• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* PID Codes that are used here, from EHCI specification, Table 3-16. */
44 #define PID_CODE_IN    1
45 #define PID_CODE_SETUP 2
46 
47 /* fill a qtd, returning how much of the buffer we were able to queue up */
48 
49 static int
qtd_fill(struct ehci_hcd * ehci,struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)50 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
51 		  size_t len, int token, int maxpacket)
52 {
53 	int	i, count;
54 	u64	addr = buf;
55 
56 	/* one buffer entry per 4K ... first might be short or unaligned */
57 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
58 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
59 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
60 	if (likely (len < count))		/* ... iff needed */
61 		count = len;
62 	else {
63 		buf +=  0x1000;
64 		buf &= ~0x0fff;
65 
66 		/* per-qtd limit: from 16K to 20K (best alignment) */
67 		for (i = 1; count < len && i < 5; i++) {
68 			addr = buf;
69 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
70 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
71 					(u32)(addr >> 32));
72 			buf += 0x1000;
73 			if ((count + 0x1000) < len)
74 				count += 0x1000;
75 			else
76 				count = len;
77 		}
78 
79 		/* short packets may only terminate transfers */
80 		if (count != len)
81 			count -= (count % maxpacket);
82 	}
83 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
84 	qtd->length = count;
85 
86 	return count;
87 }
88 
89 /*-------------------------------------------------------------------------*/
90 
91 static inline void
qh_update(struct ehci_hcd * ehci,struct ehci_qh * qh,struct ehci_qtd * qtd)92 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
93 {
94 	struct ehci_qh_hw *hw = qh->hw;
95 
96 	/* writes to an active overlay are unsafe */
97 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
98 
99 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
100 	hw->hw_alt_next = EHCI_LIST_END(ehci);
101 
102 	/* Except for control endpoints, we make hardware maintain data
103 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
104 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
105 	 * ever clear it.
106 	 */
107 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
108 		unsigned	is_out, epnum;
109 
110 		is_out = qh->is_out;
111 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
112 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
113 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
114 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
115 		}
116 	}
117 
118 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
119 }
120 
121 /* if it weren't for a common silicon quirk (writing the dummy into the qh
122  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
123  * recovery (including urb dequeue) would need software changes to a QH...
124  */
125 static void
qh_refresh(struct ehci_hcd * ehci,struct ehci_qh * qh)126 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
127 {
128 	struct ehci_qtd *qtd;
129 
130 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
131 
132 	/*
133 	 * first qtd may already be partially processed.
134 	 * If we come here during unlink, the QH overlay region
135 	 * might have reference to the just unlinked qtd. The
136 	 * qtd is updated in qh_completions(). Update the QH
137 	 * overlay here.
138 	 */
139 	if (qh->hw->hw_token & ACTIVE_BIT(ehci))
140 		qh->hw->hw_qtd_next = qtd->hw_next;
141 	else
142 		qh_update(ehci, qh, qtd);
143 }
144 
145 /*-------------------------------------------------------------------------*/
146 
147 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
148 
ehci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)149 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
150 		struct usb_host_endpoint *ep)
151 {
152 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
153 	struct ehci_qh		*qh = ep->hcpriv;
154 	unsigned long		flags;
155 
156 	spin_lock_irqsave(&ehci->lock, flags);
157 	qh->clearing_tt = 0;
158 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
159 			&& ehci->rh_state == EHCI_RH_RUNNING)
160 		qh_link_async(ehci, qh);
161 	spin_unlock_irqrestore(&ehci->lock, flags);
162 }
163 
ehci_clear_tt_buffer(struct ehci_hcd * ehci,struct ehci_qh * qh,struct urb * urb,u32 token)164 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
165 		struct urb *urb, u32 token)
166 {
167 
168 	/* If an async split transaction gets an error or is unlinked,
169 	 * the TT buffer may be left in an indeterminate state.  We
170 	 * have to clear the TT buffer.
171 	 *
172 	 * Note: this routine is never called for Isochronous transfers.
173 	 */
174 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
175 #ifdef CONFIG_DYNAMIC_DEBUG
176 		struct usb_device *tt = urb->dev->tt->hub;
177 		dev_dbg(&tt->dev,
178 			"clear tt buffer port %d, a%d ep%d t%08x\n",
179 			urb->dev->ttport, urb->dev->devnum,
180 			usb_pipeendpoint(urb->pipe), token);
181 #endif /* CONFIG_DYNAMIC_DEBUG */
182 		if (!ehci_is_TDI(ehci)
183 				|| urb->dev->tt->hub !=
184 				   ehci_to_hcd(ehci)->self.root_hub) {
185 			if (usb_hub_clear_tt_buffer(urb) == 0)
186 				qh->clearing_tt = 1;
187 		} else {
188 
189 			/* REVISIT ARC-derived cores don't clear the root
190 			 * hub TT buffer in this way...
191 			 */
192 		}
193 	}
194 }
195 
qtd_copy_status(struct ehci_hcd * ehci,struct urb * urb,size_t length,u32 token)196 static int qtd_copy_status (
197 	struct ehci_hcd *ehci,
198 	struct urb *urb,
199 	size_t length,
200 	u32 token
201 )
202 {
203 	int	status = -EINPROGRESS;
204 
205 	/* count IN/OUT bytes, not SETUP (even short packets) */
206 	if (likely(QTD_PID(token) != PID_CODE_SETUP))
207 		urb->actual_length += length - QTD_LENGTH (token);
208 
209 	/* don't modify error codes */
210 	if (unlikely(urb->unlinked))
211 		return status;
212 
213 	/* force cleanup after short read; not always an error */
214 	if (unlikely (IS_SHORT_READ (token)))
215 		status = -EREMOTEIO;
216 
217 	/* serious "can't proceed" faults reported by the hardware */
218 	if (token & QTD_STS_HALT) {
219 		if (token & QTD_STS_BABBLE) {
220 			/* FIXME "must" disable babbling device's port too */
221 			status = -EOVERFLOW;
222 		/*
223 		 * When MMF is active and PID Code is IN, queue is halted.
224 		 * EHCI Specification, Table 4-13.
225 		 */
226 		} else if ((token & QTD_STS_MMF) &&
227 					(QTD_PID(token) == PID_CODE_IN)) {
228 			status = -EPROTO;
229 		/* CERR nonzero + halt --> stall */
230 		} else if (QTD_CERR(token)) {
231 			status = -EPIPE;
232 
233 		/* In theory, more than one of the following bits can be set
234 		 * since they are sticky and the transaction is retried.
235 		 * Which to test first is rather arbitrary.
236 		 */
237 		} else if (token & QTD_STS_MMF) {
238 			/* fs/ls interrupt xfer missed the complete-split */
239 			status = -EPROTO;
240 		} else if (token & QTD_STS_DBE) {
241 			status = (QTD_PID (token) == 1) /* IN ? */
242 				? -ENOSR  /* hc couldn't read data */
243 				: -ECOMM; /* hc couldn't write data */
244 		} else if (token & QTD_STS_XACT) {
245 			/* timeout, bad CRC, wrong PID, etc */
246 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
247 				urb->dev->devpath,
248 				usb_pipeendpoint(urb->pipe),
249 				usb_pipein(urb->pipe) ? "in" : "out");
250 			status = -EPROTO;
251 		} else {	/* unknown */
252 			status = -EPROTO;
253 		}
254 	}
255 
256 	return status;
257 }
258 
259 static void
ehci_urb_done(struct ehci_hcd * ehci,struct urb * urb,int status)260 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
261 {
262 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
263 		/* ... update hc-wide periodic stats */
264 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
265 	}
266 
267 	if (unlikely(urb->unlinked)) {
268 		COUNT(ehci->stats.unlink);
269 	} else {
270 		/* report non-error and short read status as zero */
271 		if (status == -EINPROGRESS || status == -EREMOTEIO)
272 			status = 0;
273 		COUNT(ehci->stats.complete);
274 	}
275 
276 #ifdef EHCI_URB_TRACE
277 	ehci_dbg (ehci,
278 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
279 		__func__, urb->dev->devpath, urb,
280 		usb_pipeendpoint (urb->pipe),
281 		usb_pipein (urb->pipe) ? "in" : "out",
282 		status,
283 		urb->actual_length, urb->transfer_buffer_length);
284 #endif
285 
286 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
287 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
288 }
289 
290 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
291 
292 /*
293  * Process and free completed qtds for a qh, returning URBs to drivers.
294  * Chases up to qh->hw_current.  Returns nonzero if the caller should
295  * unlink qh.
296  */
297 static unsigned
qh_completions(struct ehci_hcd * ehci,struct ehci_qh * qh)298 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
299 {
300 	struct ehci_qtd		*last, *end = qh->dummy;
301 	struct list_head	*entry, *tmp;
302 	int			last_status;
303 	int			stopped;
304 	u8			state;
305 	struct ehci_qh_hw	*hw = qh->hw;
306 
307 	/* completions (or tasks on other cpus) must never clobber HALT
308 	 * till we've gone through and cleaned everything up, even when
309 	 * they add urbs to this qh's queue or mark them for unlinking.
310 	 *
311 	 * NOTE:  unlinking expects to be done in queue order.
312 	 *
313 	 * It's a bug for qh->qh_state to be anything other than
314 	 * QH_STATE_IDLE, unless our caller is scan_async() or
315 	 * scan_intr().
316 	 */
317 	state = qh->qh_state;
318 	qh->qh_state = QH_STATE_COMPLETING;
319 	stopped = (state == QH_STATE_IDLE);
320 
321  rescan:
322 	last = NULL;
323 	last_status = -EINPROGRESS;
324 	qh->dequeue_during_giveback = 0;
325 
326 	/* remove de-activated QTDs from front of queue.
327 	 * after faults (including short reads), cleanup this urb
328 	 * then let the queue advance.
329 	 * if queue is stopped, handles unlinks.
330 	 */
331 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
332 		struct ehci_qtd	*qtd;
333 		struct urb	*urb;
334 		u32		token = 0;
335 
336 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
337 		urb = qtd->urb;
338 
339 		/* clean up any state from previous QTD ...*/
340 		if (last) {
341 			if (likely (last->urb != urb)) {
342 				ehci_urb_done(ehci, last->urb, last_status);
343 				last_status = -EINPROGRESS;
344 			}
345 			ehci_qtd_free (ehci, last);
346 			last = NULL;
347 		}
348 
349 		/* ignore urbs submitted during completions we reported */
350 		if (qtd == end)
351 			break;
352 
353 		/* hardware copies qtd out of qh overlay */
354 		rmb ();
355 		token = hc32_to_cpu(ehci, qtd->hw_token);
356 
357 		/* always clean up qtds the hc de-activated */
358  retry_xacterr:
359 		if ((token & QTD_STS_ACTIVE) == 0) {
360 
361 			/* Report Data Buffer Error: non-fatal but useful */
362 			if (token & QTD_STS_DBE)
363 				ehci_dbg(ehci,
364 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
365 					urb,
366 					usb_endpoint_num(&urb->ep->desc),
367 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
368 					urb->transfer_buffer_length,
369 					qtd,
370 					qh);
371 
372 			/* on STALL, error, and short reads this urb must
373 			 * complete and all its qtds must be recycled.
374 			 */
375 			if ((token & QTD_STS_HALT) != 0) {
376 
377 				/* retry transaction errors until we
378 				 * reach the software xacterr limit
379 				 */
380 				if ((token & QTD_STS_XACT) &&
381 						QTD_CERR(token) == 0 &&
382 						++qh->xacterrs < QH_XACTERR_MAX &&
383 						!urb->unlinked) {
384 					ehci_dbg(ehci,
385 	"detected XactErr len %zu/%zu retry %d\n",
386 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
387 
388 					/* reset the token in the qtd and the
389 					 * qh overlay (which still contains
390 					 * the qtd) so that we pick up from
391 					 * where we left off
392 					 */
393 					token &= ~QTD_STS_HALT;
394 					token |= QTD_STS_ACTIVE |
395 							(EHCI_TUNE_CERR << 10);
396 					qtd->hw_token = cpu_to_hc32(ehci,
397 							token);
398 					wmb();
399 					hw->hw_token = cpu_to_hc32(ehci,
400 							token);
401 					goto retry_xacterr;
402 				}
403 				stopped = 1;
404 
405 			/* magic dummy for some short reads; qh won't advance.
406 			 * that silicon quirk can kick in with this dummy too.
407 			 *
408 			 * other short reads won't stop the queue, including
409 			 * control transfers (status stage handles that) or
410 			 * most other single-qtd reads ... the queue stops if
411 			 * URB_SHORT_NOT_OK was set so the driver submitting
412 			 * the urbs could clean it up.
413 			 */
414 			} else if (IS_SHORT_READ (token)
415 					&& !(qtd->hw_alt_next
416 						& EHCI_LIST_END(ehci))) {
417 				stopped = 1;
418 			}
419 
420 		/* stop scanning when we reach qtds the hc is using */
421 		} else if (likely (!stopped
422 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
423 			break;
424 
425 		/* scan the whole queue for unlinks whenever it stops */
426 		} else {
427 			stopped = 1;
428 
429 			/* cancel everything if we halt, suspend, etc */
430 			if (ehci->rh_state < EHCI_RH_RUNNING)
431 				last_status = -ESHUTDOWN;
432 
433 			/* this qtd is active; skip it unless a previous qtd
434 			 * for its urb faulted, or its urb was canceled.
435 			 */
436 			else if (last_status == -EINPROGRESS && !urb->unlinked)
437 				continue;
438 
439 			/*
440 			 * If this was the active qtd when the qh was unlinked
441 			 * and the overlay's token is active, then the overlay
442 			 * hasn't been written back to the qtd yet so use its
443 			 * token instead of the qtd's.  After the qtd is
444 			 * processed and removed, the overlay won't be valid
445 			 * any more.
446 			 */
447 			if (state == QH_STATE_IDLE &&
448 					qh->qtd_list.next == &qtd->qtd_list &&
449 					(hw->hw_token & ACTIVE_BIT(ehci))) {
450 				token = hc32_to_cpu(ehci, hw->hw_token);
451 				hw->hw_token &= ~ACTIVE_BIT(ehci);
452 
453 				/* An unlink may leave an incomplete
454 				 * async transaction in the TT buffer.
455 				 * We have to clear it.
456 				 */
457 				ehci_clear_tt_buffer(ehci, qh, urb, token);
458 			}
459 		}
460 
461 		/* unless we already know the urb's status, collect qtd status
462 		 * and update count of bytes transferred.  in common short read
463 		 * cases with only one data qtd (including control transfers),
464 		 * queue processing won't halt.  but with two or more qtds (for
465 		 * example, with a 32 KB transfer), when the first qtd gets a
466 		 * short read the second must be removed by hand.
467 		 */
468 		if (last_status == -EINPROGRESS) {
469 			last_status = qtd_copy_status(ehci, urb,
470 					qtd->length, token);
471 			if (last_status == -EREMOTEIO
472 					&& (qtd->hw_alt_next
473 						& EHCI_LIST_END(ehci)))
474 				last_status = -EINPROGRESS;
475 
476 			/* As part of low/full-speed endpoint-halt processing
477 			 * we must clear the TT buffer (11.17.5).
478 			 */
479 			if (unlikely(last_status != -EINPROGRESS &&
480 					last_status != -EREMOTEIO)) {
481 				/* The TT's in some hubs malfunction when they
482 				 * receive this request following a STALL (they
483 				 * stop sending isochronous packets).  Since a
484 				 * STALL can't leave the TT buffer in a busy
485 				 * state (if you believe Figures 11-48 - 11-51
486 				 * in the USB 2.0 spec), we won't clear the TT
487 				 * buffer in this case.  Strictly speaking this
488 				 * is a violation of the spec.
489 				 */
490 				if (last_status != -EPIPE)
491 					ehci_clear_tt_buffer(ehci, qh, urb,
492 							token);
493 			}
494 		}
495 
496 		/* if we're removing something not at the queue head,
497 		 * patch the hardware queue pointer.
498 		 */
499 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
500 			last = list_entry (qtd->qtd_list.prev,
501 					struct ehci_qtd, qtd_list);
502 			last->hw_next = qtd->hw_next;
503 		}
504 
505 		/* remove qtd; it's recycled after possible urb completion */
506 		list_del (&qtd->qtd_list);
507 		last = qtd;
508 
509 		/* reinit the xacterr counter for the next qtd */
510 		qh->xacterrs = 0;
511 	}
512 
513 	/* last urb's completion might still need calling */
514 	if (likely (last != NULL)) {
515 		ehci_urb_done(ehci, last->urb, last_status);
516 		ehci_qtd_free (ehci, last);
517 	}
518 
519 	/* Do we need to rescan for URBs dequeued during a giveback? */
520 	if (unlikely(qh->dequeue_during_giveback)) {
521 		/* If the QH is already unlinked, do the rescan now. */
522 		if (state == QH_STATE_IDLE)
523 			goto rescan;
524 
525 		/* Otherwise the caller must unlink the QH. */
526 	}
527 
528 	/* restore original state; caller must unlink or relink */
529 	qh->qh_state = state;
530 
531 	/* be sure the hardware's done with the qh before refreshing
532 	 * it after fault cleanup, or recovering from silicon wrongly
533 	 * overlaying the dummy qtd (which reduces DMA chatter).
534 	 *
535 	 * We won't refresh a QH that's linked (after the HC
536 	 * stopped the queue).  That avoids a race:
537 	 *  - HC reads first part of QH;
538 	 *  - CPU updates that first part and the token;
539 	 *  - HC reads rest of that QH, including token
540 	 * Result:  HC gets an inconsistent image, and then
541 	 * DMAs to/from the wrong memory (corrupting it).
542 	 *
543 	 * That should be rare for interrupt transfers,
544 	 * except maybe high bandwidth ...
545 	 */
546 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
547 		qh->exception = 1;
548 
549 	/* Let the caller know if the QH needs to be unlinked. */
550 	return qh->exception;
551 }
552 
553 /*-------------------------------------------------------------------------*/
554 
555 // high bandwidth multiplier, as encoded in highspeed endpoint descriptors
556 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
557 // ... and packet size, for any kind of endpoint descriptor
558 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
559 
560 /*
561  * reverse of qh_urb_transaction:  free a list of TDs.
562  * used for cleanup after errors, before HC sees an URB's TDs.
563  */
qtd_list_free(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list)564 static void qtd_list_free (
565 	struct ehci_hcd		*ehci,
566 	struct urb		*urb,
567 	struct list_head	*qtd_list
568 ) {
569 	struct list_head	*entry, *temp;
570 
571 	list_for_each_safe (entry, temp, qtd_list) {
572 		struct ehci_qtd	*qtd;
573 
574 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
575 		list_del (&qtd->qtd_list);
576 		ehci_qtd_free (ehci, qtd);
577 	}
578 }
579 
580 /*
581  * create a list of filled qtds for this URB; won't link into qh.
582  */
583 static struct list_head *
qh_urb_transaction(struct ehci_hcd * ehci,struct urb * urb,struct list_head * head,gfp_t flags)584 qh_urb_transaction (
585 	struct ehci_hcd		*ehci,
586 	struct urb		*urb,
587 	struct list_head	*head,
588 	gfp_t			flags
589 ) {
590 	struct ehci_qtd		*qtd, *qtd_prev;
591 	dma_addr_t		buf;
592 	int			len, this_sg_len, maxpacket;
593 	int			is_input;
594 	u32			token;
595 	int			i;
596 	struct scatterlist	*sg;
597 
598 	/*
599 	 * URBs map to sequences of QTDs:  one logical transaction
600 	 */
601 	qtd = ehci_qtd_alloc (ehci, flags);
602 	if (unlikely (!qtd))
603 		return NULL;
604 	list_add_tail (&qtd->qtd_list, head);
605 	qtd->urb = urb;
606 
607 	token = QTD_STS_ACTIVE;
608 	token |= (EHCI_TUNE_CERR << 10);
609 	/* for split transactions, SplitXState initialized to zero */
610 
611 	len = urb->transfer_buffer_length;
612 	is_input = usb_pipein (urb->pipe);
613 	if (usb_pipecontrol (urb->pipe)) {
614 		/* SETUP pid */
615 		qtd_fill(ehci, qtd, urb->setup_dma,
616 				sizeof (struct usb_ctrlrequest),
617 				token | (2 /* "setup" */ << 8), 8);
618 
619 		/* ... and always at least one more pid */
620 		token ^= QTD_TOGGLE;
621 		qtd_prev = qtd;
622 		qtd = ehci_qtd_alloc (ehci, flags);
623 		if (unlikely (!qtd))
624 			goto cleanup;
625 		qtd->urb = urb;
626 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
627 		list_add_tail (&qtd->qtd_list, head);
628 
629 		/* for zero length DATA stages, STATUS is always IN */
630 		if (len == 0)
631 			token |= (1 /* "in" */ << 8);
632 	}
633 
634 	/*
635 	 * data transfer stage:  buffer setup
636 	 */
637 	i = urb->num_mapped_sgs;
638 	if (len > 0 && i > 0) {
639 		sg = urb->sg;
640 		buf = sg_dma_address(sg);
641 
642 		/* urb->transfer_buffer_length may be smaller than the
643 		 * size of the scatterlist (or vice versa)
644 		 */
645 		this_sg_len = min_t(int, sg_dma_len(sg), len);
646 	} else {
647 		sg = NULL;
648 		buf = urb->transfer_dma;
649 		this_sg_len = len;
650 	}
651 
652 	if (is_input)
653 		token |= (1 /* "in" */ << 8);
654 	/* else it's already initted to "out" pid (0 << 8) */
655 
656 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
657 
658 	/*
659 	 * buffer gets wrapped in one or more qtds;
660 	 * last one may be "short" (including zero len)
661 	 * and may serve as a control status ack
662 	 */
663 	for (;;) {
664 		int this_qtd_len;
665 
666 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
667 				maxpacket);
668 		this_sg_len -= this_qtd_len;
669 		len -= this_qtd_len;
670 		buf += this_qtd_len;
671 
672 		/*
673 		 * short reads advance to a "magic" dummy instead of the next
674 		 * qtd ... that forces the queue to stop, for manual cleanup.
675 		 * (this will usually be overridden later.)
676 		 */
677 		if (is_input)
678 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
679 
680 		/* qh makes control packets use qtd toggle; maybe switch it */
681 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
682 			token ^= QTD_TOGGLE;
683 
684 		if (likely(this_sg_len <= 0)) {
685 			if (--i <= 0 || len <= 0)
686 				break;
687 			sg = sg_next(sg);
688 			buf = sg_dma_address(sg);
689 			this_sg_len = min_t(int, sg_dma_len(sg), len);
690 		}
691 
692 		qtd_prev = qtd;
693 		qtd = ehci_qtd_alloc (ehci, flags);
694 		if (unlikely (!qtd))
695 			goto cleanup;
696 		qtd->urb = urb;
697 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
698 		list_add_tail (&qtd->qtd_list, head);
699 	}
700 
701 	/*
702 	 * unless the caller requires manual cleanup after short reads,
703 	 * have the alt_next mechanism keep the queue running after the
704 	 * last data qtd (the only one, for control and most other cases).
705 	 */
706 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
707 				|| usb_pipecontrol (urb->pipe)))
708 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
709 
710 	/*
711 	 * control requests may need a terminating data "status" ack;
712 	 * other OUT ones may need a terminating short packet
713 	 * (zero length).
714 	 */
715 	if (likely (urb->transfer_buffer_length != 0)) {
716 		int	one_more = 0;
717 
718 		if (usb_pipecontrol (urb->pipe)) {
719 			one_more = 1;
720 			token ^= 0x0100;	/* "in" <--> "out"  */
721 			token |= QTD_TOGGLE;	/* force DATA1 */
722 		} else if (usb_pipeout(urb->pipe)
723 				&& (urb->transfer_flags & URB_ZERO_PACKET)
724 				&& !(urb->transfer_buffer_length % maxpacket)) {
725 			one_more = 1;
726 		}
727 		if (one_more) {
728 			qtd_prev = qtd;
729 			qtd = ehci_qtd_alloc (ehci, flags);
730 			if (unlikely (!qtd))
731 				goto cleanup;
732 			qtd->urb = urb;
733 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
734 			list_add_tail (&qtd->qtd_list, head);
735 
736 			/* never any data in such packets */
737 			qtd_fill(ehci, qtd, 0, 0, token, 0);
738 		}
739 	}
740 
741 	/* by default, enable interrupt on urb completion */
742 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
743 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
744 	return head;
745 
746 cleanup:
747 	qtd_list_free (ehci, urb, head);
748 	return NULL;
749 }
750 
751 /*-------------------------------------------------------------------------*/
752 
753 // Would be best to create all qh's from config descriptors,
754 // when each interface/altsetting is established.  Unlink
755 // any previous qh and cancel its urbs first; endpoints are
756 // implicitly reset then (data toggle too).
757 // That'd mean updating how usbcore talks to HCDs. (2.7?)
758 
759 
760 /*
761  * Each QH holds a qtd list; a QH is used for everything except iso.
762  *
763  * For interrupt urbs, the scheduler must set the microframe scheduling
764  * mask(s) each time the QH gets scheduled.  For highspeed, that's
765  * just one microframe in the s-mask.  For split interrupt transactions
766  * there are additional complications: c-mask, maybe FSTNs.
767  */
768 static struct ehci_qh *
qh_make(struct ehci_hcd * ehci,struct urb * urb,gfp_t flags)769 qh_make (
770 	struct ehci_hcd		*ehci,
771 	struct urb		*urb,
772 	gfp_t			flags
773 ) {
774 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
775 	u32			info1 = 0, info2 = 0;
776 	int			is_input, type;
777 	int			maxp = 0;
778 	struct usb_tt		*tt = urb->dev->tt;
779 	struct ehci_qh_hw	*hw;
780 
781 	if (!qh)
782 		return qh;
783 
784 	/*
785 	 * init endpoint/device data for this QH
786 	 */
787 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
788 	info1 |= usb_pipedevice (urb->pipe) << 0;
789 
790 	is_input = usb_pipein (urb->pipe);
791 	type = usb_pipetype (urb->pipe);
792 	maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input);
793 
794 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
795 	 * acts like up to 3KB, but is built from smaller packets.
796 	 */
797 	if (max_packet(maxp) > 1024) {
798 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", max_packet(maxp));
799 		goto done;
800 	}
801 
802 	/* Compute interrupt scheduling parameters just once, and save.
803 	 * - allowing for high bandwidth, how many nsec/uframe are used?
804 	 * - split transactions need a second CSPLIT uframe; same question
805 	 * - splits also need a schedule gap (for full/low speed I/O)
806 	 * - qh has a polling interval
807 	 *
808 	 * For control/bulk requests, the HC or TT handles these.
809 	 */
810 	if (type == PIPE_INTERRUPT) {
811 		unsigned	tmp;
812 
813 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
814 				is_input, 0,
815 				hb_mult(maxp) * max_packet(maxp)));
816 		qh->ps.phase = NO_FRAME;
817 
818 		if (urb->dev->speed == USB_SPEED_HIGH) {
819 			qh->ps.c_usecs = 0;
820 			qh->gap_uf = 0;
821 
822 			if (urb->interval > 1 && urb->interval < 8) {
823 				/* NOTE interval 2 or 4 uframes could work.
824 				 * But interval 1 scheduling is simpler, and
825 				 * includes high bandwidth.
826 				 */
827 				urb->interval = 1;
828 			} else if (urb->interval > ehci->periodic_size << 3) {
829 				urb->interval = ehci->periodic_size << 3;
830 			}
831 			qh->ps.period = urb->interval >> 3;
832 
833 			/* period for bandwidth allocation */
834 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
835 					1 << (urb->ep->desc.bInterval - 1));
836 
837 			/* Allow urb->interval to override */
838 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
839 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
840 		} else {
841 			int		think_time;
842 
843 			/* gap is f(FS/LS transfer times) */
844 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
845 					is_input, 0, maxp) / (125 * 1000);
846 
847 			/* FIXME this just approximates SPLIT/CSPLIT times */
848 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
849 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
850 				qh->ps.usecs = HS_USECS(1);
851 			} else {		// SPLIT+DATA, gap, CSPLIT
852 				qh->ps.usecs += HS_USECS(1);
853 				qh->ps.c_usecs = HS_USECS(0);
854 			}
855 
856 			think_time = tt ? tt->think_time : 0;
857 			qh->ps.tt_usecs = NS_TO_US(think_time +
858 					usb_calc_bus_time (urb->dev->speed,
859 					is_input, 0, max_packet (maxp)));
860 			if (urb->interval > ehci->periodic_size)
861 				urb->interval = ehci->periodic_size;
862 			qh->ps.period = urb->interval;
863 
864 			/* period for bandwidth allocation */
865 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
866 					urb->ep->desc.bInterval);
867 			tmp = rounddown_pow_of_two(tmp);
868 
869 			/* Allow urb->interval to override */
870 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
871 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
872 		}
873 	}
874 
875 	/* support for tt scheduling, and access to toggles */
876 	qh->ps.udev = urb->dev;
877 	qh->ps.ep = urb->ep;
878 
879 	/* using TT? */
880 	switch (urb->dev->speed) {
881 	case USB_SPEED_LOW:
882 		info1 |= QH_LOW_SPEED;
883 		/* FALL THROUGH */
884 
885 	case USB_SPEED_FULL:
886 		/* EPS 0 means "full" */
887 		if (type != PIPE_INTERRUPT)
888 			info1 |= (EHCI_TUNE_RL_TT << 28);
889 		if (type == PIPE_CONTROL) {
890 			info1 |= QH_CONTROL_EP;		/* for TT */
891 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
892 		}
893 		info1 |= maxp << 16;
894 
895 		info2 |= (EHCI_TUNE_MULT_TT << 30);
896 
897 		/* Some Freescale processors have an erratum in which the
898 		 * port number in the queue head was 0..N-1 instead of 1..N.
899 		 */
900 		if (ehci_has_fsl_portno_bug(ehci))
901 			info2 |= (urb->dev->ttport-1) << 23;
902 		else
903 			info2 |= urb->dev->ttport << 23;
904 
905 		/* set the address of the TT; for TDI's integrated
906 		 * root hub tt, leave it zeroed.
907 		 */
908 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
909 			info2 |= tt->hub->devnum << 16;
910 
911 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
912 
913 		break;
914 
915 	case USB_SPEED_HIGH:		/* no TT involved */
916 		info1 |= QH_HIGH_SPEED;
917 		if (type == PIPE_CONTROL) {
918 			info1 |= (EHCI_TUNE_RL_HS << 28);
919 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
920 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
921 			info2 |= (EHCI_TUNE_MULT_HS << 30);
922 		} else if (type == PIPE_BULK) {
923 			info1 |= (EHCI_TUNE_RL_HS << 28);
924 			/* The USB spec says that high speed bulk endpoints
925 			 * always use 512 byte maxpacket.  But some device
926 			 * vendors decided to ignore that, and MSFT is happy
927 			 * to help them do so.  So now people expect to use
928 			 * such nonconformant devices with Linux too; sigh.
929 			 */
930 			info1 |= max_packet(maxp) << 16;
931 			info2 |= (EHCI_TUNE_MULT_HS << 30);
932 		} else {		/* PIPE_INTERRUPT */
933 			info1 |= max_packet (maxp) << 16;
934 			info2 |= hb_mult (maxp) << 30;
935 		}
936 		break;
937 	default:
938 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
939 			urb->dev->speed);
940 done:
941 		qh_destroy(ehci, qh);
942 		return NULL;
943 	}
944 
945 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
946 
947 	/* init as live, toggle clear */
948 	qh->qh_state = QH_STATE_IDLE;
949 	hw = qh->hw;
950 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
951 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
952 	qh->is_out = !is_input;
953 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
954 	return qh;
955 }
956 
957 /*-------------------------------------------------------------------------*/
958 
enable_async(struct ehci_hcd * ehci)959 static void enable_async(struct ehci_hcd *ehci)
960 {
961 	if (ehci->async_count++)
962 		return;
963 
964 	/* Stop waiting to turn off the async schedule */
965 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
966 
967 	/* Don't start the schedule until ASS is 0 */
968 	ehci_poll_ASS(ehci);
969 	turn_on_io_watchdog(ehci);
970 }
971 
disable_async(struct ehci_hcd * ehci)972 static void disable_async(struct ehci_hcd *ehci)
973 {
974 	if (--ehci->async_count)
975 		return;
976 
977 	/* The async schedule and unlink lists are supposed to be empty */
978 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
979 			!list_empty(&ehci->async_idle));
980 
981 	/* Don't turn off the schedule until ASS is 1 */
982 	ehci_poll_ASS(ehci);
983 }
984 
985 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
986 
qh_link_async(struct ehci_hcd * ehci,struct ehci_qh * qh)987 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
988 {
989 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
990 	struct ehci_qh	*head;
991 
992 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
993 	if (unlikely(qh->clearing_tt))
994 		return;
995 
996 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
997 
998 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
999 	qh_refresh(ehci, qh);
1000 
1001 	/* splice right after start */
1002 	head = ehci->async;
1003 	qh->qh_next = head->qh_next;
1004 	qh->hw->hw_next = head->hw->hw_next;
1005 	wmb ();
1006 
1007 	head->qh_next.qh = qh;
1008 	head->hw->hw_next = dma;
1009 
1010 	qh->qh_state = QH_STATE_LINKED;
1011 	qh->xacterrs = 0;
1012 	qh->exception = 0;
1013 	/* qtd completions reported later by interrupt */
1014 
1015 	enable_async(ehci);
1016 }
1017 
1018 /*-------------------------------------------------------------------------*/
1019 
1020 /*
1021  * For control/bulk/interrupt, return QH with these TDs appended.
1022  * Allocates and initializes the QH if necessary.
1023  * Returns null if it can't allocate a QH it needs to.
1024  * If the QH has TDs (urbs) already, that's great.
1025  */
qh_append_tds(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1026 static struct ehci_qh *qh_append_tds (
1027 	struct ehci_hcd		*ehci,
1028 	struct urb		*urb,
1029 	struct list_head	*qtd_list,
1030 	int			epnum,
1031 	void			**ptr
1032 )
1033 {
1034 	struct ehci_qh		*qh = NULL;
1035 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1036 
1037 	qh = (struct ehci_qh *) *ptr;
1038 	if (unlikely (qh == NULL)) {
1039 		/* can't sleep here, we have ehci->lock... */
1040 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1041 		*ptr = qh;
1042 	}
1043 	if (likely (qh != NULL)) {
1044 		struct ehci_qtd	*qtd;
1045 
1046 		if (unlikely (list_empty (qtd_list)))
1047 			qtd = NULL;
1048 		else
1049 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1050 					qtd_list);
1051 
1052 		/* control qh may need patching ... */
1053 		if (unlikely (epnum == 0)) {
1054 
1055                         /* usb_reset_device() briefly reverts to address 0 */
1056                         if (usb_pipedevice (urb->pipe) == 0)
1057 				qh->hw->hw_info1 &= ~qh_addr_mask;
1058 		}
1059 
1060 		/* just one way to queue requests: swap with the dummy qtd.
1061 		 * only hc or qh_refresh() ever modify the overlay.
1062 		 */
1063 		if (likely (qtd != NULL)) {
1064 			struct ehci_qtd		*dummy;
1065 			dma_addr_t		dma;
1066 			__hc32			token;
1067 
1068 			/* to avoid racing the HC, use the dummy td instead of
1069 			 * the first td of our list (becomes new dummy).  both
1070 			 * tds stay deactivated until we're done, when the
1071 			 * HC is allowed to fetch the old dummy (4.10.2).
1072 			 */
1073 			token = qtd->hw_token;
1074 			qtd->hw_token = HALT_BIT(ehci);
1075 
1076 			dummy = qh->dummy;
1077 
1078 			dma = dummy->qtd_dma;
1079 			*dummy = *qtd;
1080 			dummy->qtd_dma = dma;
1081 
1082 			list_del (&qtd->qtd_list);
1083 			list_add (&dummy->qtd_list, qtd_list);
1084 			list_splice_tail(qtd_list, &qh->qtd_list);
1085 
1086 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1087 			qh->dummy = qtd;
1088 
1089 			/* hc must see the new dummy at list end */
1090 			dma = qtd->qtd_dma;
1091 			qtd = list_entry (qh->qtd_list.prev,
1092 					struct ehci_qtd, qtd_list);
1093 			qtd->hw_next = QTD_NEXT(ehci, dma);
1094 
1095 			/* let the hc process these next qtds */
1096 			wmb ();
1097 			dummy->hw_token = token;
1098 
1099 			urb->hcpriv = qh;
1100 		}
1101 	}
1102 	return qh;
1103 }
1104 
1105 /*-------------------------------------------------------------------------*/
1106 
1107 static int
submit_async(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)1108 submit_async (
1109 	struct ehci_hcd		*ehci,
1110 	struct urb		*urb,
1111 	struct list_head	*qtd_list,
1112 	gfp_t			mem_flags
1113 ) {
1114 	int			epnum;
1115 	unsigned long		flags;
1116 	struct ehci_qh		*qh = NULL;
1117 	int			rc;
1118 
1119 	epnum = urb->ep->desc.bEndpointAddress;
1120 
1121 #ifdef EHCI_URB_TRACE
1122 	{
1123 		struct ehci_qtd *qtd;
1124 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1125 		ehci_dbg(ehci,
1126 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1127 			 __func__, urb->dev->devpath, urb,
1128 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1129 			 urb->transfer_buffer_length,
1130 			 qtd, urb->ep->hcpriv);
1131 	}
1132 #endif
1133 
1134 	spin_lock_irqsave (&ehci->lock, flags);
1135 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1136 		rc = -ESHUTDOWN;
1137 		goto done;
1138 	}
1139 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1140 	if (unlikely(rc))
1141 		goto done;
1142 
1143 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1144 	if (unlikely(qh == NULL)) {
1145 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1146 		rc = -ENOMEM;
1147 		goto done;
1148 	}
1149 
1150 	/* Control/bulk operations through TTs don't need scheduling,
1151 	 * the HC and TT handle it when the TT has a buffer ready.
1152 	 */
1153 	if (likely (qh->qh_state == QH_STATE_IDLE))
1154 		qh_link_async(ehci, qh);
1155  done:
1156 	spin_unlock_irqrestore (&ehci->lock, flags);
1157 	if (unlikely (qh == NULL))
1158 		qtd_list_free (ehci, urb, qtd_list);
1159 	return rc;
1160 }
1161 
1162 /*-------------------------------------------------------------------------*/
1163 #ifdef CONFIG_USB_HCD_TEST_MODE
1164 /*
1165  * This function creates the qtds and submits them for the
1166  * SINGLE_STEP_SET_FEATURE Test.
1167  * This is done in two parts: first SETUP req for GetDesc is sent then
1168  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1169  *
1170  * is_setup : i/p arguement decides which of the two stage needs to be
1171  * performed; TRUE - SETUP and FALSE - IN+STATUS
1172  * Returns 0 if success
1173  */
submit_single_step_set_feature(struct usb_hcd * hcd,struct urb * urb,int is_setup)1174 static int submit_single_step_set_feature(
1175 	struct usb_hcd  *hcd,
1176 	struct urb      *urb,
1177 	int             is_setup
1178 ) {
1179 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1180 	struct list_head	qtd_list;
1181 	struct list_head	*head;
1182 
1183 	struct ehci_qtd		*qtd, *qtd_prev;
1184 	dma_addr_t		buf;
1185 	int			len, maxpacket;
1186 	u32			token;
1187 
1188 	INIT_LIST_HEAD(&qtd_list);
1189 	head = &qtd_list;
1190 
1191 	/* URBs map to sequences of QTDs:  one logical transaction */
1192 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1193 	if (unlikely(!qtd))
1194 		return -1;
1195 	list_add_tail(&qtd->qtd_list, head);
1196 	qtd->urb = urb;
1197 
1198 	token = QTD_STS_ACTIVE;
1199 	token |= (EHCI_TUNE_CERR << 10);
1200 
1201 	len = urb->transfer_buffer_length;
1202 	/*
1203 	 * Check if the request is to perform just the SETUP stage (getDesc)
1204 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1205 	 * 15 secs after the setup
1206 	 */
1207 	if (is_setup) {
1208 		/* SETUP pid */
1209 		qtd_fill(ehci, qtd, urb->setup_dma,
1210 				sizeof(struct usb_ctrlrequest),
1211 				token | (2 /* "setup" */ << 8), 8);
1212 
1213 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1214 		return 0; /*Return now; we shall come back after 15 seconds*/
1215 	}
1216 
1217 	/*
1218 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1219 	 * the get_Desc SETUP which was sent 15seconds back
1220 	 */
1221 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1222 	buf = urb->transfer_dma;
1223 
1224 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1225 
1226 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, 0));
1227 
1228 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1229 
1230 	/*
1231 	 * Our IN phase shall always be a short read; so keep the queue running
1232 	 * and let it advance to the next qtd which zero length OUT status
1233 	 */
1234 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1235 
1236 	/* STATUS stage for GetDesc control request */
1237 	token ^= 0x0100;        /* "in" <--> "out"  */
1238 	token |= QTD_TOGGLE;    /* force DATA1 */
1239 
1240 	qtd_prev = qtd;
1241 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1242 	if (unlikely(!qtd))
1243 		goto cleanup;
1244 	qtd->urb = urb;
1245 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1246 	list_add_tail(&qtd->qtd_list, head);
1247 
1248 	/* dont fill any data in such packets */
1249 	qtd_fill(ehci, qtd, 0, 0, token, 0);
1250 
1251 	/* by default, enable interrupt on urb completion */
1252 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1253 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1254 
1255 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1256 
1257 	return 0;
1258 
1259 cleanup:
1260 	qtd_list_free(ehci, urb, head);
1261 	return -1;
1262 }
1263 #endif /* CONFIG_USB_HCD_TEST_MODE */
1264 
1265 /*-------------------------------------------------------------------------*/
1266 
single_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1267 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1268 {
1269 	struct ehci_qh		*prev;
1270 
1271 	/* Add to the end of the list of QHs waiting for the next IAAD */
1272 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1273 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1274 
1275 	/* Unlink it from the schedule */
1276 	prev = ehci->async;
1277 	while (prev->qh_next.qh != qh)
1278 		prev = prev->qh_next.qh;
1279 
1280 	prev->hw->hw_next = qh->hw->hw_next;
1281 	prev->qh_next = qh->qh_next;
1282 	if (ehci->qh_scan_next == qh)
1283 		ehci->qh_scan_next = qh->qh_next.qh;
1284 }
1285 
start_iaa_cycle(struct ehci_hcd * ehci)1286 static void start_iaa_cycle(struct ehci_hcd *ehci)
1287 {
1288 	/* Do nothing if an IAA cycle is already running */
1289 	if (ehci->iaa_in_progress)
1290 		return;
1291 	ehci->iaa_in_progress = true;
1292 
1293 	/* If the controller isn't running, we don't have to wait for it */
1294 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1295 		end_unlink_async(ehci);
1296 
1297 	/* Otherwise start a new IAA cycle */
1298 	} else if (likely(ehci->rh_state == EHCI_RH_RUNNING)) {
1299 
1300 		/* Make sure the unlinks are all visible to the hardware */
1301 		wmb();
1302 
1303 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1304 				&ehci->regs->command);
1305 		ehci_readl(ehci, &ehci->regs->command);
1306 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1307 	}
1308 }
1309 
1310 /* the async qh for the qtds being unlinked are now gone from the HC */
1311 
end_unlink_async(struct ehci_hcd * ehci)1312 static void end_unlink_async(struct ehci_hcd *ehci)
1313 {
1314 	struct ehci_qh		*qh;
1315 	bool			early_exit;
1316 
1317 	if (ehci->has_synopsys_hc_bug)
1318 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1319 			    &ehci->regs->async_next);
1320 
1321 	/* The current IAA cycle has ended */
1322 	ehci->iaa_in_progress = false;
1323 
1324 	if (list_empty(&ehci->async_unlink))
1325 		return;
1326 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1327 			unlink_node);	/* QH whose IAA cycle just ended */
1328 
1329 	/*
1330 	 * If async_unlinking is set then this routine is already running,
1331 	 * either on the stack or on another CPU.
1332 	 */
1333 	early_exit = ehci->async_unlinking;
1334 
1335 	/* If the controller isn't running, process all the waiting QHs */
1336 	if (ehci->rh_state < EHCI_RH_RUNNING)
1337 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1338 
1339 	/*
1340 	 * Intel (?) bug: The HC can write back the overlay region even
1341 	 * after the IAA interrupt occurs.  In self-defense, always go
1342 	 * through two IAA cycles for each QH.
1343 	 */
1344 	else if (qh->qh_state == QH_STATE_UNLINK_WAIT) {
1345 		qh->qh_state = QH_STATE_UNLINK;
1346 		early_exit = true;
1347 	}
1348 
1349 	/* Otherwise process only the first waiting QH (NVIDIA bug?) */
1350 	else
1351 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1352 
1353 	/* Start a new IAA cycle if any QHs are waiting for it */
1354 	if (!list_empty(&ehci->async_unlink))
1355 		start_iaa_cycle(ehci);
1356 
1357 	/*
1358 	 * Don't allow nesting or concurrent calls,
1359 	 * or wait for the second IAA cycle for the next QH.
1360 	 */
1361 	if (early_exit)
1362 		return;
1363 
1364 	/* Process the idle QHs */
1365 	ehci->async_unlinking = true;
1366 	while (!list_empty(&ehci->async_idle)) {
1367 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1368 				unlink_node);
1369 		list_del(&qh->unlink_node);
1370 
1371 		qh->qh_state = QH_STATE_IDLE;
1372 		qh->qh_next.qh = NULL;
1373 
1374 		if (!list_empty(&qh->qtd_list))
1375 			qh_completions(ehci, qh);
1376 		if (!list_empty(&qh->qtd_list) &&
1377 				ehci->rh_state == EHCI_RH_RUNNING)
1378 			qh_link_async(ehci, qh);
1379 		disable_async(ehci);
1380 	}
1381 	ehci->async_unlinking = false;
1382 }
1383 
1384 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1385 
unlink_empty_async(struct ehci_hcd * ehci)1386 static void unlink_empty_async(struct ehci_hcd *ehci)
1387 {
1388 	struct ehci_qh		*qh;
1389 	struct ehci_qh		*qh_to_unlink = NULL;
1390 	int			count = 0;
1391 
1392 	/* Find the last async QH which has been empty for a timer cycle */
1393 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1394 		if (list_empty(&qh->qtd_list) &&
1395 				qh->qh_state == QH_STATE_LINKED) {
1396 			++count;
1397 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1398 				qh_to_unlink = qh;
1399 		}
1400 	}
1401 
1402 	/* If nothing else is being unlinked, unlink the last empty QH */
1403 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1404 		start_unlink_async(ehci, qh_to_unlink);
1405 		--count;
1406 	}
1407 
1408 	/* Other QHs will be handled later */
1409 	if (count > 0) {
1410 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1411 		++ehci->async_unlink_cycle;
1412 	}
1413 }
1414 
1415 /* The root hub is suspended; unlink all the async QHs */
unlink_empty_async_suspended(struct ehci_hcd * ehci)1416 static void __maybe_unused unlink_empty_async_suspended(struct ehci_hcd *ehci)
1417 {
1418 	struct ehci_qh		*qh;
1419 
1420 	while (ehci->async->qh_next.qh) {
1421 		qh = ehci->async->qh_next.qh;
1422 		WARN_ON(!list_empty(&qh->qtd_list));
1423 		single_unlink_async(ehci, qh);
1424 	}
1425 	start_iaa_cycle(ehci);
1426 }
1427 
1428 /* makes sure the async qh will become idle */
1429 /* caller must own ehci->lock */
1430 
start_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1431 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1432 {
1433 	/* If the QH isn't linked then there's nothing we can do. */
1434 	if (qh->qh_state != QH_STATE_LINKED)
1435 		return;
1436 
1437 	single_unlink_async(ehci, qh);
1438 	start_iaa_cycle(ehci);
1439 }
1440 
1441 /*-------------------------------------------------------------------------*/
1442 
scan_async(struct ehci_hcd * ehci)1443 static void scan_async (struct ehci_hcd *ehci)
1444 {
1445 	struct ehci_qh		*qh;
1446 	bool			check_unlinks_later = false;
1447 
1448 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1449 	while (ehci->qh_scan_next) {
1450 		qh = ehci->qh_scan_next;
1451 		ehci->qh_scan_next = qh->qh_next.qh;
1452 
1453 		/* clean any finished work for this qh */
1454 		if (!list_empty(&qh->qtd_list)) {
1455 			int temp;
1456 
1457 			/*
1458 			 * Unlinks could happen here; completion reporting
1459 			 * drops the lock.  That's why ehci->qh_scan_next
1460 			 * always holds the next qh to scan; if the next qh
1461 			 * gets unlinked then ehci->qh_scan_next is adjusted
1462 			 * in single_unlink_async().
1463 			 */
1464 			temp = qh_completions(ehci, qh);
1465 			if (unlikely(temp)) {
1466 				start_unlink_async(ehci, qh);
1467 			} else if (list_empty(&qh->qtd_list)
1468 					&& qh->qh_state == QH_STATE_LINKED) {
1469 				qh->unlink_cycle = ehci->async_unlink_cycle;
1470 				check_unlinks_later = true;
1471 			}
1472 		}
1473 	}
1474 
1475 	/*
1476 	 * Unlink empty entries, reducing DMA usage as well
1477 	 * as HCD schedule-scanning costs.  Delay for any qh
1478 	 * we just scanned, there's a not-unusual case that it
1479 	 * doesn't stay idle for long.
1480 	 */
1481 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1482 			!(ehci->enabled_hrtimer_events &
1483 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1484 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1485 		++ehci->async_unlink_cycle;
1486 	}
1487 }
1488