• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
14 #ifdef	CONFIG_BLOCK
15 #include <linux/bio.h>
16 #endif	/* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
18 #include <net/tcp.h>
19 
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
26 
27 #define list_entry_next(pos, member)					\
28 	list_entry(pos->member.next, typeof(*pos), member)
29 
30 /*
31  * Ceph uses the messenger to exchange ceph_msg messages with other
32  * hosts in the system.  The messenger provides ordered and reliable
33  * delivery.  We tolerate TCP disconnects by reconnecting (with
34  * exponential backoff) in the case of a fault (disconnection, bad
35  * crc, protocol error).  Acks allow sent messages to be discarded by
36  * the sender.
37  */
38 
39 /*
40  * We track the state of the socket on a given connection using
41  * values defined below.  The transition to a new socket state is
42  * handled by a function which verifies we aren't coming from an
43  * unexpected state.
44  *
45  *      --------
46  *      | NEW* |  transient initial state
47  *      --------
48  *          | con_sock_state_init()
49  *          v
50  *      ----------
51  *      | CLOSED |  initialized, but no socket (and no
52  *      ----------  TCP connection)
53  *       ^      \
54  *       |       \ con_sock_state_connecting()
55  *       |        ----------------------
56  *       |                              \
57  *       + con_sock_state_closed()       \
58  *       |+---------------------------    \
59  *       | \                          \    \
60  *       |  -----------                \    \
61  *       |  | CLOSING |  socket event;  \    \
62  *       |  -----------  await close     \    \
63  *       |       ^                        \   |
64  *       |       |                         \  |
65  *       |       + con_sock_state_closing() \ |
66  *       |      / \                         | |
67  *       |     /   ---------------          | |
68  *       |    /                   \         v v
69  *       |   /                    --------------
70  *       |  /    -----------------| CONNECTING |  socket created, TCP
71  *       |  |   /                 --------------  connect initiated
72  *       |  |   | con_sock_state_connected()
73  *       |  |   v
74  *      -------------
75  *      | CONNECTED |  TCP connection established
76  *      -------------
77  *
78  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79  */
80 
81 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
82 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
83 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
84 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
85 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
86 
87 /*
88  * connection states
89  */
90 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
91 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
92 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
93 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
94 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
95 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
96 
97 /*
98  * ceph_connection flag bits
99  */
100 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
101 				       * messages on errors */
102 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
103 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
104 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
105 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
106 
con_flag_valid(unsigned long con_flag)107 static bool con_flag_valid(unsigned long con_flag)
108 {
109 	switch (con_flag) {
110 	case CON_FLAG_LOSSYTX:
111 	case CON_FLAG_KEEPALIVE_PENDING:
112 	case CON_FLAG_WRITE_PENDING:
113 	case CON_FLAG_SOCK_CLOSED:
114 	case CON_FLAG_BACKOFF:
115 		return true;
116 	default:
117 		return false;
118 	}
119 }
120 
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)121 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
122 {
123 	BUG_ON(!con_flag_valid(con_flag));
124 
125 	clear_bit(con_flag, &con->flags);
126 }
127 
con_flag_set(struct ceph_connection * con,unsigned long con_flag)128 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
129 {
130 	BUG_ON(!con_flag_valid(con_flag));
131 
132 	set_bit(con_flag, &con->flags);
133 }
134 
con_flag_test(struct ceph_connection * con,unsigned long con_flag)135 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
136 {
137 	BUG_ON(!con_flag_valid(con_flag));
138 
139 	return test_bit(con_flag, &con->flags);
140 }
141 
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)142 static bool con_flag_test_and_clear(struct ceph_connection *con,
143 					unsigned long con_flag)
144 {
145 	BUG_ON(!con_flag_valid(con_flag));
146 
147 	return test_and_clear_bit(con_flag, &con->flags);
148 }
149 
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)150 static bool con_flag_test_and_set(struct ceph_connection *con,
151 					unsigned long con_flag)
152 {
153 	BUG_ON(!con_flag_valid(con_flag));
154 
155 	return test_and_set_bit(con_flag, &con->flags);
156 }
157 
158 /* Slab caches for frequently-allocated structures */
159 
160 static struct kmem_cache	*ceph_msg_cache;
161 static struct kmem_cache	*ceph_msg_data_cache;
162 
163 /* static tag bytes (protocol control messages) */
164 static char tag_msg = CEPH_MSGR_TAG_MSG;
165 static char tag_ack = CEPH_MSGR_TAG_ACK;
166 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
167 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
168 
169 #ifdef CONFIG_LOCKDEP
170 static struct lock_class_key socket_class;
171 #endif
172 
173 /*
174  * When skipping (ignoring) a block of input we read it into a "skip
175  * buffer," which is this many bytes in size.
176  */
177 #define SKIP_BUF_SIZE	1024
178 
179 static void queue_con(struct ceph_connection *con);
180 static void cancel_con(struct ceph_connection *con);
181 static void ceph_con_workfn(struct work_struct *);
182 static void con_fault(struct ceph_connection *con);
183 
184 /*
185  * Nicely render a sockaddr as a string.  An array of formatted
186  * strings is used, to approximate reentrancy.
187  */
188 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
189 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
190 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
191 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
192 
193 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
194 static atomic_t addr_str_seq = ATOMIC_INIT(0);
195 
196 static struct page *zero_page;		/* used in certain error cases */
197 
ceph_pr_addr(const struct sockaddr_storage * ss)198 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
199 {
200 	int i;
201 	char *s;
202 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
203 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
204 
205 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
206 	s = addr_str[i];
207 
208 	switch (ss->ss_family) {
209 	case AF_INET:
210 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
211 			 ntohs(in4->sin_port));
212 		break;
213 
214 	case AF_INET6:
215 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
216 			 ntohs(in6->sin6_port));
217 		break;
218 
219 	default:
220 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
221 			 ss->ss_family);
222 	}
223 
224 	return s;
225 }
226 EXPORT_SYMBOL(ceph_pr_addr);
227 
encode_my_addr(struct ceph_messenger * msgr)228 static void encode_my_addr(struct ceph_messenger *msgr)
229 {
230 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
231 	ceph_encode_addr(&msgr->my_enc_addr);
232 }
233 
234 /*
235  * work queue for all reading and writing to/from the socket.
236  */
237 static struct workqueue_struct *ceph_msgr_wq;
238 
ceph_msgr_slab_init(void)239 static int ceph_msgr_slab_init(void)
240 {
241 	BUG_ON(ceph_msg_cache);
242 	ceph_msg_cache = kmem_cache_create("ceph_msg",
243 					sizeof (struct ceph_msg),
244 					__alignof__(struct ceph_msg), 0, NULL);
245 
246 	if (!ceph_msg_cache)
247 		return -ENOMEM;
248 
249 	BUG_ON(ceph_msg_data_cache);
250 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
251 					sizeof (struct ceph_msg_data),
252 					__alignof__(struct ceph_msg_data),
253 					0, NULL);
254 	if (ceph_msg_data_cache)
255 		return 0;
256 
257 	kmem_cache_destroy(ceph_msg_cache);
258 	ceph_msg_cache = NULL;
259 
260 	return -ENOMEM;
261 }
262 
ceph_msgr_slab_exit(void)263 static void ceph_msgr_slab_exit(void)
264 {
265 	BUG_ON(!ceph_msg_data_cache);
266 	kmem_cache_destroy(ceph_msg_data_cache);
267 	ceph_msg_data_cache = NULL;
268 
269 	BUG_ON(!ceph_msg_cache);
270 	kmem_cache_destroy(ceph_msg_cache);
271 	ceph_msg_cache = NULL;
272 }
273 
_ceph_msgr_exit(void)274 static void _ceph_msgr_exit(void)
275 {
276 	if (ceph_msgr_wq) {
277 		destroy_workqueue(ceph_msgr_wq);
278 		ceph_msgr_wq = NULL;
279 	}
280 
281 	BUG_ON(zero_page == NULL);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 
285 	ceph_msgr_slab_exit();
286 }
287 
ceph_msgr_init(void)288 int ceph_msgr_init(void)
289 {
290 	if (ceph_msgr_slab_init())
291 		return -ENOMEM;
292 
293 	BUG_ON(zero_page != NULL);
294 	zero_page = ZERO_PAGE(0);
295 	page_cache_get(zero_page);
296 
297 	/*
298 	 * The number of active work items is limited by the number of
299 	 * connections, so leave @max_active at default.
300 	 */
301 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
302 	if (ceph_msgr_wq)
303 		return 0;
304 
305 	pr_err("msgr_init failed to create workqueue\n");
306 	_ceph_msgr_exit();
307 
308 	return -ENOMEM;
309 }
310 EXPORT_SYMBOL(ceph_msgr_init);
311 
ceph_msgr_exit(void)312 void ceph_msgr_exit(void)
313 {
314 	BUG_ON(ceph_msgr_wq == NULL);
315 
316 	_ceph_msgr_exit();
317 }
318 EXPORT_SYMBOL(ceph_msgr_exit);
319 
ceph_msgr_flush(void)320 void ceph_msgr_flush(void)
321 {
322 	flush_workqueue(ceph_msgr_wq);
323 }
324 EXPORT_SYMBOL(ceph_msgr_flush);
325 
326 /* Connection socket state transition functions */
327 
con_sock_state_init(struct ceph_connection * con)328 static void con_sock_state_init(struct ceph_connection *con)
329 {
330 	int old_state;
331 
332 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
333 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
334 		printk("%s: unexpected old state %d\n", __func__, old_state);
335 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 	     CON_SOCK_STATE_CLOSED);
337 }
338 
con_sock_state_connecting(struct ceph_connection * con)339 static void con_sock_state_connecting(struct ceph_connection *con)
340 {
341 	int old_state;
342 
343 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
344 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
345 		printk("%s: unexpected old state %d\n", __func__, old_state);
346 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
347 	     CON_SOCK_STATE_CONNECTING);
348 }
349 
con_sock_state_connected(struct ceph_connection * con)350 static void con_sock_state_connected(struct ceph_connection *con)
351 {
352 	int old_state;
353 
354 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
355 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
356 		printk("%s: unexpected old state %d\n", __func__, old_state);
357 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
358 	     CON_SOCK_STATE_CONNECTED);
359 }
360 
con_sock_state_closing(struct ceph_connection * con)361 static void con_sock_state_closing(struct ceph_connection *con)
362 {
363 	int old_state;
364 
365 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
366 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
367 			old_state != CON_SOCK_STATE_CONNECTED &&
368 			old_state != CON_SOCK_STATE_CLOSING))
369 		printk("%s: unexpected old state %d\n", __func__, old_state);
370 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
371 	     CON_SOCK_STATE_CLOSING);
372 }
373 
con_sock_state_closed(struct ceph_connection * con)374 static void con_sock_state_closed(struct ceph_connection *con)
375 {
376 	int old_state;
377 
378 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
379 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
380 		    old_state != CON_SOCK_STATE_CLOSING &&
381 		    old_state != CON_SOCK_STATE_CONNECTING &&
382 		    old_state != CON_SOCK_STATE_CLOSED))
383 		printk("%s: unexpected old state %d\n", __func__, old_state);
384 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
385 	     CON_SOCK_STATE_CLOSED);
386 }
387 
388 /*
389  * socket callback functions
390  */
391 
392 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)393 static void ceph_sock_data_ready(struct sock *sk)
394 {
395 	struct ceph_connection *con = sk->sk_user_data;
396 	if (atomic_read(&con->msgr->stopping)) {
397 		return;
398 	}
399 
400 	if (sk->sk_state != TCP_CLOSE_WAIT) {
401 		dout("%s on %p state = %lu, queueing work\n", __func__,
402 		     con, con->state);
403 		queue_con(con);
404 	}
405 }
406 
407 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)408 static void ceph_sock_write_space(struct sock *sk)
409 {
410 	struct ceph_connection *con = sk->sk_user_data;
411 
412 	/* only queue to workqueue if there is data we want to write,
413 	 * and there is sufficient space in the socket buffer to accept
414 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
415 	 * doesn't get called again until try_write() fills the socket
416 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
417 	 * and net/core/stream.c:sk_stream_write_space().
418 	 */
419 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
420 		if (sk_stream_is_writeable(sk)) {
421 			dout("%s %p queueing write work\n", __func__, con);
422 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
423 			queue_con(con);
424 		}
425 	} else {
426 		dout("%s %p nothing to write\n", __func__, con);
427 	}
428 }
429 
430 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)431 static void ceph_sock_state_change(struct sock *sk)
432 {
433 	struct ceph_connection *con = sk->sk_user_data;
434 
435 	dout("%s %p state = %lu sk_state = %u\n", __func__,
436 	     con, con->state, sk->sk_state);
437 
438 	switch (sk->sk_state) {
439 	case TCP_CLOSE:
440 		dout("%s TCP_CLOSE\n", __func__);
441 	case TCP_CLOSE_WAIT:
442 		dout("%s TCP_CLOSE_WAIT\n", __func__);
443 		con_sock_state_closing(con);
444 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
445 		queue_con(con);
446 		break;
447 	case TCP_ESTABLISHED:
448 		dout("%s TCP_ESTABLISHED\n", __func__);
449 		con_sock_state_connected(con);
450 		queue_con(con);
451 		break;
452 	default:	/* Everything else is uninteresting */
453 		break;
454 	}
455 }
456 
457 /*
458  * set up socket callbacks
459  */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)460 static void set_sock_callbacks(struct socket *sock,
461 			       struct ceph_connection *con)
462 {
463 	struct sock *sk = sock->sk;
464 	sk->sk_user_data = con;
465 	sk->sk_data_ready = ceph_sock_data_ready;
466 	sk->sk_write_space = ceph_sock_write_space;
467 	sk->sk_state_change = ceph_sock_state_change;
468 }
469 
470 
471 /*
472  * socket helpers
473  */
474 
475 /*
476  * initiate connection to a remote socket.
477  */
ceph_tcp_connect(struct ceph_connection * con)478 static int ceph_tcp_connect(struct ceph_connection *con)
479 {
480 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
481 	struct socket *sock;
482 	unsigned int noio_flag;
483 	int ret;
484 
485 	BUG_ON(con->sock);
486 
487 	/* sock_create_kern() allocates with GFP_KERNEL */
488 	noio_flag = memalloc_noio_save();
489 	ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
490 			       SOCK_STREAM, IPPROTO_TCP, &sock);
491 	memalloc_noio_restore(noio_flag);
492 	if (ret)
493 		return ret;
494 	sock->sk->sk_allocation = GFP_NOFS;
495 
496 #ifdef CONFIG_LOCKDEP
497 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
498 #endif
499 
500 	set_sock_callbacks(sock, con);
501 
502 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
503 
504 	con_sock_state_connecting(con);
505 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
506 				 O_NONBLOCK);
507 	if (ret == -EINPROGRESS) {
508 		dout("connect %s EINPROGRESS sk_state = %u\n",
509 		     ceph_pr_addr(&con->peer_addr.in_addr),
510 		     sock->sk->sk_state);
511 	} else if (ret < 0) {
512 		pr_err("connect %s error %d\n",
513 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
514 		sock_release(sock);
515 		return ret;
516 	}
517 
518 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
519 		int optval = 1;
520 
521 		ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
522 					(char *)&optval, sizeof(optval));
523 		if (ret)
524 			pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
525 			       ret);
526 	}
527 
528 	con->sock = sock;
529 	return 0;
530 }
531 
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)532 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
533 {
534 	struct kvec iov = {buf, len};
535 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
536 	int r;
537 
538 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
539 	if (r == -EAGAIN)
540 		r = 0;
541 	return r;
542 }
543 
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)544 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
545 		     int page_offset, size_t length)
546 {
547 	void *kaddr;
548 	int ret;
549 
550 	BUG_ON(page_offset + length > PAGE_SIZE);
551 
552 	kaddr = kmap(page);
553 	BUG_ON(!kaddr);
554 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
555 	kunmap(page);
556 
557 	return ret;
558 }
559 
560 /*
561  * write something.  @more is true if caller will be sending more data
562  * shortly.
563  */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)564 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
565 		     size_t kvlen, size_t len, int more)
566 {
567 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
568 	int r;
569 
570 	if (more)
571 		msg.msg_flags |= MSG_MORE;
572 	else
573 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
574 
575 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
576 	if (r == -EAGAIN)
577 		r = 0;
578 	return r;
579 }
580 
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)581 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
582 		     int offset, size_t size, bool more)
583 {
584 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
585 	int ret;
586 
587 	ret = kernel_sendpage(sock, page, offset, size, flags);
588 	if (ret == -EAGAIN)
589 		ret = 0;
590 
591 	return ret;
592 }
593 
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)594 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
595 		     int offset, size_t size, bool more)
596 {
597 	int ret;
598 	struct kvec iov;
599 
600 	/* sendpage cannot properly handle pages with page_count == 0,
601 	 * we need to fallback to sendmsg if that's the case */
602 	if (page_count(page) >= 1)
603 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
604 
605 	iov.iov_base = kmap(page) + offset;
606 	iov.iov_len = size;
607 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
608 	kunmap(page);
609 
610 	return ret;
611 }
612 
613 /*
614  * Shutdown/close the socket for the given connection.
615  */
con_close_socket(struct ceph_connection * con)616 static int con_close_socket(struct ceph_connection *con)
617 {
618 	int rc = 0;
619 
620 	dout("con_close_socket on %p sock %p\n", con, con->sock);
621 	if (con->sock) {
622 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
623 		sock_release(con->sock);
624 		con->sock = NULL;
625 	}
626 
627 	/*
628 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
629 	 * independent of the connection mutex, and we could have
630 	 * received a socket close event before we had the chance to
631 	 * shut the socket down.
632 	 */
633 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
634 
635 	con_sock_state_closed(con);
636 	return rc;
637 }
638 
639 /*
640  * Reset a connection.  Discard all incoming and outgoing messages
641  * and clear *_seq state.
642  */
ceph_msg_remove(struct ceph_msg * msg)643 static void ceph_msg_remove(struct ceph_msg *msg)
644 {
645 	list_del_init(&msg->list_head);
646 
647 	ceph_msg_put(msg);
648 }
ceph_msg_remove_list(struct list_head * head)649 static void ceph_msg_remove_list(struct list_head *head)
650 {
651 	while (!list_empty(head)) {
652 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
653 							list_head);
654 		ceph_msg_remove(msg);
655 	}
656 }
657 
reset_connection(struct ceph_connection * con)658 static void reset_connection(struct ceph_connection *con)
659 {
660 	/* reset connection, out_queue, msg_ and connect_seq */
661 	/* discard existing out_queue and msg_seq */
662 	dout("reset_connection %p\n", con);
663 	ceph_msg_remove_list(&con->out_queue);
664 	ceph_msg_remove_list(&con->out_sent);
665 
666 	if (con->in_msg) {
667 		BUG_ON(con->in_msg->con != con);
668 		ceph_msg_put(con->in_msg);
669 		con->in_msg = NULL;
670 	}
671 
672 	con->connect_seq = 0;
673 	con->out_seq = 0;
674 	if (con->out_msg) {
675 		BUG_ON(con->out_msg->con != con);
676 		ceph_msg_put(con->out_msg);
677 		con->out_msg = NULL;
678 	}
679 	con->in_seq = 0;
680 	con->in_seq_acked = 0;
681 
682 	con->out_skip = 0;
683 }
684 
685 /*
686  * mark a peer down.  drop any open connections.
687  */
ceph_con_close(struct ceph_connection * con)688 void ceph_con_close(struct ceph_connection *con)
689 {
690 	mutex_lock(&con->mutex);
691 	dout("con_close %p peer %s\n", con,
692 	     ceph_pr_addr(&con->peer_addr.in_addr));
693 	con->state = CON_STATE_CLOSED;
694 
695 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
696 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
697 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
698 	con_flag_clear(con, CON_FLAG_BACKOFF);
699 
700 	reset_connection(con);
701 	con->peer_global_seq = 0;
702 	cancel_con(con);
703 	con_close_socket(con);
704 	mutex_unlock(&con->mutex);
705 }
706 EXPORT_SYMBOL(ceph_con_close);
707 
708 /*
709  * Reopen a closed connection, with a new peer address.
710  */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)711 void ceph_con_open(struct ceph_connection *con,
712 		   __u8 entity_type, __u64 entity_num,
713 		   struct ceph_entity_addr *addr)
714 {
715 	mutex_lock(&con->mutex);
716 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
717 
718 	WARN_ON(con->state != CON_STATE_CLOSED);
719 	con->state = CON_STATE_PREOPEN;
720 
721 	con->peer_name.type = (__u8) entity_type;
722 	con->peer_name.num = cpu_to_le64(entity_num);
723 
724 	memcpy(&con->peer_addr, addr, sizeof(*addr));
725 	con->delay = 0;      /* reset backoff memory */
726 	mutex_unlock(&con->mutex);
727 	queue_con(con);
728 }
729 EXPORT_SYMBOL(ceph_con_open);
730 
731 /*
732  * return true if this connection ever successfully opened
733  */
ceph_con_opened(struct ceph_connection * con)734 bool ceph_con_opened(struct ceph_connection *con)
735 {
736 	return con->connect_seq > 0;
737 }
738 
739 /*
740  * initialize a new connection.
741  */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)742 void ceph_con_init(struct ceph_connection *con, void *private,
743 	const struct ceph_connection_operations *ops,
744 	struct ceph_messenger *msgr)
745 {
746 	dout("con_init %p\n", con);
747 	memset(con, 0, sizeof(*con));
748 	con->private = private;
749 	con->ops = ops;
750 	con->msgr = msgr;
751 
752 	con_sock_state_init(con);
753 
754 	mutex_init(&con->mutex);
755 	INIT_LIST_HEAD(&con->out_queue);
756 	INIT_LIST_HEAD(&con->out_sent);
757 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
758 
759 	con->state = CON_STATE_CLOSED;
760 }
761 EXPORT_SYMBOL(ceph_con_init);
762 
763 
764 /*
765  * We maintain a global counter to order connection attempts.  Get
766  * a unique seq greater than @gt.
767  */
get_global_seq(struct ceph_messenger * msgr,u32 gt)768 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
769 {
770 	u32 ret;
771 
772 	spin_lock(&msgr->global_seq_lock);
773 	if (msgr->global_seq < gt)
774 		msgr->global_seq = gt;
775 	ret = ++msgr->global_seq;
776 	spin_unlock(&msgr->global_seq_lock);
777 	return ret;
778 }
779 
con_out_kvec_reset(struct ceph_connection * con)780 static void con_out_kvec_reset(struct ceph_connection *con)
781 {
782 	BUG_ON(con->out_skip);
783 
784 	con->out_kvec_left = 0;
785 	con->out_kvec_bytes = 0;
786 	con->out_kvec_cur = &con->out_kvec[0];
787 }
788 
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)789 static void con_out_kvec_add(struct ceph_connection *con,
790 				size_t size, void *data)
791 {
792 	int index = con->out_kvec_left;
793 
794 	BUG_ON(con->out_skip);
795 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
796 
797 	con->out_kvec[index].iov_len = size;
798 	con->out_kvec[index].iov_base = data;
799 	con->out_kvec_left++;
800 	con->out_kvec_bytes += size;
801 }
802 
803 /*
804  * Chop off a kvec from the end.  Return residual number of bytes for
805  * that kvec, i.e. how many bytes would have been written if the kvec
806  * hadn't been nuked.
807  */
con_out_kvec_skip(struct ceph_connection * con)808 static int con_out_kvec_skip(struct ceph_connection *con)
809 {
810 	int off = con->out_kvec_cur - con->out_kvec;
811 	int skip = 0;
812 
813 	if (con->out_kvec_bytes > 0) {
814 		skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
815 		BUG_ON(con->out_kvec_bytes < skip);
816 		BUG_ON(!con->out_kvec_left);
817 		con->out_kvec_bytes -= skip;
818 		con->out_kvec_left--;
819 	}
820 
821 	return skip;
822 }
823 
824 #ifdef CONFIG_BLOCK
825 
826 /*
827  * For a bio data item, a piece is whatever remains of the next
828  * entry in the current bio iovec, or the first entry in the next
829  * bio in the list.
830  */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)831 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
832 					size_t length)
833 {
834 	struct ceph_msg_data *data = cursor->data;
835 	struct bio *bio;
836 
837 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
838 
839 	bio = data->bio;
840 	BUG_ON(!bio);
841 
842 	cursor->resid = min(length, data->bio_length);
843 	cursor->bio = bio;
844 	cursor->bvec_iter = bio->bi_iter;
845 	cursor->last_piece =
846 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
847 }
848 
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)849 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
850 						size_t *page_offset,
851 						size_t *length)
852 {
853 	struct ceph_msg_data *data = cursor->data;
854 	struct bio *bio;
855 	struct bio_vec bio_vec;
856 
857 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
858 
859 	bio = cursor->bio;
860 	BUG_ON(!bio);
861 
862 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
863 
864 	*page_offset = (size_t) bio_vec.bv_offset;
865 	BUG_ON(*page_offset >= PAGE_SIZE);
866 	if (cursor->last_piece) /* pagelist offset is always 0 */
867 		*length = cursor->resid;
868 	else
869 		*length = (size_t) bio_vec.bv_len;
870 	BUG_ON(*length > cursor->resid);
871 	BUG_ON(*page_offset + *length > PAGE_SIZE);
872 
873 	return bio_vec.bv_page;
874 }
875 
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)876 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
877 					size_t bytes)
878 {
879 	struct bio *bio;
880 	struct bio_vec bio_vec;
881 
882 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
883 
884 	bio = cursor->bio;
885 	BUG_ON(!bio);
886 
887 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
888 
889 	/* Advance the cursor offset */
890 
891 	BUG_ON(cursor->resid < bytes);
892 	cursor->resid -= bytes;
893 
894 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
895 
896 	if (bytes < bio_vec.bv_len)
897 		return false;	/* more bytes to process in this segment */
898 
899 	/* Move on to the next segment, and possibly the next bio */
900 
901 	if (!cursor->bvec_iter.bi_size) {
902 		bio = bio->bi_next;
903 		cursor->bio = bio;
904 		if (bio)
905 			cursor->bvec_iter = bio->bi_iter;
906 		else
907 			memset(&cursor->bvec_iter, 0,
908 			       sizeof(cursor->bvec_iter));
909 	}
910 
911 	if (!cursor->last_piece) {
912 		BUG_ON(!cursor->resid);
913 		BUG_ON(!bio);
914 		/* A short read is OK, so use <= rather than == */
915 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
916 			cursor->last_piece = true;
917 	}
918 
919 	return true;
920 }
921 #endif /* CONFIG_BLOCK */
922 
923 /*
924  * For a page array, a piece comes from the first page in the array
925  * that has not already been fully consumed.
926  */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)927 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
928 					size_t length)
929 {
930 	struct ceph_msg_data *data = cursor->data;
931 	int page_count;
932 
933 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
934 
935 	BUG_ON(!data->pages);
936 	BUG_ON(!data->length);
937 
938 	cursor->resid = min(length, data->length);
939 	page_count = calc_pages_for(data->alignment, (u64)data->length);
940 	cursor->page_offset = data->alignment & ~PAGE_MASK;
941 	cursor->page_index = 0;
942 	BUG_ON(page_count > (int)USHRT_MAX);
943 	cursor->page_count = (unsigned short)page_count;
944 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
945 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
946 }
947 
948 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)949 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
950 					size_t *page_offset, size_t *length)
951 {
952 	struct ceph_msg_data *data = cursor->data;
953 
954 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
955 
956 	BUG_ON(cursor->page_index >= cursor->page_count);
957 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
958 
959 	*page_offset = cursor->page_offset;
960 	if (cursor->last_piece)
961 		*length = cursor->resid;
962 	else
963 		*length = PAGE_SIZE - *page_offset;
964 
965 	return data->pages[cursor->page_index];
966 }
967 
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)968 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
969 						size_t bytes)
970 {
971 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
972 
973 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
974 
975 	/* Advance the cursor page offset */
976 
977 	cursor->resid -= bytes;
978 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
979 	if (!bytes || cursor->page_offset)
980 		return false;	/* more bytes to process in the current page */
981 
982 	if (!cursor->resid)
983 		return false;   /* no more data */
984 
985 	/* Move on to the next page; offset is already at 0 */
986 
987 	BUG_ON(cursor->page_index >= cursor->page_count);
988 	cursor->page_index++;
989 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
990 
991 	return true;
992 }
993 
994 /*
995  * For a pagelist, a piece is whatever remains to be consumed in the
996  * first page in the list, or the front of the next page.
997  */
998 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)999 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1000 					size_t length)
1001 {
1002 	struct ceph_msg_data *data = cursor->data;
1003 	struct ceph_pagelist *pagelist;
1004 	struct page *page;
1005 
1006 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1007 
1008 	pagelist = data->pagelist;
1009 	BUG_ON(!pagelist);
1010 
1011 	if (!length)
1012 		return;		/* pagelist can be assigned but empty */
1013 
1014 	BUG_ON(list_empty(&pagelist->head));
1015 	page = list_first_entry(&pagelist->head, struct page, lru);
1016 
1017 	cursor->resid = min(length, pagelist->length);
1018 	cursor->page = page;
1019 	cursor->offset = 0;
1020 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1021 }
1022 
1023 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1024 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1025 				size_t *page_offset, size_t *length)
1026 {
1027 	struct ceph_msg_data *data = cursor->data;
1028 	struct ceph_pagelist *pagelist;
1029 
1030 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031 
1032 	pagelist = data->pagelist;
1033 	BUG_ON(!pagelist);
1034 
1035 	BUG_ON(!cursor->page);
1036 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1037 
1038 	/* offset of first page in pagelist is always 0 */
1039 	*page_offset = cursor->offset & ~PAGE_MASK;
1040 	if (cursor->last_piece)
1041 		*length = cursor->resid;
1042 	else
1043 		*length = PAGE_SIZE - *page_offset;
1044 
1045 	return cursor->page;
1046 }
1047 
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1048 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1049 						size_t bytes)
1050 {
1051 	struct ceph_msg_data *data = cursor->data;
1052 	struct ceph_pagelist *pagelist;
1053 
1054 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055 
1056 	pagelist = data->pagelist;
1057 	BUG_ON(!pagelist);
1058 
1059 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1060 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1061 
1062 	/* Advance the cursor offset */
1063 
1064 	cursor->resid -= bytes;
1065 	cursor->offset += bytes;
1066 	/* offset of first page in pagelist is always 0 */
1067 	if (!bytes || cursor->offset & ~PAGE_MASK)
1068 		return false;	/* more bytes to process in the current page */
1069 
1070 	if (!cursor->resid)
1071 		return false;   /* no more data */
1072 
1073 	/* Move on to the next page */
1074 
1075 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1076 	cursor->page = list_entry_next(cursor->page, lru);
1077 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1078 
1079 	return true;
1080 }
1081 
1082 /*
1083  * Message data is handled (sent or received) in pieces, where each
1084  * piece resides on a single page.  The network layer might not
1085  * consume an entire piece at once.  A data item's cursor keeps
1086  * track of which piece is next to process and how much remains to
1087  * be processed in that piece.  It also tracks whether the current
1088  * piece is the last one in the data item.
1089  */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1090 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1091 {
1092 	size_t length = cursor->total_resid;
1093 
1094 	switch (cursor->data->type) {
1095 	case CEPH_MSG_DATA_PAGELIST:
1096 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1097 		break;
1098 	case CEPH_MSG_DATA_PAGES:
1099 		ceph_msg_data_pages_cursor_init(cursor, length);
1100 		break;
1101 #ifdef CONFIG_BLOCK
1102 	case CEPH_MSG_DATA_BIO:
1103 		ceph_msg_data_bio_cursor_init(cursor, length);
1104 		break;
1105 #endif /* CONFIG_BLOCK */
1106 	case CEPH_MSG_DATA_NONE:
1107 	default:
1108 		/* BUG(); */
1109 		break;
1110 	}
1111 	cursor->need_crc = true;
1112 }
1113 
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1114 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1115 {
1116 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1117 	struct ceph_msg_data *data;
1118 
1119 	BUG_ON(!length);
1120 	BUG_ON(length > msg->data_length);
1121 	BUG_ON(list_empty(&msg->data));
1122 
1123 	cursor->data_head = &msg->data;
1124 	cursor->total_resid = length;
1125 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1126 	cursor->data = data;
1127 
1128 	__ceph_msg_data_cursor_init(cursor);
1129 }
1130 
1131 /*
1132  * Return the page containing the next piece to process for a given
1133  * data item, and supply the page offset and length of that piece.
1134  * Indicate whether this is the last piece in this data item.
1135  */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1136 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1137 					size_t *page_offset, size_t *length,
1138 					bool *last_piece)
1139 {
1140 	struct page *page;
1141 
1142 	switch (cursor->data->type) {
1143 	case CEPH_MSG_DATA_PAGELIST:
1144 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1145 		break;
1146 	case CEPH_MSG_DATA_PAGES:
1147 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1148 		break;
1149 #ifdef CONFIG_BLOCK
1150 	case CEPH_MSG_DATA_BIO:
1151 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1152 		break;
1153 #endif /* CONFIG_BLOCK */
1154 	case CEPH_MSG_DATA_NONE:
1155 	default:
1156 		page = NULL;
1157 		break;
1158 	}
1159 	BUG_ON(!page);
1160 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1161 	BUG_ON(!*length);
1162 	if (last_piece)
1163 		*last_piece = cursor->last_piece;
1164 
1165 	return page;
1166 }
1167 
1168 /*
1169  * Returns true if the result moves the cursor on to the next piece
1170  * of the data item.
1171  */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1172 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1173 				size_t bytes)
1174 {
1175 	bool new_piece;
1176 
1177 	BUG_ON(bytes > cursor->resid);
1178 	switch (cursor->data->type) {
1179 	case CEPH_MSG_DATA_PAGELIST:
1180 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1181 		break;
1182 	case CEPH_MSG_DATA_PAGES:
1183 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1184 		break;
1185 #ifdef CONFIG_BLOCK
1186 	case CEPH_MSG_DATA_BIO:
1187 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1188 		break;
1189 #endif /* CONFIG_BLOCK */
1190 	case CEPH_MSG_DATA_NONE:
1191 	default:
1192 		BUG();
1193 		break;
1194 	}
1195 	cursor->total_resid -= bytes;
1196 
1197 	if (!cursor->resid && cursor->total_resid) {
1198 		WARN_ON(!cursor->last_piece);
1199 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1200 		cursor->data = list_entry_next(cursor->data, links);
1201 		__ceph_msg_data_cursor_init(cursor);
1202 		new_piece = true;
1203 	}
1204 	cursor->need_crc = new_piece;
1205 
1206 	return new_piece;
1207 }
1208 
sizeof_footer(struct ceph_connection * con)1209 static size_t sizeof_footer(struct ceph_connection *con)
1210 {
1211 	return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1212 	    sizeof(struct ceph_msg_footer) :
1213 	    sizeof(struct ceph_msg_footer_old);
1214 }
1215 
prepare_message_data(struct ceph_msg * msg,u32 data_len)1216 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1217 {
1218 	BUG_ON(!msg);
1219 	BUG_ON(!data_len);
1220 
1221 	/* Initialize data cursor */
1222 
1223 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1224 }
1225 
1226 /*
1227  * Prepare footer for currently outgoing message, and finish things
1228  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1229  */
prepare_write_message_footer(struct ceph_connection * con)1230 static void prepare_write_message_footer(struct ceph_connection *con)
1231 {
1232 	struct ceph_msg *m = con->out_msg;
1233 	int v = con->out_kvec_left;
1234 
1235 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1236 
1237 	dout("prepare_write_message_footer %p\n", con);
1238 	con->out_kvec[v].iov_base = &m->footer;
1239 	if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1240 		if (con->ops->sign_message)
1241 			con->ops->sign_message(m);
1242 		else
1243 			m->footer.sig = 0;
1244 		con->out_kvec[v].iov_len = sizeof(m->footer);
1245 		con->out_kvec_bytes += sizeof(m->footer);
1246 	} else {
1247 		m->old_footer.flags = m->footer.flags;
1248 		con->out_kvec[v].iov_len = sizeof(m->old_footer);
1249 		con->out_kvec_bytes += sizeof(m->old_footer);
1250 	}
1251 	con->out_kvec_left++;
1252 	con->out_more = m->more_to_follow;
1253 	con->out_msg_done = true;
1254 }
1255 
1256 /*
1257  * Prepare headers for the next outgoing message.
1258  */
prepare_write_message(struct ceph_connection * con)1259 static void prepare_write_message(struct ceph_connection *con)
1260 {
1261 	struct ceph_msg *m;
1262 	u32 crc;
1263 
1264 	con_out_kvec_reset(con);
1265 	con->out_msg_done = false;
1266 
1267 	/* Sneak an ack in there first?  If we can get it into the same
1268 	 * TCP packet that's a good thing. */
1269 	if (con->in_seq > con->in_seq_acked) {
1270 		con->in_seq_acked = con->in_seq;
1271 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1273 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1274 			&con->out_temp_ack);
1275 	}
1276 
1277 	BUG_ON(list_empty(&con->out_queue));
1278 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1279 	con->out_msg = m;
1280 	BUG_ON(m->con != con);
1281 
1282 	/* put message on sent list */
1283 	ceph_msg_get(m);
1284 	list_move_tail(&m->list_head, &con->out_sent);
1285 
1286 	/*
1287 	 * only assign outgoing seq # if we haven't sent this message
1288 	 * yet.  if it is requeued, resend with it's original seq.
1289 	 */
1290 	if (m->needs_out_seq) {
1291 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1292 		m->needs_out_seq = false;
1293 	}
1294 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1295 
1296 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1297 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1298 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1299 	     m->data_length);
1300 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1301 
1302 	/* tag + hdr + front + middle */
1303 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1304 	con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1305 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1306 
1307 	if (m->middle)
1308 		con_out_kvec_add(con, m->middle->vec.iov_len,
1309 			m->middle->vec.iov_base);
1310 
1311 	/* fill in hdr crc and finalize hdr */
1312 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1313 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1314 	memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1315 
1316 	/* fill in front and middle crc, footer */
1317 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1318 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1319 	if (m->middle) {
1320 		crc = crc32c(0, m->middle->vec.iov_base,
1321 				m->middle->vec.iov_len);
1322 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1323 	} else
1324 		con->out_msg->footer.middle_crc = 0;
1325 	dout("%s front_crc %u middle_crc %u\n", __func__,
1326 	     le32_to_cpu(con->out_msg->footer.front_crc),
1327 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1328 	con->out_msg->footer.flags = 0;
1329 
1330 	/* is there a data payload? */
1331 	con->out_msg->footer.data_crc = 0;
1332 	if (m->data_length) {
1333 		prepare_message_data(con->out_msg, m->data_length);
1334 		con->out_more = 1;  /* data + footer will follow */
1335 	} else {
1336 		/* no, queue up footer too and be done */
1337 		prepare_write_message_footer(con);
1338 	}
1339 
1340 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341 }
1342 
1343 /*
1344  * Prepare an ack.
1345  */
prepare_write_ack(struct ceph_connection * con)1346 static void prepare_write_ack(struct ceph_connection *con)
1347 {
1348 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1349 	     con->in_seq_acked, con->in_seq);
1350 	con->in_seq_acked = con->in_seq;
1351 
1352 	con_out_kvec_reset(con);
1353 
1354 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1355 
1356 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1357 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1358 				&con->out_temp_ack);
1359 
1360 	con->out_more = 1;  /* more will follow.. eventually.. */
1361 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1362 }
1363 
1364 /*
1365  * Prepare to share the seq during handshake
1366  */
prepare_write_seq(struct ceph_connection * con)1367 static void prepare_write_seq(struct ceph_connection *con)
1368 {
1369 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1370 	     con->in_seq_acked, con->in_seq);
1371 	con->in_seq_acked = con->in_seq;
1372 
1373 	con_out_kvec_reset(con);
1374 
1375 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1376 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1377 			 &con->out_temp_ack);
1378 
1379 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1380 }
1381 
1382 /*
1383  * Prepare to write keepalive byte.
1384  */
prepare_write_keepalive(struct ceph_connection * con)1385 static void prepare_write_keepalive(struct ceph_connection *con)
1386 {
1387 	dout("prepare_write_keepalive %p\n", con);
1388 	con_out_kvec_reset(con);
1389 	if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1390 		struct timespec now = CURRENT_TIME;
1391 
1392 		con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1393 		ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1394 		con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1395 				 &con->out_temp_keepalive2);
1396 	} else {
1397 		con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1398 	}
1399 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1400 }
1401 
1402 /*
1403  * Connection negotiation.
1404  */
1405 
get_connect_authorizer(struct ceph_connection * con,int * auth_proto)1406 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1407 						int *auth_proto)
1408 {
1409 	struct ceph_auth_handshake *auth;
1410 
1411 	if (!con->ops->get_authorizer) {
1412 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413 		con->out_connect.authorizer_len = 0;
1414 		return NULL;
1415 	}
1416 
1417 	/* Can't hold the mutex while getting authorizer */
1418 	mutex_unlock(&con->mutex);
1419 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1420 	mutex_lock(&con->mutex);
1421 
1422 	if (IS_ERR(auth))
1423 		return auth;
1424 	if (con->state != CON_STATE_NEGOTIATING)
1425 		return ERR_PTR(-EAGAIN);
1426 
1427 	con->auth_reply_buf = auth->authorizer_reply_buf;
1428 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1429 	return auth;
1430 }
1431 
1432 /*
1433  * We connected to a peer and are saying hello.
1434  */
prepare_write_banner(struct ceph_connection * con)1435 static void prepare_write_banner(struct ceph_connection *con)
1436 {
1437 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1438 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1439 					&con->msgr->my_enc_addr);
1440 
1441 	con->out_more = 0;
1442 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1443 }
1444 
prepare_write_connect(struct ceph_connection * con)1445 static int prepare_write_connect(struct ceph_connection *con)
1446 {
1447 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1448 	int proto;
1449 	int auth_proto;
1450 	struct ceph_auth_handshake *auth;
1451 
1452 	switch (con->peer_name.type) {
1453 	case CEPH_ENTITY_TYPE_MON:
1454 		proto = CEPH_MONC_PROTOCOL;
1455 		break;
1456 	case CEPH_ENTITY_TYPE_OSD:
1457 		proto = CEPH_OSDC_PROTOCOL;
1458 		break;
1459 	case CEPH_ENTITY_TYPE_MDS:
1460 		proto = CEPH_MDSC_PROTOCOL;
1461 		break;
1462 	default:
1463 		BUG();
1464 	}
1465 
1466 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1467 	     con->connect_seq, global_seq, proto);
1468 
1469 	con->out_connect.features =
1470 	    cpu_to_le64(from_msgr(con->msgr)->supported_features);
1471 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1472 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1473 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1474 	con->out_connect.protocol_version = cpu_to_le32(proto);
1475 	con->out_connect.flags = 0;
1476 
1477 	auth_proto = CEPH_AUTH_UNKNOWN;
1478 	auth = get_connect_authorizer(con, &auth_proto);
1479 	if (IS_ERR(auth))
1480 		return PTR_ERR(auth);
1481 
1482 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1483 	con->out_connect.authorizer_len = auth ?
1484 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1485 
1486 	con_out_kvec_add(con, sizeof (con->out_connect),
1487 					&con->out_connect);
1488 	if (auth && auth->authorizer_buf_len)
1489 		con_out_kvec_add(con, auth->authorizer_buf_len,
1490 					auth->authorizer_buf);
1491 
1492 	con->out_more = 0;
1493 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * write as much of pending kvecs to the socket as we can.
1500  *  1 -> done
1501  *  0 -> socket full, but more to do
1502  * <0 -> error
1503  */
write_partial_kvec(struct ceph_connection * con)1504 static int write_partial_kvec(struct ceph_connection *con)
1505 {
1506 	int ret;
1507 
1508 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1509 	while (con->out_kvec_bytes > 0) {
1510 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1511 				       con->out_kvec_left, con->out_kvec_bytes,
1512 				       con->out_more);
1513 		if (ret <= 0)
1514 			goto out;
1515 		con->out_kvec_bytes -= ret;
1516 		if (con->out_kvec_bytes == 0)
1517 			break;            /* done */
1518 
1519 		/* account for full iov entries consumed */
1520 		while (ret >= con->out_kvec_cur->iov_len) {
1521 			BUG_ON(!con->out_kvec_left);
1522 			ret -= con->out_kvec_cur->iov_len;
1523 			con->out_kvec_cur++;
1524 			con->out_kvec_left--;
1525 		}
1526 		/* and for a partially-consumed entry */
1527 		if (ret) {
1528 			con->out_kvec_cur->iov_len -= ret;
1529 			con->out_kvec_cur->iov_base += ret;
1530 		}
1531 	}
1532 	con->out_kvec_left = 0;
1533 	ret = 1;
1534 out:
1535 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1536 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1537 	return ret;  /* done! */
1538 }
1539 
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1540 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1541 				unsigned int page_offset,
1542 				unsigned int length)
1543 {
1544 	char *kaddr;
1545 
1546 	kaddr = kmap(page);
1547 	BUG_ON(kaddr == NULL);
1548 	crc = crc32c(crc, kaddr + page_offset, length);
1549 	kunmap(page);
1550 
1551 	return crc;
1552 }
1553 /*
1554  * Write as much message data payload as we can.  If we finish, queue
1555  * up the footer.
1556  *  1 -> done, footer is now queued in out_kvec[].
1557  *  0 -> socket full, but more to do
1558  * <0 -> error
1559  */
write_partial_message_data(struct ceph_connection * con)1560 static int write_partial_message_data(struct ceph_connection *con)
1561 {
1562 	struct ceph_msg *msg = con->out_msg;
1563 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1564 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1565 	u32 crc;
1566 
1567 	dout("%s %p msg %p\n", __func__, con, msg);
1568 
1569 	if (list_empty(&msg->data))
1570 		return -EINVAL;
1571 
1572 	/*
1573 	 * Iterate through each page that contains data to be
1574 	 * written, and send as much as possible for each.
1575 	 *
1576 	 * If we are calculating the data crc (the default), we will
1577 	 * need to map the page.  If we have no pages, they have
1578 	 * been revoked, so use the zero page.
1579 	 */
1580 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1581 	while (cursor->resid) {
1582 		struct page *page;
1583 		size_t page_offset;
1584 		size_t length;
1585 		bool last_piece;
1586 		bool need_crc;
1587 		int ret;
1588 
1589 		page = ceph_msg_data_next(cursor, &page_offset, &length,
1590 					  &last_piece);
1591 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1592 					length, !last_piece);
1593 		if (ret <= 0) {
1594 			if (do_datacrc)
1595 				msg->footer.data_crc = cpu_to_le32(crc);
1596 
1597 			return ret;
1598 		}
1599 		if (do_datacrc && cursor->need_crc)
1600 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1601 		need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1602 	}
1603 
1604 	dout("%s %p msg %p done\n", __func__, con, msg);
1605 
1606 	/* prepare and queue up footer, too */
1607 	if (do_datacrc)
1608 		msg->footer.data_crc = cpu_to_le32(crc);
1609 	else
1610 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1611 	con_out_kvec_reset(con);
1612 	prepare_write_message_footer(con);
1613 
1614 	return 1;	/* must return > 0 to indicate success */
1615 }
1616 
1617 /*
1618  * write some zeros
1619  */
write_partial_skip(struct ceph_connection * con)1620 static int write_partial_skip(struct ceph_connection *con)
1621 {
1622 	int ret;
1623 
1624 	dout("%s %p %d left\n", __func__, con, con->out_skip);
1625 	while (con->out_skip > 0) {
1626 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1627 
1628 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1629 		if (ret <= 0)
1630 			goto out;
1631 		con->out_skip -= ret;
1632 	}
1633 	ret = 1;
1634 out:
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Prepare to read connection handshake, or an ack.
1640  */
prepare_read_banner(struct ceph_connection * con)1641 static void prepare_read_banner(struct ceph_connection *con)
1642 {
1643 	dout("prepare_read_banner %p\n", con);
1644 	con->in_base_pos = 0;
1645 }
1646 
prepare_read_connect(struct ceph_connection * con)1647 static void prepare_read_connect(struct ceph_connection *con)
1648 {
1649 	dout("prepare_read_connect %p\n", con);
1650 	con->in_base_pos = 0;
1651 }
1652 
prepare_read_ack(struct ceph_connection * con)1653 static void prepare_read_ack(struct ceph_connection *con)
1654 {
1655 	dout("prepare_read_ack %p\n", con);
1656 	con->in_base_pos = 0;
1657 }
1658 
prepare_read_seq(struct ceph_connection * con)1659 static void prepare_read_seq(struct ceph_connection *con)
1660 {
1661 	dout("prepare_read_seq %p\n", con);
1662 	con->in_base_pos = 0;
1663 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1664 }
1665 
prepare_read_tag(struct ceph_connection * con)1666 static void prepare_read_tag(struct ceph_connection *con)
1667 {
1668 	dout("prepare_read_tag %p\n", con);
1669 	con->in_base_pos = 0;
1670 	con->in_tag = CEPH_MSGR_TAG_READY;
1671 }
1672 
prepare_read_keepalive_ack(struct ceph_connection * con)1673 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674 {
1675 	dout("prepare_read_keepalive_ack %p\n", con);
1676 	con->in_base_pos = 0;
1677 }
1678 
1679 /*
1680  * Prepare to read a message.
1681  */
prepare_read_message(struct ceph_connection * con)1682 static int prepare_read_message(struct ceph_connection *con)
1683 {
1684 	dout("prepare_read_message %p\n", con);
1685 	BUG_ON(con->in_msg != NULL);
1686 	con->in_base_pos = 0;
1687 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688 	return 0;
1689 }
1690 
1691 
read_partial(struct ceph_connection * con,int end,int size,void * object)1692 static int read_partial(struct ceph_connection *con,
1693 			int end, int size, void *object)
1694 {
1695 	while (con->in_base_pos < end) {
1696 		int left = end - con->in_base_pos;
1697 		int have = size - left;
1698 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699 		if (ret <= 0)
1700 			return ret;
1701 		con->in_base_pos += ret;
1702 	}
1703 	return 1;
1704 }
1705 
1706 
1707 /*
1708  * Read all or part of the connect-side handshake on a new connection
1709  */
read_partial_banner(struct ceph_connection * con)1710 static int read_partial_banner(struct ceph_connection *con)
1711 {
1712 	int size;
1713 	int end;
1714 	int ret;
1715 
1716 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717 
1718 	/* peer's banner */
1719 	size = strlen(CEPH_BANNER);
1720 	end = size;
1721 	ret = read_partial(con, end, size, con->in_banner);
1722 	if (ret <= 0)
1723 		goto out;
1724 
1725 	size = sizeof (con->actual_peer_addr);
1726 	end += size;
1727 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1728 	if (ret <= 0)
1729 		goto out;
1730 
1731 	size = sizeof (con->peer_addr_for_me);
1732 	end += size;
1733 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1734 	if (ret <= 0)
1735 		goto out;
1736 
1737 out:
1738 	return ret;
1739 }
1740 
read_partial_connect(struct ceph_connection * con)1741 static int read_partial_connect(struct ceph_connection *con)
1742 {
1743 	int size;
1744 	int end;
1745 	int ret;
1746 
1747 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1748 
1749 	size = sizeof (con->in_reply);
1750 	end = size;
1751 	ret = read_partial(con, end, size, &con->in_reply);
1752 	if (ret <= 0)
1753 		goto out;
1754 
1755 	size = le32_to_cpu(con->in_reply.authorizer_len);
1756 	end += size;
1757 	ret = read_partial(con, end, size, con->auth_reply_buf);
1758 	if (ret <= 0)
1759 		goto out;
1760 
1761 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1762 	     con, (int)con->in_reply.tag,
1763 	     le32_to_cpu(con->in_reply.connect_seq),
1764 	     le32_to_cpu(con->in_reply.global_seq));
1765 out:
1766 	return ret;
1767 
1768 }
1769 
1770 /*
1771  * Verify the hello banner looks okay.
1772  */
verify_hello(struct ceph_connection * con)1773 static int verify_hello(struct ceph_connection *con)
1774 {
1775 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1776 		pr_err("connect to %s got bad banner\n",
1777 		       ceph_pr_addr(&con->peer_addr.in_addr));
1778 		con->error_msg = "protocol error, bad banner";
1779 		return -1;
1780 	}
1781 	return 0;
1782 }
1783 
addr_is_blank(struct sockaddr_storage * ss)1784 static bool addr_is_blank(struct sockaddr_storage *ss)
1785 {
1786 	struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1787 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1788 
1789 	switch (ss->ss_family) {
1790 	case AF_INET:
1791 		return addr->s_addr == htonl(INADDR_ANY);
1792 	case AF_INET6:
1793 		return ipv6_addr_any(addr6);
1794 	default:
1795 		return true;
1796 	}
1797 }
1798 
addr_port(struct sockaddr_storage * ss)1799 static int addr_port(struct sockaddr_storage *ss)
1800 {
1801 	switch (ss->ss_family) {
1802 	case AF_INET:
1803 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1804 	case AF_INET6:
1805 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1806 	}
1807 	return 0;
1808 }
1809 
addr_set_port(struct sockaddr_storage * ss,int p)1810 static void addr_set_port(struct sockaddr_storage *ss, int p)
1811 {
1812 	switch (ss->ss_family) {
1813 	case AF_INET:
1814 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1815 		break;
1816 	case AF_INET6:
1817 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1818 		break;
1819 	}
1820 }
1821 
1822 /*
1823  * Unlike other *_pton function semantics, zero indicates success.
1824  */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1825 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1826 		char delim, const char **ipend)
1827 {
1828 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1829 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1830 
1831 	memset(ss, 0, sizeof(*ss));
1832 
1833 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1834 		ss->ss_family = AF_INET;
1835 		return 0;
1836 	}
1837 
1838 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1839 		ss->ss_family = AF_INET6;
1840 		return 0;
1841 	}
1842 
1843 	return -EINVAL;
1844 }
1845 
1846 /*
1847  * Extract hostname string and resolve using kernel DNS facility.
1848  */
1849 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1850 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1851 		struct sockaddr_storage *ss, char delim, const char **ipend)
1852 {
1853 	const char *end, *delim_p;
1854 	char *colon_p, *ip_addr = NULL;
1855 	int ip_len, ret;
1856 
1857 	/*
1858 	 * The end of the hostname occurs immediately preceding the delimiter or
1859 	 * the port marker (':') where the delimiter takes precedence.
1860 	 */
1861 	delim_p = memchr(name, delim, namelen);
1862 	colon_p = memchr(name, ':', namelen);
1863 
1864 	if (delim_p && colon_p)
1865 		end = delim_p < colon_p ? delim_p : colon_p;
1866 	else if (!delim_p && colon_p)
1867 		end = colon_p;
1868 	else {
1869 		end = delim_p;
1870 		if (!end) /* case: hostname:/ */
1871 			end = name + namelen;
1872 	}
1873 
1874 	if (end <= name)
1875 		return -EINVAL;
1876 
1877 	/* do dns_resolve upcall */
1878 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1879 	if (ip_len > 0)
1880 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1881 	else
1882 		ret = -ESRCH;
1883 
1884 	kfree(ip_addr);
1885 
1886 	*ipend = end;
1887 
1888 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1889 			ret, ret ? "failed" : ceph_pr_addr(ss));
1890 
1891 	return ret;
1892 }
1893 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1894 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1895 		struct sockaddr_storage *ss, char delim, const char **ipend)
1896 {
1897 	return -EINVAL;
1898 }
1899 #endif
1900 
1901 /*
1902  * Parse a server name (IP or hostname). If a valid IP address is not found
1903  * then try to extract a hostname to resolve using userspace DNS upcall.
1904  */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1905 static int ceph_parse_server_name(const char *name, size_t namelen,
1906 			struct sockaddr_storage *ss, char delim, const char **ipend)
1907 {
1908 	int ret;
1909 
1910 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1911 	if (ret)
1912 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1913 
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Parse an ip[:port] list into an addr array.  Use the default
1919  * monitor port if a port isn't specified.
1920  */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1921 int ceph_parse_ips(const char *c, const char *end,
1922 		   struct ceph_entity_addr *addr,
1923 		   int max_count, int *count)
1924 {
1925 	int i, ret = -EINVAL;
1926 	const char *p = c;
1927 
1928 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1929 	for (i = 0; i < max_count; i++) {
1930 		const char *ipend;
1931 		struct sockaddr_storage *ss = &addr[i].in_addr;
1932 		int port;
1933 		char delim = ',';
1934 
1935 		if (*p == '[') {
1936 			delim = ']';
1937 			p++;
1938 		}
1939 
1940 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1941 		if (ret)
1942 			goto bad;
1943 		ret = -EINVAL;
1944 
1945 		p = ipend;
1946 
1947 		if (delim == ']') {
1948 			if (*p != ']') {
1949 				dout("missing matching ']'\n");
1950 				goto bad;
1951 			}
1952 			p++;
1953 		}
1954 
1955 		/* port? */
1956 		if (p < end && *p == ':') {
1957 			port = 0;
1958 			p++;
1959 			while (p < end && *p >= '0' && *p <= '9') {
1960 				port = (port * 10) + (*p - '0');
1961 				p++;
1962 			}
1963 			if (port == 0)
1964 				port = CEPH_MON_PORT;
1965 			else if (port > 65535)
1966 				goto bad;
1967 		} else {
1968 			port = CEPH_MON_PORT;
1969 		}
1970 
1971 		addr_set_port(ss, port);
1972 
1973 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1974 
1975 		if (p == end)
1976 			break;
1977 		if (*p != ',')
1978 			goto bad;
1979 		p++;
1980 	}
1981 
1982 	if (p != end)
1983 		goto bad;
1984 
1985 	if (count)
1986 		*count = i + 1;
1987 	return 0;
1988 
1989 bad:
1990 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL(ceph_parse_ips);
1994 
process_banner(struct ceph_connection * con)1995 static int process_banner(struct ceph_connection *con)
1996 {
1997 	dout("process_banner on %p\n", con);
1998 
1999 	if (verify_hello(con) < 0)
2000 		return -1;
2001 
2002 	ceph_decode_addr(&con->actual_peer_addr);
2003 	ceph_decode_addr(&con->peer_addr_for_me);
2004 
2005 	/*
2006 	 * Make sure the other end is who we wanted.  note that the other
2007 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
2008 	 * them the benefit of the doubt.
2009 	 */
2010 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2011 		   sizeof(con->peer_addr)) != 0 &&
2012 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2013 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2014 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2015 			ceph_pr_addr(&con->peer_addr.in_addr),
2016 			(int)le32_to_cpu(con->peer_addr.nonce),
2017 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
2018 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
2019 		con->error_msg = "wrong peer at address";
2020 		return -1;
2021 	}
2022 
2023 	/*
2024 	 * did we learn our address?
2025 	 */
2026 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2027 		int port = addr_port(&con->msgr->inst.addr.in_addr);
2028 
2029 		memcpy(&con->msgr->inst.addr.in_addr,
2030 		       &con->peer_addr_for_me.in_addr,
2031 		       sizeof(con->peer_addr_for_me.in_addr));
2032 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
2033 		encode_my_addr(con->msgr);
2034 		dout("process_banner learned my addr is %s\n",
2035 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2036 	}
2037 
2038 	return 0;
2039 }
2040 
process_connect(struct ceph_connection * con)2041 static int process_connect(struct ceph_connection *con)
2042 {
2043 	u64 sup_feat = from_msgr(con->msgr)->supported_features;
2044 	u64 req_feat = from_msgr(con->msgr)->required_features;
2045 	u64 server_feat = ceph_sanitize_features(
2046 				le64_to_cpu(con->in_reply.features));
2047 	int ret;
2048 
2049 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2050 
2051 	if (con->auth_reply_buf) {
2052 		int len = le32_to_cpu(con->in_reply.authorizer_len);
2053 
2054 		/*
2055 		 * Any connection that defines ->get_authorizer()
2056 		 * should also define ->verify_authorizer_reply().
2057 		 * See get_connect_authorizer().
2058 		 */
2059 		if (len) {
2060 			ret = con->ops->verify_authorizer_reply(con, 0);
2061 			if (ret < 0) {
2062 				con->error_msg = "bad authorize reply";
2063 				return ret;
2064 			}
2065 		}
2066 	}
2067 
2068 	switch (con->in_reply.tag) {
2069 	case CEPH_MSGR_TAG_FEATURES:
2070 		pr_err("%s%lld %s feature set mismatch,"
2071 		       " my %llx < server's %llx, missing %llx\n",
2072 		       ENTITY_NAME(con->peer_name),
2073 		       ceph_pr_addr(&con->peer_addr.in_addr),
2074 		       sup_feat, server_feat, server_feat & ~sup_feat);
2075 		con->error_msg = "missing required protocol features";
2076 		reset_connection(con);
2077 		return -1;
2078 
2079 	case CEPH_MSGR_TAG_BADPROTOVER:
2080 		pr_err("%s%lld %s protocol version mismatch,"
2081 		       " my %d != server's %d\n",
2082 		       ENTITY_NAME(con->peer_name),
2083 		       ceph_pr_addr(&con->peer_addr.in_addr),
2084 		       le32_to_cpu(con->out_connect.protocol_version),
2085 		       le32_to_cpu(con->in_reply.protocol_version));
2086 		con->error_msg = "protocol version mismatch";
2087 		reset_connection(con);
2088 		return -1;
2089 
2090 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2091 		con->auth_retry++;
2092 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2093 		     con->auth_retry);
2094 		if (con->auth_retry == 2) {
2095 			con->error_msg = "connect authorization failure";
2096 			return -1;
2097 		}
2098 		con_out_kvec_reset(con);
2099 		ret = prepare_write_connect(con);
2100 		if (ret < 0)
2101 			return ret;
2102 		prepare_read_connect(con);
2103 		break;
2104 
2105 	case CEPH_MSGR_TAG_RESETSESSION:
2106 		/*
2107 		 * If we connected with a large connect_seq but the peer
2108 		 * has no record of a session with us (no connection, or
2109 		 * connect_seq == 0), they will send RESETSESION to indicate
2110 		 * that they must have reset their session, and may have
2111 		 * dropped messages.
2112 		 */
2113 		dout("process_connect got RESET peer seq %u\n",
2114 		     le32_to_cpu(con->in_reply.connect_seq));
2115 		pr_err("%s%lld %s connection reset\n",
2116 		       ENTITY_NAME(con->peer_name),
2117 		       ceph_pr_addr(&con->peer_addr.in_addr));
2118 		reset_connection(con);
2119 		con_out_kvec_reset(con);
2120 		ret = prepare_write_connect(con);
2121 		if (ret < 0)
2122 			return ret;
2123 		prepare_read_connect(con);
2124 
2125 		/* Tell ceph about it. */
2126 		mutex_unlock(&con->mutex);
2127 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2128 		if (con->ops->peer_reset)
2129 			con->ops->peer_reset(con);
2130 		mutex_lock(&con->mutex);
2131 		if (con->state != CON_STATE_NEGOTIATING)
2132 			return -EAGAIN;
2133 		break;
2134 
2135 	case CEPH_MSGR_TAG_RETRY_SESSION:
2136 		/*
2137 		 * If we sent a smaller connect_seq than the peer has, try
2138 		 * again with a larger value.
2139 		 */
2140 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2141 		     le32_to_cpu(con->out_connect.connect_seq),
2142 		     le32_to_cpu(con->in_reply.connect_seq));
2143 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2144 		con_out_kvec_reset(con);
2145 		ret = prepare_write_connect(con);
2146 		if (ret < 0)
2147 			return ret;
2148 		prepare_read_connect(con);
2149 		break;
2150 
2151 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2152 		/*
2153 		 * If we sent a smaller global_seq than the peer has, try
2154 		 * again with a larger value.
2155 		 */
2156 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2157 		     con->peer_global_seq,
2158 		     le32_to_cpu(con->in_reply.global_seq));
2159 		get_global_seq(con->msgr,
2160 			       le32_to_cpu(con->in_reply.global_seq));
2161 		con_out_kvec_reset(con);
2162 		ret = prepare_write_connect(con);
2163 		if (ret < 0)
2164 			return ret;
2165 		prepare_read_connect(con);
2166 		break;
2167 
2168 	case CEPH_MSGR_TAG_SEQ:
2169 	case CEPH_MSGR_TAG_READY:
2170 		if (req_feat & ~server_feat) {
2171 			pr_err("%s%lld %s protocol feature mismatch,"
2172 			       " my required %llx > server's %llx, need %llx\n",
2173 			       ENTITY_NAME(con->peer_name),
2174 			       ceph_pr_addr(&con->peer_addr.in_addr),
2175 			       req_feat, server_feat, req_feat & ~server_feat);
2176 			con->error_msg = "missing required protocol features";
2177 			reset_connection(con);
2178 			return -1;
2179 		}
2180 
2181 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2182 		con->state = CON_STATE_OPEN;
2183 		con->auth_retry = 0;    /* we authenticated; clear flag */
2184 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2185 		con->connect_seq++;
2186 		con->peer_features = server_feat;
2187 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2188 		     con->peer_global_seq,
2189 		     le32_to_cpu(con->in_reply.connect_seq),
2190 		     con->connect_seq);
2191 		WARN_ON(con->connect_seq !=
2192 			le32_to_cpu(con->in_reply.connect_seq));
2193 
2194 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2195 			con_flag_set(con, CON_FLAG_LOSSYTX);
2196 
2197 		con->delay = 0;      /* reset backoff memory */
2198 
2199 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2200 			prepare_write_seq(con);
2201 			prepare_read_seq(con);
2202 		} else {
2203 			prepare_read_tag(con);
2204 		}
2205 		break;
2206 
2207 	case CEPH_MSGR_TAG_WAIT:
2208 		/*
2209 		 * If there is a connection race (we are opening
2210 		 * connections to each other), one of us may just have
2211 		 * to WAIT.  This shouldn't happen if we are the
2212 		 * client.
2213 		 */
2214 		con->error_msg = "protocol error, got WAIT as client";
2215 		return -1;
2216 
2217 	default:
2218 		con->error_msg = "protocol error, garbage tag during connect";
2219 		return -1;
2220 	}
2221 	return 0;
2222 }
2223 
2224 
2225 /*
2226  * read (part of) an ack
2227  */
read_partial_ack(struct ceph_connection * con)2228 static int read_partial_ack(struct ceph_connection *con)
2229 {
2230 	int size = sizeof (con->in_temp_ack);
2231 	int end = size;
2232 
2233 	return read_partial(con, end, size, &con->in_temp_ack);
2234 }
2235 
2236 /*
2237  * We can finally discard anything that's been acked.
2238  */
process_ack(struct ceph_connection * con)2239 static void process_ack(struct ceph_connection *con)
2240 {
2241 	struct ceph_msg *m;
2242 	u64 ack = le64_to_cpu(con->in_temp_ack);
2243 	u64 seq;
2244 
2245 	while (!list_empty(&con->out_sent)) {
2246 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2247 				     list_head);
2248 		seq = le64_to_cpu(m->hdr.seq);
2249 		if (seq > ack)
2250 			break;
2251 		dout("got ack for seq %llu type %d at %p\n", seq,
2252 		     le16_to_cpu(m->hdr.type), m);
2253 		m->ack_stamp = jiffies;
2254 		ceph_msg_remove(m);
2255 	}
2256 	prepare_read_tag(con);
2257 }
2258 
2259 
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2260 static int read_partial_message_section(struct ceph_connection *con,
2261 					struct kvec *section,
2262 					unsigned int sec_len, u32 *crc)
2263 {
2264 	int ret, left;
2265 
2266 	BUG_ON(!section);
2267 
2268 	while (section->iov_len < sec_len) {
2269 		BUG_ON(section->iov_base == NULL);
2270 		left = sec_len - section->iov_len;
2271 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2272 				       section->iov_len, left);
2273 		if (ret <= 0)
2274 			return ret;
2275 		section->iov_len += ret;
2276 	}
2277 	if (section->iov_len == sec_len)
2278 		*crc = crc32c(0, section->iov_base, section->iov_len);
2279 
2280 	return 1;
2281 }
2282 
read_partial_msg_data(struct ceph_connection * con)2283 static int read_partial_msg_data(struct ceph_connection *con)
2284 {
2285 	struct ceph_msg *msg = con->in_msg;
2286 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2287 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2288 	struct page *page;
2289 	size_t page_offset;
2290 	size_t length;
2291 	u32 crc = 0;
2292 	int ret;
2293 
2294 	BUG_ON(!msg);
2295 	if (list_empty(&msg->data))
2296 		return -EIO;
2297 
2298 	if (do_datacrc)
2299 		crc = con->in_data_crc;
2300 	while (cursor->resid) {
2301 		page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2302 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2303 		if (ret <= 0) {
2304 			if (do_datacrc)
2305 				con->in_data_crc = crc;
2306 
2307 			return ret;
2308 		}
2309 
2310 		if (do_datacrc)
2311 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2312 		(void) ceph_msg_data_advance(cursor, (size_t)ret);
2313 	}
2314 	if (do_datacrc)
2315 		con->in_data_crc = crc;
2316 
2317 	return 1;	/* must return > 0 to indicate success */
2318 }
2319 
2320 /*
2321  * read (part of) a message.
2322  */
2323 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2324 
read_partial_message(struct ceph_connection * con)2325 static int read_partial_message(struct ceph_connection *con)
2326 {
2327 	struct ceph_msg *m = con->in_msg;
2328 	int size;
2329 	int end;
2330 	int ret;
2331 	unsigned int front_len, middle_len, data_len;
2332 	bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2333 	bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2334 	u64 seq;
2335 	u32 crc;
2336 
2337 	dout("read_partial_message con %p msg %p\n", con, m);
2338 
2339 	/* header */
2340 	size = sizeof (con->in_hdr);
2341 	end = size;
2342 	ret = read_partial(con, end, size, &con->in_hdr);
2343 	if (ret <= 0)
2344 		return ret;
2345 
2346 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2347 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2348 		pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2349 		       crc, con->in_hdr.crc);
2350 		return -EBADMSG;
2351 	}
2352 
2353 	front_len = le32_to_cpu(con->in_hdr.front_len);
2354 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2355 		return -EIO;
2356 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2358 		return -EIO;
2359 	data_len = le32_to_cpu(con->in_hdr.data_len);
2360 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2361 		return -EIO;
2362 
2363 	/* verify seq# */
2364 	seq = le64_to_cpu(con->in_hdr.seq);
2365 	if ((s64)seq - (s64)con->in_seq < 1) {
2366 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367 			ENTITY_NAME(con->peer_name),
2368 			ceph_pr_addr(&con->peer_addr.in_addr),
2369 			seq, con->in_seq + 1);
2370 		con->in_base_pos = -front_len - middle_len - data_len -
2371 			sizeof_footer(con);
2372 		con->in_tag = CEPH_MSGR_TAG_READY;
2373 		return 1;
2374 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2375 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2376 		       seq, con->in_seq + 1);
2377 		con->error_msg = "bad message sequence # for incoming message";
2378 		return -EBADE;
2379 	}
2380 
2381 	/* allocate message? */
2382 	if (!con->in_msg) {
2383 		int skip = 0;
2384 
2385 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2386 		     front_len, data_len);
2387 		ret = ceph_con_in_msg_alloc(con, &skip);
2388 		if (ret < 0)
2389 			return ret;
2390 
2391 		BUG_ON(!con->in_msg ^ skip);
2392 		if (skip) {
2393 			/* skip this message */
2394 			dout("alloc_msg said skip message\n");
2395 			con->in_base_pos = -front_len - middle_len - data_len -
2396 				sizeof_footer(con);
2397 			con->in_tag = CEPH_MSGR_TAG_READY;
2398 			con->in_seq++;
2399 			return 1;
2400 		}
2401 
2402 		BUG_ON(!con->in_msg);
2403 		BUG_ON(con->in_msg->con != con);
2404 		m = con->in_msg;
2405 		m->front.iov_len = 0;    /* haven't read it yet */
2406 		if (m->middle)
2407 			m->middle->vec.iov_len = 0;
2408 
2409 		/* prepare for data payload, if any */
2410 
2411 		if (data_len)
2412 			prepare_message_data(con->in_msg, data_len);
2413 	}
2414 
2415 	/* front */
2416 	ret = read_partial_message_section(con, &m->front, front_len,
2417 					   &con->in_front_crc);
2418 	if (ret <= 0)
2419 		return ret;
2420 
2421 	/* middle */
2422 	if (m->middle) {
2423 		ret = read_partial_message_section(con, &m->middle->vec,
2424 						   middle_len,
2425 						   &con->in_middle_crc);
2426 		if (ret <= 0)
2427 			return ret;
2428 	}
2429 
2430 	/* (page) data */
2431 	if (data_len) {
2432 		ret = read_partial_msg_data(con);
2433 		if (ret <= 0)
2434 			return ret;
2435 	}
2436 
2437 	/* footer */
2438 	if (need_sign)
2439 		size = sizeof(m->footer);
2440 	else
2441 		size = sizeof(m->old_footer);
2442 
2443 	end += size;
2444 	ret = read_partial(con, end, size, &m->footer);
2445 	if (ret <= 0)
2446 		return ret;
2447 
2448 	if (!need_sign) {
2449 		m->footer.flags = m->old_footer.flags;
2450 		m->footer.sig = 0;
2451 	}
2452 
2453 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2454 	     m, front_len, m->footer.front_crc, middle_len,
2455 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2456 
2457 	/* crc ok? */
2458 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2459 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2460 		       m, con->in_front_crc, m->footer.front_crc);
2461 		return -EBADMSG;
2462 	}
2463 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2464 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2465 		       m, con->in_middle_crc, m->footer.middle_crc);
2466 		return -EBADMSG;
2467 	}
2468 	if (do_datacrc &&
2469 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2470 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2471 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2472 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2473 		return -EBADMSG;
2474 	}
2475 
2476 	if (need_sign && con->ops->check_message_signature &&
2477 	    con->ops->check_message_signature(m)) {
2478 		pr_err("read_partial_message %p signature check failed\n", m);
2479 		return -EBADMSG;
2480 	}
2481 
2482 	return 1; /* done! */
2483 }
2484 
2485 /*
2486  * Process message.  This happens in the worker thread.  The callback should
2487  * be careful not to do anything that waits on other incoming messages or it
2488  * may deadlock.
2489  */
process_message(struct ceph_connection * con)2490 static void process_message(struct ceph_connection *con)
2491 {
2492 	struct ceph_msg *msg = con->in_msg;
2493 
2494 	BUG_ON(con->in_msg->con != con);
2495 	con->in_msg = NULL;
2496 
2497 	/* if first message, set peer_name */
2498 	if (con->peer_name.type == 0)
2499 		con->peer_name = msg->hdr.src;
2500 
2501 	con->in_seq++;
2502 	mutex_unlock(&con->mutex);
2503 
2504 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2505 	     msg, le64_to_cpu(msg->hdr.seq),
2506 	     ENTITY_NAME(msg->hdr.src),
2507 	     le16_to_cpu(msg->hdr.type),
2508 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2509 	     le32_to_cpu(msg->hdr.front_len),
2510 	     le32_to_cpu(msg->hdr.data_len),
2511 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2512 	con->ops->dispatch(con, msg);
2513 
2514 	mutex_lock(&con->mutex);
2515 }
2516 
read_keepalive_ack(struct ceph_connection * con)2517 static int read_keepalive_ack(struct ceph_connection *con)
2518 {
2519 	struct ceph_timespec ceph_ts;
2520 	size_t size = sizeof(ceph_ts);
2521 	int ret = read_partial(con, size, size, &ceph_ts);
2522 	if (ret <= 0)
2523 		return ret;
2524 	ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2525 	prepare_read_tag(con);
2526 	return 1;
2527 }
2528 
2529 /*
2530  * Write something to the socket.  Called in a worker thread when the
2531  * socket appears to be writeable and we have something ready to send.
2532  */
try_write(struct ceph_connection * con)2533 static int try_write(struct ceph_connection *con)
2534 {
2535 	int ret = 1;
2536 
2537 	dout("try_write start %p state %lu\n", con, con->state);
2538 	if (con->state != CON_STATE_PREOPEN &&
2539 	    con->state != CON_STATE_CONNECTING &&
2540 	    con->state != CON_STATE_NEGOTIATING &&
2541 	    con->state != CON_STATE_OPEN)
2542 		return 0;
2543 
2544 more:
2545 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2546 
2547 	/* open the socket first? */
2548 	if (con->state == CON_STATE_PREOPEN) {
2549 		BUG_ON(con->sock);
2550 		con->state = CON_STATE_CONNECTING;
2551 
2552 		con_out_kvec_reset(con);
2553 		prepare_write_banner(con);
2554 		prepare_read_banner(con);
2555 
2556 		BUG_ON(con->in_msg);
2557 		con->in_tag = CEPH_MSGR_TAG_READY;
2558 		dout("try_write initiating connect on %p new state %lu\n",
2559 		     con, con->state);
2560 		ret = ceph_tcp_connect(con);
2561 		if (ret < 0) {
2562 			con->error_msg = "connect error";
2563 			goto out;
2564 		}
2565 	}
2566 
2567 more_kvec:
2568 	BUG_ON(!con->sock);
2569 
2570 	/* kvec data queued? */
2571 	if (con->out_kvec_left) {
2572 		ret = write_partial_kvec(con);
2573 		if (ret <= 0)
2574 			goto out;
2575 	}
2576 	if (con->out_skip) {
2577 		ret = write_partial_skip(con);
2578 		if (ret <= 0)
2579 			goto out;
2580 	}
2581 
2582 	/* msg pages? */
2583 	if (con->out_msg) {
2584 		if (con->out_msg_done) {
2585 			ceph_msg_put(con->out_msg);
2586 			con->out_msg = NULL;   /* we're done with this one */
2587 			goto do_next;
2588 		}
2589 
2590 		ret = write_partial_message_data(con);
2591 		if (ret == 1)
2592 			goto more_kvec;  /* we need to send the footer, too! */
2593 		if (ret == 0)
2594 			goto out;
2595 		if (ret < 0) {
2596 			dout("try_write write_partial_message_data err %d\n",
2597 			     ret);
2598 			goto out;
2599 		}
2600 	}
2601 
2602 do_next:
2603 	if (con->state == CON_STATE_OPEN) {
2604 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2605 			prepare_write_keepalive(con);
2606 			goto more;
2607 		}
2608 		/* is anything else pending? */
2609 		if (!list_empty(&con->out_queue)) {
2610 			prepare_write_message(con);
2611 			goto more;
2612 		}
2613 		if (con->in_seq > con->in_seq_acked) {
2614 			prepare_write_ack(con);
2615 			goto more;
2616 		}
2617 	}
2618 
2619 	/* Nothing to do! */
2620 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2621 	dout("try_write nothing else to write.\n");
2622 	ret = 0;
2623 out:
2624 	dout("try_write done on %p ret %d\n", con, ret);
2625 	return ret;
2626 }
2627 
2628 
2629 
2630 /*
2631  * Read what we can from the socket.
2632  */
try_read(struct ceph_connection * con)2633 static int try_read(struct ceph_connection *con)
2634 {
2635 	int ret = -1;
2636 
2637 more:
2638 	dout("try_read start on %p state %lu\n", con, con->state);
2639 	if (con->state != CON_STATE_CONNECTING &&
2640 	    con->state != CON_STATE_NEGOTIATING &&
2641 	    con->state != CON_STATE_OPEN)
2642 		return 0;
2643 
2644 	BUG_ON(!con->sock);
2645 
2646 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2647 	     con->in_base_pos);
2648 
2649 	if (con->state == CON_STATE_CONNECTING) {
2650 		dout("try_read connecting\n");
2651 		ret = read_partial_banner(con);
2652 		if (ret <= 0)
2653 			goto out;
2654 		ret = process_banner(con);
2655 		if (ret < 0)
2656 			goto out;
2657 
2658 		con->state = CON_STATE_NEGOTIATING;
2659 
2660 		/*
2661 		 * Received banner is good, exchange connection info.
2662 		 * Do not reset out_kvec, as sending our banner raced
2663 		 * with receiving peer banner after connect completed.
2664 		 */
2665 		ret = prepare_write_connect(con);
2666 		if (ret < 0)
2667 			goto out;
2668 		prepare_read_connect(con);
2669 
2670 		/* Send connection info before awaiting response */
2671 		goto out;
2672 	}
2673 
2674 	if (con->state == CON_STATE_NEGOTIATING) {
2675 		dout("try_read negotiating\n");
2676 		ret = read_partial_connect(con);
2677 		if (ret <= 0)
2678 			goto out;
2679 		ret = process_connect(con);
2680 		if (ret < 0)
2681 			goto out;
2682 		goto more;
2683 	}
2684 
2685 	WARN_ON(con->state != CON_STATE_OPEN);
2686 
2687 	if (con->in_base_pos < 0) {
2688 		/*
2689 		 * skipping + discarding content.
2690 		 *
2691 		 * FIXME: there must be a better way to do this!
2692 		 */
2693 		static char buf[SKIP_BUF_SIZE];
2694 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2695 
2696 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2697 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2698 		if (ret <= 0)
2699 			goto out;
2700 		con->in_base_pos += ret;
2701 		if (con->in_base_pos)
2702 			goto more;
2703 	}
2704 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2705 		/*
2706 		 * what's next?
2707 		 */
2708 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2709 		if (ret <= 0)
2710 			goto out;
2711 		dout("try_read got tag %d\n", (int)con->in_tag);
2712 		switch (con->in_tag) {
2713 		case CEPH_MSGR_TAG_MSG:
2714 			prepare_read_message(con);
2715 			break;
2716 		case CEPH_MSGR_TAG_ACK:
2717 			prepare_read_ack(con);
2718 			break;
2719 		case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2720 			prepare_read_keepalive_ack(con);
2721 			break;
2722 		case CEPH_MSGR_TAG_CLOSE:
2723 			con_close_socket(con);
2724 			con->state = CON_STATE_CLOSED;
2725 			goto out;
2726 		default:
2727 			goto bad_tag;
2728 		}
2729 	}
2730 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2731 		ret = read_partial_message(con);
2732 		if (ret <= 0) {
2733 			switch (ret) {
2734 			case -EBADMSG:
2735 				con->error_msg = "bad crc/signature";
2736 				/* fall through */
2737 			case -EBADE:
2738 				ret = -EIO;
2739 				break;
2740 			case -EIO:
2741 				con->error_msg = "io error";
2742 				break;
2743 			}
2744 			goto out;
2745 		}
2746 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2747 			goto more;
2748 		process_message(con);
2749 		if (con->state == CON_STATE_OPEN)
2750 			prepare_read_tag(con);
2751 		goto more;
2752 	}
2753 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2754 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2755 		/*
2756 		 * the final handshake seq exchange is semantically
2757 		 * equivalent to an ACK
2758 		 */
2759 		ret = read_partial_ack(con);
2760 		if (ret <= 0)
2761 			goto out;
2762 		process_ack(con);
2763 		goto more;
2764 	}
2765 	if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2766 		ret = read_keepalive_ack(con);
2767 		if (ret <= 0)
2768 			goto out;
2769 		goto more;
2770 	}
2771 
2772 out:
2773 	dout("try_read done on %p ret %d\n", con, ret);
2774 	return ret;
2775 
2776 bad_tag:
2777 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2778 	con->error_msg = "protocol error, garbage tag";
2779 	ret = -1;
2780 	goto out;
2781 }
2782 
2783 
2784 /*
2785  * Atomically queue work on a connection after the specified delay.
2786  * Bump @con reference to avoid races with connection teardown.
2787  * Returns 0 if work was queued, or an error code otherwise.
2788  */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2789 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2790 {
2791 	if (!con->ops->get(con)) {
2792 		dout("%s %p ref count 0\n", __func__, con);
2793 		return -ENOENT;
2794 	}
2795 
2796 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2797 		dout("%s %p - already queued\n", __func__, con);
2798 		con->ops->put(con);
2799 		return -EBUSY;
2800 	}
2801 
2802 	dout("%s %p %lu\n", __func__, con, delay);
2803 	return 0;
2804 }
2805 
queue_con(struct ceph_connection * con)2806 static void queue_con(struct ceph_connection *con)
2807 {
2808 	(void) queue_con_delay(con, 0);
2809 }
2810 
cancel_con(struct ceph_connection * con)2811 static void cancel_con(struct ceph_connection *con)
2812 {
2813 	if (cancel_delayed_work(&con->work)) {
2814 		dout("%s %p\n", __func__, con);
2815 		con->ops->put(con);
2816 	}
2817 }
2818 
con_sock_closed(struct ceph_connection * con)2819 static bool con_sock_closed(struct ceph_connection *con)
2820 {
2821 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2822 		return false;
2823 
2824 #define CASE(x)								\
2825 	case CON_STATE_ ## x:						\
2826 		con->error_msg = "socket closed (con state " #x ")";	\
2827 		break;
2828 
2829 	switch (con->state) {
2830 	CASE(CLOSED);
2831 	CASE(PREOPEN);
2832 	CASE(CONNECTING);
2833 	CASE(NEGOTIATING);
2834 	CASE(OPEN);
2835 	CASE(STANDBY);
2836 	default:
2837 		pr_warn("%s con %p unrecognized state %lu\n",
2838 			__func__, con, con->state);
2839 		con->error_msg = "unrecognized con state";
2840 		BUG();
2841 		break;
2842 	}
2843 #undef CASE
2844 
2845 	return true;
2846 }
2847 
con_backoff(struct ceph_connection * con)2848 static bool con_backoff(struct ceph_connection *con)
2849 {
2850 	int ret;
2851 
2852 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2853 		return false;
2854 
2855 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2856 	if (ret) {
2857 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2858 			con, con->delay);
2859 		BUG_ON(ret == -ENOENT);
2860 		con_flag_set(con, CON_FLAG_BACKOFF);
2861 	}
2862 
2863 	return true;
2864 }
2865 
2866 /* Finish fault handling; con->mutex must *not* be held here */
2867 
con_fault_finish(struct ceph_connection * con)2868 static void con_fault_finish(struct ceph_connection *con)
2869 {
2870 	/*
2871 	 * in case we faulted due to authentication, invalidate our
2872 	 * current tickets so that we can get new ones.
2873 	 */
2874 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2875 		dout("calling invalidate_authorizer()\n");
2876 		con->ops->invalidate_authorizer(con);
2877 	}
2878 
2879 	if (con->ops->fault)
2880 		con->ops->fault(con);
2881 }
2882 
2883 /*
2884  * Do some work on a connection.  Drop a connection ref when we're done.
2885  */
ceph_con_workfn(struct work_struct * work)2886 static void ceph_con_workfn(struct work_struct *work)
2887 {
2888 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2889 						   work.work);
2890 	bool fault;
2891 
2892 	mutex_lock(&con->mutex);
2893 	while (true) {
2894 		int ret;
2895 
2896 		if ((fault = con_sock_closed(con))) {
2897 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2898 			break;
2899 		}
2900 		if (con_backoff(con)) {
2901 			dout("%s: con %p BACKOFF\n", __func__, con);
2902 			break;
2903 		}
2904 		if (con->state == CON_STATE_STANDBY) {
2905 			dout("%s: con %p STANDBY\n", __func__, con);
2906 			break;
2907 		}
2908 		if (con->state == CON_STATE_CLOSED) {
2909 			dout("%s: con %p CLOSED\n", __func__, con);
2910 			BUG_ON(con->sock);
2911 			break;
2912 		}
2913 		if (con->state == CON_STATE_PREOPEN) {
2914 			dout("%s: con %p PREOPEN\n", __func__, con);
2915 			BUG_ON(con->sock);
2916 		}
2917 
2918 		ret = try_read(con);
2919 		if (ret < 0) {
2920 			if (ret == -EAGAIN)
2921 				continue;
2922 			if (!con->error_msg)
2923 				con->error_msg = "socket error on read";
2924 			fault = true;
2925 			break;
2926 		}
2927 
2928 		ret = try_write(con);
2929 		if (ret < 0) {
2930 			if (ret == -EAGAIN)
2931 				continue;
2932 			if (!con->error_msg)
2933 				con->error_msg = "socket error on write";
2934 			fault = true;
2935 		}
2936 
2937 		break;	/* If we make it to here, we're done */
2938 	}
2939 	if (fault)
2940 		con_fault(con);
2941 	mutex_unlock(&con->mutex);
2942 
2943 	if (fault)
2944 		con_fault_finish(con);
2945 
2946 	con->ops->put(con);
2947 }
2948 
2949 /*
2950  * Generic error/fault handler.  A retry mechanism is used with
2951  * exponential backoff
2952  */
con_fault(struct ceph_connection * con)2953 static void con_fault(struct ceph_connection *con)
2954 {
2955 	dout("fault %p state %lu to peer %s\n",
2956 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2957 
2958 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2959 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2960 	con->error_msg = NULL;
2961 
2962 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2963 	       con->state != CON_STATE_NEGOTIATING &&
2964 	       con->state != CON_STATE_OPEN);
2965 
2966 	con_close_socket(con);
2967 
2968 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2969 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2970 		con->state = CON_STATE_CLOSED;
2971 		return;
2972 	}
2973 
2974 	if (con->in_msg) {
2975 		BUG_ON(con->in_msg->con != con);
2976 		ceph_msg_put(con->in_msg);
2977 		con->in_msg = NULL;
2978 	}
2979 	if (con->out_msg) {
2980 		BUG_ON(con->out_msg->con != con);
2981 		ceph_msg_put(con->out_msg);
2982 		con->out_msg = NULL;
2983 	}
2984 
2985 	/* Requeue anything that hasn't been acked */
2986 	list_splice_init(&con->out_sent, &con->out_queue);
2987 
2988 	/* If there are no messages queued or keepalive pending, place
2989 	 * the connection in a STANDBY state */
2990 	if (list_empty(&con->out_queue) &&
2991 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2992 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2993 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2994 		con->state = CON_STATE_STANDBY;
2995 	} else {
2996 		/* retry after a delay. */
2997 		con->state = CON_STATE_PREOPEN;
2998 		if (con->delay == 0)
2999 			con->delay = BASE_DELAY_INTERVAL;
3000 		else if (con->delay < MAX_DELAY_INTERVAL)
3001 			con->delay *= 2;
3002 		con_flag_set(con, CON_FLAG_BACKOFF);
3003 		queue_con(con);
3004 	}
3005 }
3006 
3007 
3008 
3009 /*
3010  * initialize a new messenger instance
3011  */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)3012 void ceph_messenger_init(struct ceph_messenger *msgr,
3013 			 struct ceph_entity_addr *myaddr)
3014 {
3015 	spin_lock_init(&msgr->global_seq_lock);
3016 
3017 	if (myaddr)
3018 		msgr->inst.addr = *myaddr;
3019 
3020 	/* select a random nonce */
3021 	msgr->inst.addr.type = 0;
3022 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3023 	encode_my_addr(msgr);
3024 
3025 	atomic_set(&msgr->stopping, 0);
3026 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3027 
3028 	dout("%s %p\n", __func__, msgr);
3029 }
3030 EXPORT_SYMBOL(ceph_messenger_init);
3031 
ceph_messenger_fini(struct ceph_messenger * msgr)3032 void ceph_messenger_fini(struct ceph_messenger *msgr)
3033 {
3034 	put_net(read_pnet(&msgr->net));
3035 }
3036 EXPORT_SYMBOL(ceph_messenger_fini);
3037 
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)3038 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3039 {
3040 	if (msg->con)
3041 		msg->con->ops->put(msg->con);
3042 
3043 	msg->con = con ? con->ops->get(con) : NULL;
3044 	BUG_ON(msg->con != con);
3045 }
3046 
clear_standby(struct ceph_connection * con)3047 static void clear_standby(struct ceph_connection *con)
3048 {
3049 	/* come back from STANDBY? */
3050 	if (con->state == CON_STATE_STANDBY) {
3051 		dout("clear_standby %p and ++connect_seq\n", con);
3052 		con->state = CON_STATE_PREOPEN;
3053 		con->connect_seq++;
3054 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3055 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3056 	}
3057 }
3058 
3059 /*
3060  * Queue up an outgoing message on the given connection.
3061  */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)3062 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3063 {
3064 	/* set src+dst */
3065 	msg->hdr.src = con->msgr->inst.name;
3066 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3067 	msg->needs_out_seq = true;
3068 
3069 	mutex_lock(&con->mutex);
3070 
3071 	if (con->state == CON_STATE_CLOSED) {
3072 		dout("con_send %p closed, dropping %p\n", con, msg);
3073 		ceph_msg_put(msg);
3074 		mutex_unlock(&con->mutex);
3075 		return;
3076 	}
3077 
3078 	msg_con_set(msg, con);
3079 
3080 	BUG_ON(!list_empty(&msg->list_head));
3081 	list_add_tail(&msg->list_head, &con->out_queue);
3082 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3083 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3084 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3085 	     le32_to_cpu(msg->hdr.front_len),
3086 	     le32_to_cpu(msg->hdr.middle_len),
3087 	     le32_to_cpu(msg->hdr.data_len));
3088 
3089 	clear_standby(con);
3090 	mutex_unlock(&con->mutex);
3091 
3092 	/* if there wasn't anything waiting to send before, queue
3093 	 * new work */
3094 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3095 		queue_con(con);
3096 }
3097 EXPORT_SYMBOL(ceph_con_send);
3098 
3099 /*
3100  * Revoke a message that was previously queued for send
3101  */
ceph_msg_revoke(struct ceph_msg * msg)3102 void ceph_msg_revoke(struct ceph_msg *msg)
3103 {
3104 	struct ceph_connection *con = msg->con;
3105 
3106 	if (!con) {
3107 		dout("%s msg %p null con\n", __func__, msg);
3108 		return;		/* Message not in our possession */
3109 	}
3110 
3111 	mutex_lock(&con->mutex);
3112 	if (!list_empty(&msg->list_head)) {
3113 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3114 		list_del_init(&msg->list_head);
3115 		msg->hdr.seq = 0;
3116 
3117 		ceph_msg_put(msg);
3118 	}
3119 	if (con->out_msg == msg) {
3120 		BUG_ON(con->out_skip);
3121 		/* footer */
3122 		if (con->out_msg_done) {
3123 			con->out_skip += con_out_kvec_skip(con);
3124 		} else {
3125 			BUG_ON(!msg->data_length);
3126 			if (con->peer_features & CEPH_FEATURE_MSG_AUTH)
3127 				con->out_skip += sizeof(msg->footer);
3128 			else
3129 				con->out_skip += sizeof(msg->old_footer);
3130 		}
3131 		/* data, middle, front */
3132 		if (msg->data_length)
3133 			con->out_skip += msg->cursor.total_resid;
3134 		if (msg->middle)
3135 			con->out_skip += con_out_kvec_skip(con);
3136 		con->out_skip += con_out_kvec_skip(con);
3137 
3138 		dout("%s %p msg %p - was sending, will write %d skip %d\n",
3139 		     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3140 		msg->hdr.seq = 0;
3141 		con->out_msg = NULL;
3142 		ceph_msg_put(msg);
3143 	}
3144 
3145 	mutex_unlock(&con->mutex);
3146 }
3147 
3148 /*
3149  * Revoke a message that we may be reading data into
3150  */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3151 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3152 {
3153 	struct ceph_connection *con = msg->con;
3154 
3155 	if (!con) {
3156 		dout("%s msg %p null con\n", __func__, msg);
3157 		return;		/* Message not in our possession */
3158 	}
3159 
3160 	mutex_lock(&con->mutex);
3161 	if (con->in_msg == msg) {
3162 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3163 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3164 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3165 
3166 		/* skip rest of message */
3167 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3168 		con->in_base_pos = con->in_base_pos -
3169 				sizeof(struct ceph_msg_header) -
3170 				front_len -
3171 				middle_len -
3172 				data_len -
3173 				sizeof(struct ceph_msg_footer);
3174 		ceph_msg_put(con->in_msg);
3175 		con->in_msg = NULL;
3176 		con->in_tag = CEPH_MSGR_TAG_READY;
3177 		con->in_seq++;
3178 	} else {
3179 		dout("%s %p in_msg %p msg %p no-op\n",
3180 		     __func__, con, con->in_msg, msg);
3181 	}
3182 	mutex_unlock(&con->mutex);
3183 }
3184 
3185 /*
3186  * Queue a keepalive byte to ensure the tcp connection is alive.
3187  */
ceph_con_keepalive(struct ceph_connection * con)3188 void ceph_con_keepalive(struct ceph_connection *con)
3189 {
3190 	dout("con_keepalive %p\n", con);
3191 	mutex_lock(&con->mutex);
3192 	clear_standby(con);
3193 	con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3194 	mutex_unlock(&con->mutex);
3195 
3196 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3197 		queue_con(con);
3198 }
3199 EXPORT_SYMBOL(ceph_con_keepalive);
3200 
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)3201 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3202 			       unsigned long interval)
3203 {
3204 	if (interval > 0 &&
3205 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3206 		struct timespec now = CURRENT_TIME;
3207 		struct timespec ts;
3208 		jiffies_to_timespec(interval, &ts);
3209 		ts = timespec_add(con->last_keepalive_ack, ts);
3210 		return timespec_compare(&now, &ts) >= 0;
3211 	}
3212 	return false;
3213 }
3214 
ceph_msg_data_create(enum ceph_msg_data_type type)3215 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3216 {
3217 	struct ceph_msg_data *data;
3218 
3219 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3220 		return NULL;
3221 
3222 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3223 	if (data)
3224 		data->type = type;
3225 	INIT_LIST_HEAD(&data->links);
3226 
3227 	return data;
3228 }
3229 
ceph_msg_data_destroy(struct ceph_msg_data * data)3230 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3231 {
3232 	if (!data)
3233 		return;
3234 
3235 	WARN_ON(!list_empty(&data->links));
3236 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3237 		ceph_pagelist_release(data->pagelist);
3238 	kmem_cache_free(ceph_msg_data_cache, data);
3239 }
3240 
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3241 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3242 		size_t length, size_t alignment)
3243 {
3244 	struct ceph_msg_data *data;
3245 
3246 	BUG_ON(!pages);
3247 	BUG_ON(!length);
3248 
3249 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3250 	BUG_ON(!data);
3251 	data->pages = pages;
3252 	data->length = length;
3253 	data->alignment = alignment & ~PAGE_MASK;
3254 
3255 	list_add_tail(&data->links, &msg->data);
3256 	msg->data_length += length;
3257 }
3258 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3259 
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3260 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3261 				struct ceph_pagelist *pagelist)
3262 {
3263 	struct ceph_msg_data *data;
3264 
3265 	BUG_ON(!pagelist);
3266 	BUG_ON(!pagelist->length);
3267 
3268 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3269 	BUG_ON(!data);
3270 	data->pagelist = pagelist;
3271 
3272 	list_add_tail(&data->links, &msg->data);
3273 	msg->data_length += pagelist->length;
3274 }
3275 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3276 
3277 #ifdef	CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct bio * bio,size_t length)3278 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3279 		size_t length)
3280 {
3281 	struct ceph_msg_data *data;
3282 
3283 	BUG_ON(!bio);
3284 
3285 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3286 	BUG_ON(!data);
3287 	data->bio = bio;
3288 	data->bio_length = length;
3289 
3290 	list_add_tail(&data->links, &msg->data);
3291 	msg->data_length += length;
3292 }
3293 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3294 #endif	/* CONFIG_BLOCK */
3295 
3296 /*
3297  * construct a new message with given type, size
3298  * the new msg has a ref count of 1.
3299  */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3300 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3301 			      bool can_fail)
3302 {
3303 	struct ceph_msg *m;
3304 
3305 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3306 	if (m == NULL)
3307 		goto out;
3308 
3309 	m->hdr.type = cpu_to_le16(type);
3310 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3311 	m->hdr.front_len = cpu_to_le32(front_len);
3312 
3313 	INIT_LIST_HEAD(&m->list_head);
3314 	kref_init(&m->kref);
3315 	INIT_LIST_HEAD(&m->data);
3316 
3317 	/* front */
3318 	if (front_len) {
3319 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3320 		if (m->front.iov_base == NULL) {
3321 			dout("ceph_msg_new can't allocate %d bytes\n",
3322 			     front_len);
3323 			goto out2;
3324 		}
3325 	} else {
3326 		m->front.iov_base = NULL;
3327 	}
3328 	m->front_alloc_len = m->front.iov_len = front_len;
3329 
3330 	dout("ceph_msg_new %p front %d\n", m, front_len);
3331 	return m;
3332 
3333 out2:
3334 	ceph_msg_put(m);
3335 out:
3336 	if (!can_fail) {
3337 		pr_err("msg_new can't create type %d front %d\n", type,
3338 		       front_len);
3339 		WARN_ON(1);
3340 	} else {
3341 		dout("msg_new can't create type %d front %d\n", type,
3342 		     front_len);
3343 	}
3344 	return NULL;
3345 }
3346 EXPORT_SYMBOL(ceph_msg_new);
3347 
3348 /*
3349  * Allocate "middle" portion of a message, if it is needed and wasn't
3350  * allocated by alloc_msg.  This allows us to read a small fixed-size
3351  * per-type header in the front and then gracefully fail (i.e.,
3352  * propagate the error to the caller based on info in the front) when
3353  * the middle is too large.
3354  */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3355 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3356 {
3357 	int type = le16_to_cpu(msg->hdr.type);
3358 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3359 
3360 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3361 	     ceph_msg_type_name(type), middle_len);
3362 	BUG_ON(!middle_len);
3363 	BUG_ON(msg->middle);
3364 
3365 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3366 	if (!msg->middle)
3367 		return -ENOMEM;
3368 	return 0;
3369 }
3370 
3371 /*
3372  * Allocate a message for receiving an incoming message on a
3373  * connection, and save the result in con->in_msg.  Uses the
3374  * connection's private alloc_msg op if available.
3375  *
3376  * Returns 0 on success, or a negative error code.
3377  *
3378  * On success, if we set *skip = 1:
3379  *  - the next message should be skipped and ignored.
3380  *  - con->in_msg == NULL
3381  * or if we set *skip = 0:
3382  *  - con->in_msg is non-null.
3383  * On error (ENOMEM, EAGAIN, ...),
3384  *  - con->in_msg == NULL
3385  */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3386 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3387 {
3388 	struct ceph_msg_header *hdr = &con->in_hdr;
3389 	int middle_len = le32_to_cpu(hdr->middle_len);
3390 	struct ceph_msg *msg;
3391 	int ret = 0;
3392 
3393 	BUG_ON(con->in_msg != NULL);
3394 	BUG_ON(!con->ops->alloc_msg);
3395 
3396 	mutex_unlock(&con->mutex);
3397 	msg = con->ops->alloc_msg(con, hdr, skip);
3398 	mutex_lock(&con->mutex);
3399 	if (con->state != CON_STATE_OPEN) {
3400 		if (msg)
3401 			ceph_msg_put(msg);
3402 		return -EAGAIN;
3403 	}
3404 	if (msg) {
3405 		BUG_ON(*skip);
3406 		msg_con_set(msg, con);
3407 		con->in_msg = msg;
3408 	} else {
3409 		/*
3410 		 * Null message pointer means either we should skip
3411 		 * this message or we couldn't allocate memory.  The
3412 		 * former is not an error.
3413 		 */
3414 		if (*skip)
3415 			return 0;
3416 
3417 		con->error_msg = "error allocating memory for incoming message";
3418 		return -ENOMEM;
3419 	}
3420 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3421 
3422 	if (middle_len && !con->in_msg->middle) {
3423 		ret = ceph_alloc_middle(con, con->in_msg);
3424 		if (ret < 0) {
3425 			ceph_msg_put(con->in_msg);
3426 			con->in_msg = NULL;
3427 		}
3428 	}
3429 
3430 	return ret;
3431 }
3432 
3433 
3434 /*
3435  * Free a generically kmalloc'd message.
3436  */
ceph_msg_free(struct ceph_msg * m)3437 static void ceph_msg_free(struct ceph_msg *m)
3438 {
3439 	dout("%s %p\n", __func__, m);
3440 	kvfree(m->front.iov_base);
3441 	kmem_cache_free(ceph_msg_cache, m);
3442 }
3443 
ceph_msg_release(struct kref * kref)3444 static void ceph_msg_release(struct kref *kref)
3445 {
3446 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3447 	LIST_HEAD(data);
3448 	struct list_head *links;
3449 	struct list_head *next;
3450 
3451 	dout("%s %p\n", __func__, m);
3452 	WARN_ON(!list_empty(&m->list_head));
3453 
3454 	msg_con_set(m, NULL);
3455 
3456 	/* drop middle, data, if any */
3457 	if (m->middle) {
3458 		ceph_buffer_put(m->middle);
3459 		m->middle = NULL;
3460 	}
3461 
3462 	list_splice_init(&m->data, &data);
3463 	list_for_each_safe(links, next, &data) {
3464 		struct ceph_msg_data *data;
3465 
3466 		data = list_entry(links, struct ceph_msg_data, links);
3467 		list_del_init(links);
3468 		ceph_msg_data_destroy(data);
3469 	}
3470 	m->data_length = 0;
3471 
3472 	if (m->pool)
3473 		ceph_msgpool_put(m->pool, m);
3474 	else
3475 		ceph_msg_free(m);
3476 }
3477 
ceph_msg_get(struct ceph_msg * msg)3478 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3479 {
3480 	dout("%s %p (was %d)\n", __func__, msg,
3481 	     atomic_read(&msg->kref.refcount));
3482 	kref_get(&msg->kref);
3483 	return msg;
3484 }
3485 EXPORT_SYMBOL(ceph_msg_get);
3486 
ceph_msg_put(struct ceph_msg * msg)3487 void ceph_msg_put(struct ceph_msg *msg)
3488 {
3489 	dout("%s %p (was %d)\n", __func__, msg,
3490 	     atomic_read(&msg->kref.refcount));
3491 	kref_put(&msg->kref, ceph_msg_release);
3492 }
3493 EXPORT_SYMBOL(ceph_msg_put);
3494 
ceph_msg_dump(struct ceph_msg * msg)3495 void ceph_msg_dump(struct ceph_msg *msg)
3496 {
3497 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3498 		 msg->front_alloc_len, msg->data_length);
3499 	print_hex_dump(KERN_DEBUG, "header: ",
3500 		       DUMP_PREFIX_OFFSET, 16, 1,
3501 		       &msg->hdr, sizeof(msg->hdr), true);
3502 	print_hex_dump(KERN_DEBUG, " front: ",
3503 		       DUMP_PREFIX_OFFSET, 16, 1,
3504 		       msg->front.iov_base, msg->front.iov_len, true);
3505 	if (msg->middle)
3506 		print_hex_dump(KERN_DEBUG, "middle: ",
3507 			       DUMP_PREFIX_OFFSET, 16, 1,
3508 			       msg->middle->vec.iov_base,
3509 			       msg->middle->vec.iov_len, true);
3510 	print_hex_dump(KERN_DEBUG, "footer: ",
3511 		       DUMP_PREFIX_OFFSET, 16, 1,
3512 		       &msg->footer, sizeof(msg->footer), true);
3513 }
3514 EXPORT_SYMBOL(ceph_msg_dump);
3515