• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 #include "phy.h"
19 
20 /**************************************************************************
21  *
22  * Management-Controller-to-Driver Interface
23  *
24  **************************************************************************
25  */
26 
27 #define MCDI_RPC_TIMEOUT       (10 * HZ)
28 
29 /* A reboot/assertion causes the MCDI status word to be set after the
30  * command word is set or a REBOOT event is sent. If we notice a reboot
31  * via these mechanisms then wait 250ms for the status word to be set.
32  */
33 #define MCDI_STATUS_DELAY_US		100
34 #define MCDI_STATUS_DELAY_COUNT		2500
35 #define MCDI_STATUS_SLEEP_MS						\
36 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 
38 #define SEQ_MASK							\
39 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 
41 struct efx_mcdi_async_param {
42 	struct list_head list;
43 	unsigned int cmd;
44 	size_t inlen;
45 	size_t outlen;
46 	bool quiet;
47 	efx_mcdi_async_completer *complete;
48 	unsigned long cookie;
49 	/* followed by request/response buffer */
50 };
51 
52 static void efx_mcdi_timeout_async(unsigned long context);
53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 			       bool *was_attached_out);
55 static bool efx_mcdi_poll_once(struct efx_nic *efx);
56 static void efx_mcdi_abandon(struct efx_nic *efx);
57 
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default;
60 module_param(mcdi_logging_default, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default,
62 		 "Enable MCDI logging on newly-probed functions");
63 #endif
64 
efx_mcdi_init(struct efx_nic * efx)65 int efx_mcdi_init(struct efx_nic *efx)
66 {
67 	struct efx_mcdi_iface *mcdi;
68 	bool already_attached;
69 	int rc = -ENOMEM;
70 
71 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 	if (!efx->mcdi)
73 		goto fail;
74 
75 	mcdi = efx_mcdi(efx);
76 	mcdi->efx = efx;
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 	/* consuming code assumes buffer is page-sized */
79 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 	if (!mcdi->logging_buffer)
81 		goto fail1;
82 	mcdi->logging_enabled = mcdi_logging_default;
83 #endif
84 	init_waitqueue_head(&mcdi->wq);
85 	spin_lock_init(&mcdi->iface_lock);
86 	mcdi->state = MCDI_STATE_QUIESCENT;
87 	mcdi->mode = MCDI_MODE_POLL;
88 	spin_lock_init(&mcdi->async_lock);
89 	INIT_LIST_HEAD(&mcdi->async_list);
90 	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
91 		    (unsigned long)mcdi);
92 
93 	(void) efx_mcdi_poll_reboot(efx);
94 	mcdi->new_epoch = true;
95 
96 	/* Recover from a failed assertion before probing */
97 	rc = efx_mcdi_handle_assertion(efx);
98 	if (rc)
99 		goto fail2;
100 
101 	/* Let the MC (and BMC, if this is a LOM) know that the driver
102 	 * is loaded. We should do this before we reset the NIC.
103 	 */
104 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
105 	if (rc) {
106 		netif_err(efx, probe, efx->net_dev,
107 			  "Unable to register driver with MCPU\n");
108 		goto fail2;
109 	}
110 	if (already_attached)
111 		/* Not a fatal error */
112 		netif_err(efx, probe, efx->net_dev,
113 			  "Host already registered with MCPU\n");
114 
115 	if (efx->mcdi->fn_flags &
116 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
117 		efx->primary = efx;
118 
119 	return 0;
120 fail2:
121 #ifdef CONFIG_SFC_MCDI_LOGGING
122 	free_page((unsigned long)mcdi->logging_buffer);
123 fail1:
124 #endif
125 	kfree(efx->mcdi);
126 	efx->mcdi = NULL;
127 fail:
128 	return rc;
129 }
130 
efx_mcdi_fini(struct efx_nic * efx)131 void efx_mcdi_fini(struct efx_nic *efx)
132 {
133 	if (!efx->mcdi)
134 		return;
135 
136 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
137 
138 	/* Relinquish the device (back to the BMC, if this is a LOM) */
139 	efx_mcdi_drv_attach(efx, false, NULL);
140 
141 #ifdef CONFIG_SFC_MCDI_LOGGING
142 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
143 #endif
144 
145 	kfree(efx->mcdi);
146 }
147 
efx_mcdi_send_request(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)148 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
149 				  const efx_dword_t *inbuf, size_t inlen)
150 {
151 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
152 #ifdef CONFIG_SFC_MCDI_LOGGING
153 	char *buf = mcdi->logging_buffer; /* page-sized */
154 #endif
155 	efx_dword_t hdr[2];
156 	size_t hdr_len;
157 	u32 xflags, seqno;
158 
159 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
160 
161 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
162 	spin_lock_bh(&mcdi->iface_lock);
163 	++mcdi->seqno;
164 	spin_unlock_bh(&mcdi->iface_lock);
165 
166 	seqno = mcdi->seqno & SEQ_MASK;
167 	xflags = 0;
168 	if (mcdi->mode == MCDI_MODE_EVENTS)
169 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
170 
171 	if (efx->type->mcdi_max_ver == 1) {
172 		/* MCDI v1 */
173 		EFX_POPULATE_DWORD_7(hdr[0],
174 				     MCDI_HEADER_RESPONSE, 0,
175 				     MCDI_HEADER_RESYNC, 1,
176 				     MCDI_HEADER_CODE, cmd,
177 				     MCDI_HEADER_DATALEN, inlen,
178 				     MCDI_HEADER_SEQ, seqno,
179 				     MCDI_HEADER_XFLAGS, xflags,
180 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
181 		hdr_len = 4;
182 	} else {
183 		/* MCDI v2 */
184 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
185 		EFX_POPULATE_DWORD_7(hdr[0],
186 				     MCDI_HEADER_RESPONSE, 0,
187 				     MCDI_HEADER_RESYNC, 1,
188 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
189 				     MCDI_HEADER_DATALEN, 0,
190 				     MCDI_HEADER_SEQ, seqno,
191 				     MCDI_HEADER_XFLAGS, xflags,
192 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
193 		EFX_POPULATE_DWORD_2(hdr[1],
194 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
195 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
196 		hdr_len = 8;
197 	}
198 
199 #ifdef CONFIG_SFC_MCDI_LOGGING
200 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
201 		int bytes = 0;
202 		int i;
203 		/* Lengths should always be a whole number of dwords, so scream
204 		 * if they're not.
205 		 */
206 		WARN_ON_ONCE(hdr_len % 4);
207 		WARN_ON_ONCE(inlen % 4);
208 
209 		/* We own the logging buffer, as only one MCDI can be in
210 		 * progress on a NIC at any one time.  So no need for locking.
211 		 */
212 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
213 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
214 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
215 
216 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
218 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
219 
220 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
221 	}
222 #endif
223 
224 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
225 
226 	mcdi->new_epoch = false;
227 }
228 
efx_mcdi_errno(unsigned int mcdi_err)229 static int efx_mcdi_errno(unsigned int mcdi_err)
230 {
231 	switch (mcdi_err) {
232 	case 0:
233 		return 0;
234 #define TRANSLATE_ERROR(name)					\
235 	case MC_CMD_ERR_ ## name:				\
236 		return -name;
237 	TRANSLATE_ERROR(EPERM);
238 	TRANSLATE_ERROR(ENOENT);
239 	TRANSLATE_ERROR(EINTR);
240 	TRANSLATE_ERROR(EAGAIN);
241 	TRANSLATE_ERROR(EACCES);
242 	TRANSLATE_ERROR(EBUSY);
243 	TRANSLATE_ERROR(EINVAL);
244 	TRANSLATE_ERROR(EDEADLK);
245 	TRANSLATE_ERROR(ENOSYS);
246 	TRANSLATE_ERROR(ETIME);
247 	TRANSLATE_ERROR(EALREADY);
248 	TRANSLATE_ERROR(ENOSPC);
249 #undef TRANSLATE_ERROR
250 	case MC_CMD_ERR_ENOTSUP:
251 		return -EOPNOTSUPP;
252 	case MC_CMD_ERR_ALLOC_FAIL:
253 		return -ENOBUFS;
254 	case MC_CMD_ERR_MAC_EXIST:
255 		return -EADDRINUSE;
256 	default:
257 		return -EPROTO;
258 	}
259 }
260 
efx_mcdi_read_response_header(struct efx_nic * efx)261 static void efx_mcdi_read_response_header(struct efx_nic *efx)
262 {
263 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
264 	unsigned int respseq, respcmd, error;
265 #ifdef CONFIG_SFC_MCDI_LOGGING
266 	char *buf = mcdi->logging_buffer; /* page-sized */
267 #endif
268 	efx_dword_t hdr;
269 
270 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
271 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
272 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
273 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
274 
275 	if (respcmd != MC_CMD_V2_EXTN) {
276 		mcdi->resp_hdr_len = 4;
277 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
278 	} else {
279 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
280 		mcdi->resp_hdr_len = 8;
281 		mcdi->resp_data_len =
282 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
283 	}
284 
285 #ifdef CONFIG_SFC_MCDI_LOGGING
286 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
287 		size_t hdr_len, data_len;
288 		int bytes = 0;
289 		int i;
290 
291 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
292 		hdr_len = mcdi->resp_hdr_len / 4;
293 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
294 		 * to dword size, and the MCDI buffer is always dword size
295 		 */
296 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
297 
298 		/* We own the logging buffer, as only one MCDI can be in
299 		 * progress on a NIC at any one time.  So no need for locking.
300 		 */
301 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
302 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
303 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
304 					  " %08x", le32_to_cpu(hdr.u32[0]));
305 		}
306 
307 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
308 			efx->type->mcdi_read_response(efx, &hdr,
309 					mcdi->resp_hdr_len + (i * 4), 4);
310 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
311 					  " %08x", le32_to_cpu(hdr.u32[0]));
312 		}
313 
314 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
315 	}
316 #endif
317 
318 	if (error && mcdi->resp_data_len == 0) {
319 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
320 		mcdi->resprc = -EIO;
321 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
322 		netif_err(efx, hw, efx->net_dev,
323 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
324 			  respseq, mcdi->seqno);
325 		mcdi->resprc = -EIO;
326 	} else if (error) {
327 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
328 		mcdi->resprc =
329 			efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
330 	} else {
331 		mcdi->resprc = 0;
332 	}
333 }
334 
efx_mcdi_poll_once(struct efx_nic * efx)335 static bool efx_mcdi_poll_once(struct efx_nic *efx)
336 {
337 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
338 
339 	rmb();
340 	if (!efx->type->mcdi_poll_response(efx))
341 		return false;
342 
343 	spin_lock_bh(&mcdi->iface_lock);
344 	efx_mcdi_read_response_header(efx);
345 	spin_unlock_bh(&mcdi->iface_lock);
346 
347 	return true;
348 }
349 
efx_mcdi_poll(struct efx_nic * efx)350 static int efx_mcdi_poll(struct efx_nic *efx)
351 {
352 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
353 	unsigned long time, finish;
354 	unsigned int spins;
355 	int rc;
356 
357 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
358 	rc = efx_mcdi_poll_reboot(efx);
359 	if (rc) {
360 		spin_lock_bh(&mcdi->iface_lock);
361 		mcdi->resprc = rc;
362 		mcdi->resp_hdr_len = 0;
363 		mcdi->resp_data_len = 0;
364 		spin_unlock_bh(&mcdi->iface_lock);
365 		return 0;
366 	}
367 
368 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
369 	 * because generally mcdi responses are fast. After that, back off
370 	 * and poll once a jiffy (approximately)
371 	 */
372 	spins = TICK_USEC;
373 	finish = jiffies + MCDI_RPC_TIMEOUT;
374 
375 	while (1) {
376 		if (spins != 0) {
377 			--spins;
378 			udelay(1);
379 		} else {
380 			schedule_timeout_uninterruptible(1);
381 		}
382 
383 		time = jiffies;
384 
385 		if (efx_mcdi_poll_once(efx))
386 			break;
387 
388 		if (time_after(time, finish))
389 			return -ETIMEDOUT;
390 	}
391 
392 	/* Return rc=0 like wait_event_timeout() */
393 	return 0;
394 }
395 
396 /* Test and clear MC-rebooted flag for this port/function; reset
397  * software state as necessary.
398  */
efx_mcdi_poll_reboot(struct efx_nic * efx)399 int efx_mcdi_poll_reboot(struct efx_nic *efx)
400 {
401 	if (!efx->mcdi)
402 		return 0;
403 
404 	return efx->type->mcdi_poll_reboot(efx);
405 }
406 
efx_mcdi_acquire_async(struct efx_mcdi_iface * mcdi)407 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
408 {
409 	return cmpxchg(&mcdi->state,
410 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
411 		MCDI_STATE_QUIESCENT;
412 }
413 
efx_mcdi_acquire_sync(struct efx_mcdi_iface * mcdi)414 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
415 {
416 	/* Wait until the interface becomes QUIESCENT and we win the race
417 	 * to mark it RUNNING_SYNC.
418 	 */
419 	wait_event(mcdi->wq,
420 		   cmpxchg(&mcdi->state,
421 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
422 		   MCDI_STATE_QUIESCENT);
423 }
424 
efx_mcdi_await_completion(struct efx_nic * efx)425 static int efx_mcdi_await_completion(struct efx_nic *efx)
426 {
427 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
428 
429 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
430 			       MCDI_RPC_TIMEOUT) == 0)
431 		return -ETIMEDOUT;
432 
433 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
434 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
435 	 * completed the request first, then we'll just end up completing the
436 	 * request again, which is safe.
437 	 *
438 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
439 	 * wait_event_timeout() implicitly provides.
440 	 */
441 	if (mcdi->mode == MCDI_MODE_POLL)
442 		return efx_mcdi_poll(efx);
443 
444 	return 0;
445 }
446 
447 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
448  * requester.  Return whether this was done.  Does not take any locks.
449  */
efx_mcdi_complete_sync(struct efx_mcdi_iface * mcdi)450 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
451 {
452 	if (cmpxchg(&mcdi->state,
453 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
454 	    MCDI_STATE_RUNNING_SYNC) {
455 		wake_up(&mcdi->wq);
456 		return true;
457 	}
458 
459 	return false;
460 }
461 
efx_mcdi_release(struct efx_mcdi_iface * mcdi)462 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
463 {
464 	if (mcdi->mode == MCDI_MODE_EVENTS) {
465 		struct efx_mcdi_async_param *async;
466 		struct efx_nic *efx = mcdi->efx;
467 
468 		/* Process the asynchronous request queue */
469 		spin_lock_bh(&mcdi->async_lock);
470 		async = list_first_entry_or_null(
471 			&mcdi->async_list, struct efx_mcdi_async_param, list);
472 		if (async) {
473 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
474 			efx_mcdi_send_request(efx, async->cmd,
475 					      (const efx_dword_t *)(async + 1),
476 					      async->inlen);
477 			mod_timer(&mcdi->async_timer,
478 				  jiffies + MCDI_RPC_TIMEOUT);
479 		}
480 		spin_unlock_bh(&mcdi->async_lock);
481 
482 		if (async)
483 			return;
484 	}
485 
486 	mcdi->state = MCDI_STATE_QUIESCENT;
487 	wake_up(&mcdi->wq);
488 }
489 
490 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
491  * asynchronous completion function, and release the interface.
492  * Return whether this was done.  Must be called in bh-disabled
493  * context.  Will take iface_lock and async_lock.
494  */
efx_mcdi_complete_async(struct efx_mcdi_iface * mcdi,bool timeout)495 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
496 {
497 	struct efx_nic *efx = mcdi->efx;
498 	struct efx_mcdi_async_param *async;
499 	size_t hdr_len, data_len, err_len;
500 	efx_dword_t *outbuf;
501 	MCDI_DECLARE_BUF_ERR(errbuf);
502 	int rc;
503 
504 	if (cmpxchg(&mcdi->state,
505 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
506 	    MCDI_STATE_RUNNING_ASYNC)
507 		return false;
508 
509 	spin_lock(&mcdi->iface_lock);
510 	if (timeout) {
511 		/* Ensure that if the completion event arrives later,
512 		 * the seqno check in efx_mcdi_ev_cpl() will fail
513 		 */
514 		++mcdi->seqno;
515 		++mcdi->credits;
516 		rc = -ETIMEDOUT;
517 		hdr_len = 0;
518 		data_len = 0;
519 	} else {
520 		rc = mcdi->resprc;
521 		hdr_len = mcdi->resp_hdr_len;
522 		data_len = mcdi->resp_data_len;
523 	}
524 	spin_unlock(&mcdi->iface_lock);
525 
526 	/* Stop the timer.  In case the timer function is running, we
527 	 * must wait for it to return so that there is no possibility
528 	 * of it aborting the next request.
529 	 */
530 	if (!timeout)
531 		del_timer_sync(&mcdi->async_timer);
532 
533 	spin_lock(&mcdi->async_lock);
534 	async = list_first_entry(&mcdi->async_list,
535 				 struct efx_mcdi_async_param, list);
536 	list_del(&async->list);
537 	spin_unlock(&mcdi->async_lock);
538 
539 	outbuf = (efx_dword_t *)(async + 1);
540 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
541 				      min(async->outlen, data_len));
542 	if (!timeout && rc && !async->quiet) {
543 		err_len = min(sizeof(errbuf), data_len);
544 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
545 					      sizeof(errbuf));
546 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
547 				       err_len, rc);
548 	}
549 	async->complete(efx, async->cookie, rc, outbuf, data_len);
550 	kfree(async);
551 
552 	efx_mcdi_release(mcdi);
553 
554 	return true;
555 }
556 
efx_mcdi_ev_cpl(struct efx_nic * efx,unsigned int seqno,unsigned int datalen,unsigned int mcdi_err)557 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
558 			    unsigned int datalen, unsigned int mcdi_err)
559 {
560 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
561 	bool wake = false;
562 
563 	spin_lock(&mcdi->iface_lock);
564 
565 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
566 		if (mcdi->credits)
567 			/* The request has been cancelled */
568 			--mcdi->credits;
569 		else
570 			netif_err(efx, hw, efx->net_dev,
571 				  "MC response mismatch tx seq 0x%x rx "
572 				  "seq 0x%x\n", seqno, mcdi->seqno);
573 	} else {
574 		if (efx->type->mcdi_max_ver >= 2) {
575 			/* MCDI v2 responses don't fit in an event */
576 			efx_mcdi_read_response_header(efx);
577 		} else {
578 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
579 			mcdi->resp_hdr_len = 4;
580 			mcdi->resp_data_len = datalen;
581 		}
582 
583 		wake = true;
584 	}
585 
586 	spin_unlock(&mcdi->iface_lock);
587 
588 	if (wake) {
589 		if (!efx_mcdi_complete_async(mcdi, false))
590 			(void) efx_mcdi_complete_sync(mcdi);
591 
592 		/* If the interface isn't RUNNING_ASYNC or
593 		 * RUNNING_SYNC then we've received a duplicate
594 		 * completion after we've already transitioned back to
595 		 * QUIESCENT. [A subsequent invocation would increment
596 		 * seqno, so would have failed the seqno check].
597 		 */
598 	}
599 }
600 
efx_mcdi_timeout_async(unsigned long context)601 static void efx_mcdi_timeout_async(unsigned long context)
602 {
603 	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
604 
605 	efx_mcdi_complete_async(mcdi, true);
606 }
607 
608 static int
efx_mcdi_check_supported(struct efx_nic * efx,unsigned int cmd,size_t inlen)609 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
610 {
611 	if (efx->type->mcdi_max_ver < 0 ||
612 	     (efx->type->mcdi_max_ver < 2 &&
613 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
614 		return -EINVAL;
615 
616 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
617 	    (efx->type->mcdi_max_ver < 2 &&
618 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
619 		return -EMSGSIZE;
620 
621 	return 0;
622 }
623 
_efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet)624 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
625 				efx_dword_t *outbuf, size_t outlen,
626 				size_t *outlen_actual, bool quiet)
627 {
628 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
629 	MCDI_DECLARE_BUF_ERR(errbuf);
630 	int rc;
631 
632 	if (mcdi->mode == MCDI_MODE_POLL)
633 		rc = efx_mcdi_poll(efx);
634 	else
635 		rc = efx_mcdi_await_completion(efx);
636 
637 	if (rc != 0) {
638 		netif_err(efx, hw, efx->net_dev,
639 			  "MC command 0x%x inlen %d mode %d timed out\n",
640 			  cmd, (int)inlen, mcdi->mode);
641 
642 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
643 			netif_err(efx, hw, efx->net_dev,
644 				  "MCDI request was completed without an event\n");
645 			rc = 0;
646 		}
647 
648 		efx_mcdi_abandon(efx);
649 
650 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
651 		 * and completing a request we've just cancelled, by ensuring
652 		 * that the seqno check therein fails.
653 		 */
654 		spin_lock_bh(&mcdi->iface_lock);
655 		++mcdi->seqno;
656 		++mcdi->credits;
657 		spin_unlock_bh(&mcdi->iface_lock);
658 	}
659 
660 	if (rc != 0) {
661 		if (outlen_actual)
662 			*outlen_actual = 0;
663 	} else {
664 		size_t hdr_len, data_len, err_len;
665 
666 		/* At the very least we need a memory barrier here to ensure
667 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
668 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
669 		 * acquiring the iface_lock. */
670 		spin_lock_bh(&mcdi->iface_lock);
671 		rc = mcdi->resprc;
672 		hdr_len = mcdi->resp_hdr_len;
673 		data_len = mcdi->resp_data_len;
674 		err_len = min(sizeof(errbuf), data_len);
675 		spin_unlock_bh(&mcdi->iface_lock);
676 
677 		BUG_ON(rc > 0);
678 
679 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
680 					      min(outlen, data_len));
681 		if (outlen_actual)
682 			*outlen_actual = data_len;
683 
684 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
685 
686 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
687 			/* Don't reset if MC_CMD_REBOOT returns EIO */
688 		} else if (rc == -EIO || rc == -EINTR) {
689 			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
690 				  -rc);
691 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
692 		} else if (rc && !quiet) {
693 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
694 					       rc);
695 		}
696 
697 		if (rc == -EIO || rc == -EINTR) {
698 			msleep(MCDI_STATUS_SLEEP_MS);
699 			efx_mcdi_poll_reboot(efx);
700 			mcdi->new_epoch = true;
701 		}
702 	}
703 
704 	efx_mcdi_release(mcdi);
705 	return rc;
706 }
707 
_efx_mcdi_rpc(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet)708 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
709 			 const efx_dword_t *inbuf, size_t inlen,
710 			 efx_dword_t *outbuf, size_t outlen,
711 			 size_t *outlen_actual, bool quiet)
712 {
713 	int rc;
714 
715 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
716 	if (rc) {
717 		if (outlen_actual)
718 			*outlen_actual = 0;
719 		return rc;
720 	}
721 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
722 				    outlen_actual, quiet);
723 }
724 
efx_mcdi_rpc(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)725 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
726 		 const efx_dword_t *inbuf, size_t inlen,
727 		 efx_dword_t *outbuf, size_t outlen,
728 		 size_t *outlen_actual)
729 {
730 	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
731 			     outlen_actual, false);
732 }
733 
734 /* Normally, on receiving an error code in the MCDI response,
735  * efx_mcdi_rpc will log an error message containing (among other
736  * things) the raw error code, by means of efx_mcdi_display_error.
737  * This _quiet version suppresses that; if the caller wishes to log
738  * the error conditionally on the return code, it should call this
739  * function and is then responsible for calling efx_mcdi_display_error
740  * as needed.
741  */
efx_mcdi_rpc_quiet(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)742 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
743 		       const efx_dword_t *inbuf, size_t inlen,
744 		       efx_dword_t *outbuf, size_t outlen,
745 		       size_t *outlen_actual)
746 {
747 	return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
748 			     outlen_actual, true);
749 }
750 
efx_mcdi_rpc_start(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)751 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
752 		       const efx_dword_t *inbuf, size_t inlen)
753 {
754 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
755 	int rc;
756 
757 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
758 	if (rc)
759 		return rc;
760 
761 	if (efx->mc_bist_for_other_fn)
762 		return -ENETDOWN;
763 
764 	if (mcdi->mode == MCDI_MODE_FAIL)
765 		return -ENETDOWN;
766 
767 	efx_mcdi_acquire_sync(mcdi);
768 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
769 	return 0;
770 }
771 
_efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie,bool quiet)772 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
773 			       const efx_dword_t *inbuf, size_t inlen,
774 			       size_t outlen,
775 			       efx_mcdi_async_completer *complete,
776 			       unsigned long cookie, bool quiet)
777 {
778 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
779 	struct efx_mcdi_async_param *async;
780 	int rc;
781 
782 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
783 	if (rc)
784 		return rc;
785 
786 	if (efx->mc_bist_for_other_fn)
787 		return -ENETDOWN;
788 
789 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
790 			GFP_ATOMIC);
791 	if (!async)
792 		return -ENOMEM;
793 
794 	async->cmd = cmd;
795 	async->inlen = inlen;
796 	async->outlen = outlen;
797 	async->quiet = quiet;
798 	async->complete = complete;
799 	async->cookie = cookie;
800 	memcpy(async + 1, inbuf, inlen);
801 
802 	spin_lock_bh(&mcdi->async_lock);
803 
804 	if (mcdi->mode == MCDI_MODE_EVENTS) {
805 		list_add_tail(&async->list, &mcdi->async_list);
806 
807 		/* If this is at the front of the queue, try to start it
808 		 * immediately
809 		 */
810 		if (mcdi->async_list.next == &async->list &&
811 		    efx_mcdi_acquire_async(mcdi)) {
812 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
813 			mod_timer(&mcdi->async_timer,
814 				  jiffies + MCDI_RPC_TIMEOUT);
815 		}
816 	} else {
817 		kfree(async);
818 		rc = -ENETDOWN;
819 	}
820 
821 	spin_unlock_bh(&mcdi->async_lock);
822 
823 	return rc;
824 }
825 
826 /**
827  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
828  * @efx: NIC through which to issue the command
829  * @cmd: Command type number
830  * @inbuf: Command parameters
831  * @inlen: Length of command parameters, in bytes
832  * @outlen: Length to allocate for response buffer, in bytes
833  * @complete: Function to be called on completion or cancellation.
834  * @cookie: Arbitrary value to be passed to @complete.
835  *
836  * This function does not sleep and therefore may be called in atomic
837  * context.  It will fail if event queues are disabled or if MCDI
838  * event completions have been disabled due to an error.
839  *
840  * If it succeeds, the @complete function will be called exactly once
841  * in atomic context, when one of the following occurs:
842  * (a) the completion event is received (in NAPI context)
843  * (b) event queues are disabled (in the process that disables them)
844  * (c) the request times-out (in timer context)
845  */
846 int
efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)847 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
848 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
849 		   efx_mcdi_async_completer *complete, unsigned long cookie)
850 {
851 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
852 				   cookie, false);
853 }
854 
efx_mcdi_rpc_async_quiet(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)855 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
856 			     const efx_dword_t *inbuf, size_t inlen,
857 			     size_t outlen, efx_mcdi_async_completer *complete,
858 			     unsigned long cookie)
859 {
860 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
861 				   cookie, true);
862 }
863 
efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)864 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
865 			efx_dword_t *outbuf, size_t outlen,
866 			size_t *outlen_actual)
867 {
868 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
869 				    outlen_actual, false);
870 }
871 
efx_mcdi_rpc_finish_quiet(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)872 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
873 			      efx_dword_t *outbuf, size_t outlen,
874 			      size_t *outlen_actual)
875 {
876 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
877 				    outlen_actual, true);
878 }
879 
efx_mcdi_display_error(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,int rc)880 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
881 			    size_t inlen, efx_dword_t *outbuf,
882 			    size_t outlen, int rc)
883 {
884 	int code = 0, err_arg = 0;
885 
886 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
887 		code = MCDI_DWORD(outbuf, ERR_CODE);
888 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
889 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
890 	netif_err(efx, hw, efx->net_dev,
891 		  "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
892 		  cmd, (int)inlen, rc, code, err_arg);
893 }
894 
895 /* Switch to polled MCDI completions.  This can be called in various
896  * error conditions with various locks held, so it must be lockless.
897  * Caller is responsible for flushing asynchronous requests later.
898  */
efx_mcdi_mode_poll(struct efx_nic * efx)899 void efx_mcdi_mode_poll(struct efx_nic *efx)
900 {
901 	struct efx_mcdi_iface *mcdi;
902 
903 	if (!efx->mcdi)
904 		return;
905 
906 	mcdi = efx_mcdi(efx);
907 	/* If already in polling mode, nothing to do.
908 	 * If in fail-fast state, don't switch to polled completion.
909 	 * FLR recovery will do that later.
910 	 */
911 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
912 		return;
913 
914 	/* We can switch from event completion to polled completion, because
915 	 * mcdi requests are always completed in shared memory. We do this by
916 	 * switching the mode to POLL'd then completing the request.
917 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
918 	 *
919 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
920 	 * which efx_mcdi_complete_sync() provides for us.
921 	 */
922 	mcdi->mode = MCDI_MODE_POLL;
923 
924 	efx_mcdi_complete_sync(mcdi);
925 }
926 
927 /* Flush any running or queued asynchronous requests, after event processing
928  * is stopped
929  */
efx_mcdi_flush_async(struct efx_nic * efx)930 void efx_mcdi_flush_async(struct efx_nic *efx)
931 {
932 	struct efx_mcdi_async_param *async, *next;
933 	struct efx_mcdi_iface *mcdi;
934 
935 	if (!efx->mcdi)
936 		return;
937 
938 	mcdi = efx_mcdi(efx);
939 
940 	/* We must be in poll or fail mode so no more requests can be queued */
941 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
942 
943 	del_timer_sync(&mcdi->async_timer);
944 
945 	/* If a request is still running, make sure we give the MC
946 	 * time to complete it so that the response won't overwrite our
947 	 * next request.
948 	 */
949 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
950 		efx_mcdi_poll(efx);
951 		mcdi->state = MCDI_STATE_QUIESCENT;
952 	}
953 
954 	/* Nothing else will access the async list now, so it is safe
955 	 * to walk it without holding async_lock.  If we hold it while
956 	 * calling a completer then lockdep may warn that we have
957 	 * acquired locks in the wrong order.
958 	 */
959 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
960 		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
961 		list_del(&async->list);
962 		kfree(async);
963 	}
964 }
965 
efx_mcdi_mode_event(struct efx_nic * efx)966 void efx_mcdi_mode_event(struct efx_nic *efx)
967 {
968 	struct efx_mcdi_iface *mcdi;
969 
970 	if (!efx->mcdi)
971 		return;
972 
973 	mcdi = efx_mcdi(efx);
974 	/* If already in event completion mode, nothing to do.
975 	 * If in fail-fast state, don't switch to event completion.  FLR
976 	 * recovery will do that later.
977 	 */
978 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
979 		return;
980 
981 	/* We can't switch from polled to event completion in the middle of a
982 	 * request, because the completion method is specified in the request.
983 	 * So acquire the interface to serialise the requestors. We don't need
984 	 * to acquire the iface_lock to change the mode here, but we do need a
985 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
986 	 * efx_mcdi_acquire() provides.
987 	 */
988 	efx_mcdi_acquire_sync(mcdi);
989 	mcdi->mode = MCDI_MODE_EVENTS;
990 	efx_mcdi_release(mcdi);
991 }
992 
efx_mcdi_ev_death(struct efx_nic * efx,int rc)993 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
994 {
995 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
996 
997 	/* If there is an outstanding MCDI request, it has been terminated
998 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
999 	 * in polled mode, then do nothing because the MC reboot handler will
1000 	 * set the header correctly. However, if the mcdi interface is waiting
1001 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1002 	 * are sent to the same queue, we can't be racing with
1003 	 * efx_mcdi_ev_cpl()]
1004 	 *
1005 	 * If there is an outstanding asynchronous request, we can't
1006 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1007 	 * reset process will take care of this.
1008 	 *
1009 	 * There's a race here with efx_mcdi_send_request(), because
1010 	 * we might receive a REBOOT event *before* the request has
1011 	 * been copied out. In polled mode (during startup) this is
1012 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1013 	 * event mode, this condition is just an edge-case of
1014 	 * receiving a REBOOT event after posting the MCDI
1015 	 * request. Did the mc reboot before or after the copyout? The
1016 	 * best we can do always is just return failure.
1017 	 */
1018 	spin_lock(&mcdi->iface_lock);
1019 	if (efx_mcdi_complete_sync(mcdi)) {
1020 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1021 			mcdi->resprc = rc;
1022 			mcdi->resp_hdr_len = 0;
1023 			mcdi->resp_data_len = 0;
1024 			++mcdi->credits;
1025 		}
1026 	} else {
1027 		int count;
1028 
1029 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1030 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1031 			rc = efx_mcdi_poll_reboot(efx);
1032 			if (rc)
1033 				break;
1034 			udelay(MCDI_STATUS_DELAY_US);
1035 		}
1036 
1037 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1038 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1039 		 * If zero was returned from the final call to
1040 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1041 		 * MC has definitely rebooted so prepare for the reset.
1042 		 */
1043 		if (!rc && efx->type->mcdi_reboot_detected)
1044 			efx->type->mcdi_reboot_detected(efx);
1045 
1046 		mcdi->new_epoch = true;
1047 
1048 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1049 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1050 	}
1051 
1052 	spin_unlock(&mcdi->iface_lock);
1053 }
1054 
1055 /* The MC is going down in to BIST mode. set the BIST flag to block
1056  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1057  * (which doesn't actually execute a reset, it waits for the controlling
1058  * function to reset it).
1059  */
efx_mcdi_ev_bist(struct efx_nic * efx)1060 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1061 {
1062 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1063 
1064 	spin_lock(&mcdi->iface_lock);
1065 	efx->mc_bist_for_other_fn = true;
1066 	if (efx_mcdi_complete_sync(mcdi)) {
1067 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1068 			mcdi->resprc = -EIO;
1069 			mcdi->resp_hdr_len = 0;
1070 			mcdi->resp_data_len = 0;
1071 			++mcdi->credits;
1072 		}
1073 	}
1074 	mcdi->new_epoch = true;
1075 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1076 	spin_unlock(&mcdi->iface_lock);
1077 }
1078 
1079 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1080  * to recover.
1081  */
efx_mcdi_abandon(struct efx_nic * efx)1082 static void efx_mcdi_abandon(struct efx_nic *efx)
1083 {
1084 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1085 
1086 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1087 		return; /* it had already been done */
1088 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1089 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1090 }
1091 
1092 /* Called from  falcon_process_eventq for MCDI events */
efx_mcdi_process_event(struct efx_channel * channel,efx_qword_t * event)1093 void efx_mcdi_process_event(struct efx_channel *channel,
1094 			    efx_qword_t *event)
1095 {
1096 	struct efx_nic *efx = channel->efx;
1097 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1098 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1099 
1100 	switch (code) {
1101 	case MCDI_EVENT_CODE_BADSSERT:
1102 		netif_err(efx, hw, efx->net_dev,
1103 			  "MC watchdog or assertion failure at 0x%x\n", data);
1104 		efx_mcdi_ev_death(efx, -EINTR);
1105 		break;
1106 
1107 	case MCDI_EVENT_CODE_PMNOTICE:
1108 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1109 		break;
1110 
1111 	case MCDI_EVENT_CODE_CMDDONE:
1112 		efx_mcdi_ev_cpl(efx,
1113 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1114 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1115 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1116 		break;
1117 
1118 	case MCDI_EVENT_CODE_LINKCHANGE:
1119 		efx_mcdi_process_link_change(efx, event);
1120 		break;
1121 	case MCDI_EVENT_CODE_SENSOREVT:
1122 		efx_mcdi_sensor_event(efx, event);
1123 		break;
1124 	case MCDI_EVENT_CODE_SCHEDERR:
1125 		netif_dbg(efx, hw, efx->net_dev,
1126 			  "MC Scheduler alert (0x%x)\n", data);
1127 		break;
1128 	case MCDI_EVENT_CODE_REBOOT:
1129 	case MCDI_EVENT_CODE_MC_REBOOT:
1130 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1131 		efx_mcdi_ev_death(efx, -EIO);
1132 		break;
1133 	case MCDI_EVENT_CODE_MC_BIST:
1134 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1135 		efx_mcdi_ev_bist(efx);
1136 		break;
1137 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1138 		/* MAC stats are gather lazily.  We can ignore this. */
1139 		break;
1140 	case MCDI_EVENT_CODE_FLR:
1141 		if (efx->type->sriov_flr)
1142 			efx->type->sriov_flr(efx,
1143 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1144 		break;
1145 	case MCDI_EVENT_CODE_PTP_RX:
1146 	case MCDI_EVENT_CODE_PTP_FAULT:
1147 	case MCDI_EVENT_CODE_PTP_PPS:
1148 		efx_ptp_event(efx, event);
1149 		break;
1150 	case MCDI_EVENT_CODE_PTP_TIME:
1151 		efx_time_sync_event(channel, event);
1152 		break;
1153 	case MCDI_EVENT_CODE_TX_FLUSH:
1154 	case MCDI_EVENT_CODE_RX_FLUSH:
1155 		/* Two flush events will be sent: one to the same event
1156 		 * queue as completions, and one to event queue 0.
1157 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1158 		 * flag will be set, and we should ignore the event
1159 		 * because we want to wait for all completions.
1160 		 */
1161 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1162 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1163 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1164 			efx_ef10_handle_drain_event(efx);
1165 		break;
1166 	case MCDI_EVENT_CODE_TX_ERR:
1167 	case MCDI_EVENT_CODE_RX_ERR:
1168 		netif_err(efx, hw, efx->net_dev,
1169 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1170 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1171 			  EFX_QWORD_VAL(*event));
1172 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1173 		break;
1174 	default:
1175 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1176 			  code);
1177 	}
1178 }
1179 
1180 /**************************************************************************
1181  *
1182  * Specific request functions
1183  *
1184  **************************************************************************
1185  */
1186 
efx_mcdi_print_fwver(struct efx_nic * efx,char * buf,size_t len)1187 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1188 {
1189 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1190 	size_t outlength;
1191 	const __le16 *ver_words;
1192 	size_t offset;
1193 	int rc;
1194 
1195 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1196 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1197 			  outbuf, sizeof(outbuf), &outlength);
1198 	if (rc)
1199 		goto fail;
1200 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1201 		rc = -EIO;
1202 		goto fail;
1203 	}
1204 
1205 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1206 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1207 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1208 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1209 
1210 	/* EF10 may have multiple datapath firmware variants within a
1211 	 * single version.  Report which variants are running.
1212 	 */
1213 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1214 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1215 
1216 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1217 				   nic_data->rx_dpcpu_fw_id,
1218 				   nic_data->tx_dpcpu_fw_id);
1219 
1220 		/* It's theoretically possible for the string to exceed 31
1221 		 * characters, though in practice the first three version
1222 		 * components are short enough that this doesn't happen.
1223 		 */
1224 		if (WARN_ON(offset >= len))
1225 			buf[0] = 0;
1226 	}
1227 
1228 	return;
1229 
1230 fail:
1231 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1232 	buf[0] = 0;
1233 }
1234 
efx_mcdi_drv_attach(struct efx_nic * efx,bool driver_operating,bool * was_attached)1235 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1236 			       bool *was_attached)
1237 {
1238 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1239 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1240 	size_t outlen;
1241 	int rc;
1242 
1243 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1244 		       driver_operating ? 1 : 0);
1245 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1246 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1247 
1248 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1249 				outbuf, sizeof(outbuf), &outlen);
1250 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1251 	 * specified will fail with EPERM, and we have to tell the MC we don't
1252 	 * care what firmware we get.
1253 	 */
1254 	if (rc == -EPERM) {
1255 		netif_dbg(efx, probe, efx->net_dev,
1256 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1257 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1258 			       MC_CMD_FW_DONT_CARE);
1259 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1260 					sizeof(inbuf), outbuf, sizeof(outbuf),
1261 					&outlen);
1262 	}
1263 	if (rc) {
1264 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1265 				       outbuf, outlen, rc);
1266 		goto fail;
1267 	}
1268 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1269 		rc = -EIO;
1270 		goto fail;
1271 	}
1272 
1273 	if (driver_operating) {
1274 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1275 			efx->mcdi->fn_flags =
1276 				MCDI_DWORD(outbuf,
1277 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1278 		} else {
1279 			/* Synthesise flags for Siena */
1280 			efx->mcdi->fn_flags =
1281 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1282 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1283 				(efx_port_num(efx) == 0) <<
1284 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1285 		}
1286 	}
1287 
1288 	/* We currently assume we have control of the external link
1289 	 * and are completely trusted by firmware.  Abort probing
1290 	 * if that's not true for this function.
1291 	 */
1292 
1293 	if (was_attached != NULL)
1294 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1295 	return 0;
1296 
1297 fail:
1298 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1299 	return rc;
1300 }
1301 
efx_mcdi_get_board_cfg(struct efx_nic * efx,u8 * mac_address,u16 * fw_subtype_list,u32 * capabilities)1302 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1303 			   u16 *fw_subtype_list, u32 *capabilities)
1304 {
1305 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1306 	size_t outlen, i;
1307 	int port_num = efx_port_num(efx);
1308 	int rc;
1309 
1310 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1311 	/* we need __aligned(2) for ether_addr_copy */
1312 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1313 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1314 
1315 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1316 			  outbuf, sizeof(outbuf), &outlen);
1317 	if (rc)
1318 		goto fail;
1319 
1320 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1321 		rc = -EIO;
1322 		goto fail;
1323 	}
1324 
1325 	if (mac_address)
1326 		ether_addr_copy(mac_address,
1327 				port_num ?
1328 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1329 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1330 	if (fw_subtype_list) {
1331 		for (i = 0;
1332 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1333 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1334 		     i++)
1335 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1336 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1337 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1338 			fw_subtype_list[i] = 0;
1339 	}
1340 	if (capabilities) {
1341 		if (port_num)
1342 			*capabilities = MCDI_DWORD(outbuf,
1343 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1344 		else
1345 			*capabilities = MCDI_DWORD(outbuf,
1346 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1347 	}
1348 
1349 	return 0;
1350 
1351 fail:
1352 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1353 		  __func__, rc, (int)outlen);
1354 
1355 	return rc;
1356 }
1357 
efx_mcdi_log_ctrl(struct efx_nic * efx,bool evq,bool uart,u32 dest_evq)1358 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1359 {
1360 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1361 	u32 dest = 0;
1362 	int rc;
1363 
1364 	if (uart)
1365 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1366 	if (evq)
1367 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1368 
1369 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1370 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1371 
1372 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1373 
1374 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1375 			  NULL, 0, NULL);
1376 	return rc;
1377 }
1378 
efx_mcdi_nvram_types(struct efx_nic * efx,u32 * nvram_types_out)1379 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1380 {
1381 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1382 	size_t outlen;
1383 	int rc;
1384 
1385 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1386 
1387 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1388 			  outbuf, sizeof(outbuf), &outlen);
1389 	if (rc)
1390 		goto fail;
1391 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1392 		rc = -EIO;
1393 		goto fail;
1394 	}
1395 
1396 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1397 	return 0;
1398 
1399 fail:
1400 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1401 		  __func__, rc);
1402 	return rc;
1403 }
1404 
efx_mcdi_nvram_info(struct efx_nic * efx,unsigned int type,size_t * size_out,size_t * erase_size_out,bool * protected_out)1405 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1406 			size_t *size_out, size_t *erase_size_out,
1407 			bool *protected_out)
1408 {
1409 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1410 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1411 	size_t outlen;
1412 	int rc;
1413 
1414 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1415 
1416 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1417 			  outbuf, sizeof(outbuf), &outlen);
1418 	if (rc)
1419 		goto fail;
1420 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1421 		rc = -EIO;
1422 		goto fail;
1423 	}
1424 
1425 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1426 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1427 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1428 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1429 	return 0;
1430 
1431 fail:
1432 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1433 	return rc;
1434 }
1435 
efx_mcdi_nvram_test(struct efx_nic * efx,unsigned int type)1436 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1437 {
1438 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1439 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1440 	int rc;
1441 
1442 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1443 
1444 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1445 			  outbuf, sizeof(outbuf), NULL);
1446 	if (rc)
1447 		return rc;
1448 
1449 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1450 	case MC_CMD_NVRAM_TEST_PASS:
1451 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1452 		return 0;
1453 	default:
1454 		return -EIO;
1455 	}
1456 }
1457 
efx_mcdi_nvram_test_all(struct efx_nic * efx)1458 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1459 {
1460 	u32 nvram_types;
1461 	unsigned int type;
1462 	int rc;
1463 
1464 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1465 	if (rc)
1466 		goto fail1;
1467 
1468 	type = 0;
1469 	while (nvram_types != 0) {
1470 		if (nvram_types & 1) {
1471 			rc = efx_mcdi_nvram_test(efx, type);
1472 			if (rc)
1473 				goto fail2;
1474 		}
1475 		type++;
1476 		nvram_types >>= 1;
1477 	}
1478 
1479 	return 0;
1480 
1481 fail2:
1482 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1483 		  __func__, type);
1484 fail1:
1485 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1486 	return rc;
1487 }
1488 
1489 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1490  * negative on error.
1491  */
efx_mcdi_read_assertion(struct efx_nic * efx)1492 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1493 {
1494 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1495 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1496 	unsigned int flags, index;
1497 	const char *reason;
1498 	size_t outlen;
1499 	int retry;
1500 	int rc;
1501 
1502 	/* Attempt to read any stored assertion state before we reboot
1503 	 * the mcfw out of the assertion handler. Retry twice, once
1504 	 * because a boot-time assertion might cause this command to fail
1505 	 * with EINTR. And once again because GET_ASSERTS can race with
1506 	 * MC_CMD_REBOOT running on the other port. */
1507 	retry = 2;
1508 	do {
1509 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1510 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1511 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1512 					outbuf, sizeof(outbuf), &outlen);
1513 		if (rc == -EPERM)
1514 			return 0;
1515 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1516 
1517 	if (rc) {
1518 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1519 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1520 				       outlen, rc);
1521 		return rc;
1522 	}
1523 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1524 		return -EIO;
1525 
1526 	/* Print out any recorded assertion state */
1527 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1528 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1529 		return 0;
1530 
1531 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1532 		? "system-level assertion"
1533 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1534 		? "thread-level assertion"
1535 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1536 		? "watchdog reset"
1537 		: "unknown assertion";
1538 	netif_err(efx, hw, efx->net_dev,
1539 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1540 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1541 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1542 
1543 	/* Print out the registers */
1544 	for (index = 0;
1545 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1546 	     index++)
1547 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1548 			  1 + index,
1549 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1550 					   index));
1551 
1552 	return 1;
1553 }
1554 
efx_mcdi_exit_assertion(struct efx_nic * efx)1555 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1556 {
1557 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1558 	int rc;
1559 
1560 	/* If the MC is running debug firmware, it might now be
1561 	 * waiting for a debugger to attach, but we just want it to
1562 	 * reboot.  We set a flag that makes the command a no-op if it
1563 	 * has already done so.
1564 	 * The MCDI will thus return either 0 or -EIO.
1565 	 */
1566 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1567 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1568 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1569 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1570 				NULL, 0, NULL);
1571 	if (rc == -EIO)
1572 		rc = 0;
1573 	if (rc)
1574 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1575 				       NULL, 0, rc);
1576 	return rc;
1577 }
1578 
efx_mcdi_handle_assertion(struct efx_nic * efx)1579 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1580 {
1581 	int rc;
1582 
1583 	rc = efx_mcdi_read_assertion(efx);
1584 	if (rc <= 0)
1585 		return rc;
1586 
1587 	return efx_mcdi_exit_assertion(efx);
1588 }
1589 
efx_mcdi_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1590 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1591 {
1592 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1593 	int rc;
1594 
1595 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1596 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1597 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1598 
1599 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1600 
1601 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1602 
1603 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1604 			  NULL, 0, NULL);
1605 }
1606 
efx_mcdi_reset_func(struct efx_nic * efx)1607 static int efx_mcdi_reset_func(struct efx_nic *efx)
1608 {
1609 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1610 	int rc;
1611 
1612 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1613 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1614 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1615 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1616 			  NULL, 0, NULL);
1617 	return rc;
1618 }
1619 
efx_mcdi_reset_mc(struct efx_nic * efx)1620 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1621 {
1622 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1623 	int rc;
1624 
1625 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1626 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1627 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1628 			  NULL, 0, NULL);
1629 	/* White is black, and up is down */
1630 	if (rc == -EIO)
1631 		return 0;
1632 	if (rc == 0)
1633 		rc = -EIO;
1634 	return rc;
1635 }
1636 
efx_mcdi_map_reset_reason(enum reset_type reason)1637 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1638 {
1639 	return RESET_TYPE_RECOVER_OR_ALL;
1640 }
1641 
efx_mcdi_reset(struct efx_nic * efx,enum reset_type method)1642 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1643 {
1644 	int rc;
1645 
1646 	/* If MCDI is down, we can't handle_assertion */
1647 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1648 		rc = pci_reset_function(efx->pci_dev);
1649 		if (rc)
1650 			return rc;
1651 		/* Re-enable polled MCDI completion */
1652 		if (efx->mcdi) {
1653 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1654 			mcdi->mode = MCDI_MODE_POLL;
1655 		}
1656 		return 0;
1657 	}
1658 
1659 	/* Recover from a failed assertion pre-reset */
1660 	rc = efx_mcdi_handle_assertion(efx);
1661 	if (rc)
1662 		return rc;
1663 
1664 	if (method == RESET_TYPE_DATAPATH)
1665 		return 0;
1666 	else if (method == RESET_TYPE_WORLD)
1667 		return efx_mcdi_reset_mc(efx);
1668 	else
1669 		return efx_mcdi_reset_func(efx);
1670 }
1671 
efx_mcdi_wol_filter_set(struct efx_nic * efx,u32 type,const u8 * mac,int * id_out)1672 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1673 				   const u8 *mac, int *id_out)
1674 {
1675 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1676 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1677 	size_t outlen;
1678 	int rc;
1679 
1680 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1681 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1682 		       MC_CMD_FILTER_MODE_SIMPLE);
1683 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1684 
1685 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1686 			  outbuf, sizeof(outbuf), &outlen);
1687 	if (rc)
1688 		goto fail;
1689 
1690 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1691 		rc = -EIO;
1692 		goto fail;
1693 	}
1694 
1695 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1696 
1697 	return 0;
1698 
1699 fail:
1700 	*id_out = -1;
1701 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1702 	return rc;
1703 
1704 }
1705 
1706 
1707 int
efx_mcdi_wol_filter_set_magic(struct efx_nic * efx,const u8 * mac,int * id_out)1708 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1709 {
1710 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1711 }
1712 
1713 
efx_mcdi_wol_filter_get_magic(struct efx_nic * efx,int * id_out)1714 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1715 {
1716 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1717 	size_t outlen;
1718 	int rc;
1719 
1720 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1721 			  outbuf, sizeof(outbuf), &outlen);
1722 	if (rc)
1723 		goto fail;
1724 
1725 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1726 		rc = -EIO;
1727 		goto fail;
1728 	}
1729 
1730 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1731 
1732 	return 0;
1733 
1734 fail:
1735 	*id_out = -1;
1736 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1737 	return rc;
1738 }
1739 
1740 
efx_mcdi_wol_filter_remove(struct efx_nic * efx,int id)1741 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1742 {
1743 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1744 	int rc;
1745 
1746 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1747 
1748 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1749 			  NULL, 0, NULL);
1750 	return rc;
1751 }
1752 
efx_mcdi_flush_rxqs(struct efx_nic * efx)1753 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1754 {
1755 	struct efx_channel *channel;
1756 	struct efx_rx_queue *rx_queue;
1757 	MCDI_DECLARE_BUF(inbuf,
1758 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1759 	int rc, count;
1760 
1761 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1762 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1763 
1764 	count = 0;
1765 	efx_for_each_channel(channel, efx) {
1766 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1767 			if (rx_queue->flush_pending) {
1768 				rx_queue->flush_pending = false;
1769 				atomic_dec(&efx->rxq_flush_pending);
1770 				MCDI_SET_ARRAY_DWORD(
1771 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1772 					count, efx_rx_queue_index(rx_queue));
1773 				count++;
1774 			}
1775 		}
1776 	}
1777 
1778 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1779 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1780 	WARN_ON(rc < 0);
1781 
1782 	return rc;
1783 }
1784 
efx_mcdi_wol_filter_reset(struct efx_nic * efx)1785 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1786 {
1787 	int rc;
1788 
1789 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1790 	return rc;
1791 }
1792 
efx_mcdi_set_workaround(struct efx_nic * efx,u32 type,bool enabled,unsigned int * flags)1793 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
1794 			    unsigned int *flags)
1795 {
1796 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1797 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
1798 	size_t outlen;
1799 	int rc;
1800 
1801 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1802 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1803 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1804 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1805 			  outbuf, sizeof(outbuf), &outlen);
1806 	if (rc)
1807 		return rc;
1808 
1809 	if (!flags)
1810 		return 0;
1811 
1812 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
1813 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
1814 	else
1815 		*flags = 0;
1816 
1817 	return 0;
1818 }
1819 
efx_mcdi_get_workarounds(struct efx_nic * efx,unsigned int * impl_out,unsigned int * enabled_out)1820 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
1821 			     unsigned int *enabled_out)
1822 {
1823 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
1824 	size_t outlen;
1825 	int rc;
1826 
1827 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
1828 			  outbuf, sizeof(outbuf), &outlen);
1829 	if (rc)
1830 		goto fail;
1831 
1832 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
1833 		rc = -EIO;
1834 		goto fail;
1835 	}
1836 
1837 	if (impl_out)
1838 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
1839 
1840 	if (enabled_out)
1841 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
1842 
1843 	return 0;
1844 
1845 fail:
1846 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
1847 	 * terrifying.  The call site will have to deal with it though.
1848 	 */
1849 	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
1850 		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1851 	return rc;
1852 }
1853 
1854 #ifdef CONFIG_SFC_MTD
1855 
1856 #define EFX_MCDI_NVRAM_LEN_MAX 128
1857 
efx_mcdi_nvram_update_start(struct efx_nic * efx,unsigned int type)1858 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1859 {
1860 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1861 	int rc;
1862 
1863 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1864 
1865 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1866 
1867 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1868 			  NULL, 0, NULL);
1869 	return rc;
1870 }
1871 
efx_mcdi_nvram_read(struct efx_nic * efx,unsigned int type,loff_t offset,u8 * buffer,size_t length)1872 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1873 			       loff_t offset, u8 *buffer, size_t length)
1874 {
1875 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1876 	MCDI_DECLARE_BUF(outbuf,
1877 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1878 	size_t outlen;
1879 	int rc;
1880 
1881 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1882 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1883 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1884 
1885 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1886 			  outbuf, sizeof(outbuf), &outlen);
1887 	if (rc)
1888 		return rc;
1889 
1890 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1891 	return 0;
1892 }
1893 
efx_mcdi_nvram_write(struct efx_nic * efx,unsigned int type,loff_t offset,const u8 * buffer,size_t length)1894 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1895 				loff_t offset, const u8 *buffer, size_t length)
1896 {
1897 	MCDI_DECLARE_BUF(inbuf,
1898 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1899 	int rc;
1900 
1901 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1902 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1903 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1904 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1905 
1906 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1907 
1908 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1909 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1910 			  NULL, 0, NULL);
1911 	return rc;
1912 }
1913 
efx_mcdi_nvram_erase(struct efx_nic * efx,unsigned int type,loff_t offset,size_t length)1914 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1915 				loff_t offset, size_t length)
1916 {
1917 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1918 	int rc;
1919 
1920 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1921 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1922 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1923 
1924 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1925 
1926 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1927 			  NULL, 0, NULL);
1928 	return rc;
1929 }
1930 
efx_mcdi_nvram_update_finish(struct efx_nic * efx,unsigned int type)1931 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1932 {
1933 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1934 	int rc;
1935 
1936 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1937 
1938 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1939 
1940 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1941 			  NULL, 0, NULL);
1942 	return rc;
1943 }
1944 
efx_mcdi_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)1945 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1946 		      size_t len, size_t *retlen, u8 *buffer)
1947 {
1948 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1949 	struct efx_nic *efx = mtd->priv;
1950 	loff_t offset = start;
1951 	loff_t end = min_t(loff_t, start + len, mtd->size);
1952 	size_t chunk;
1953 	int rc = 0;
1954 
1955 	while (offset < end) {
1956 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1957 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1958 					 buffer, chunk);
1959 		if (rc)
1960 			goto out;
1961 		offset += chunk;
1962 		buffer += chunk;
1963 	}
1964 out:
1965 	*retlen = offset - start;
1966 	return rc;
1967 }
1968 
efx_mcdi_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)1969 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1970 {
1971 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1972 	struct efx_nic *efx = mtd->priv;
1973 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1974 	loff_t end = min_t(loff_t, start + len, mtd->size);
1975 	size_t chunk = part->common.mtd.erasesize;
1976 	int rc = 0;
1977 
1978 	if (!part->updating) {
1979 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1980 		if (rc)
1981 			goto out;
1982 		part->updating = true;
1983 	}
1984 
1985 	/* The MCDI interface can in fact do multiple erase blocks at once;
1986 	 * but erasing may be slow, so we make multiple calls here to avoid
1987 	 * tripping the MCDI RPC timeout. */
1988 	while (offset < end) {
1989 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1990 					  chunk);
1991 		if (rc)
1992 			goto out;
1993 		offset += chunk;
1994 	}
1995 out:
1996 	return rc;
1997 }
1998 
efx_mcdi_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)1999 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2000 		       size_t len, size_t *retlen, const u8 *buffer)
2001 {
2002 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2003 	struct efx_nic *efx = mtd->priv;
2004 	loff_t offset = start;
2005 	loff_t end = min_t(loff_t, start + len, mtd->size);
2006 	size_t chunk;
2007 	int rc = 0;
2008 
2009 	if (!part->updating) {
2010 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2011 		if (rc)
2012 			goto out;
2013 		part->updating = true;
2014 	}
2015 
2016 	while (offset < end) {
2017 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2018 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2019 					  buffer, chunk);
2020 		if (rc)
2021 			goto out;
2022 		offset += chunk;
2023 		buffer += chunk;
2024 	}
2025 out:
2026 	*retlen = offset - start;
2027 	return rc;
2028 }
2029 
efx_mcdi_mtd_sync(struct mtd_info * mtd)2030 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2031 {
2032 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2033 	struct efx_nic *efx = mtd->priv;
2034 	int rc = 0;
2035 
2036 	if (part->updating) {
2037 		part->updating = false;
2038 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2039 	}
2040 
2041 	return rc;
2042 }
2043 
efx_mcdi_mtd_rename(struct efx_mtd_partition * part)2044 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2045 {
2046 	struct efx_mcdi_mtd_partition *mcdi_part =
2047 		container_of(part, struct efx_mcdi_mtd_partition, common);
2048 	struct efx_nic *efx = part->mtd.priv;
2049 
2050 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2051 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2052 }
2053 
2054 #endif /* CONFIG_SFC_MTD */
2055