx_nic_fini_interrupt(efx);
3092  fail5:
3093 	efx_fini_port(efx);
3094  fail4:
3095 	efx->type->fini(efx);
3096  fail3:
3097 	efx_fini_napi(efx);
3098 	efx_remove_all(efx);
3099  fail1:
3100 	return rc;
3101 }
3102 
3103 /* NIC initialisation
3104  *
3105  * This is called at module load (or hotplug insertion,
3106  * theoretically).  It sets up PCI mappings, resets the NIC,
3107  * sets up and registers the network devices with the kernel and hooks
3108  * the interrupt service routine.  It does not prepare the device for
3109  * transmission; this is left to the first time one of the network
3110  * interfaces is brought up (i.e. efx_net_open).
3111  */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)3112 static int efx_pci_probe(struct pci_dev *pci_dev,
3113 			 const struct pci_device_id *entry)
3114 {
3115 	struct net_device *net_dev;
3116 	struct efx_nic *efx;
3117 	int rc;
3118 
3119 	/* Allocate and initialise a struct net_device and struct efx_nic */
3120 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3121 				     EFX_MAX_RX_QUEUES);
3122 	if (!net_dev)
3123 		return -ENOMEM;
3124 	efx = netdev_priv(net_dev);
3125 	efx->type = (const struct efx_nic_type *) entry->driver_data;
3126 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3127 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3128 			      NETIF_F_RXCSUM);
3129 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
3130 		net_dev->features |= NETIF_F_TSO6;
3131 	/* Mask for features that also apply to VLAN devices */
3132 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3133 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3134 				   NETIF_F_RXCSUM);
3135 	/* All offloads can be toggled */
3136 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3137 	pci_set_drvdata(pci_dev, efx);
3138 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3139 	rc = efx_init_struct(efx, pci_dev, net_dev);
3140 	if (rc)
3141 		goto fail1;
3142 
3143 	netif_info(efx, probe, efx->net_dev,
3144 		   "Solarflare NIC detected\n");
3145 
3146 	if (!efx->type->is_vf)
3147 		efx_probe_vpd_strings(efx);
3148 
3149 	/* Set up basic I/O (BAR mappings etc) */
3150 	rc = efx_init_io(efx);
3151 	if (rc)
3152 		goto fail2;
3153 
3154 	rc = efx_pci_probe_main(efx);
3155 	if (rc)
3156 		goto fail3;
3157 
3158 	rc = efx_register_netdev(efx);
3159 	if (rc)
3160 		goto fail4;
3161 
3162 	if (efx->type->sriov_init) {
3163 		rc = efx->type->sriov_init(efx);
3164 		if (rc)
3165 			netif_err(efx, probe, efx->net_dev,
3166 				  "SR-IOV can't be enabled rc %d\n", rc);
3167 	}
3168 
3169 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3170 
3171 	/* Try to create MTDs, but allow this to fail */
3172 	rtnl_lock();
3173 	rc = efx_mtd_probe(efx);
3174 	rtnl_unlock();
3175 	if (rc)
3176 		netif_warn(efx, probe, efx->net_dev,
3177 			   "failed to create MTDs (%d)\n", rc);
3178 
3179 	rc = pci_enable_pcie_error_reporting(pci_dev);
3180 	if (rc && rc != -EINVAL)
3181 		netif_warn(efx, probe, efx->net_dev,
3182 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3183 
3184 	return 0;
3185 
3186  fail4:
3187 	efx_pci_remove_main(efx);
3188  fail3:
3189 	efx_fini_io(efx);
3190  fail2:
3191 	efx_fini_struct(efx);
3192  fail1:
3193 	WARN_ON(rc > 0);
3194 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3195 	free_netdev(net_dev);
3196 	return rc;
3197 }
3198 
3199 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3200  * enabled on success
3201  */
3202 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)3203 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3204 {
3205 	int rc;
3206 	struct efx_nic *efx = pci_get_drvdata(dev);
3207 
3208 	if (efx->type->sriov_configure) {
3209 		rc = efx->type->sriov_configure(efx, num_vfs);
3210 		if (rc)
3211 			return rc;
3212 		else
3213 			return num_vfs;
3214 	} else
3215 		return -EOPNOTSUPP;
3216 }
3217 #endif
3218 
efx_pm_freeze(struct device * dev)3219 static int efx_pm_freeze(struct device *dev)
3220 {
3221 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3222 
3223 	rtnl_lock();
3224 
3225 	if (efx->state != STATE_DISABLED) {
3226 		efx->state = STATE_UNINIT;
3227 
3228 		efx_device_detach_sync(efx);
3229 
3230 		efx_stop_all(efx);
3231 		efx_disable_interrupts(efx);
3232 	}
3233 
3234 	rtnl_unlock();
3235 
3236 	return 0;
3237 }
3238 
efx_pm_thaw(struct device * dev)3239 static int efx_pm_thaw(struct device *dev)
3240 {
3241 	int rc;
3242 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3243 
3244 	rtnl_lock();
3245 
3246 	if (efx->state != STATE_DISABLED) {
3247 		rc = efx_enable_interrupts(efx);
3248 		if (rc)
3249 			goto fail;
3250 
3251 		mutex_lock(&efx->mac_lock);
3252 		efx->phy_op->reconfigure(efx);
3253 		mutex_unlock(&efx->mac_lock);
3254 
3255 		efx_start_all(efx);
3256 
3257 		netif_device_attach(efx->net_dev);
3258 
3259 		efx->state = STATE_READY;
3260 
3261 		efx->type->resume_wol(efx);
3262 	}
3263 
3264 	rtnl_unlock();
3265 
3266 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3267 	queue_work(reset_workqueue, &efx->reset_work);
3268 
3269 	return 0;
3270 
3271 fail:
3272 	rtnl_unlock();
3273 
3274 	return rc;
3275 }
3276 
efx_pm_poweroff(struct device * dev)3277 static int efx_pm_poweroff(struct device *dev)
3278 {
3279 	struct pci_dev *pci_dev = to_pci_dev(dev);
3280 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3281 
3282 	efx->type->fini(efx);
3283 
3284 	efx->reset_pending = 0;
3285 
3286 	pci_save_state(pci_dev);
3287 	return pci_set_power_state(pci_dev, PCI_D3hot);
3288 }
3289 
3290 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)3291 static int efx_pm_resume(struct device *dev)
3292 {
3293 	struct pci_dev *pci_dev = to_pci_dev(dev);
3294 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3295 	int rc;
3296 
3297 	rc = pci_set_power_state(pci_dev, PCI_D0);
3298 	if (rc)
3299 		return rc;
3300 	pci_restore_state(pci_dev);
3301 	rc = pci_enable_device(pci_dev);
3302 	if (rc)
3303 		return rc;
3304 	pci_set_master(efx->pci_dev);
3305 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3306 	if (rc)
3307 		return rc;
3308 	rc = efx->type->init(efx);
3309 	if (rc)
3310 		return rc;
3311 	rc = efx_pm_thaw(dev);
3312 	return rc;
3313 }
3314 
efx_pm_suspend(struct device * dev)3315 static int efx_pm_suspend(struct device *dev)
3316 {
3317 	int rc;
3318 
3319 	efx_pm_freeze(dev);
3320 	rc = efx_pm_poweroff(dev);
3321 	if (rc)
3322 		efx_pm_resume(dev);
3323 	return rc;
3324 }
3325 
3326 static const struct dev_pm_ops efx_pm_ops = {
3327 	.suspend	= efx_pm_suspend,
3328 	.resume		= efx_pm_resume,
3329 	.freeze		= efx_pm_freeze,
3330 	.thaw		= efx_pm_thaw,
3331 	.poweroff	= efx_pm_poweroff,
3332 	.restore	= efx_pm_resume,
3333 };
3334 
3335 /* A PCI error affecting this device was detected.
3336  * At this point MMIO and DMA may be disabled.
3337  * Stop the software path and request a slot reset.
3338  */
efx_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)3339 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3340 					      enum pci_channel_state state)
3341 {
3342 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3343 	struct efx_nic *efx = pci_get_drvdata(pdev);
3344 
3345 	if (state == pci_channel_io_perm_failure)
3346 		return PCI_ERS_RESULT_DISCONNECT;
3347 
3348 	rtnl_lock();
3349 
3350 	if (efx->state != STATE_DISABLED) {
3351 		efx->state = STATE_RECOVERY;
3352 		efx->reset_pending = 0;
3353 
3354 		efx_device_detach_sync(efx);
3355 
3356 		efx_stop_all(efx);
3357 		efx_disable_interrupts(efx);
3358 
3359 		status = PCI_ERS_RESULT_NEED_RESET;
3360 	} else {
3361 		/* If the interface is disabled we don't want to do anything
3362 		 * with it.
3363 		 */
3364 		status = PCI_ERS_RESULT_RECOVERED;
3365 	}
3366 
3367 	rtnl_unlock();
3368 
3369 	pci_disable_device(pdev);
3370 
3371 	return status;
3372 }
3373 
3374 /* Fake a successful reset, which will be performed later in efx_io_resume. */
efx_io_slot_reset(struct pci_dev * pdev)3375 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3376 {
3377 	struct efx_nic *efx = pci_get_drvdata(pdev);
3378 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3379 	int rc;
3380 
3381 	if (pci_enable_device(pdev)) {
3382 		netif_err(efx, hw, efx->net_dev,
3383 			  "Cannot re-enable PCI device after reset.\n");
3384 		status =  PCI_ERS_RESULT_DISCONNECT;
3385 	}
3386 
3387 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3388 	if (rc) {
3389 		netif_err(efx, hw, efx->net_dev,
3390 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3391 		/* Non-fatal error. Continue. */
3392 	}
3393 
3394 	return status;
3395 }
3396 
3397 /* Perform the actual reset and resume I/O operations. */
efx_io_resume(struct pci_dev * pdev)3398 static void efx_io_resume(struct pci_dev *pdev)
3399 {
3400 	struct efx_nic *efx = pci_get_drvdata(pdev);
3401 	int rc;
3402 
3403 	rtnl_lock();
3404 
3405 	if (efx->state == STATE_DISABLED)
3406 		goto out;
3407 
3408 	rc = efx_reset(efx, RESET_TYPE_ALL);
3409 	if (rc) {
3410 		netif_err(efx, hw, efx->net_dev,
3411 			  "efx_reset failed after PCI error (%d)\n", rc);
3412 	} else {
3413 		efx->state = STATE_READY;
3414 		netif_dbg(efx, hw, efx->net_dev,
3415 			  "Done resetting and resuming IO after PCI error.\n");
3416 	}
3417 
3418 out:
3419 	rtnl_unlock();
3420 }
3421 
3422 /* For simplicity and reliability, we always require a slot reset and try to
3423  * reset the hardware when a pci error affecting the device is detected.
3424  * We leave both the link_reset and mmio_enabled callback unimplemented:
3425  * with our request for slot reset the mmio_enabled callback will never be
3426  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3427  */
3428 static const struct pci_error_handlers efx_err_handlers = {
3429 	.error_detected = efx_io_error_detected,
3430 	.slot_reset	= efx_io_slot_reset,
3431 	.resume		= efx_io_resume,
3432 };
3433 
3434 static struct pci_driver efx_pci_driver = {
3435 	.name		= KBUILD_MODNAME,
3436 	.id_table	= efx_pci_table,
3437 	.probe		= efx_pci_probe,
3438 	.remove		= efx_pci_remove,
3439 	.driver.pm	= &efx_pm_ops,
3440 	.err_handler	= &efx_err_handlers,
3441 #ifdef CONFIG_SFC_SRIOV
3442 	.sriov_configure = efx_pci_sriov_configure,
3443 #endif
3444 };
3445 
3446 /**************************************************************************
3447  *
3448  * Kernel module interface
3449  *
3450  *************************************************************************/
3451 
3452 module_param(interrupt_mode, uint, 0444);
3453 MODULE_PARM_DESC(interrupt_mode,
3454 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3455 
efx_init_module(void)3456 static int __init efx_init_module(void)
3457 {
3458 	int rc;
3459 
3460 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3461 
3462 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3463 	if (rc)
3464 		goto err_notifier;
3465 
3466 #ifdef CONFIG_SFC_SRIOV
3467 	rc = efx_init_sriov();
3468 	if (rc)
3469 		goto err_sriov;
3470 #endif
3471 
3472 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3473 	if (!reset_workqueue) {
3474 		rc = -ENOMEM;
3475 		goto err_reset;
3476 	}
3477 
3478 	rc = pci_register_driver(&efx_pci_driver);
3479 	if (rc < 0)
3480 		goto err_pci;
3481 
3482 	return 0;
3483 
3484  err_pci:
3485 	destroy_workqueue(reset_workqueue);
3486  err_reset:
3487 #ifdef CONFIG_SFC_SRIOV
3488 	efx_fini_sriov();
3489  err_sriov:
3490 #endif
3491 	unregister_netdevice_notifier(&efx_netdev_notifier);
3492  err_notifier:
3493 	return rc;
3494 }
3495 
efx_exit_module(void)3496 static void __exit efx_exit_module(void)
3497 {
3498 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3499 
3500 	pci_unregister_driver(&efx_pci_driver);
3501 	destroy_workqueue(reset_workqueue);
3502 #ifdef CONFIG_SFC_SRIOV
3503 	efx_fini_sriov();
3504 #endif
3505 	unregister_netdevice_notifier(&efx_netdev_notifier);
3506 
3507 }
3508 
3509 module_init(efx_init_module);
3510 module_exit(efx_exit_module);
3511 
3512 MODULE_AUTHOR("Solarflare Communications and "
3513 	      "Michael Brown <mbrown@fensystems.co.uk>");
3514 MODULE_DESCRIPTION("Solarflare network driver");
3515 MODULE_LICENSE("GPL");
3516 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3517