• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * sound/soc/omap/mcbsp.c
3  *
4  * Copyright (C) 2004 Nokia Corporation
5  * Author: Samuel Ortiz <samuel.ortiz@nokia.com>
6  *
7  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
8  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Multichannel mode not supported.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/interrupt.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/delay.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/pm_runtime.h>
28 
29 #include <linux/platform_data/asoc-ti-mcbsp.h>
30 
31 #include "mcbsp.h"
32 
omap_mcbsp_write(struct omap_mcbsp * mcbsp,u16 reg,u32 val)33 static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
34 {
35 	void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
36 
37 	if (mcbsp->pdata->reg_size == 2) {
38 		((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
39 		writew_relaxed((u16)val, addr);
40 	} else {
41 		((u32 *)mcbsp->reg_cache)[reg] = val;
42 		writel_relaxed(val, addr);
43 	}
44 }
45 
omap_mcbsp_read(struct omap_mcbsp * mcbsp,u16 reg,bool from_cache)46 static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
47 {
48 	void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
49 
50 	if (mcbsp->pdata->reg_size == 2) {
51 		return !from_cache ? readw_relaxed(addr) :
52 				     ((u16 *)mcbsp->reg_cache)[reg];
53 	} else {
54 		return !from_cache ? readl_relaxed(addr) :
55 				     ((u32 *)mcbsp->reg_cache)[reg];
56 	}
57 }
58 
omap_mcbsp_st_write(struct omap_mcbsp * mcbsp,u16 reg,u32 val)59 static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
60 {
61 	writel_relaxed(val, mcbsp->st_data->io_base_st + reg);
62 }
63 
omap_mcbsp_st_read(struct omap_mcbsp * mcbsp,u16 reg)64 static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
65 {
66 	return readl_relaxed(mcbsp->st_data->io_base_st + reg);
67 }
68 
69 #define MCBSP_READ(mcbsp, reg) \
70 		omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
71 #define MCBSP_WRITE(mcbsp, reg, val) \
72 		omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
73 #define MCBSP_READ_CACHE(mcbsp, reg) \
74 		omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
75 
76 #define MCBSP_ST_READ(mcbsp, reg) \
77 			omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
78 #define MCBSP_ST_WRITE(mcbsp, reg, val) \
79 			omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
80 
omap_mcbsp_dump_reg(struct omap_mcbsp * mcbsp)81 static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
82 {
83 	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
84 	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n",
85 			MCBSP_READ(mcbsp, DRR2));
86 	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n",
87 			MCBSP_READ(mcbsp, DRR1));
88 	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n",
89 			MCBSP_READ(mcbsp, DXR2));
90 	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n",
91 			MCBSP_READ(mcbsp, DXR1));
92 	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
93 			MCBSP_READ(mcbsp, SPCR2));
94 	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
95 			MCBSP_READ(mcbsp, SPCR1));
96 	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n",
97 			MCBSP_READ(mcbsp, RCR2));
98 	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n",
99 			MCBSP_READ(mcbsp, RCR1));
100 	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n",
101 			MCBSP_READ(mcbsp, XCR2));
102 	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n",
103 			MCBSP_READ(mcbsp, XCR1));
104 	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
105 			MCBSP_READ(mcbsp, SRGR2));
106 	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
107 			MCBSP_READ(mcbsp, SRGR1));
108 	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n",
109 			MCBSP_READ(mcbsp, PCR0));
110 	dev_dbg(mcbsp->dev, "***********************\n");
111 }
112 
omap_mcbsp_irq_handler(int irq,void * dev_id)113 static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
114 {
115 	struct omap_mcbsp *mcbsp = dev_id;
116 	u16 irqst;
117 
118 	irqst = MCBSP_READ(mcbsp, IRQST);
119 	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
120 
121 	if (irqst & RSYNCERREN)
122 		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
123 	if (irqst & RFSREN)
124 		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
125 	if (irqst & REOFEN)
126 		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
127 	if (irqst & RRDYEN)
128 		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
129 	if (irqst & RUNDFLEN)
130 		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
131 	if (irqst & ROVFLEN)
132 		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
133 
134 	if (irqst & XSYNCERREN)
135 		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
136 	if (irqst & XFSXEN)
137 		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
138 	if (irqst & XEOFEN)
139 		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
140 	if (irqst & XRDYEN)
141 		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
142 	if (irqst & XUNDFLEN)
143 		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
144 	if (irqst & XOVFLEN)
145 		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
146 	if (irqst & XEMPTYEOFEN)
147 		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
148 
149 	MCBSP_WRITE(mcbsp, IRQST, irqst);
150 
151 	return IRQ_HANDLED;
152 }
153 
omap_mcbsp_tx_irq_handler(int irq,void * dev_id)154 static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
155 {
156 	struct omap_mcbsp *mcbsp_tx = dev_id;
157 	u16 irqst_spcr2;
158 
159 	irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
160 	dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
161 
162 	if (irqst_spcr2 & XSYNC_ERR) {
163 		dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
164 			irqst_spcr2);
165 		/* Writing zero to XSYNC_ERR clears the IRQ */
166 		MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
167 	}
168 
169 	return IRQ_HANDLED;
170 }
171 
omap_mcbsp_rx_irq_handler(int irq,void * dev_id)172 static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
173 {
174 	struct omap_mcbsp *mcbsp_rx = dev_id;
175 	u16 irqst_spcr1;
176 
177 	irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
178 	dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
179 
180 	if (irqst_spcr1 & RSYNC_ERR) {
181 		dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
182 			irqst_spcr1);
183 		/* Writing zero to RSYNC_ERR clears the IRQ */
184 		MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
185 	}
186 
187 	return IRQ_HANDLED;
188 }
189 
190 /*
191  * omap_mcbsp_config simply write a config to the
192  * appropriate McBSP.
193  * You either call this function or set the McBSP registers
194  * by yourself before calling omap_mcbsp_start().
195  */
omap_mcbsp_config(struct omap_mcbsp * mcbsp,const struct omap_mcbsp_reg_cfg * config)196 void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
197 		       const struct omap_mcbsp_reg_cfg *config)
198 {
199 	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
200 			mcbsp->id, mcbsp->phys_base);
201 
202 	/* We write the given config */
203 	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
204 	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
205 	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
206 	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
207 	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
208 	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
209 	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
210 	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
211 	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
212 	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
213 	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
214 	if (mcbsp->pdata->has_ccr) {
215 		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
216 		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
217 	}
218 	/* Enable wakeup behavior */
219 	if (mcbsp->pdata->has_wakeup)
220 		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
221 
222 	/* Enable TX/RX sync error interrupts by default */
223 	if (mcbsp->irq)
224 		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
225 }
226 
227 /**
228  * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
229  * @id - mcbsp id
230  * @stream - indicates the direction of data flow (rx or tx)
231  *
232  * Returns the address of mcbsp data transmit register or data receive register
233  * to be used by DMA for transferring/receiving data based on the value of
234  * @stream for the requested mcbsp given by @id
235  */
omap_mcbsp_dma_reg_params(struct omap_mcbsp * mcbsp,unsigned int stream)236 static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
237 				     unsigned int stream)
238 {
239 	int data_reg;
240 
241 	if (mcbsp->pdata->reg_size == 2) {
242 		if (stream)
243 			data_reg = OMAP_MCBSP_REG_DRR1;
244 		else
245 			data_reg = OMAP_MCBSP_REG_DXR1;
246 	} else {
247 		if (stream)
248 			data_reg = OMAP_MCBSP_REG_DRR;
249 		else
250 			data_reg = OMAP_MCBSP_REG_DXR;
251 	}
252 
253 	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
254 }
255 
omap_st_on(struct omap_mcbsp * mcbsp)256 static void omap_st_on(struct omap_mcbsp *mcbsp)
257 {
258 	unsigned int w;
259 
260 	if (mcbsp->pdata->enable_st_clock)
261 		mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
262 
263 	/* Enable McBSP Sidetone */
264 	w = MCBSP_READ(mcbsp, SSELCR);
265 	MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
266 
267 	/* Enable Sidetone from Sidetone Core */
268 	w = MCBSP_ST_READ(mcbsp, SSELCR);
269 	MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
270 }
271 
omap_st_off(struct omap_mcbsp * mcbsp)272 static void omap_st_off(struct omap_mcbsp *mcbsp)
273 {
274 	unsigned int w;
275 
276 	w = MCBSP_ST_READ(mcbsp, SSELCR);
277 	MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
278 
279 	w = MCBSP_READ(mcbsp, SSELCR);
280 	MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
281 
282 	if (mcbsp->pdata->enable_st_clock)
283 		mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
284 }
285 
omap_st_fir_write(struct omap_mcbsp * mcbsp,s16 * fir)286 static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
287 {
288 	u16 val, i;
289 
290 	val = MCBSP_ST_READ(mcbsp, SSELCR);
291 
292 	if (val & ST_COEFFWREN)
293 		MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
294 
295 	MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
296 
297 	for (i = 0; i < 128; i++)
298 		MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
299 
300 	i = 0;
301 
302 	val = MCBSP_ST_READ(mcbsp, SSELCR);
303 	while (!(val & ST_COEFFWRDONE) && (++i < 1000))
304 		val = MCBSP_ST_READ(mcbsp, SSELCR);
305 
306 	MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
307 
308 	if (i == 1000)
309 		dev_err(mcbsp->dev, "McBSP FIR load error!\n");
310 }
311 
omap_st_chgain(struct omap_mcbsp * mcbsp)312 static void omap_st_chgain(struct omap_mcbsp *mcbsp)
313 {
314 	u16 w;
315 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
316 
317 	w = MCBSP_ST_READ(mcbsp, SSELCR);
318 
319 	MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
320 		      ST_CH1GAIN(st_data->ch1gain));
321 }
322 
omap_st_set_chgain(struct omap_mcbsp * mcbsp,int channel,s16 chgain)323 int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
324 {
325 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
326 	int ret = 0;
327 
328 	if (!st_data)
329 		return -ENOENT;
330 
331 	spin_lock_irq(&mcbsp->lock);
332 	if (channel == 0)
333 		st_data->ch0gain = chgain;
334 	else if (channel == 1)
335 		st_data->ch1gain = chgain;
336 	else
337 		ret = -EINVAL;
338 
339 	if (st_data->enabled)
340 		omap_st_chgain(mcbsp);
341 	spin_unlock_irq(&mcbsp->lock);
342 
343 	return ret;
344 }
345 
omap_st_get_chgain(struct omap_mcbsp * mcbsp,int channel,s16 * chgain)346 int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
347 {
348 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
349 	int ret = 0;
350 
351 	if (!st_data)
352 		return -ENOENT;
353 
354 	spin_lock_irq(&mcbsp->lock);
355 	if (channel == 0)
356 		*chgain = st_data->ch0gain;
357 	else if (channel == 1)
358 		*chgain = st_data->ch1gain;
359 	else
360 		ret = -EINVAL;
361 	spin_unlock_irq(&mcbsp->lock);
362 
363 	return ret;
364 }
365 
omap_st_start(struct omap_mcbsp * mcbsp)366 static int omap_st_start(struct omap_mcbsp *mcbsp)
367 {
368 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
369 
370 	if (st_data->enabled && !st_data->running) {
371 		omap_st_fir_write(mcbsp, st_data->taps);
372 		omap_st_chgain(mcbsp);
373 
374 		if (!mcbsp->free) {
375 			omap_st_on(mcbsp);
376 			st_data->running = 1;
377 		}
378 	}
379 
380 	return 0;
381 }
382 
omap_st_enable(struct omap_mcbsp * mcbsp)383 int omap_st_enable(struct omap_mcbsp *mcbsp)
384 {
385 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
386 
387 	if (!st_data)
388 		return -ENODEV;
389 
390 	spin_lock_irq(&mcbsp->lock);
391 	st_data->enabled = 1;
392 	omap_st_start(mcbsp);
393 	spin_unlock_irq(&mcbsp->lock);
394 
395 	return 0;
396 }
397 
omap_st_stop(struct omap_mcbsp * mcbsp)398 static int omap_st_stop(struct omap_mcbsp *mcbsp)
399 {
400 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
401 
402 	if (st_data->running) {
403 		if (!mcbsp->free) {
404 			omap_st_off(mcbsp);
405 			st_data->running = 0;
406 		}
407 	}
408 
409 	return 0;
410 }
411 
omap_st_disable(struct omap_mcbsp * mcbsp)412 int omap_st_disable(struct omap_mcbsp *mcbsp)
413 {
414 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
415 	int ret = 0;
416 
417 	if (!st_data)
418 		return -ENODEV;
419 
420 	spin_lock_irq(&mcbsp->lock);
421 	omap_st_stop(mcbsp);
422 	st_data->enabled = 0;
423 	spin_unlock_irq(&mcbsp->lock);
424 
425 	return ret;
426 }
427 
omap_st_is_enabled(struct omap_mcbsp * mcbsp)428 int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
429 {
430 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
431 
432 	if (!st_data)
433 		return -ENODEV;
434 
435 	return st_data->enabled;
436 }
437 
438 /*
439  * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
440  * The threshold parameter is 1 based, and it is converted (threshold - 1)
441  * for the THRSH2 register.
442  */
omap_mcbsp_set_tx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)443 void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
444 {
445 	if (mcbsp->pdata->buffer_size == 0)
446 		return;
447 
448 	if (threshold && threshold <= mcbsp->max_tx_thres)
449 		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
450 }
451 
452 /*
453  * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
454  * The threshold parameter is 1 based, and it is converted (threshold - 1)
455  * for the THRSH1 register.
456  */
omap_mcbsp_set_rx_threshold(struct omap_mcbsp * mcbsp,u16 threshold)457 void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
458 {
459 	if (mcbsp->pdata->buffer_size == 0)
460 		return;
461 
462 	if (threshold && threshold <= mcbsp->max_rx_thres)
463 		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
464 }
465 
466 /*
467  * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
468  */
omap_mcbsp_get_tx_delay(struct omap_mcbsp * mcbsp)469 u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
470 {
471 	u16 buffstat;
472 
473 	if (mcbsp->pdata->buffer_size == 0)
474 		return 0;
475 
476 	/* Returns the number of free locations in the buffer */
477 	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
478 
479 	/* Number of slots are different in McBSP ports */
480 	return mcbsp->pdata->buffer_size - buffstat;
481 }
482 
483 /*
484  * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
485  * to reach the threshold value (when the DMA will be triggered to read it)
486  */
omap_mcbsp_get_rx_delay(struct omap_mcbsp * mcbsp)487 u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
488 {
489 	u16 buffstat, threshold;
490 
491 	if (mcbsp->pdata->buffer_size == 0)
492 		return 0;
493 
494 	/* Returns the number of used locations in the buffer */
495 	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
496 	/* RX threshold */
497 	threshold = MCBSP_READ(mcbsp, THRSH1);
498 
499 	/* Return the number of location till we reach the threshold limit */
500 	if (threshold <= buffstat)
501 		return 0;
502 	else
503 		return threshold - buffstat;
504 }
505 
omap_mcbsp_request(struct omap_mcbsp * mcbsp)506 int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
507 {
508 	void *reg_cache;
509 	int err;
510 
511 	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
512 	if (!reg_cache) {
513 		return -ENOMEM;
514 	}
515 
516 	spin_lock(&mcbsp->lock);
517 	if (!mcbsp->free) {
518 		dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
519 			mcbsp->id);
520 		err = -EBUSY;
521 		goto err_kfree;
522 	}
523 
524 	mcbsp->free = false;
525 	mcbsp->reg_cache = reg_cache;
526 	spin_unlock(&mcbsp->lock);
527 
528 	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
529 		mcbsp->pdata->ops->request(mcbsp->id - 1);
530 
531 	/*
532 	 * Make sure that transmitter, receiver and sample-rate generator are
533 	 * not running before activating IRQs.
534 	 */
535 	MCBSP_WRITE(mcbsp, SPCR1, 0);
536 	MCBSP_WRITE(mcbsp, SPCR2, 0);
537 
538 	if (mcbsp->irq) {
539 		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
540 				  "McBSP", (void *)mcbsp);
541 		if (err != 0) {
542 			dev_err(mcbsp->dev, "Unable to request IRQ\n");
543 			goto err_clk_disable;
544 		}
545 	} else {
546 		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
547 				  "McBSP TX", (void *)mcbsp);
548 		if (err != 0) {
549 			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
550 			goto err_clk_disable;
551 		}
552 
553 		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
554 				  "McBSP RX", (void *)mcbsp);
555 		if (err != 0) {
556 			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
557 			goto err_free_irq;
558 		}
559 	}
560 
561 	return 0;
562 err_free_irq:
563 	free_irq(mcbsp->tx_irq, (void *)mcbsp);
564 err_clk_disable:
565 	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
566 		mcbsp->pdata->ops->free(mcbsp->id - 1);
567 
568 	/* Disable wakeup behavior */
569 	if (mcbsp->pdata->has_wakeup)
570 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
571 
572 	spin_lock(&mcbsp->lock);
573 	mcbsp->free = true;
574 	mcbsp->reg_cache = NULL;
575 err_kfree:
576 	spin_unlock(&mcbsp->lock);
577 	kfree(reg_cache);
578 
579 	return err;
580 }
581 
omap_mcbsp_free(struct omap_mcbsp * mcbsp)582 void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
583 {
584 	void *reg_cache;
585 
586 	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
587 		mcbsp->pdata->ops->free(mcbsp->id - 1);
588 
589 	/* Disable wakeup behavior */
590 	if (mcbsp->pdata->has_wakeup)
591 		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
592 
593 	/* Disable interrupt requests */
594 	if (mcbsp->irq)
595 		MCBSP_WRITE(mcbsp, IRQEN, 0);
596 
597 	if (mcbsp->irq) {
598 		free_irq(mcbsp->irq, (void *)mcbsp);
599 	} else {
600 		free_irq(mcbsp->rx_irq, (void *)mcbsp);
601 		free_irq(mcbsp->tx_irq, (void *)mcbsp);
602 	}
603 
604 	reg_cache = mcbsp->reg_cache;
605 
606 	/*
607 	 * Select CLKS source from internal source unconditionally before
608 	 * marking the McBSP port as free.
609 	 * If the external clock source via MCBSP_CLKS pin has been selected the
610 	 * system will refuse to enter idle if the CLKS pin source is not reset
611 	 * back to internal source.
612 	 */
613 	if (!mcbsp_omap1())
614 		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
615 
616 	spin_lock(&mcbsp->lock);
617 	if (mcbsp->free)
618 		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
619 	else
620 		mcbsp->free = true;
621 	mcbsp->reg_cache = NULL;
622 	spin_unlock(&mcbsp->lock);
623 
624 	kfree(reg_cache);
625 }
626 
627 /*
628  * Here we start the McBSP, by enabling transmitter, receiver or both.
629  * If no transmitter or receiver is active prior calling, then sample-rate
630  * generator and frame sync are started.
631  */
omap_mcbsp_start(struct omap_mcbsp * mcbsp,int tx,int rx)632 void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
633 {
634 	int enable_srg = 0;
635 	u16 w;
636 
637 	if (mcbsp->st_data)
638 		omap_st_start(mcbsp);
639 
640 	/* Only enable SRG, if McBSP is master */
641 	w = MCBSP_READ_CACHE(mcbsp, PCR0);
642 	if (w & (FSXM | FSRM | CLKXM | CLKRM))
643 		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
644 				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
645 
646 	if (enable_srg) {
647 		/* Start the sample generator */
648 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
649 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
650 	}
651 
652 	/* Enable transmitter and receiver */
653 	tx &= 1;
654 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
655 	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
656 
657 	rx &= 1;
658 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
659 	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
660 
661 	/*
662 	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
663 	 * REVISIT: 100us may give enough time for two CLKSRG, however
664 	 * due to some unknown PM related, clock gating etc. reason it
665 	 * is now at 500us.
666 	 */
667 	udelay(500);
668 
669 	if (enable_srg) {
670 		/* Start frame sync */
671 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
672 		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
673 	}
674 
675 	if (mcbsp->pdata->has_ccr) {
676 		/* Release the transmitter and receiver */
677 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
678 		w &= ~(tx ? XDISABLE : 0);
679 		MCBSP_WRITE(mcbsp, XCCR, w);
680 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
681 		w &= ~(rx ? RDISABLE : 0);
682 		MCBSP_WRITE(mcbsp, RCCR, w);
683 	}
684 
685 	/* Dump McBSP Regs */
686 	omap_mcbsp_dump_reg(mcbsp);
687 }
688 
omap_mcbsp_stop(struct omap_mcbsp * mcbsp,int tx,int rx)689 void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
690 {
691 	int idle;
692 	u16 w;
693 
694 	/* Reset transmitter */
695 	tx &= 1;
696 	if (mcbsp->pdata->has_ccr) {
697 		w = MCBSP_READ_CACHE(mcbsp, XCCR);
698 		w |= (tx ? XDISABLE : 0);
699 		MCBSP_WRITE(mcbsp, XCCR, w);
700 	}
701 	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
702 	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
703 
704 	/* Reset receiver */
705 	rx &= 1;
706 	if (mcbsp->pdata->has_ccr) {
707 		w = MCBSP_READ_CACHE(mcbsp, RCCR);
708 		w |= (rx ? RDISABLE : 0);
709 		MCBSP_WRITE(mcbsp, RCCR, w);
710 	}
711 	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
712 	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
713 
714 	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
715 			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
716 
717 	if (idle) {
718 		/* Reset the sample rate generator */
719 		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
720 		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
721 	}
722 
723 	if (mcbsp->st_data)
724 		omap_st_stop(mcbsp);
725 }
726 
omap2_mcbsp_set_clks_src(struct omap_mcbsp * mcbsp,u8 fck_src_id)727 int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
728 {
729 	struct clk *fck_src;
730 	const char *src;
731 	int r;
732 
733 	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
734 		src = "pad_fck";
735 	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
736 		src = "prcm_fck";
737 	else
738 		return -EINVAL;
739 
740 	fck_src = clk_get(mcbsp->dev, src);
741 	if (IS_ERR(fck_src)) {
742 		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
743 		return -EINVAL;
744 	}
745 
746 	pm_runtime_put_sync(mcbsp->dev);
747 
748 	r = clk_set_parent(mcbsp->fclk, fck_src);
749 	if (r) {
750 		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
751 			src);
752 		clk_put(fck_src);
753 		return r;
754 	}
755 
756 	pm_runtime_get_sync(mcbsp->dev);
757 
758 	clk_put(fck_src);
759 
760 	return 0;
761 
762 }
763 
764 #define max_thres(m)			(mcbsp->pdata->buffer_size)
765 #define valid_threshold(m, val)		((val) <= max_thres(m))
766 #define THRESHOLD_PROP_BUILDER(prop)					\
767 static ssize_t prop##_show(struct device *dev,				\
768 			struct device_attribute *attr, char *buf)	\
769 {									\
770 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
771 									\
772 	return sprintf(buf, "%u\n", mcbsp->prop);			\
773 }									\
774 									\
775 static ssize_t prop##_store(struct device *dev,				\
776 				struct device_attribute *attr,		\
777 				const char *buf, size_t size)		\
778 {									\
779 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
780 	unsigned long val;						\
781 	int status;							\
782 									\
783 	status = kstrtoul(buf, 0, &val);				\
784 	if (status)							\
785 		return status;						\
786 									\
787 	if (!valid_threshold(mcbsp, val))				\
788 		return -EDOM;						\
789 									\
790 	mcbsp->prop = val;						\
791 	return size;							\
792 }									\
793 									\
794 static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
795 
796 THRESHOLD_PROP_BUILDER(max_tx_thres);
797 THRESHOLD_PROP_BUILDER(max_rx_thres);
798 
799 static const char *dma_op_modes[] = {
800 	"element", "threshold",
801 };
802 
dma_op_mode_show(struct device * dev,struct device_attribute * attr,char * buf)803 static ssize_t dma_op_mode_show(struct device *dev,
804 			struct device_attribute *attr, char *buf)
805 {
806 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
807 	int dma_op_mode, i = 0;
808 	ssize_t len = 0;
809 	const char * const *s;
810 
811 	dma_op_mode = mcbsp->dma_op_mode;
812 
813 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
814 		if (dma_op_mode == i)
815 			len += sprintf(buf + len, "[%s] ", *s);
816 		else
817 			len += sprintf(buf + len, "%s ", *s);
818 	}
819 	len += sprintf(buf + len, "\n");
820 
821 	return len;
822 }
823 
dma_op_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)824 static ssize_t dma_op_mode_store(struct device *dev,
825 				struct device_attribute *attr,
826 				const char *buf, size_t size)
827 {
828 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
829 	const char * const *s;
830 	int i = 0;
831 
832 	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
833 		if (sysfs_streq(buf, *s))
834 			break;
835 
836 	if (i == ARRAY_SIZE(dma_op_modes))
837 		return -EINVAL;
838 
839 	spin_lock_irq(&mcbsp->lock);
840 	if (!mcbsp->free) {
841 		size = -EBUSY;
842 		goto unlock;
843 	}
844 	mcbsp->dma_op_mode = i;
845 
846 unlock:
847 	spin_unlock_irq(&mcbsp->lock);
848 
849 	return size;
850 }
851 
852 static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
853 
854 static const struct attribute *additional_attrs[] = {
855 	&dev_attr_max_tx_thres.attr,
856 	&dev_attr_max_rx_thres.attr,
857 	&dev_attr_dma_op_mode.attr,
858 	NULL,
859 };
860 
861 static const struct attribute_group additional_attr_group = {
862 	.attrs = (struct attribute **)additional_attrs,
863 };
864 
st_taps_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t st_taps_show(struct device *dev,
866 			    struct device_attribute *attr, char *buf)
867 {
868 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
869 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
870 	ssize_t status = 0;
871 	int i;
872 
873 	spin_lock_irq(&mcbsp->lock);
874 	for (i = 0; i < st_data->nr_taps; i++)
875 		status += sprintf(&buf[status], (i ? ", %d" : "%d"),
876 				  st_data->taps[i]);
877 	if (i)
878 		status += sprintf(&buf[status], "\n");
879 	spin_unlock_irq(&mcbsp->lock);
880 
881 	return status;
882 }
883 
st_taps_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)884 static ssize_t st_taps_store(struct device *dev,
885 			     struct device_attribute *attr,
886 			     const char *buf, size_t size)
887 {
888 	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
889 	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
890 	int val, tmp, status, i = 0;
891 
892 	spin_lock_irq(&mcbsp->lock);
893 	memset(st_data->taps, 0, sizeof(st_data->taps));
894 	st_data->nr_taps = 0;
895 
896 	do {
897 		status = sscanf(buf, "%d%n", &val, &tmp);
898 		if (status < 0 || status == 0) {
899 			size = -EINVAL;
900 			goto out;
901 		}
902 		if (val < -32768 || val > 32767) {
903 			size = -EINVAL;
904 			goto out;
905 		}
906 		st_data->taps[i++] = val;
907 		buf += tmp;
908 		if (*buf != ',')
909 			break;
910 		buf++;
911 	} while (1);
912 
913 	st_data->nr_taps = i;
914 
915 out:
916 	spin_unlock_irq(&mcbsp->lock);
917 
918 	return size;
919 }
920 
921 static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
922 
923 static const struct attribute *sidetone_attrs[] = {
924 	&dev_attr_st_taps.attr,
925 	NULL,
926 };
927 
928 static const struct attribute_group sidetone_attr_group = {
929 	.attrs = (struct attribute **)sidetone_attrs,
930 };
931 
omap_st_add(struct omap_mcbsp * mcbsp,struct resource * res)932 static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res)
933 {
934 	struct omap_mcbsp_st_data *st_data;
935 	int err;
936 
937 	st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
938 	if (!st_data)
939 		return -ENOMEM;
940 
941 	st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
942 					   resource_size(res));
943 	if (!st_data->io_base_st)
944 		return -ENOMEM;
945 
946 	err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
947 	if (err)
948 		return err;
949 
950 	mcbsp->st_data = st_data;
951 	return 0;
952 }
953 
954 /*
955  * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
956  * 730 has only 2 McBSP, and both of them are MPU peripherals.
957  */
omap_mcbsp_init(struct platform_device * pdev)958 int omap_mcbsp_init(struct platform_device *pdev)
959 {
960 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
961 	struct resource *res;
962 	int ret = 0;
963 
964 	spin_lock_init(&mcbsp->lock);
965 	mcbsp->free = true;
966 
967 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
968 	if (!res)
969 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
970 
971 	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
972 	if (IS_ERR(mcbsp->io_base))
973 		return PTR_ERR(mcbsp->io_base);
974 
975 	mcbsp->phys_base = res->start;
976 	mcbsp->reg_cache_size = resource_size(res);
977 
978 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
979 	if (!res)
980 		mcbsp->phys_dma_base = mcbsp->phys_base;
981 	else
982 		mcbsp->phys_dma_base = res->start;
983 
984 	/*
985 	 * OMAP1, 2 uses two interrupt lines: TX, RX
986 	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
987 	 * OMAP4 and newer SoC only have the combined IRQ line.
988 	 * Use the combined IRQ if available since it gives better debugging
989 	 * possibilities.
990 	 */
991 	mcbsp->irq = platform_get_irq_byname(pdev, "common");
992 	if (mcbsp->irq == -ENXIO) {
993 		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
994 
995 		if (mcbsp->tx_irq == -ENXIO) {
996 			mcbsp->irq = platform_get_irq(pdev, 0);
997 			mcbsp->tx_irq = 0;
998 		} else {
999 			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
1000 			mcbsp->irq = 0;
1001 		}
1002 	}
1003 
1004 	if (!pdev->dev.of_node) {
1005 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1006 		if (!res) {
1007 			dev_err(&pdev->dev, "invalid tx DMA channel\n");
1008 			return -ENODEV;
1009 		}
1010 		mcbsp->dma_req[0] = res->start;
1011 		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
1012 
1013 		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1014 		if (!res) {
1015 			dev_err(&pdev->dev, "invalid rx DMA channel\n");
1016 			return -ENODEV;
1017 		}
1018 		mcbsp->dma_req[1] = res->start;
1019 		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
1020 	} else {
1021 		mcbsp->dma_data[0].filter_data = "tx";
1022 		mcbsp->dma_data[1].filter_data = "rx";
1023 	}
1024 
1025 	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
1026 	mcbsp->dma_data[0].maxburst = 4;
1027 
1028 	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
1029 	mcbsp->dma_data[1].maxburst = 4;
1030 
1031 	mcbsp->fclk = clk_get(&pdev->dev, "fck");
1032 	if (IS_ERR(mcbsp->fclk)) {
1033 		ret = PTR_ERR(mcbsp->fclk);
1034 		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
1035 		return ret;
1036 	}
1037 
1038 	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
1039 	if (mcbsp->pdata->buffer_size) {
1040 		/*
1041 		 * Initially configure the maximum thresholds to a safe value.
1042 		 * The McBSP FIFO usage with these values should not go under
1043 		 * 16 locations.
1044 		 * If the whole FIFO without safety buffer is used, than there
1045 		 * is a possibility that the DMA will be not able to push the
1046 		 * new data on time, causing channel shifts in runtime.
1047 		 */
1048 		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
1049 		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
1050 
1051 		ret = sysfs_create_group(&mcbsp->dev->kobj,
1052 					 &additional_attr_group);
1053 		if (ret) {
1054 			dev_err(mcbsp->dev,
1055 				"Unable to create additional controls\n");
1056 			goto err_thres;
1057 		}
1058 	} else {
1059 		mcbsp->max_tx_thres = -EINVAL;
1060 		mcbsp->max_rx_thres = -EINVAL;
1061 	}
1062 
1063 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
1064 	if (res) {
1065 		ret = omap_st_add(mcbsp, res);
1066 		if (ret) {
1067 			dev_err(mcbsp->dev,
1068 				"Unable to create sidetone controls\n");
1069 			goto err_st;
1070 		}
1071 	}
1072 
1073 	return 0;
1074 
1075 err_st:
1076 	if (mcbsp->pdata->buffer_size)
1077 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1078 err_thres:
1079 	clk_put(mcbsp->fclk);
1080 	return ret;
1081 }
1082 
omap_mcbsp_sysfs_remove(struct omap_mcbsp * mcbsp)1083 void omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp)
1084 {
1085 	if (mcbsp->pdata->buffer_size)
1086 		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1087 
1088 	if (mcbsp->st_data)
1089 		sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
1090 }
1091