1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47 #include <trace/events/android_fs.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
ext4_inode_is_fast_symlink(struct inode * inode)148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
ext4_evict_inode(struct inode * inode)188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
226 goto no_delete;
227 }
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231 dquot_initialize(inode);
232
233 if (ext4_should_order_data(inode))
234 ext4_begin_ordered_truncate(inode, 0);
235 truncate_inode_pages_final(&inode->i_data);
236
237 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
238
239 /*
240 * Protect us against freezing - iput() caller didn't have to have any
241 * protection against it
242 */
243 sb_start_intwrite(inode->i_sb);
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+3);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 /*
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
251 * cleaned up.
252 */
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
255 goto no_delete;
256 }
257
258 if (IS_SYNC(inode))
259 ext4_handle_sync(handle);
260 inode->i_size = 0;
261 err = ext4_mark_inode_dirty(handle, inode);
262 if (err) {
263 ext4_warning(inode->i_sb,
264 "couldn't mark inode dirty (err %d)", err);
265 goto stop_handle;
266 }
267 if (inode->i_blocks)
268 ext4_truncate(inode);
269
270 /*
271 * ext4_ext_truncate() doesn't reserve any slop when it
272 * restarts journal transactions; therefore there may not be
273 * enough credits left in the handle to remove the inode from
274 * the orphan list and set the dtime field.
275 */
276 if (!ext4_handle_has_enough_credits(handle, 3)) {
277 err = ext4_journal_extend(handle, 3);
278 if (err > 0)
279 err = ext4_journal_restart(handle, 3);
280 if (err != 0) {
281 ext4_warning(inode->i_sb,
282 "couldn't extend journal (err %d)", err);
283 stop_handle:
284 ext4_journal_stop(handle);
285 ext4_orphan_del(NULL, inode);
286 sb_end_intwrite(inode->i_sb);
287 goto no_delete;
288 }
289 }
290
291 /*
292 * Kill off the orphan record which ext4_truncate created.
293 * AKPM: I think this can be inside the above `if'.
294 * Note that ext4_orphan_del() has to be able to cope with the
295 * deletion of a non-existent orphan - this is because we don't
296 * know if ext4_truncate() actually created an orphan record.
297 * (Well, we could do this if we need to, but heck - it works)
298 */
299 ext4_orphan_del(handle, inode);
300 EXT4_I(inode)->i_dtime = get_seconds();
301
302 /*
303 * One subtle ordering requirement: if anything has gone wrong
304 * (transaction abort, IO errors, whatever), then we can still
305 * do these next steps (the fs will already have been marked as
306 * having errors), but we can't free the inode if the mark_dirty
307 * fails.
308 */
309 if (ext4_mark_inode_dirty(handle, inode))
310 /* If that failed, just do the required in-core inode clear. */
311 ext4_clear_inode(inode);
312 else
313 ext4_free_inode(handle, inode);
314 ext4_journal_stop(handle);
315 sb_end_intwrite(inode->i_sb);
316 return;
317 no_delete:
318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
319 }
320
321 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)322 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 {
324 return &EXT4_I(inode)->i_reserved_quota;
325 }
326 #endif
327
328 /*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)332 void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334 {
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(&ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352
353 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354
355 /* Update quota subsystem for data blocks */
356 if (quota_claim)
357 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 else {
359 /*
360 * We did fallocate with an offset that is already delayed
361 * allocated. So on delayed allocated writeback we should
362 * not re-claim the quota for fallocated blocks.
363 */
364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 }
366
367 /*
368 * If we have done all the pending block allocations and if
369 * there aren't any writers on the inode, we can discard the
370 * inode's preallocations.
371 */
372 if ((ei->i_reserved_data_blocks == 0) &&
373 (atomic_read(&inode->i_writecount) == 0))
374 ext4_discard_preallocations(inode);
375 }
376
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)377 static int __check_block_validity(struct inode *inode, const char *func,
378 unsigned int line,
379 struct ext4_map_blocks *map)
380 {
381 if (ext4_has_feature_journal(inode->i_sb) &&
382 (inode->i_ino ==
383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 return 0;
385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
391 }
392 return 0;
393 }
394
395 #define check_block_validity(inode, map) \
396 __check_block_validity((inode), __func__, __LINE__, (map))
397
398 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)399 static void ext4_map_blocks_es_recheck(handle_t *handle,
400 struct inode *inode,
401 struct ext4_map_blocks *es_map,
402 struct ext4_map_blocks *map,
403 int flags)
404 {
405 int retval;
406
407 map->m_flags = 0;
408 /*
409 * There is a race window that the result is not the same.
410 * e.g. xfstests #223 when dioread_nolock enables. The reason
411 * is that we lookup a block mapping in extent status tree with
412 * out taking i_data_sem. So at the time the unwritten extent
413 * could be converted.
414 */
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 down_read(&EXT4_I(inode)->i_data_sem);
417 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
418 retval = ext4_ext_map_blocks(handle, inode, map, flags &
419 EXT4_GET_BLOCKS_KEEP_SIZE);
420 } else {
421 retval = ext4_ind_map_blocks(handle, inode, map, flags &
422 EXT4_GET_BLOCKS_KEEP_SIZE);
423 }
424 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
425 up_read((&EXT4_I(inode)->i_data_sem));
426
427 /*
428 * We don't check m_len because extent will be collpased in status
429 * tree. So the m_len might not equal.
430 */
431 if (es_map->m_lblk != map->m_lblk ||
432 es_map->m_flags != map->m_flags ||
433 es_map->m_pblk != map->m_pblk) {
434 printk("ES cache assertion failed for inode: %lu "
435 "es_cached ex [%d/%d/%llu/%x] != "
436 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
437 inode->i_ino, es_map->m_lblk, es_map->m_len,
438 es_map->m_pblk, es_map->m_flags, map->m_lblk,
439 map->m_len, map->m_pblk, map->m_flags,
440 retval, flags);
441 }
442 }
443 #endif /* ES_AGGRESSIVE_TEST */
444
445 /*
446 * The ext4_map_blocks() function tries to look up the requested blocks,
447 * and returns if the blocks are already mapped.
448 *
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
452 *
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * based files
456 *
457 * On success, it returns the number of blocks being mapped or allocated.
458 * if create==0 and the blocks are pre-allocated and unwritten block,
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, buffer head is unmapped
464 *
465 * It returns the error in case of allocation failure.
466 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
469 {
470 struct extent_status es;
471 int retval;
472 int ret = 0;
473 #ifdef ES_AGGRESSIVE_TEST
474 struct ext4_map_blocks orig_map;
475
476 memcpy(&orig_map, map, sizeof(*map));
477 #endif
478
479 map->m_flags = 0;
480 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481 "logical block %lu\n", inode->i_ino, flags, map->m_len,
482 (unsigned long) map->m_lblk);
483
484 /*
485 * ext4_map_blocks returns an int, and m_len is an unsigned int
486 */
487 if (unlikely(map->m_len > INT_MAX))
488 map->m_len = INT_MAX;
489
490 /* We can handle the block number less than EXT_MAX_BLOCKS */
491 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
492 return -EFSCORRUPTED;
493
494 /* Lookup extent status tree firstly */
495 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
496 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
497 map->m_pblk = ext4_es_pblock(&es) +
498 map->m_lblk - es.es_lblk;
499 map->m_flags |= ext4_es_is_written(&es) ?
500 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
501 retval = es.es_len - (map->m_lblk - es.es_lblk);
502 if (retval > map->m_len)
503 retval = map->m_len;
504 map->m_len = retval;
505 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
506 retval = 0;
507 } else {
508 BUG_ON(1);
509 }
510 #ifdef ES_AGGRESSIVE_TEST
511 ext4_map_blocks_es_recheck(handle, inode, map,
512 &orig_map, flags);
513 #endif
514 goto found;
515 }
516
517 /*
518 * Try to see if we can get the block without requesting a new
519 * file system block.
520 */
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read(&EXT4_I(inode)->i_data_sem);
523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
526 } else {
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
529 }
530 if (retval > 0) {
531 unsigned int status;
532
533 if (unlikely(retval != map->m_len)) {
534 ext4_warning(inode->i_sb,
535 "ES len assertion failed for inode "
536 "%lu: retval %d != map->m_len %d",
537 inode->i_ino, retval, map->m_len);
538 WARN_ON(1);
539 }
540
541 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
542 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
543 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
544 !(status & EXTENT_STATUS_WRITTEN) &&
545 ext4_find_delalloc_range(inode, map->m_lblk,
546 map->m_lblk + map->m_len - 1))
547 status |= EXTENT_STATUS_DELAYED;
548 ret = ext4_es_insert_extent(inode, map->m_lblk,
549 map->m_len, map->m_pblk, status);
550 if (ret < 0)
551 retval = ret;
552 }
553 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554 up_read((&EXT4_I(inode)->i_data_sem));
555
556 found:
557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558 ret = check_block_validity(inode, map);
559 if (ret != 0)
560 return ret;
561 }
562
563 /* If it is only a block(s) look up */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565 return retval;
566
567 /*
568 * Returns if the blocks have already allocated
569 *
570 * Note that if blocks have been preallocated
571 * ext4_ext_get_block() returns the create = 0
572 * with buffer head unmapped.
573 */
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
575 /*
576 * If we need to convert extent to unwritten
577 * we continue and do the actual work in
578 * ext4_ext_map_blocks()
579 */
580 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
581 return retval;
582
583 /*
584 * Here we clear m_flags because after allocating an new extent,
585 * it will be set again.
586 */
587 map->m_flags &= ~EXT4_MAP_FLAGS;
588
589 /*
590 * New blocks allocate and/or writing to unwritten extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_block()
593 * with create == 1 flag.
594 */
595 down_write(&EXT4_I(inode)->i_data_sem);
596
597 /*
598 * We need to check for EXT4 here because migrate
599 * could have changed the inode type in between
600 */
601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
602 retval = ext4_ext_map_blocks(handle, inode, map, flags);
603 } else {
604 retval = ext4_ind_map_blocks(handle, inode, map, flags);
605
606 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
607 /*
608 * We allocated new blocks which will result in
609 * i_data's format changing. Force the migrate
610 * to fail by clearing migrate flags
611 */
612 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
613 }
614
615 /*
616 * Update reserved blocks/metadata blocks after successful
617 * block allocation which had been deferred till now. We don't
618 * support fallocate for non extent files. So we can update
619 * reserve space here.
620 */
621 if ((retval > 0) &&
622 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
623 ext4_da_update_reserve_space(inode, retval, 1);
624 }
625
626 if (retval > 0) {
627 unsigned int status;
628
629 if (unlikely(retval != map->m_len)) {
630 ext4_warning(inode->i_sb,
631 "ES len assertion failed for inode "
632 "%lu: retval %d != map->m_len %d",
633 inode->i_ino, retval, map->m_len);
634 WARN_ON(1);
635 }
636
637 /*
638 * If the extent has been zeroed out, we don't need to update
639 * extent status tree.
640 */
641 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
642 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
643 if (ext4_es_is_written(&es))
644 goto has_zeroout;
645 }
646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 !(status & EXTENT_STATUS_WRITTEN) &&
650 ext4_find_delalloc_range(inode, map->m_lblk,
651 map->m_lblk + map->m_len - 1))
652 status |= EXTENT_STATUS_DELAYED;
653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
654 map->m_pblk, status);
655 if (ret < 0)
656 retval = ret;
657 }
658
659 has_zeroout:
660 up_write((&EXT4_I(inode)->i_data_sem));
661 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
662 ret = check_block_validity(inode, map);
663 if (ret != 0)
664 return ret;
665
666 /*
667 * Inodes with freshly allocated blocks where contents will be
668 * visible after transaction commit must be on transaction's
669 * ordered data list.
670 */
671 if (map->m_flags & EXT4_MAP_NEW &&
672 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
673 !IS_NOQUOTA(inode) &&
674 ext4_should_order_data(inode)) {
675 ret = ext4_jbd2_file_inode(handle, inode);
676 if (ret)
677 return ret;
678 }
679 }
680 return retval;
681 }
682
683 /*
684 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
685 * we have to be careful as someone else may be manipulating b_state as well.
686 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)687 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
688 {
689 unsigned long old_state;
690 unsigned long new_state;
691
692 flags &= EXT4_MAP_FLAGS;
693
694 /* Dummy buffer_head? Set non-atomically. */
695 if (!bh->b_page) {
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
697 return;
698 }
699 /*
700 * Someone else may be modifying b_state. Be careful! This is ugly but
701 * once we get rid of using bh as a container for mapping information
702 * to pass to / from get_block functions, this can go away.
703 */
704 do {
705 old_state = READ_ONCE(bh->b_state);
706 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
707 } while (unlikely(
708 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
709 }
710
711 /* Maximum number of blocks we map for direct IO at once. */
712 #define DIO_MAX_BLOCKS 4096
713
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)714 static int _ext4_get_block(struct inode *inode, sector_t iblock,
715 struct buffer_head *bh, int flags)
716 {
717 handle_t *handle = ext4_journal_current_handle();
718 struct ext4_map_blocks map;
719 int ret = 0, started = 0;
720 int dio_credits;
721
722 if (ext4_has_inline_data(inode))
723 return -ERANGE;
724
725 map.m_lblk = iblock;
726 map.m_len = bh->b_size >> inode->i_blkbits;
727
728 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
729 /* Direct IO write... */
730 if (map.m_len > DIO_MAX_BLOCKS)
731 map.m_len = DIO_MAX_BLOCKS;
732 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
733 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
734 dio_credits);
735 if (IS_ERR(handle)) {
736 ret = PTR_ERR(handle);
737 return ret;
738 }
739 started = 1;
740 }
741
742 ret = ext4_map_blocks(handle, inode, &map, flags);
743 if (ret > 0) {
744 ext4_io_end_t *io_end = ext4_inode_aio(inode);
745
746 map_bh(bh, inode->i_sb, map.m_pblk);
747 ext4_update_bh_state(bh, map.m_flags);
748 if (IS_DAX(inode) && buffer_unwritten(bh)) {
749 /*
750 * dgc: I suspect unwritten conversion on ext4+DAX is
751 * fundamentally broken here when there are concurrent
752 * read/write in progress on this inode.
753 */
754 WARN_ON_ONCE(io_end);
755 bh->b_assoc_map = inode->i_mapping;
756 bh->b_private = (void *)(unsigned long)iblock;
757 }
758 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
759 set_buffer_defer_completion(bh);
760 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
761 ret = 0;
762 }
763 if (started)
764 ext4_journal_stop(handle);
765 return ret;
766 }
767
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)768 int ext4_get_block(struct inode *inode, sector_t iblock,
769 struct buffer_head *bh, int create)
770 {
771 return _ext4_get_block(inode, iblock, bh,
772 create ? EXT4_GET_BLOCKS_CREATE : 0);
773 }
774
775 /*
776 * `handle' can be NULL if create is zero
777 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)778 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
779 ext4_lblk_t block, int map_flags)
780 {
781 struct ext4_map_blocks map;
782 struct buffer_head *bh;
783 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
784 int err;
785
786 J_ASSERT(handle != NULL || create == 0);
787
788 map.m_lblk = block;
789 map.m_len = 1;
790 err = ext4_map_blocks(handle, inode, &map, map_flags);
791
792 if (err == 0)
793 return create ? ERR_PTR(-ENOSPC) : NULL;
794 if (err < 0)
795 return ERR_PTR(err);
796
797 bh = sb_getblk(inode->i_sb, map.m_pblk);
798 if (unlikely(!bh))
799 return ERR_PTR(-ENOMEM);
800 if (map.m_flags & EXT4_MAP_NEW) {
801 J_ASSERT(create != 0);
802 J_ASSERT(handle != NULL);
803
804 /*
805 * Now that we do not always journal data, we should
806 * keep in mind whether this should always journal the
807 * new buffer as metadata. For now, regular file
808 * writes use ext4_get_block instead, so it's not a
809 * problem.
810 */
811 lock_buffer(bh);
812 BUFFER_TRACE(bh, "call get_create_access");
813 err = ext4_journal_get_create_access(handle, bh);
814 if (unlikely(err)) {
815 unlock_buffer(bh);
816 goto errout;
817 }
818 if (!buffer_uptodate(bh)) {
819 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
820 set_buffer_uptodate(bh);
821 }
822 unlock_buffer(bh);
823 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
824 err = ext4_handle_dirty_metadata(handle, inode, bh);
825 if (unlikely(err))
826 goto errout;
827 } else
828 BUFFER_TRACE(bh, "not a new buffer");
829 return bh;
830 errout:
831 brelse(bh);
832 return ERR_PTR(err);
833 }
834
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)835 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
836 ext4_lblk_t block, int map_flags)
837 {
838 struct buffer_head *bh;
839
840 bh = ext4_getblk(handle, inode, block, map_flags);
841 if (IS_ERR(bh))
842 return bh;
843 if (!bh || buffer_uptodate(bh))
844 return bh;
845 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
846 wait_on_buffer(bh);
847 if (buffer_uptodate(bh))
848 return bh;
849 put_bh(bh);
850 return ERR_PTR(-EIO);
851 }
852
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))853 int ext4_walk_page_buffers(handle_t *handle,
854 struct buffer_head *head,
855 unsigned from,
856 unsigned to,
857 int *partial,
858 int (*fn)(handle_t *handle,
859 struct buffer_head *bh))
860 {
861 struct buffer_head *bh;
862 unsigned block_start, block_end;
863 unsigned blocksize = head->b_size;
864 int err, ret = 0;
865 struct buffer_head *next;
866
867 for (bh = head, block_start = 0;
868 ret == 0 && (bh != head || !block_start);
869 block_start = block_end, bh = next) {
870 next = bh->b_this_page;
871 block_end = block_start + blocksize;
872 if (block_end <= from || block_start >= to) {
873 if (partial && !buffer_uptodate(bh))
874 *partial = 1;
875 continue;
876 }
877 err = (*fn)(handle, bh);
878 if (!ret)
879 ret = err;
880 }
881 return ret;
882 }
883
884 /*
885 * To preserve ordering, it is essential that the hole instantiation and
886 * the data write be encapsulated in a single transaction. We cannot
887 * close off a transaction and start a new one between the ext4_get_block()
888 * and the commit_write(). So doing the jbd2_journal_start at the start of
889 * prepare_write() is the right place.
890 *
891 * Also, this function can nest inside ext4_writepage(). In that case, we
892 * *know* that ext4_writepage() has generated enough buffer credits to do the
893 * whole page. So we won't block on the journal in that case, which is good,
894 * because the caller may be PF_MEMALLOC.
895 *
896 * By accident, ext4 can be reentered when a transaction is open via
897 * quota file writes. If we were to commit the transaction while thus
898 * reentered, there can be a deadlock - we would be holding a quota
899 * lock, and the commit would never complete if another thread had a
900 * transaction open and was blocking on the quota lock - a ranking
901 * violation.
902 *
903 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
904 * will _not_ run commit under these circumstances because handle->h_ref
905 * is elevated. We'll still have enough credits for the tiny quotafile
906 * write.
907 */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)908 int do_journal_get_write_access(handle_t *handle,
909 struct buffer_head *bh)
910 {
911 int dirty = buffer_dirty(bh);
912 int ret;
913
914 if (!buffer_mapped(bh) || buffer_freed(bh))
915 return 0;
916 /*
917 * __block_write_begin() could have dirtied some buffers. Clean
918 * the dirty bit as jbd2_journal_get_write_access() could complain
919 * otherwise about fs integrity issues. Setting of the dirty bit
920 * by __block_write_begin() isn't a real problem here as we clear
921 * the bit before releasing a page lock and thus writeback cannot
922 * ever write the buffer.
923 */
924 if (dirty)
925 clear_buffer_dirty(bh);
926 BUFFER_TRACE(bh, "get write access");
927 ret = ext4_journal_get_write_access(handle, bh);
928 if (!ret && dirty)
929 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
930 return ret;
931 }
932
933 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
934 struct buffer_head *bh_result, int create);
935
936 #ifdef CONFIG_EXT4_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)937 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
938 get_block_t *get_block)
939 {
940 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
941 unsigned to = from + len;
942 struct inode *inode = page->mapping->host;
943 unsigned block_start, block_end;
944 sector_t block;
945 int err = 0;
946 unsigned blocksize = inode->i_sb->s_blocksize;
947 unsigned bbits;
948 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
949 bool decrypt = false;
950
951 BUG_ON(!PageLocked(page));
952 BUG_ON(from > PAGE_CACHE_SIZE);
953 BUG_ON(to > PAGE_CACHE_SIZE);
954 BUG_ON(from > to);
955
956 if (!page_has_buffers(page))
957 create_empty_buffers(page, blocksize, 0);
958 head = page_buffers(page);
959 bbits = ilog2(blocksize);
960 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
961
962 for (bh = head, block_start = 0; bh != head || !block_start;
963 block++, block_start = block_end, bh = bh->b_this_page) {
964 block_end = block_start + blocksize;
965 if (block_end <= from || block_start >= to) {
966 if (PageUptodate(page)) {
967 if (!buffer_uptodate(bh))
968 set_buffer_uptodate(bh);
969 }
970 continue;
971 }
972 if (buffer_new(bh))
973 clear_buffer_new(bh);
974 if (!buffer_mapped(bh)) {
975 WARN_ON(bh->b_size != blocksize);
976 err = get_block(inode, block, bh, 1);
977 if (err)
978 break;
979 if (buffer_new(bh)) {
980 unmap_underlying_metadata(bh->b_bdev,
981 bh->b_blocknr);
982 if (PageUptodate(page)) {
983 clear_buffer_new(bh);
984 set_buffer_uptodate(bh);
985 mark_buffer_dirty(bh);
986 continue;
987 }
988 if (block_end > to || block_start < from)
989 zero_user_segments(page, to, block_end,
990 block_start, from);
991 continue;
992 }
993 }
994 if (PageUptodate(page)) {
995 if (!buffer_uptodate(bh))
996 set_buffer_uptodate(bh);
997 continue;
998 }
999 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1000 !buffer_unwritten(bh) &&
1001 (block_start < from || block_end > to)) {
1002 ll_rw_block(READ, 1, &bh);
1003 *wait_bh++ = bh;
1004 decrypt = ext4_encrypted_inode(inode) &&
1005 S_ISREG(inode->i_mode);
1006 }
1007 }
1008 /*
1009 * If we issued read requests, let them complete.
1010 */
1011 while (wait_bh > wait) {
1012 wait_on_buffer(*--wait_bh);
1013 if (!buffer_uptodate(*wait_bh))
1014 err = -EIO;
1015 }
1016 if (unlikely(err))
1017 page_zero_new_buffers(page, from, to);
1018 else if (decrypt)
1019 err = ext4_decrypt(page);
1020 return err;
1021 }
1022 #endif
1023
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1024 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1025 loff_t pos, unsigned len, unsigned flags,
1026 struct page **pagep, void **fsdata)
1027 {
1028 struct inode *inode = mapping->host;
1029 int ret, needed_blocks;
1030 handle_t *handle;
1031 int retries = 0;
1032 struct page *page;
1033 pgoff_t index;
1034 unsigned from, to;
1035
1036 if (trace_android_fs_datawrite_start_enabled()) {
1037 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1038
1039 path = android_fstrace_get_pathname(pathbuf,
1040 MAX_TRACE_PATHBUF_LEN,
1041 inode);
1042 trace_android_fs_datawrite_start(inode, pos, len,
1043 current->pid, path,
1044 current->comm);
1045 }
1046 trace_ext4_write_begin(inode, pos, len, flags);
1047 /*
1048 * Reserve one block more for addition to orphan list in case
1049 * we allocate blocks but write fails for some reason
1050 */
1051 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1052 index = pos >> PAGE_CACHE_SHIFT;
1053 from = pos & (PAGE_CACHE_SIZE - 1);
1054 to = from + len;
1055
1056 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1057 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1058 flags, pagep);
1059 if (ret < 0)
1060 return ret;
1061 if (ret == 1)
1062 return 0;
1063 }
1064
1065 /*
1066 * grab_cache_page_write_begin() can take a long time if the
1067 * system is thrashing due to memory pressure, or if the page
1068 * is being written back. So grab it first before we start
1069 * the transaction handle. This also allows us to allocate
1070 * the page (if needed) without using GFP_NOFS.
1071 */
1072 retry_grab:
1073 page = grab_cache_page_write_begin(mapping, index, flags);
1074 if (!page)
1075 return -ENOMEM;
1076 unlock_page(page);
1077
1078 retry_journal:
1079 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1080 if (IS_ERR(handle)) {
1081 page_cache_release(page);
1082 return PTR_ERR(handle);
1083 }
1084
1085 lock_page(page);
1086 if (page->mapping != mapping) {
1087 /* The page got truncated from under us */
1088 unlock_page(page);
1089 page_cache_release(page);
1090 ext4_journal_stop(handle);
1091 goto retry_grab;
1092 }
1093 /* In case writeback began while the page was unlocked */
1094 wait_for_stable_page(page);
1095
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 if (ext4_should_dioread_nolock(inode))
1098 ret = ext4_block_write_begin(page, pos, len,
1099 ext4_get_block_write);
1100 else
1101 ret = ext4_block_write_begin(page, pos, len,
1102 ext4_get_block);
1103 #else
1104 if (ext4_should_dioread_nolock(inode))
1105 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1106 else
1107 ret = __block_write_begin(page, pos, len, ext4_get_block);
1108 #endif
1109 if (!ret && ext4_should_journal_data(inode)) {
1110 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1111 from, to, NULL,
1112 do_journal_get_write_access);
1113 }
1114
1115 if (ret) {
1116 unlock_page(page);
1117 /*
1118 * __block_write_begin may have instantiated a few blocks
1119 * outside i_size. Trim these off again. Don't need
1120 * i_size_read because we hold i_mutex.
1121 *
1122 * Add inode to orphan list in case we crash before
1123 * truncate finishes
1124 */
1125 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1126 ext4_orphan_add(handle, inode);
1127
1128 ext4_journal_stop(handle);
1129 if (pos + len > inode->i_size) {
1130 ext4_truncate_failed_write(inode);
1131 /*
1132 * If truncate failed early the inode might
1133 * still be on the orphan list; we need to
1134 * make sure the inode is removed from the
1135 * orphan list in that case.
1136 */
1137 if (inode->i_nlink)
1138 ext4_orphan_del(NULL, inode);
1139 }
1140
1141 if (ret == -ENOSPC &&
1142 ext4_should_retry_alloc(inode->i_sb, &retries))
1143 goto retry_journal;
1144 page_cache_release(page);
1145 return ret;
1146 }
1147 *pagep = page;
1148 return ret;
1149 }
1150
1151 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1152 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1153 {
1154 int ret;
1155 if (!buffer_mapped(bh) || buffer_freed(bh))
1156 return 0;
1157 set_buffer_uptodate(bh);
1158 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1159 clear_buffer_meta(bh);
1160 clear_buffer_prio(bh);
1161 return ret;
1162 }
1163
1164 /*
1165 * We need to pick up the new inode size which generic_commit_write gave us
1166 * `file' can be NULL - eg, when called from page_symlink().
1167 *
1168 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1169 * buffers are managed internally.
1170 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1171 static int ext4_write_end(struct file *file,
1172 struct address_space *mapping,
1173 loff_t pos, unsigned len, unsigned copied,
1174 struct page *page, void *fsdata)
1175 {
1176 handle_t *handle = ext4_journal_current_handle();
1177 struct inode *inode = mapping->host;
1178 loff_t old_size = inode->i_size;
1179 int ret = 0, ret2;
1180 int i_size_changed = 0;
1181 int inline_data = ext4_has_inline_data(inode);
1182
1183 trace_android_fs_datawrite_end(inode, pos, len);
1184 trace_ext4_write_end(inode, pos, len, copied);
1185 if (inline_data) {
1186 ret = ext4_write_inline_data_end(inode, pos, len,
1187 copied, page);
1188 if (ret < 0) {
1189 unlock_page(page);
1190 put_page(page);
1191 goto errout;
1192 }
1193 copied = ret;
1194 } else
1195 copied = block_write_end(file, mapping, pos,
1196 len, copied, page, fsdata);
1197 /*
1198 * it's important to update i_size while still holding page lock:
1199 * page writeout could otherwise come in and zero beyond i_size.
1200 */
1201 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1202 unlock_page(page);
1203 page_cache_release(page);
1204
1205 if (old_size < pos)
1206 pagecache_isize_extended(inode, old_size, pos);
1207 /*
1208 * Don't mark the inode dirty under page lock. First, it unnecessarily
1209 * makes the holding time of page lock longer. Second, it forces lock
1210 * ordering of page lock and transaction start for journaling
1211 * filesystems.
1212 */
1213 if (i_size_changed || inline_data)
1214 ext4_mark_inode_dirty(handle, inode);
1215
1216 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1217 /* if we have allocated more blocks and copied
1218 * less. We will have blocks allocated outside
1219 * inode->i_size. So truncate them
1220 */
1221 ext4_orphan_add(handle, inode);
1222 errout:
1223 ret2 = ext4_journal_stop(handle);
1224 if (!ret)
1225 ret = ret2;
1226
1227 if (pos + len > inode->i_size) {
1228 ext4_truncate_failed_write(inode);
1229 /*
1230 * If truncate failed early the inode might still be
1231 * on the orphan list; we need to make sure the inode
1232 * is removed from the orphan list in that case.
1233 */
1234 if (inode->i_nlink)
1235 ext4_orphan_del(NULL, inode);
1236 }
1237
1238 return ret ? ret : copied;
1239 }
1240
1241 /*
1242 * This is a private version of page_zero_new_buffers() which doesn't
1243 * set the buffer to be dirty, since in data=journalled mode we need
1244 * to call ext4_handle_dirty_metadata() instead.
1245 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1246 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1247 struct page *page,
1248 unsigned from, unsigned to)
1249 {
1250 unsigned int block_start = 0, block_end;
1251 struct buffer_head *head, *bh;
1252
1253 bh = head = page_buffers(page);
1254 do {
1255 block_end = block_start + bh->b_size;
1256 if (buffer_new(bh)) {
1257 if (block_end > from && block_start < to) {
1258 if (!PageUptodate(page)) {
1259 unsigned start, size;
1260
1261 start = max(from, block_start);
1262 size = min(to, block_end) - start;
1263
1264 zero_user(page, start, size);
1265 write_end_fn(handle, bh);
1266 }
1267 clear_buffer_new(bh);
1268 }
1269 }
1270 block_start = block_end;
1271 bh = bh->b_this_page;
1272 } while (bh != head);
1273 }
1274
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1275 static int ext4_journalled_write_end(struct file *file,
1276 struct address_space *mapping,
1277 loff_t pos, unsigned len, unsigned copied,
1278 struct page *page, void *fsdata)
1279 {
1280 handle_t *handle = ext4_journal_current_handle();
1281 struct inode *inode = mapping->host;
1282 loff_t old_size = inode->i_size;
1283 int ret = 0, ret2;
1284 int partial = 0;
1285 unsigned from, to;
1286 int size_changed = 0;
1287 int inline_data = ext4_has_inline_data(inode);
1288
1289 trace_android_fs_datawrite_end(inode, pos, len);
1290 trace_ext4_journalled_write_end(inode, pos, len, copied);
1291 from = pos & (PAGE_CACHE_SIZE - 1);
1292 to = from + len;
1293
1294 BUG_ON(!ext4_handle_valid(handle));
1295
1296 if (inline_data) {
1297 ret = ext4_write_inline_data_end(inode, pos, len,
1298 copied, page);
1299 if (ret < 0) {
1300 unlock_page(page);
1301 put_page(page);
1302 goto errout;
1303 }
1304 copied = ret;
1305 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1306 copied = 0;
1307 ext4_journalled_zero_new_buffers(handle, page, from, to);
1308 } else {
1309 if (unlikely(copied < len))
1310 ext4_journalled_zero_new_buffers(handle, page,
1311 from + copied, to);
1312 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1313 from + copied, &partial,
1314 write_end_fn);
1315 if (!partial)
1316 SetPageUptodate(page);
1317 }
1318 size_changed = ext4_update_inode_size(inode, pos + copied);
1319 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1320 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1321 unlock_page(page);
1322 page_cache_release(page);
1323
1324 if (old_size < pos)
1325 pagecache_isize_extended(inode, old_size, pos);
1326
1327 if (size_changed || inline_data) {
1328 ret2 = ext4_mark_inode_dirty(handle, inode);
1329 if (!ret)
1330 ret = ret2;
1331 }
1332
1333 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1334 /* if we have allocated more blocks and copied
1335 * less. We will have blocks allocated outside
1336 * inode->i_size. So truncate them
1337 */
1338 ext4_orphan_add(handle, inode);
1339
1340 errout:
1341 ret2 = ext4_journal_stop(handle);
1342 if (!ret)
1343 ret = ret2;
1344 if (pos + len > inode->i_size) {
1345 ext4_truncate_failed_write(inode);
1346 /*
1347 * If truncate failed early the inode might still be
1348 * on the orphan list; we need to make sure the inode
1349 * is removed from the orphan list in that case.
1350 */
1351 if (inode->i_nlink)
1352 ext4_orphan_del(NULL, inode);
1353 }
1354
1355 return ret ? ret : copied;
1356 }
1357
1358 /*
1359 * Reserve space for a single cluster
1360 */
ext4_da_reserve_space(struct inode * inode)1361 static int ext4_da_reserve_space(struct inode *inode)
1362 {
1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364 struct ext4_inode_info *ei = EXT4_I(inode);
1365 int ret;
1366
1367 /*
1368 * We will charge metadata quota at writeout time; this saves
1369 * us from metadata over-estimation, though we may go over by
1370 * a small amount in the end. Here we just reserve for data.
1371 */
1372 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1373 if (ret)
1374 return ret;
1375
1376 spin_lock(&ei->i_block_reservation_lock);
1377 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1378 spin_unlock(&ei->i_block_reservation_lock);
1379 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1380 return -ENOSPC;
1381 }
1382 ei->i_reserved_data_blocks++;
1383 trace_ext4_da_reserve_space(inode);
1384 spin_unlock(&ei->i_block_reservation_lock);
1385
1386 return 0; /* success */
1387 }
1388
ext4_da_release_space(struct inode * inode,int to_free)1389 static void ext4_da_release_space(struct inode *inode, int to_free)
1390 {
1391 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1392 struct ext4_inode_info *ei = EXT4_I(inode);
1393
1394 if (!to_free)
1395 return; /* Nothing to release, exit */
1396
1397 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1398
1399 trace_ext4_da_release_space(inode, to_free);
1400 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1401 /*
1402 * if there aren't enough reserved blocks, then the
1403 * counter is messed up somewhere. Since this
1404 * function is called from invalidate page, it's
1405 * harmless to return without any action.
1406 */
1407 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1408 "ino %lu, to_free %d with only %d reserved "
1409 "data blocks", inode->i_ino, to_free,
1410 ei->i_reserved_data_blocks);
1411 WARN_ON(1);
1412 to_free = ei->i_reserved_data_blocks;
1413 }
1414 ei->i_reserved_data_blocks -= to_free;
1415
1416 /* update fs dirty data blocks counter */
1417 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1418
1419 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1420
1421 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1422 }
1423
ext4_da_page_release_reservation(struct page * page,unsigned int offset,unsigned int length)1424 static void ext4_da_page_release_reservation(struct page *page,
1425 unsigned int offset,
1426 unsigned int length)
1427 {
1428 int to_release = 0, contiguous_blks = 0;
1429 struct buffer_head *head, *bh;
1430 unsigned int curr_off = 0;
1431 struct inode *inode = page->mapping->host;
1432 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1433 unsigned int stop = offset + length;
1434 int num_clusters;
1435 ext4_fsblk_t lblk;
1436
1437 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1438
1439 head = page_buffers(page);
1440 bh = head;
1441 do {
1442 unsigned int next_off = curr_off + bh->b_size;
1443
1444 if (next_off > stop)
1445 break;
1446
1447 if ((offset <= curr_off) && (buffer_delay(bh))) {
1448 to_release++;
1449 contiguous_blks++;
1450 clear_buffer_delay(bh);
1451 } else if (contiguous_blks) {
1452 lblk = page->index <<
1453 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 lblk += (curr_off >> inode->i_blkbits) -
1455 contiguous_blks;
1456 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1457 contiguous_blks = 0;
1458 }
1459 curr_off = next_off;
1460 } while ((bh = bh->b_this_page) != head);
1461
1462 if (contiguous_blks) {
1463 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1464 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1465 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1466 }
1467
1468 /* If we have released all the blocks belonging to a cluster, then we
1469 * need to release the reserved space for that cluster. */
1470 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1471 while (num_clusters > 0) {
1472 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1473 ((num_clusters - 1) << sbi->s_cluster_bits);
1474 if (sbi->s_cluster_ratio == 1 ||
1475 !ext4_find_delalloc_cluster(inode, lblk))
1476 ext4_da_release_space(inode, 1);
1477
1478 num_clusters--;
1479 }
1480 }
1481
1482 /*
1483 * Delayed allocation stuff
1484 */
1485
1486 struct mpage_da_data {
1487 struct inode *inode;
1488 struct writeback_control *wbc;
1489
1490 pgoff_t first_page; /* The first page to write */
1491 pgoff_t next_page; /* Current page to examine */
1492 pgoff_t last_page; /* Last page to examine */
1493 /*
1494 * Extent to map - this can be after first_page because that can be
1495 * fully mapped. We somewhat abuse m_flags to store whether the extent
1496 * is delalloc or unwritten.
1497 */
1498 struct ext4_map_blocks map;
1499 struct ext4_io_submit io_submit; /* IO submission data */
1500 };
1501
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1502 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1503 bool invalidate)
1504 {
1505 int nr_pages, i;
1506 pgoff_t index, end;
1507 struct pagevec pvec;
1508 struct inode *inode = mpd->inode;
1509 struct address_space *mapping = inode->i_mapping;
1510
1511 /* This is necessary when next_page == 0. */
1512 if (mpd->first_page >= mpd->next_page)
1513 return;
1514
1515 index = mpd->first_page;
1516 end = mpd->next_page - 1;
1517 if (invalidate) {
1518 ext4_lblk_t start, last;
1519 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1520 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1521 ext4_es_remove_extent(inode, start, last - start + 1);
1522 }
1523
1524 pagevec_init(&pvec, 0);
1525 while (index <= end) {
1526 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1527 if (nr_pages == 0)
1528 break;
1529 for (i = 0; i < nr_pages; i++) {
1530 struct page *page = pvec.pages[i];
1531 if (page->index > end)
1532 break;
1533 BUG_ON(!PageLocked(page));
1534 BUG_ON(PageWriteback(page));
1535 if (invalidate) {
1536 if (page_mapped(page))
1537 clear_page_dirty_for_io(page);
1538 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1539 ClearPageUptodate(page);
1540 }
1541 unlock_page(page);
1542 }
1543 index = pvec.pages[nr_pages - 1]->index + 1;
1544 pagevec_release(&pvec);
1545 }
1546 }
1547
ext4_print_free_blocks(struct inode * inode)1548 static void ext4_print_free_blocks(struct inode *inode)
1549 {
1550 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1551 struct super_block *sb = inode->i_sb;
1552 struct ext4_inode_info *ei = EXT4_I(inode);
1553
1554 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1555 EXT4_C2B(EXT4_SB(inode->i_sb),
1556 ext4_count_free_clusters(sb)));
1557 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1558 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1559 (long long) EXT4_C2B(EXT4_SB(sb),
1560 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1561 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1562 (long long) EXT4_C2B(EXT4_SB(sb),
1563 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1564 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1565 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1566 ei->i_reserved_data_blocks);
1567 return;
1568 }
1569
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1570 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1571 {
1572 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1573 }
1574
1575 /*
1576 * This function is grabs code from the very beginning of
1577 * ext4_map_blocks, but assumes that the caller is from delayed write
1578 * time. This function looks up the requested blocks and sets the
1579 * buffer delay bit under the protection of i_data_sem.
1580 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1581 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1582 struct ext4_map_blocks *map,
1583 struct buffer_head *bh)
1584 {
1585 struct extent_status es;
1586 int retval;
1587 sector_t invalid_block = ~((sector_t) 0xffff);
1588 #ifdef ES_AGGRESSIVE_TEST
1589 struct ext4_map_blocks orig_map;
1590
1591 memcpy(&orig_map, map, sizeof(*map));
1592 #endif
1593
1594 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1595 invalid_block = ~0;
1596
1597 map->m_flags = 0;
1598 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1599 "logical block %lu\n", inode->i_ino, map->m_len,
1600 (unsigned long) map->m_lblk);
1601
1602 /* Lookup extent status tree firstly */
1603 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1604 if (ext4_es_is_hole(&es)) {
1605 retval = 0;
1606 down_read(&EXT4_I(inode)->i_data_sem);
1607 goto add_delayed;
1608 }
1609
1610 /*
1611 * Delayed extent could be allocated by fallocate.
1612 * So we need to check it.
1613 */
1614 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1615 map_bh(bh, inode->i_sb, invalid_block);
1616 set_buffer_new(bh);
1617 set_buffer_delay(bh);
1618 return 0;
1619 }
1620
1621 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1622 retval = es.es_len - (iblock - es.es_lblk);
1623 if (retval > map->m_len)
1624 retval = map->m_len;
1625 map->m_len = retval;
1626 if (ext4_es_is_written(&es))
1627 map->m_flags |= EXT4_MAP_MAPPED;
1628 else if (ext4_es_is_unwritten(&es))
1629 map->m_flags |= EXT4_MAP_UNWRITTEN;
1630 else
1631 BUG_ON(1);
1632
1633 #ifdef ES_AGGRESSIVE_TEST
1634 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1635 #endif
1636 return retval;
1637 }
1638
1639 /*
1640 * Try to see if we can get the block without requesting a new
1641 * file system block.
1642 */
1643 down_read(&EXT4_I(inode)->i_data_sem);
1644 if (ext4_has_inline_data(inode))
1645 retval = 0;
1646 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1647 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1648 else
1649 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1650
1651 add_delayed:
1652 if (retval == 0) {
1653 int ret;
1654 /*
1655 * XXX: __block_prepare_write() unmaps passed block,
1656 * is it OK?
1657 */
1658 /*
1659 * If the block was allocated from previously allocated cluster,
1660 * then we don't need to reserve it again. However we still need
1661 * to reserve metadata for every block we're going to write.
1662 */
1663 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1664 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1665 ret = ext4_da_reserve_space(inode);
1666 if (ret) {
1667 /* not enough space to reserve */
1668 retval = ret;
1669 goto out_unlock;
1670 }
1671 }
1672
1673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1674 ~0, EXTENT_STATUS_DELAYED);
1675 if (ret) {
1676 retval = ret;
1677 goto out_unlock;
1678 }
1679
1680 map_bh(bh, inode->i_sb, invalid_block);
1681 set_buffer_new(bh);
1682 set_buffer_delay(bh);
1683 } else if (retval > 0) {
1684 int ret;
1685 unsigned int status;
1686
1687 if (unlikely(retval != map->m_len)) {
1688 ext4_warning(inode->i_sb,
1689 "ES len assertion failed for inode "
1690 "%lu: retval %d != map->m_len %d",
1691 inode->i_ino, retval, map->m_len);
1692 WARN_ON(1);
1693 }
1694
1695 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1696 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1698 map->m_pblk, status);
1699 if (ret != 0)
1700 retval = ret;
1701 }
1702
1703 out_unlock:
1704 up_read((&EXT4_I(inode)->i_data_sem));
1705
1706 return retval;
1707 }
1708
1709 /*
1710 * This is a special get_block_t callback which is used by
1711 * ext4_da_write_begin(). It will either return mapped block or
1712 * reserve space for a single block.
1713 *
1714 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1715 * We also have b_blocknr = -1 and b_bdev initialized properly
1716 *
1717 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1718 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1719 * initialized properly.
1720 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1721 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1722 struct buffer_head *bh, int create)
1723 {
1724 struct ext4_map_blocks map;
1725 int ret = 0;
1726
1727 BUG_ON(create == 0);
1728 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1729
1730 map.m_lblk = iblock;
1731 map.m_len = 1;
1732
1733 /*
1734 * first, we need to know whether the block is allocated already
1735 * preallocated blocks are unmapped but should treated
1736 * the same as allocated blocks.
1737 */
1738 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1739 if (ret <= 0)
1740 return ret;
1741
1742 map_bh(bh, inode->i_sb, map.m_pblk);
1743 ext4_update_bh_state(bh, map.m_flags);
1744
1745 if (buffer_unwritten(bh)) {
1746 /* A delayed write to unwritten bh should be marked
1747 * new and mapped. Mapped ensures that we don't do
1748 * get_block multiple times when we write to the same
1749 * offset and new ensures that we do proper zero out
1750 * for partial write.
1751 */
1752 set_buffer_new(bh);
1753 set_buffer_mapped(bh);
1754 }
1755 return 0;
1756 }
1757
bget_one(handle_t * handle,struct buffer_head * bh)1758 static int bget_one(handle_t *handle, struct buffer_head *bh)
1759 {
1760 get_bh(bh);
1761 return 0;
1762 }
1763
bput_one(handle_t * handle,struct buffer_head * bh)1764 static int bput_one(handle_t *handle, struct buffer_head *bh)
1765 {
1766 put_bh(bh);
1767 return 0;
1768 }
1769
__ext4_journalled_writepage(struct page * page,unsigned int len)1770 static int __ext4_journalled_writepage(struct page *page,
1771 unsigned int len)
1772 {
1773 struct address_space *mapping = page->mapping;
1774 struct inode *inode = mapping->host;
1775 struct buffer_head *page_bufs = NULL;
1776 handle_t *handle = NULL;
1777 int ret = 0, err = 0;
1778 int inline_data = ext4_has_inline_data(inode);
1779 struct buffer_head *inode_bh = NULL;
1780
1781 ClearPageChecked(page);
1782
1783 if (inline_data) {
1784 BUG_ON(page->index != 0);
1785 BUG_ON(len > ext4_get_max_inline_size(inode));
1786 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1787 if (inode_bh == NULL)
1788 goto out;
1789 } else {
1790 page_bufs = page_buffers(page);
1791 if (!page_bufs) {
1792 BUG();
1793 goto out;
1794 }
1795 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1796 NULL, bget_one);
1797 }
1798 /*
1799 * We need to release the page lock before we start the
1800 * journal, so grab a reference so the page won't disappear
1801 * out from under us.
1802 */
1803 get_page(page);
1804 unlock_page(page);
1805
1806 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1807 ext4_writepage_trans_blocks(inode));
1808 if (IS_ERR(handle)) {
1809 ret = PTR_ERR(handle);
1810 put_page(page);
1811 goto out_no_pagelock;
1812 }
1813 BUG_ON(!ext4_handle_valid(handle));
1814
1815 lock_page(page);
1816 put_page(page);
1817 if (page->mapping != mapping) {
1818 /* The page got truncated from under us */
1819 ext4_journal_stop(handle);
1820 ret = 0;
1821 goto out;
1822 }
1823
1824 if (inline_data) {
1825 ret = ext4_mark_inode_dirty(handle, inode);
1826 } else {
1827 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1828 do_journal_get_write_access);
1829
1830 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1831 write_end_fn);
1832 }
1833 if (ret == 0)
1834 ret = err;
1835 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1836 err = ext4_journal_stop(handle);
1837 if (!ret)
1838 ret = err;
1839
1840 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1841 out:
1842 unlock_page(page);
1843 out_no_pagelock:
1844 if (!inline_data && page_bufs)
1845 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1846 NULL, bput_one);
1847 brelse(inode_bh);
1848 return ret;
1849 }
1850
1851 /*
1852 * Note that we don't need to start a transaction unless we're journaling data
1853 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1854 * need to file the inode to the transaction's list in ordered mode because if
1855 * we are writing back data added by write(), the inode is already there and if
1856 * we are writing back data modified via mmap(), no one guarantees in which
1857 * transaction the data will hit the disk. In case we are journaling data, we
1858 * cannot start transaction directly because transaction start ranks above page
1859 * lock so we have to do some magic.
1860 *
1861 * This function can get called via...
1862 * - ext4_writepages after taking page lock (have journal handle)
1863 * - journal_submit_inode_data_buffers (no journal handle)
1864 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1865 * - grab_page_cache when doing write_begin (have journal handle)
1866 *
1867 * We don't do any block allocation in this function. If we have page with
1868 * multiple blocks we need to write those buffer_heads that are mapped. This
1869 * is important for mmaped based write. So if we do with blocksize 1K
1870 * truncate(f, 1024);
1871 * a = mmap(f, 0, 4096);
1872 * a[0] = 'a';
1873 * truncate(f, 4096);
1874 * we have in the page first buffer_head mapped via page_mkwrite call back
1875 * but other buffer_heads would be unmapped but dirty (dirty done via the
1876 * do_wp_page). So writepage should write the first block. If we modify
1877 * the mmap area beyond 1024 we will again get a page_fault and the
1878 * page_mkwrite callback will do the block allocation and mark the
1879 * buffer_heads mapped.
1880 *
1881 * We redirty the page if we have any buffer_heads that is either delay or
1882 * unwritten in the page.
1883 *
1884 * We can get recursively called as show below.
1885 *
1886 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1887 * ext4_writepage()
1888 *
1889 * But since we don't do any block allocation we should not deadlock.
1890 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1891 */
ext4_writepage(struct page * page,struct writeback_control * wbc)1892 static int ext4_writepage(struct page *page,
1893 struct writeback_control *wbc)
1894 {
1895 int ret = 0;
1896 loff_t size;
1897 unsigned int len;
1898 struct buffer_head *page_bufs = NULL;
1899 struct inode *inode = page->mapping->host;
1900 struct ext4_io_submit io_submit;
1901 bool keep_towrite = false;
1902
1903 trace_ext4_writepage(page);
1904 size = i_size_read(inode);
1905 if (page->index == size >> PAGE_CACHE_SHIFT)
1906 len = size & ~PAGE_CACHE_MASK;
1907 else
1908 len = PAGE_CACHE_SIZE;
1909
1910 page_bufs = page_buffers(page);
1911 /*
1912 * We cannot do block allocation or other extent handling in this
1913 * function. If there are buffers needing that, we have to redirty
1914 * the page. But we may reach here when we do a journal commit via
1915 * journal_submit_inode_data_buffers() and in that case we must write
1916 * allocated buffers to achieve data=ordered mode guarantees.
1917 *
1918 * Also, if there is only one buffer per page (the fs block
1919 * size == the page size), if one buffer needs block
1920 * allocation or needs to modify the extent tree to clear the
1921 * unwritten flag, we know that the page can't be written at
1922 * all, so we might as well refuse the write immediately.
1923 * Unfortunately if the block size != page size, we can't as
1924 * easily detect this case using ext4_walk_page_buffers(), but
1925 * for the extremely common case, this is an optimization that
1926 * skips a useless round trip through ext4_bio_write_page().
1927 */
1928 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1929 ext4_bh_delay_or_unwritten)) {
1930 redirty_page_for_writepage(wbc, page);
1931 if ((current->flags & PF_MEMALLOC) ||
1932 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1933 /*
1934 * For memory cleaning there's no point in writing only
1935 * some buffers. So just bail out. Warn if we came here
1936 * from direct reclaim.
1937 */
1938 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1939 == PF_MEMALLOC);
1940 unlock_page(page);
1941 return 0;
1942 }
1943 keep_towrite = true;
1944 }
1945
1946 if (PageChecked(page) && ext4_should_journal_data(inode))
1947 /*
1948 * It's mmapped pagecache. Add buffers and journal it. There
1949 * doesn't seem much point in redirtying the page here.
1950 */
1951 return __ext4_journalled_writepage(page, len);
1952
1953 ext4_io_submit_init(&io_submit, wbc);
1954 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1955 if (!io_submit.io_end) {
1956 redirty_page_for_writepage(wbc, page);
1957 unlock_page(page);
1958 return -ENOMEM;
1959 }
1960 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1961 ext4_io_submit(&io_submit);
1962 /* Drop io_end reference we got from init */
1963 ext4_put_io_end_defer(io_submit.io_end);
1964 return ret;
1965 }
1966
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)1967 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1968 {
1969 int len;
1970 loff_t size;
1971 int err;
1972
1973 BUG_ON(page->index != mpd->first_page);
1974 clear_page_dirty_for_io(page);
1975 /*
1976 * We have to be very careful here! Nothing protects writeback path
1977 * against i_size changes and the page can be writeably mapped into
1978 * page tables. So an application can be growing i_size and writing
1979 * data through mmap while writeback runs. clear_page_dirty_for_io()
1980 * write-protects our page in page tables and the page cannot get
1981 * written to again until we release page lock. So only after
1982 * clear_page_dirty_for_io() we are safe to sample i_size for
1983 * ext4_bio_write_page() to zero-out tail of the written page. We rely
1984 * on the barrier provided by TestClearPageDirty in
1985 * clear_page_dirty_for_io() to make sure i_size is really sampled only
1986 * after page tables are updated.
1987 */
1988 size = i_size_read(mpd->inode);
1989 if (page->index == size >> PAGE_SHIFT)
1990 len = size & ~PAGE_MASK;
1991 else
1992 len = PAGE_SIZE;
1993 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1994 if (!err)
1995 mpd->wbc->nr_to_write--;
1996 mpd->first_page++;
1997
1998 return err;
1999 }
2000
2001 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2002
2003 /*
2004 * mballoc gives us at most this number of blocks...
2005 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2006 * The rest of mballoc seems to handle chunks up to full group size.
2007 */
2008 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2009
2010 /*
2011 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2012 *
2013 * @mpd - extent of blocks
2014 * @lblk - logical number of the block in the file
2015 * @bh - buffer head we want to add to the extent
2016 *
2017 * The function is used to collect contig. blocks in the same state. If the
2018 * buffer doesn't require mapping for writeback and we haven't started the
2019 * extent of buffers to map yet, the function returns 'true' immediately - the
2020 * caller can write the buffer right away. Otherwise the function returns true
2021 * if the block has been added to the extent, false if the block couldn't be
2022 * added.
2023 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2024 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2025 struct buffer_head *bh)
2026 {
2027 struct ext4_map_blocks *map = &mpd->map;
2028
2029 /* Buffer that doesn't need mapping for writeback? */
2030 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2031 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2032 /* So far no extent to map => we write the buffer right away */
2033 if (map->m_len == 0)
2034 return true;
2035 return false;
2036 }
2037
2038 /* First block in the extent? */
2039 if (map->m_len == 0) {
2040 map->m_lblk = lblk;
2041 map->m_len = 1;
2042 map->m_flags = bh->b_state & BH_FLAGS;
2043 return true;
2044 }
2045
2046 /* Don't go larger than mballoc is willing to allocate */
2047 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2048 return false;
2049
2050 /* Can we merge the block to our big extent? */
2051 if (lblk == map->m_lblk + map->m_len &&
2052 (bh->b_state & BH_FLAGS) == map->m_flags) {
2053 map->m_len++;
2054 return true;
2055 }
2056 return false;
2057 }
2058
2059 /*
2060 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2061 *
2062 * @mpd - extent of blocks for mapping
2063 * @head - the first buffer in the page
2064 * @bh - buffer we should start processing from
2065 * @lblk - logical number of the block in the file corresponding to @bh
2066 *
2067 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2068 * the page for IO if all buffers in this page were mapped and there's no
2069 * accumulated extent of buffers to map or add buffers in the page to the
2070 * extent of buffers to map. The function returns 1 if the caller can continue
2071 * by processing the next page, 0 if it should stop adding buffers to the
2072 * extent to map because we cannot extend it anymore. It can also return value
2073 * < 0 in case of error during IO submission.
2074 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2075 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2076 struct buffer_head *head,
2077 struct buffer_head *bh,
2078 ext4_lblk_t lblk)
2079 {
2080 struct inode *inode = mpd->inode;
2081 int err;
2082 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2083 >> inode->i_blkbits;
2084
2085 do {
2086 BUG_ON(buffer_locked(bh));
2087
2088 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2089 /* Found extent to map? */
2090 if (mpd->map.m_len)
2091 return 0;
2092 /* Everything mapped so far and we hit EOF */
2093 break;
2094 }
2095 } while (lblk++, (bh = bh->b_this_page) != head);
2096 /* So far everything mapped? Submit the page for IO. */
2097 if (mpd->map.m_len == 0) {
2098 err = mpage_submit_page(mpd, head->b_page);
2099 if (err < 0)
2100 return err;
2101 }
2102 return lblk < blocks;
2103 }
2104
2105 /*
2106 * mpage_map_buffers - update buffers corresponding to changed extent and
2107 * submit fully mapped pages for IO
2108 *
2109 * @mpd - description of extent to map, on return next extent to map
2110 *
2111 * Scan buffers corresponding to changed extent (we expect corresponding pages
2112 * to be already locked) and update buffer state according to new extent state.
2113 * We map delalloc buffers to their physical location, clear unwritten bits,
2114 * and mark buffers as uninit when we perform writes to unwritten extents
2115 * and do extent conversion after IO is finished. If the last page is not fully
2116 * mapped, we update @map to the next extent in the last page that needs
2117 * mapping. Otherwise we submit the page for IO.
2118 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2119 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2120 {
2121 struct pagevec pvec;
2122 int nr_pages, i;
2123 struct inode *inode = mpd->inode;
2124 struct buffer_head *head, *bh;
2125 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2126 pgoff_t start, end;
2127 ext4_lblk_t lblk;
2128 sector_t pblock;
2129 int err;
2130
2131 start = mpd->map.m_lblk >> bpp_bits;
2132 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2133 lblk = start << bpp_bits;
2134 pblock = mpd->map.m_pblk;
2135
2136 pagevec_init(&pvec, 0);
2137 while (start <= end) {
2138 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2139 PAGEVEC_SIZE);
2140 if (nr_pages == 0)
2141 break;
2142 for (i = 0; i < nr_pages; i++) {
2143 struct page *page = pvec.pages[i];
2144
2145 if (page->index > end)
2146 break;
2147 /* Up to 'end' pages must be contiguous */
2148 BUG_ON(page->index != start);
2149 bh = head = page_buffers(page);
2150 do {
2151 if (lblk < mpd->map.m_lblk)
2152 continue;
2153 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2154 /*
2155 * Buffer after end of mapped extent.
2156 * Find next buffer in the page to map.
2157 */
2158 mpd->map.m_len = 0;
2159 mpd->map.m_flags = 0;
2160 /*
2161 * FIXME: If dioread_nolock supports
2162 * blocksize < pagesize, we need to make
2163 * sure we add size mapped so far to
2164 * io_end->size as the following call
2165 * can submit the page for IO.
2166 */
2167 err = mpage_process_page_bufs(mpd, head,
2168 bh, lblk);
2169 pagevec_release(&pvec);
2170 if (err > 0)
2171 err = 0;
2172 return err;
2173 }
2174 if (buffer_delay(bh)) {
2175 clear_buffer_delay(bh);
2176 bh->b_blocknr = pblock++;
2177 }
2178 clear_buffer_unwritten(bh);
2179 } while (lblk++, (bh = bh->b_this_page) != head);
2180
2181 /*
2182 * FIXME: This is going to break if dioread_nolock
2183 * supports blocksize < pagesize as we will try to
2184 * convert potentially unmapped parts of inode.
2185 */
2186 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2187 /* Page fully mapped - let IO run! */
2188 err = mpage_submit_page(mpd, page);
2189 if (err < 0) {
2190 pagevec_release(&pvec);
2191 return err;
2192 }
2193 start++;
2194 }
2195 pagevec_release(&pvec);
2196 }
2197 /* Extent fully mapped and matches with page boundary. We are done. */
2198 mpd->map.m_len = 0;
2199 mpd->map.m_flags = 0;
2200 return 0;
2201 }
2202
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2203 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2204 {
2205 struct inode *inode = mpd->inode;
2206 struct ext4_map_blocks *map = &mpd->map;
2207 int get_blocks_flags;
2208 int err, dioread_nolock;
2209
2210 trace_ext4_da_write_pages_extent(inode, map);
2211 /*
2212 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2213 * to convert an unwritten extent to be initialized (in the case
2214 * where we have written into one or more preallocated blocks). It is
2215 * possible that we're going to need more metadata blocks than
2216 * previously reserved. However we must not fail because we're in
2217 * writeback and there is nothing we can do about it so it might result
2218 * in data loss. So use reserved blocks to allocate metadata if
2219 * possible.
2220 *
2221 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2222 * the blocks in question are delalloc blocks. This indicates
2223 * that the blocks and quotas has already been checked when
2224 * the data was copied into the page cache.
2225 */
2226 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2227 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2228 dioread_nolock = ext4_should_dioread_nolock(inode);
2229 if (dioread_nolock)
2230 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2231 if (map->m_flags & (1 << BH_Delay))
2232 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2233
2234 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2235 if (err < 0)
2236 return err;
2237 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2238 if (!mpd->io_submit.io_end->handle &&
2239 ext4_handle_valid(handle)) {
2240 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2241 handle->h_rsv_handle = NULL;
2242 }
2243 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2244 }
2245
2246 BUG_ON(map->m_len == 0);
2247 if (map->m_flags & EXT4_MAP_NEW) {
2248 struct block_device *bdev = inode->i_sb->s_bdev;
2249 int i;
2250
2251 for (i = 0; i < map->m_len; i++)
2252 unmap_underlying_metadata(bdev, map->m_pblk + i);
2253 }
2254 return 0;
2255 }
2256
2257 /*
2258 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2259 * mpd->len and submit pages underlying it for IO
2260 *
2261 * @handle - handle for journal operations
2262 * @mpd - extent to map
2263 * @give_up_on_write - we set this to true iff there is a fatal error and there
2264 * is no hope of writing the data. The caller should discard
2265 * dirty pages to avoid infinite loops.
2266 *
2267 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2268 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2269 * them to initialized or split the described range from larger unwritten
2270 * extent. Note that we need not map all the described range since allocation
2271 * can return less blocks or the range is covered by more unwritten extents. We
2272 * cannot map more because we are limited by reserved transaction credits. On
2273 * the other hand we always make sure that the last touched page is fully
2274 * mapped so that it can be written out (and thus forward progress is
2275 * guaranteed). After mapping we submit all mapped pages for IO.
2276 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2277 static int mpage_map_and_submit_extent(handle_t *handle,
2278 struct mpage_da_data *mpd,
2279 bool *give_up_on_write)
2280 {
2281 struct inode *inode = mpd->inode;
2282 struct ext4_map_blocks *map = &mpd->map;
2283 int err;
2284 loff_t disksize;
2285 int progress = 0;
2286
2287 mpd->io_submit.io_end->offset =
2288 ((loff_t)map->m_lblk) << inode->i_blkbits;
2289 do {
2290 err = mpage_map_one_extent(handle, mpd);
2291 if (err < 0) {
2292 struct super_block *sb = inode->i_sb;
2293
2294 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2295 goto invalidate_dirty_pages;
2296 /*
2297 * Let the uper layers retry transient errors.
2298 * In the case of ENOSPC, if ext4_count_free_blocks()
2299 * is non-zero, a commit should free up blocks.
2300 */
2301 if ((err == -ENOMEM) ||
2302 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2303 if (progress)
2304 goto update_disksize;
2305 return err;
2306 }
2307 ext4_msg(sb, KERN_CRIT,
2308 "Delayed block allocation failed for "
2309 "inode %lu at logical offset %llu with"
2310 " max blocks %u with error %d",
2311 inode->i_ino,
2312 (unsigned long long)map->m_lblk,
2313 (unsigned)map->m_len, -err);
2314 ext4_msg(sb, KERN_CRIT,
2315 "This should not happen!! Data will "
2316 "be lost\n");
2317 if (err == -ENOSPC)
2318 ext4_print_free_blocks(inode);
2319 invalidate_dirty_pages:
2320 *give_up_on_write = true;
2321 return err;
2322 }
2323 progress = 1;
2324 /*
2325 * Update buffer state, submit mapped pages, and get us new
2326 * extent to map
2327 */
2328 err = mpage_map_and_submit_buffers(mpd);
2329 if (err < 0)
2330 goto update_disksize;
2331 } while (map->m_len);
2332
2333 update_disksize:
2334 /*
2335 * Update on-disk size after IO is submitted. Races with
2336 * truncate are avoided by checking i_size under i_data_sem.
2337 */
2338 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2339 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2340 int err2;
2341 loff_t i_size;
2342
2343 down_write(&EXT4_I(inode)->i_data_sem);
2344 i_size = i_size_read(inode);
2345 if (disksize > i_size)
2346 disksize = i_size;
2347 if (disksize > EXT4_I(inode)->i_disksize)
2348 EXT4_I(inode)->i_disksize = disksize;
2349 err2 = ext4_mark_inode_dirty(handle, inode);
2350 up_write(&EXT4_I(inode)->i_data_sem);
2351 if (err2)
2352 ext4_error(inode->i_sb,
2353 "Failed to mark inode %lu dirty",
2354 inode->i_ino);
2355 if (!err)
2356 err = err2;
2357 }
2358 return err;
2359 }
2360
2361 /*
2362 * Calculate the total number of credits to reserve for one writepages
2363 * iteration. This is called from ext4_writepages(). We map an extent of
2364 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2365 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2366 * bpp - 1 blocks in bpp different extents.
2367 */
ext4_da_writepages_trans_blocks(struct inode * inode)2368 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2369 {
2370 int bpp = ext4_journal_blocks_per_page(inode);
2371
2372 return ext4_meta_trans_blocks(inode,
2373 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2374 }
2375
2376 /*
2377 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2378 * and underlying extent to map
2379 *
2380 * @mpd - where to look for pages
2381 *
2382 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2383 * IO immediately. When we find a page which isn't mapped we start accumulating
2384 * extent of buffers underlying these pages that needs mapping (formed by
2385 * either delayed or unwritten buffers). We also lock the pages containing
2386 * these buffers. The extent found is returned in @mpd structure (starting at
2387 * mpd->lblk with length mpd->len blocks).
2388 *
2389 * Note that this function can attach bios to one io_end structure which are
2390 * neither logically nor physically contiguous. Although it may seem as an
2391 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2392 * case as we need to track IO to all buffers underlying a page in one io_end.
2393 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2394 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2395 {
2396 struct address_space *mapping = mpd->inode->i_mapping;
2397 struct pagevec pvec;
2398 unsigned int nr_pages;
2399 long left = mpd->wbc->nr_to_write;
2400 pgoff_t index = mpd->first_page;
2401 pgoff_t end = mpd->last_page;
2402 int tag;
2403 int i, err = 0;
2404 int blkbits = mpd->inode->i_blkbits;
2405 ext4_lblk_t lblk;
2406 struct buffer_head *head;
2407
2408 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2409 tag = PAGECACHE_TAG_TOWRITE;
2410 else
2411 tag = PAGECACHE_TAG_DIRTY;
2412
2413 pagevec_init(&pvec, 0);
2414 mpd->map.m_len = 0;
2415 mpd->next_page = index;
2416 while (index <= end) {
2417 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2418 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2419 if (nr_pages == 0)
2420 goto out;
2421
2422 for (i = 0; i < nr_pages; i++) {
2423 struct page *page = pvec.pages[i];
2424
2425 /*
2426 * At this point, the page may be truncated or
2427 * invalidated (changing page->mapping to NULL), or
2428 * even swizzled back from swapper_space to tmpfs file
2429 * mapping. However, page->index will not change
2430 * because we have a reference on the page.
2431 */
2432 if (page->index > end)
2433 goto out;
2434
2435 /*
2436 * Accumulated enough dirty pages? This doesn't apply
2437 * to WB_SYNC_ALL mode. For integrity sync we have to
2438 * keep going because someone may be concurrently
2439 * dirtying pages, and we might have synced a lot of
2440 * newly appeared dirty pages, but have not synced all
2441 * of the old dirty pages.
2442 */
2443 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2444 goto out;
2445
2446 /* If we can't merge this page, we are done. */
2447 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2448 goto out;
2449
2450 lock_page(page);
2451 /*
2452 * If the page is no longer dirty, or its mapping no
2453 * longer corresponds to inode we are writing (which
2454 * means it has been truncated or invalidated), or the
2455 * page is already under writeback and we are not doing
2456 * a data integrity writeback, skip the page
2457 */
2458 if (!PageDirty(page) ||
2459 (PageWriteback(page) &&
2460 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2461 unlikely(page->mapping != mapping)) {
2462 unlock_page(page);
2463 continue;
2464 }
2465
2466 wait_on_page_writeback(page);
2467 BUG_ON(PageWriteback(page));
2468
2469 if (mpd->map.m_len == 0)
2470 mpd->first_page = page->index;
2471 mpd->next_page = page->index + 1;
2472 /* Add all dirty buffers to mpd */
2473 lblk = ((ext4_lblk_t)page->index) <<
2474 (PAGE_CACHE_SHIFT - blkbits);
2475 head = page_buffers(page);
2476 err = mpage_process_page_bufs(mpd, head, head, lblk);
2477 if (err <= 0)
2478 goto out;
2479 err = 0;
2480 left--;
2481 }
2482 pagevec_release(&pvec);
2483 cond_resched();
2484 }
2485 return 0;
2486 out:
2487 pagevec_release(&pvec);
2488 return err;
2489 }
2490
__writepage(struct page * page,struct writeback_control * wbc,void * data)2491 static int __writepage(struct page *page, struct writeback_control *wbc,
2492 void *data)
2493 {
2494 struct address_space *mapping = data;
2495 int ret = ext4_writepage(page, wbc);
2496 mapping_set_error(mapping, ret);
2497 return ret;
2498 }
2499
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2500 static int ext4_writepages(struct address_space *mapping,
2501 struct writeback_control *wbc)
2502 {
2503 pgoff_t writeback_index = 0;
2504 long nr_to_write = wbc->nr_to_write;
2505 int range_whole = 0;
2506 int cycled = 1;
2507 handle_t *handle = NULL;
2508 struct mpage_da_data mpd;
2509 struct inode *inode = mapping->host;
2510 int needed_blocks, rsv_blocks = 0, ret = 0;
2511 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2512 bool done;
2513 struct blk_plug plug;
2514 bool give_up_on_write = false;
2515
2516 trace_ext4_writepages(inode, wbc);
2517
2518 /*
2519 * No pages to write? This is mainly a kludge to avoid starting
2520 * a transaction for special inodes like journal inode on last iput()
2521 * because that could violate lock ordering on umount
2522 */
2523 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2524 goto out_writepages;
2525
2526 if (ext4_should_journal_data(inode)) {
2527 struct blk_plug plug;
2528
2529 blk_start_plug(&plug);
2530 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2531 blk_finish_plug(&plug);
2532 goto out_writepages;
2533 }
2534
2535 /*
2536 * If the filesystem has aborted, it is read-only, so return
2537 * right away instead of dumping stack traces later on that
2538 * will obscure the real source of the problem. We test
2539 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2540 * the latter could be true if the filesystem is mounted
2541 * read-only, and in that case, ext4_writepages should
2542 * *never* be called, so if that ever happens, we would want
2543 * the stack trace.
2544 */
2545 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2546 ret = -EROFS;
2547 goto out_writepages;
2548 }
2549
2550 if (ext4_should_dioread_nolock(inode)) {
2551 /*
2552 * We may need to convert up to one extent per block in
2553 * the page and we may dirty the inode.
2554 */
2555 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2556 }
2557
2558 /*
2559 * If we have inline data and arrive here, it means that
2560 * we will soon create the block for the 1st page, so
2561 * we'd better clear the inline data here.
2562 */
2563 if (ext4_has_inline_data(inode)) {
2564 /* Just inode will be modified... */
2565 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2566 if (IS_ERR(handle)) {
2567 ret = PTR_ERR(handle);
2568 goto out_writepages;
2569 }
2570 BUG_ON(ext4_test_inode_state(inode,
2571 EXT4_STATE_MAY_INLINE_DATA));
2572 ext4_destroy_inline_data(handle, inode);
2573 ext4_journal_stop(handle);
2574 }
2575
2576 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2577 range_whole = 1;
2578
2579 if (wbc->range_cyclic) {
2580 writeback_index = mapping->writeback_index;
2581 if (writeback_index)
2582 cycled = 0;
2583 mpd.first_page = writeback_index;
2584 mpd.last_page = -1;
2585 } else {
2586 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2587 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2588 }
2589
2590 mpd.inode = inode;
2591 mpd.wbc = wbc;
2592 ext4_io_submit_init(&mpd.io_submit, wbc);
2593 retry:
2594 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2595 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2596 done = false;
2597 blk_start_plug(&plug);
2598 while (!done && mpd.first_page <= mpd.last_page) {
2599 /* For each extent of pages we use new io_end */
2600 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2601 if (!mpd.io_submit.io_end) {
2602 ret = -ENOMEM;
2603 break;
2604 }
2605
2606 /*
2607 * We have two constraints: We find one extent to map and we
2608 * must always write out whole page (makes a difference when
2609 * blocksize < pagesize) so that we don't block on IO when we
2610 * try to write out the rest of the page. Journalled mode is
2611 * not supported by delalloc.
2612 */
2613 BUG_ON(ext4_should_journal_data(inode));
2614 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2615
2616 /* start a new transaction */
2617 handle = ext4_journal_start_with_reserve(inode,
2618 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2619 if (IS_ERR(handle)) {
2620 ret = PTR_ERR(handle);
2621 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2622 "%ld pages, ino %lu; err %d", __func__,
2623 wbc->nr_to_write, inode->i_ino, ret);
2624 /* Release allocated io_end */
2625 ext4_put_io_end(mpd.io_submit.io_end);
2626 break;
2627 }
2628
2629 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2630 ret = mpage_prepare_extent_to_map(&mpd);
2631 if (!ret) {
2632 if (mpd.map.m_len)
2633 ret = mpage_map_and_submit_extent(handle, &mpd,
2634 &give_up_on_write);
2635 else {
2636 /*
2637 * We scanned the whole range (or exhausted
2638 * nr_to_write), submitted what was mapped and
2639 * didn't find anything needing mapping. We are
2640 * done.
2641 */
2642 done = true;
2643 }
2644 }
2645 /*
2646 * Caution: If the handle is synchronous,
2647 * ext4_journal_stop() can wait for transaction commit
2648 * to finish which may depend on writeback of pages to
2649 * complete or on page lock to be released. In that
2650 * case, we have to wait until after after we have
2651 * submitted all the IO, released page locks we hold,
2652 * and dropped io_end reference (for extent conversion
2653 * to be able to complete) before stopping the handle.
2654 */
2655 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2656 ext4_journal_stop(handle);
2657 handle = NULL;
2658 }
2659 /* Submit prepared bio */
2660 ext4_io_submit(&mpd.io_submit);
2661 /* Unlock pages we didn't use */
2662 mpage_release_unused_pages(&mpd, give_up_on_write);
2663 /*
2664 * Drop our io_end reference we got from init. We have
2665 * to be careful and use deferred io_end finishing if
2666 * we are still holding the transaction as we can
2667 * release the last reference to io_end which may end
2668 * up doing unwritten extent conversion.
2669 */
2670 if (handle) {
2671 ext4_put_io_end_defer(mpd.io_submit.io_end);
2672 ext4_journal_stop(handle);
2673 } else
2674 ext4_put_io_end(mpd.io_submit.io_end);
2675
2676 if (ret == -ENOSPC && sbi->s_journal) {
2677 /*
2678 * Commit the transaction which would
2679 * free blocks released in the transaction
2680 * and try again
2681 */
2682 jbd2_journal_force_commit_nested(sbi->s_journal);
2683 ret = 0;
2684 continue;
2685 }
2686 /* Fatal error - ENOMEM, EIO... */
2687 if (ret)
2688 break;
2689 }
2690 blk_finish_plug(&plug);
2691 if (!ret && !cycled && wbc->nr_to_write > 0) {
2692 cycled = 1;
2693 mpd.last_page = writeback_index - 1;
2694 mpd.first_page = 0;
2695 goto retry;
2696 }
2697
2698 /* Update index */
2699 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2700 /*
2701 * Set the writeback_index so that range_cyclic
2702 * mode will write it back later
2703 */
2704 mapping->writeback_index = mpd.first_page;
2705
2706 out_writepages:
2707 trace_ext4_writepages_result(inode, wbc, ret,
2708 nr_to_write - wbc->nr_to_write);
2709 return ret;
2710 }
2711
ext4_nonda_switch(struct super_block * sb)2712 static int ext4_nonda_switch(struct super_block *sb)
2713 {
2714 s64 free_clusters, dirty_clusters;
2715 struct ext4_sb_info *sbi = EXT4_SB(sb);
2716
2717 /*
2718 * switch to non delalloc mode if we are running low
2719 * on free block. The free block accounting via percpu
2720 * counters can get slightly wrong with percpu_counter_batch getting
2721 * accumulated on each CPU without updating global counters
2722 * Delalloc need an accurate free block accounting. So switch
2723 * to non delalloc when we are near to error range.
2724 */
2725 free_clusters =
2726 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2727 dirty_clusters =
2728 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2729 /*
2730 * Start pushing delalloc when 1/2 of free blocks are dirty.
2731 */
2732 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2733 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2734
2735 if (2 * free_clusters < 3 * dirty_clusters ||
2736 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2737 /*
2738 * free block count is less than 150% of dirty blocks
2739 * or free blocks is less than watermark
2740 */
2741 return 1;
2742 }
2743 return 0;
2744 }
2745
2746 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)2747 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2748 {
2749 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2750 return 1;
2751
2752 if (pos + len <= 0x7fffffffULL)
2753 return 1;
2754
2755 /* We might need to update the superblock to set LARGE_FILE */
2756 return 2;
2757 }
2758
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2759 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2760 loff_t pos, unsigned len, unsigned flags,
2761 struct page **pagep, void **fsdata)
2762 {
2763 int ret, retries = 0;
2764 struct page *page;
2765 pgoff_t index;
2766 struct inode *inode = mapping->host;
2767 handle_t *handle;
2768
2769 index = pos >> PAGE_CACHE_SHIFT;
2770
2771 if (ext4_nonda_switch(inode->i_sb)) {
2772 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2773 return ext4_write_begin(file, mapping, pos,
2774 len, flags, pagep, fsdata);
2775 }
2776 *fsdata = (void *)0;
2777 if (trace_android_fs_datawrite_start_enabled()) {
2778 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
2779
2780 path = android_fstrace_get_pathname(pathbuf,
2781 MAX_TRACE_PATHBUF_LEN,
2782 inode);
2783 trace_android_fs_datawrite_start(inode, pos, len,
2784 current->pid,
2785 path, current->comm);
2786 }
2787 trace_ext4_da_write_begin(inode, pos, len, flags);
2788
2789 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2790 ret = ext4_da_write_inline_data_begin(mapping, inode,
2791 pos, len, flags,
2792 pagep, fsdata);
2793 if (ret < 0)
2794 return ret;
2795 if (ret == 1)
2796 return 0;
2797 }
2798
2799 /*
2800 * grab_cache_page_write_begin() can take a long time if the
2801 * system is thrashing due to memory pressure, or if the page
2802 * is being written back. So grab it first before we start
2803 * the transaction handle. This also allows us to allocate
2804 * the page (if needed) without using GFP_NOFS.
2805 */
2806 retry_grab:
2807 page = grab_cache_page_write_begin(mapping, index, flags);
2808 if (!page)
2809 return -ENOMEM;
2810 unlock_page(page);
2811
2812 /*
2813 * With delayed allocation, we don't log the i_disksize update
2814 * if there is delayed block allocation. But we still need
2815 * to journalling the i_disksize update if writes to the end
2816 * of file which has an already mapped buffer.
2817 */
2818 retry_journal:
2819 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2820 ext4_da_write_credits(inode, pos, len));
2821 if (IS_ERR(handle)) {
2822 page_cache_release(page);
2823 return PTR_ERR(handle);
2824 }
2825
2826 lock_page(page);
2827 if (page->mapping != mapping) {
2828 /* The page got truncated from under us */
2829 unlock_page(page);
2830 page_cache_release(page);
2831 ext4_journal_stop(handle);
2832 goto retry_grab;
2833 }
2834 /* In case writeback began while the page was unlocked */
2835 wait_for_stable_page(page);
2836
2837 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2838 ret = ext4_block_write_begin(page, pos, len,
2839 ext4_da_get_block_prep);
2840 #else
2841 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2842 #endif
2843 if (ret < 0) {
2844 unlock_page(page);
2845 ext4_journal_stop(handle);
2846 /*
2847 * block_write_begin may have instantiated a few blocks
2848 * outside i_size. Trim these off again. Don't need
2849 * i_size_read because we hold i_mutex.
2850 */
2851 if (pos + len > inode->i_size)
2852 ext4_truncate_failed_write(inode);
2853
2854 if (ret == -ENOSPC &&
2855 ext4_should_retry_alloc(inode->i_sb, &retries))
2856 goto retry_journal;
2857
2858 page_cache_release(page);
2859 return ret;
2860 }
2861
2862 *pagep = page;
2863 return ret;
2864 }
2865
2866 /*
2867 * Check if we should update i_disksize
2868 * when write to the end of file but not require block allocation
2869 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)2870 static int ext4_da_should_update_i_disksize(struct page *page,
2871 unsigned long offset)
2872 {
2873 struct buffer_head *bh;
2874 struct inode *inode = page->mapping->host;
2875 unsigned int idx;
2876 int i;
2877
2878 bh = page_buffers(page);
2879 idx = offset >> inode->i_blkbits;
2880
2881 for (i = 0; i < idx; i++)
2882 bh = bh->b_this_page;
2883
2884 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2885 return 0;
2886 return 1;
2887 }
2888
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2889 static int ext4_da_write_end(struct file *file,
2890 struct address_space *mapping,
2891 loff_t pos, unsigned len, unsigned copied,
2892 struct page *page, void *fsdata)
2893 {
2894 struct inode *inode = mapping->host;
2895 int ret = 0, ret2;
2896 handle_t *handle = ext4_journal_current_handle();
2897 loff_t new_i_size;
2898 unsigned long start, end;
2899 int write_mode = (int)(unsigned long)fsdata;
2900
2901 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2902 return ext4_write_end(file, mapping, pos,
2903 len, copied, page, fsdata);
2904
2905 trace_android_fs_datawrite_end(inode, pos, len);
2906 trace_ext4_da_write_end(inode, pos, len, copied);
2907 start = pos & (PAGE_CACHE_SIZE - 1);
2908 end = start + copied - 1;
2909
2910 /*
2911 * generic_write_end() will run mark_inode_dirty() if i_size
2912 * changes. So let's piggyback the i_disksize mark_inode_dirty
2913 * into that.
2914 */
2915 new_i_size = pos + copied;
2916 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2917 if (ext4_has_inline_data(inode) ||
2918 ext4_da_should_update_i_disksize(page, end)) {
2919 ext4_update_i_disksize(inode, new_i_size);
2920 /* We need to mark inode dirty even if
2921 * new_i_size is less that inode->i_size
2922 * bu greater than i_disksize.(hint delalloc)
2923 */
2924 ext4_mark_inode_dirty(handle, inode);
2925 }
2926 }
2927
2928 if (write_mode != CONVERT_INLINE_DATA &&
2929 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2930 ext4_has_inline_data(inode))
2931 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2932 page);
2933 else
2934 ret2 = generic_write_end(file, mapping, pos, len, copied,
2935 page, fsdata);
2936
2937 copied = ret2;
2938 if (ret2 < 0)
2939 ret = ret2;
2940 ret2 = ext4_journal_stop(handle);
2941 if (!ret)
2942 ret = ret2;
2943
2944 return ret ? ret : copied;
2945 }
2946
ext4_da_invalidatepage(struct page * page,unsigned int offset,unsigned int length)2947 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2948 unsigned int length)
2949 {
2950 /*
2951 * Drop reserved blocks
2952 */
2953 BUG_ON(!PageLocked(page));
2954 if (!page_has_buffers(page))
2955 goto out;
2956
2957 ext4_da_page_release_reservation(page, offset, length);
2958
2959 out:
2960 ext4_invalidatepage(page, offset, length);
2961
2962 return;
2963 }
2964
2965 /*
2966 * Force all delayed allocation blocks to be allocated for a given inode.
2967 */
ext4_alloc_da_blocks(struct inode * inode)2968 int ext4_alloc_da_blocks(struct inode *inode)
2969 {
2970 trace_ext4_alloc_da_blocks(inode);
2971
2972 if (!EXT4_I(inode)->i_reserved_data_blocks)
2973 return 0;
2974
2975 /*
2976 * We do something simple for now. The filemap_flush() will
2977 * also start triggering a write of the data blocks, which is
2978 * not strictly speaking necessary (and for users of
2979 * laptop_mode, not even desirable). However, to do otherwise
2980 * would require replicating code paths in:
2981 *
2982 * ext4_writepages() ->
2983 * write_cache_pages() ---> (via passed in callback function)
2984 * __mpage_da_writepage() -->
2985 * mpage_add_bh_to_extent()
2986 * mpage_da_map_blocks()
2987 *
2988 * The problem is that write_cache_pages(), located in
2989 * mm/page-writeback.c, marks pages clean in preparation for
2990 * doing I/O, which is not desirable if we're not planning on
2991 * doing I/O at all.
2992 *
2993 * We could call write_cache_pages(), and then redirty all of
2994 * the pages by calling redirty_page_for_writepage() but that
2995 * would be ugly in the extreme. So instead we would need to
2996 * replicate parts of the code in the above functions,
2997 * simplifying them because we wouldn't actually intend to
2998 * write out the pages, but rather only collect contiguous
2999 * logical block extents, call the multi-block allocator, and
3000 * then update the buffer heads with the block allocations.
3001 *
3002 * For now, though, we'll cheat by calling filemap_flush(),
3003 * which will map the blocks, and start the I/O, but not
3004 * actually wait for the I/O to complete.
3005 */
3006 return filemap_flush(inode->i_mapping);
3007 }
3008
3009 /*
3010 * bmap() is special. It gets used by applications such as lilo and by
3011 * the swapper to find the on-disk block of a specific piece of data.
3012 *
3013 * Naturally, this is dangerous if the block concerned is still in the
3014 * journal. If somebody makes a swapfile on an ext4 data-journaling
3015 * filesystem and enables swap, then they may get a nasty shock when the
3016 * data getting swapped to that swapfile suddenly gets overwritten by
3017 * the original zero's written out previously to the journal and
3018 * awaiting writeback in the kernel's buffer cache.
3019 *
3020 * So, if we see any bmap calls here on a modified, data-journaled file,
3021 * take extra steps to flush any blocks which might be in the cache.
3022 */
ext4_bmap(struct address_space * mapping,sector_t block)3023 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3024 {
3025 struct inode *inode = mapping->host;
3026 journal_t *journal;
3027 int err;
3028
3029 /*
3030 * We can get here for an inline file via the FIBMAP ioctl
3031 */
3032 if (ext4_has_inline_data(inode))
3033 return 0;
3034
3035 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3036 test_opt(inode->i_sb, DELALLOC)) {
3037 /*
3038 * With delalloc we want to sync the file
3039 * so that we can make sure we allocate
3040 * blocks for file
3041 */
3042 filemap_write_and_wait(mapping);
3043 }
3044
3045 if (EXT4_JOURNAL(inode) &&
3046 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3047 /*
3048 * This is a REALLY heavyweight approach, but the use of
3049 * bmap on dirty files is expected to be extremely rare:
3050 * only if we run lilo or swapon on a freshly made file
3051 * do we expect this to happen.
3052 *
3053 * (bmap requires CAP_SYS_RAWIO so this does not
3054 * represent an unprivileged user DOS attack --- we'd be
3055 * in trouble if mortal users could trigger this path at
3056 * will.)
3057 *
3058 * NB. EXT4_STATE_JDATA is not set on files other than
3059 * regular files. If somebody wants to bmap a directory
3060 * or symlink and gets confused because the buffer
3061 * hasn't yet been flushed to disk, they deserve
3062 * everything they get.
3063 */
3064
3065 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3066 journal = EXT4_JOURNAL(inode);
3067 jbd2_journal_lock_updates(journal);
3068 err = jbd2_journal_flush(journal);
3069 jbd2_journal_unlock_updates(journal);
3070
3071 if (err)
3072 return 0;
3073 }
3074
3075 return generic_block_bmap(mapping, block, ext4_get_block);
3076 }
3077
ext4_readpage(struct file * file,struct page * page)3078 static int ext4_readpage(struct file *file, struct page *page)
3079 {
3080 int ret = -EAGAIN;
3081 struct inode *inode = page->mapping->host;
3082
3083 trace_ext4_readpage(page);
3084
3085 if (ext4_has_inline_data(inode))
3086 ret = ext4_readpage_inline(inode, page);
3087
3088 if (ret == -EAGAIN)
3089 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3090
3091 return ret;
3092 }
3093
3094 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3095 ext4_readpages(struct file *file, struct address_space *mapping,
3096 struct list_head *pages, unsigned nr_pages)
3097 {
3098 struct inode *inode = mapping->host;
3099
3100 /* If the file has inline data, no need to do readpages. */
3101 if (ext4_has_inline_data(inode))
3102 return 0;
3103
3104 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3105 }
3106
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3107 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3108 unsigned int length)
3109 {
3110 trace_ext4_invalidatepage(page, offset, length);
3111
3112 /* No journalling happens on data buffers when this function is used */
3113 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3114
3115 block_invalidatepage(page, offset, length);
3116 }
3117
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3118 static int __ext4_journalled_invalidatepage(struct page *page,
3119 unsigned int offset,
3120 unsigned int length)
3121 {
3122 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3123
3124 trace_ext4_journalled_invalidatepage(page, offset, length);
3125
3126 /*
3127 * If it's a full truncate we just forget about the pending dirtying
3128 */
3129 if (offset == 0 && length == PAGE_CACHE_SIZE)
3130 ClearPageChecked(page);
3131
3132 return jbd2_journal_invalidatepage(journal, page, offset, length);
3133 }
3134
3135 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3136 static void ext4_journalled_invalidatepage(struct page *page,
3137 unsigned int offset,
3138 unsigned int length)
3139 {
3140 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3141 }
3142
ext4_releasepage(struct page * page,gfp_t wait)3143 static int ext4_releasepage(struct page *page, gfp_t wait)
3144 {
3145 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3146
3147 trace_ext4_releasepage(page);
3148
3149 /* Page has dirty journalled data -> cannot release */
3150 if (PageChecked(page))
3151 return 0;
3152 if (journal)
3153 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3154 else
3155 return try_to_free_buffers(page);
3156 }
3157
3158 /*
3159 * ext4_get_block used when preparing for a DIO write or buffer write.
3160 * We allocate an uinitialized extent if blocks haven't been allocated.
3161 * The extent will be converted to initialized after the IO is complete.
3162 */
ext4_get_block_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3163 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3164 struct buffer_head *bh_result, int create)
3165 {
3166 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3167 inode->i_ino, create);
3168 return _ext4_get_block(inode, iblock, bh_result,
3169 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3170 }
3171
ext4_get_block_write_nolock(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3172 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3173 struct buffer_head *bh_result, int create)
3174 {
3175 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3176 inode->i_ino, create);
3177 return _ext4_get_block(inode, iblock, bh_result,
3178 EXT4_GET_BLOCKS_NO_LOCK);
3179 }
3180
ext4_get_block_dax(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)3181 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3182 struct buffer_head *bh_result, int create)
3183 {
3184 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3185 if (create)
3186 flags |= EXT4_GET_BLOCKS_CREATE;
3187 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3188 inode->i_ino, create);
3189 return _ext4_get_block(inode, iblock, bh_result, flags);
3190 }
3191
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3192 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3193 ssize_t size, void *private)
3194 {
3195 ext4_io_end_t *io_end = iocb->private;
3196
3197 /* if not async direct IO just return */
3198 if (!io_end)
3199 return;
3200
3201 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3202 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3203 iocb->private, io_end->inode->i_ino, iocb, offset,
3204 size);
3205
3206 iocb->private = NULL;
3207 io_end->offset = offset;
3208 io_end->size = size;
3209 ext4_put_io_end(io_end);
3210 }
3211
3212 /*
3213 * For ext4 extent files, ext4 will do direct-io write to holes,
3214 * preallocated extents, and those write extend the file, no need to
3215 * fall back to buffered IO.
3216 *
3217 * For holes, we fallocate those blocks, mark them as unwritten
3218 * If those blocks were preallocated, we mark sure they are split, but
3219 * still keep the range to write as unwritten.
3220 *
3221 * The unwritten extents will be converted to written when DIO is completed.
3222 * For async direct IO, since the IO may still pending when return, we
3223 * set up an end_io call back function, which will do the conversion
3224 * when async direct IO completed.
3225 *
3226 * If the O_DIRECT write will extend the file then add this inode to the
3227 * orphan list. So recovery will truncate it back to the original size
3228 * if the machine crashes during the write.
3229 *
3230 */
ext4_ext_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3231 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3232 loff_t offset)
3233 {
3234 struct file *file = iocb->ki_filp;
3235 struct inode *inode = file->f_mapping->host;
3236 ssize_t ret;
3237 size_t count = iov_iter_count(iter);
3238 int overwrite = 0;
3239 get_block_t *get_block_func = NULL;
3240 int dio_flags = 0;
3241 loff_t final_size = offset + count;
3242 ext4_io_end_t *io_end = NULL;
3243
3244 /* Use the old path for reads and writes beyond i_size. */
3245 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3246 return ext4_ind_direct_IO(iocb, iter, offset);
3247
3248 BUG_ON(iocb->private == NULL);
3249
3250 /*
3251 * Make all waiters for direct IO properly wait also for extent
3252 * conversion. This also disallows race between truncate() and
3253 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3254 */
3255 if (iov_iter_rw(iter) == WRITE)
3256 inode_dio_begin(inode);
3257
3258 /* If we do a overwrite dio, i_mutex locking can be released */
3259 overwrite = *((int *)iocb->private);
3260
3261 if (overwrite) {
3262 down_read(&EXT4_I(inode)->i_data_sem);
3263 mutex_unlock(&inode->i_mutex);
3264 }
3265
3266 /*
3267 * We could direct write to holes and fallocate.
3268 *
3269 * Allocated blocks to fill the hole are marked as
3270 * unwritten to prevent parallel buffered read to expose
3271 * the stale data before DIO complete the data IO.
3272 *
3273 * As to previously fallocated extents, ext4 get_block will
3274 * just simply mark the buffer mapped but still keep the
3275 * extents unwritten.
3276 *
3277 * For non AIO case, we will convert those unwritten extents
3278 * to written after return back from blockdev_direct_IO.
3279 *
3280 * For async DIO, the conversion needs to be deferred when the
3281 * IO is completed. The ext4 end_io callback function will be
3282 * called to take care of the conversion work. Here for async
3283 * case, we allocate an io_end structure to hook to the iocb.
3284 */
3285 iocb->private = NULL;
3286 if (overwrite) {
3287 get_block_func = ext4_get_block_write_nolock;
3288 } else {
3289 ext4_inode_aio_set(inode, NULL);
3290 if (!is_sync_kiocb(iocb)) {
3291 io_end = ext4_init_io_end(inode, GFP_NOFS);
3292 if (!io_end) {
3293 ret = -ENOMEM;
3294 goto retake_lock;
3295 }
3296 /*
3297 * Grab reference for DIO. Will be dropped in
3298 * ext4_end_io_dio()
3299 */
3300 iocb->private = ext4_get_io_end(io_end);
3301 /*
3302 * we save the io structure for current async direct
3303 * IO, so that later ext4_map_blocks() could flag the
3304 * io structure whether there is a unwritten extents
3305 * needs to be converted when IO is completed.
3306 */
3307 ext4_inode_aio_set(inode, io_end);
3308 }
3309 get_block_func = ext4_get_block_write;
3310 dio_flags = DIO_LOCKING;
3311 }
3312 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3313 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3314 #endif
3315 if (IS_DAX(inode))
3316 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3317 ext4_end_io_dio, dio_flags);
3318 else
3319 ret = __blockdev_direct_IO(iocb, inode,
3320 inode->i_sb->s_bdev, iter, offset,
3321 get_block_func,
3322 ext4_end_io_dio, NULL, dio_flags);
3323
3324 /*
3325 * Put our reference to io_end. This can free the io_end structure e.g.
3326 * in sync IO case or in case of error. It can even perform extent
3327 * conversion if all bios we submitted finished before we got here.
3328 * Note that in that case iocb->private can be already set to NULL
3329 * here.
3330 */
3331 if (io_end) {
3332 ext4_inode_aio_set(inode, NULL);
3333 ext4_put_io_end(io_end);
3334 /*
3335 * When no IO was submitted ext4_end_io_dio() was not
3336 * called so we have to put iocb's reference.
3337 */
3338 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3339 WARN_ON(iocb->private != io_end);
3340 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3341 ext4_put_io_end(io_end);
3342 iocb->private = NULL;
3343 }
3344 }
3345 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3346 EXT4_STATE_DIO_UNWRITTEN)) {
3347 int err;
3348 /*
3349 * for non AIO case, since the IO is already
3350 * completed, we could do the conversion right here
3351 */
3352 err = ext4_convert_unwritten_extents(NULL, inode,
3353 offset, ret);
3354 if (err < 0)
3355 ret = err;
3356 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3357 }
3358
3359 retake_lock:
3360 if (iov_iter_rw(iter) == WRITE)
3361 inode_dio_end(inode);
3362 /* take i_mutex locking again if we do a ovewrite dio */
3363 if (overwrite) {
3364 up_read(&EXT4_I(inode)->i_data_sem);
3365 mutex_lock(&inode->i_mutex);
3366 }
3367
3368 return ret;
3369 }
3370
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3371 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3372 loff_t offset)
3373 {
3374 struct file *file = iocb->ki_filp;
3375 struct inode *inode = file->f_mapping->host;
3376 size_t count = iov_iter_count(iter);
3377 ssize_t ret;
3378
3379 if (iov_iter_rw(iter) == READ) {
3380 loff_t size = i_size_read(inode);
3381
3382 if (offset >= size)
3383 return 0;
3384 }
3385
3386 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3387 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3388 return 0;
3389 #endif
3390
3391 /*
3392 * If we are doing data journalling we don't support O_DIRECT
3393 */
3394 if (ext4_should_journal_data(inode))
3395 return 0;
3396
3397 /* Let buffer I/O handle the inline data case. */
3398 if (ext4_has_inline_data(inode))
3399 return 0;
3400
3401 if (trace_android_fs_dataread_start_enabled() &&
3402 (iov_iter_rw(iter) == READ)) {
3403 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3404
3405 path = android_fstrace_get_pathname(pathbuf,
3406 MAX_TRACE_PATHBUF_LEN,
3407 inode);
3408 trace_android_fs_dataread_start(inode, offset, count,
3409 current->pid, path,
3410 current->comm);
3411 }
3412 if (trace_android_fs_datawrite_start_enabled() &&
3413 (iov_iter_rw(iter) == WRITE)) {
3414 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3415
3416 path = android_fstrace_get_pathname(pathbuf,
3417 MAX_TRACE_PATHBUF_LEN,
3418 inode);
3419 trace_android_fs_datawrite_start(inode, offset, count,
3420 current->pid, path,
3421 current->comm);
3422 }
3423 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3424 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425 ret = ext4_ext_direct_IO(iocb, iter, offset);
3426 else
3427 ret = ext4_ind_direct_IO(iocb, iter, offset);
3428 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3429
3430 if (trace_android_fs_dataread_start_enabled() &&
3431 (iov_iter_rw(iter) == READ))
3432 trace_android_fs_dataread_end(inode, offset, count);
3433 if (trace_android_fs_datawrite_start_enabled() &&
3434 (iov_iter_rw(iter) == WRITE))
3435 trace_android_fs_datawrite_end(inode, offset, count);
3436
3437 return ret;
3438 }
3439
3440 /*
3441 * Pages can be marked dirty completely asynchronously from ext4's journalling
3442 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3443 * much here because ->set_page_dirty is called under VFS locks. The page is
3444 * not necessarily locked.
3445 *
3446 * We cannot just dirty the page and leave attached buffers clean, because the
3447 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3448 * or jbddirty because all the journalling code will explode.
3449 *
3450 * So what we do is to mark the page "pending dirty" and next time writepage
3451 * is called, propagate that into the buffers appropriately.
3452 */
ext4_journalled_set_page_dirty(struct page * page)3453 static int ext4_journalled_set_page_dirty(struct page *page)
3454 {
3455 SetPageChecked(page);
3456 return __set_page_dirty_nobuffers(page);
3457 }
3458
3459 static const struct address_space_operations ext4_aops = {
3460 .readpage = ext4_readpage,
3461 .readpages = ext4_readpages,
3462 .writepage = ext4_writepage,
3463 .writepages = ext4_writepages,
3464 .write_begin = ext4_write_begin,
3465 .write_end = ext4_write_end,
3466 .bmap = ext4_bmap,
3467 .invalidatepage = ext4_invalidatepage,
3468 .releasepage = ext4_releasepage,
3469 .direct_IO = ext4_direct_IO,
3470 .migratepage = buffer_migrate_page,
3471 .is_partially_uptodate = block_is_partially_uptodate,
3472 .error_remove_page = generic_error_remove_page,
3473 };
3474
3475 static const struct address_space_operations ext4_journalled_aops = {
3476 .readpage = ext4_readpage,
3477 .readpages = ext4_readpages,
3478 .writepage = ext4_writepage,
3479 .writepages = ext4_writepages,
3480 .write_begin = ext4_write_begin,
3481 .write_end = ext4_journalled_write_end,
3482 .set_page_dirty = ext4_journalled_set_page_dirty,
3483 .bmap = ext4_bmap,
3484 .invalidatepage = ext4_journalled_invalidatepage,
3485 .releasepage = ext4_releasepage,
3486 .direct_IO = ext4_direct_IO,
3487 .is_partially_uptodate = block_is_partially_uptodate,
3488 .error_remove_page = generic_error_remove_page,
3489 };
3490
3491 static const struct address_space_operations ext4_da_aops = {
3492 .readpage = ext4_readpage,
3493 .readpages = ext4_readpages,
3494 .writepage = ext4_writepage,
3495 .writepages = ext4_writepages,
3496 .write_begin = ext4_da_write_begin,
3497 .write_end = ext4_da_write_end,
3498 .bmap = ext4_bmap,
3499 .invalidatepage = ext4_da_invalidatepage,
3500 .releasepage = ext4_releasepage,
3501 .direct_IO = ext4_direct_IO,
3502 .migratepage = buffer_migrate_page,
3503 .is_partially_uptodate = block_is_partially_uptodate,
3504 .error_remove_page = generic_error_remove_page,
3505 };
3506
ext4_set_aops(struct inode * inode)3507 void ext4_set_aops(struct inode *inode)
3508 {
3509 switch (ext4_inode_journal_mode(inode)) {
3510 case EXT4_INODE_ORDERED_DATA_MODE:
3511 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3512 break;
3513 case EXT4_INODE_WRITEBACK_DATA_MODE:
3514 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3515 break;
3516 case EXT4_INODE_JOURNAL_DATA_MODE:
3517 inode->i_mapping->a_ops = &ext4_journalled_aops;
3518 return;
3519 default:
3520 BUG();
3521 }
3522 if (test_opt(inode->i_sb, DELALLOC))
3523 inode->i_mapping->a_ops = &ext4_da_aops;
3524 else
3525 inode->i_mapping->a_ops = &ext4_aops;
3526 }
3527
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3528 static int __ext4_block_zero_page_range(handle_t *handle,
3529 struct address_space *mapping, loff_t from, loff_t length)
3530 {
3531 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3532 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3533 unsigned blocksize, pos;
3534 ext4_lblk_t iblock;
3535 struct inode *inode = mapping->host;
3536 struct buffer_head *bh;
3537 struct page *page;
3538 int err = 0;
3539
3540 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3541 mapping_gfp_constraint(mapping, ~__GFP_FS));
3542 if (!page)
3543 return -ENOMEM;
3544
3545 blocksize = inode->i_sb->s_blocksize;
3546
3547 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3548
3549 if (!page_has_buffers(page))
3550 create_empty_buffers(page, blocksize, 0);
3551
3552 /* Find the buffer that contains "offset" */
3553 bh = page_buffers(page);
3554 pos = blocksize;
3555 while (offset >= pos) {
3556 bh = bh->b_this_page;
3557 iblock++;
3558 pos += blocksize;
3559 }
3560 if (buffer_freed(bh)) {
3561 BUFFER_TRACE(bh, "freed: skip");
3562 goto unlock;
3563 }
3564 if (!buffer_mapped(bh)) {
3565 BUFFER_TRACE(bh, "unmapped");
3566 ext4_get_block(inode, iblock, bh, 0);
3567 /* unmapped? It's a hole - nothing to do */
3568 if (!buffer_mapped(bh)) {
3569 BUFFER_TRACE(bh, "still unmapped");
3570 goto unlock;
3571 }
3572 }
3573
3574 /* Ok, it's mapped. Make sure it's up-to-date */
3575 if (PageUptodate(page))
3576 set_buffer_uptodate(bh);
3577
3578 if (!buffer_uptodate(bh)) {
3579 err = -EIO;
3580 ll_rw_block(READ, 1, &bh);
3581 wait_on_buffer(bh);
3582 /* Uhhuh. Read error. Complain and punt. */
3583 if (!buffer_uptodate(bh))
3584 goto unlock;
3585 if (S_ISREG(inode->i_mode) &&
3586 ext4_encrypted_inode(inode)) {
3587 /* We expect the key to be set. */
3588 BUG_ON(!ext4_has_encryption_key(inode));
3589 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3590 WARN_ON_ONCE(ext4_decrypt(page));
3591 }
3592 }
3593 if (ext4_should_journal_data(inode)) {
3594 BUFFER_TRACE(bh, "get write access");
3595 err = ext4_journal_get_write_access(handle, bh);
3596 if (err)
3597 goto unlock;
3598 }
3599 zero_user(page, offset, length);
3600 BUFFER_TRACE(bh, "zeroed end of block");
3601
3602 if (ext4_should_journal_data(inode)) {
3603 err = ext4_handle_dirty_metadata(handle, inode, bh);
3604 } else {
3605 err = 0;
3606 mark_buffer_dirty(bh);
3607 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3608 err = ext4_jbd2_file_inode(handle, inode);
3609 }
3610
3611 unlock:
3612 unlock_page(page);
3613 page_cache_release(page);
3614 return err;
3615 }
3616
3617 /*
3618 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3619 * starting from file offset 'from'. The range to be zero'd must
3620 * be contained with in one block. If the specified range exceeds
3621 * the end of the block it will be shortened to end of the block
3622 * that cooresponds to 'from'
3623 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3624 static int ext4_block_zero_page_range(handle_t *handle,
3625 struct address_space *mapping, loff_t from, loff_t length)
3626 {
3627 struct inode *inode = mapping->host;
3628 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3629 unsigned blocksize = inode->i_sb->s_blocksize;
3630 unsigned max = blocksize - (offset & (blocksize - 1));
3631
3632 /*
3633 * correct length if it does not fall between
3634 * 'from' and the end of the block
3635 */
3636 if (length > max || length < 0)
3637 length = max;
3638
3639 if (IS_DAX(inode))
3640 return dax_zero_page_range(inode, from, length, ext4_get_block);
3641 return __ext4_block_zero_page_range(handle, mapping, from, length);
3642 }
3643
3644 /*
3645 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3646 * up to the end of the block which corresponds to `from'.
3647 * This required during truncate. We need to physically zero the tail end
3648 * of that block so it doesn't yield old data if the file is later grown.
3649 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3650 static int ext4_block_truncate_page(handle_t *handle,
3651 struct address_space *mapping, loff_t from)
3652 {
3653 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3654 unsigned length;
3655 unsigned blocksize;
3656 struct inode *inode = mapping->host;
3657
3658 /* If we are processing an encrypted inode during orphan list handling */
3659 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3660 return 0;
3661
3662 blocksize = inode->i_sb->s_blocksize;
3663 length = blocksize - (offset & (blocksize - 1));
3664
3665 return ext4_block_zero_page_range(handle, mapping, from, length);
3666 }
3667
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3668 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3669 loff_t lstart, loff_t length)
3670 {
3671 struct super_block *sb = inode->i_sb;
3672 struct address_space *mapping = inode->i_mapping;
3673 unsigned partial_start, partial_end;
3674 ext4_fsblk_t start, end;
3675 loff_t byte_end = (lstart + length - 1);
3676 int err = 0;
3677
3678 partial_start = lstart & (sb->s_blocksize - 1);
3679 partial_end = byte_end & (sb->s_blocksize - 1);
3680
3681 start = lstart >> sb->s_blocksize_bits;
3682 end = byte_end >> sb->s_blocksize_bits;
3683
3684 /* Handle partial zero within the single block */
3685 if (start == end &&
3686 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3687 err = ext4_block_zero_page_range(handle, mapping,
3688 lstart, length);
3689 return err;
3690 }
3691 /* Handle partial zero out on the start of the range */
3692 if (partial_start) {
3693 err = ext4_block_zero_page_range(handle, mapping,
3694 lstart, sb->s_blocksize);
3695 if (err)
3696 return err;
3697 }
3698 /* Handle partial zero out on the end of the range */
3699 if (partial_end != sb->s_blocksize - 1)
3700 err = ext4_block_zero_page_range(handle, mapping,
3701 byte_end - partial_end,
3702 partial_end + 1);
3703 return err;
3704 }
3705
ext4_can_truncate(struct inode * inode)3706 int ext4_can_truncate(struct inode *inode)
3707 {
3708 if (S_ISREG(inode->i_mode))
3709 return 1;
3710 if (S_ISDIR(inode->i_mode))
3711 return 1;
3712 if (S_ISLNK(inode->i_mode))
3713 return !ext4_inode_is_fast_symlink(inode);
3714 return 0;
3715 }
3716
3717 /*
3718 * We have to make sure i_disksize gets properly updated before we truncate
3719 * page cache due to hole punching or zero range. Otherwise i_disksize update
3720 * can get lost as it may have been postponed to submission of writeback but
3721 * that will never happen after we truncate page cache.
3722 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3723 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3724 loff_t len)
3725 {
3726 handle_t *handle;
3727 loff_t size = i_size_read(inode);
3728
3729 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3730 if (offset > size || offset + len < size)
3731 return 0;
3732
3733 if (EXT4_I(inode)->i_disksize >= size)
3734 return 0;
3735
3736 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3737 if (IS_ERR(handle))
3738 return PTR_ERR(handle);
3739 ext4_update_i_disksize(inode, size);
3740 ext4_mark_inode_dirty(handle, inode);
3741 ext4_journal_stop(handle);
3742
3743 return 0;
3744 }
3745
3746 /*
3747 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3748 * associated with the given offset and length
3749 *
3750 * @inode: File inode
3751 * @offset: The offset where the hole will begin
3752 * @len: The length of the hole
3753 *
3754 * Returns: 0 on success or negative on failure
3755 */
3756
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)3757 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3758 {
3759 struct super_block *sb = inode->i_sb;
3760 ext4_lblk_t first_block, stop_block;
3761 struct address_space *mapping = inode->i_mapping;
3762 loff_t first_block_offset, last_block_offset;
3763 handle_t *handle;
3764 unsigned int credits;
3765 int ret = 0;
3766
3767 if (!S_ISREG(inode->i_mode))
3768 return -EOPNOTSUPP;
3769
3770 trace_ext4_punch_hole(inode, offset, length, 0);
3771
3772 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3773 if (ext4_has_inline_data(inode)) {
3774 down_write(&EXT4_I(inode)->i_mmap_sem);
3775 ret = ext4_convert_inline_data(inode);
3776 up_write(&EXT4_I(inode)->i_mmap_sem);
3777 if (ret)
3778 return ret;
3779 }
3780
3781 /*
3782 * Write out all dirty pages to avoid race conditions
3783 * Then release them.
3784 */
3785 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3786 ret = filemap_write_and_wait_range(mapping, offset,
3787 offset + length - 1);
3788 if (ret)
3789 return ret;
3790 }
3791
3792 mutex_lock(&inode->i_mutex);
3793
3794 /* No need to punch hole beyond i_size */
3795 if (offset >= inode->i_size)
3796 goto out_mutex;
3797
3798 /*
3799 * If the hole extends beyond i_size, set the hole
3800 * to end after the page that contains i_size
3801 */
3802 if (offset + length > inode->i_size) {
3803 length = inode->i_size +
3804 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3805 offset;
3806 }
3807
3808 if (offset & (sb->s_blocksize - 1) ||
3809 (offset + length) & (sb->s_blocksize - 1)) {
3810 /*
3811 * Attach jinode to inode for jbd2 if we do any zeroing of
3812 * partial block
3813 */
3814 ret = ext4_inode_attach_jinode(inode);
3815 if (ret < 0)
3816 goto out_mutex;
3817
3818 }
3819
3820 /* Wait all existing dio workers, newcomers will block on i_mutex */
3821 ext4_inode_block_unlocked_dio(inode);
3822 inode_dio_wait(inode);
3823
3824 /*
3825 * Prevent page faults from reinstantiating pages we have released from
3826 * page cache.
3827 */
3828 down_write(&EXT4_I(inode)->i_mmap_sem);
3829 first_block_offset = round_up(offset, sb->s_blocksize);
3830 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3831
3832 /* Now release the pages and zero block aligned part of pages*/
3833 if (last_block_offset > first_block_offset) {
3834 ret = ext4_update_disksize_before_punch(inode, offset, length);
3835 if (ret)
3836 goto out_dio;
3837 truncate_pagecache_range(inode, first_block_offset,
3838 last_block_offset);
3839 }
3840
3841 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3842 credits = ext4_writepage_trans_blocks(inode);
3843 else
3844 credits = ext4_blocks_for_truncate(inode);
3845 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3846 if (IS_ERR(handle)) {
3847 ret = PTR_ERR(handle);
3848 ext4_std_error(sb, ret);
3849 goto out_dio;
3850 }
3851
3852 ret = ext4_zero_partial_blocks(handle, inode, offset,
3853 length);
3854 if (ret)
3855 goto out_stop;
3856
3857 first_block = (offset + sb->s_blocksize - 1) >>
3858 EXT4_BLOCK_SIZE_BITS(sb);
3859 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3860
3861 /* If there are blocks to remove, do it */
3862 if (stop_block > first_block) {
3863
3864 down_write(&EXT4_I(inode)->i_data_sem);
3865 ext4_discard_preallocations(inode);
3866
3867 ret = ext4_es_remove_extent(inode, first_block,
3868 stop_block - first_block);
3869 if (ret) {
3870 up_write(&EXT4_I(inode)->i_data_sem);
3871 goto out_stop;
3872 }
3873
3874 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3875 ret = ext4_ext_remove_space(inode, first_block,
3876 stop_block - 1);
3877 else
3878 ret = ext4_ind_remove_space(handle, inode, first_block,
3879 stop_block);
3880
3881 up_write(&EXT4_I(inode)->i_data_sem);
3882 }
3883 if (IS_SYNC(inode))
3884 ext4_handle_sync(handle);
3885
3886 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3887 ext4_mark_inode_dirty(handle, inode);
3888 if (ret >= 0)
3889 ext4_update_inode_fsync_trans(handle, inode, 1);
3890 out_stop:
3891 ext4_journal_stop(handle);
3892 out_dio:
3893 up_write(&EXT4_I(inode)->i_mmap_sem);
3894 ext4_inode_resume_unlocked_dio(inode);
3895 out_mutex:
3896 mutex_unlock(&inode->i_mutex);
3897 return ret;
3898 }
3899
ext4_inode_attach_jinode(struct inode * inode)3900 int ext4_inode_attach_jinode(struct inode *inode)
3901 {
3902 struct ext4_inode_info *ei = EXT4_I(inode);
3903 struct jbd2_inode *jinode;
3904
3905 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3906 return 0;
3907
3908 jinode = jbd2_alloc_inode(GFP_KERNEL);
3909 spin_lock(&inode->i_lock);
3910 if (!ei->jinode) {
3911 if (!jinode) {
3912 spin_unlock(&inode->i_lock);
3913 return -ENOMEM;
3914 }
3915 ei->jinode = jinode;
3916 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3917 jinode = NULL;
3918 }
3919 spin_unlock(&inode->i_lock);
3920 if (unlikely(jinode != NULL))
3921 jbd2_free_inode(jinode);
3922 return 0;
3923 }
3924
3925 /*
3926 * ext4_truncate()
3927 *
3928 * We block out ext4_get_block() block instantiations across the entire
3929 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3930 * simultaneously on behalf of the same inode.
3931 *
3932 * As we work through the truncate and commit bits of it to the journal there
3933 * is one core, guiding principle: the file's tree must always be consistent on
3934 * disk. We must be able to restart the truncate after a crash.
3935 *
3936 * The file's tree may be transiently inconsistent in memory (although it
3937 * probably isn't), but whenever we close off and commit a journal transaction,
3938 * the contents of (the filesystem + the journal) must be consistent and
3939 * restartable. It's pretty simple, really: bottom up, right to left (although
3940 * left-to-right works OK too).
3941 *
3942 * Note that at recovery time, journal replay occurs *before* the restart of
3943 * truncate against the orphan inode list.
3944 *
3945 * The committed inode has the new, desired i_size (which is the same as
3946 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3947 * that this inode's truncate did not complete and it will again call
3948 * ext4_truncate() to have another go. So there will be instantiated blocks
3949 * to the right of the truncation point in a crashed ext4 filesystem. But
3950 * that's fine - as long as they are linked from the inode, the post-crash
3951 * ext4_truncate() run will find them and release them.
3952 */
ext4_truncate(struct inode * inode)3953 void ext4_truncate(struct inode *inode)
3954 {
3955 struct ext4_inode_info *ei = EXT4_I(inode);
3956 unsigned int credits;
3957 handle_t *handle;
3958 struct address_space *mapping = inode->i_mapping;
3959
3960 /*
3961 * There is a possibility that we're either freeing the inode
3962 * or it's a completely new inode. In those cases we might not
3963 * have i_mutex locked because it's not necessary.
3964 */
3965 if (!(inode->i_state & (I_NEW|I_FREEING)))
3966 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3967 trace_ext4_truncate_enter(inode);
3968
3969 if (!ext4_can_truncate(inode))
3970 return;
3971
3972 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3973
3974 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3975 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3976
3977 if (ext4_has_inline_data(inode)) {
3978 int has_inline = 1;
3979
3980 ext4_inline_data_truncate(inode, &has_inline);
3981 if (has_inline)
3982 return;
3983 }
3984
3985 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3986 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3987 if (ext4_inode_attach_jinode(inode) < 0)
3988 return;
3989 }
3990
3991 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3992 credits = ext4_writepage_trans_blocks(inode);
3993 else
3994 credits = ext4_blocks_for_truncate(inode);
3995
3996 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3997 if (IS_ERR(handle)) {
3998 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3999 return;
4000 }
4001
4002 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4003 ext4_block_truncate_page(handle, mapping, inode->i_size);
4004
4005 /*
4006 * We add the inode to the orphan list, so that if this
4007 * truncate spans multiple transactions, and we crash, we will
4008 * resume the truncate when the filesystem recovers. It also
4009 * marks the inode dirty, to catch the new size.
4010 *
4011 * Implication: the file must always be in a sane, consistent
4012 * truncatable state while each transaction commits.
4013 */
4014 if (ext4_orphan_add(handle, inode))
4015 goto out_stop;
4016
4017 down_write(&EXT4_I(inode)->i_data_sem);
4018
4019 ext4_discard_preallocations(inode);
4020
4021 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4022 ext4_ext_truncate(handle, inode);
4023 else
4024 ext4_ind_truncate(handle, inode);
4025
4026 up_write(&ei->i_data_sem);
4027
4028 if (IS_SYNC(inode))
4029 ext4_handle_sync(handle);
4030
4031 out_stop:
4032 /*
4033 * If this was a simple ftruncate() and the file will remain alive,
4034 * then we need to clear up the orphan record which we created above.
4035 * However, if this was a real unlink then we were called by
4036 * ext4_evict_inode(), and we allow that function to clean up the
4037 * orphan info for us.
4038 */
4039 if (inode->i_nlink)
4040 ext4_orphan_del(handle, inode);
4041
4042 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4043 ext4_mark_inode_dirty(handle, inode);
4044 ext4_journal_stop(handle);
4045
4046 trace_ext4_truncate_exit(inode);
4047 }
4048
4049 /*
4050 * ext4_get_inode_loc returns with an extra refcount against the inode's
4051 * underlying buffer_head on success. If 'in_mem' is true, we have all
4052 * data in memory that is needed to recreate the on-disk version of this
4053 * inode.
4054 */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4055 static int __ext4_get_inode_loc(struct inode *inode,
4056 struct ext4_iloc *iloc, int in_mem)
4057 {
4058 struct ext4_group_desc *gdp;
4059 struct buffer_head *bh;
4060 struct super_block *sb = inode->i_sb;
4061 ext4_fsblk_t block;
4062 int inodes_per_block, inode_offset;
4063
4064 iloc->bh = NULL;
4065 if (inode->i_ino < EXT4_ROOT_INO ||
4066 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4067 return -EFSCORRUPTED;
4068
4069 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4070 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4071 if (!gdp)
4072 return -EIO;
4073
4074 /*
4075 * Figure out the offset within the block group inode table
4076 */
4077 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4078 inode_offset = ((inode->i_ino - 1) %
4079 EXT4_INODES_PER_GROUP(sb));
4080 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4081 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4082
4083 bh = sb_getblk(sb, block);
4084 if (unlikely(!bh))
4085 return -ENOMEM;
4086 if (!buffer_uptodate(bh)) {
4087 lock_buffer(bh);
4088
4089 /*
4090 * If the buffer has the write error flag, we have failed
4091 * to write out another inode in the same block. In this
4092 * case, we don't have to read the block because we may
4093 * read the old inode data successfully.
4094 */
4095 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4096 set_buffer_uptodate(bh);
4097
4098 if (buffer_uptodate(bh)) {
4099 /* someone brought it uptodate while we waited */
4100 unlock_buffer(bh);
4101 goto has_buffer;
4102 }
4103
4104 /*
4105 * If we have all information of the inode in memory and this
4106 * is the only valid inode in the block, we need not read the
4107 * block.
4108 */
4109 if (in_mem) {
4110 struct buffer_head *bitmap_bh;
4111 int i, start;
4112
4113 start = inode_offset & ~(inodes_per_block - 1);
4114
4115 /* Is the inode bitmap in cache? */
4116 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4117 if (unlikely(!bitmap_bh))
4118 goto make_io;
4119
4120 /*
4121 * If the inode bitmap isn't in cache then the
4122 * optimisation may end up performing two reads instead
4123 * of one, so skip it.
4124 */
4125 if (!buffer_uptodate(bitmap_bh)) {
4126 brelse(bitmap_bh);
4127 goto make_io;
4128 }
4129 for (i = start; i < start + inodes_per_block; i++) {
4130 if (i == inode_offset)
4131 continue;
4132 if (ext4_test_bit(i, bitmap_bh->b_data))
4133 break;
4134 }
4135 brelse(bitmap_bh);
4136 if (i == start + inodes_per_block) {
4137 /* all other inodes are free, so skip I/O */
4138 memset(bh->b_data, 0, bh->b_size);
4139 set_buffer_uptodate(bh);
4140 unlock_buffer(bh);
4141 goto has_buffer;
4142 }
4143 }
4144
4145 make_io:
4146 /*
4147 * If we need to do any I/O, try to pre-readahead extra
4148 * blocks from the inode table.
4149 */
4150 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4151 ext4_fsblk_t b, end, table;
4152 unsigned num;
4153 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4154
4155 table = ext4_inode_table(sb, gdp);
4156 /* s_inode_readahead_blks is always a power of 2 */
4157 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4158 if (table > b)
4159 b = table;
4160 end = b + ra_blks;
4161 num = EXT4_INODES_PER_GROUP(sb);
4162 if (ext4_has_group_desc_csum(sb))
4163 num -= ext4_itable_unused_count(sb, gdp);
4164 table += num / inodes_per_block;
4165 if (end > table)
4166 end = table;
4167 while (b <= end)
4168 sb_breadahead(sb, b++);
4169 }
4170
4171 /*
4172 * There are other valid inodes in the buffer, this inode
4173 * has in-inode xattrs, or we don't have this inode in memory.
4174 * Read the block from disk.
4175 */
4176 trace_ext4_load_inode(inode);
4177 get_bh(bh);
4178 bh->b_end_io = end_buffer_read_sync;
4179 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4180 wait_on_buffer(bh);
4181 if (!buffer_uptodate(bh)) {
4182 EXT4_ERROR_INODE_BLOCK(inode, block,
4183 "unable to read itable block");
4184 brelse(bh);
4185 return -EIO;
4186 }
4187 }
4188 has_buffer:
4189 iloc->bh = bh;
4190 return 0;
4191 }
4192
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4193 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4194 {
4195 /* We have all inode data except xattrs in memory here. */
4196 return __ext4_get_inode_loc(inode, iloc,
4197 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4198 }
4199
ext4_set_inode_flags(struct inode * inode)4200 void ext4_set_inode_flags(struct inode *inode)
4201 {
4202 unsigned int flags = EXT4_I(inode)->i_flags;
4203 unsigned int new_fl = 0;
4204
4205 if (flags & EXT4_SYNC_FL)
4206 new_fl |= S_SYNC;
4207 if (flags & EXT4_APPEND_FL)
4208 new_fl |= S_APPEND;
4209 if (flags & EXT4_IMMUTABLE_FL)
4210 new_fl |= S_IMMUTABLE;
4211 if (flags & EXT4_NOATIME_FL)
4212 new_fl |= S_NOATIME;
4213 if (flags & EXT4_DIRSYNC_FL)
4214 new_fl |= S_DIRSYNC;
4215 if (test_opt(inode->i_sb, DAX))
4216 new_fl |= S_DAX;
4217 if (flags & EXT4_ENCRYPT_FL)
4218 new_fl |= S_ENCRYPTED;
4219 inode_set_flags(inode, new_fl,
4220 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4221 S_ENCRYPTED);
4222 }
4223
4224 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
ext4_get_inode_flags(struct ext4_inode_info * ei)4225 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4226 {
4227 unsigned int vfs_fl;
4228 unsigned long old_fl, new_fl;
4229
4230 do {
4231 vfs_fl = ei->vfs_inode.i_flags;
4232 old_fl = ei->i_flags;
4233 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4234 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4235 EXT4_DIRSYNC_FL);
4236 if (vfs_fl & S_SYNC)
4237 new_fl |= EXT4_SYNC_FL;
4238 if (vfs_fl & S_APPEND)
4239 new_fl |= EXT4_APPEND_FL;
4240 if (vfs_fl & S_IMMUTABLE)
4241 new_fl |= EXT4_IMMUTABLE_FL;
4242 if (vfs_fl & S_NOATIME)
4243 new_fl |= EXT4_NOATIME_FL;
4244 if (vfs_fl & S_DIRSYNC)
4245 new_fl |= EXT4_DIRSYNC_FL;
4246 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4247 }
4248
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4249 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4250 struct ext4_inode_info *ei)
4251 {
4252 blkcnt_t i_blocks ;
4253 struct inode *inode = &(ei->vfs_inode);
4254 struct super_block *sb = inode->i_sb;
4255
4256 if (ext4_has_feature_huge_file(sb)) {
4257 /* we are using combined 48 bit field */
4258 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4259 le32_to_cpu(raw_inode->i_blocks_lo);
4260 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4261 /* i_blocks represent file system block size */
4262 return i_blocks << (inode->i_blkbits - 9);
4263 } else {
4264 return i_blocks;
4265 }
4266 } else {
4267 return le32_to_cpu(raw_inode->i_blocks_lo);
4268 }
4269 }
4270
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4271 static inline void ext4_iget_extra_inode(struct inode *inode,
4272 struct ext4_inode *raw_inode,
4273 struct ext4_inode_info *ei)
4274 {
4275 __le32 *magic = (void *)raw_inode +
4276 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4277 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4278 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4279 ext4_find_inline_data_nolock(inode);
4280 } else
4281 EXT4_I(inode)->i_inline_off = 0;
4282 }
4283
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4284 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4285 ext4_iget_flags flags, const char *function,
4286 unsigned int line)
4287 {
4288 struct ext4_iloc iloc;
4289 struct ext4_inode *raw_inode;
4290 struct ext4_inode_info *ei;
4291 struct inode *inode;
4292 journal_t *journal = EXT4_SB(sb)->s_journal;
4293 long ret;
4294 loff_t size;
4295 int block;
4296 uid_t i_uid;
4297 gid_t i_gid;
4298
4299 if ((!(flags & EXT4_IGET_SPECIAL) &&
4300 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4301 (ino < EXT4_ROOT_INO) ||
4302 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4303 if (flags & EXT4_IGET_HANDLE)
4304 return ERR_PTR(-ESTALE);
4305 __ext4_error(sb, function, line,
4306 "inode #%lu: comm %s: iget: illegal inode #",
4307 ino, current->comm);
4308 return ERR_PTR(-EFSCORRUPTED);
4309 }
4310
4311 inode = iget_locked(sb, ino);
4312 if (!inode)
4313 return ERR_PTR(-ENOMEM);
4314 if (!(inode->i_state & I_NEW))
4315 return inode;
4316
4317 ei = EXT4_I(inode);
4318 iloc.bh = NULL;
4319
4320 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4321 if (ret < 0)
4322 goto bad_inode;
4323 raw_inode = ext4_raw_inode(&iloc);
4324
4325 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4326 ext4_error_inode(inode, function, line, 0,
4327 "iget: root inode unallocated");
4328 ret = -EFSCORRUPTED;
4329 goto bad_inode;
4330 }
4331
4332 if ((flags & EXT4_IGET_HANDLE) &&
4333 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4334 ret = -ESTALE;
4335 goto bad_inode;
4336 }
4337
4338 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4339 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4340 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4341 EXT4_INODE_SIZE(inode->i_sb)) {
4342 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4343 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4344 EXT4_INODE_SIZE(inode->i_sb));
4345 ret = -EFSCORRUPTED;
4346 goto bad_inode;
4347 }
4348 } else
4349 ei->i_extra_isize = 0;
4350
4351 /* Precompute checksum seed for inode metadata */
4352 if (ext4_has_metadata_csum(sb)) {
4353 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4354 __u32 csum;
4355 __le32 inum = cpu_to_le32(inode->i_ino);
4356 __le32 gen = raw_inode->i_generation;
4357 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4358 sizeof(inum));
4359 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4360 sizeof(gen));
4361 }
4362
4363 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4364 ext4_error_inode(inode, function, line, 0,
4365 "iget: checksum invalid");
4366 ret = -EFSBADCRC;
4367 goto bad_inode;
4368 }
4369
4370 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4371 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4372 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4373 if (!(test_opt(inode->i_sb, NO_UID32))) {
4374 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4375 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4376 }
4377 i_uid_write(inode, i_uid);
4378 i_gid_write(inode, i_gid);
4379 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4380
4381 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4382 ei->i_inline_off = 0;
4383 ei->i_dir_start_lookup = 0;
4384 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4385 /* We now have enough fields to check if the inode was active or not.
4386 * This is needed because nfsd might try to access dead inodes
4387 * the test is that same one that e2fsck uses
4388 * NeilBrown 1999oct15
4389 */
4390 if (inode->i_nlink == 0) {
4391 if ((inode->i_mode == 0 ||
4392 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4393 ino != EXT4_BOOT_LOADER_INO) {
4394 /* this inode is deleted */
4395 ret = -ESTALE;
4396 goto bad_inode;
4397 }
4398 /* The only unlinked inodes we let through here have
4399 * valid i_mode and are being read by the orphan
4400 * recovery code: that's fine, we're about to complete
4401 * the process of deleting those.
4402 * OR it is the EXT4_BOOT_LOADER_INO which is
4403 * not initialized on a new filesystem. */
4404 }
4405 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4406 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4407 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4408 if (ext4_has_feature_64bit(sb))
4409 ei->i_file_acl |=
4410 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4411 inode->i_size = ext4_isize(raw_inode);
4412 if ((size = i_size_read(inode)) < 0) {
4413 ext4_error_inode(inode, function, line, 0,
4414 "iget: bad i_size value: %lld", size);
4415 ret = -EFSCORRUPTED;
4416 goto bad_inode;
4417 }
4418 /*
4419 * If dir_index is not enabled but there's dir with INDEX flag set,
4420 * we'd normally treat htree data as empty space. But with metadata
4421 * checksumming that corrupts checksums so forbid that.
4422 */
4423 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4424 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4425 EXT4_ERROR_INODE(inode,
4426 "iget: Dir with htree data on filesystem without dir_index feature.");
4427 ret = -EFSCORRUPTED;
4428 goto bad_inode;
4429 }
4430 ei->i_disksize = inode->i_size;
4431 #ifdef CONFIG_QUOTA
4432 ei->i_reserved_quota = 0;
4433 #endif
4434 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4435 ei->i_block_group = iloc.block_group;
4436 ei->i_last_alloc_group = ~0;
4437 /*
4438 * NOTE! The in-memory inode i_data array is in little-endian order
4439 * even on big-endian machines: we do NOT byteswap the block numbers!
4440 */
4441 for (block = 0; block < EXT4_N_BLOCKS; block++)
4442 ei->i_data[block] = raw_inode->i_block[block];
4443 INIT_LIST_HEAD(&ei->i_orphan);
4444
4445 /*
4446 * Set transaction id's of transactions that have to be committed
4447 * to finish f[data]sync. We set them to currently running transaction
4448 * as we cannot be sure that the inode or some of its metadata isn't
4449 * part of the transaction - the inode could have been reclaimed and
4450 * now it is reread from disk.
4451 */
4452 if (journal) {
4453 transaction_t *transaction;
4454 tid_t tid;
4455
4456 read_lock(&journal->j_state_lock);
4457 if (journal->j_running_transaction)
4458 transaction = journal->j_running_transaction;
4459 else
4460 transaction = journal->j_committing_transaction;
4461 if (transaction)
4462 tid = transaction->t_tid;
4463 else
4464 tid = journal->j_commit_sequence;
4465 read_unlock(&journal->j_state_lock);
4466 ei->i_sync_tid = tid;
4467 ei->i_datasync_tid = tid;
4468 }
4469
4470 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4471 if (ei->i_extra_isize == 0) {
4472 /* The extra space is currently unused. Use it. */
4473 ei->i_extra_isize = sizeof(struct ext4_inode) -
4474 EXT4_GOOD_OLD_INODE_SIZE;
4475 } else {
4476 ext4_iget_extra_inode(inode, raw_inode, ei);
4477 }
4478 }
4479
4480 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4481 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4482 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4483 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4484
4485 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4486 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4487 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4488 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4489 inode->i_version |=
4490 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4491 }
4492 }
4493
4494 ret = 0;
4495 if (ei->i_file_acl &&
4496 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4497 ext4_error_inode(inode, function, line, 0,
4498 "iget: bad extended attribute block %llu",
4499 ei->i_file_acl);
4500 ret = -EFSCORRUPTED;
4501 goto bad_inode;
4502 } else if (!ext4_has_inline_data(inode)) {
4503 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4504 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4505 (S_ISLNK(inode->i_mode) &&
4506 !ext4_inode_is_fast_symlink(inode))))
4507 /* Validate extent which is part of inode */
4508 ret = ext4_ext_check_inode(inode);
4509 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4510 (S_ISLNK(inode->i_mode) &&
4511 !ext4_inode_is_fast_symlink(inode))) {
4512 /* Validate block references which are part of inode */
4513 ret = ext4_ind_check_inode(inode);
4514 }
4515 }
4516 if (ret)
4517 goto bad_inode;
4518
4519 if (S_ISREG(inode->i_mode)) {
4520 inode->i_op = &ext4_file_inode_operations;
4521 inode->i_fop = &ext4_file_operations;
4522 ext4_set_aops(inode);
4523 } else if (S_ISDIR(inode->i_mode)) {
4524 inode->i_op = &ext4_dir_inode_operations;
4525 inode->i_fop = &ext4_dir_operations;
4526 } else if (S_ISLNK(inode->i_mode)) {
4527 if (ext4_encrypted_inode(inode)) {
4528 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4529 ext4_set_aops(inode);
4530 } else if (ext4_inode_is_fast_symlink(inode)) {
4531 inode->i_link = (char *)ei->i_data;
4532 inode->i_op = &ext4_fast_symlink_inode_operations;
4533 nd_terminate_link(ei->i_data, inode->i_size,
4534 sizeof(ei->i_data) - 1);
4535 } else {
4536 inode->i_op = &ext4_symlink_inode_operations;
4537 ext4_set_aops(inode);
4538 }
4539 inode_nohighmem(inode);
4540 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4541 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4542 inode->i_op = &ext4_special_inode_operations;
4543 if (raw_inode->i_block[0])
4544 init_special_inode(inode, inode->i_mode,
4545 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4546 else
4547 init_special_inode(inode, inode->i_mode,
4548 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4549 } else if (ino == EXT4_BOOT_LOADER_INO) {
4550 make_bad_inode(inode);
4551 } else {
4552 ret = -EFSCORRUPTED;
4553 ext4_error_inode(inode, function, line, 0,
4554 "iget: bogus i_mode (%o)", inode->i_mode);
4555 goto bad_inode;
4556 }
4557 brelse(iloc.bh);
4558 ext4_set_inode_flags(inode);
4559 unlock_new_inode(inode);
4560 return inode;
4561
4562 bad_inode:
4563 brelse(iloc.bh);
4564 iget_failed(inode);
4565 return ERR_PTR(ret);
4566 }
4567
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4568 static int ext4_inode_blocks_set(handle_t *handle,
4569 struct ext4_inode *raw_inode,
4570 struct ext4_inode_info *ei)
4571 {
4572 struct inode *inode = &(ei->vfs_inode);
4573 u64 i_blocks = READ_ONCE(inode->i_blocks);
4574 struct super_block *sb = inode->i_sb;
4575
4576 if (i_blocks <= ~0U) {
4577 /*
4578 * i_blocks can be represented in a 32 bit variable
4579 * as multiple of 512 bytes
4580 */
4581 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4582 raw_inode->i_blocks_high = 0;
4583 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4584 return 0;
4585 }
4586 if (!ext4_has_feature_huge_file(sb))
4587 return -EFBIG;
4588
4589 if (i_blocks <= 0xffffffffffffULL) {
4590 /*
4591 * i_blocks can be represented in a 48 bit variable
4592 * as multiple of 512 bytes
4593 */
4594 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4595 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4596 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4597 } else {
4598 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4599 /* i_block is stored in file system block size */
4600 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4601 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4602 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4603 }
4604 return 0;
4605 }
4606
4607 struct other_inode {
4608 unsigned long orig_ino;
4609 struct ext4_inode *raw_inode;
4610 };
4611
other_inode_match(struct inode * inode,unsigned long ino,void * data)4612 static int other_inode_match(struct inode * inode, unsigned long ino,
4613 void *data)
4614 {
4615 struct other_inode *oi = (struct other_inode *) data;
4616
4617 if ((inode->i_ino != ino) ||
4618 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4619 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4620 ((inode->i_state & I_DIRTY_TIME) == 0))
4621 return 0;
4622 spin_lock(&inode->i_lock);
4623 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4624 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4625 (inode->i_state & I_DIRTY_TIME)) {
4626 struct ext4_inode_info *ei = EXT4_I(inode);
4627
4628 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4629 spin_unlock(&inode->i_lock);
4630
4631 spin_lock(&ei->i_raw_lock);
4632 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4633 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4634 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4635 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4636 spin_unlock(&ei->i_raw_lock);
4637 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4638 return -1;
4639 }
4640 spin_unlock(&inode->i_lock);
4641 return -1;
4642 }
4643
4644 /*
4645 * Opportunistically update the other time fields for other inodes in
4646 * the same inode table block.
4647 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)4648 static void ext4_update_other_inodes_time(struct super_block *sb,
4649 unsigned long orig_ino, char *buf)
4650 {
4651 struct other_inode oi;
4652 unsigned long ino;
4653 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4654 int inode_size = EXT4_INODE_SIZE(sb);
4655
4656 oi.orig_ino = orig_ino;
4657 /*
4658 * Calculate the first inode in the inode table block. Inode
4659 * numbers are one-based. That is, the first inode in a block
4660 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4661 */
4662 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4663 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4664 if (ino == orig_ino)
4665 continue;
4666 oi.raw_inode = (struct ext4_inode *) buf;
4667 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4668 }
4669 }
4670
4671 /*
4672 * Post the struct inode info into an on-disk inode location in the
4673 * buffer-cache. This gobbles the caller's reference to the
4674 * buffer_head in the inode location struct.
4675 *
4676 * The caller must have write access to iloc->bh.
4677 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)4678 static int ext4_do_update_inode(handle_t *handle,
4679 struct inode *inode,
4680 struct ext4_iloc *iloc)
4681 {
4682 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4683 struct ext4_inode_info *ei = EXT4_I(inode);
4684 struct buffer_head *bh = iloc->bh;
4685 struct super_block *sb = inode->i_sb;
4686 int err = 0, block;
4687 int need_datasync = 0, set_large_file = 0;
4688 uid_t i_uid;
4689 gid_t i_gid;
4690
4691 spin_lock(&ei->i_raw_lock);
4692
4693 /* For fields not tracked in the in-memory inode,
4694 * initialise them to zero for new inodes. */
4695 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4696 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4697
4698 ext4_get_inode_flags(ei);
4699 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4700 i_uid = i_uid_read(inode);
4701 i_gid = i_gid_read(inode);
4702 if (!(test_opt(inode->i_sb, NO_UID32))) {
4703 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4704 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4705 /*
4706 * Fix up interoperability with old kernels. Otherwise, old inodes get
4707 * re-used with the upper 16 bits of the uid/gid intact
4708 */
4709 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4710 raw_inode->i_uid_high = 0;
4711 raw_inode->i_gid_high = 0;
4712 } else {
4713 raw_inode->i_uid_high =
4714 cpu_to_le16(high_16_bits(i_uid));
4715 raw_inode->i_gid_high =
4716 cpu_to_le16(high_16_bits(i_gid));
4717 }
4718 } else {
4719 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4720 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4721 raw_inode->i_uid_high = 0;
4722 raw_inode->i_gid_high = 0;
4723 }
4724 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4725
4726 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4727 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4728 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4729 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4730
4731 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4732 if (err) {
4733 spin_unlock(&ei->i_raw_lock);
4734 goto out_brelse;
4735 }
4736 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4737 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4738 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4739 raw_inode->i_file_acl_high =
4740 cpu_to_le16(ei->i_file_acl >> 32);
4741 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4742 if (ei->i_disksize != ext4_isize(raw_inode)) {
4743 ext4_isize_set(raw_inode, ei->i_disksize);
4744 need_datasync = 1;
4745 }
4746 if (ei->i_disksize > 0x7fffffffULL) {
4747 if (!ext4_has_feature_large_file(sb) ||
4748 EXT4_SB(sb)->s_es->s_rev_level ==
4749 cpu_to_le32(EXT4_GOOD_OLD_REV))
4750 set_large_file = 1;
4751 }
4752 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4753 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4754 if (old_valid_dev(inode->i_rdev)) {
4755 raw_inode->i_block[0] =
4756 cpu_to_le32(old_encode_dev(inode->i_rdev));
4757 raw_inode->i_block[1] = 0;
4758 } else {
4759 raw_inode->i_block[0] = 0;
4760 raw_inode->i_block[1] =
4761 cpu_to_le32(new_encode_dev(inode->i_rdev));
4762 raw_inode->i_block[2] = 0;
4763 }
4764 } else if (!ext4_has_inline_data(inode)) {
4765 for (block = 0; block < EXT4_N_BLOCKS; block++)
4766 raw_inode->i_block[block] = ei->i_data[block];
4767 }
4768
4769 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4770 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4771 if (ei->i_extra_isize) {
4772 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4773 raw_inode->i_version_hi =
4774 cpu_to_le32(inode->i_version >> 32);
4775 raw_inode->i_extra_isize =
4776 cpu_to_le16(ei->i_extra_isize);
4777 }
4778 }
4779 ext4_inode_csum_set(inode, raw_inode, ei);
4780 spin_unlock(&ei->i_raw_lock);
4781 if (inode->i_sb->s_flags & MS_LAZYTIME)
4782 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4783 bh->b_data);
4784
4785 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4786 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4787 if (err)
4788 goto out_brelse;
4789 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4790 if (set_large_file) {
4791 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4792 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4793 if (err)
4794 goto out_brelse;
4795 ext4_update_dynamic_rev(sb);
4796 ext4_set_feature_large_file(sb);
4797 ext4_handle_sync(handle);
4798 err = ext4_handle_dirty_super(handle, sb);
4799 }
4800 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4801 out_brelse:
4802 brelse(bh);
4803 ext4_std_error(inode->i_sb, err);
4804 return err;
4805 }
4806
4807 /*
4808 * ext4_write_inode()
4809 *
4810 * We are called from a few places:
4811 *
4812 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4813 * Here, there will be no transaction running. We wait for any running
4814 * transaction to commit.
4815 *
4816 * - Within flush work (sys_sync(), kupdate and such).
4817 * We wait on commit, if told to.
4818 *
4819 * - Within iput_final() -> write_inode_now()
4820 * We wait on commit, if told to.
4821 *
4822 * In all cases it is actually safe for us to return without doing anything,
4823 * because the inode has been copied into a raw inode buffer in
4824 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4825 * writeback.
4826 *
4827 * Note that we are absolutely dependent upon all inode dirtiers doing the
4828 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4829 * which we are interested.
4830 *
4831 * It would be a bug for them to not do this. The code:
4832 *
4833 * mark_inode_dirty(inode)
4834 * stuff();
4835 * inode->i_size = expr;
4836 *
4837 * is in error because write_inode() could occur while `stuff()' is running,
4838 * and the new i_size will be lost. Plus the inode will no longer be on the
4839 * superblock's dirty inode list.
4840 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)4841 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4842 {
4843 int err;
4844
4845 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4846 return 0;
4847
4848 if (EXT4_SB(inode->i_sb)->s_journal) {
4849 if (ext4_journal_current_handle()) {
4850 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4851 dump_stack();
4852 return -EIO;
4853 }
4854
4855 /*
4856 * No need to force transaction in WB_SYNC_NONE mode. Also
4857 * ext4_sync_fs() will force the commit after everything is
4858 * written.
4859 */
4860 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4861 return 0;
4862
4863 err = ext4_force_commit(inode->i_sb);
4864 } else {
4865 struct ext4_iloc iloc;
4866
4867 err = __ext4_get_inode_loc(inode, &iloc, 0);
4868 if (err)
4869 return err;
4870 /*
4871 * sync(2) will flush the whole buffer cache. No need to do
4872 * it here separately for each inode.
4873 */
4874 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4875 sync_dirty_buffer(iloc.bh);
4876 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4877 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4878 "IO error syncing inode");
4879 err = -EIO;
4880 }
4881 brelse(iloc.bh);
4882 }
4883 return err;
4884 }
4885
4886 /*
4887 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4888 * buffers that are attached to a page stradding i_size and are undergoing
4889 * commit. In that case we have to wait for commit to finish and try again.
4890 */
ext4_wait_for_tail_page_commit(struct inode * inode)4891 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4892 {
4893 struct page *page;
4894 unsigned offset;
4895 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4896 tid_t commit_tid = 0;
4897 int ret;
4898
4899 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4900 /*
4901 * All buffers in the last page remain valid? Then there's nothing to
4902 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4903 * blocksize case
4904 */
4905 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4906 return;
4907 while (1) {
4908 page = find_lock_page(inode->i_mapping,
4909 inode->i_size >> PAGE_CACHE_SHIFT);
4910 if (!page)
4911 return;
4912 ret = __ext4_journalled_invalidatepage(page, offset,
4913 PAGE_CACHE_SIZE - offset);
4914 unlock_page(page);
4915 page_cache_release(page);
4916 if (ret != -EBUSY)
4917 return;
4918 commit_tid = 0;
4919 read_lock(&journal->j_state_lock);
4920 if (journal->j_committing_transaction)
4921 commit_tid = journal->j_committing_transaction->t_tid;
4922 read_unlock(&journal->j_state_lock);
4923 if (commit_tid)
4924 jbd2_log_wait_commit(journal, commit_tid);
4925 }
4926 }
4927
4928 /*
4929 * ext4_setattr()
4930 *
4931 * Called from notify_change.
4932 *
4933 * We want to trap VFS attempts to truncate the file as soon as
4934 * possible. In particular, we want to make sure that when the VFS
4935 * shrinks i_size, we put the inode on the orphan list and modify
4936 * i_disksize immediately, so that during the subsequent flushing of
4937 * dirty pages and freeing of disk blocks, we can guarantee that any
4938 * commit will leave the blocks being flushed in an unused state on
4939 * disk. (On recovery, the inode will get truncated and the blocks will
4940 * be freed, so we have a strong guarantee that no future commit will
4941 * leave these blocks visible to the user.)
4942 *
4943 * Another thing we have to assure is that if we are in ordered mode
4944 * and inode is still attached to the committing transaction, we must
4945 * we start writeout of all the dirty pages which are being truncated.
4946 * This way we are sure that all the data written in the previous
4947 * transaction are already on disk (truncate waits for pages under
4948 * writeback).
4949 *
4950 * Called with inode->i_mutex down.
4951 */
ext4_setattr(struct dentry * dentry,struct iattr * attr)4952 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4953 {
4954 struct inode *inode = d_inode(dentry);
4955 int error, rc = 0;
4956 int orphan = 0;
4957 const unsigned int ia_valid = attr->ia_valid;
4958
4959 error = inode_change_ok(inode, attr);
4960 if (error)
4961 return error;
4962
4963 if (is_quota_modification(inode, attr)) {
4964 error = dquot_initialize(inode);
4965 if (error)
4966 return error;
4967 }
4968 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4969 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4970 handle_t *handle;
4971
4972 /* (user+group)*(old+new) structure, inode write (sb,
4973 * inode block, ? - but truncate inode update has it) */
4974 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4975 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4976 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4977 if (IS_ERR(handle)) {
4978 error = PTR_ERR(handle);
4979 goto err_out;
4980 }
4981 error = dquot_transfer(inode, attr);
4982 if (error) {
4983 ext4_journal_stop(handle);
4984 return error;
4985 }
4986 /* Update corresponding info in inode so that everything is in
4987 * one transaction */
4988 if (attr->ia_valid & ATTR_UID)
4989 inode->i_uid = attr->ia_uid;
4990 if (attr->ia_valid & ATTR_GID)
4991 inode->i_gid = attr->ia_gid;
4992 error = ext4_mark_inode_dirty(handle, inode);
4993 ext4_journal_stop(handle);
4994 }
4995
4996 if (attr->ia_valid & ATTR_SIZE) {
4997 handle_t *handle;
4998 loff_t oldsize = inode->i_size;
4999 int shrink = (attr->ia_size <= inode->i_size);
5000
5001 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5002 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5003
5004 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5005 return -EFBIG;
5006 }
5007 if (!S_ISREG(inode->i_mode))
5008 return -EINVAL;
5009
5010 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5011 inode_inc_iversion(inode);
5012
5013 if (ext4_should_order_data(inode) &&
5014 (attr->ia_size < inode->i_size)) {
5015 error = ext4_begin_ordered_truncate(inode,
5016 attr->ia_size);
5017 if (error)
5018 goto err_out;
5019 }
5020 if (attr->ia_size != inode->i_size) {
5021 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5022 if (IS_ERR(handle)) {
5023 error = PTR_ERR(handle);
5024 goto err_out;
5025 }
5026 if (ext4_handle_valid(handle) && shrink) {
5027 error = ext4_orphan_add(handle, inode);
5028 orphan = 1;
5029 }
5030 /*
5031 * Update c/mtime on truncate up, ext4_truncate() will
5032 * update c/mtime in shrink case below
5033 */
5034 if (!shrink) {
5035 inode->i_mtime = ext4_current_time(inode);
5036 inode->i_ctime = inode->i_mtime;
5037 }
5038 down_write(&EXT4_I(inode)->i_data_sem);
5039 EXT4_I(inode)->i_disksize = attr->ia_size;
5040 rc = ext4_mark_inode_dirty(handle, inode);
5041 if (!error)
5042 error = rc;
5043 /*
5044 * We have to update i_size under i_data_sem together
5045 * with i_disksize to avoid races with writeback code
5046 * running ext4_wb_update_i_disksize().
5047 */
5048 if (!error)
5049 i_size_write(inode, attr->ia_size);
5050 up_write(&EXT4_I(inode)->i_data_sem);
5051 ext4_journal_stop(handle);
5052 if (error) {
5053 if (orphan && inode->i_nlink)
5054 ext4_orphan_del(NULL, inode);
5055 goto err_out;
5056 }
5057 }
5058 if (!shrink)
5059 pagecache_isize_extended(inode, oldsize, inode->i_size);
5060
5061 /*
5062 * Blocks are going to be removed from the inode. Wait
5063 * for dio in flight. Temporarily disable
5064 * dioread_nolock to prevent livelock.
5065 */
5066 if (orphan) {
5067 if (!ext4_should_journal_data(inode)) {
5068 ext4_inode_block_unlocked_dio(inode);
5069 inode_dio_wait(inode);
5070 ext4_inode_resume_unlocked_dio(inode);
5071 } else
5072 ext4_wait_for_tail_page_commit(inode);
5073 }
5074 down_write(&EXT4_I(inode)->i_mmap_sem);
5075 /*
5076 * Truncate pagecache after we've waited for commit
5077 * in data=journal mode to make pages freeable.
5078 */
5079 truncate_pagecache(inode, inode->i_size);
5080 if (shrink)
5081 ext4_truncate(inode);
5082 up_write(&EXT4_I(inode)->i_mmap_sem);
5083 }
5084
5085 if (!rc) {
5086 setattr_copy(inode, attr);
5087 mark_inode_dirty(inode);
5088 }
5089
5090 /*
5091 * If the call to ext4_truncate failed to get a transaction handle at
5092 * all, we need to clean up the in-core orphan list manually.
5093 */
5094 if (orphan && inode->i_nlink)
5095 ext4_orphan_del(NULL, inode);
5096
5097 if (!rc && (ia_valid & ATTR_MODE))
5098 rc = posix_acl_chmod(inode, inode->i_mode);
5099
5100 err_out:
5101 ext4_std_error(inode->i_sb, error);
5102 if (!error)
5103 error = rc;
5104 return error;
5105 }
5106
ext4_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)5107 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5108 struct kstat *stat)
5109 {
5110 struct inode *inode;
5111 unsigned long long delalloc_blocks;
5112
5113 inode = d_inode(dentry);
5114 generic_fillattr(inode, stat);
5115
5116 /*
5117 * If there is inline data in the inode, the inode will normally not
5118 * have data blocks allocated (it may have an external xattr block).
5119 * Report at least one sector for such files, so tools like tar, rsync,
5120 * others doen't incorrectly think the file is completely sparse.
5121 */
5122 if (unlikely(ext4_has_inline_data(inode)))
5123 stat->blocks += (stat->size + 511) >> 9;
5124
5125 /*
5126 * We can't update i_blocks if the block allocation is delayed
5127 * otherwise in the case of system crash before the real block
5128 * allocation is done, we will have i_blocks inconsistent with
5129 * on-disk file blocks.
5130 * We always keep i_blocks updated together with real
5131 * allocation. But to not confuse with user, stat
5132 * will return the blocks that include the delayed allocation
5133 * blocks for this file.
5134 */
5135 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5136 EXT4_I(inode)->i_reserved_data_blocks);
5137 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5138 return 0;
5139 }
5140
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5141 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5142 int pextents)
5143 {
5144 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5145 return ext4_ind_trans_blocks(inode, lblocks);
5146 return ext4_ext_index_trans_blocks(inode, pextents);
5147 }
5148
5149 /*
5150 * Account for index blocks, block groups bitmaps and block group
5151 * descriptor blocks if modify datablocks and index blocks
5152 * worse case, the indexs blocks spread over different block groups
5153 *
5154 * If datablocks are discontiguous, they are possible to spread over
5155 * different block groups too. If they are contiguous, with flexbg,
5156 * they could still across block group boundary.
5157 *
5158 * Also account for superblock, inode, quota and xattr blocks
5159 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5160 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5161 int pextents)
5162 {
5163 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5164 int gdpblocks;
5165 int idxblocks;
5166 int ret = 0;
5167
5168 /*
5169 * How many index blocks need to touch to map @lblocks logical blocks
5170 * to @pextents physical extents?
5171 */
5172 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5173
5174 ret = idxblocks;
5175
5176 /*
5177 * Now let's see how many group bitmaps and group descriptors need
5178 * to account
5179 */
5180 groups = idxblocks + pextents;
5181 gdpblocks = groups;
5182 if (groups > ngroups)
5183 groups = ngroups;
5184 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5185 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5186
5187 /* bitmaps and block group descriptor blocks */
5188 ret += groups + gdpblocks;
5189
5190 /* Blocks for super block, inode, quota and xattr blocks */
5191 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5192
5193 return ret;
5194 }
5195
5196 /*
5197 * Calculate the total number of credits to reserve to fit
5198 * the modification of a single pages into a single transaction,
5199 * which may include multiple chunks of block allocations.
5200 *
5201 * This could be called via ext4_write_begin()
5202 *
5203 * We need to consider the worse case, when
5204 * one new block per extent.
5205 */
ext4_writepage_trans_blocks(struct inode * inode)5206 int ext4_writepage_trans_blocks(struct inode *inode)
5207 {
5208 int bpp = ext4_journal_blocks_per_page(inode);
5209 int ret;
5210
5211 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5212
5213 /* Account for data blocks for journalled mode */
5214 if (ext4_should_journal_data(inode))
5215 ret += bpp;
5216 return ret;
5217 }
5218
5219 /*
5220 * Calculate the journal credits for a chunk of data modification.
5221 *
5222 * This is called from DIO, fallocate or whoever calling
5223 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5224 *
5225 * journal buffers for data blocks are not included here, as DIO
5226 * and fallocate do no need to journal data buffers.
5227 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5228 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5229 {
5230 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5231 }
5232
5233 /*
5234 * The caller must have previously called ext4_reserve_inode_write().
5235 * Give this, we know that the caller already has write access to iloc->bh.
5236 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5237 int ext4_mark_iloc_dirty(handle_t *handle,
5238 struct inode *inode, struct ext4_iloc *iloc)
5239 {
5240 int err = 0;
5241
5242 if (IS_I_VERSION(inode))
5243 inode_inc_iversion(inode);
5244
5245 /* the do_update_inode consumes one bh->b_count */
5246 get_bh(iloc->bh);
5247
5248 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5249 err = ext4_do_update_inode(handle, inode, iloc);
5250 put_bh(iloc->bh);
5251 return err;
5252 }
5253
5254 /*
5255 * On success, We end up with an outstanding reference count against
5256 * iloc->bh. This _must_ be cleaned up later.
5257 */
5258
5259 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5260 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5261 struct ext4_iloc *iloc)
5262 {
5263 int err;
5264
5265 err = ext4_get_inode_loc(inode, iloc);
5266 if (!err) {
5267 BUFFER_TRACE(iloc->bh, "get_write_access");
5268 err = ext4_journal_get_write_access(handle, iloc->bh);
5269 if (err) {
5270 brelse(iloc->bh);
5271 iloc->bh = NULL;
5272 }
5273 }
5274 ext4_std_error(inode->i_sb, err);
5275 return err;
5276 }
5277
5278 /*
5279 * Expand an inode by new_extra_isize bytes.
5280 * Returns 0 on success or negative error number on failure.
5281 */
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5282 static int ext4_expand_extra_isize(struct inode *inode,
5283 unsigned int new_extra_isize,
5284 struct ext4_iloc iloc,
5285 handle_t *handle)
5286 {
5287 struct ext4_inode *raw_inode;
5288 struct ext4_xattr_ibody_header *header;
5289 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5290 struct ext4_inode_info *ei = EXT4_I(inode);
5291
5292 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5293 return 0;
5294
5295 /* this was checked at iget time, but double check for good measure */
5296 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5297 (ei->i_extra_isize & 3)) {
5298 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5299 ei->i_extra_isize,
5300 EXT4_INODE_SIZE(inode->i_sb));
5301 return -EFSCORRUPTED;
5302 }
5303 if ((new_extra_isize < ei->i_extra_isize) ||
5304 (new_extra_isize < 4) ||
5305 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5306 return -EINVAL; /* Should never happen */
5307
5308 raw_inode = ext4_raw_inode(&iloc);
5309
5310 header = IHDR(inode, raw_inode);
5311
5312 /* No extended attributes present */
5313 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5314 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5315 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5316 EXT4_I(inode)->i_extra_isize, 0,
5317 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5318 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5319 return 0;
5320 }
5321
5322 /* try to expand with EAs present */
5323 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5324 raw_inode, handle);
5325 }
5326
5327 /*
5328 * What we do here is to mark the in-core inode as clean with respect to inode
5329 * dirtiness (it may still be data-dirty).
5330 * This means that the in-core inode may be reaped by prune_icache
5331 * without having to perform any I/O. This is a very good thing,
5332 * because *any* task may call prune_icache - even ones which
5333 * have a transaction open against a different journal.
5334 *
5335 * Is this cheating? Not really. Sure, we haven't written the
5336 * inode out, but prune_icache isn't a user-visible syncing function.
5337 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5338 * we start and wait on commits.
5339 */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)5340 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5341 {
5342 struct ext4_iloc iloc;
5343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5344 static unsigned int mnt_count;
5345 int err, ret;
5346
5347 might_sleep();
5348 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5349 err = ext4_reserve_inode_write(handle, inode, &iloc);
5350 if (err)
5351 return err;
5352 if (ext4_handle_valid(handle) &&
5353 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5354 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5355 /*
5356 * We need extra buffer credits since we may write into EA block
5357 * with this same handle. If journal_extend fails, then it will
5358 * only result in a minor loss of functionality for that inode.
5359 * If this is felt to be critical, then e2fsck should be run to
5360 * force a large enough s_min_extra_isize.
5361 */
5362 if ((jbd2_journal_extend(handle,
5363 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5364 ret = ext4_expand_extra_isize(inode,
5365 sbi->s_want_extra_isize,
5366 iloc, handle);
5367 if (ret) {
5368 if (mnt_count !=
5369 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5370 ext4_warning(inode->i_sb,
5371 "Unable to expand inode %lu. Delete"
5372 " some EAs or run e2fsck.",
5373 inode->i_ino);
5374 mnt_count =
5375 le16_to_cpu(sbi->s_es->s_mnt_count);
5376 }
5377 }
5378 }
5379 }
5380 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5381 }
5382
5383 /*
5384 * ext4_dirty_inode() is called from __mark_inode_dirty()
5385 *
5386 * We're really interested in the case where a file is being extended.
5387 * i_size has been changed by generic_commit_write() and we thus need
5388 * to include the updated inode in the current transaction.
5389 *
5390 * Also, dquot_alloc_block() will always dirty the inode when blocks
5391 * are allocated to the file.
5392 *
5393 * If the inode is marked synchronous, we don't honour that here - doing
5394 * so would cause a commit on atime updates, which we don't bother doing.
5395 * We handle synchronous inodes at the highest possible level.
5396 *
5397 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5398 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5399 * to copy into the on-disk inode structure are the timestamp files.
5400 */
ext4_dirty_inode(struct inode * inode,int flags)5401 void ext4_dirty_inode(struct inode *inode, int flags)
5402 {
5403 handle_t *handle;
5404
5405 if (flags == I_DIRTY_TIME)
5406 return;
5407 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5408 if (IS_ERR(handle))
5409 goto out;
5410
5411 ext4_mark_inode_dirty(handle, inode);
5412
5413 ext4_journal_stop(handle);
5414 out:
5415 return;
5416 }
5417
5418 #if 0
5419 /*
5420 * Bind an inode's backing buffer_head into this transaction, to prevent
5421 * it from being flushed to disk early. Unlike
5422 * ext4_reserve_inode_write, this leaves behind no bh reference and
5423 * returns no iloc structure, so the caller needs to repeat the iloc
5424 * lookup to mark the inode dirty later.
5425 */
5426 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5427 {
5428 struct ext4_iloc iloc;
5429
5430 int err = 0;
5431 if (handle) {
5432 err = ext4_get_inode_loc(inode, &iloc);
5433 if (!err) {
5434 BUFFER_TRACE(iloc.bh, "get_write_access");
5435 err = jbd2_journal_get_write_access(handle, iloc.bh);
5436 if (!err)
5437 err = ext4_handle_dirty_metadata(handle,
5438 NULL,
5439 iloc.bh);
5440 brelse(iloc.bh);
5441 }
5442 }
5443 ext4_std_error(inode->i_sb, err);
5444 return err;
5445 }
5446 #endif
5447
ext4_change_inode_journal_flag(struct inode * inode,int val)5448 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5449 {
5450 journal_t *journal;
5451 handle_t *handle;
5452 int err;
5453
5454 /*
5455 * We have to be very careful here: changing a data block's
5456 * journaling status dynamically is dangerous. If we write a
5457 * data block to the journal, change the status and then delete
5458 * that block, we risk forgetting to revoke the old log record
5459 * from the journal and so a subsequent replay can corrupt data.
5460 * So, first we make sure that the journal is empty and that
5461 * nobody is changing anything.
5462 */
5463
5464 journal = EXT4_JOURNAL(inode);
5465 if (!journal)
5466 return 0;
5467 if (is_journal_aborted(journal))
5468 return -EROFS;
5469 /* We have to allocate physical blocks for delalloc blocks
5470 * before flushing journal. otherwise delalloc blocks can not
5471 * be allocated any more. even more truncate on delalloc blocks
5472 * could trigger BUG by flushing delalloc blocks in journal.
5473 * There is no delalloc block in non-journal data mode.
5474 */
5475 if (val && test_opt(inode->i_sb, DELALLOC)) {
5476 err = ext4_alloc_da_blocks(inode);
5477 if (err < 0)
5478 return err;
5479 }
5480
5481 /* Wait for all existing dio workers */
5482 ext4_inode_block_unlocked_dio(inode);
5483 inode_dio_wait(inode);
5484
5485 jbd2_journal_lock_updates(journal);
5486
5487 /*
5488 * OK, there are no updates running now, and all cached data is
5489 * synced to disk. We are now in a completely consistent state
5490 * which doesn't have anything in the journal, and we know that
5491 * no filesystem updates are running, so it is safe to modify
5492 * the inode's in-core data-journaling state flag now.
5493 */
5494
5495 if (val)
5496 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5497 else {
5498 err = jbd2_journal_flush(journal);
5499 if (err < 0) {
5500 jbd2_journal_unlock_updates(journal);
5501 ext4_inode_resume_unlocked_dio(inode);
5502 return err;
5503 }
5504 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5505 }
5506 ext4_set_aops(inode);
5507
5508 jbd2_journal_unlock_updates(journal);
5509 ext4_inode_resume_unlocked_dio(inode);
5510
5511 /* Finally we can mark the inode as dirty. */
5512
5513 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5514 if (IS_ERR(handle))
5515 return PTR_ERR(handle);
5516
5517 err = ext4_mark_inode_dirty(handle, inode);
5518 ext4_handle_sync(handle);
5519 ext4_journal_stop(handle);
5520 ext4_std_error(inode->i_sb, err);
5521
5522 return err;
5523 }
5524
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)5525 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5526 {
5527 return !buffer_mapped(bh);
5528 }
5529
ext4_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)5530 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5531 {
5532 struct page *page = vmf->page;
5533 loff_t size;
5534 unsigned long len;
5535 int ret;
5536 struct file *file = vma->vm_file;
5537 struct inode *inode = file_inode(file);
5538 struct address_space *mapping = inode->i_mapping;
5539 handle_t *handle;
5540 get_block_t *get_block;
5541 int retries = 0;
5542
5543 sb_start_pagefault(inode->i_sb);
5544 file_update_time(vma->vm_file);
5545
5546 down_read(&EXT4_I(inode)->i_mmap_sem);
5547
5548 ret = ext4_convert_inline_data(inode);
5549 if (ret)
5550 goto out_ret;
5551
5552 /* Delalloc case is easy... */
5553 if (test_opt(inode->i_sb, DELALLOC) &&
5554 !ext4_should_journal_data(inode) &&
5555 !ext4_nonda_switch(inode->i_sb)) {
5556 do {
5557 ret = block_page_mkwrite(vma, vmf,
5558 ext4_da_get_block_prep);
5559 } while (ret == -ENOSPC &&
5560 ext4_should_retry_alloc(inode->i_sb, &retries));
5561 goto out_ret;
5562 }
5563
5564 lock_page(page);
5565 size = i_size_read(inode);
5566 /* Page got truncated from under us? */
5567 if (page->mapping != mapping || page_offset(page) > size) {
5568 unlock_page(page);
5569 ret = VM_FAULT_NOPAGE;
5570 goto out;
5571 }
5572
5573 if (page->index == size >> PAGE_CACHE_SHIFT)
5574 len = size & ~PAGE_CACHE_MASK;
5575 else
5576 len = PAGE_CACHE_SIZE;
5577 /*
5578 * Return if we have all the buffers mapped. This avoids the need to do
5579 * journal_start/journal_stop which can block and take a long time
5580 */
5581 if (page_has_buffers(page)) {
5582 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5583 0, len, NULL,
5584 ext4_bh_unmapped)) {
5585 /* Wait so that we don't change page under IO */
5586 wait_for_stable_page(page);
5587 ret = VM_FAULT_LOCKED;
5588 goto out;
5589 }
5590 }
5591 unlock_page(page);
5592 /* OK, we need to fill the hole... */
5593 if (ext4_should_dioread_nolock(inode))
5594 get_block = ext4_get_block_write;
5595 else
5596 get_block = ext4_get_block;
5597 retry_alloc:
5598 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5599 ext4_writepage_trans_blocks(inode));
5600 if (IS_ERR(handle)) {
5601 ret = VM_FAULT_SIGBUS;
5602 goto out;
5603 }
5604 ret = block_page_mkwrite(vma, vmf, get_block);
5605 if (!ret && ext4_should_journal_data(inode)) {
5606 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5607 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5608 unlock_page(page);
5609 ret = VM_FAULT_SIGBUS;
5610 ext4_journal_stop(handle);
5611 goto out;
5612 }
5613 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5614 }
5615 ext4_journal_stop(handle);
5616 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5617 goto retry_alloc;
5618 out_ret:
5619 ret = block_page_mkwrite_return(ret);
5620 out:
5621 up_read(&EXT4_I(inode)->i_mmap_sem);
5622 sb_end_pagefault(inode->i_sb);
5623 return ret;
5624 }
5625
ext4_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)5626 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5627 {
5628 struct inode *inode = file_inode(vma->vm_file);
5629 int err;
5630
5631 down_read(&EXT4_I(inode)->i_mmap_sem);
5632 err = filemap_fault(vma, vmf);
5633 up_read(&EXT4_I(inode)->i_mmap_sem);
5634
5635 return err;
5636 }
5637