• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/include/lustre_fid.h
37  *
38  * Author: Yury Umanets <umka@clusterfs.com>
39  */
40 
41 #ifndef __LUSTRE_FID_H
42 #define __LUSTRE_FID_H
43 
44 /** \defgroup fid fid
45  *
46  * @{
47  *
48  * http://wiki.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
49  * describes the FID namespace and interoperability requirements for FIDs.
50  * The important parts of that document are included here for reference.
51  *
52  * FID
53  *   File IDentifier generated by client from range allocated by the SEQuence
54  *   service and stored in struct lu_fid. The FID is composed of three parts:
55  *   SEQuence, ObjectID, and VERsion.  The SEQ component is a filesystem
56  *   unique 64-bit integer, and only one client is ever assigned any SEQ value.
57  *   The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved
58  *   for system use.  The OID component is a 32-bit value generated by the
59  *   client on a per-SEQ basis to allow creating many unique FIDs without
60  *   communication with the server.  The VER component is a 32-bit value that
61  *   distinguishes between different FID instantiations, such as snapshots or
62  *   separate subtrees within the filesystem.  FIDs with the same VER field
63  *   are considered part of the same namespace.
64  *
65  * OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and
66  *   MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while
67  *   OSTs use 64-bit Lustre object IDs and generation numbers.
68  *
69  * NEW filesystems are those formatted since the introduction of FIDs.
70  *
71  * IGIF
72  *   Inode and Generation In FID, a surrogate FID used to globally identify
73  *   an existing object on OLD formatted MDT file system. This would only be
74  *   used on MDT0 in a DNE filesystem, because there cannot be more than one
75  *   MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1]
76  *   range, where inode number is stored in SEQ, and inode generation is in OID.
77  *   NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem,
78  *   which is the maximum possible for an ldiskfs backend.  It also assumes
79  *   that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible
80  *   to clients, which has always been true.
81  *
82  * IDIF
83  *   object ID In FID, a surrogate FID used to globally identify an existing
84  *   OST object on OLD formatted OST file system. Belongs to a sequence in
85  *   [2^32, 2^33 - 1]. Sequence number is calculated as:
86  *
87  *      1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff)
88  *
89  *   that is, SEQ consists of 16-bit OST index, and higher 16 bits of object
90  *   ID. The generation of unique SEQ values per OST allows the IDIF FIDs to
91  *   be identified in the FLD correctly. The OID field is calculated as:
92  *
93  *      objid & 0xffffffff
94  *
95  *   that is, it consists of lower 32 bits of object ID.  For objects within
96  *   the IDIF range, object ID extraction will be:
97  *
98  *      o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid;
99  *      o_seq = 0;  // formerly group number
100  *
101  *   NOTE: This assumes that no more than 2^48-1 objects have ever been created
102  *   on any OST, and that no more than 65535 OSTs are in use.  Both are very
103  *   reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming
104  *   a maximum creation rate of 1M objects per second for a maximum of 9 years,
105  *   or combinations thereof.
106  *
107  * OST_MDT0
108  *   Surrogate FID used to identify an existing object on OLD formatted OST
109  *   filesystem. Belongs to the reserved SEQuence 0, and is used prior to
110  *   the introduction of FID-on-OST, at which point IDIF will be used to
111  *   identify objects as residing on a specific OST.
112  *
113  * LLOG
114  *   For Lustre Log objects the object sequence 1 is used. This is compatible
115  *   with both OLD and NEW namespaces, as this SEQ number is in the
116  *   ext3/ldiskfs reserved inode range and does not conflict with IGIF
117  *   sequence numbers.
118  *
119  * ECHO
120  *   For testing OST IO performance the object sequence 2 is used. This is
121  *   compatible with both OLD and NEW namespaces, as this SEQ number is in
122  *   the ext3/ldiskfs reserved inode range and does not conflict with IGIF
123  *   sequence numbers.
124  *
125  * OST_MDT1 .. OST_MAX
126  *   For testing with multiple MDTs the object sequence 3 through 9 is used,
127  *   allowing direct mapping of MDTs 1 through 7 respectively, for a total
128  *   of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group"
129  *   mappings. However, this SEQ range is only for testing prior to any
130  *   production DNE release, as the objects in this range conflict across all
131  *   OSTs, as the OST index is not part of the FID.  For production DNE usage,
132  *   OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs.
133  *
134  * DLM OST objid to IDIF mapping
135  *   For compatibility with existing OLD OST network protocol structures, the
136  *   FID must map onto the o_id and o_seq in a manner that ensures existing
137  *   objects are identified consistently for IO, as well as onto the LDLM
138  *   namespace to ensure IDIFs there is only a single resource name for any
139  *   object in the DLM.  The OLD OST object DLM resource mapping is:
140  *
141  *      resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases
142  *
143  *   The NEW OST object DLM resource mapping is the same for both MDT and OST:
144  *
145  *      resource[] = {SEQ, OID, VER, HASH};
146  *
147  *  NOTE: for mapping IDIF values to DLM resource names the o_id may be
148  *  larger than the 2^33 reserved sequence numbers for IDIF, so it is possible
149  *  for the o_id numbers to overlap FID SEQ numbers in the resource. However,
150  *  in all production releases the OLD o_seq field is always zero, and all
151  *  valid FID OID values are non-zero, so the lock resources will not collide.
152  *  Even so, the MDT and OST resources are also in different LDLM namespaces.
153  */
154 
155 #include "../../include/linux/libcfs/libcfs.h"
156 #include "lustre/lustre_idl.h"
157 
158 struct lu_env;
159 struct lu_site;
160 struct lu_context;
161 struct obd_device;
162 struct obd_export;
163 
164 /* Whole sequences space range and zero range definitions */
165 extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
166 extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
167 extern const struct lu_fid LUSTRE_BFL_FID;
168 extern const struct lu_fid LU_OBF_FID;
169 extern const struct lu_fid LU_DOT_LUSTRE_FID;
170 
171 enum {
172 	/*
173 	 * This is how may metadata FIDs may be allocated in one sequence(128k)
174 	 */
175 	LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
176 
177 	/*
178 	 * This is how many data FIDs could be allocated in one sequence(4B - 1)
179 	 */
180 	LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL,
181 
182 	/*
183 	 * How many sequences to allocate to a client at once.
184 	 */
185 	LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
186 
187 	/*
188 	 * seq allocation pool size.
189 	 */
190 	LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
191 
192 	/*
193 	 * This is how many sequences may be in one super-sequence allocated to
194 	 * MDTs.
195 	 */
196 	LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
197 };
198 
199 enum {
200 	/** 2^6 FIDs for OI containers */
201 	OSD_OI_FID_OID_BITS     = 6,
202 	/** reserve enough FIDs in case we want more in the future */
203 	OSD_OI_FID_OID_BITS_MAX = 10,
204 };
205 
206 /** special OID for local objects */
207 enum local_oid {
208 	/** \see fld_mod_init */
209 	FLD_INDEX_OID		= 3UL,
210 	/** \see fid_mod_init */
211 	FID_SEQ_CTL_OID		= 4UL,
212 	FID_SEQ_SRV_OID		= 5UL,
213 	/** \see mdd_mod_init */
214 	MDD_ROOT_INDEX_OID	= 6UL, /* deprecated in 2.4 */
215 	MDD_ORPHAN_OID		= 7UL, /* deprecated in 2.4 */
216 	MDD_LOV_OBJ_OID		= 8UL,
217 	MDD_CAPA_KEYS_OID	= 9UL,
218 	/** \see mdt_mod_init */
219 	LAST_RECV_OID		= 11UL,
220 	OSD_FS_ROOT_OID		= 13UL,
221 	ACCT_USER_OID		= 15UL,
222 	ACCT_GROUP_OID		= 16UL,
223 	LFSCK_BOOKMARK_OID	= 17UL,
224 	OTABLE_IT_OID		= 18UL,
225 	/* These two definitions are obsolete
226 	 * OFD_GROUP0_LAST_OID     = 20UL,
227 	 * OFD_GROUP4K_LAST_OID    = 20UL+4096,
228 	 */
229 	OFD_LAST_GROUP_OID	= 4117UL,
230 	LLOG_CATALOGS_OID	= 4118UL,
231 	MGS_CONFIGS_OID		= 4119UL,
232 	OFD_HEALTH_CHECK_OID	= 4120UL,
233 	MDD_LOV_OBJ_OSEQ	= 4121UL,
234 	LFSCK_NAMESPACE_OID     = 4122UL,
235 	REMOTE_PARENT_DIR_OID	= 4123UL,
236 };
237 
lu_local_obj_fid(struct lu_fid * fid,__u32 oid)238 static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
239 {
240 	fid->f_seq = FID_SEQ_LOCAL_FILE;
241 	fid->f_oid = oid;
242 	fid->f_ver = 0;
243 }
244 
lu_local_name_obj_fid(struct lu_fid * fid,__u32 oid)245 static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid)
246 {
247 	fid->f_seq = FID_SEQ_LOCAL_NAME;
248 	fid->f_oid = oid;
249 	fid->f_ver = 0;
250 }
251 
252 /* For new FS (>= 2.4), the root FID will be changed to
253  * [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4),
254  * the root FID will still be IGIF */
fid_is_root(const struct lu_fid * fid)255 static inline int fid_is_root(const struct lu_fid *fid)
256 {
257 	return unlikely((fid_seq(fid) == FID_SEQ_ROOT &&
258 			 fid_oid(fid) == 1));
259 }
260 
fid_is_dot_lustre(const struct lu_fid * fid)261 static inline int fid_is_dot_lustre(const struct lu_fid *fid)
262 {
263 	return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
264 			fid_oid(fid) == FID_OID_DOT_LUSTRE);
265 }
266 
fid_is_obf(const struct lu_fid * fid)267 static inline int fid_is_obf(const struct lu_fid *fid)
268 {
269 	return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
270 			fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF);
271 }
272 
fid_is_otable_it(const struct lu_fid * fid)273 static inline int fid_is_otable_it(const struct lu_fid *fid)
274 {
275 	return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
276 			fid_oid(fid) == OTABLE_IT_OID);
277 }
278 
fid_is_acct(const struct lu_fid * fid)279 static inline int fid_is_acct(const struct lu_fid *fid)
280 {
281 	return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
282 	       (fid_oid(fid) == ACCT_USER_OID ||
283 		fid_oid(fid) == ACCT_GROUP_OID);
284 }
285 
fid_is_quota(const struct lu_fid * fid)286 static inline int fid_is_quota(const struct lu_fid *fid)
287 {
288 	return fid_seq(fid) == FID_SEQ_QUOTA ||
289 	       fid_seq(fid) == FID_SEQ_QUOTA_GLB;
290 }
291 
fid_is_namespace_visible(const struct lu_fid * fid)292 static inline int fid_is_namespace_visible(const struct lu_fid *fid)
293 {
294 	const __u64 seq = fid_seq(fid);
295 
296 	/* Here, we cannot distinguish whether the normal FID is for OST
297 	 * object or not. It is caller's duty to check more if needed. */
298 	return (!fid_is_last_id(fid) &&
299 		(fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) ||
300 	       fid_is_root(fid) || fid_is_dot_lustre(fid);
301 }
302 
fid_seq_in_fldb(__u64 seq)303 static inline int fid_seq_in_fldb(__u64 seq)
304 {
305 	return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) ||
306 	       fid_seq_is_root(seq) || fid_seq_is_dot(seq);
307 }
308 
lu_last_id_fid(struct lu_fid * fid,__u64 seq)309 static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq)
310 {
311 	if (fid_seq_is_mdt0(seq)) {
312 		fid->f_seq = fid_idif_seq(0, 0);
313 	} else {
314 		LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) ||
315 			 fid_seq_is_idif(seq), "%#llx\n", seq);
316 		fid->f_seq = seq;
317 	}
318 	fid->f_oid = 0;
319 	fid->f_ver = 0;
320 }
321 
322 /* seq client type */
323 enum lu_cli_type {
324 	LUSTRE_SEQ_METADATA = 1,
325 	LUSTRE_SEQ_DATA
326 };
327 
328 enum lu_mgr_type {
329 	LUSTRE_SEQ_SERVER,
330 	LUSTRE_SEQ_CONTROLLER
331 };
332 
333 /* Client sequence manager interface. */
334 struct lu_client_seq {
335 	/* Sequence-controller export. */
336 	struct obd_export      *lcs_exp;
337 	struct mutex		lcs_mutex;
338 
339 	/*
340 	 * Range of allowed for allocation sequences. When using lu_client_seq on
341 	 * clients, this contains meta-sequence range. And for servers this
342 	 * contains super-sequence range.
343 	 */
344 	struct lu_seq_range	 lcs_space;
345 
346 	/* Seq related proc */
347 	struct dentry		*lcs_debugfs_entry;
348 
349 	/* This holds last allocated fid in last obtained seq */
350 	struct lu_fid	   lcs_fid;
351 
352 	/* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
353 	enum lu_cli_type	lcs_type;
354 
355 	/*
356 	 * Service uuid, passed from MDT + seq name to form unique seq name to
357 	 * use it with procfs.
358 	 */
359 	char		    lcs_name[LUSTRE_MDT_MAXNAMELEN];
360 
361 	/*
362 	 * Sequence width, that is how many objects may be allocated in one
363 	 * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
364 	 */
365 	__u64		   lcs_width;
366 
367 	/* wait queue for fid allocation and update indicator */
368 	wait_queue_head_t	     lcs_waitq;
369 	int		     lcs_update;
370 };
371 
372 /* Client methods */
373 void seq_client_flush(struct lu_client_seq *seq);
374 
375 int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
376 			 struct lu_fid *fid);
377 /* Fids common stuff */
378 int fid_is_local(const struct lu_env *env,
379 		 struct lu_site *site, const struct lu_fid *fid);
380 
381 enum lu_cli_type;
382 int client_fid_init(struct obd_device *obd, struct obd_export *exp,
383 		    enum lu_cli_type type);
384 int client_fid_fini(struct obd_device *obd);
385 
386 /* fid locking */
387 
388 struct ldlm_namespace;
389 
390 /*
391  * Build (DLM) resource name from FID.
392  *
393  * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
394  * but was moved into name[1] along with the OID to avoid consuming the
395  * renaming name[2,3] fields that need to be used for the quota identifier.
396  */
397 static inline struct ldlm_res_id *
fid_build_reg_res_name(const struct lu_fid * fid,struct ldlm_res_id * res)398 fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res)
399 {
400 	memset(res, 0, sizeof(*res));
401 	res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid);
402 	res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid);
403 
404 	return res;
405 }
406 
407 /*
408  * Return true if resource is for object identified by FID.
409  */
fid_res_name_eq(const struct lu_fid * fid,const struct ldlm_res_id * res)410 static inline int fid_res_name_eq(const struct lu_fid *fid,
411 				  const struct ldlm_res_id *res)
412 {
413 	return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) &&
414 	       res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid);
415 }
416 
417 /*
418  * Extract FID from LDLM resource. Reverse of fid_build_reg_res_name().
419  */
420 static inline struct lu_fid *
fid_extract_from_res_name(struct lu_fid * fid,const struct ldlm_res_id * res)421 fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res)
422 {
423 	fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF];
424 	fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]);
425 	fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32);
426 	LASSERT(fid_res_name_eq(fid, res));
427 
428 	return fid;
429 }
430 
431 /*
432  * Build (DLM) resource identifier from global quota FID and quota ID.
433  */
434 static inline struct ldlm_res_id *
fid_build_quota_res_name(const struct lu_fid * glb_fid,union lquota_id * qid,struct ldlm_res_id * res)435 fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid,
436 		      struct ldlm_res_id *res)
437 {
438 	fid_build_reg_res_name(glb_fid, res);
439 	res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid);
440 	res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid);
441 
442 	return res;
443 }
444 
445 /*
446  * Extract global FID and quota ID from resource name
447  */
fid_extract_from_quota_res(struct lu_fid * glb_fid,union lquota_id * qid,const struct ldlm_res_id * res)448 static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid,
449 					      union lquota_id *qid,
450 					      const struct ldlm_res_id *res)
451 {
452 	fid_extract_from_res_name(glb_fid, res);
453 	qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF];
454 	qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF];
455 	qid->qid_fid.f_ver =
456 		(__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32);
457 }
458 
459 static inline struct ldlm_res_id *
fid_build_pdo_res_name(const struct lu_fid * fid,unsigned int hash,struct ldlm_res_id * res)460 fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash,
461 		       struct ldlm_res_id *res)
462 {
463 	fid_build_reg_res_name(fid, res);
464 	res->name[LUSTRE_RES_ID_HSH_OFF] = hash;
465 
466 	return res;
467 }
468 
469 /**
470  * Build DLM resource name from object id & seq, which will be removed
471  * finally, when we replace ost_id with FID in data stack.
472  *
473  * Currently, resid from the old client, whose res[0] = object_id,
474  * res[1] = object_seq, is just opposite with Metatdata
475  * resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid.
476  * To unify the resid identification, we will reverse the data
477  * resid to keep it same with Metadata resid, i.e.
478  *
479  * For resid from the old client,
480  *    res[0] = objid,  res[1] = 0, still keep the original order,
481  *    for compatibility.
482  *
483  * For new resid
484  *    res will be built from normal FID directly, i.e. res[0] = f_seq,
485  *    res[1] = f_oid + f_ver.
486  */
ostid_build_res_name(struct ost_id * oi,struct ldlm_res_id * name)487 static inline void ostid_build_res_name(struct ost_id *oi,
488 					struct ldlm_res_id *name)
489 {
490 	memset(name, 0, sizeof(*name));
491 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
492 		name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi);
493 		name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi);
494 	} else {
495 		fid_build_reg_res_name(&oi->oi_fid, name);
496 	}
497 }
498 
ostid_res_name_to_id(struct ost_id * oi,struct ldlm_res_id * name)499 static inline void ostid_res_name_to_id(struct ost_id *oi,
500 					struct ldlm_res_id *name)
501 {
502 	if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_SEQ_OFF])) {
503 		/* old resid */
504 		ostid_set_seq(oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
505 		ostid_set_id(oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
506 	} else {
507 		/* new resid */
508 		fid_extract_from_res_name(&oi->oi_fid, name);
509 	}
510 }
511 
512 /**
513  * Return true if the resource is for the object identified by this id & group.
514  */
ostid_res_name_eq(struct ost_id * oi,struct ldlm_res_id * name)515 static inline int ostid_res_name_eq(struct ost_id *oi,
516 				    struct ldlm_res_id *name)
517 {
518 	/* Note: it is just a trick here to save some effort, probably the
519 	 * correct way would be turn them into the FID and compare */
520 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
521 		return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) &&
522 		       name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi);
523 	} else {
524 		return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) &&
525 		       name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi);
526 	}
527 }
528 
529 /* The same as osc_build_res_name() */
ost_fid_build_resid(const struct lu_fid * fid,struct ldlm_res_id * resname)530 static inline void ost_fid_build_resid(const struct lu_fid *fid,
531 				       struct ldlm_res_id *resname)
532 {
533 	if (fid_is_mdt0(fid) || fid_is_idif(fid)) {
534 		struct ost_id oi;
535 
536 		oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */
537 		if (fid_to_ostid(fid, &oi) != 0)
538 			return;
539 		ostid_build_res_name(&oi, resname);
540 	} else {
541 		fid_build_reg_res_name(fid, resname);
542 	}
543 }
544 
ost_fid_from_resid(struct lu_fid * fid,const struct ldlm_res_id * name)545 static inline void ost_fid_from_resid(struct lu_fid *fid,
546 				      const struct ldlm_res_id *name)
547 {
548 	if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) {
549 		/* old resid */
550 		struct ost_id oi;
551 
552 		ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
553 		ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
554 		ostid_to_fid(fid, &oi, 0);
555 	} else {
556 		/* new resid */
557 		fid_extract_from_res_name(fid, name);
558 	}
559 }
560 
561 /**
562  * Flatten 128-bit FID values into a 64-bit value for use as an inode number.
563  * For non-IGIF FIDs this starts just over 2^32, and continues without
564  * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
565  * into the range where there may not be many OID values in use, to minimize
566  * the risk of conflict.
567  *
568  * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
569  * the time between re-used inode numbers is very long - 2^40 SEQ numbers,
570  * or about 2^40 client mounts, if clients create less than 2^24 files/mount.
571  */
fid_flatten(const struct lu_fid * fid)572 static inline __u64 fid_flatten(const struct lu_fid *fid)
573 {
574 	__u64 ino;
575 	__u64 seq;
576 
577 	if (fid_is_igif(fid)) {
578 		ino = lu_igif_ino(fid);
579 		return ino;
580 	}
581 
582 	seq = fid_seq(fid);
583 
584 	ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
585 
586 	return ino ? ino : fid_oid(fid);
587 }
588 
fid_hash(const struct lu_fid * f,int bits)589 static inline __u32 fid_hash(const struct lu_fid *f, int bits)
590 {
591 	/* all objects with same id and different versions will belong to same
592 	 * collisions list. */
593 	return hash_long(fid_flatten(f), bits);
594 }
595 
596 /**
597  * map fid to 32 bit value for ino on 32bit systems. */
fid_flatten32(const struct lu_fid * fid)598 static inline __u32 fid_flatten32(const struct lu_fid *fid)
599 {
600 	__u32 ino;
601 	__u64 seq;
602 
603 	if (fid_is_igif(fid)) {
604 		ino = lu_igif_ino(fid);
605 		return ino;
606 	}
607 
608 	seq = fid_seq(fid) - FID_SEQ_START;
609 
610 	/* Map the high bits of the OID into higher bits of the inode number so
611 	 * that inodes generated at about the same time have a reduced chance
612 	 * of collisions. This will give a period of 2^12 = 1024 unique clients
613 	 * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
614 	 * (from OID), or up to 128M inodes without collisions for new files. */
615 	ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
616 	       (seq >> (64 - (40-8)) & 0xffffff00) +
617 	       (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
618 
619 	return ino ? ino : fid_oid(fid);
620 }
621 
lu_fid_diff(struct lu_fid * fid1,struct lu_fid * fid2)622 static inline int lu_fid_diff(struct lu_fid *fid1, struct lu_fid *fid2)
623 {
624 	LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:"DFID", fid2:"DFID"\n",
625 		 PFID(fid1), PFID(fid2));
626 
627 	if (fid_is_idif(fid1) && fid_is_idif(fid2))
628 		return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) -
629 		       fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver);
630 
631 	return fid_oid(fid1) - fid_oid(fid2);
632 }
633 
634 #define LUSTRE_SEQ_SRV_NAME "seq_srv"
635 #define LUSTRE_SEQ_CTL_NAME "seq_ctl"
636 
637 /* Range common stuff */
range_cpu_to_le(struct lu_seq_range * dst,const struct lu_seq_range * src)638 static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
639 {
640 	dst->lsr_start = cpu_to_le64(src->lsr_start);
641 	dst->lsr_end = cpu_to_le64(src->lsr_end);
642 	dst->lsr_index = cpu_to_le32(src->lsr_index);
643 	dst->lsr_flags = cpu_to_le32(src->lsr_flags);
644 }
645 
range_le_to_cpu(struct lu_seq_range * dst,const struct lu_seq_range * src)646 static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
647 {
648 	dst->lsr_start = le64_to_cpu(src->lsr_start);
649 	dst->lsr_end = le64_to_cpu(src->lsr_end);
650 	dst->lsr_index = le32_to_cpu(src->lsr_index);
651 	dst->lsr_flags = le32_to_cpu(src->lsr_flags);
652 }
653 
range_cpu_to_be(struct lu_seq_range * dst,const struct lu_seq_range * src)654 static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
655 {
656 	dst->lsr_start = cpu_to_be64(src->lsr_start);
657 	dst->lsr_end = cpu_to_be64(src->lsr_end);
658 	dst->lsr_index = cpu_to_be32(src->lsr_index);
659 	dst->lsr_flags = cpu_to_be32(src->lsr_flags);
660 }
661 
range_be_to_cpu(struct lu_seq_range * dst,const struct lu_seq_range * src)662 static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
663 {
664 	dst->lsr_start = be64_to_cpu(src->lsr_start);
665 	dst->lsr_end = be64_to_cpu(src->lsr_end);
666 	dst->lsr_index = be32_to_cpu(src->lsr_index);
667 	dst->lsr_flags = be32_to_cpu(src->lsr_flags);
668 }
669 
670 /** @} fid */
671 
672 #endif /* __LUSTRE_FID_H */
673