• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38 
39 #define FALCON_MAC_STATS_SIZE 0x100
40 
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133 
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
135 	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136 
137 #define FALCON_DMA_STAT(ext_name, hw_name)				\
138 	[FALCON_STAT_ ## ext_name] =					\
139 	{ #ext_name,							\
140 	  /* 48-bit stats are zero-padded to 64 on DMA */		\
141 	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
142 	  hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)					\
144 	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name)				\
146 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149 	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150 	FALCON_DMA_STAT(tx_packets, XgTxPkts),
151 	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152 	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153 	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154 	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155 	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156 	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157 	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158 	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159 	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160 	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161 	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162 	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163 	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164 	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165 	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166 	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167 	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168 	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169 	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170 	FALCON_OTHER_STAT(rx_bad_bytes),
171 	FALCON_DMA_STAT(rx_packets, XgRxPkts),
172 	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173 	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174 	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175 	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176 	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177 	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178 	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179 	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180 	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181 	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182 	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183 	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184 	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185 	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186 	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187 	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188 	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189 	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190 	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191 	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192 	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193 	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194 	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195 	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196 	GENERIC_SW_STAT(rx_nodesc_trunc),
197 	GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200 	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202 
203 /**************************************************************************
204  *
205  * Basic SPI command set and bit definitions
206  *
207  *************************************************************************/
208 
209 #define SPI_WRSR 0x01		/* Write status register */
210 #define SPI_WRITE 0x02		/* Write data to memory array */
211 #define SPI_READ 0x03		/* Read data from memory array */
212 #define SPI_WRDI 0x04		/* Reset write enable latch */
213 #define SPI_RDSR 0x05		/* Read status register */
214 #define SPI_WREN 0x06		/* Set write enable latch */
215 #define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
216 
217 #define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01	/* Device busy flag */
223 
224 /**************************************************************************
225  *
226  * Non-volatile memory layout
227  *
228  **************************************************************************
229  */
230 
231 /* SFC4000 flash is partitioned into:
232  *     0-0x400       chip and board config (see struct falcon_nvconfig)
233  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234  *     0x8000-end    boot code (mapped to PCI expansion ROM)
235  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237  *     0-0x400       chip and board config
238  *     configurable  VPD
239  *     0x800-0x1800  boot config
240  * Aside from the chip and board config, all of these are optional and may
241  * be absent or truncated depending on the devices used.
242  */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247 
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250 	__le16 nports;
251 	u8 port0_phy_addr;
252 	u8 port0_phy_type;
253 	u8 port1_phy_addr;
254 	u8 port1_phy_type;
255 	__le16 asic_sub_revision;
256 	__le16 board_revision;
257 } __packed;
258 
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261 	__le32 spi_device_type[2];
262 } __packed;
263 
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field)					\
276 	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277 
278 #define FALCON_NVCONFIG_OFFSET 0x300
279 
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282 	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
283 	u8 mac_address[2][8];			/* 0x310 */
284 	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
285 	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
286 	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
287 	efx_oword_t hw_init_reg;			/* 0x350 */
288 	efx_oword_t nic_stat_reg;			/* 0x360 */
289 	efx_oword_t glb_ctl_reg;			/* 0x370 */
290 	efx_oword_t srm_cfg_reg;			/* 0x380 */
291 	efx_oword_t spare_reg;				/* 0x390 */
292 	__le16 board_magic_num;			/* 0x3A0 */
293 	__le16 board_struct_ver;
294 	__le16 board_checksum;
295 	struct falcon_nvconfig_board_v2 board_v2;
296 	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
297 	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
298 } __packed;
299 
300 /*************************************************************************/
301 
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304 
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307  * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318 
319 /**************************************************************************
320  *
321  * I2C bus - this is a bit-bashing interface using GPIO pins
322  * Note that it uses the output enables to tristate the outputs
323  * SDA is the data pin and SCL is the clock
324  *
325  **************************************************************************
326  */
falcon_setsda(void * data,int state)327 static void falcon_setsda(void *data, int state)
328 {
329 	struct efx_nic *efx = (struct efx_nic *)data;
330 	efx_oword_t reg;
331 
332 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336 
falcon_setscl(void * data,int state)337 static void falcon_setscl(void *data, int state)
338 {
339 	struct efx_nic *efx = (struct efx_nic *)data;
340 	efx_oword_t reg;
341 
342 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346 
falcon_getsda(void * data)347 static int falcon_getsda(void *data)
348 {
349 	struct efx_nic *efx = (struct efx_nic *)data;
350 	efx_oword_t reg;
351 
352 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355 
falcon_getscl(void * data)356 static int falcon_getscl(void *data)
357 {
358 	struct efx_nic *efx = (struct efx_nic *)data;
359 	efx_oword_t reg;
360 
361 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364 
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366 	.setsda		= falcon_setsda,
367 	.setscl		= falcon_setscl,
368 	.getsda		= falcon_getsda,
369 	.getscl		= falcon_getscl,
370 	.udelay		= 5,
371 	/* Wait up to 50 ms for slave to let us pull SCL high */
372 	.timeout	= DIV_ROUND_UP(HZ, 20),
373 };
374 
falcon_push_irq_moderation(struct efx_channel * channel)375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377 	efx_dword_t timer_cmd;
378 	struct efx_nic *efx = channel->efx;
379 
380 	/* Set timer register */
381 	if (channel->irq_moderation) {
382 		EFX_POPULATE_DWORD_2(timer_cmd,
383 				     FRF_AB_TC_TIMER_MODE,
384 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
385 				     FRF_AB_TC_TIMER_VAL,
386 				     channel->irq_moderation - 1);
387 	} else {
388 		EFX_POPULATE_DWORD_2(timer_cmd,
389 				     FRF_AB_TC_TIMER_MODE,
390 				     FFE_BB_TIMER_MODE_DIS,
391 				     FRF_AB_TC_TIMER_VAL, 0);
392 	}
393 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
394 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
395 			       channel->channel);
396 }
397 
398 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
399 
falcon_prepare_flush(struct efx_nic * efx)400 static void falcon_prepare_flush(struct efx_nic *efx)
401 {
402 	falcon_deconfigure_mac_wrapper(efx);
403 
404 	/* Wait for the tx and rx fifo's to get to the next packet boundary
405 	 * (~1ms without back-pressure), then to drain the remainder of the
406 	 * fifo's at data path speeds (negligible), with a healthy margin. */
407 	msleep(10);
408 }
409 
410 /* Acknowledge a legacy interrupt from Falcon
411  *
412  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
413  *
414  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415  * BIU. Interrupt acknowledge is read sensitive so must write instead
416  * (then read to ensure the BIU collector is flushed)
417  *
418  * NB most hardware supports MSI interrupts
419  */
falcon_irq_ack_a1(struct efx_nic * efx)420 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
421 {
422 	efx_dword_t reg;
423 
424 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
425 	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
426 	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
427 }
428 
falcon_legacy_interrupt_a1(int irq,void * dev_id)429 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
430 {
431 	struct efx_nic *efx = dev_id;
432 	efx_oword_t *int_ker = efx->irq_status.addr;
433 	int syserr;
434 	int queues;
435 
436 	/* Check to see if this is our interrupt.  If it isn't, we
437 	 * exit without having touched the hardware.
438 	 */
439 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
440 		netif_vdbg(efx, intr, efx->net_dev,
441 			   "IRQ %d on CPU %d not for me\n", irq,
442 			   raw_smp_processor_id());
443 		return IRQ_NONE;
444 	}
445 	efx->last_irq_cpu = raw_smp_processor_id();
446 	netif_vdbg(efx, intr, efx->net_dev,
447 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
448 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
449 
450 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
451 		return IRQ_HANDLED;
452 
453 	/* Check to see if we have a serious error condition */
454 	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
455 	if (unlikely(syserr))
456 		return efx_farch_fatal_interrupt(efx);
457 
458 	/* Determine interrupting queues, clear interrupt status
459 	 * register and acknowledge the device interrupt.
460 	 */
461 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
462 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
463 	EFX_ZERO_OWORD(*int_ker);
464 	wmb(); /* Ensure the vector is cleared before interrupt ack */
465 	falcon_irq_ack_a1(efx);
466 
467 	if (queues & 1)
468 		efx_schedule_channel_irq(efx_get_channel(efx, 0));
469 	if (queues & 2)
470 		efx_schedule_channel_irq(efx_get_channel(efx, 1));
471 	return IRQ_HANDLED;
472 }
473 
474 /**************************************************************************
475  *
476  * RSS
477  *
478  **************************************************************************
479  */
dummy_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)480 static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
481 				    const u32 *rx_indir_table)
482 {
483 	(void) efx;
484 	(void) user;
485 	(void) rx_indir_table;
486 	return -ENOSYS;
487 }
488 
falcon_b0_rx_push_rss_config(struct efx_nic * efx,bool user,const u32 * rx_indir_table)489 static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
490 					const u32 *rx_indir_table)
491 {
492 	efx_oword_t temp;
493 
494 	(void) user;
495 	/* Set hash key for IPv4 */
496 	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
497 	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
498 
499 	memcpy(efx->rx_indir_table, rx_indir_table,
500 	       sizeof(efx->rx_indir_table));
501 	efx_farch_rx_push_indir_table(efx);
502 	return 0;
503 }
504 
505 /**************************************************************************
506  *
507  * EEPROM/flash
508  *
509  **************************************************************************
510  */
511 
512 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
513 
falcon_spi_poll(struct efx_nic * efx)514 static int falcon_spi_poll(struct efx_nic *efx)
515 {
516 	efx_oword_t reg;
517 	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
518 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
519 }
520 
521 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)522 static int falcon_spi_wait(struct efx_nic *efx)
523 {
524 	/* Most commands will finish quickly, so we start polling at
525 	 * very short intervals.  Sometimes the command may have to
526 	 * wait for VPD or expansion ROM access outside of our
527 	 * control, so we allow up to 100 ms. */
528 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
529 	int i;
530 
531 	for (i = 0; i < 10; i++) {
532 		if (!falcon_spi_poll(efx))
533 			return 0;
534 		udelay(10);
535 	}
536 
537 	for (;;) {
538 		if (!falcon_spi_poll(efx))
539 			return 0;
540 		if (time_after_eq(jiffies, timeout)) {
541 			netif_err(efx, hw, efx->net_dev,
542 				  "timed out waiting for SPI\n");
543 			return -ETIMEDOUT;
544 		}
545 		schedule_timeout_uninterruptible(1);
546 	}
547 }
548 
549 static int
falcon_spi_cmd(struct efx_nic * efx,const struct falcon_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)550 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
551 	       unsigned int command, int address,
552 	       const void *in, void *out, size_t len)
553 {
554 	bool addressed = (address >= 0);
555 	bool reading = (out != NULL);
556 	efx_oword_t reg;
557 	int rc;
558 
559 	/* Input validation */
560 	if (len > FALCON_SPI_MAX_LEN)
561 		return -EINVAL;
562 
563 	/* Check that previous command is not still running */
564 	rc = falcon_spi_poll(efx);
565 	if (rc)
566 		return rc;
567 
568 	/* Program address register, if we have an address */
569 	if (addressed) {
570 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
571 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
572 	}
573 
574 	/* Program data register, if we have data */
575 	if (in != NULL) {
576 		memcpy(&reg, in, len);
577 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
578 	}
579 
580 	/* Issue read/write command */
581 	EFX_POPULATE_OWORD_7(reg,
582 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
583 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
584 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
585 			     FRF_AB_EE_SPI_HCMD_READ, reading,
586 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
587 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
588 			     (addressed ? spi->addr_len : 0),
589 			     FRF_AB_EE_SPI_HCMD_ENC, command);
590 	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
591 
592 	/* Wait for read/write to complete */
593 	rc = falcon_spi_wait(efx);
594 	if (rc)
595 		return rc;
596 
597 	/* Read data */
598 	if (out != NULL) {
599 		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
600 		memcpy(out, &reg, len);
601 	}
602 
603 	return 0;
604 }
605 
606 static inline u8
falcon_spi_munge_command(const struct falcon_spi_device * spi,const u8 command,const unsigned int address)607 falcon_spi_munge_command(const struct falcon_spi_device *spi,
608 			 const u8 command, const unsigned int address)
609 {
610 	return command | (((address >> 8) & spi->munge_address) << 3);
611 }
612 
613 static int
falcon_spi_read(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)614 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
615 		loff_t start, size_t len, size_t *retlen, u8 *buffer)
616 {
617 	size_t block_len, pos = 0;
618 	unsigned int command;
619 	int rc = 0;
620 
621 	while (pos < len) {
622 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
623 
624 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
625 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
626 				    buffer + pos, block_len);
627 		if (rc)
628 			break;
629 		pos += block_len;
630 
631 		/* Avoid locking up the system */
632 		cond_resched();
633 		if (signal_pending(current)) {
634 			rc = -EINTR;
635 			break;
636 		}
637 	}
638 
639 	if (retlen)
640 		*retlen = pos;
641 	return rc;
642 }
643 
644 #ifdef CONFIG_SFC_MTD
645 
646 struct falcon_mtd_partition {
647 	struct efx_mtd_partition common;
648 	const struct falcon_spi_device *spi;
649 	size_t offset;
650 };
651 
652 #define to_falcon_mtd_partition(mtd)				\
653 	container_of(mtd, struct falcon_mtd_partition, common.mtd)
654 
655 static size_t
falcon_spi_write_limit(const struct falcon_spi_device * spi,size_t start)656 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
657 {
658 	return min(FALCON_SPI_MAX_LEN,
659 		   (spi->block_size - (start & (spi->block_size - 1))));
660 }
661 
662 /* Wait up to 10 ms for buffered write completion */
663 static int
falcon_spi_wait_write(struct efx_nic * efx,const struct falcon_spi_device * spi)664 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
665 {
666 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
667 	u8 status;
668 	int rc;
669 
670 	for (;;) {
671 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
672 				    &status, sizeof(status));
673 		if (rc)
674 			return rc;
675 		if (!(status & SPI_STATUS_NRDY))
676 			return 0;
677 		if (time_after_eq(jiffies, timeout)) {
678 			netif_err(efx, hw, efx->net_dev,
679 				  "SPI write timeout on device %d"
680 				  " last status=0x%02x\n",
681 				  spi->device_id, status);
682 			return -ETIMEDOUT;
683 		}
684 		schedule_timeout_uninterruptible(1);
685 	}
686 }
687 
688 static int
falcon_spi_write(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)689 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
690 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
691 {
692 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
693 	size_t block_len, pos = 0;
694 	unsigned int command;
695 	int rc = 0;
696 
697 	while (pos < len) {
698 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
699 		if (rc)
700 			break;
701 
702 		block_len = min(len - pos,
703 				falcon_spi_write_limit(spi, start + pos));
704 		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
705 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
706 				    buffer + pos, NULL, block_len);
707 		if (rc)
708 			break;
709 
710 		rc = falcon_spi_wait_write(efx, spi);
711 		if (rc)
712 			break;
713 
714 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
715 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
716 				    NULL, verify_buffer, block_len);
717 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
718 			rc = -EIO;
719 			break;
720 		}
721 
722 		pos += block_len;
723 
724 		/* Avoid locking up the system */
725 		cond_resched();
726 		if (signal_pending(current)) {
727 			rc = -EINTR;
728 			break;
729 		}
730 	}
731 
732 	if (retlen)
733 		*retlen = pos;
734 	return rc;
735 }
736 
737 static int
falcon_spi_slow_wait(struct falcon_mtd_partition * part,bool uninterruptible)738 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
739 {
740 	const struct falcon_spi_device *spi = part->spi;
741 	struct efx_nic *efx = part->common.mtd.priv;
742 	u8 status;
743 	int rc, i;
744 
745 	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
746 	for (i = 0; i < 40; i++) {
747 		__set_current_state(uninterruptible ?
748 				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
749 		schedule_timeout(HZ / 10);
750 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
751 				    &status, sizeof(status));
752 		if (rc)
753 			return rc;
754 		if (!(status & SPI_STATUS_NRDY))
755 			return 0;
756 		if (signal_pending(current))
757 			return -EINTR;
758 	}
759 	pr_err("%s: timed out waiting for %s\n",
760 	       part->common.name, part->common.dev_type_name);
761 	return -ETIMEDOUT;
762 }
763 
764 static int
falcon_spi_unlock(struct efx_nic * efx,const struct falcon_spi_device * spi)765 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
766 {
767 	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
768 				SPI_STATUS_BP0);
769 	u8 status;
770 	int rc;
771 
772 	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
773 			    &status, sizeof(status));
774 	if (rc)
775 		return rc;
776 
777 	if (!(status & unlock_mask))
778 		return 0; /* already unlocked */
779 
780 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
781 	if (rc)
782 		return rc;
783 	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
784 	if (rc)
785 		return rc;
786 
787 	status &= ~unlock_mask;
788 	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
789 			    NULL, sizeof(status));
790 	if (rc)
791 		return rc;
792 	rc = falcon_spi_wait_write(efx, spi);
793 	if (rc)
794 		return rc;
795 
796 	return 0;
797 }
798 
799 #define FALCON_SPI_VERIFY_BUF_LEN 16
800 
801 static int
falcon_spi_erase(struct falcon_mtd_partition * part,loff_t start,size_t len)802 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
803 {
804 	const struct falcon_spi_device *spi = part->spi;
805 	struct efx_nic *efx = part->common.mtd.priv;
806 	unsigned pos, block_len;
807 	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
808 	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
809 	int rc;
810 
811 	if (len != spi->erase_size)
812 		return -EINVAL;
813 
814 	if (spi->erase_command == 0)
815 		return -EOPNOTSUPP;
816 
817 	rc = falcon_spi_unlock(efx, spi);
818 	if (rc)
819 		return rc;
820 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
821 	if (rc)
822 		return rc;
823 	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
824 			    NULL, 0);
825 	if (rc)
826 		return rc;
827 	rc = falcon_spi_slow_wait(part, false);
828 
829 	/* Verify the entire region has been wiped */
830 	memset(empty, 0xff, sizeof(empty));
831 	for (pos = 0; pos < len; pos += block_len) {
832 		block_len = min(len - pos, sizeof(buffer));
833 		rc = falcon_spi_read(efx, spi, start + pos, block_len,
834 				     NULL, buffer);
835 		if (rc)
836 			return rc;
837 		if (memcmp(empty, buffer, block_len))
838 			return -EIO;
839 
840 		/* Avoid locking up the system */
841 		cond_resched();
842 		if (signal_pending(current))
843 			return -EINTR;
844 	}
845 
846 	return rc;
847 }
848 
falcon_mtd_rename(struct efx_mtd_partition * part)849 static void falcon_mtd_rename(struct efx_mtd_partition *part)
850 {
851 	struct efx_nic *efx = part->mtd.priv;
852 
853 	snprintf(part->name, sizeof(part->name), "%s %s",
854 		 efx->name, part->type_name);
855 }
856 
falcon_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)857 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
858 			   size_t len, size_t *retlen, u8 *buffer)
859 {
860 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
861 	struct efx_nic *efx = mtd->priv;
862 	struct falcon_nic_data *nic_data = efx->nic_data;
863 	int rc;
864 
865 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
866 	if (rc)
867 		return rc;
868 	rc = falcon_spi_read(efx, part->spi, part->offset + start,
869 			     len, retlen, buffer);
870 	mutex_unlock(&nic_data->spi_lock);
871 	return rc;
872 }
873 
falcon_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)874 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
875 {
876 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
877 	struct efx_nic *efx = mtd->priv;
878 	struct falcon_nic_data *nic_data = efx->nic_data;
879 	int rc;
880 
881 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
882 	if (rc)
883 		return rc;
884 	rc = falcon_spi_erase(part, part->offset + start, len);
885 	mutex_unlock(&nic_data->spi_lock);
886 	return rc;
887 }
888 
falcon_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)889 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
890 			    size_t len, size_t *retlen, const u8 *buffer)
891 {
892 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
893 	struct efx_nic *efx = mtd->priv;
894 	struct falcon_nic_data *nic_data = efx->nic_data;
895 	int rc;
896 
897 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
898 	if (rc)
899 		return rc;
900 	rc = falcon_spi_write(efx, part->spi, part->offset + start,
901 			      len, retlen, buffer);
902 	mutex_unlock(&nic_data->spi_lock);
903 	return rc;
904 }
905 
falcon_mtd_sync(struct mtd_info * mtd)906 static int falcon_mtd_sync(struct mtd_info *mtd)
907 {
908 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
909 	struct efx_nic *efx = mtd->priv;
910 	struct falcon_nic_data *nic_data = efx->nic_data;
911 	int rc;
912 
913 	mutex_lock(&nic_data->spi_lock);
914 	rc = falcon_spi_slow_wait(part, true);
915 	mutex_unlock(&nic_data->spi_lock);
916 	return rc;
917 }
918 
falcon_mtd_probe(struct efx_nic * efx)919 static int falcon_mtd_probe(struct efx_nic *efx)
920 {
921 	struct falcon_nic_data *nic_data = efx->nic_data;
922 	struct falcon_mtd_partition *parts;
923 	struct falcon_spi_device *spi;
924 	size_t n_parts;
925 	int rc = -ENODEV;
926 
927 	ASSERT_RTNL();
928 
929 	/* Allocate space for maximum number of partitions */
930 	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
931 	if (!parts)
932 		return -ENOMEM;
933 	n_parts = 0;
934 
935 	spi = &nic_data->spi_flash;
936 	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
937 		parts[n_parts].spi = spi;
938 		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
939 		parts[n_parts].common.dev_type_name = "flash";
940 		parts[n_parts].common.type_name = "sfc_flash_bootrom";
941 		parts[n_parts].common.mtd.type = MTD_NORFLASH;
942 		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
943 		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
944 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
945 		n_parts++;
946 	}
947 
948 	spi = &nic_data->spi_eeprom;
949 	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
950 		parts[n_parts].spi = spi;
951 		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
952 		parts[n_parts].common.dev_type_name = "EEPROM";
953 		parts[n_parts].common.type_name = "sfc_bootconfig";
954 		parts[n_parts].common.mtd.type = MTD_RAM;
955 		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
956 		parts[n_parts].common.mtd.size =
957 			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
958 			FALCON_EEPROM_BOOTCONFIG_START;
959 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
960 		n_parts++;
961 	}
962 
963 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
964 	if (rc)
965 		kfree(parts);
966 	return rc;
967 }
968 
969 #endif /* CONFIG_SFC_MTD */
970 
971 /**************************************************************************
972  *
973  * XMAC operations
974  *
975  **************************************************************************
976  */
977 
978 /* Configure the XAUI driver that is an output from Falcon */
falcon_setup_xaui(struct efx_nic * efx)979 static void falcon_setup_xaui(struct efx_nic *efx)
980 {
981 	efx_oword_t sdctl, txdrv;
982 
983 	/* Move the XAUI into low power, unless there is no PHY, in
984 	 * which case the XAUI will have to drive a cable. */
985 	if (efx->phy_type == PHY_TYPE_NONE)
986 		return;
987 
988 	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
989 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
990 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
991 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
992 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
993 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
994 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
995 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
996 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
997 	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
998 
999 	EFX_POPULATE_OWORD_8(txdrv,
1000 			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1001 			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1002 			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1003 			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1005 			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1006 			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1007 			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1008 	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1009 }
1010 
falcon_reset_xaui(struct efx_nic * efx)1011 int falcon_reset_xaui(struct efx_nic *efx)
1012 {
1013 	struct falcon_nic_data *nic_data = efx->nic_data;
1014 	efx_oword_t reg;
1015 	int count;
1016 
1017 	/* Don't fetch MAC statistics over an XMAC reset */
1018 	WARN_ON(nic_data->stats_disable_count == 0);
1019 
1020 	/* Start reset sequence */
1021 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1022 	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1023 
1024 	/* Wait up to 10 ms for completion, then reinitialise */
1025 	for (count = 0; count < 1000; count++) {
1026 		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1027 		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1028 		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1029 			falcon_setup_xaui(efx);
1030 			return 0;
1031 		}
1032 		udelay(10);
1033 	}
1034 	netif_err(efx, hw, efx->net_dev,
1035 		  "timed out waiting for XAUI/XGXS reset\n");
1036 	return -ETIMEDOUT;
1037 }
1038 
falcon_ack_status_intr(struct efx_nic * efx)1039 static void falcon_ack_status_intr(struct efx_nic *efx)
1040 {
1041 	struct falcon_nic_data *nic_data = efx->nic_data;
1042 	efx_oword_t reg;
1043 
1044 	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1045 		return;
1046 
1047 	/* We expect xgmii faults if the wireside link is down */
1048 	if (!efx->link_state.up)
1049 		return;
1050 
1051 	/* We can only use this interrupt to signal the negative edge of
1052 	 * xaui_align [we have to poll the positive edge]. */
1053 	if (nic_data->xmac_poll_required)
1054 		return;
1055 
1056 	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1057 }
1058 
falcon_xgxs_link_ok(struct efx_nic * efx)1059 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1060 {
1061 	efx_oword_t reg;
1062 	bool align_done, link_ok = false;
1063 	int sync_status;
1064 
1065 	/* Read link status */
1066 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1067 
1068 	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1069 	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1070 	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1071 		link_ok = true;
1072 
1073 	/* Clear link status ready for next read */
1074 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1075 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1076 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1077 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1078 
1079 	return link_ok;
1080 }
1081 
falcon_xmac_link_ok(struct efx_nic * efx)1082 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1083 {
1084 	/*
1085 	 * Check MAC's XGXS link status except when using XGMII loopback
1086 	 * which bypasses the XGXS block.
1087 	 * If possible, check PHY's XGXS link status except when using
1088 	 * MAC loopback.
1089 	 */
1090 	return (efx->loopback_mode == LOOPBACK_XGMII ||
1091 		falcon_xgxs_link_ok(efx)) &&
1092 		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1093 		 LOOPBACK_INTERNAL(efx) ||
1094 		 efx_mdio_phyxgxs_lane_sync(efx));
1095 }
1096 
falcon_reconfigure_xmac_core(struct efx_nic * efx)1097 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1098 {
1099 	unsigned int max_frame_len;
1100 	efx_oword_t reg;
1101 	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1102 	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1103 
1104 	/* Configure MAC  - cut-thru mode is hard wired on */
1105 	EFX_POPULATE_OWORD_3(reg,
1106 			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1107 			     FRF_AB_XM_TX_STAT_EN, 1,
1108 			     FRF_AB_XM_RX_STAT_EN, 1);
1109 	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1110 
1111 	/* Configure TX */
1112 	EFX_POPULATE_OWORD_6(reg,
1113 			     FRF_AB_XM_TXEN, 1,
1114 			     FRF_AB_XM_TX_PRMBL, 1,
1115 			     FRF_AB_XM_AUTO_PAD, 1,
1116 			     FRF_AB_XM_TXCRC, 1,
1117 			     FRF_AB_XM_FCNTL, tx_fc,
1118 			     FRF_AB_XM_IPG, 0x3);
1119 	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1120 
1121 	/* Configure RX */
1122 	EFX_POPULATE_OWORD_5(reg,
1123 			     FRF_AB_XM_RXEN, 1,
1124 			     FRF_AB_XM_AUTO_DEPAD, 0,
1125 			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1126 			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1127 			     FRF_AB_XM_PASS_CRC_ERR, 1);
1128 	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1129 
1130 	/* Set frame length */
1131 	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1132 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1133 	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1134 	EFX_POPULATE_OWORD_2(reg,
1135 			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1136 			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1137 	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1138 
1139 	EFX_POPULATE_OWORD_2(reg,
1140 			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1141 			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1142 	efx_writeo(efx, &reg, FR_AB_XM_FC);
1143 
1144 	/* Set MAC address */
1145 	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1146 	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1147 	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1148 	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1149 }
1150 
falcon_reconfigure_xgxs_core(struct efx_nic * efx)1151 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1152 {
1153 	efx_oword_t reg;
1154 	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1155 	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1156 	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1157 	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1158 
1159 	/* XGXS block is flaky and will need to be reset if moving
1160 	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1161 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162 	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1163 	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1164 
1165 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166 	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1167 
1168 	/* The PHY driver may have turned XAUI off */
1169 	if ((xgxs_loopback != old_xgxs_loopback) ||
1170 	    (xaui_loopback != old_xaui_loopback) ||
1171 	    (xgmii_loopback != old_xgmii_loopback))
1172 		falcon_reset_xaui(efx);
1173 
1174 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1175 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1176 			    (xgxs_loopback || xaui_loopback) ?
1177 			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1178 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1179 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1180 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1181 
1182 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1183 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1184 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1185 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1186 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1187 	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1188 }
1189 
1190 
1191 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
falcon_xmac_link_ok_retry(struct efx_nic * efx,int tries)1192 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1193 {
1194 	bool mac_up = falcon_xmac_link_ok(efx);
1195 
1196 	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1197 	    efx_phy_mode_disabled(efx->phy_mode))
1198 		/* XAUI link is expected to be down */
1199 		return mac_up;
1200 
1201 	falcon_stop_nic_stats(efx);
1202 
1203 	while (!mac_up && tries) {
1204 		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1205 		falcon_reset_xaui(efx);
1206 		udelay(200);
1207 
1208 		mac_up = falcon_xmac_link_ok(efx);
1209 		--tries;
1210 	}
1211 
1212 	falcon_start_nic_stats(efx);
1213 
1214 	return mac_up;
1215 }
1216 
falcon_xmac_check_fault(struct efx_nic * efx)1217 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1218 {
1219 	return !falcon_xmac_link_ok_retry(efx, 5);
1220 }
1221 
falcon_reconfigure_xmac(struct efx_nic * efx)1222 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1223 {
1224 	struct falcon_nic_data *nic_data = efx->nic_data;
1225 
1226 	efx_farch_filter_sync_rx_mode(efx);
1227 
1228 	falcon_reconfigure_xgxs_core(efx);
1229 	falcon_reconfigure_xmac_core(efx);
1230 
1231 	falcon_reconfigure_mac_wrapper(efx);
1232 
1233 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1234 	falcon_ack_status_intr(efx);
1235 
1236 	return 0;
1237 }
1238 
falcon_poll_xmac(struct efx_nic * efx)1239 static void falcon_poll_xmac(struct efx_nic *efx)
1240 {
1241 	struct falcon_nic_data *nic_data = efx->nic_data;
1242 
1243 	/* We expect xgmii faults if the wireside link is down */
1244 	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1245 		return;
1246 
1247 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1248 	falcon_ack_status_intr(efx);
1249 }
1250 
1251 /**************************************************************************
1252  *
1253  * MAC wrapper
1254  *
1255  **************************************************************************
1256  */
1257 
falcon_push_multicast_hash(struct efx_nic * efx)1258 static void falcon_push_multicast_hash(struct efx_nic *efx)
1259 {
1260 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1261 
1262 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1263 
1264 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1265 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1266 }
1267 
falcon_reset_macs(struct efx_nic * efx)1268 static void falcon_reset_macs(struct efx_nic *efx)
1269 {
1270 	struct falcon_nic_data *nic_data = efx->nic_data;
1271 	efx_oword_t reg, mac_ctrl;
1272 	int count;
1273 
1274 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1275 		/* It's not safe to use GLB_CTL_REG to reset the
1276 		 * macs, so instead use the internal MAC resets
1277 		 */
1278 		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1279 		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1280 
1281 		for (count = 0; count < 10000; count++) {
1282 			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1283 			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1284 			    0)
1285 				return;
1286 			udelay(10);
1287 		}
1288 
1289 		netif_err(efx, hw, efx->net_dev,
1290 			  "timed out waiting for XMAC core reset\n");
1291 	}
1292 
1293 	/* Mac stats will fail whist the TX fifo is draining */
1294 	WARN_ON(nic_data->stats_disable_count == 0);
1295 
1296 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1297 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1298 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299 
1300 	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1301 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1302 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1303 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1304 	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1305 
1306 	count = 0;
1307 	while (1) {
1308 		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1309 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1310 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1311 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1312 			netif_dbg(efx, hw, efx->net_dev,
1313 				  "Completed MAC reset after %d loops\n",
1314 				  count);
1315 			break;
1316 		}
1317 		if (count > 20) {
1318 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1319 			break;
1320 		}
1321 		count++;
1322 		udelay(10);
1323 	}
1324 
1325 	/* Ensure the correct MAC is selected before statistics
1326 	 * are re-enabled by the caller */
1327 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1328 
1329 	falcon_setup_xaui(efx);
1330 }
1331 
falcon_drain_tx_fifo(struct efx_nic * efx)1332 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1333 {
1334 	efx_oword_t reg;
1335 
1336 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1337 	    (efx->loopback_mode != LOOPBACK_NONE))
1338 		return;
1339 
1340 	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1341 	/* There is no point in draining more than once */
1342 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1343 		return;
1344 
1345 	falcon_reset_macs(efx);
1346 }
1347 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)1348 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1349 {
1350 	efx_oword_t reg;
1351 
1352 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1353 		return;
1354 
1355 	/* Isolate the MAC -> RX */
1356 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1357 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1358 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1359 
1360 	/* Isolate TX -> MAC */
1361 	falcon_drain_tx_fifo(efx);
1362 }
1363 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)1364 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1365 {
1366 	struct efx_link_state *link_state = &efx->link_state;
1367 	efx_oword_t reg;
1368 	int link_speed, isolate;
1369 
1370 	isolate = !!ACCESS_ONCE(efx->reset_pending);
1371 
1372 	switch (link_state->speed) {
1373 	case 10000: link_speed = 3; break;
1374 	case 1000:  link_speed = 2; break;
1375 	case 100:   link_speed = 1; break;
1376 	default:    link_speed = 0; break;
1377 	}
1378 
1379 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1380 	 * as advertised.  Disable to ensure packets are not
1381 	 * indefinitely held and TX queue can be flushed at any point
1382 	 * while the link is down. */
1383 	EFX_POPULATE_OWORD_5(reg,
1384 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1385 			     FRF_AB_MAC_BCAD_ACPT, 1,
1386 			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1387 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1388 			     FRF_AB_MAC_SPEED, link_speed);
1389 	/* On B0, MAC backpressure can be disabled and packets get
1390 	 * discarded. */
1391 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1392 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1393 				    !link_state->up || isolate);
1394 	}
1395 
1396 	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1397 
1398 	/* Restore the multicast hash registers. */
1399 	falcon_push_multicast_hash(efx);
1400 
1401 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1402 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1403 	 * initialisation but it may read back as 0) */
1404 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1405 	/* Unisolate the MAC -> RX */
1406 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1407 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1408 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1409 }
1410 
falcon_stats_request(struct efx_nic * efx)1411 static void falcon_stats_request(struct efx_nic *efx)
1412 {
1413 	struct falcon_nic_data *nic_data = efx->nic_data;
1414 	efx_oword_t reg;
1415 
1416 	WARN_ON(nic_data->stats_pending);
1417 	WARN_ON(nic_data->stats_disable_count);
1418 
1419 	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1420 	nic_data->stats_pending = true;
1421 	wmb(); /* ensure done flag is clear */
1422 
1423 	/* Initiate DMA transfer of stats */
1424 	EFX_POPULATE_OWORD_2(reg,
1425 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1426 			     FRF_AB_MAC_STAT_DMA_ADR,
1427 			     efx->stats_buffer.dma_addr);
1428 	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1429 
1430 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1431 }
1432 
falcon_stats_complete(struct efx_nic * efx)1433 static void falcon_stats_complete(struct efx_nic *efx)
1434 {
1435 	struct falcon_nic_data *nic_data = efx->nic_data;
1436 
1437 	if (!nic_data->stats_pending)
1438 		return;
1439 
1440 	nic_data->stats_pending = false;
1441 	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1442 		rmb(); /* read the done flag before the stats */
1443 		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1444 				     falcon_stat_mask, nic_data->stats,
1445 				     efx->stats_buffer.addr, true);
1446 	} else {
1447 		netif_err(efx, hw, efx->net_dev,
1448 			  "timed out waiting for statistics\n");
1449 	}
1450 }
1451 
falcon_stats_timer_func(unsigned long context)1452 static void falcon_stats_timer_func(unsigned long context)
1453 {
1454 	struct efx_nic *efx = (struct efx_nic *)context;
1455 	struct falcon_nic_data *nic_data = efx->nic_data;
1456 
1457 	spin_lock(&efx->stats_lock);
1458 
1459 	falcon_stats_complete(efx);
1460 	if (nic_data->stats_disable_count == 0)
1461 		falcon_stats_request(efx);
1462 
1463 	spin_unlock(&efx->stats_lock);
1464 }
1465 
falcon_loopback_link_poll(struct efx_nic * efx)1466 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1467 {
1468 	struct efx_link_state old_state = efx->link_state;
1469 
1470 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1471 	WARN_ON(!LOOPBACK_INTERNAL(efx));
1472 
1473 	efx->link_state.fd = true;
1474 	efx->link_state.fc = efx->wanted_fc;
1475 	efx->link_state.up = true;
1476 	efx->link_state.speed = 10000;
1477 
1478 	return !efx_link_state_equal(&efx->link_state, &old_state);
1479 }
1480 
falcon_reconfigure_port(struct efx_nic * efx)1481 static int falcon_reconfigure_port(struct efx_nic *efx)
1482 {
1483 	int rc;
1484 
1485 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1486 
1487 	/* Poll the PHY link state *before* reconfiguring it. This means we
1488 	 * will pick up the correct speed (in loopback) to select the correct
1489 	 * MAC.
1490 	 */
1491 	if (LOOPBACK_INTERNAL(efx))
1492 		falcon_loopback_link_poll(efx);
1493 	else
1494 		efx->phy_op->poll(efx);
1495 
1496 	falcon_stop_nic_stats(efx);
1497 	falcon_deconfigure_mac_wrapper(efx);
1498 
1499 	falcon_reset_macs(efx);
1500 
1501 	efx->phy_op->reconfigure(efx);
1502 	rc = falcon_reconfigure_xmac(efx);
1503 	BUG_ON(rc);
1504 
1505 	falcon_start_nic_stats(efx);
1506 
1507 	/* Synchronise efx->link_state with the kernel */
1508 	efx_link_status_changed(efx);
1509 
1510 	return 0;
1511 }
1512 
1513 /* TX flow control may automatically turn itself off if the link
1514  * partner (intermittently) stops responding to pause frames. There
1515  * isn't any indication that this has happened, so the best we do is
1516  * leave it up to the user to spot this and fix it by cycling transmit
1517  * flow control on this end.
1518  */
1519 
falcon_a1_prepare_enable_fc_tx(struct efx_nic * efx)1520 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1521 {
1522 	/* Schedule a reset to recover */
1523 	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1524 }
1525 
falcon_b0_prepare_enable_fc_tx(struct efx_nic * efx)1526 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1527 {
1528 	/* Recover by resetting the EM block */
1529 	falcon_stop_nic_stats(efx);
1530 	falcon_drain_tx_fifo(efx);
1531 	falcon_reconfigure_xmac(efx);
1532 	falcon_start_nic_stats(efx);
1533 }
1534 
1535 /**************************************************************************
1536  *
1537  * PHY access via GMII
1538  *
1539  **************************************************************************
1540  */
1541 
1542 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)1543 static int falcon_gmii_wait(struct efx_nic *efx)
1544 {
1545 	efx_oword_t md_stat;
1546 	int count;
1547 
1548 	/* wait up to 50ms - taken max from datasheet */
1549 	for (count = 0; count < 5000; count++) {
1550 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1551 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1552 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1553 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1554 				netif_err(efx, hw, efx->net_dev,
1555 					  "error from GMII access "
1556 					  EFX_OWORD_FMT"\n",
1557 					  EFX_OWORD_VAL(md_stat));
1558 				return -EIO;
1559 			}
1560 			return 0;
1561 		}
1562 		udelay(10);
1563 	}
1564 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1565 	return -ETIMEDOUT;
1566 }
1567 
1568 /* Write an MDIO register of a PHY connected to Falcon. */
falcon_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)1569 static int falcon_mdio_write(struct net_device *net_dev,
1570 			     int prtad, int devad, u16 addr, u16 value)
1571 {
1572 	struct efx_nic *efx = netdev_priv(net_dev);
1573 	struct falcon_nic_data *nic_data = efx->nic_data;
1574 	efx_oword_t reg;
1575 	int rc;
1576 
1577 	netif_vdbg(efx, hw, efx->net_dev,
1578 		   "writing MDIO %d register %d.%d with 0x%04x\n",
1579 		    prtad, devad, addr, value);
1580 
1581 	mutex_lock(&nic_data->mdio_lock);
1582 
1583 	/* Check MDIO not currently being accessed */
1584 	rc = falcon_gmii_wait(efx);
1585 	if (rc)
1586 		goto out;
1587 
1588 	/* Write the address/ID register */
1589 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1590 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1591 
1592 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1593 			     FRF_AB_MD_DEV_ADR, devad);
1594 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1595 
1596 	/* Write data */
1597 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1598 	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1599 
1600 	EFX_POPULATE_OWORD_2(reg,
1601 			     FRF_AB_MD_WRC, 1,
1602 			     FRF_AB_MD_GC, 0);
1603 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1604 
1605 	/* Wait for data to be written */
1606 	rc = falcon_gmii_wait(efx);
1607 	if (rc) {
1608 		/* Abort the write operation */
1609 		EFX_POPULATE_OWORD_2(reg,
1610 				     FRF_AB_MD_WRC, 0,
1611 				     FRF_AB_MD_GC, 1);
1612 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1613 		udelay(10);
1614 	}
1615 
1616 out:
1617 	mutex_unlock(&nic_data->mdio_lock);
1618 	return rc;
1619 }
1620 
1621 /* Read an MDIO register of a PHY connected to Falcon. */
falcon_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)1622 static int falcon_mdio_read(struct net_device *net_dev,
1623 			    int prtad, int devad, u16 addr)
1624 {
1625 	struct efx_nic *efx = netdev_priv(net_dev);
1626 	struct falcon_nic_data *nic_data = efx->nic_data;
1627 	efx_oword_t reg;
1628 	int rc;
1629 
1630 	mutex_lock(&nic_data->mdio_lock);
1631 
1632 	/* Check MDIO not currently being accessed */
1633 	rc = falcon_gmii_wait(efx);
1634 	if (rc)
1635 		goto out;
1636 
1637 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1638 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1639 
1640 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1641 			     FRF_AB_MD_DEV_ADR, devad);
1642 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1643 
1644 	/* Request data to be read */
1645 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1646 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1647 
1648 	/* Wait for data to become available */
1649 	rc = falcon_gmii_wait(efx);
1650 	if (rc == 0) {
1651 		efx_reado(efx, &reg, FR_AB_MD_RXD);
1652 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1653 		netif_vdbg(efx, hw, efx->net_dev,
1654 			   "read from MDIO %d register %d.%d, got %04x\n",
1655 			   prtad, devad, addr, rc);
1656 	} else {
1657 		/* Abort the read operation */
1658 		EFX_POPULATE_OWORD_2(reg,
1659 				     FRF_AB_MD_RIC, 0,
1660 				     FRF_AB_MD_GC, 1);
1661 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1662 
1663 		netif_dbg(efx, hw, efx->net_dev,
1664 			  "read from MDIO %d register %d.%d, got error %d\n",
1665 			  prtad, devad, addr, rc);
1666 	}
1667 
1668 out:
1669 	mutex_unlock(&nic_data->mdio_lock);
1670 	return rc;
1671 }
1672 
1673 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)1674 static int falcon_probe_port(struct efx_nic *efx)
1675 {
1676 	struct falcon_nic_data *nic_data = efx->nic_data;
1677 	int rc;
1678 
1679 	switch (efx->phy_type) {
1680 	case PHY_TYPE_SFX7101:
1681 		efx->phy_op = &falcon_sfx7101_phy_ops;
1682 		break;
1683 	case PHY_TYPE_QT2022C2:
1684 	case PHY_TYPE_QT2025C:
1685 		efx->phy_op = &falcon_qt202x_phy_ops;
1686 		break;
1687 	case PHY_TYPE_TXC43128:
1688 		efx->phy_op = &falcon_txc_phy_ops;
1689 		break;
1690 	default:
1691 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1692 			  efx->phy_type);
1693 		return -ENODEV;
1694 	}
1695 
1696 	/* Fill out MDIO structure and loopback modes */
1697 	mutex_init(&nic_data->mdio_lock);
1698 	efx->mdio.mdio_read = falcon_mdio_read;
1699 	efx->mdio.mdio_write = falcon_mdio_write;
1700 	rc = efx->phy_op->probe(efx);
1701 	if (rc != 0)
1702 		return rc;
1703 
1704 	/* Initial assumption */
1705 	efx->link_state.speed = 10000;
1706 	efx->link_state.fd = true;
1707 
1708 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1709 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1710 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1711 	else
1712 		efx->wanted_fc = EFX_FC_RX;
1713 	if (efx->mdio.mmds & MDIO_DEVS_AN)
1714 		efx->wanted_fc |= EFX_FC_AUTO;
1715 
1716 	/* Allocate buffer for stats */
1717 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1718 				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1719 	if (rc)
1720 		return rc;
1721 	netif_dbg(efx, probe, efx->net_dev,
1722 		  "stats buffer at %llx (virt %p phys %llx)\n",
1723 		  (u64)efx->stats_buffer.dma_addr,
1724 		  efx->stats_buffer.addr,
1725 		  (u64)virt_to_phys(efx->stats_buffer.addr));
1726 
1727 	return 0;
1728 }
1729 
falcon_remove_port(struct efx_nic * efx)1730 static void falcon_remove_port(struct efx_nic *efx)
1731 {
1732 	efx->phy_op->remove(efx);
1733 	efx_nic_free_buffer(efx, &efx->stats_buffer);
1734 }
1735 
1736 /* Global events are basically PHY events */
1737 static bool
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)1738 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1739 {
1740 	struct efx_nic *efx = channel->efx;
1741 	struct falcon_nic_data *nic_data = efx->nic_data;
1742 
1743 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1744 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1745 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1746 		/* Ignored */
1747 		return true;
1748 
1749 	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1750 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1751 		nic_data->xmac_poll_required = true;
1752 		return true;
1753 	}
1754 
1755 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1756 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1757 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1758 		netif_err(efx, rx_err, efx->net_dev,
1759 			  "channel %d seen global RX_RESET event. Resetting.\n",
1760 			  channel->channel);
1761 
1762 		atomic_inc(&efx->rx_reset);
1763 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1764 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1765 		return true;
1766 	}
1767 
1768 	return false;
1769 }
1770 
1771 /**************************************************************************
1772  *
1773  * Falcon test code
1774  *
1775  **************************************************************************/
1776 
1777 static int
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)1778 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1779 {
1780 	struct falcon_nic_data *nic_data = efx->nic_data;
1781 	struct falcon_nvconfig *nvconfig;
1782 	struct falcon_spi_device *spi;
1783 	void *region;
1784 	int rc, magic_num, struct_ver;
1785 	__le16 *word, *limit;
1786 	u32 csum;
1787 
1788 	if (falcon_spi_present(&nic_data->spi_flash))
1789 		spi = &nic_data->spi_flash;
1790 	else if (falcon_spi_present(&nic_data->spi_eeprom))
1791 		spi = &nic_data->spi_eeprom;
1792 	else
1793 		return -EINVAL;
1794 
1795 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1796 	if (!region)
1797 		return -ENOMEM;
1798 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1799 
1800 	mutex_lock(&nic_data->spi_lock);
1801 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1802 	mutex_unlock(&nic_data->spi_lock);
1803 	if (rc) {
1804 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1805 			  falcon_spi_present(&nic_data->spi_flash) ?
1806 			  "flash" : "EEPROM");
1807 		rc = -EIO;
1808 		goto out;
1809 	}
1810 
1811 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1812 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1813 
1814 	rc = -EINVAL;
1815 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1816 		netif_err(efx, hw, efx->net_dev,
1817 			  "NVRAM bad magic 0x%x\n", magic_num);
1818 		goto out;
1819 	}
1820 	if (struct_ver < 2) {
1821 		netif_err(efx, hw, efx->net_dev,
1822 			  "NVRAM has ancient version 0x%x\n", struct_ver);
1823 		goto out;
1824 	} else if (struct_ver < 4) {
1825 		word = &nvconfig->board_magic_num;
1826 		limit = (__le16 *) (nvconfig + 1);
1827 	} else {
1828 		word = region;
1829 		limit = region + FALCON_NVCONFIG_END;
1830 	}
1831 	for (csum = 0; word < limit; ++word)
1832 		csum += le16_to_cpu(*word);
1833 
1834 	if (~csum & 0xffff) {
1835 		netif_err(efx, hw, efx->net_dev,
1836 			  "NVRAM has incorrect checksum\n");
1837 		goto out;
1838 	}
1839 
1840 	rc = 0;
1841 	if (nvconfig_out)
1842 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1843 
1844  out:
1845 	kfree(region);
1846 	return rc;
1847 }
1848 
falcon_test_nvram(struct efx_nic * efx)1849 static int falcon_test_nvram(struct efx_nic *efx)
1850 {
1851 	return falcon_read_nvram(efx, NULL);
1852 }
1853 
1854 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1855 	{ FR_AZ_ADR_REGION,
1856 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1857 	{ FR_AZ_RX_CFG,
1858 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1859 	{ FR_AZ_TX_CFG,
1860 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1861 	{ FR_AZ_TX_RESERVED,
1862 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1863 	{ FR_AB_MAC_CTRL,
1864 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1865 	{ FR_AZ_SRM_TX_DC_CFG,
1866 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1867 	{ FR_AZ_RX_DC_CFG,
1868 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1869 	{ FR_AZ_RX_DC_PF_WM,
1870 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1871 	{ FR_BZ_DP_CTRL,
1872 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1873 	{ FR_AB_GM_CFG2,
1874 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1875 	{ FR_AB_GMF_CFG0,
1876 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1877 	{ FR_AB_XM_GLB_CFG,
1878 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1879 	{ FR_AB_XM_TX_CFG,
1880 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1881 	{ FR_AB_XM_RX_CFG,
1882 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1883 	{ FR_AB_XM_RX_PARAM,
1884 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1885 	{ FR_AB_XM_FC,
1886 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1887 	{ FR_AB_XM_ADR_LO,
1888 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1889 	{ FR_AB_XX_SD_CTL,
1890 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1891 };
1892 
1893 static int
falcon_b0_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)1894 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1895 {
1896 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1897 	int rc, rc2;
1898 
1899 	mutex_lock(&efx->mac_lock);
1900 	if (efx->loopback_modes) {
1901 		/* We need the 312 clock from the PHY to test the XMAC
1902 		 * registers, so move into XGMII loopback if available */
1903 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1904 			efx->loopback_mode = LOOPBACK_XGMII;
1905 		else
1906 			efx->loopback_mode = __ffs(efx->loopback_modes);
1907 	}
1908 	__efx_reconfigure_port(efx);
1909 	mutex_unlock(&efx->mac_lock);
1910 
1911 	efx_reset_down(efx, reset_method);
1912 
1913 	tests->registers =
1914 		efx_farch_test_registers(efx, falcon_b0_register_tests,
1915 					 ARRAY_SIZE(falcon_b0_register_tests))
1916 		? -1 : 1;
1917 
1918 	rc = falcon_reset_hw(efx, reset_method);
1919 	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1920 	return rc ? rc : rc2;
1921 }
1922 
1923 /**************************************************************************
1924  *
1925  * Device reset
1926  *
1927  **************************************************************************
1928  */
1929 
falcon_map_reset_reason(enum reset_type reason)1930 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1931 {
1932 	switch (reason) {
1933 	case RESET_TYPE_RX_RECOVERY:
1934 	case RESET_TYPE_DMA_ERROR:
1935 	case RESET_TYPE_TX_SKIP:
1936 		/* These can occasionally occur due to hardware bugs.
1937 		 * We try to reset without disrupting the link.
1938 		 */
1939 		return RESET_TYPE_INVISIBLE;
1940 	default:
1941 		return RESET_TYPE_ALL;
1942 	}
1943 }
1944 
falcon_map_reset_flags(u32 * flags)1945 static int falcon_map_reset_flags(u32 *flags)
1946 {
1947 	enum {
1948 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1949 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1950 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1951 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1952 	};
1953 
1954 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1955 		*flags &= ~FALCON_RESET_WORLD;
1956 		return RESET_TYPE_WORLD;
1957 	}
1958 
1959 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1960 		*flags &= ~FALCON_RESET_ALL;
1961 		return RESET_TYPE_ALL;
1962 	}
1963 
1964 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1965 		*flags &= ~FALCON_RESET_INVISIBLE;
1966 		return RESET_TYPE_INVISIBLE;
1967 	}
1968 
1969 	return -EINVAL;
1970 }
1971 
1972 /* Resets NIC to known state.  This routine must be called in process
1973  * context and is allowed to sleep. */
__falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1974 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1975 {
1976 	struct falcon_nic_data *nic_data = efx->nic_data;
1977 	efx_oword_t glb_ctl_reg_ker;
1978 	int rc;
1979 
1980 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1981 		  RESET_TYPE(method));
1982 
1983 	/* Initiate device reset */
1984 	if (method == RESET_TYPE_WORLD) {
1985 		rc = pci_save_state(efx->pci_dev);
1986 		if (rc) {
1987 			netif_err(efx, drv, efx->net_dev,
1988 				  "failed to backup PCI state of primary "
1989 				  "function prior to hardware reset\n");
1990 			goto fail1;
1991 		}
1992 		if (efx_nic_is_dual_func(efx)) {
1993 			rc = pci_save_state(nic_data->pci_dev2);
1994 			if (rc) {
1995 				netif_err(efx, drv, efx->net_dev,
1996 					  "failed to backup PCI state of "
1997 					  "secondary function prior to "
1998 					  "hardware reset\n");
1999 				goto fail2;
2000 			}
2001 		}
2002 
2003 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2004 				     FRF_AB_EXT_PHY_RST_DUR,
2005 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2006 				     FRF_AB_SWRST, 1);
2007 	} else {
2008 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2009 				     /* exclude PHY from "invisible" reset */
2010 				     FRF_AB_EXT_PHY_RST_CTL,
2011 				     method == RESET_TYPE_INVISIBLE,
2012 				     /* exclude EEPROM/flash and PCIe */
2013 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2014 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2015 				     FRF_AB_PCIE_SD_RST_CTL, 1,
2016 				     FRF_AB_EE_RST_CTL, 1,
2017 				     FRF_AB_EXT_PHY_RST_DUR,
2018 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2019 				     FRF_AB_SWRST, 1);
2020 	}
2021 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2022 
2023 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2024 	schedule_timeout_uninterruptible(HZ / 20);
2025 
2026 	/* Restore PCI configuration if needed */
2027 	if (method == RESET_TYPE_WORLD) {
2028 		if (efx_nic_is_dual_func(efx))
2029 			pci_restore_state(nic_data->pci_dev2);
2030 		pci_restore_state(efx->pci_dev);
2031 		netif_dbg(efx, drv, efx->net_dev,
2032 			  "successfully restored PCI config\n");
2033 	}
2034 
2035 	/* Assert that reset complete */
2036 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2037 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2038 		rc = -ETIMEDOUT;
2039 		netif_err(efx, hw, efx->net_dev,
2040 			  "timed out waiting for hardware reset\n");
2041 		goto fail3;
2042 	}
2043 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2044 
2045 	return 0;
2046 
2047 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2048 fail2:
2049 	pci_restore_state(efx->pci_dev);
2050 fail1:
2051 fail3:
2052 	return rc;
2053 }
2054 
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)2055 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2056 {
2057 	struct falcon_nic_data *nic_data = efx->nic_data;
2058 	int rc;
2059 
2060 	mutex_lock(&nic_data->spi_lock);
2061 	rc = __falcon_reset_hw(efx, method);
2062 	mutex_unlock(&nic_data->spi_lock);
2063 
2064 	return rc;
2065 }
2066 
falcon_monitor(struct efx_nic * efx)2067 static void falcon_monitor(struct efx_nic *efx)
2068 {
2069 	bool link_changed;
2070 	int rc;
2071 
2072 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2073 
2074 	rc = falcon_board(efx)->type->monitor(efx);
2075 	if (rc) {
2076 		netif_err(efx, hw, efx->net_dev,
2077 			  "Board sensor %s; shutting down PHY\n",
2078 			  (rc == -ERANGE) ? "reported fault" : "failed");
2079 		efx->phy_mode |= PHY_MODE_LOW_POWER;
2080 		rc = __efx_reconfigure_port(efx);
2081 		WARN_ON(rc);
2082 	}
2083 
2084 	if (LOOPBACK_INTERNAL(efx))
2085 		link_changed = falcon_loopback_link_poll(efx);
2086 	else
2087 		link_changed = efx->phy_op->poll(efx);
2088 
2089 	if (link_changed) {
2090 		falcon_stop_nic_stats(efx);
2091 		falcon_deconfigure_mac_wrapper(efx);
2092 
2093 		falcon_reset_macs(efx);
2094 		rc = falcon_reconfigure_xmac(efx);
2095 		BUG_ON(rc);
2096 
2097 		falcon_start_nic_stats(efx);
2098 
2099 		efx_link_status_changed(efx);
2100 	}
2101 
2102 	falcon_poll_xmac(efx);
2103 }
2104 
2105 /* Zeroes out the SRAM contents.  This routine must be called in
2106  * process context and is allowed to sleep.
2107  */
falcon_reset_sram(struct efx_nic * efx)2108 static int falcon_reset_sram(struct efx_nic *efx)
2109 {
2110 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2111 	int count;
2112 
2113 	/* Set the SRAM wake/sleep GPIO appropriately. */
2114 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2115 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2116 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2117 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118 
2119 	/* Initiate SRAM reset */
2120 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2121 			     FRF_AZ_SRM_INIT_EN, 1,
2122 			     FRF_AZ_SRM_NB_SZ, 0);
2123 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2124 
2125 	/* Wait for SRAM reset to complete */
2126 	count = 0;
2127 	do {
2128 		netif_dbg(efx, hw, efx->net_dev,
2129 			  "waiting for SRAM reset (attempt %d)...\n", count);
2130 
2131 		/* SRAM reset is slow; expect around 16ms */
2132 		schedule_timeout_uninterruptible(HZ / 50);
2133 
2134 		/* Check for reset complete */
2135 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2136 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2137 			netif_dbg(efx, hw, efx->net_dev,
2138 				  "SRAM reset complete\n");
2139 
2140 			return 0;
2141 		}
2142 	} while (++count < 20);	/* wait up to 0.4 sec */
2143 
2144 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2145 	return -ETIMEDOUT;
2146 }
2147 
falcon_spi_device_init(struct efx_nic * efx,struct falcon_spi_device * spi_device,unsigned int device_id,u32 device_type)2148 static void falcon_spi_device_init(struct efx_nic *efx,
2149 				  struct falcon_spi_device *spi_device,
2150 				  unsigned int device_id, u32 device_type)
2151 {
2152 	if (device_type != 0) {
2153 		spi_device->device_id = device_id;
2154 		spi_device->size =
2155 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2156 		spi_device->addr_len =
2157 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2158 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2159 					     spi_device->addr_len == 1);
2160 		spi_device->erase_command =
2161 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2162 		spi_device->erase_size =
2163 			1 << SPI_DEV_TYPE_FIELD(device_type,
2164 						SPI_DEV_TYPE_ERASE_SIZE);
2165 		spi_device->block_size =
2166 			1 << SPI_DEV_TYPE_FIELD(device_type,
2167 						SPI_DEV_TYPE_BLOCK_SIZE);
2168 	} else {
2169 		spi_device->size = 0;
2170 	}
2171 }
2172 
2173 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)2174 static int falcon_probe_nvconfig(struct efx_nic *efx)
2175 {
2176 	struct falcon_nic_data *nic_data = efx->nic_data;
2177 	struct falcon_nvconfig *nvconfig;
2178 	int rc;
2179 
2180 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2181 	if (!nvconfig)
2182 		return -ENOMEM;
2183 
2184 	rc = falcon_read_nvram(efx, nvconfig);
2185 	if (rc)
2186 		goto out;
2187 
2188 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2189 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2190 
2191 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2192 		falcon_spi_device_init(
2193 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2194 			le32_to_cpu(nvconfig->board_v3
2195 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2196 		falcon_spi_device_init(
2197 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2198 			le32_to_cpu(nvconfig->board_v3
2199 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2200 	}
2201 
2202 	/* Read the MAC addresses */
2203 	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2204 
2205 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2206 		  efx->phy_type, efx->mdio.prtad);
2207 
2208 	rc = falcon_probe_board(efx,
2209 				le16_to_cpu(nvconfig->board_v2.board_revision));
2210 out:
2211 	kfree(nvconfig);
2212 	return rc;
2213 }
2214 
falcon_dimension_resources(struct efx_nic * efx)2215 static int falcon_dimension_resources(struct efx_nic *efx)
2216 {
2217 	efx->rx_dc_base = 0x20000;
2218 	efx->tx_dc_base = 0x26000;
2219 	return 0;
2220 }
2221 
2222 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)2223 static void falcon_probe_spi_devices(struct efx_nic *efx)
2224 {
2225 	struct falcon_nic_data *nic_data = efx->nic_data;
2226 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2227 	int boot_dev;
2228 
2229 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2230 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2231 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2232 
2233 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2234 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2235 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2236 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2237 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2238 			  "flash" : "EEPROM");
2239 	} else {
2240 		/* Disable VPD and set clock dividers to safe
2241 		 * values for initial programming. */
2242 		boot_dev = -1;
2243 		netif_dbg(efx, probe, efx->net_dev,
2244 			  "Booted from internal ASIC settings;"
2245 			  " setting SPI config\n");
2246 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2247 				     /* 125 MHz / 7 ~= 20 MHz */
2248 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2249 				     /* 125 MHz / 63 ~= 2 MHz */
2250 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2251 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2252 	}
2253 
2254 	mutex_init(&nic_data->spi_lock);
2255 
2256 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2257 		falcon_spi_device_init(efx, &nic_data->spi_flash,
2258 				       FFE_AB_SPI_DEVICE_FLASH,
2259 				       default_flash_type);
2260 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2261 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2262 				       FFE_AB_SPI_DEVICE_EEPROM,
2263 				       large_eeprom_type);
2264 }
2265 
falcon_a1_mem_map_size(struct efx_nic * efx)2266 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2267 {
2268 	return 0x20000;
2269 }
2270 
falcon_b0_mem_map_size(struct efx_nic * efx)2271 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2272 {
2273 	/* Map everything up to and including the RSS indirection table.
2274 	 * The PCI core takes care of mapping the MSI-X tables.
2275 	 */
2276 	return FR_BZ_RX_INDIRECTION_TBL +
2277 		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2278 }
2279 
falcon_probe_nic(struct efx_nic * efx)2280 static int falcon_probe_nic(struct efx_nic *efx)
2281 {
2282 	struct falcon_nic_data *nic_data;
2283 	struct falcon_board *board;
2284 	int rc;
2285 
2286 	efx->primary = efx; /* only one usable function per controller */
2287 
2288 	/* Allocate storage for hardware specific data */
2289 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2290 	if (!nic_data)
2291 		return -ENOMEM;
2292 	efx->nic_data = nic_data;
2293 
2294 	rc = -ENODEV;
2295 
2296 	if (efx_farch_fpga_ver(efx) != 0) {
2297 		netif_err(efx, probe, efx->net_dev,
2298 			  "Falcon FPGA not supported\n");
2299 		goto fail1;
2300 	}
2301 
2302 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2303 		efx_oword_t nic_stat;
2304 		struct pci_dev *dev;
2305 		u8 pci_rev = efx->pci_dev->revision;
2306 
2307 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2308 			netif_err(efx, probe, efx->net_dev,
2309 				  "Falcon rev A0 not supported\n");
2310 			goto fail1;
2311 		}
2312 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2313 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2314 			netif_err(efx, probe, efx->net_dev,
2315 				  "Falcon rev A1 1G not supported\n");
2316 			goto fail1;
2317 		}
2318 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2319 			netif_err(efx, probe, efx->net_dev,
2320 				  "Falcon rev A1 PCI-X not supported\n");
2321 			goto fail1;
2322 		}
2323 
2324 		dev = pci_dev_get(efx->pci_dev);
2325 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2326 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2327 					     dev))) {
2328 			if (dev->bus == efx->pci_dev->bus &&
2329 			    dev->devfn == efx->pci_dev->devfn + 1) {
2330 				nic_data->pci_dev2 = dev;
2331 				break;
2332 			}
2333 		}
2334 		if (!nic_data->pci_dev2) {
2335 			netif_err(efx, probe, efx->net_dev,
2336 				  "failed to find secondary function\n");
2337 			rc = -ENODEV;
2338 			goto fail2;
2339 		}
2340 	}
2341 
2342 	/* Now we can reset the NIC */
2343 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2344 	if (rc) {
2345 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2346 		goto fail3;
2347 	}
2348 
2349 	/* Allocate memory for INT_KER */
2350 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2351 				  GFP_KERNEL);
2352 	if (rc)
2353 		goto fail4;
2354 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2355 
2356 	netif_dbg(efx, probe, efx->net_dev,
2357 		  "INT_KER at %llx (virt %p phys %llx)\n",
2358 		  (u64)efx->irq_status.dma_addr,
2359 		  efx->irq_status.addr,
2360 		  (u64)virt_to_phys(efx->irq_status.addr));
2361 
2362 	falcon_probe_spi_devices(efx);
2363 
2364 	/* Read in the non-volatile configuration */
2365 	rc = falcon_probe_nvconfig(efx);
2366 	if (rc) {
2367 		if (rc == -EINVAL)
2368 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2369 		goto fail5;
2370 	}
2371 
2372 	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2373 			     EFX_MAX_CHANNELS);
2374 	efx->max_tx_channels = efx->max_channels;
2375 	efx->timer_quantum_ns = 4968; /* 621 cycles */
2376 
2377 	/* Initialise I2C adapter */
2378 	board = falcon_board(efx);
2379 	board->i2c_adap.owner = THIS_MODULE;
2380 	board->i2c_data = falcon_i2c_bit_operations;
2381 	board->i2c_data.data = efx;
2382 	board->i2c_adap.algo_data = &board->i2c_data;
2383 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2384 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2385 		sizeof(board->i2c_adap.name));
2386 	rc = i2c_bit_add_bus(&board->i2c_adap);
2387 	if (rc)
2388 		goto fail5;
2389 
2390 	rc = falcon_board(efx)->type->init(efx);
2391 	if (rc) {
2392 		netif_err(efx, probe, efx->net_dev,
2393 			  "failed to initialise board\n");
2394 		goto fail6;
2395 	}
2396 
2397 	nic_data->stats_disable_count = 1;
2398 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2399 		    (unsigned long)efx);
2400 
2401 	return 0;
2402 
2403  fail6:
2404 	i2c_del_adapter(&board->i2c_adap);
2405 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2406  fail5:
2407 	efx_nic_free_buffer(efx, &efx->irq_status);
2408  fail4:
2409  fail3:
2410 	if (nic_data->pci_dev2) {
2411 		pci_dev_put(nic_data->pci_dev2);
2412 		nic_data->pci_dev2 = NULL;
2413 	}
2414  fail2:
2415  fail1:
2416 	kfree(efx->nic_data);
2417 	return rc;
2418 }
2419 
falcon_init_rx_cfg(struct efx_nic * efx)2420 static void falcon_init_rx_cfg(struct efx_nic *efx)
2421 {
2422 	/* RX control FIFO thresholds (32 entries) */
2423 	const unsigned ctrl_xon_thr = 20;
2424 	const unsigned ctrl_xoff_thr = 25;
2425 	efx_oword_t reg;
2426 
2427 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2428 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2429 		/* Data FIFO size is 5.5K.  The RX DMA engine only
2430 		 * supports scattering for user-mode queues, but will
2431 		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2432 		 * (32-byte units) even for kernel-mode queues.  We
2433 		 * set it to be so large that that never happens.
2434 		 */
2435 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2436 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2437 				    (3 * 4096) >> 5);
2438 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2439 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2440 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2441 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2442 	} else {
2443 		/* Data FIFO size is 80K; register fields moved */
2444 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2445 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2446 				    EFX_RX_USR_BUF_SIZE >> 5);
2447 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2448 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2449 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2450 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2451 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2452 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2453 
2454 		/* Enable hash insertion. This is broken for the
2455 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2456 		 * IPv4 hashes. */
2457 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2458 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2459 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2460 	}
2461 	/* Always enable XOFF signal from RX FIFO.  We enable
2462 	 * or disable transmission of pause frames at the MAC. */
2463 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2464 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2465 }
2466 
2467 /* This call performs hardware-specific global initialisation, such as
2468  * defining the descriptor cache sizes and number of RSS channels.
2469  * It does not set up any buffers, descriptor rings or event queues.
2470  */
falcon_init_nic(struct efx_nic * efx)2471 static int falcon_init_nic(struct efx_nic *efx)
2472 {
2473 	efx_oword_t temp;
2474 	int rc;
2475 
2476 	/* Use on-chip SRAM */
2477 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2478 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2479 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2480 
2481 	rc = falcon_reset_sram(efx);
2482 	if (rc)
2483 		return rc;
2484 
2485 	/* Clear the parity enables on the TX data fifos as
2486 	 * they produce false parity errors because of timing issues
2487 	 */
2488 	if (EFX_WORKAROUND_5129(efx)) {
2489 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2490 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2491 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2492 	}
2493 
2494 	if (EFX_WORKAROUND_7244(efx)) {
2495 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2496 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2497 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2498 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2499 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2500 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 	}
2502 
2503 	/* XXX This is documented only for Falcon A0/A1 */
2504 	/* Setup RX.  Wait for descriptor is broken and must
2505 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2506 	 */
2507 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2508 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2509 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2510 	if (EFX_WORKAROUND_5583(efx))
2511 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2512 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2513 
2514 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2515 	 * descriptors (which is bad).
2516 	 */
2517 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2518 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2519 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2520 
2521 	falcon_init_rx_cfg(efx);
2522 
2523 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2524 		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2525 
2526 		/* Set destination of both TX and RX Flush events */
2527 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2528 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2529 	}
2530 
2531 	efx_farch_init_common(efx);
2532 
2533 	return 0;
2534 }
2535 
falcon_remove_nic(struct efx_nic * efx)2536 static void falcon_remove_nic(struct efx_nic *efx)
2537 {
2538 	struct falcon_nic_data *nic_data = efx->nic_data;
2539 	struct falcon_board *board = falcon_board(efx);
2540 
2541 	board->type->fini(efx);
2542 
2543 	/* Remove I2C adapter and clear it in preparation for a retry */
2544 	i2c_del_adapter(&board->i2c_adap);
2545 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2546 
2547 	efx_nic_free_buffer(efx, &efx->irq_status);
2548 
2549 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2550 
2551 	/* Release the second function after the reset */
2552 	if (nic_data->pci_dev2) {
2553 		pci_dev_put(nic_data->pci_dev2);
2554 		nic_data->pci_dev2 = NULL;
2555 	}
2556 
2557 	/* Tear down the private nic state */
2558 	kfree(efx->nic_data);
2559 	efx->nic_data = NULL;
2560 }
2561 
falcon_describe_nic_stats(struct efx_nic * efx,u8 * names)2562 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2563 {
2564 	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2565 				      falcon_stat_mask, names);
2566 }
2567 
falcon_update_nic_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)2568 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2569 				      struct rtnl_link_stats64 *core_stats)
2570 {
2571 	struct falcon_nic_data *nic_data = efx->nic_data;
2572 	u64 *stats = nic_data->stats;
2573 	efx_oword_t cnt;
2574 
2575 	if (!nic_data->stats_disable_count) {
2576 		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2577 		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2578 			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2579 
2580 		if (nic_data->stats_pending &&
2581 		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2582 			nic_data->stats_pending = false;
2583 			rmb(); /* read the done flag before the stats */
2584 			efx_nic_update_stats(
2585 				falcon_stat_desc, FALCON_STAT_COUNT,
2586 				falcon_stat_mask,
2587 				stats, efx->stats_buffer.addr, true);
2588 		}
2589 
2590 		/* Update derived statistic */
2591 		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2592 				     stats[FALCON_STAT_rx_bytes] -
2593 				     stats[FALCON_STAT_rx_good_bytes] -
2594 				     stats[FALCON_STAT_rx_control] * 64);
2595 		efx_update_sw_stats(efx, stats);
2596 	}
2597 
2598 	if (full_stats)
2599 		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2600 
2601 	if (core_stats) {
2602 		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2603 		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2604 		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2605 		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2606 		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2607 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2608 					 stats[GENERIC_STAT_rx_noskb_drops];
2609 		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2610 		core_stats->rx_length_errors =
2611 			stats[FALCON_STAT_rx_gtjumbo] +
2612 			stats[FALCON_STAT_rx_length_error];
2613 		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2614 		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2615 		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2616 
2617 		core_stats->rx_errors = (core_stats->rx_length_errors +
2618 					 core_stats->rx_crc_errors +
2619 					 core_stats->rx_frame_errors +
2620 					 stats[FALCON_STAT_rx_symbol_error]);
2621 	}
2622 
2623 	return FALCON_STAT_COUNT;
2624 }
2625 
falcon_start_nic_stats(struct efx_nic * efx)2626 void falcon_start_nic_stats(struct efx_nic *efx)
2627 {
2628 	struct falcon_nic_data *nic_data = efx->nic_data;
2629 
2630 	spin_lock_bh(&efx->stats_lock);
2631 	if (--nic_data->stats_disable_count == 0)
2632 		falcon_stats_request(efx);
2633 	spin_unlock_bh(&efx->stats_lock);
2634 }
2635 
2636 /* We don't acutally pull stats on falcon. Wait 10ms so that
2637  * they arrive when we call this just after start_stats
2638  */
falcon_pull_nic_stats(struct efx_nic * efx)2639 static void falcon_pull_nic_stats(struct efx_nic *efx)
2640 {
2641 	msleep(10);
2642 }
2643 
falcon_stop_nic_stats(struct efx_nic * efx)2644 void falcon_stop_nic_stats(struct efx_nic *efx)
2645 {
2646 	struct falcon_nic_data *nic_data = efx->nic_data;
2647 	int i;
2648 
2649 	might_sleep();
2650 
2651 	spin_lock_bh(&efx->stats_lock);
2652 	++nic_data->stats_disable_count;
2653 	spin_unlock_bh(&efx->stats_lock);
2654 
2655 	del_timer_sync(&nic_data->stats_timer);
2656 
2657 	/* Wait enough time for the most recent transfer to
2658 	 * complete. */
2659 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2660 		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2661 			break;
2662 		msleep(1);
2663 	}
2664 
2665 	spin_lock_bh(&efx->stats_lock);
2666 	falcon_stats_complete(efx);
2667 	spin_unlock_bh(&efx->stats_lock);
2668 }
2669 
falcon_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)2670 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2671 {
2672 	falcon_board(efx)->type->set_id_led(efx, mode);
2673 }
2674 
2675 /**************************************************************************
2676  *
2677  * Wake on LAN
2678  *
2679  **************************************************************************
2680  */
2681 
falcon_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)2682 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2683 {
2684 	wol->supported = 0;
2685 	wol->wolopts = 0;
2686 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2687 }
2688 
falcon_set_wol(struct efx_nic * efx,u32 type)2689 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2690 {
2691 	if (type != 0)
2692 		return -EINVAL;
2693 	return 0;
2694 }
2695 
2696 /**************************************************************************
2697  *
2698  * Revision-dependent attributes used by efx.c and nic.c
2699  *
2700  **************************************************************************
2701  */
2702 
2703 const struct efx_nic_type falcon_a1_nic_type = {
2704 	.is_vf = false,
2705 	.mem_bar = EFX_MEM_BAR,
2706 	.mem_map_size = falcon_a1_mem_map_size,
2707 	.probe = falcon_probe_nic,
2708 	.remove = falcon_remove_nic,
2709 	.init = falcon_init_nic,
2710 	.dimension_resources = falcon_dimension_resources,
2711 	.fini = falcon_irq_ack_a1,
2712 	.monitor = falcon_monitor,
2713 	.map_reset_reason = falcon_map_reset_reason,
2714 	.map_reset_flags = falcon_map_reset_flags,
2715 	.reset = falcon_reset_hw,
2716 	.probe_port = falcon_probe_port,
2717 	.remove_port = falcon_remove_port,
2718 	.handle_global_event = falcon_handle_global_event,
2719 	.fini_dmaq = efx_farch_fini_dmaq,
2720 	.prepare_flush = falcon_prepare_flush,
2721 	.finish_flush = efx_port_dummy_op_void,
2722 	.prepare_flr = efx_port_dummy_op_void,
2723 	.finish_flr = efx_farch_finish_flr,
2724 	.describe_stats = falcon_describe_nic_stats,
2725 	.update_stats = falcon_update_nic_stats,
2726 	.start_stats = falcon_start_nic_stats,
2727 	.pull_stats = falcon_pull_nic_stats,
2728 	.stop_stats = falcon_stop_nic_stats,
2729 	.set_id_led = falcon_set_id_led,
2730 	.push_irq_moderation = falcon_push_irq_moderation,
2731 	.reconfigure_port = falcon_reconfigure_port,
2732 	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2733 	.reconfigure_mac = falcon_reconfigure_xmac,
2734 	.check_mac_fault = falcon_xmac_check_fault,
2735 	.get_wol = falcon_get_wol,
2736 	.set_wol = falcon_set_wol,
2737 	.resume_wol = efx_port_dummy_op_void,
2738 	.test_nvram = falcon_test_nvram,
2739 	.irq_enable_master = efx_farch_irq_enable_master,
2740 	.irq_test_generate = efx_farch_irq_test_generate,
2741 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2742 	.irq_handle_msi = efx_farch_msi_interrupt,
2743 	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2744 	.tx_probe = efx_farch_tx_probe,
2745 	.tx_init = efx_farch_tx_init,
2746 	.tx_remove = efx_farch_tx_remove,
2747 	.tx_write = efx_farch_tx_write,
2748 	.rx_push_rss_config = dummy_rx_push_rss_config,
2749 	.rx_probe = efx_farch_rx_probe,
2750 	.rx_init = efx_farch_rx_init,
2751 	.rx_remove = efx_farch_rx_remove,
2752 	.rx_write = efx_farch_rx_write,
2753 	.rx_defer_refill = efx_farch_rx_defer_refill,
2754 	.ev_probe = efx_farch_ev_probe,
2755 	.ev_init = efx_farch_ev_init,
2756 	.ev_fini = efx_farch_ev_fini,
2757 	.ev_remove = efx_farch_ev_remove,
2758 	.ev_process = efx_farch_ev_process,
2759 	.ev_read_ack = efx_farch_ev_read_ack,
2760 	.ev_test_generate = efx_farch_ev_test_generate,
2761 
2762 	/* We don't expose the filter table on Falcon A1 as it is not
2763 	 * mapped into function 0, but these implementations still
2764 	 * work with a degenerate case of all tables set to size 0.
2765 	 */
2766 	.filter_table_probe = efx_farch_filter_table_probe,
2767 	.filter_table_restore = efx_farch_filter_table_restore,
2768 	.filter_table_remove = efx_farch_filter_table_remove,
2769 	.filter_insert = efx_farch_filter_insert,
2770 	.filter_remove_safe = efx_farch_filter_remove_safe,
2771 	.filter_get_safe = efx_farch_filter_get_safe,
2772 	.filter_clear_rx = efx_farch_filter_clear_rx,
2773 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2774 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2775 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2776 
2777 #ifdef CONFIG_SFC_MTD
2778 	.mtd_probe = falcon_mtd_probe,
2779 	.mtd_rename = falcon_mtd_rename,
2780 	.mtd_read = falcon_mtd_read,
2781 	.mtd_erase = falcon_mtd_erase,
2782 	.mtd_write = falcon_mtd_write,
2783 	.mtd_sync = falcon_mtd_sync,
2784 #endif
2785 
2786 	.revision = EFX_REV_FALCON_A1,
2787 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2788 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2789 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2790 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2791 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2792 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2793 	.rx_buffer_padding = 0x24,
2794 	.can_rx_scatter = false,
2795 	.max_interrupt_mode = EFX_INT_MODE_MSI,
2796 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2797 	.offload_features = NETIF_F_IP_CSUM,
2798 	.mcdi_max_ver = -1,
2799 #ifdef CONFIG_SFC_SRIOV
2800 	.vswitching_probe = efx_port_dummy_op_int,
2801 	.vswitching_restore = efx_port_dummy_op_int,
2802 	.vswitching_remove = efx_port_dummy_op_void,
2803 #endif
2804 };
2805 
2806 const struct efx_nic_type falcon_b0_nic_type = {
2807 	.is_vf = false,
2808 	.mem_bar = EFX_MEM_BAR,
2809 	.mem_map_size = falcon_b0_mem_map_size,
2810 	.probe = falcon_probe_nic,
2811 	.remove = falcon_remove_nic,
2812 	.init = falcon_init_nic,
2813 	.dimension_resources = falcon_dimension_resources,
2814 	.fini = efx_port_dummy_op_void,
2815 	.monitor = falcon_monitor,
2816 	.map_reset_reason = falcon_map_reset_reason,
2817 	.map_reset_flags = falcon_map_reset_flags,
2818 	.reset = falcon_reset_hw,
2819 	.probe_port = falcon_probe_port,
2820 	.remove_port = falcon_remove_port,
2821 	.handle_global_event = falcon_handle_global_event,
2822 	.fini_dmaq = efx_farch_fini_dmaq,
2823 	.prepare_flush = falcon_prepare_flush,
2824 	.finish_flush = efx_port_dummy_op_void,
2825 	.prepare_flr = efx_port_dummy_op_void,
2826 	.finish_flr = efx_farch_finish_flr,
2827 	.describe_stats = falcon_describe_nic_stats,
2828 	.update_stats = falcon_update_nic_stats,
2829 	.start_stats = falcon_start_nic_stats,
2830 	.pull_stats = falcon_pull_nic_stats,
2831 	.stop_stats = falcon_stop_nic_stats,
2832 	.set_id_led = falcon_set_id_led,
2833 	.push_irq_moderation = falcon_push_irq_moderation,
2834 	.reconfigure_port = falcon_reconfigure_port,
2835 	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2836 	.reconfigure_mac = falcon_reconfigure_xmac,
2837 	.check_mac_fault = falcon_xmac_check_fault,
2838 	.get_wol = falcon_get_wol,
2839 	.set_wol = falcon_set_wol,
2840 	.resume_wol = efx_port_dummy_op_void,
2841 	.test_chip = falcon_b0_test_chip,
2842 	.test_nvram = falcon_test_nvram,
2843 	.irq_enable_master = efx_farch_irq_enable_master,
2844 	.irq_test_generate = efx_farch_irq_test_generate,
2845 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2846 	.irq_handle_msi = efx_farch_msi_interrupt,
2847 	.irq_handle_legacy = efx_farch_legacy_interrupt,
2848 	.tx_probe = efx_farch_tx_probe,
2849 	.tx_init = efx_farch_tx_init,
2850 	.tx_remove = efx_farch_tx_remove,
2851 	.tx_write = efx_farch_tx_write,
2852 	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2853 	.rx_probe = efx_farch_rx_probe,
2854 	.rx_init = efx_farch_rx_init,
2855 	.rx_remove = efx_farch_rx_remove,
2856 	.rx_write = efx_farch_rx_write,
2857 	.rx_defer_refill = efx_farch_rx_defer_refill,
2858 	.ev_probe = efx_farch_ev_probe,
2859 	.ev_init = efx_farch_ev_init,
2860 	.ev_fini = efx_farch_ev_fini,
2861 	.ev_remove = efx_farch_ev_remove,
2862 	.ev_process = efx_farch_ev_process,
2863 	.ev_read_ack = efx_farch_ev_read_ack,
2864 	.ev_test_generate = efx_farch_ev_test_generate,
2865 	.filter_table_probe = efx_farch_filter_table_probe,
2866 	.filter_table_restore = efx_farch_filter_table_restore,
2867 	.filter_table_remove = efx_farch_filter_table_remove,
2868 	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2869 	.filter_insert = efx_farch_filter_insert,
2870 	.filter_remove_safe = efx_farch_filter_remove_safe,
2871 	.filter_get_safe = efx_farch_filter_get_safe,
2872 	.filter_clear_rx = efx_farch_filter_clear_rx,
2873 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2874 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2875 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2876 #ifdef CONFIG_RFS_ACCEL
2877 	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2878 	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2879 #endif
2880 #ifdef CONFIG_SFC_MTD
2881 	.mtd_probe = falcon_mtd_probe,
2882 	.mtd_rename = falcon_mtd_rename,
2883 	.mtd_read = falcon_mtd_read,
2884 	.mtd_erase = falcon_mtd_erase,
2885 	.mtd_write = falcon_mtd_write,
2886 	.mtd_sync = falcon_mtd_sync,
2887 #endif
2888 
2889 	.revision = EFX_REV_FALCON_B0,
2890 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2891 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2892 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2893 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2894 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2895 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2896 	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2897 	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2898 	.rx_buffer_padding = 0,
2899 	.can_rx_scatter = true,
2900 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2901 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2902 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2903 	.mcdi_max_ver = -1,
2904 	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2905 #ifdef CONFIG_SFC_SRIOV
2906 	.vswitching_probe = efx_port_dummy_op_int,
2907 	.vswitching_restore = efx_port_dummy_op_int,
2908 	.vswitching_remove = efx_port_dummy_op_void,
2909 #endif
2910 };
2911