• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 
58 #include "sched/tune.h"
59 
60 #include <asm/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64 
65 static void exit_mm(struct task_struct *tsk);
66 
__unhash_process(struct task_struct * p,bool group_dead)67 static void __unhash_process(struct task_struct *p, bool group_dead)
68 {
69 	nr_threads--;
70 	detach_pid(p, PIDTYPE_PID);
71 	if (group_dead) {
72 		detach_pid(p, PIDTYPE_PGID);
73 		detach_pid(p, PIDTYPE_SID);
74 
75 		list_del_rcu(&p->tasks);
76 		list_del_init(&p->sibling);
77 		__this_cpu_dec(process_counts);
78 	}
79 	list_del_rcu(&p->thread_group);
80 	list_del_rcu(&p->thread_node);
81 }
82 
83 /*
84  * This function expects the tasklist_lock write-locked.
85  */
__exit_signal(struct task_struct * tsk)86 static void __exit_signal(struct task_struct *tsk)
87 {
88 	struct signal_struct *sig = tsk->signal;
89 	bool group_dead = thread_group_leader(tsk);
90 	struct sighand_struct *sighand;
91 	struct tty_struct *uninitialized_var(tty);
92 	cputime_t utime, stime;
93 
94 	sighand = rcu_dereference_check(tsk->sighand,
95 					lockdep_tasklist_lock_is_held());
96 	spin_lock(&sighand->siglock);
97 
98 	posix_cpu_timers_exit(tsk);
99 	if (group_dead) {
100 		posix_cpu_timers_exit_group(tsk);
101 		tty = sig->tty;
102 		sig->tty = NULL;
103 	} else {
104 		/*
105 		 * This can only happen if the caller is de_thread().
106 		 * FIXME: this is the temporary hack, we should teach
107 		 * posix-cpu-timers to handle this case correctly.
108 		 */
109 		if (unlikely(has_group_leader_pid(tsk)))
110 			posix_cpu_timers_exit_group(tsk);
111 
112 		/*
113 		 * If there is any task waiting for the group exit
114 		 * then notify it:
115 		 */
116 		if (sig->notify_count > 0 && !--sig->notify_count)
117 			wake_up_process(sig->group_exit_task);
118 
119 		if (tsk == sig->curr_target)
120 			sig->curr_target = next_thread(tsk);
121 	}
122 
123 	/*
124 	 * Accumulate here the counters for all threads as they die. We could
125 	 * skip the group leader because it is the last user of signal_struct,
126 	 * but we want to avoid the race with thread_group_cputime() which can
127 	 * see the empty ->thread_head list.
128 	 */
129 	task_cputime(tsk, &utime, &stime);
130 	write_seqlock(&sig->stats_lock);
131 	sig->utime += utime;
132 	sig->stime += stime;
133 	sig->gtime += task_gtime(tsk);
134 	sig->min_flt += tsk->min_flt;
135 	sig->maj_flt += tsk->maj_flt;
136 	sig->nvcsw += tsk->nvcsw;
137 	sig->nivcsw += tsk->nivcsw;
138 	sig->inblock += task_io_get_inblock(tsk);
139 	sig->oublock += task_io_get_oublock(tsk);
140 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 	sig->nr_threads--;
143 	__unhash_process(tsk, group_dead);
144 	write_sequnlock(&sig->stats_lock);
145 
146 	/*
147 	 * Do this under ->siglock, we can race with another thread
148 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 	 */
150 	flush_sigqueue(&tsk->pending);
151 	tsk->sighand = NULL;
152 	spin_unlock(&sighand->siglock);
153 
154 	__cleanup_sighand(sighand);
155 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 	if (group_dead) {
157 		flush_sigqueue(&sig->shared_pending);
158 		tty_kref_put(tty);
159 	}
160 }
161 
delayed_put_task_struct(struct rcu_head * rhp)162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 
166 	perf_event_delayed_put(tsk);
167 	trace_sched_process_free(tsk);
168 	put_task_struct(tsk);
169 }
170 
171 
release_task(struct task_struct * p)172 void release_task(struct task_struct *p)
173 {
174 	struct task_struct *leader;
175 	int zap_leader;
176 repeat:
177 	/* don't need to get the RCU readlock here - the process is dead and
178 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 	rcu_read_lock();
180 	atomic_dec(&__task_cred(p)->user->processes);
181 	rcu_read_unlock();
182 
183 	proc_flush_task(p);
184 
185 	write_lock_irq(&tasklist_lock);
186 	ptrace_release_task(p);
187 	__exit_signal(p);
188 
189 	/*
190 	 * If we are the last non-leader member of the thread
191 	 * group, and the leader is zombie, then notify the
192 	 * group leader's parent process. (if it wants notification.)
193 	 */
194 	zap_leader = 0;
195 	leader = p->group_leader;
196 	if (leader != p && thread_group_empty(leader)
197 			&& leader->exit_state == EXIT_ZOMBIE) {
198 		/*
199 		 * If we were the last child thread and the leader has
200 		 * exited already, and the leader's parent ignores SIGCHLD,
201 		 * then we are the one who should release the leader.
202 		 */
203 		zap_leader = do_notify_parent(leader, leader->exit_signal);
204 		if (zap_leader)
205 			leader->exit_state = EXIT_DEAD;
206 	}
207 
208 	write_unlock_irq(&tasklist_lock);
209 	release_thread(p);
210 	call_rcu(&p->rcu, delayed_put_task_struct);
211 
212 	p = leader;
213 	if (unlikely(zap_leader))
214 		goto repeat;
215 }
216 
217 /*
218  * Determine if a process group is "orphaned", according to the POSIX
219  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
220  * by terminal-generated stop signals.  Newly orphaned process groups are
221  * to receive a SIGHUP and a SIGCONT.
222  *
223  * "I ask you, have you ever known what it is to be an orphan?"
224  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)225 static int will_become_orphaned_pgrp(struct pid *pgrp,
226 					struct task_struct *ignored_task)
227 {
228 	struct task_struct *p;
229 
230 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
231 		if ((p == ignored_task) ||
232 		    (p->exit_state && thread_group_empty(p)) ||
233 		    is_global_init(p->real_parent))
234 			continue;
235 
236 		if (task_pgrp(p->real_parent) != pgrp &&
237 		    task_session(p->real_parent) == task_session(p))
238 			return 0;
239 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240 
241 	return 1;
242 }
243 
is_current_pgrp_orphaned(void)244 int is_current_pgrp_orphaned(void)
245 {
246 	int retval;
247 
248 	read_lock(&tasklist_lock);
249 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
250 	read_unlock(&tasklist_lock);
251 
252 	return retval;
253 }
254 
has_stopped_jobs(struct pid * pgrp)255 static bool has_stopped_jobs(struct pid *pgrp)
256 {
257 	struct task_struct *p;
258 
259 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
260 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
261 			return true;
262 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
263 
264 	return false;
265 }
266 
267 /*
268  * Check to see if any process groups have become orphaned as
269  * a result of our exiting, and if they have any stopped jobs,
270  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
271  */
272 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)273 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
274 {
275 	struct pid *pgrp = task_pgrp(tsk);
276 	struct task_struct *ignored_task = tsk;
277 
278 	if (!parent)
279 		/* exit: our father is in a different pgrp than
280 		 * we are and we were the only connection outside.
281 		 */
282 		parent = tsk->real_parent;
283 	else
284 		/* reparent: our child is in a different pgrp than
285 		 * we are, and it was the only connection outside.
286 		 */
287 		ignored_task = NULL;
288 
289 	if (task_pgrp(parent) != pgrp &&
290 	    task_session(parent) == task_session(tsk) &&
291 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
292 	    has_stopped_jobs(pgrp)) {
293 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
294 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
295 	}
296 }
297 
298 #ifdef CONFIG_MEMCG
299 /*
300  * A task is exiting.   If it owned this mm, find a new owner for the mm.
301  */
mm_update_next_owner(struct mm_struct * mm)302 void mm_update_next_owner(struct mm_struct *mm)
303 {
304 	struct task_struct *c, *g, *p = current;
305 
306 retry:
307 	/*
308 	 * If the exiting or execing task is not the owner, it's
309 	 * someone else's problem.
310 	 */
311 	if (mm->owner != p)
312 		return;
313 	/*
314 	 * The current owner is exiting/execing and there are no other
315 	 * candidates.  Do not leave the mm pointing to a possibly
316 	 * freed task structure.
317 	 */
318 	if (atomic_read(&mm->mm_users) <= 1) {
319 		mm->owner = NULL;
320 		return;
321 	}
322 
323 	read_lock(&tasklist_lock);
324 	/*
325 	 * Search in the children
326 	 */
327 	list_for_each_entry(c, &p->children, sibling) {
328 		if (c->mm == mm)
329 			goto assign_new_owner;
330 	}
331 
332 	/*
333 	 * Search in the siblings
334 	 */
335 	list_for_each_entry(c, &p->real_parent->children, sibling) {
336 		if (c->mm == mm)
337 			goto assign_new_owner;
338 	}
339 
340 	/*
341 	 * Search through everything else, we should not get here often.
342 	 */
343 	for_each_process(g) {
344 		if (g->flags & PF_KTHREAD)
345 			continue;
346 		for_each_thread(g, c) {
347 			if (c->mm == mm)
348 				goto assign_new_owner;
349 			if (c->mm)
350 				break;
351 		}
352 	}
353 	read_unlock(&tasklist_lock);
354 	/*
355 	 * We found no owner yet mm_users > 1: this implies that we are
356 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
357 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
358 	 */
359 	mm->owner = NULL;
360 	return;
361 
362 assign_new_owner:
363 	BUG_ON(c == p);
364 	get_task_struct(c);
365 	/*
366 	 * The task_lock protects c->mm from changing.
367 	 * We always want mm->owner->mm == mm
368 	 */
369 	task_lock(c);
370 	/*
371 	 * Delay read_unlock() till we have the task_lock()
372 	 * to ensure that c does not slip away underneath us
373 	 */
374 	read_unlock(&tasklist_lock);
375 	if (c->mm != mm) {
376 		task_unlock(c);
377 		put_task_struct(c);
378 		goto retry;
379 	}
380 	mm->owner = c;
381 	task_unlock(c);
382 	put_task_struct(c);
383 }
384 #endif /* CONFIG_MEMCG */
385 
386 /*
387  * Turn us into a lazy TLB process if we
388  * aren't already..
389  */
exit_mm(struct task_struct * tsk)390 static void exit_mm(struct task_struct *tsk)
391 {
392 	struct mm_struct *mm = tsk->mm;
393 	struct core_state *core_state;
394 
395 	exit_mm_release(tsk, mm);
396 	if (!mm)
397 		return;
398 	sync_mm_rss(mm);
399 	/*
400 	 * Serialize with any possible pending coredump.
401 	 * We must hold mmap_sem around checking core_state
402 	 * and clearing tsk->mm.  The core-inducing thread
403 	 * will increment ->nr_threads for each thread in the
404 	 * group with ->mm != NULL.
405 	 */
406 	down_read(&mm->mmap_sem);
407 	core_state = mm->core_state;
408 	if (core_state) {
409 		struct core_thread self;
410 
411 		up_read(&mm->mmap_sem);
412 
413 		self.task = tsk;
414 		if (self.task->flags & PF_SIGNALED)
415 			self.next = xchg(&core_state->dumper.next, &self);
416 		else
417 			self.task = NULL;
418 		/*
419 		 * Implies mb(), the result of xchg() must be visible
420 		 * to core_state->dumper.
421 		 */
422 		if (atomic_dec_and_test(&core_state->nr_threads))
423 			complete(&core_state->startup);
424 
425 		for (;;) {
426 			set_task_state(tsk, TASK_UNINTERRUPTIBLE);
427 			if (!self.task) /* see coredump_finish() */
428 				break;
429 			freezable_schedule();
430 		}
431 		__set_task_state(tsk, TASK_RUNNING);
432 		down_read(&mm->mmap_sem);
433 	}
434 	atomic_inc(&mm->mm_count);
435 	BUG_ON(mm != tsk->active_mm);
436 	/* more a memory barrier than a real lock */
437 	task_lock(tsk);
438 	tsk->mm = NULL;
439 	up_read(&mm->mmap_sem);
440 	enter_lazy_tlb(mm, current);
441 	task_unlock(tsk);
442 	mm_update_next_owner(mm);
443 	mmput(mm);
444 	if (test_thread_flag(TIF_MEMDIE))
445 		exit_oom_victim();
446 }
447 
find_alive_thread(struct task_struct * p)448 static struct task_struct *find_alive_thread(struct task_struct *p)
449 {
450 	struct task_struct *t;
451 
452 	for_each_thread(p, t) {
453 		if (!(t->flags & PF_EXITING))
454 			return t;
455 	}
456 	return NULL;
457 }
458 
find_child_reaper(struct task_struct * father,struct list_head * dead)459 static struct task_struct *find_child_reaper(struct task_struct *father,
460 						struct list_head *dead)
461 	__releases(&tasklist_lock)
462 	__acquires(&tasklist_lock)
463 {
464 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
465 	struct task_struct *reaper = pid_ns->child_reaper;
466 	struct task_struct *p, *n;
467 
468 	if (likely(reaper != father))
469 		return reaper;
470 
471 	reaper = find_alive_thread(father);
472 	if (reaper) {
473 		pid_ns->child_reaper = reaper;
474 		return reaper;
475 	}
476 
477 	write_unlock_irq(&tasklist_lock);
478 	if (unlikely(pid_ns == &init_pid_ns)) {
479 		panic("Attempted to kill init! exitcode=0x%08x\n",
480 			father->signal->group_exit_code ?: father->exit_code);
481 	}
482 
483 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
484 		list_del_init(&p->ptrace_entry);
485 		release_task(p);
486 	}
487 
488 	zap_pid_ns_processes(pid_ns);
489 	write_lock_irq(&tasklist_lock);
490 
491 	return father;
492 }
493 
494 /*
495  * When we die, we re-parent all our children, and try to:
496  * 1. give them to another thread in our thread group, if such a member exists
497  * 2. give it to the first ancestor process which prctl'd itself as a
498  *    child_subreaper for its children (like a service manager)
499  * 3. give it to the init process (PID 1) in our pid namespace
500  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)501 static struct task_struct *find_new_reaper(struct task_struct *father,
502 					   struct task_struct *child_reaper)
503 {
504 	struct task_struct *thread, *reaper;
505 
506 	thread = find_alive_thread(father);
507 	if (thread)
508 		return thread;
509 
510 	if (father->signal->has_child_subreaper) {
511 		/*
512 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
513 		 * We start from father to ensure we can not look into another
514 		 * namespace, this is safe because all its threads are dead.
515 		 */
516 		for (reaper = father;
517 		     !same_thread_group(reaper, child_reaper);
518 		     reaper = reaper->real_parent) {
519 			/* call_usermodehelper() descendants need this check */
520 			if (reaper == &init_task)
521 				break;
522 			if (!reaper->signal->is_child_subreaper)
523 				continue;
524 			thread = find_alive_thread(reaper);
525 			if (thread)
526 				return thread;
527 		}
528 	}
529 
530 	return child_reaper;
531 }
532 
533 /*
534 * Any that need to be release_task'd are put on the @dead list.
535  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)536 static void reparent_leader(struct task_struct *father, struct task_struct *p,
537 				struct list_head *dead)
538 {
539 	if (unlikely(p->exit_state == EXIT_DEAD))
540 		return;
541 
542 	/* We don't want people slaying init. */
543 	p->exit_signal = SIGCHLD;
544 
545 	/* If it has exited notify the new parent about this child's death. */
546 	if (!p->ptrace &&
547 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
548 		if (do_notify_parent(p, p->exit_signal)) {
549 			p->exit_state = EXIT_DEAD;
550 			list_add(&p->ptrace_entry, dead);
551 		}
552 	}
553 
554 	kill_orphaned_pgrp(p, father);
555 }
556 
557 /*
558  * This does two things:
559  *
560  * A.  Make init inherit all the child processes
561  * B.  Check to see if any process groups have become orphaned
562  *	as a result of our exiting, and if they have any stopped
563  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
564  */
forget_original_parent(struct task_struct * father,struct list_head * dead)565 static void forget_original_parent(struct task_struct *father,
566 					struct list_head *dead)
567 {
568 	struct task_struct *p, *t, *reaper;
569 
570 	if (unlikely(!list_empty(&father->ptraced)))
571 		exit_ptrace(father, dead);
572 
573 	/* Can drop and reacquire tasklist_lock */
574 	reaper = find_child_reaper(father, dead);
575 	if (list_empty(&father->children))
576 		return;
577 
578 	reaper = find_new_reaper(father, reaper);
579 	list_for_each_entry(p, &father->children, sibling) {
580 		for_each_thread(p, t) {
581 			t->real_parent = reaper;
582 			BUG_ON((!t->ptrace) != (t->parent == father));
583 			if (likely(!t->ptrace))
584 				t->parent = t->real_parent;
585 			if (t->pdeath_signal)
586 				group_send_sig_info(t->pdeath_signal,
587 						    SEND_SIG_NOINFO, t);
588 		}
589 		/*
590 		 * If this is a threaded reparent there is no need to
591 		 * notify anyone anything has happened.
592 		 */
593 		if (!same_thread_group(reaper, father))
594 			reparent_leader(father, p, dead);
595 	}
596 	list_splice_tail_init(&father->children, &reaper->children);
597 }
598 
599 /*
600  * Send signals to all our closest relatives so that they know
601  * to properly mourn us..
602  */
exit_notify(struct task_struct * tsk,int group_dead)603 static void exit_notify(struct task_struct *tsk, int group_dead)
604 {
605 	bool autoreap;
606 	struct task_struct *p, *n;
607 	LIST_HEAD(dead);
608 
609 	write_lock_irq(&tasklist_lock);
610 	forget_original_parent(tsk, &dead);
611 
612 	if (group_dead)
613 		kill_orphaned_pgrp(tsk->group_leader, NULL);
614 
615 	if (unlikely(tsk->ptrace)) {
616 		int sig = thread_group_leader(tsk) &&
617 				thread_group_empty(tsk) &&
618 				!ptrace_reparented(tsk) ?
619 			tsk->exit_signal : SIGCHLD;
620 		autoreap = do_notify_parent(tsk, sig);
621 	} else if (thread_group_leader(tsk)) {
622 		autoreap = thread_group_empty(tsk) &&
623 			do_notify_parent(tsk, tsk->exit_signal);
624 	} else {
625 		autoreap = true;
626 	}
627 
628 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
629 	if (tsk->exit_state == EXIT_DEAD)
630 		list_add(&tsk->ptrace_entry, &dead);
631 
632 	/* mt-exec, de_thread() is waiting for group leader */
633 	if (unlikely(tsk->signal->notify_count < 0))
634 		wake_up_process(tsk->signal->group_exit_task);
635 	write_unlock_irq(&tasklist_lock);
636 
637 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
638 		list_del_init(&p->ptrace_entry);
639 		release_task(p);
640 	}
641 }
642 
643 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)644 static void check_stack_usage(void)
645 {
646 	static DEFINE_SPINLOCK(low_water_lock);
647 	static int lowest_to_date = THREAD_SIZE;
648 	unsigned long free;
649 
650 	free = stack_not_used(current);
651 
652 	if (free >= lowest_to_date)
653 		return;
654 
655 	spin_lock(&low_water_lock);
656 	if (free < lowest_to_date) {
657 		pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 			current->comm, task_pid_nr(current), free);
659 		lowest_to_date = free;
660 	}
661 	spin_unlock(&low_water_lock);
662 }
663 #else
check_stack_usage(void)664 static inline void check_stack_usage(void) {}
665 #endif
666 
do_exit(long code)667 void do_exit(long code)
668 {
669 	struct task_struct *tsk = current;
670 	int group_dead;
671 	TASKS_RCU(int tasks_rcu_i);
672 
673 	profile_task_exit(tsk);
674 	kcov_task_exit(tsk);
675 
676 	WARN_ON(blk_needs_flush_plug(tsk));
677 
678 	if (unlikely(in_interrupt()))
679 		panic("Aiee, killing interrupt handler!");
680 	if (unlikely(!tsk->pid))
681 		panic("Attempted to kill the idle task!");
682 
683 	/*
684 	 * If do_exit is called because this processes oopsed, it's possible
685 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
686 	 * continuing. Amongst other possible reasons, this is to prevent
687 	 * mm_release()->clear_child_tid() from writing to a user-controlled
688 	 * kernel address.
689 	 */
690 	set_fs(USER_DS);
691 
692 	ptrace_event(PTRACE_EVENT_EXIT, code);
693 
694 	validate_creds_for_do_exit(tsk);
695 
696 	/*
697 	 * We're taking recursive faults here in do_exit. Safest is to just
698 	 * leave this task alone and wait for reboot.
699 	 */
700 	if (unlikely(tsk->flags & PF_EXITING)) {
701 		pr_alert("Fixing recursive fault but reboot is needed!\n");
702 		futex_exit_recursive(tsk);
703 		set_current_state(TASK_UNINTERRUPTIBLE);
704 		schedule();
705 	}
706 
707 	exit_signals(tsk);  /* sets PF_EXITING */
708 
709 	schedtune_exit_task(tsk);
710 
711 	if (unlikely(in_atomic())) {
712 		pr_info("note: %s[%d] exited with preempt_count %d\n",
713 			current->comm, task_pid_nr(current),
714 			preempt_count());
715 		preempt_count_set(PREEMPT_ENABLED);
716 	}
717 
718 	/* sync mm's RSS info before statistics gathering */
719 	if (tsk->mm)
720 		sync_mm_rss(tsk->mm);
721 	acct_update_integrals(tsk);
722 	group_dead = atomic_dec_and_test(&tsk->signal->live);
723 	if (group_dead) {
724 		hrtimer_cancel(&tsk->signal->real_timer);
725 		exit_itimers(tsk->signal);
726 		if (tsk->mm)
727 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
728 	}
729 	acct_collect(code, group_dead);
730 	if (group_dead)
731 		tty_audit_exit();
732 	audit_free(tsk);
733 
734 	tsk->exit_code = code;
735 	taskstats_exit(tsk, group_dead);
736 
737 	exit_mm(tsk);
738 
739 	if (group_dead)
740 		acct_process();
741 	trace_sched_process_exit(tsk);
742 
743 	exit_sem(tsk);
744 	exit_shm(tsk);
745 	exit_files(tsk);
746 	exit_fs(tsk);
747 	if (group_dead)
748 		disassociate_ctty(1);
749 	exit_task_namespaces(tsk);
750 	exit_task_work(tsk);
751 	exit_thread(tsk);
752 
753 	/*
754 	 * Flush inherited counters to the parent - before the parent
755 	 * gets woken up by child-exit notifications.
756 	 *
757 	 * because of cgroup mode, must be called before cgroup_exit()
758 	 */
759 	perf_event_exit_task(tsk);
760 
761 	cgroup_exit(tsk);
762 
763 	/*
764 	 * FIXME: do that only when needed, using sched_exit tracepoint
765 	 */
766 	flush_ptrace_hw_breakpoint(tsk);
767 
768 	TASKS_RCU(preempt_disable());
769 	TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
770 	TASKS_RCU(preempt_enable());
771 	exit_notify(tsk, group_dead);
772 	proc_exit_connector(tsk);
773 #ifdef CONFIG_NUMA
774 	task_lock(tsk);
775 	mpol_put(tsk->mempolicy);
776 	tsk->mempolicy = NULL;
777 	task_unlock(tsk);
778 #endif
779 #ifdef CONFIG_FUTEX
780 	if (unlikely(current->pi_state_cache))
781 		kfree(current->pi_state_cache);
782 #endif
783 	/*
784 	 * Make sure we are holding no locks:
785 	 */
786 	debug_check_no_locks_held();
787 
788 	if (tsk->io_context)
789 		exit_io_context(tsk);
790 
791 	if (tsk->splice_pipe)
792 		free_pipe_info(tsk->splice_pipe);
793 
794 	if (tsk->task_frag.page)
795 		put_page(tsk->task_frag.page);
796 
797 	validate_creds_for_do_exit(tsk);
798 
799 	check_stack_usage();
800 	preempt_disable();
801 	if (tsk->nr_dirtied)
802 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
803 	exit_rcu();
804 	TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
805 
806 	/*
807 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
808 	 * when the following two conditions become true.
809 	 *   - There is race condition of mmap_sem (It is acquired by
810 	 *     exit_mm()), and
811 	 *   - SMI occurs before setting TASK_RUNINNG.
812 	 *     (or hypervisor of virtual machine switches to other guest)
813 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
814 	 *
815 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
816 	 * is held by try_to_wake_up()
817 	 */
818 	smp_mb();
819 	raw_spin_unlock_wait(&tsk->pi_lock);
820 
821 	/* causes final put_task_struct in finish_task_switch(). */
822 	tsk->state = TASK_DEAD;
823 	tsk->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
824 	schedule();
825 	BUG();
826 	/* Avoid "noreturn function does return".  */
827 	for (;;)
828 		cpu_relax();	/* For when BUG is null */
829 }
830 EXPORT_SYMBOL_GPL(do_exit);
831 
complete_and_exit(struct completion * comp,long code)832 void complete_and_exit(struct completion *comp, long code)
833 {
834 	if (comp)
835 		complete(comp);
836 
837 	do_exit(code);
838 }
839 EXPORT_SYMBOL(complete_and_exit);
840 
SYSCALL_DEFINE1(exit,int,error_code)841 SYSCALL_DEFINE1(exit, int, error_code)
842 {
843 	do_exit((error_code&0xff)<<8);
844 }
845 
846 /*
847  * Take down every thread in the group.  This is called by fatal signals
848  * as well as by sys_exit_group (below).
849  */
850 void
do_group_exit(int exit_code)851 do_group_exit(int exit_code)
852 {
853 	struct signal_struct *sig = current->signal;
854 
855 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
856 
857 	if (signal_group_exit(sig))
858 		exit_code = sig->group_exit_code;
859 	else if (!thread_group_empty(current)) {
860 		struct sighand_struct *const sighand = current->sighand;
861 
862 		spin_lock_irq(&sighand->siglock);
863 		if (signal_group_exit(sig))
864 			/* Another thread got here before we took the lock.  */
865 			exit_code = sig->group_exit_code;
866 		else {
867 			sig->group_exit_code = exit_code;
868 			sig->flags = SIGNAL_GROUP_EXIT;
869 			zap_other_threads(current);
870 		}
871 		spin_unlock_irq(&sighand->siglock);
872 	}
873 
874 	do_exit(exit_code);
875 	/* NOTREACHED */
876 }
877 
878 /*
879  * this kills every thread in the thread group. Note that any externally
880  * wait4()-ing process will get the correct exit code - even if this
881  * thread is not the thread group leader.
882  */
SYSCALL_DEFINE1(exit_group,int,error_code)883 SYSCALL_DEFINE1(exit_group, int, error_code)
884 {
885 	do_group_exit((error_code & 0xff) << 8);
886 	/* NOTREACHED */
887 	return 0;
888 }
889 
890 struct wait_opts {
891 	enum pid_type		wo_type;
892 	int			wo_flags;
893 	struct pid		*wo_pid;
894 
895 	struct siginfo __user	*wo_info;
896 	int __user		*wo_stat;
897 	struct rusage __user	*wo_rusage;
898 
899 	wait_queue_t		child_wait;
900 	int			notask_error;
901 };
902 
903 static inline
task_pid_type(struct task_struct * task,enum pid_type type)904 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
905 {
906 	if (type != PIDTYPE_PID)
907 		task = task->group_leader;
908 	return task->pids[type].pid;
909 }
910 
eligible_pid(struct wait_opts * wo,struct task_struct * p)911 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
912 {
913 	return	wo->wo_type == PIDTYPE_MAX ||
914 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
915 }
916 
917 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)918 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
919 {
920 	if (!eligible_pid(wo, p))
921 		return 0;
922 
923 	/*
924 	 * Wait for all children (clone and not) if __WALL is set or
925 	 * if it is traced by us.
926 	 */
927 	if (ptrace || (wo->wo_flags & __WALL))
928 		return 1;
929 
930 	/*
931 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
932 	 * otherwise, wait for non-clone children *only*.
933 	 *
934 	 * Note: a "clone" child here is one that reports to its parent
935 	 * using a signal other than SIGCHLD, or a non-leader thread which
936 	 * we can only see if it is traced by us.
937 	 */
938 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
939 		return 0;
940 
941 	return 1;
942 }
943 
wait_noreap_copyout(struct wait_opts * wo,struct task_struct * p,pid_t pid,uid_t uid,int why,int status)944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945 				pid_t pid, uid_t uid, int why, int status)
946 {
947 	struct siginfo __user *infop;
948 	int retval = wo->wo_rusage
949 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950 
951 	put_task_struct(p);
952 	infop = wo->wo_info;
953 	if (infop) {
954 		if (!retval)
955 			retval = put_user(SIGCHLD, &infop->si_signo);
956 		if (!retval)
957 			retval = put_user(0, &infop->si_errno);
958 		if (!retval)
959 			retval = put_user((short)why, &infop->si_code);
960 		if (!retval)
961 			retval = put_user(pid, &infop->si_pid);
962 		if (!retval)
963 			retval = put_user(uid, &infop->si_uid);
964 		if (!retval)
965 			retval = put_user(status, &infop->si_status);
966 	}
967 	if (!retval)
968 		retval = pid;
969 	return retval;
970 }
971 
972 /*
973  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
974  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
975  * the lock and this task is uninteresting.  If we return nonzero, we have
976  * released the lock and the system call should return.
977  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 	int state, retval, status;
981 	pid_t pid = task_pid_vnr(p);
982 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
983 	struct siginfo __user *infop;
984 
985 	if (!likely(wo->wo_flags & WEXITED))
986 		return 0;
987 
988 	if (unlikely(wo->wo_flags & WNOWAIT)) {
989 		int exit_code = p->exit_code;
990 		int why;
991 
992 		get_task_struct(p);
993 		read_unlock(&tasklist_lock);
994 		sched_annotate_sleep();
995 
996 		if ((exit_code & 0x7f) == 0) {
997 			why = CLD_EXITED;
998 			status = exit_code >> 8;
999 		} else {
1000 			why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001 			status = exit_code & 0x7f;
1002 		}
1003 		return wait_noreap_copyout(wo, p, pid, uid, why, status);
1004 	}
1005 	/*
1006 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1007 	 */
1008 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1009 		EXIT_TRACE : EXIT_DEAD;
1010 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 		return 0;
1012 	/*
1013 	 * We own this thread, nobody else can reap it.
1014 	 */
1015 	read_unlock(&tasklist_lock);
1016 	sched_annotate_sleep();
1017 
1018 	/*
1019 	 * Check thread_group_leader() to exclude the traced sub-threads.
1020 	 */
1021 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1022 		struct signal_struct *sig = p->signal;
1023 		struct signal_struct *psig = current->signal;
1024 		unsigned long maxrss;
1025 		cputime_t tgutime, tgstime;
1026 
1027 		/*
1028 		 * The resource counters for the group leader are in its
1029 		 * own task_struct.  Those for dead threads in the group
1030 		 * are in its signal_struct, as are those for the child
1031 		 * processes it has previously reaped.  All these
1032 		 * accumulate in the parent's signal_struct c* fields.
1033 		 *
1034 		 * We don't bother to take a lock here to protect these
1035 		 * p->signal fields because the whole thread group is dead
1036 		 * and nobody can change them.
1037 		 *
1038 		 * psig->stats_lock also protects us from our sub-theads
1039 		 * which can reap other children at the same time. Until
1040 		 * we change k_getrusage()-like users to rely on this lock
1041 		 * we have to take ->siglock as well.
1042 		 *
1043 		 * We use thread_group_cputime_adjusted() to get times for
1044 		 * the thread group, which consolidates times for all threads
1045 		 * in the group including the group leader.
1046 		 */
1047 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1048 		spin_lock_irq(&current->sighand->siglock);
1049 		write_seqlock(&psig->stats_lock);
1050 		psig->cutime += tgutime + sig->cutime;
1051 		psig->cstime += tgstime + sig->cstime;
1052 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1053 		psig->cmin_flt +=
1054 			p->min_flt + sig->min_flt + sig->cmin_flt;
1055 		psig->cmaj_flt +=
1056 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1057 		psig->cnvcsw +=
1058 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1059 		psig->cnivcsw +=
1060 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1061 		psig->cinblock +=
1062 			task_io_get_inblock(p) +
1063 			sig->inblock + sig->cinblock;
1064 		psig->coublock +=
1065 			task_io_get_oublock(p) +
1066 			sig->oublock + sig->coublock;
1067 		maxrss = max(sig->maxrss, sig->cmaxrss);
1068 		if (psig->cmaxrss < maxrss)
1069 			psig->cmaxrss = maxrss;
1070 		task_io_accounting_add(&psig->ioac, &p->ioac);
1071 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1072 		write_sequnlock(&psig->stats_lock);
1073 		spin_unlock_irq(&current->sighand->siglock);
1074 	}
1075 
1076 	retval = wo->wo_rusage
1077 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 		? p->signal->group_exit_code : p->exit_code;
1080 	if (!retval && wo->wo_stat)
1081 		retval = put_user(status, wo->wo_stat);
1082 
1083 	infop = wo->wo_info;
1084 	if (!retval && infop)
1085 		retval = put_user(SIGCHLD, &infop->si_signo);
1086 	if (!retval && infop)
1087 		retval = put_user(0, &infop->si_errno);
1088 	if (!retval && infop) {
1089 		int why;
1090 
1091 		if ((status & 0x7f) == 0) {
1092 			why = CLD_EXITED;
1093 			status >>= 8;
1094 		} else {
1095 			why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 			status &= 0x7f;
1097 		}
1098 		retval = put_user((short)why, &infop->si_code);
1099 		if (!retval)
1100 			retval = put_user(status, &infop->si_status);
1101 	}
1102 	if (!retval && infop)
1103 		retval = put_user(pid, &infop->si_pid);
1104 	if (!retval && infop)
1105 		retval = put_user(uid, &infop->si_uid);
1106 	if (!retval)
1107 		retval = pid;
1108 
1109 	if (state == EXIT_TRACE) {
1110 		write_lock_irq(&tasklist_lock);
1111 		/* We dropped tasklist, ptracer could die and untrace */
1112 		ptrace_unlink(p);
1113 
1114 		/* If parent wants a zombie, don't release it now */
1115 		state = EXIT_ZOMBIE;
1116 		if (do_notify_parent(p, p->exit_signal))
1117 			state = EXIT_DEAD;
1118 		p->exit_state = state;
1119 		write_unlock_irq(&tasklist_lock);
1120 	}
1121 	if (state == EXIT_DEAD)
1122 		release_task(p);
1123 
1124 	return retval;
1125 }
1126 
task_stopped_code(struct task_struct * p,bool ptrace)1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 	if (ptrace) {
1130 		if (task_is_stopped_or_traced(p) &&
1131 		    !(p->jobctl & JOBCTL_LISTENING))
1132 			return &p->exit_code;
1133 	} else {
1134 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 			return &p->signal->group_exit_code;
1136 	}
1137 	return NULL;
1138 }
1139 
1140 /**
1141  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142  * @wo: wait options
1143  * @ptrace: is the wait for ptrace
1144  * @p: task to wait for
1145  *
1146  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147  *
1148  * CONTEXT:
1149  * read_lock(&tasklist_lock), which is released if return value is
1150  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1151  *
1152  * RETURNS:
1153  * 0 if wait condition didn't exist and search for other wait conditions
1154  * should continue.  Non-zero return, -errno on failure and @p's pid on
1155  * success, implies that tasklist_lock is released and wait condition
1156  * search should terminate.
1157  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1158 static int wait_task_stopped(struct wait_opts *wo,
1159 				int ptrace, struct task_struct *p)
1160 {
1161 	struct siginfo __user *infop;
1162 	int retval, exit_code, *p_code, why;
1163 	uid_t uid = 0; /* unneeded, required by compiler */
1164 	pid_t pid;
1165 
1166 	/*
1167 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 	 */
1169 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170 		return 0;
1171 
1172 	if (!task_stopped_code(p, ptrace))
1173 		return 0;
1174 
1175 	exit_code = 0;
1176 	spin_lock_irq(&p->sighand->siglock);
1177 
1178 	p_code = task_stopped_code(p, ptrace);
1179 	if (unlikely(!p_code))
1180 		goto unlock_sig;
1181 
1182 	exit_code = *p_code;
1183 	if (!exit_code)
1184 		goto unlock_sig;
1185 
1186 	if (!unlikely(wo->wo_flags & WNOWAIT))
1187 		*p_code = 0;
1188 
1189 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191 	spin_unlock_irq(&p->sighand->siglock);
1192 	if (!exit_code)
1193 		return 0;
1194 
1195 	/*
1196 	 * Now we are pretty sure this task is interesting.
1197 	 * Make sure it doesn't get reaped out from under us while we
1198 	 * give up the lock and then examine it below.  We don't want to
1199 	 * keep holding onto the tasklist_lock while we call getrusage and
1200 	 * possibly take page faults for user memory.
1201 	 */
1202 	get_task_struct(p);
1203 	pid = task_pid_vnr(p);
1204 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 	read_unlock(&tasklist_lock);
1206 	sched_annotate_sleep();
1207 
1208 	if (unlikely(wo->wo_flags & WNOWAIT))
1209 		return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1210 
1211 	retval = wo->wo_rusage
1212 		? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213 	if (!retval && wo->wo_stat)
1214 		retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1215 
1216 	infop = wo->wo_info;
1217 	if (!retval && infop)
1218 		retval = put_user(SIGCHLD, &infop->si_signo);
1219 	if (!retval && infop)
1220 		retval = put_user(0, &infop->si_errno);
1221 	if (!retval && infop)
1222 		retval = put_user((short)why, &infop->si_code);
1223 	if (!retval && infop)
1224 		retval = put_user(exit_code, &infop->si_status);
1225 	if (!retval && infop)
1226 		retval = put_user(pid, &infop->si_pid);
1227 	if (!retval && infop)
1228 		retval = put_user(uid, &infop->si_uid);
1229 	if (!retval)
1230 		retval = pid;
1231 	put_task_struct(p);
1232 
1233 	BUG_ON(!retval);
1234 	return retval;
1235 }
1236 
1237 /*
1238  * Handle do_wait work for one task in a live, non-stopped state.
1239  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1240  * the lock and this task is uninteresting.  If we return nonzero, we have
1241  * released the lock and the system call should return.
1242  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1244 {
1245 	int retval;
1246 	pid_t pid;
1247 	uid_t uid;
1248 
1249 	if (!unlikely(wo->wo_flags & WCONTINUED))
1250 		return 0;
1251 
1252 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253 		return 0;
1254 
1255 	spin_lock_irq(&p->sighand->siglock);
1256 	/* Re-check with the lock held.  */
1257 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258 		spin_unlock_irq(&p->sighand->siglock);
1259 		return 0;
1260 	}
1261 	if (!unlikely(wo->wo_flags & WNOWAIT))
1262 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264 	spin_unlock_irq(&p->sighand->siglock);
1265 
1266 	pid = task_pid_vnr(p);
1267 	get_task_struct(p);
1268 	read_unlock(&tasklist_lock);
1269 	sched_annotate_sleep();
1270 
1271 	if (!wo->wo_info) {
1272 		retval = wo->wo_rusage
1273 			? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1274 		put_task_struct(p);
1275 		if (!retval && wo->wo_stat)
1276 			retval = put_user(0xffff, wo->wo_stat);
1277 		if (!retval)
1278 			retval = pid;
1279 	} else {
1280 		retval = wait_noreap_copyout(wo, p, pid, uid,
1281 					     CLD_CONTINUED, SIGCONT);
1282 		BUG_ON(retval == 0);
1283 	}
1284 
1285 	return retval;
1286 }
1287 
1288 /*
1289  * Consider @p for a wait by @parent.
1290  *
1291  * -ECHILD should be in ->notask_error before the first call.
1292  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1293  * Returns zero if the search for a child should continue;
1294  * then ->notask_error is 0 if @p is an eligible child,
1295  * or another error from security_task_wait(), or still -ECHILD.
1296  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1297 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1298 				struct task_struct *p)
1299 {
1300 	/*
1301 	 * We can race with wait_task_zombie() from another thread.
1302 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1303 	 * can't confuse the checks below.
1304 	 */
1305 	int exit_state = ACCESS_ONCE(p->exit_state);
1306 	int ret;
1307 
1308 	if (unlikely(exit_state == EXIT_DEAD))
1309 		return 0;
1310 
1311 	ret = eligible_child(wo, ptrace, p);
1312 	if (!ret)
1313 		return ret;
1314 
1315 	ret = security_task_wait(p);
1316 	if (unlikely(ret < 0)) {
1317 		/*
1318 		 * If we have not yet seen any eligible child,
1319 		 * then let this error code replace -ECHILD.
1320 		 * A permission error will give the user a clue
1321 		 * to look for security policy problems, rather
1322 		 * than for mysterious wait bugs.
1323 		 */
1324 		if (wo->notask_error)
1325 			wo->notask_error = ret;
1326 		return 0;
1327 	}
1328 
1329 	if (unlikely(exit_state == EXIT_TRACE)) {
1330 		/*
1331 		 * ptrace == 0 means we are the natural parent. In this case
1332 		 * we should clear notask_error, debugger will notify us.
1333 		 */
1334 		if (likely(!ptrace))
1335 			wo->notask_error = 0;
1336 		return 0;
1337 	}
1338 
1339 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1340 		/*
1341 		 * If it is traced by its real parent's group, just pretend
1342 		 * the caller is ptrace_do_wait() and reap this child if it
1343 		 * is zombie.
1344 		 *
1345 		 * This also hides group stop state from real parent; otherwise
1346 		 * a single stop can be reported twice as group and ptrace stop.
1347 		 * If a ptracer wants to distinguish these two events for its
1348 		 * own children it should create a separate process which takes
1349 		 * the role of real parent.
1350 		 */
1351 		if (!ptrace_reparented(p))
1352 			ptrace = 1;
1353 	}
1354 
1355 	/* slay zombie? */
1356 	if (exit_state == EXIT_ZOMBIE) {
1357 		/* we don't reap group leaders with subthreads */
1358 		if (!delay_group_leader(p)) {
1359 			/*
1360 			 * A zombie ptracee is only visible to its ptracer.
1361 			 * Notification and reaping will be cascaded to the
1362 			 * real parent when the ptracer detaches.
1363 			 */
1364 			if (unlikely(ptrace) || likely(!p->ptrace))
1365 				return wait_task_zombie(wo, p);
1366 		}
1367 
1368 		/*
1369 		 * Allow access to stopped/continued state via zombie by
1370 		 * falling through.  Clearing of notask_error is complex.
1371 		 *
1372 		 * When !@ptrace:
1373 		 *
1374 		 * If WEXITED is set, notask_error should naturally be
1375 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1376 		 * so, if there are live subthreads, there are events to
1377 		 * wait for.  If all subthreads are dead, it's still safe
1378 		 * to clear - this function will be called again in finite
1379 		 * amount time once all the subthreads are released and
1380 		 * will then return without clearing.
1381 		 *
1382 		 * When @ptrace:
1383 		 *
1384 		 * Stopped state is per-task and thus can't change once the
1385 		 * target task dies.  Only continued and exited can happen.
1386 		 * Clear notask_error if WCONTINUED | WEXITED.
1387 		 */
1388 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1389 			wo->notask_error = 0;
1390 	} else {
1391 		/*
1392 		 * @p is alive and it's gonna stop, continue or exit, so
1393 		 * there always is something to wait for.
1394 		 */
1395 		wo->notask_error = 0;
1396 	}
1397 
1398 	/*
1399 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1400 	 * is used and the two don't interact with each other.
1401 	 */
1402 	ret = wait_task_stopped(wo, ptrace, p);
1403 	if (ret)
1404 		return ret;
1405 
1406 	/*
1407 	 * Wait for continued.  There's only one continued state and the
1408 	 * ptracer can consume it which can confuse the real parent.  Don't
1409 	 * use WCONTINUED from ptracer.  You don't need or want it.
1410 	 */
1411 	return wait_task_continued(wo, p);
1412 }
1413 
1414 /*
1415  * Do the work of do_wait() for one thread in the group, @tsk.
1416  *
1417  * -ECHILD should be in ->notask_error before the first call.
1418  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1419  * Returns zero if the search for a child should continue; then
1420  * ->notask_error is 0 if there were any eligible children,
1421  * or another error from security_task_wait(), or still -ECHILD.
1422  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1423 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1424 {
1425 	struct task_struct *p;
1426 
1427 	list_for_each_entry(p, &tsk->children, sibling) {
1428 		int ret = wait_consider_task(wo, 0, p);
1429 
1430 		if (ret)
1431 			return ret;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1437 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1438 {
1439 	struct task_struct *p;
1440 
1441 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1442 		int ret = wait_consider_task(wo, 1, p);
1443 
1444 		if (ret)
1445 			return ret;
1446 	}
1447 
1448 	return 0;
1449 }
1450 
child_wait_callback(wait_queue_t * wait,unsigned mode,int sync,void * key)1451 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1452 				int sync, void *key)
1453 {
1454 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1455 						child_wait);
1456 	struct task_struct *p = key;
1457 
1458 	if (!eligible_pid(wo, p))
1459 		return 0;
1460 
1461 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1462 		return 0;
1463 
1464 	return default_wake_function(wait, mode, sync, key);
1465 }
1466 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1467 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1468 {
1469 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1470 				TASK_INTERRUPTIBLE, 1, p);
1471 }
1472 
do_wait(struct wait_opts * wo)1473 static long do_wait(struct wait_opts *wo)
1474 {
1475 	struct task_struct *tsk;
1476 	int retval;
1477 
1478 	trace_sched_process_wait(wo->wo_pid);
1479 
1480 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1481 	wo->child_wait.private = current;
1482 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1483 repeat:
1484 	/*
1485 	 * If there is nothing that can match our criteria, just get out.
1486 	 * We will clear ->notask_error to zero if we see any child that
1487 	 * might later match our criteria, even if we are not able to reap
1488 	 * it yet.
1489 	 */
1490 	wo->notask_error = -ECHILD;
1491 	if ((wo->wo_type < PIDTYPE_MAX) &&
1492 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1493 		goto notask;
1494 
1495 	set_current_state(TASK_INTERRUPTIBLE);
1496 	read_lock(&tasklist_lock);
1497 	tsk = current;
1498 	do {
1499 		retval = do_wait_thread(wo, tsk);
1500 		if (retval)
1501 			goto end;
1502 
1503 		retval = ptrace_do_wait(wo, tsk);
1504 		if (retval)
1505 			goto end;
1506 
1507 		if (wo->wo_flags & __WNOTHREAD)
1508 			break;
1509 	} while_each_thread(current, tsk);
1510 	read_unlock(&tasklist_lock);
1511 
1512 notask:
1513 	retval = wo->notask_error;
1514 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1515 		retval = -ERESTARTSYS;
1516 		if (!signal_pending(current)) {
1517 			schedule();
1518 			goto repeat;
1519 		}
1520 	}
1521 end:
1522 	__set_current_state(TASK_RUNNING);
1523 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1524 	return retval;
1525 }
1526 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1527 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1528 		infop, int, options, struct rusage __user *, ru)
1529 {
1530 	struct wait_opts wo;
1531 	struct pid *pid = NULL;
1532 	enum pid_type type;
1533 	long ret;
1534 
1535 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1536 		return -EINVAL;
1537 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1538 		return -EINVAL;
1539 
1540 	switch (which) {
1541 	case P_ALL:
1542 		type = PIDTYPE_MAX;
1543 		break;
1544 	case P_PID:
1545 		type = PIDTYPE_PID;
1546 		if (upid <= 0)
1547 			return -EINVAL;
1548 		break;
1549 	case P_PGID:
1550 		type = PIDTYPE_PGID;
1551 		if (upid <= 0)
1552 			return -EINVAL;
1553 		break;
1554 	default:
1555 		return -EINVAL;
1556 	}
1557 
1558 	if (type < PIDTYPE_MAX)
1559 		pid = find_get_pid(upid);
1560 
1561 	wo.wo_type	= type;
1562 	wo.wo_pid	= pid;
1563 	wo.wo_flags	= options;
1564 	wo.wo_info	= infop;
1565 	wo.wo_stat	= NULL;
1566 	wo.wo_rusage	= ru;
1567 	ret = do_wait(&wo);
1568 
1569 	if (ret > 0) {
1570 		ret = 0;
1571 	} else if (infop) {
1572 		/*
1573 		 * For a WNOHANG return, clear out all the fields
1574 		 * we would set so the user can easily tell the
1575 		 * difference.
1576 		 */
1577 		if (!ret)
1578 			ret = put_user(0, &infop->si_signo);
1579 		if (!ret)
1580 			ret = put_user(0, &infop->si_errno);
1581 		if (!ret)
1582 			ret = put_user(0, &infop->si_code);
1583 		if (!ret)
1584 			ret = put_user(0, &infop->si_pid);
1585 		if (!ret)
1586 			ret = put_user(0, &infop->si_uid);
1587 		if (!ret)
1588 			ret = put_user(0, &infop->si_status);
1589 	}
1590 
1591 	put_pid(pid);
1592 	return ret;
1593 }
1594 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1595 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1596 		int, options, struct rusage __user *, ru)
1597 {
1598 	struct wait_opts wo;
1599 	struct pid *pid = NULL;
1600 	enum pid_type type;
1601 	long ret;
1602 
1603 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1604 			__WNOTHREAD|__WCLONE|__WALL))
1605 		return -EINVAL;
1606 
1607 	/* -INT_MIN is not defined */
1608 	if (upid == INT_MIN)
1609 		return -ESRCH;
1610 
1611 	if (upid == -1)
1612 		type = PIDTYPE_MAX;
1613 	else if (upid < 0) {
1614 		type = PIDTYPE_PGID;
1615 		pid = find_get_pid(-upid);
1616 	} else if (upid == 0) {
1617 		type = PIDTYPE_PGID;
1618 		pid = get_task_pid(current, PIDTYPE_PGID);
1619 	} else /* upid > 0 */ {
1620 		type = PIDTYPE_PID;
1621 		pid = find_get_pid(upid);
1622 	}
1623 
1624 	wo.wo_type	= type;
1625 	wo.wo_pid	= pid;
1626 	wo.wo_flags	= options | WEXITED;
1627 	wo.wo_info	= NULL;
1628 	wo.wo_stat	= stat_addr;
1629 	wo.wo_rusage	= ru;
1630 	ret = do_wait(&wo);
1631 	put_pid(pid);
1632 
1633 	return ret;
1634 }
1635 
1636 #ifdef __ARCH_WANT_SYS_WAITPID
1637 
1638 /*
1639  * sys_waitpid() remains for compatibility. waitpid() should be
1640  * implemented by calling sys_wait4() from libc.a.
1641  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1642 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1643 {
1644 	return sys_wait4(pid, stat_addr, options, NULL);
1645 }
1646 
1647 #endif
1648