• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2010-2012 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "mcdi.h"
16 #include "filter.h"
17 #include "mcdi_pcol.h"
18 #include "farch_regs.h"
19 #include "siena_sriov.h"
20 #include "vfdi.h"
21 
22 /* Number of longs required to track all the VIs in a VF */
23 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
24 
25 /* Maximum number of RX queues supported */
26 #define VF_MAX_RX_QUEUES 63
27 
28 /**
29  * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
30  * @VF_TX_FILTER_OFF: Disabled
31  * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
32  *	2 TX queues allowed per VF.
33  * @VF_TX_FILTER_ON: Enabled
34  */
35 enum efx_vf_tx_filter_mode {
36 	VF_TX_FILTER_OFF,
37 	VF_TX_FILTER_AUTO,
38 	VF_TX_FILTER_ON,
39 };
40 
41 /**
42  * struct siena_vf - Back-end resource and protocol state for a PCI VF
43  * @efx: The Efx NIC owning this VF
44  * @pci_rid: The PCI requester ID for this VF
45  * @pci_name: The PCI name (formatted address) of this VF
46  * @index: Index of VF within its port and PF.
47  * @req: VFDI incoming request work item. Incoming USR_EV events are received
48  *	by the NAPI handler, but must be handled by executing MCDI requests
49  *	inside a work item.
50  * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
51  * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
52  * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
53  * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
54  *	@status_lock
55  * @busy: VFDI request queued to be processed or being processed. Receiving
56  *	a VFDI request when @busy is set is an error condition.
57  * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
58  * @buftbl_base: Buffer table entries for this VF start at this index.
59  * @rx_filtering: Receive filtering has been requested by the VF driver.
60  * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
61  * @rx_filter_qid: VF relative qid for RX filter requested by VF.
62  * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
63  * @tx_filter_mode: Transmit MAC filtering mode.
64  * @tx_filter_id: Transmit MAC filter ID.
65  * @addr: The MAC address and outer vlan tag of the VF.
66  * @status_addr: VF DMA address of page for &struct vfdi_status updates.
67  * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
68  *	@peer_page_addrs and @peer_page_count from simultaneous
69  *	updates by the VM and consumption by
70  *	efx_siena_sriov_update_vf_addr()
71  * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
72  * @peer_page_count: Number of entries in @peer_page_count.
73  * @evq0_addrs: Array of guest pages backing evq0.
74  * @evq0_count: Number of entries in @evq0_addrs.
75  * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
76  *	to wait for flush completions.
77  * @txq_lock: Mutex for TX queue allocation.
78  * @txq_mask: Mask of initialized transmit queues.
79  * @txq_count: Number of initialized transmit queues.
80  * @rxq_mask: Mask of initialized receive queues.
81  * @rxq_count: Number of initialized receive queues.
82  * @rxq_retry_mask: Mask or receive queues that need to be flushed again
83  *	due to flush failure.
84  * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
85  * @reset_work: Work item to schedule a VF reset.
86  */
87 struct siena_vf {
88 	struct efx_nic *efx;
89 	unsigned int pci_rid;
90 	char pci_name[13]; /* dddd:bb:dd.f */
91 	unsigned int index;
92 	struct work_struct req;
93 	u64 req_addr;
94 	int req_type;
95 	unsigned req_seqno;
96 	unsigned msg_seqno;
97 	bool busy;
98 	struct efx_buffer buf;
99 	unsigned buftbl_base;
100 	bool rx_filtering;
101 	enum efx_filter_flags rx_filter_flags;
102 	unsigned rx_filter_qid;
103 	int rx_filter_id;
104 	enum efx_vf_tx_filter_mode tx_filter_mode;
105 	int tx_filter_id;
106 	struct vfdi_endpoint addr;
107 	u64 status_addr;
108 	struct mutex status_lock;
109 	u64 *peer_page_addrs;
110 	unsigned peer_page_count;
111 	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
112 		       EFX_BUF_SIZE];
113 	unsigned evq0_count;
114 	wait_queue_head_t flush_waitq;
115 	struct mutex txq_lock;
116 	unsigned long txq_mask[VI_MASK_LENGTH];
117 	unsigned txq_count;
118 	unsigned long rxq_mask[VI_MASK_LENGTH];
119 	unsigned rxq_count;
120 	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
121 	atomic_t rxq_retry_count;
122 	struct work_struct reset_work;
123 };
124 
125 struct efx_memcpy_req {
126 	unsigned int from_rid;
127 	void *from_buf;
128 	u64 from_addr;
129 	unsigned int to_rid;
130 	u64 to_addr;
131 	unsigned length;
132 };
133 
134 /**
135  * struct efx_local_addr - A MAC address on the vswitch without a VF.
136  *
137  * Siena does not have a switch, so VFs can't transmit data to each
138  * other. Instead the VFs must be made aware of the local addresses
139  * on the vswitch, so that they can arrange for an alternative
140  * software datapath to be used.
141  *
142  * @link: List head for insertion into efx->local_addr_list.
143  * @addr: Ethernet address
144  */
145 struct efx_local_addr {
146 	struct list_head link;
147 	u8 addr[ETH_ALEN];
148 };
149 
150 /**
151  * struct efx_endpoint_page - Page of vfdi_endpoint structures
152  *
153  * @link: List head for insertion into efx->local_page_list.
154  * @ptr: Pointer to page.
155  * @addr: DMA address of page.
156  */
157 struct efx_endpoint_page {
158 	struct list_head link;
159 	void *ptr;
160 	dma_addr_t addr;
161 };
162 
163 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
164 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
165 	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
166 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
167 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
168 	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
169 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
170 	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
171 	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
172 
173 #define EFX_FIELD_MASK(_field)			\
174 	((1 << _field ## _WIDTH) - 1)
175 
176 /* VFs can only use this many transmit channels */
177 static unsigned int vf_max_tx_channels = 2;
178 module_param(vf_max_tx_channels, uint, 0444);
179 MODULE_PARM_DESC(vf_max_tx_channels,
180 		 "Limit the number of TX channels VFs can use");
181 
182 static int max_vfs = -1;
183 module_param(max_vfs, int, 0444);
184 MODULE_PARM_DESC(max_vfs,
185 		 "Reduce the number of VFs initialized by the driver");
186 
187 /* Workqueue used by VFDI communication.  We can't use the global
188  * workqueue because it may be running the VF driver's probe()
189  * routine, which will be blocked there waiting for a VFDI response.
190  */
191 static struct workqueue_struct *vfdi_workqueue;
192 
abs_index(struct siena_vf * vf,unsigned index)193 static unsigned abs_index(struct siena_vf *vf, unsigned index)
194 {
195 	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
196 }
197 
efx_siena_sriov_cmd(struct efx_nic * efx,bool enable,unsigned * vi_scale_out,unsigned * vf_total_out)198 static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
199 			       unsigned *vi_scale_out, unsigned *vf_total_out)
200 {
201 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
202 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
203 	unsigned vi_scale, vf_total;
204 	size_t outlen;
205 	int rc;
206 
207 	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
208 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
209 	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
210 
211 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
212 				outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
213 	if (rc)
214 		return rc;
215 	if (outlen < MC_CMD_SRIOV_OUT_LEN)
216 		return -EIO;
217 
218 	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
219 	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
220 	if (vi_scale > EFX_VI_SCALE_MAX)
221 		return -EOPNOTSUPP;
222 
223 	if (vi_scale_out)
224 		*vi_scale_out = vi_scale;
225 	if (vf_total_out)
226 		*vf_total_out = vf_total;
227 
228 	return 0;
229 }
230 
efx_siena_sriov_usrev(struct efx_nic * efx,bool enabled)231 static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
232 {
233 	struct siena_nic_data *nic_data = efx->nic_data;
234 	efx_oword_t reg;
235 
236 	EFX_POPULATE_OWORD_2(reg,
237 			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
238 			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
239 	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
240 }
241 
efx_siena_sriov_memcpy(struct efx_nic * efx,struct efx_memcpy_req * req,unsigned int count)242 static int efx_siena_sriov_memcpy(struct efx_nic *efx,
243 				  struct efx_memcpy_req *req,
244 				  unsigned int count)
245 {
246 	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
247 	MCDI_DECLARE_STRUCT_PTR(record);
248 	unsigned int index, used;
249 	u64 from_addr;
250 	u32 from_rid;
251 	int rc;
252 
253 	mb();	/* Finish writing source/reading dest before DMA starts */
254 
255 	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
256 		return -ENOBUFS;
257 	used = MC_CMD_MEMCPY_IN_LEN(count);
258 
259 	for (index = 0; index < count; index++) {
260 		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
261 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
262 			       count);
263 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
264 			       req->to_rid);
265 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
266 			       req->to_addr);
267 		if (req->from_buf == NULL) {
268 			from_rid = req->from_rid;
269 			from_addr = req->from_addr;
270 		} else {
271 			if (WARN_ON(used + req->length >
272 				    MCDI_CTL_SDU_LEN_MAX_V1)) {
273 				rc = -ENOBUFS;
274 				goto out;
275 			}
276 
277 			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
278 			from_addr = used;
279 			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
280 			       req->length);
281 			used += req->length;
282 		}
283 
284 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
285 		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
286 			       from_addr);
287 		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
288 			       req->length);
289 
290 		++req;
291 	}
292 
293 	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
294 out:
295 	mb();	/* Don't write source/read dest before DMA is complete */
296 
297 	return rc;
298 }
299 
300 /* The TX filter is entirely controlled by this driver, and is modified
301  * underneath the feet of the VF
302  */
efx_siena_sriov_reset_tx_filter(struct siena_vf * vf)303 static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
304 {
305 	struct efx_nic *efx = vf->efx;
306 	struct efx_filter_spec filter;
307 	u16 vlan;
308 	int rc;
309 
310 	if (vf->tx_filter_id != -1) {
311 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
312 					  vf->tx_filter_id);
313 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
314 			  vf->pci_name, vf->tx_filter_id);
315 		vf->tx_filter_id = -1;
316 	}
317 
318 	if (is_zero_ether_addr(vf->addr.mac_addr))
319 		return;
320 
321 	/* Turn on TX filtering automatically if not explicitly
322 	 * enabled or disabled.
323 	 */
324 	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
325 		vf->tx_filter_mode = VF_TX_FILTER_ON;
326 
327 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
328 	efx_filter_init_tx(&filter, abs_index(vf, 0));
329 	rc = efx_filter_set_eth_local(&filter,
330 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
331 				      vf->addr.mac_addr);
332 	BUG_ON(rc);
333 
334 	rc = efx_filter_insert_filter(efx, &filter, true);
335 	if (rc < 0) {
336 		netif_warn(efx, hw, efx->net_dev,
337 			   "Unable to migrate tx filter for vf %s\n",
338 			   vf->pci_name);
339 	} else {
340 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
341 			  vf->pci_name, rc);
342 		vf->tx_filter_id = rc;
343 	}
344 }
345 
346 /* The RX filter is managed here on behalf of the VF driver */
efx_siena_sriov_reset_rx_filter(struct siena_vf * vf)347 static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
348 {
349 	struct efx_nic *efx = vf->efx;
350 	struct efx_filter_spec filter;
351 	u16 vlan;
352 	int rc;
353 
354 	if (vf->rx_filter_id != -1) {
355 		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
356 					  vf->rx_filter_id);
357 		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
358 			  vf->pci_name, vf->rx_filter_id);
359 		vf->rx_filter_id = -1;
360 	}
361 
362 	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
363 		return;
364 
365 	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
366 	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
367 			   vf->rx_filter_flags,
368 			   abs_index(vf, vf->rx_filter_qid));
369 	rc = efx_filter_set_eth_local(&filter,
370 				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
371 				      vf->addr.mac_addr);
372 	BUG_ON(rc);
373 
374 	rc = efx_filter_insert_filter(efx, &filter, true);
375 	if (rc < 0) {
376 		netif_warn(efx, hw, efx->net_dev,
377 			   "Unable to insert rx filter for vf %s\n",
378 			   vf->pci_name);
379 	} else {
380 		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
381 			  vf->pci_name, rc);
382 		vf->rx_filter_id = rc;
383 	}
384 }
385 
__efx_siena_sriov_update_vf_addr(struct siena_vf * vf)386 static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
387 {
388 	struct efx_nic *efx = vf->efx;
389 	struct siena_nic_data *nic_data = efx->nic_data;
390 
391 	efx_siena_sriov_reset_tx_filter(vf);
392 	efx_siena_sriov_reset_rx_filter(vf);
393 	queue_work(vfdi_workqueue, &nic_data->peer_work);
394 }
395 
396 /* Push the peer list to this VF. The caller must hold status_lock to interlock
397  * with VFDI requests, and they must be serialised against manipulation of
398  * local_page_list, either by acquiring local_lock or by running from
399  * efx_siena_sriov_peer_work()
400  */
__efx_siena_sriov_push_vf_status(struct siena_vf * vf)401 static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
402 {
403 	struct efx_nic *efx = vf->efx;
404 	struct siena_nic_data *nic_data = efx->nic_data;
405 	struct vfdi_status *status = nic_data->vfdi_status.addr;
406 	struct efx_memcpy_req copy[4];
407 	struct efx_endpoint_page *epp;
408 	unsigned int pos, count;
409 	unsigned data_offset;
410 	efx_qword_t event;
411 
412 	WARN_ON(!mutex_is_locked(&vf->status_lock));
413 	WARN_ON(!vf->status_addr);
414 
415 	status->local = vf->addr;
416 	status->generation_end = ++status->generation_start;
417 
418 	memset(copy, '\0', sizeof(copy));
419 	/* Write generation_start */
420 	copy[0].from_buf = &status->generation_start;
421 	copy[0].to_rid = vf->pci_rid;
422 	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
423 						     generation_start);
424 	copy[0].length = sizeof(status->generation_start);
425 	/* DMA the rest of the structure (excluding the generations). This
426 	 * assumes that the non-generation portion of vfdi_status is in
427 	 * one chunk starting at the version member.
428 	 */
429 	data_offset = offsetof(struct vfdi_status, version);
430 	copy[1].from_rid = efx->pci_dev->devfn;
431 	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
432 	copy[1].to_rid = vf->pci_rid;
433 	copy[1].to_addr = vf->status_addr + data_offset;
434 	copy[1].length =  status->length - data_offset;
435 
436 	/* Copy the peer pages */
437 	pos = 2;
438 	count = 0;
439 	list_for_each_entry(epp, &nic_data->local_page_list, link) {
440 		if (count == vf->peer_page_count) {
441 			/* The VF driver will know they need to provide more
442 			 * pages because peer_addr_count is too large.
443 			 */
444 			break;
445 		}
446 		copy[pos].from_buf = NULL;
447 		copy[pos].from_rid = efx->pci_dev->devfn;
448 		copy[pos].from_addr = epp->addr;
449 		copy[pos].to_rid = vf->pci_rid;
450 		copy[pos].to_addr = vf->peer_page_addrs[count];
451 		copy[pos].length = EFX_PAGE_SIZE;
452 
453 		if (++pos == ARRAY_SIZE(copy)) {
454 			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
455 			pos = 0;
456 		}
457 		++count;
458 	}
459 
460 	/* Write generation_end */
461 	copy[pos].from_buf = &status->generation_end;
462 	copy[pos].to_rid = vf->pci_rid;
463 	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
464 						       generation_end);
465 	copy[pos].length = sizeof(status->generation_end);
466 	efx_siena_sriov_memcpy(efx, copy, pos + 1);
467 
468 	/* Notify the guest */
469 	EFX_POPULATE_QWORD_3(event,
470 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
471 			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
472 			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
473 	++vf->msg_seqno;
474 	efx_farch_generate_event(efx,
475 				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
476 				 &event);
477 }
478 
efx_siena_sriov_bufs(struct efx_nic * efx,unsigned offset,u64 * addr,unsigned count)479 static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
480 				 u64 *addr, unsigned count)
481 {
482 	efx_qword_t buf;
483 	unsigned pos;
484 
485 	for (pos = 0; pos < count; ++pos) {
486 		EFX_POPULATE_QWORD_3(buf,
487 				     FRF_AZ_BUF_ADR_REGION, 0,
488 				     FRF_AZ_BUF_ADR_FBUF,
489 				     addr ? addr[pos] >> 12 : 0,
490 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
491 		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
492 				&buf, offset + pos);
493 	}
494 }
495 
bad_vf_index(struct efx_nic * efx,unsigned index)496 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
497 {
498 	return index >= efx_vf_size(efx);
499 }
500 
bad_buf_count(unsigned buf_count,unsigned max_entry_count)501 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
502 {
503 	unsigned max_buf_count = max_entry_count *
504 		sizeof(efx_qword_t) / EFX_BUF_SIZE;
505 
506 	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
507 }
508 
509 /* Check that VI specified by per-port index belongs to a VF.
510  * Optionally set VF index and VI index within the VF.
511  */
map_vi_index(struct efx_nic * efx,unsigned abs_index,struct siena_vf ** vf_out,unsigned * rel_index_out)512 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
513 			 struct siena_vf **vf_out, unsigned *rel_index_out)
514 {
515 	struct siena_nic_data *nic_data = efx->nic_data;
516 	unsigned vf_i;
517 
518 	if (abs_index < EFX_VI_BASE)
519 		return true;
520 	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
521 	if (vf_i >= efx->vf_init_count)
522 		return true;
523 
524 	if (vf_out)
525 		*vf_out = nic_data->vf + vf_i;
526 	if (rel_index_out)
527 		*rel_index_out = abs_index % efx_vf_size(efx);
528 	return false;
529 }
530 
efx_vfdi_init_evq(struct siena_vf * vf)531 static int efx_vfdi_init_evq(struct siena_vf *vf)
532 {
533 	struct efx_nic *efx = vf->efx;
534 	struct vfdi_req *req = vf->buf.addr;
535 	unsigned vf_evq = req->u.init_evq.index;
536 	unsigned buf_count = req->u.init_evq.buf_count;
537 	unsigned abs_evq = abs_index(vf, vf_evq);
538 	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
539 	efx_oword_t reg;
540 
541 	if (bad_vf_index(efx, vf_evq) ||
542 	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
543 		if (net_ratelimit())
544 			netif_err(efx, hw, efx->net_dev,
545 				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
546 				  vf->pci_name, vf_evq, buf_count);
547 		return VFDI_RC_EINVAL;
548 	}
549 
550 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
551 
552 	EFX_POPULATE_OWORD_3(reg,
553 			     FRF_CZ_TIMER_Q_EN, 1,
554 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
555 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
556 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
557 	EFX_POPULATE_OWORD_3(reg,
558 			     FRF_AZ_EVQ_EN, 1,
559 			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
560 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
561 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
562 
563 	if (vf_evq == 0) {
564 		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
565 		       buf_count * sizeof(u64));
566 		vf->evq0_count = buf_count;
567 	}
568 
569 	return VFDI_RC_SUCCESS;
570 }
571 
efx_vfdi_init_rxq(struct siena_vf * vf)572 static int efx_vfdi_init_rxq(struct siena_vf *vf)
573 {
574 	struct efx_nic *efx = vf->efx;
575 	struct vfdi_req *req = vf->buf.addr;
576 	unsigned vf_rxq = req->u.init_rxq.index;
577 	unsigned vf_evq = req->u.init_rxq.evq;
578 	unsigned buf_count = req->u.init_rxq.buf_count;
579 	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
580 	unsigned label;
581 	efx_oword_t reg;
582 
583 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
584 	    vf_rxq >= VF_MAX_RX_QUEUES ||
585 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
586 		if (net_ratelimit())
587 			netif_err(efx, hw, efx->net_dev,
588 				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
589 				  "buf_count %d\n", vf->pci_name, vf_rxq,
590 				  vf_evq, buf_count);
591 		return VFDI_RC_EINVAL;
592 	}
593 	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
594 		++vf->rxq_count;
595 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
596 
597 	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
598 	EFX_POPULATE_OWORD_6(reg,
599 			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
600 			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
601 			     FRF_AZ_RX_DESCQ_LABEL, label,
602 			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
603 			     FRF_AZ_RX_DESCQ_JUMBO,
604 			     !!(req->u.init_rxq.flags &
605 				VFDI_RXQ_FLAG_SCATTER_EN),
606 			     FRF_AZ_RX_DESCQ_EN, 1);
607 	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
608 			 abs_index(vf, vf_rxq));
609 
610 	return VFDI_RC_SUCCESS;
611 }
612 
efx_vfdi_init_txq(struct siena_vf * vf)613 static int efx_vfdi_init_txq(struct siena_vf *vf)
614 {
615 	struct efx_nic *efx = vf->efx;
616 	struct vfdi_req *req = vf->buf.addr;
617 	unsigned vf_txq = req->u.init_txq.index;
618 	unsigned vf_evq = req->u.init_txq.evq;
619 	unsigned buf_count = req->u.init_txq.buf_count;
620 	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
621 	unsigned label, eth_filt_en;
622 	efx_oword_t reg;
623 
624 	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
625 	    vf_txq >= vf_max_tx_channels ||
626 	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
627 		if (net_ratelimit())
628 			netif_err(efx, hw, efx->net_dev,
629 				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
630 				  "buf_count %d\n", vf->pci_name, vf_txq,
631 				  vf_evq, buf_count);
632 		return VFDI_RC_EINVAL;
633 	}
634 
635 	mutex_lock(&vf->txq_lock);
636 	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
637 		++vf->txq_count;
638 	mutex_unlock(&vf->txq_lock);
639 	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
640 
641 	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
642 
643 	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
644 	EFX_POPULATE_OWORD_8(reg,
645 			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
646 			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
647 			     FRF_AZ_TX_DESCQ_EN, 1,
648 			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
649 			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
650 			     FRF_AZ_TX_DESCQ_LABEL, label,
651 			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
652 			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
653 	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
654 			 abs_index(vf, vf_txq));
655 
656 	return VFDI_RC_SUCCESS;
657 }
658 
659 /* Returns true when efx_vfdi_fini_all_queues should wake */
efx_vfdi_flush_wake(struct siena_vf * vf)660 static bool efx_vfdi_flush_wake(struct siena_vf *vf)
661 {
662 	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
663 	smp_mb();
664 
665 	return (!vf->txq_count && !vf->rxq_count) ||
666 		atomic_read(&vf->rxq_retry_count);
667 }
668 
efx_vfdi_flush_clear(struct siena_vf * vf)669 static void efx_vfdi_flush_clear(struct siena_vf *vf)
670 {
671 	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
672 	vf->txq_count = 0;
673 	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
674 	vf->rxq_count = 0;
675 	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
676 	atomic_set(&vf->rxq_retry_count, 0);
677 }
678 
efx_vfdi_fini_all_queues(struct siena_vf * vf)679 static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
680 {
681 	struct efx_nic *efx = vf->efx;
682 	efx_oword_t reg;
683 	unsigned count = efx_vf_size(efx);
684 	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
685 	unsigned timeout = HZ;
686 	unsigned index, rxqs_count;
687 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
688 	int rc;
689 
690 	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
691 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
692 
693 	rtnl_lock();
694 	siena_prepare_flush(efx);
695 	rtnl_unlock();
696 
697 	/* Flush all the initialized queues */
698 	rxqs_count = 0;
699 	for (index = 0; index < count; ++index) {
700 		if (test_bit(index, vf->txq_mask)) {
701 			EFX_POPULATE_OWORD_2(reg,
702 					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
703 					     FRF_AZ_TX_FLUSH_DESCQ,
704 					     vf_offset + index);
705 			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
706 		}
707 		if (test_bit(index, vf->rxq_mask)) {
708 			MCDI_SET_ARRAY_DWORD(
709 				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
710 				rxqs_count, vf_offset + index);
711 			rxqs_count++;
712 		}
713 	}
714 
715 	atomic_set(&vf->rxq_retry_count, 0);
716 	while (timeout && (vf->rxq_count || vf->txq_count)) {
717 		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
718 				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
719 				  NULL, 0, NULL);
720 		WARN_ON(rc < 0);
721 
722 		timeout = wait_event_timeout(vf->flush_waitq,
723 					     efx_vfdi_flush_wake(vf),
724 					     timeout);
725 		rxqs_count = 0;
726 		for (index = 0; index < count; ++index) {
727 			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
728 				atomic_dec(&vf->rxq_retry_count);
729 				MCDI_SET_ARRAY_DWORD(
730 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
731 					rxqs_count, vf_offset + index);
732 				rxqs_count++;
733 			}
734 		}
735 	}
736 
737 	rtnl_lock();
738 	siena_finish_flush(efx);
739 	rtnl_unlock();
740 
741 	/* Irrespective of success/failure, fini the queues */
742 	EFX_ZERO_OWORD(reg);
743 	for (index = 0; index < count; ++index) {
744 		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
745 				 vf_offset + index);
746 		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
747 				 vf_offset + index);
748 		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
749 				 vf_offset + index);
750 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
751 				 vf_offset + index);
752 	}
753 	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
754 			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
755 	efx_vfdi_flush_clear(vf);
756 
757 	vf->evq0_count = 0;
758 
759 	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
760 }
761 
efx_vfdi_insert_filter(struct siena_vf * vf)762 static int efx_vfdi_insert_filter(struct siena_vf *vf)
763 {
764 	struct efx_nic *efx = vf->efx;
765 	struct siena_nic_data *nic_data = efx->nic_data;
766 	struct vfdi_req *req = vf->buf.addr;
767 	unsigned vf_rxq = req->u.mac_filter.rxq;
768 	unsigned flags;
769 
770 	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
771 		if (net_ratelimit())
772 			netif_err(efx, hw, efx->net_dev,
773 				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
774 				  "flags 0x%x\n", vf->pci_name, vf_rxq,
775 				  req->u.mac_filter.flags);
776 		return VFDI_RC_EINVAL;
777 	}
778 
779 	flags = 0;
780 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
781 		flags |= EFX_FILTER_FLAG_RX_RSS;
782 	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
783 		flags |= EFX_FILTER_FLAG_RX_SCATTER;
784 	vf->rx_filter_flags = flags;
785 	vf->rx_filter_qid = vf_rxq;
786 	vf->rx_filtering = true;
787 
788 	efx_siena_sriov_reset_rx_filter(vf);
789 	queue_work(vfdi_workqueue, &nic_data->peer_work);
790 
791 	return VFDI_RC_SUCCESS;
792 }
793 
efx_vfdi_remove_all_filters(struct siena_vf * vf)794 static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
795 {
796 	struct efx_nic *efx = vf->efx;
797 	struct siena_nic_data *nic_data = efx->nic_data;
798 
799 	vf->rx_filtering = false;
800 	efx_siena_sriov_reset_rx_filter(vf);
801 	queue_work(vfdi_workqueue, &nic_data->peer_work);
802 
803 	return VFDI_RC_SUCCESS;
804 }
805 
efx_vfdi_set_status_page(struct siena_vf * vf)806 static int efx_vfdi_set_status_page(struct siena_vf *vf)
807 {
808 	struct efx_nic *efx = vf->efx;
809 	struct siena_nic_data *nic_data = efx->nic_data;
810 	struct vfdi_req *req = vf->buf.addr;
811 	u64 page_count = req->u.set_status_page.peer_page_count;
812 	u64 max_page_count =
813 		(EFX_PAGE_SIZE -
814 		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
815 		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
816 
817 	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
818 		if (net_ratelimit())
819 			netif_err(efx, hw, efx->net_dev,
820 				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
821 				  vf->pci_name);
822 		return VFDI_RC_EINVAL;
823 	}
824 
825 	mutex_lock(&nic_data->local_lock);
826 	mutex_lock(&vf->status_lock);
827 	vf->status_addr = req->u.set_status_page.dma_addr;
828 
829 	kfree(vf->peer_page_addrs);
830 	vf->peer_page_addrs = NULL;
831 	vf->peer_page_count = 0;
832 
833 	if (page_count) {
834 		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
835 					      GFP_KERNEL);
836 		if (vf->peer_page_addrs) {
837 			memcpy(vf->peer_page_addrs,
838 			       req->u.set_status_page.peer_page_addr,
839 			       page_count * sizeof(u64));
840 			vf->peer_page_count = page_count;
841 		}
842 	}
843 
844 	__efx_siena_sriov_push_vf_status(vf);
845 	mutex_unlock(&vf->status_lock);
846 	mutex_unlock(&nic_data->local_lock);
847 
848 	return VFDI_RC_SUCCESS;
849 }
850 
efx_vfdi_clear_status_page(struct siena_vf * vf)851 static int efx_vfdi_clear_status_page(struct siena_vf *vf)
852 {
853 	mutex_lock(&vf->status_lock);
854 	vf->status_addr = 0;
855 	mutex_unlock(&vf->status_lock);
856 
857 	return VFDI_RC_SUCCESS;
858 }
859 
860 typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
861 
862 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
863 	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
864 	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
865 	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
866 	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
867 	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
868 	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
869 	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
870 	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
871 };
872 
efx_siena_sriov_vfdi(struct work_struct * work)873 static void efx_siena_sriov_vfdi(struct work_struct *work)
874 {
875 	struct siena_vf *vf = container_of(work, struct siena_vf, req);
876 	struct efx_nic *efx = vf->efx;
877 	struct vfdi_req *req = vf->buf.addr;
878 	struct efx_memcpy_req copy[2];
879 	int rc;
880 
881 	/* Copy this page into the local address space */
882 	memset(copy, '\0', sizeof(copy));
883 	copy[0].from_rid = vf->pci_rid;
884 	copy[0].from_addr = vf->req_addr;
885 	copy[0].to_rid = efx->pci_dev->devfn;
886 	copy[0].to_addr = vf->buf.dma_addr;
887 	copy[0].length = EFX_PAGE_SIZE;
888 	rc = efx_siena_sriov_memcpy(efx, copy, 1);
889 	if (rc) {
890 		/* If we can't get the request, we can't reply to the caller */
891 		if (net_ratelimit())
892 			netif_err(efx, hw, efx->net_dev,
893 				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
894 				  vf->pci_name, -rc);
895 		vf->busy = false;
896 		return;
897 	}
898 
899 	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
900 		rc = vfdi_ops[req->op](vf);
901 		if (rc == 0) {
902 			netif_dbg(efx, hw, efx->net_dev,
903 				  "vfdi request %d from %s ok\n",
904 				  req->op, vf->pci_name);
905 		}
906 	} else {
907 		netif_dbg(efx, hw, efx->net_dev,
908 			  "ERROR: Unrecognised request %d from VF %s addr "
909 			  "%llx\n", req->op, vf->pci_name,
910 			  (unsigned long long)vf->req_addr);
911 		rc = VFDI_RC_EOPNOTSUPP;
912 	}
913 
914 	/* Allow subsequent VF requests */
915 	vf->busy = false;
916 	smp_wmb();
917 
918 	/* Respond to the request */
919 	req->rc = rc;
920 	req->op = VFDI_OP_RESPONSE;
921 
922 	memset(copy, '\0', sizeof(copy));
923 	copy[0].from_buf = &req->rc;
924 	copy[0].to_rid = vf->pci_rid;
925 	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
926 	copy[0].length = sizeof(req->rc);
927 	copy[1].from_buf = &req->op;
928 	copy[1].to_rid = vf->pci_rid;
929 	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
930 	copy[1].length = sizeof(req->op);
931 
932 	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
933 }
934 
935 
936 
937 /* After a reset the event queues inside the guests no longer exist. Fill the
938  * event ring in guest memory with VFDI reset events, then (re-initialise) the
939  * event queue to raise an interrupt. The guest driver will then recover.
940  */
941 
efx_siena_sriov_reset_vf(struct siena_vf * vf,struct efx_buffer * buffer)942 static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
943 				     struct efx_buffer *buffer)
944 {
945 	struct efx_nic *efx = vf->efx;
946 	struct efx_memcpy_req copy_req[4];
947 	efx_qword_t event;
948 	unsigned int pos, count, k, buftbl, abs_evq;
949 	efx_oword_t reg;
950 	efx_dword_t ptr;
951 	int rc;
952 
953 	BUG_ON(buffer->len != EFX_PAGE_SIZE);
954 
955 	if (!vf->evq0_count)
956 		return;
957 	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
958 
959 	mutex_lock(&vf->status_lock);
960 	EFX_POPULATE_QWORD_3(event,
961 			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
962 			     VFDI_EV_SEQ, vf->msg_seqno,
963 			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
964 	vf->msg_seqno++;
965 	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
966 		memcpy(buffer->addr + pos, &event, sizeof(event));
967 
968 	for (pos = 0; pos < vf->evq0_count; pos += count) {
969 		count = min_t(unsigned, vf->evq0_count - pos,
970 			      ARRAY_SIZE(copy_req));
971 		for (k = 0; k < count; k++) {
972 			copy_req[k].from_buf = NULL;
973 			copy_req[k].from_rid = efx->pci_dev->devfn;
974 			copy_req[k].from_addr = buffer->dma_addr;
975 			copy_req[k].to_rid = vf->pci_rid;
976 			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
977 			copy_req[k].length = EFX_PAGE_SIZE;
978 		}
979 		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
980 		if (rc) {
981 			if (net_ratelimit())
982 				netif_err(efx, hw, efx->net_dev,
983 					  "ERROR: Unable to notify %s of reset"
984 					  ": %d\n", vf->pci_name, -rc);
985 			break;
986 		}
987 	}
988 
989 	/* Reinitialise, arm and trigger evq0 */
990 	abs_evq = abs_index(vf, 0);
991 	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
992 	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
993 
994 	EFX_POPULATE_OWORD_3(reg,
995 			     FRF_CZ_TIMER_Q_EN, 1,
996 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
997 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
998 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
999 	EFX_POPULATE_OWORD_3(reg,
1000 			     FRF_AZ_EVQ_EN, 1,
1001 			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1002 			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1003 	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1004 	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1005 	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1006 
1007 	mutex_unlock(&vf->status_lock);
1008 }
1009 
efx_siena_sriov_reset_vf_work(struct work_struct * work)1010 static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1011 {
1012 	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1013 	struct efx_nic *efx = vf->efx;
1014 	struct efx_buffer buf;
1015 
1016 	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1017 		efx_siena_sriov_reset_vf(vf, &buf);
1018 		efx_nic_free_buffer(efx, &buf);
1019 	}
1020 }
1021 
efx_siena_sriov_handle_no_channel(struct efx_nic * efx)1022 static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1023 {
1024 	netif_err(efx, drv, efx->net_dev,
1025 		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1026 		  "vector. IOV disabled\n");
1027 	efx->vf_count = 0;
1028 }
1029 
efx_siena_sriov_probe_channel(struct efx_channel * channel)1030 static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1031 {
1032 	struct siena_nic_data *nic_data = channel->efx->nic_data;
1033 	nic_data->vfdi_channel = channel;
1034 
1035 	return 0;
1036 }
1037 
1038 static void
efx_siena_sriov_get_channel_name(struct efx_channel * channel,char * buf,size_t len)1039 efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1040 				 char *buf, size_t len)
1041 {
1042 	snprintf(buf, len, "%s-iov", channel->efx->name);
1043 }
1044 
1045 static const struct efx_channel_type efx_siena_sriov_channel_type = {
1046 	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1047 	.pre_probe		= efx_siena_sriov_probe_channel,
1048 	.post_remove		= efx_channel_dummy_op_void,
1049 	.get_name		= efx_siena_sriov_get_channel_name,
1050 	/* no copy operation; channel must not be reallocated */
1051 	.keep_eventq		= true,
1052 };
1053 
efx_siena_sriov_probe(struct efx_nic * efx)1054 void efx_siena_sriov_probe(struct efx_nic *efx)
1055 {
1056 	unsigned count;
1057 
1058 	if (!max_vfs)
1059 		return;
1060 
1061 	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1062 		netif_info(efx, probe, efx->net_dev, "no SR-IOV VFs probed\n");
1063 		return;
1064 	}
1065 	if (count > 0 && count > max_vfs)
1066 		count = max_vfs;
1067 
1068 	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1069 	efx->vf_count = count;
1070 
1071 	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1072 }
1073 
1074 /* Copy the list of individual addresses into the vfdi_status.peers
1075  * array and auxiliary pages, protected by %local_lock. Drop that lock
1076  * and then broadcast the address list to every VF.
1077  */
efx_siena_sriov_peer_work(struct work_struct * data)1078 static void efx_siena_sriov_peer_work(struct work_struct *data)
1079 {
1080 	struct siena_nic_data *nic_data = container_of(data,
1081 						       struct siena_nic_data,
1082 						       peer_work);
1083 	struct efx_nic *efx = nic_data->efx;
1084 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1085 	struct siena_vf *vf;
1086 	struct efx_local_addr *local_addr;
1087 	struct vfdi_endpoint *peer;
1088 	struct efx_endpoint_page *epp;
1089 	struct list_head pages;
1090 	unsigned int peer_space;
1091 	unsigned int peer_count;
1092 	unsigned int pos;
1093 
1094 	mutex_lock(&nic_data->local_lock);
1095 
1096 	/* Move the existing peer pages off %local_page_list */
1097 	INIT_LIST_HEAD(&pages);
1098 	list_splice_tail_init(&nic_data->local_page_list, &pages);
1099 
1100 	/* Populate the VF addresses starting from entry 1 (entry 0 is
1101 	 * the PF address)
1102 	 */
1103 	peer = vfdi_status->peers + 1;
1104 	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1105 	peer_count = 1;
1106 	for (pos = 0; pos < efx->vf_count; ++pos) {
1107 		vf = nic_data->vf + pos;
1108 
1109 		mutex_lock(&vf->status_lock);
1110 		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1111 			*peer++ = vf->addr;
1112 			++peer_count;
1113 			--peer_space;
1114 			BUG_ON(peer_space == 0);
1115 		}
1116 		mutex_unlock(&vf->status_lock);
1117 	}
1118 
1119 	/* Fill the remaining addresses */
1120 	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1121 		ether_addr_copy(peer->mac_addr, local_addr->addr);
1122 		peer->tci = 0;
1123 		++peer;
1124 		++peer_count;
1125 		if (--peer_space == 0) {
1126 			if (list_empty(&pages)) {
1127 				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1128 				if (!epp)
1129 					break;
1130 				epp->ptr = dma_alloc_coherent(
1131 					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1132 					&epp->addr, GFP_KERNEL);
1133 				if (!epp->ptr) {
1134 					kfree(epp);
1135 					break;
1136 				}
1137 			} else {
1138 				epp = list_first_entry(
1139 					&pages, struct efx_endpoint_page, link);
1140 				list_del(&epp->link);
1141 			}
1142 
1143 			list_add_tail(&epp->link, &nic_data->local_page_list);
1144 			peer = (struct vfdi_endpoint *)epp->ptr;
1145 			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1146 		}
1147 	}
1148 	vfdi_status->peer_count = peer_count;
1149 	mutex_unlock(&nic_data->local_lock);
1150 
1151 	/* Free any now unused endpoint pages */
1152 	while (!list_empty(&pages)) {
1153 		epp = list_first_entry(
1154 			&pages, struct efx_endpoint_page, link);
1155 		list_del(&epp->link);
1156 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1157 				  epp->ptr, epp->addr);
1158 		kfree(epp);
1159 	}
1160 
1161 	/* Finally, push the pages */
1162 	for (pos = 0; pos < efx->vf_count; ++pos) {
1163 		vf = nic_data->vf + pos;
1164 
1165 		mutex_lock(&vf->status_lock);
1166 		if (vf->status_addr)
1167 			__efx_siena_sriov_push_vf_status(vf);
1168 		mutex_unlock(&vf->status_lock);
1169 	}
1170 }
1171 
efx_siena_sriov_free_local(struct efx_nic * efx)1172 static void efx_siena_sriov_free_local(struct efx_nic *efx)
1173 {
1174 	struct siena_nic_data *nic_data = efx->nic_data;
1175 	struct efx_local_addr *local_addr;
1176 	struct efx_endpoint_page *epp;
1177 
1178 	while (!list_empty(&nic_data->local_addr_list)) {
1179 		local_addr = list_first_entry(&nic_data->local_addr_list,
1180 					      struct efx_local_addr, link);
1181 		list_del(&local_addr->link);
1182 		kfree(local_addr);
1183 	}
1184 
1185 	while (!list_empty(&nic_data->local_page_list)) {
1186 		epp = list_first_entry(&nic_data->local_page_list,
1187 				       struct efx_endpoint_page, link);
1188 		list_del(&epp->link);
1189 		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1190 				  epp->ptr, epp->addr);
1191 		kfree(epp);
1192 	}
1193 }
1194 
efx_siena_sriov_vf_alloc(struct efx_nic * efx)1195 static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1196 {
1197 	unsigned index;
1198 	struct siena_vf *vf;
1199 	struct siena_nic_data *nic_data = efx->nic_data;
1200 
1201 	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1202 			       GFP_KERNEL);
1203 	if (!nic_data->vf)
1204 		return -ENOMEM;
1205 
1206 	for (index = 0; index < efx->vf_count; ++index) {
1207 		vf = nic_data->vf + index;
1208 
1209 		vf->efx = efx;
1210 		vf->index = index;
1211 		vf->rx_filter_id = -1;
1212 		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1213 		vf->tx_filter_id = -1;
1214 		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1215 		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1216 		init_waitqueue_head(&vf->flush_waitq);
1217 		mutex_init(&vf->status_lock);
1218 		mutex_init(&vf->txq_lock);
1219 	}
1220 
1221 	return 0;
1222 }
1223 
efx_siena_sriov_vfs_fini(struct efx_nic * efx)1224 static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1225 {
1226 	struct siena_nic_data *nic_data = efx->nic_data;
1227 	struct siena_vf *vf;
1228 	unsigned int pos;
1229 
1230 	for (pos = 0; pos < efx->vf_count; ++pos) {
1231 		vf = nic_data->vf + pos;
1232 
1233 		efx_nic_free_buffer(efx, &vf->buf);
1234 		kfree(vf->peer_page_addrs);
1235 		vf->peer_page_addrs = NULL;
1236 		vf->peer_page_count = 0;
1237 
1238 		vf->evq0_count = 0;
1239 	}
1240 }
1241 
efx_siena_sriov_vfs_init(struct efx_nic * efx)1242 static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1243 {
1244 	struct pci_dev *pci_dev = efx->pci_dev;
1245 	struct siena_nic_data *nic_data = efx->nic_data;
1246 	unsigned index, devfn, sriov, buftbl_base;
1247 	u16 offset, stride;
1248 	struct siena_vf *vf;
1249 	int rc;
1250 
1251 	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1252 	if (!sriov)
1253 		return -ENOENT;
1254 
1255 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1256 	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1257 
1258 	buftbl_base = nic_data->vf_buftbl_base;
1259 	devfn = pci_dev->devfn + offset;
1260 	for (index = 0; index < efx->vf_count; ++index) {
1261 		vf = nic_data->vf + index;
1262 
1263 		/* Reserve buffer entries */
1264 		vf->buftbl_base = buftbl_base;
1265 		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1266 
1267 		vf->pci_rid = devfn;
1268 		snprintf(vf->pci_name, sizeof(vf->pci_name),
1269 			 "%04x:%02x:%02x.%d",
1270 			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1271 			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1272 
1273 		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1274 					  GFP_KERNEL);
1275 		if (rc)
1276 			goto fail;
1277 
1278 		devfn += stride;
1279 	}
1280 
1281 	return 0;
1282 
1283 fail:
1284 	efx_siena_sriov_vfs_fini(efx);
1285 	return rc;
1286 }
1287 
efx_siena_sriov_init(struct efx_nic * efx)1288 int efx_siena_sriov_init(struct efx_nic *efx)
1289 {
1290 	struct net_device *net_dev = efx->net_dev;
1291 	struct siena_nic_data *nic_data = efx->nic_data;
1292 	struct vfdi_status *vfdi_status;
1293 	int rc;
1294 
1295 	/* Ensure there's room for vf_channel */
1296 	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1297 	/* Ensure that VI_BASE is aligned on VI_SCALE */
1298 	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1299 
1300 	if (efx->vf_count == 0)
1301 		return 0;
1302 
1303 	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1304 	if (rc)
1305 		goto fail_cmd;
1306 
1307 	rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
1308 				  sizeof(*vfdi_status), GFP_KERNEL);
1309 	if (rc)
1310 		goto fail_status;
1311 	vfdi_status = nic_data->vfdi_status.addr;
1312 	memset(vfdi_status, 0, sizeof(*vfdi_status));
1313 	vfdi_status->version = 1;
1314 	vfdi_status->length = sizeof(*vfdi_status);
1315 	vfdi_status->max_tx_channels = vf_max_tx_channels;
1316 	vfdi_status->vi_scale = efx->vi_scale;
1317 	vfdi_status->rss_rxq_count = efx->rss_spread;
1318 	vfdi_status->peer_count = 1 + efx->vf_count;
1319 	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1320 
1321 	rc = efx_siena_sriov_vf_alloc(efx);
1322 	if (rc)
1323 		goto fail_alloc;
1324 
1325 	mutex_init(&nic_data->local_lock);
1326 	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1327 	INIT_LIST_HEAD(&nic_data->local_addr_list);
1328 	INIT_LIST_HEAD(&nic_data->local_page_list);
1329 
1330 	rc = efx_siena_sriov_vfs_init(efx);
1331 	if (rc)
1332 		goto fail_vfs;
1333 
1334 	rtnl_lock();
1335 	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1336 	efx->vf_init_count = efx->vf_count;
1337 	rtnl_unlock();
1338 
1339 	efx_siena_sriov_usrev(efx, true);
1340 
1341 	/* At this point we must be ready to accept VFDI requests */
1342 
1343 	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1344 	if (rc)
1345 		goto fail_pci;
1346 
1347 	netif_info(efx, probe, net_dev,
1348 		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1349 		   efx->vf_count, efx_vf_size(efx));
1350 	return 0;
1351 
1352 fail_pci:
1353 	efx_siena_sriov_usrev(efx, false);
1354 	rtnl_lock();
1355 	efx->vf_init_count = 0;
1356 	rtnl_unlock();
1357 	efx_siena_sriov_vfs_fini(efx);
1358 fail_vfs:
1359 	cancel_work_sync(&nic_data->peer_work);
1360 	efx_siena_sriov_free_local(efx);
1361 	kfree(nic_data->vf);
1362 fail_alloc:
1363 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1364 fail_status:
1365 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1366 fail_cmd:
1367 	return rc;
1368 }
1369 
efx_siena_sriov_fini(struct efx_nic * efx)1370 void efx_siena_sriov_fini(struct efx_nic *efx)
1371 {
1372 	struct siena_vf *vf;
1373 	unsigned int pos;
1374 	struct siena_nic_data *nic_data = efx->nic_data;
1375 
1376 	if (efx->vf_init_count == 0)
1377 		return;
1378 
1379 	/* Disable all interfaces to reconfiguration */
1380 	BUG_ON(nic_data->vfdi_channel->enabled);
1381 	efx_siena_sriov_usrev(efx, false);
1382 	rtnl_lock();
1383 	efx->vf_init_count = 0;
1384 	rtnl_unlock();
1385 
1386 	/* Flush all reconfiguration work */
1387 	for (pos = 0; pos < efx->vf_count; ++pos) {
1388 		vf = nic_data->vf + pos;
1389 		cancel_work_sync(&vf->req);
1390 		cancel_work_sync(&vf->reset_work);
1391 	}
1392 	cancel_work_sync(&nic_data->peer_work);
1393 
1394 	pci_disable_sriov(efx->pci_dev);
1395 
1396 	/* Tear down back-end state */
1397 	efx_siena_sriov_vfs_fini(efx);
1398 	efx_siena_sriov_free_local(efx);
1399 	kfree(nic_data->vf);
1400 	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1401 	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1402 }
1403 
efx_siena_sriov_event(struct efx_channel * channel,efx_qword_t * event)1404 void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1405 {
1406 	struct efx_nic *efx = channel->efx;
1407 	struct siena_vf *vf;
1408 	unsigned qid, seq, type, data;
1409 
1410 	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1411 
1412 	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1413 	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1414 	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1415 	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1416 	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1417 
1418 	netif_vdbg(efx, hw, efx->net_dev,
1419 		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1420 		   qid, seq, type, data);
1421 
1422 	if (map_vi_index(efx, qid, &vf, NULL))
1423 		return;
1424 	if (vf->busy)
1425 		goto error;
1426 
1427 	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1428 		/* Resynchronise */
1429 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1430 		vf->req_seqno = seq + 1;
1431 		vf->req_addr = 0;
1432 	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1433 		goto error;
1434 
1435 	switch (vf->req_type) {
1436 	case VFDI_EV_TYPE_REQ_WORD0:
1437 	case VFDI_EV_TYPE_REQ_WORD1:
1438 	case VFDI_EV_TYPE_REQ_WORD2:
1439 		vf->req_addr |= (u64)data << (vf->req_type << 4);
1440 		++vf->req_type;
1441 		return;
1442 
1443 	case VFDI_EV_TYPE_REQ_WORD3:
1444 		vf->req_addr |= (u64)data << 48;
1445 		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1446 		vf->busy = true;
1447 		queue_work(vfdi_workqueue, &vf->req);
1448 		return;
1449 	}
1450 
1451 error:
1452 	if (net_ratelimit())
1453 		netif_err(efx, hw, efx->net_dev,
1454 			  "ERROR: Screaming VFDI request from %s\n",
1455 			  vf->pci_name);
1456 	/* Reset the request and sequence number */
1457 	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1458 	vf->req_seqno = seq + 1;
1459 }
1460 
efx_siena_sriov_flr(struct efx_nic * efx,unsigned vf_i)1461 void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1462 {
1463 	struct siena_nic_data *nic_data = efx->nic_data;
1464 	struct siena_vf *vf;
1465 
1466 	if (vf_i > efx->vf_init_count)
1467 		return;
1468 	vf = nic_data->vf + vf_i;
1469 	netif_info(efx, hw, efx->net_dev,
1470 		   "FLR on VF %s\n", vf->pci_name);
1471 
1472 	vf->status_addr = 0;
1473 	efx_vfdi_remove_all_filters(vf);
1474 	efx_vfdi_flush_clear(vf);
1475 
1476 	vf->evq0_count = 0;
1477 }
1478 
efx_siena_sriov_mac_address_changed(struct efx_nic * efx)1479 int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1480 {
1481 	struct siena_nic_data *nic_data = efx->nic_data;
1482 	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1483 
1484 	if (!efx->vf_init_count)
1485 		return 0;
1486 	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1487 			efx->net_dev->dev_addr);
1488 	queue_work(vfdi_workqueue, &nic_data->peer_work);
1489 
1490 	return 0;
1491 }
1492 
efx_siena_sriov_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1493 void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1494 {
1495 	struct siena_vf *vf;
1496 	unsigned queue, qid;
1497 
1498 	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1499 	if (map_vi_index(efx, queue, &vf, &qid))
1500 		return;
1501 	/* Ignore flush completions triggered by an FLR */
1502 	if (!test_bit(qid, vf->txq_mask))
1503 		return;
1504 
1505 	__clear_bit(qid, vf->txq_mask);
1506 	--vf->txq_count;
1507 
1508 	if (efx_vfdi_flush_wake(vf))
1509 		wake_up(&vf->flush_waitq);
1510 }
1511 
efx_siena_sriov_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1512 void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1513 {
1514 	struct siena_vf *vf;
1515 	unsigned ev_failed, queue, qid;
1516 
1517 	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1518 	ev_failed = EFX_QWORD_FIELD(*event,
1519 				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1520 	if (map_vi_index(efx, queue, &vf, &qid))
1521 		return;
1522 	if (!test_bit(qid, vf->rxq_mask))
1523 		return;
1524 
1525 	if (ev_failed) {
1526 		set_bit(qid, vf->rxq_retry_mask);
1527 		atomic_inc(&vf->rxq_retry_count);
1528 	} else {
1529 		__clear_bit(qid, vf->rxq_mask);
1530 		--vf->rxq_count;
1531 	}
1532 	if (efx_vfdi_flush_wake(vf))
1533 		wake_up(&vf->flush_waitq);
1534 }
1535 
1536 /* Called from napi. Schedule the reset work item */
efx_siena_sriov_desc_fetch_err(struct efx_nic * efx,unsigned dmaq)1537 void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1538 {
1539 	struct siena_vf *vf;
1540 	unsigned int rel;
1541 
1542 	if (map_vi_index(efx, dmaq, &vf, &rel))
1543 		return;
1544 
1545 	if (net_ratelimit())
1546 		netif_err(efx, hw, efx->net_dev,
1547 			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1548 			  vf->index, rel);
1549 	queue_work(vfdi_workqueue, &vf->reset_work);
1550 }
1551 
1552 /* Reset all VFs */
efx_siena_sriov_reset(struct efx_nic * efx)1553 void efx_siena_sriov_reset(struct efx_nic *efx)
1554 {
1555 	struct siena_nic_data *nic_data = efx->nic_data;
1556 	unsigned int vf_i;
1557 	struct efx_buffer buf;
1558 	struct siena_vf *vf;
1559 
1560 	ASSERT_RTNL();
1561 
1562 	if (efx->vf_init_count == 0)
1563 		return;
1564 
1565 	efx_siena_sriov_usrev(efx, true);
1566 	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1567 
1568 	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1569 		return;
1570 
1571 	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1572 		vf = nic_data->vf + vf_i;
1573 		efx_siena_sriov_reset_vf(vf, &buf);
1574 	}
1575 
1576 	efx_nic_free_buffer(efx, &buf);
1577 }
1578 
efx_init_sriov(void)1579 int efx_init_sriov(void)
1580 {
1581 	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1582 	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1583 	 * MCDI to complete anyway
1584 	 */
1585 	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1586 	if (!vfdi_workqueue)
1587 		return -ENOMEM;
1588 	return 0;
1589 }
1590 
efx_fini_sriov(void)1591 void efx_fini_sriov(void)
1592 {
1593 	destroy_workqueue(vfdi_workqueue);
1594 }
1595 
efx_siena_sriov_set_vf_mac(struct efx_nic * efx,int vf_i,u8 * mac)1596 int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, u8 *mac)
1597 {
1598 	struct siena_nic_data *nic_data = efx->nic_data;
1599 	struct siena_vf *vf;
1600 
1601 	if (vf_i >= efx->vf_init_count)
1602 		return -EINVAL;
1603 	vf = nic_data->vf + vf_i;
1604 
1605 	mutex_lock(&vf->status_lock);
1606 	ether_addr_copy(vf->addr.mac_addr, mac);
1607 	__efx_siena_sriov_update_vf_addr(vf);
1608 	mutex_unlock(&vf->status_lock);
1609 
1610 	return 0;
1611 }
1612 
efx_siena_sriov_set_vf_vlan(struct efx_nic * efx,int vf_i,u16 vlan,u8 qos)1613 int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1614 				u16 vlan, u8 qos)
1615 {
1616 	struct siena_nic_data *nic_data = efx->nic_data;
1617 	struct siena_vf *vf;
1618 	u16 tci;
1619 
1620 	if (vf_i >= efx->vf_init_count)
1621 		return -EINVAL;
1622 	vf = nic_data->vf + vf_i;
1623 
1624 	mutex_lock(&vf->status_lock);
1625 	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1626 	vf->addr.tci = htons(tci);
1627 	__efx_siena_sriov_update_vf_addr(vf);
1628 	mutex_unlock(&vf->status_lock);
1629 
1630 	return 0;
1631 }
1632 
efx_siena_sriov_set_vf_spoofchk(struct efx_nic * efx,int vf_i,bool spoofchk)1633 int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1634 				    bool spoofchk)
1635 {
1636 	struct siena_nic_data *nic_data = efx->nic_data;
1637 	struct siena_vf *vf;
1638 	int rc;
1639 
1640 	if (vf_i >= efx->vf_init_count)
1641 		return -EINVAL;
1642 	vf = nic_data->vf + vf_i;
1643 
1644 	mutex_lock(&vf->txq_lock);
1645 	if (vf->txq_count == 0) {
1646 		vf->tx_filter_mode =
1647 			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1648 		rc = 0;
1649 	} else {
1650 		/* This cannot be changed while TX queues are running */
1651 		rc = -EBUSY;
1652 	}
1653 	mutex_unlock(&vf->txq_lock);
1654 	return rc;
1655 }
1656 
efx_siena_sriov_get_vf_config(struct efx_nic * efx,int vf_i,struct ifla_vf_info * ivi)1657 int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1658 				  struct ifla_vf_info *ivi)
1659 {
1660 	struct siena_nic_data *nic_data = efx->nic_data;
1661 	struct siena_vf *vf;
1662 	u16 tci;
1663 
1664 	if (vf_i >= efx->vf_init_count)
1665 		return -EINVAL;
1666 	vf = nic_data->vf + vf_i;
1667 
1668 	ivi->vf = vf_i;
1669 	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1670 	ivi->max_tx_rate = 0;
1671 	ivi->min_tx_rate = 0;
1672 	tci = ntohs(vf->addr.tci);
1673 	ivi->vlan = tci & VLAN_VID_MASK;
1674 	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1675 	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1676 
1677 	return 0;
1678 }
1679 
efx_siena_sriov_wanted(struct efx_nic * efx)1680 bool efx_siena_sriov_wanted(struct efx_nic *efx)
1681 {
1682 	return efx->vf_count != 0;
1683 }
1684 
efx_siena_sriov_configure(struct efx_nic * efx,int num_vfs)1685 int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1686 {
1687 	return 0;
1688 }
1689