• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
3  *
4  * Copyright (C) 2012 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/delay.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/spinlock.h>
36 #include <linux/workqueue.h>
37 #include <linux/bitops.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/clk.h>
41 #include <linux/platform_device.h>
42 #include <linux/phy.h>
43 #include <linux/fec.h>
44 #include <linux/of.h>
45 #include <linux/of_device.h>
46 #include <linux/of_gpio.h>
47 #include <linux/of_net.h>
48 
49 #include "fec.h"
50 
51 /* FEC 1588 register bits */
52 #define FEC_T_CTRL_SLAVE                0x00002000
53 #define FEC_T_CTRL_CAPTURE              0x00000800
54 #define FEC_T_CTRL_RESTART              0x00000200
55 #define FEC_T_CTRL_PERIOD_RST           0x00000030
56 #define FEC_T_CTRL_PERIOD_EN		0x00000010
57 #define FEC_T_CTRL_ENABLE               0x00000001
58 
59 #define FEC_T_INC_MASK                  0x0000007f
60 #define FEC_T_INC_OFFSET                0
61 #define FEC_T_INC_CORR_MASK             0x00007f00
62 #define FEC_T_INC_CORR_OFFSET           8
63 
64 #define FEC_T_CTRL_PINPER		0x00000080
65 #define FEC_T_TF0_MASK			0x00000001
66 #define FEC_T_TF0_OFFSET		0
67 #define FEC_T_TF1_MASK			0x00000002
68 #define FEC_T_TF1_OFFSET		1
69 #define FEC_T_TF2_MASK			0x00000004
70 #define FEC_T_TF2_OFFSET		2
71 #define FEC_T_TF3_MASK			0x00000008
72 #define FEC_T_TF3_OFFSET		3
73 #define FEC_T_TDRE_MASK			0x00000001
74 #define FEC_T_TDRE_OFFSET		0
75 #define FEC_T_TMODE_MASK		0x0000003C
76 #define FEC_T_TMODE_OFFSET		2
77 #define FEC_T_TIE_MASK			0x00000040
78 #define FEC_T_TIE_OFFSET		6
79 #define FEC_T_TF_MASK			0x00000080
80 #define FEC_T_TF_OFFSET			7
81 
82 #define FEC_ATIME_CTRL		0x400
83 #define FEC_ATIME		0x404
84 #define FEC_ATIME_EVT_OFFSET	0x408
85 #define FEC_ATIME_EVT_PERIOD	0x40c
86 #define FEC_ATIME_CORR		0x410
87 #define FEC_ATIME_INC		0x414
88 #define FEC_TS_TIMESTAMP	0x418
89 
90 #define FEC_TGSR		0x604
91 #define FEC_TCSR(n)		(0x608 + n * 0x08)
92 #define FEC_TCCR(n)		(0x60C + n * 0x08)
93 #define MAX_TIMER_CHANNEL	3
94 #define FEC_TMODE_TOGGLE	0x05
95 #define FEC_HIGH_PULSE		0x0F
96 
97 #define FEC_CC_MULT	(1 << 31)
98 #define FEC_COUNTER_PERIOD	(1 << 31)
99 #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
100 #define FEC_CHANNLE_0		0
101 #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
102 
103 /**
104  * fec_ptp_enable_pps
105  * @fep: the fec_enet_private structure handle
106  * @enable: enable the channel pps output
107  *
108  * This function enble the PPS ouput on the timer channel.
109  */
fec_ptp_enable_pps(struct fec_enet_private * fep,uint enable)110 static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
111 {
112 	unsigned long flags;
113 	u32 val, tempval;
114 	int inc;
115 	struct timespec64 ts;
116 	u64 ns;
117 	val = 0;
118 
119 	if (!(fep->hwts_tx_en || fep->hwts_rx_en)) {
120 		dev_err(&fep->pdev->dev, "No ptp stack is running\n");
121 		return -EINVAL;
122 	}
123 
124 	if (fep->pps_enable == enable)
125 		return 0;
126 
127 	fep->pps_channel = DEFAULT_PPS_CHANNEL;
128 	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
129 	inc = fep->ptp_inc;
130 
131 	spin_lock_irqsave(&fep->tmreg_lock, flags);
132 
133 	if (enable) {
134 		/* clear capture or output compare interrupt status if have.
135 		 */
136 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
137 
138 		/* It is recommended to double check the TMODE field in the
139 		 * TCSR register to be cleared before the first compare counter
140 		 * is written into TCCR register. Just add a double check.
141 		 */
142 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
143 		do {
144 			val &= ~(FEC_T_TMODE_MASK);
145 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
146 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
147 		} while (val & FEC_T_TMODE_MASK);
148 
149 		/* Dummy read counter to update the counter */
150 		timecounter_read(&fep->tc);
151 		/* We want to find the first compare event in the next
152 		 * second point. So we need to know what the ptp time
153 		 * is now and how many nanoseconds is ahead to get next second.
154 		 * The remaining nanosecond ahead before the next second would be
155 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
156 		 * to current timer would be next second.
157 		 */
158 		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
159 		tempval |= FEC_T_CTRL_CAPTURE;
160 		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
161 
162 		tempval = readl(fep->hwp + FEC_ATIME);
163 		/* Convert the ptp local counter to 1588 timestamp */
164 		ns = timecounter_cyc2time(&fep->tc, tempval);
165 		ts = ns_to_timespec64(ns);
166 
167 		/* The tempval is  less than 3 seconds, and  so val is less than
168 		 * 4 seconds. No overflow for 32bit calculation.
169 		 */
170 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
171 
172 		/* Need to consider the situation that the current time is
173 		 * very close to the second point, which means NSEC_PER_SEC
174 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
175 		 * is still running when we calculate the first compare event, it is
176 		 * possible that the remaining nanoseonds run out before the compare
177 		 * counter is calculated and written into TCCR register. To avoid
178 		 * this possibility, we will set the compare event to be the next
179 		 * of next second. The current setting is 31-bit timer and wrap
180 		 * around over 2 seconds. So it is okay to set the next of next
181 		 * seond for the timer.
182 		 */
183 		val += NSEC_PER_SEC;
184 
185 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
186 		 * ptp counter, which maybe cause 32-bit wrap. Since the
187 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
188 		 * We can ensure the wrap will not cause issue. If the offset
189 		 * is bigger than fep->cc.mask would be a error.
190 		 */
191 		val &= fep->cc.mask;
192 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
193 
194 		/* Calculate the second the compare event timestamp */
195 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
196 
197 		/* * Enable compare event when overflow */
198 		val = readl(fep->hwp + FEC_ATIME_CTRL);
199 		val |= FEC_T_CTRL_PINPER;
200 		writel(val, fep->hwp + FEC_ATIME_CTRL);
201 
202 		/* Compare channel setting. */
203 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
204 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
205 		val &= ~(1 << FEC_T_TDRE_OFFSET);
206 		val &= ~(FEC_T_TMODE_MASK);
207 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
208 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
209 
210 		/* Write the second compare event timestamp and calculate
211 		 * the third timestamp. Refer the TCCR register detail in the spec.
212 		 */
213 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
214 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
215 	} else {
216 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
217 	}
218 
219 	fep->pps_enable = enable;
220 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
221 
222 	return 0;
223 }
224 
225 /**
226  * fec_ptp_read - read raw cycle counter (to be used by time counter)
227  * @cc: the cyclecounter structure
228  *
229  * this function reads the cyclecounter registers and is called by the
230  * cyclecounter structure used to construct a ns counter from the
231  * arbitrary fixed point registers
232  */
fec_ptp_read(const struct cyclecounter * cc)233 static cycle_t fec_ptp_read(const struct cyclecounter *cc)
234 {
235 	struct fec_enet_private *fep =
236 		container_of(cc, struct fec_enet_private, cc);
237 	const struct platform_device_id *id_entry =
238 		platform_get_device_id(fep->pdev);
239 	u32 tempval;
240 
241 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
242 	tempval |= FEC_T_CTRL_CAPTURE;
243 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
244 
245 	if (id_entry->driver_data & FEC_QUIRK_BUG_CAPTURE)
246 		udelay(1);
247 
248 	return readl(fep->hwp + FEC_ATIME);
249 }
250 
251 /**
252  * fec_ptp_start_cyclecounter - create the cycle counter from hw
253  * @ndev: network device
254  *
255  * this function initializes the timecounter and cyclecounter
256  * structures for use in generated a ns counter from the arbitrary
257  * fixed point cycles registers in the hardware.
258  */
fec_ptp_start_cyclecounter(struct net_device * ndev)259 void fec_ptp_start_cyclecounter(struct net_device *ndev)
260 {
261 	struct fec_enet_private *fep = netdev_priv(ndev);
262 	unsigned long flags;
263 	int inc;
264 
265 	inc = 1000000000 / fep->cycle_speed;
266 
267 	/* grab the ptp lock */
268 	spin_lock_irqsave(&fep->tmreg_lock, flags);
269 
270 	/* 1ns counter */
271 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
272 
273 	/* use 31-bit timer counter */
274 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
275 
276 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
277 		fep->hwp + FEC_ATIME_CTRL);
278 
279 	memset(&fep->cc, 0, sizeof(fep->cc));
280 	fep->cc.read = fec_ptp_read;
281 	fep->cc.mask = CLOCKSOURCE_MASK(31);
282 	fep->cc.shift = 31;
283 	fep->cc.mult = FEC_CC_MULT;
284 
285 	/* reset the ns time counter */
286 	timecounter_init(&fep->tc, &fep->cc, ktime_to_ns(ktime_get_real()));
287 
288 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
289 }
290 
291 /**
292  * fec_ptp_adjfreq - adjust ptp cycle frequency
293  * @ptp: the ptp clock structure
294  * @ppb: parts per billion adjustment from base
295  *
296  * Adjust the frequency of the ptp cycle counter by the
297  * indicated ppb from the base frequency.
298  *
299  * Because ENET hardware frequency adjust is complex,
300  * using software method to do that.
301  */
fec_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)302 static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
303 {
304 	unsigned long flags;
305 	int neg_adj = 0;
306 	u32 i, tmp;
307 	u32 corr_inc, corr_period;
308 	u32 corr_ns;
309 	u64 lhs, rhs;
310 
311 	struct fec_enet_private *fep =
312 	    container_of(ptp, struct fec_enet_private, ptp_caps);
313 
314 	if (ppb == 0)
315 		return 0;
316 
317 	if (ppb < 0) {
318 		ppb = -ppb;
319 		neg_adj = 1;
320 	}
321 
322 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
323 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
324 	 * meet adjustment requirement.
325 	 */
326 	lhs = NSEC_PER_SEC;
327 	rhs = (u64)ppb * (u64)fep->ptp_inc;
328 	for (i = 1; i <= fep->ptp_inc; i++) {
329 		if (lhs >= rhs) {
330 			corr_inc = i;
331 			corr_period = div_u64(lhs, rhs);
332 			break;
333 		}
334 		lhs += NSEC_PER_SEC;
335 	}
336 	/* Not found? Set it to high value - double speed
337 	 * correct in every clock step.
338 	 */
339 	if (i > fep->ptp_inc) {
340 		corr_inc = fep->ptp_inc;
341 		corr_period = 1;
342 	}
343 
344 	if (neg_adj)
345 		corr_ns = fep->ptp_inc - corr_inc;
346 	else
347 		corr_ns = fep->ptp_inc + corr_inc;
348 
349 	spin_lock_irqsave(&fep->tmreg_lock, flags);
350 
351 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
352 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
353 	writel(tmp, fep->hwp + FEC_ATIME_INC);
354 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
355 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
356 	/* dummy read to update the timer. */
357 	timecounter_read(&fep->tc);
358 
359 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
360 
361 	return 0;
362 }
363 
364 /**
365  * fec_ptp_adjtime
366  * @ptp: the ptp clock structure
367  * @delta: offset to adjust the cycle counter by
368  *
369  * adjust the timer by resetting the timecounter structure.
370  */
fec_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)371 static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
372 {
373 	struct fec_enet_private *fep =
374 	    container_of(ptp, struct fec_enet_private, ptp_caps);
375 	unsigned long flags;
376 
377 	spin_lock_irqsave(&fep->tmreg_lock, flags);
378 	timecounter_adjtime(&fep->tc, delta);
379 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
380 
381 	return 0;
382 }
383 
384 /**
385  * fec_ptp_gettime
386  * @ptp: the ptp clock structure
387  * @ts: timespec structure to hold the current time value
388  *
389  * read the timecounter and return the correct value on ns,
390  * after converting it into a struct timespec.
391  */
fec_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)392 static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
393 {
394 	struct fec_enet_private *adapter =
395 	    container_of(ptp, struct fec_enet_private, ptp_caps);
396 	u64 ns;
397 	unsigned long flags;
398 
399 	mutex_lock(&adapter->ptp_clk_mutex);
400 	/* Check the ptp clock */
401 	if (!adapter->ptp_clk_on) {
402 		mutex_unlock(&adapter->ptp_clk_mutex);
403 		return -EINVAL;
404 	}
405 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
406 	ns = timecounter_read(&adapter->tc);
407 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
408 	mutex_unlock(&adapter->ptp_clk_mutex);
409 
410 	*ts = ns_to_timespec64(ns);
411 
412 	return 0;
413 }
414 
415 /**
416  * fec_ptp_settime
417  * @ptp: the ptp clock structure
418  * @ts: the timespec containing the new time for the cycle counter
419  *
420  * reset the timecounter to use a new base value instead of the kernel
421  * wall timer value.
422  */
fec_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)423 static int fec_ptp_settime(struct ptp_clock_info *ptp,
424 			   const struct timespec64 *ts)
425 {
426 	struct fec_enet_private *fep =
427 	    container_of(ptp, struct fec_enet_private, ptp_caps);
428 
429 	u64 ns;
430 	unsigned long flags;
431 	u32 counter;
432 
433 	mutex_lock(&fep->ptp_clk_mutex);
434 	/* Check the ptp clock */
435 	if (!fep->ptp_clk_on) {
436 		mutex_unlock(&fep->ptp_clk_mutex);
437 		return -EINVAL;
438 	}
439 
440 	ns = timespec64_to_ns(ts);
441 	/* Get the timer value based on timestamp.
442 	 * Update the counter with the masked value.
443 	 */
444 	counter = ns & fep->cc.mask;
445 
446 	spin_lock_irqsave(&fep->tmreg_lock, flags);
447 	writel(counter, fep->hwp + FEC_ATIME);
448 	timecounter_init(&fep->tc, &fep->cc, ns);
449 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
450 	mutex_unlock(&fep->ptp_clk_mutex);
451 	return 0;
452 }
453 
454 /**
455  * fec_ptp_enable
456  * @ptp: the ptp clock structure
457  * @rq: the requested feature to change
458  * @on: whether to enable or disable the feature
459  *
460  */
fec_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)461 static int fec_ptp_enable(struct ptp_clock_info *ptp,
462 			  struct ptp_clock_request *rq, int on)
463 {
464 	struct fec_enet_private *fep =
465 	    container_of(ptp, struct fec_enet_private, ptp_caps);
466 	int ret = 0;
467 
468 	if (rq->type == PTP_CLK_REQ_PPS) {
469 		ret = fec_ptp_enable_pps(fep, on);
470 
471 		return ret;
472 	}
473 	return -EOPNOTSUPP;
474 }
475 
476 /**
477  * fec_ptp_hwtstamp_ioctl - control hardware time stamping
478  * @ndev: pointer to net_device
479  * @ifreq: ioctl data
480  * @cmd: particular ioctl requested
481  */
fec_ptp_set(struct net_device * ndev,struct ifreq * ifr)482 int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
483 {
484 	struct fec_enet_private *fep = netdev_priv(ndev);
485 
486 	struct hwtstamp_config config;
487 
488 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
489 		return -EFAULT;
490 
491 	/* reserved for future extensions */
492 	if (config.flags)
493 		return -EINVAL;
494 
495 	switch (config.tx_type) {
496 	case HWTSTAMP_TX_OFF:
497 		fep->hwts_tx_en = 0;
498 		break;
499 	case HWTSTAMP_TX_ON:
500 		fep->hwts_tx_en = 1;
501 		break;
502 	default:
503 		return -ERANGE;
504 	}
505 
506 	switch (config.rx_filter) {
507 	case HWTSTAMP_FILTER_NONE:
508 		if (fep->hwts_rx_en)
509 			fep->hwts_rx_en = 0;
510 		config.rx_filter = HWTSTAMP_FILTER_NONE;
511 		break;
512 
513 	default:
514 		fep->hwts_rx_en = 1;
515 		config.rx_filter = HWTSTAMP_FILTER_ALL;
516 		break;
517 	}
518 
519 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
520 	    -EFAULT : 0;
521 }
522 
fec_ptp_get(struct net_device * ndev,struct ifreq * ifr)523 int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
524 {
525 	struct fec_enet_private *fep = netdev_priv(ndev);
526 	struct hwtstamp_config config;
527 
528 	config.flags = 0;
529 	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
530 	config.rx_filter = (fep->hwts_rx_en ?
531 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
532 
533 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
534 		-EFAULT : 0;
535 }
536 
537 /**
538  * fec_time_keep - call timecounter_read every second to avoid timer overrun
539  *                 because ENET just support 32bit counter, will timeout in 4s
540  */
fec_time_keep(struct work_struct * work)541 static void fec_time_keep(struct work_struct *work)
542 {
543 	struct delayed_work *dwork = to_delayed_work(work);
544 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
545 	u64 ns;
546 	unsigned long flags;
547 
548 	mutex_lock(&fep->ptp_clk_mutex);
549 	if (fep->ptp_clk_on) {
550 		spin_lock_irqsave(&fep->tmreg_lock, flags);
551 		ns = timecounter_read(&fep->tc);
552 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
553 	}
554 	mutex_unlock(&fep->ptp_clk_mutex);
555 
556 	schedule_delayed_work(&fep->time_keep, HZ);
557 }
558 
559 /**
560  * fec_ptp_init
561  * @ndev: The FEC network adapter
562  *
563  * This function performs the required steps for enabling ptp
564  * support. If ptp support has already been loaded it simply calls the
565  * cyclecounter init routine and exits.
566  */
567 
fec_ptp_init(struct platform_device * pdev)568 void fec_ptp_init(struct platform_device *pdev)
569 {
570 	struct net_device *ndev = platform_get_drvdata(pdev);
571 	struct fec_enet_private *fep = netdev_priv(ndev);
572 
573 	fep->ptp_caps.owner = THIS_MODULE;
574 	snprintf(fep->ptp_caps.name, 16, "fec ptp");
575 
576 	fep->ptp_caps.max_adj = 250000000;
577 	fep->ptp_caps.n_alarm = 0;
578 	fep->ptp_caps.n_ext_ts = 0;
579 	fep->ptp_caps.n_per_out = 0;
580 	fep->ptp_caps.n_pins = 0;
581 	fep->ptp_caps.pps = 1;
582 	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
583 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
584 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
585 	fep->ptp_caps.settime64 = fec_ptp_settime;
586 	fep->ptp_caps.enable = fec_ptp_enable;
587 
588 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
589 	if (!fep->cycle_speed) {
590 		fep->cycle_speed = NSEC_PER_SEC;
591 		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
592 	}
593 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
594 
595 	spin_lock_init(&fep->tmreg_lock);
596 
597 	fec_ptp_start_cyclecounter(ndev);
598 
599 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
600 
601 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
602 	if (IS_ERR(fep->ptp_clock)) {
603 		fep->ptp_clock = NULL;
604 		pr_err("ptp_clock_register failed\n");
605 	}
606 
607 	schedule_delayed_work(&fep->time_keep, HZ);
608 }
609 
fec_ptp_stop(struct platform_device * pdev)610 void fec_ptp_stop(struct platform_device *pdev)
611 {
612 	struct net_device *ndev = platform_get_drvdata(pdev);
613 	struct fec_enet_private *fep = netdev_priv(ndev);
614 
615 	cancel_delayed_work_sync(&fep->time_keep);
616 	if (fep->ptp_clock)
617 		ptp_clock_unregister(fep->ptp_clock);
618 }
619 
620 /**
621  * fec_ptp_check_pps_event
622  * @fep: the fec_enet_private structure handle
623  *
624  * This function check the pps event and reload the timer compare counter.
625  */
fec_ptp_check_pps_event(struct fec_enet_private * fep)626 uint fec_ptp_check_pps_event(struct fec_enet_private *fep)
627 {
628 	u32 val;
629 	u8 channel = fep->pps_channel;
630 	struct ptp_clock_event event;
631 
632 	val = readl(fep->hwp + FEC_TCSR(channel));
633 	if (val & FEC_T_TF_MASK) {
634 		/* Write the next next compare(not the next according the spec)
635 		 * value to the register
636 		 */
637 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
638 		do {
639 			writel(val, fep->hwp + FEC_TCSR(channel));
640 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
641 
642 		/* Update the counter; */
643 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
644 
645 		event.type = PTP_CLOCK_PPS;
646 		ptp_clock_event(fep->ptp_clock, &event);
647 		return 1;
648 	}
649 
650 	return 0;
651 }
652