1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre_fid.h
37 *
38 * Author: Yury Umanets <umka@clusterfs.com>
39 */
40
41 #ifndef __LUSTRE_FID_H
42 #define __LUSTRE_FID_H
43
44 /** \defgroup fid fid
45 *
46 * @{
47 *
48 * http://wiki.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
49 * describes the FID namespace and interoperability requirements for FIDs.
50 * The important parts of that document are included here for reference.
51 *
52 * FID
53 * File IDentifier generated by client from range allocated by the SEQuence
54 * service and stored in struct lu_fid. The FID is composed of three parts:
55 * SEQuence, ObjectID, and VERsion. The SEQ component is a filesystem
56 * unique 64-bit integer, and only one client is ever assigned any SEQ value.
57 * The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved
58 * for system use. The OID component is a 32-bit value generated by the
59 * client on a per-SEQ basis to allow creating many unique FIDs without
60 * communication with the server. The VER component is a 32-bit value that
61 * distinguishes between different FID instantiations, such as snapshots or
62 * separate subtrees within the filesystem. FIDs with the same VER field
63 * are considered part of the same namespace.
64 *
65 * OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and
66 * MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while
67 * OSTs use 64-bit Lustre object IDs and generation numbers.
68 *
69 * NEW filesystems are those formatted since the introduction of FIDs.
70 *
71 * IGIF
72 * Inode and Generation In FID, a surrogate FID used to globally identify
73 * an existing object on OLD formatted MDT file system. This would only be
74 * used on MDT0 in a DNE filesystem, because there cannot be more than one
75 * MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1]
76 * range, where inode number is stored in SEQ, and inode generation is in OID.
77 * NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem,
78 * which is the maximum possible for an ldiskfs backend. It also assumes
79 * that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible
80 * to clients, which has always been true.
81 *
82 * IDIF
83 * object ID In FID, a surrogate FID used to globally identify an existing
84 * OST object on OLD formatted OST file system. Belongs to a sequence in
85 * [2^32, 2^33 - 1]. Sequence number is calculated as:
86 *
87 * 1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff)
88 *
89 * that is, SEQ consists of 16-bit OST index, and higher 16 bits of object
90 * ID. The generation of unique SEQ values per OST allows the IDIF FIDs to
91 * be identified in the FLD correctly. The OID field is calculated as:
92 *
93 * objid & 0xffffffff
94 *
95 * that is, it consists of lower 32 bits of object ID. For objects within
96 * the IDIF range, object ID extraction will be:
97 *
98 * o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid;
99 * o_seq = 0; // formerly group number
100 *
101 * NOTE: This assumes that no more than 2^48-1 objects have ever been created
102 * on any OST, and that no more than 65535 OSTs are in use. Both are very
103 * reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming
104 * a maximum creation rate of 1M objects per second for a maximum of 9 years,
105 * or combinations thereof.
106 *
107 * OST_MDT0
108 * Surrogate FID used to identify an existing object on OLD formatted OST
109 * filesystem. Belongs to the reserved SEQuence 0, and is used prior to
110 * the introduction of FID-on-OST, at which point IDIF will be used to
111 * identify objects as residing on a specific OST.
112 *
113 * LLOG
114 * For Lustre Log objects the object sequence 1 is used. This is compatible
115 * with both OLD and NEW namespaces, as this SEQ number is in the
116 * ext3/ldiskfs reserved inode range and does not conflict with IGIF
117 * sequence numbers.
118 *
119 * ECHO
120 * For testing OST IO performance the object sequence 2 is used. This is
121 * compatible with both OLD and NEW namespaces, as this SEQ number is in
122 * the ext3/ldiskfs reserved inode range and does not conflict with IGIF
123 * sequence numbers.
124 *
125 * OST_MDT1 .. OST_MAX
126 * For testing with multiple MDTs the object sequence 3 through 9 is used,
127 * allowing direct mapping of MDTs 1 through 7 respectively, for a total
128 * of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group"
129 * mappings. However, this SEQ range is only for testing prior to any
130 * production DNE release, as the objects in this range conflict across all
131 * OSTs, as the OST index is not part of the FID. For production DNE usage,
132 * OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs.
133 *
134 * DLM OST objid to IDIF mapping
135 * For compatibility with existing OLD OST network protocol structures, the
136 * FID must map onto the o_id and o_seq in a manner that ensures existing
137 * objects are identified consistently for IO, as well as onto the LDLM
138 * namespace to ensure IDIFs there is only a single resource name for any
139 * object in the DLM. The OLD OST object DLM resource mapping is:
140 *
141 * resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases
142 *
143 * The NEW OST object DLM resource mapping is the same for both MDT and OST:
144 *
145 * resource[] = {SEQ, OID, VER, HASH};
146 *
147 * NOTE: for mapping IDIF values to DLM resource names the o_id may be
148 * larger than the 2^33 reserved sequence numbers for IDIF, so it is possible
149 * for the o_id numbers to overlap FID SEQ numbers in the resource. However,
150 * in all production releases the OLD o_seq field is always zero, and all
151 * valid FID OID values are non-zero, so the lock resources will not collide.
152 * Even so, the MDT and OST resources are also in different LDLM namespaces.
153 */
154
155 #include "../../include/linux/libcfs/libcfs.h"
156 #include "lustre/lustre_idl.h"
157
158 struct lu_env;
159 struct lu_site;
160 struct lu_context;
161 struct obd_device;
162 struct obd_export;
163
164 /* Whole sequences space range and zero range definitions */
165 extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
166 extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
167 extern const struct lu_fid LUSTRE_BFL_FID;
168 extern const struct lu_fid LU_OBF_FID;
169 extern const struct lu_fid LU_DOT_LUSTRE_FID;
170
171 enum {
172 /*
173 * This is how may metadata FIDs may be allocated in one sequence(128k)
174 */
175 LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
176
177 /*
178 * This is how many data FIDs could be allocated in one sequence(4B - 1)
179 */
180 LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL,
181
182 /*
183 * How many sequences to allocate to a client at once.
184 */
185 LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
186
187 /*
188 * seq allocation pool size.
189 */
190 LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
191
192 /*
193 * This is how many sequences may be in one super-sequence allocated to
194 * MDTs.
195 */
196 LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
197 };
198
199 enum {
200 /** 2^6 FIDs for OI containers */
201 OSD_OI_FID_OID_BITS = 6,
202 /** reserve enough FIDs in case we want more in the future */
203 OSD_OI_FID_OID_BITS_MAX = 10,
204 };
205
206 /** special OID for local objects */
207 enum local_oid {
208 /** \see fld_mod_init */
209 FLD_INDEX_OID = 3UL,
210 /** \see fid_mod_init */
211 FID_SEQ_CTL_OID = 4UL,
212 FID_SEQ_SRV_OID = 5UL,
213 /** \see mdd_mod_init */
214 MDD_ROOT_INDEX_OID = 6UL, /* deprecated in 2.4 */
215 MDD_ORPHAN_OID = 7UL, /* deprecated in 2.4 */
216 MDD_LOV_OBJ_OID = 8UL,
217 MDD_CAPA_KEYS_OID = 9UL,
218 /** \see mdt_mod_init */
219 LAST_RECV_OID = 11UL,
220 OSD_FS_ROOT_OID = 13UL,
221 ACCT_USER_OID = 15UL,
222 ACCT_GROUP_OID = 16UL,
223 LFSCK_BOOKMARK_OID = 17UL,
224 OTABLE_IT_OID = 18UL,
225 /* These two definitions are obsolete
226 * OFD_GROUP0_LAST_OID = 20UL,
227 * OFD_GROUP4K_LAST_OID = 20UL+4096,
228 */
229 OFD_LAST_GROUP_OID = 4117UL,
230 LLOG_CATALOGS_OID = 4118UL,
231 MGS_CONFIGS_OID = 4119UL,
232 OFD_HEALTH_CHECK_OID = 4120UL,
233 MDD_LOV_OBJ_OSEQ = 4121UL,
234 LFSCK_NAMESPACE_OID = 4122UL,
235 REMOTE_PARENT_DIR_OID = 4123UL,
236 };
237
lu_local_obj_fid(struct lu_fid * fid,__u32 oid)238 static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
239 {
240 fid->f_seq = FID_SEQ_LOCAL_FILE;
241 fid->f_oid = oid;
242 fid->f_ver = 0;
243 }
244
lu_local_name_obj_fid(struct lu_fid * fid,__u32 oid)245 static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid)
246 {
247 fid->f_seq = FID_SEQ_LOCAL_NAME;
248 fid->f_oid = oid;
249 fid->f_ver = 0;
250 }
251
252 /* For new FS (>= 2.4), the root FID will be changed to
253 * [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4),
254 * the root FID will still be IGIF */
fid_is_root(const struct lu_fid * fid)255 static inline int fid_is_root(const struct lu_fid *fid)
256 {
257 return unlikely((fid_seq(fid) == FID_SEQ_ROOT &&
258 fid_oid(fid) == 1));
259 }
260
fid_is_dot_lustre(const struct lu_fid * fid)261 static inline int fid_is_dot_lustre(const struct lu_fid *fid)
262 {
263 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
264 fid_oid(fid) == FID_OID_DOT_LUSTRE);
265 }
266
fid_is_obf(const struct lu_fid * fid)267 static inline int fid_is_obf(const struct lu_fid *fid)
268 {
269 return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
270 fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF);
271 }
272
fid_is_otable_it(const struct lu_fid * fid)273 static inline int fid_is_otable_it(const struct lu_fid *fid)
274 {
275 return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
276 fid_oid(fid) == OTABLE_IT_OID);
277 }
278
fid_is_acct(const struct lu_fid * fid)279 static inline int fid_is_acct(const struct lu_fid *fid)
280 {
281 return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
282 (fid_oid(fid) == ACCT_USER_OID ||
283 fid_oid(fid) == ACCT_GROUP_OID);
284 }
285
fid_is_quota(const struct lu_fid * fid)286 static inline int fid_is_quota(const struct lu_fid *fid)
287 {
288 return fid_seq(fid) == FID_SEQ_QUOTA ||
289 fid_seq(fid) == FID_SEQ_QUOTA_GLB;
290 }
291
fid_is_namespace_visible(const struct lu_fid * fid)292 static inline int fid_is_namespace_visible(const struct lu_fid *fid)
293 {
294 const __u64 seq = fid_seq(fid);
295
296 /* Here, we cannot distinguish whether the normal FID is for OST
297 * object or not. It is caller's duty to check more if needed. */
298 return (!fid_is_last_id(fid) &&
299 (fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) ||
300 fid_is_root(fid) || fid_is_dot_lustre(fid);
301 }
302
fid_seq_in_fldb(__u64 seq)303 static inline int fid_seq_in_fldb(__u64 seq)
304 {
305 return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) ||
306 fid_seq_is_root(seq) || fid_seq_is_dot(seq);
307 }
308
lu_last_id_fid(struct lu_fid * fid,__u64 seq)309 static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq)
310 {
311 if (fid_seq_is_mdt0(seq)) {
312 fid->f_seq = fid_idif_seq(0, 0);
313 } else {
314 LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) ||
315 fid_seq_is_idif(seq), "%#llx\n", seq);
316 fid->f_seq = seq;
317 }
318 fid->f_oid = 0;
319 fid->f_ver = 0;
320 }
321
322 /* seq client type */
323 enum lu_cli_type {
324 LUSTRE_SEQ_METADATA = 1,
325 LUSTRE_SEQ_DATA
326 };
327
328 enum lu_mgr_type {
329 LUSTRE_SEQ_SERVER,
330 LUSTRE_SEQ_CONTROLLER
331 };
332
333 /* Client sequence manager interface. */
334 struct lu_client_seq {
335 /* Sequence-controller export. */
336 struct obd_export *lcs_exp;
337 struct mutex lcs_mutex;
338
339 /*
340 * Range of allowed for allocation sequences. When using lu_client_seq on
341 * clients, this contains meta-sequence range. And for servers this
342 * contains super-sequence range.
343 */
344 struct lu_seq_range lcs_space;
345
346 /* Seq related proc */
347 struct dentry *lcs_debugfs_entry;
348
349 /* This holds last allocated fid in last obtained seq */
350 struct lu_fid lcs_fid;
351
352 /* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
353 enum lu_cli_type lcs_type;
354
355 /*
356 * Service uuid, passed from MDT + seq name to form unique seq name to
357 * use it with procfs.
358 */
359 char lcs_name[LUSTRE_MDT_MAXNAMELEN];
360
361 /*
362 * Sequence width, that is how many objects may be allocated in one
363 * sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
364 */
365 __u64 lcs_width;
366
367 /* wait queue for fid allocation and update indicator */
368 wait_queue_head_t lcs_waitq;
369 int lcs_update;
370 };
371
372 /* Client methods */
373 void seq_client_flush(struct lu_client_seq *seq);
374
375 int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
376 struct lu_fid *fid);
377 /* Fids common stuff */
378 int fid_is_local(const struct lu_env *env,
379 struct lu_site *site, const struct lu_fid *fid);
380
381 enum lu_cli_type;
382 int client_fid_init(struct obd_device *obd, struct obd_export *exp,
383 enum lu_cli_type type);
384 int client_fid_fini(struct obd_device *obd);
385
386 /* fid locking */
387
388 struct ldlm_namespace;
389
390 /*
391 * Build (DLM) resource name from FID.
392 *
393 * NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
394 * but was moved into name[1] along with the OID to avoid consuming the
395 * renaming name[2,3] fields that need to be used for the quota identifier.
396 */
397 static inline struct ldlm_res_id *
fid_build_reg_res_name(const struct lu_fid * fid,struct ldlm_res_id * res)398 fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res)
399 {
400 memset(res, 0, sizeof(*res));
401 res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid);
402 res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid);
403
404 return res;
405 }
406
407 /*
408 * Return true if resource is for object identified by FID.
409 */
fid_res_name_eq(const struct lu_fid * fid,const struct ldlm_res_id * res)410 static inline int fid_res_name_eq(const struct lu_fid *fid,
411 const struct ldlm_res_id *res)
412 {
413 return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) &&
414 res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid);
415 }
416
417 /*
418 * Extract FID from LDLM resource. Reverse of fid_build_reg_res_name().
419 */
420 static inline struct lu_fid *
fid_extract_from_res_name(struct lu_fid * fid,const struct ldlm_res_id * res)421 fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res)
422 {
423 fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF];
424 fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]);
425 fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32);
426 LASSERT(fid_res_name_eq(fid, res));
427
428 return fid;
429 }
430
431 /*
432 * Build (DLM) resource identifier from global quota FID and quota ID.
433 */
434 static inline struct ldlm_res_id *
fid_build_quota_res_name(const struct lu_fid * glb_fid,union lquota_id * qid,struct ldlm_res_id * res)435 fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid,
436 struct ldlm_res_id *res)
437 {
438 fid_build_reg_res_name(glb_fid, res);
439 res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid);
440 res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid);
441
442 return res;
443 }
444
445 /*
446 * Extract global FID and quota ID from resource name
447 */
fid_extract_from_quota_res(struct lu_fid * glb_fid,union lquota_id * qid,const struct ldlm_res_id * res)448 static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid,
449 union lquota_id *qid,
450 const struct ldlm_res_id *res)
451 {
452 fid_extract_from_res_name(glb_fid, res);
453 qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF];
454 qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF];
455 qid->qid_fid.f_ver =
456 (__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32);
457 }
458
459 static inline struct ldlm_res_id *
fid_build_pdo_res_name(const struct lu_fid * fid,unsigned int hash,struct ldlm_res_id * res)460 fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash,
461 struct ldlm_res_id *res)
462 {
463 fid_build_reg_res_name(fid, res);
464 res->name[LUSTRE_RES_ID_HSH_OFF] = hash;
465
466 return res;
467 }
468
469 /**
470 * Build DLM resource name from object id & seq, which will be removed
471 * finally, when we replace ost_id with FID in data stack.
472 *
473 * Currently, resid from the old client, whose res[0] = object_id,
474 * res[1] = object_seq, is just opposite with Metatdata
475 * resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid.
476 * To unify the resid identification, we will reverse the data
477 * resid to keep it same with Metadata resid, i.e.
478 *
479 * For resid from the old client,
480 * res[0] = objid, res[1] = 0, still keep the original order,
481 * for compatibility.
482 *
483 * For new resid
484 * res will be built from normal FID directly, i.e. res[0] = f_seq,
485 * res[1] = f_oid + f_ver.
486 */
ostid_build_res_name(struct ost_id * oi,struct ldlm_res_id * name)487 static inline void ostid_build_res_name(struct ost_id *oi,
488 struct ldlm_res_id *name)
489 {
490 memset(name, 0, sizeof(*name));
491 if (fid_seq_is_mdt0(ostid_seq(oi))) {
492 name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi);
493 name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi);
494 } else {
495 fid_build_reg_res_name(&oi->oi_fid, name);
496 }
497 }
498
ostid_res_name_to_id(struct ost_id * oi,struct ldlm_res_id * name)499 static inline void ostid_res_name_to_id(struct ost_id *oi,
500 struct ldlm_res_id *name)
501 {
502 if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_SEQ_OFF])) {
503 /* old resid */
504 ostid_set_seq(oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
505 ostid_set_id(oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
506 } else {
507 /* new resid */
508 fid_extract_from_res_name(&oi->oi_fid, name);
509 }
510 }
511
512 /**
513 * Return true if the resource is for the object identified by this id & group.
514 */
ostid_res_name_eq(struct ost_id * oi,struct ldlm_res_id * name)515 static inline int ostid_res_name_eq(struct ost_id *oi,
516 struct ldlm_res_id *name)
517 {
518 /* Note: it is just a trick here to save some effort, probably the
519 * correct way would be turn them into the FID and compare */
520 if (fid_seq_is_mdt0(ostid_seq(oi))) {
521 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) &&
522 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi);
523 } else {
524 return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) &&
525 name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi);
526 }
527 }
528
529 /* The same as osc_build_res_name() */
ost_fid_build_resid(const struct lu_fid * fid,struct ldlm_res_id * resname)530 static inline void ost_fid_build_resid(const struct lu_fid *fid,
531 struct ldlm_res_id *resname)
532 {
533 if (fid_is_mdt0(fid) || fid_is_idif(fid)) {
534 struct ost_id oi;
535
536 oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */
537 if (fid_to_ostid(fid, &oi) != 0)
538 return;
539 ostid_build_res_name(&oi, resname);
540 } else {
541 fid_build_reg_res_name(fid, resname);
542 }
543 }
544
ost_fid_from_resid(struct lu_fid * fid,const struct ldlm_res_id * name)545 static inline void ost_fid_from_resid(struct lu_fid *fid,
546 const struct ldlm_res_id *name)
547 {
548 if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) {
549 /* old resid */
550 struct ost_id oi;
551
552 ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
553 ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
554 ostid_to_fid(fid, &oi, 0);
555 } else {
556 /* new resid */
557 fid_extract_from_res_name(fid, name);
558 }
559 }
560
561 /**
562 * Flatten 128-bit FID values into a 64-bit value for use as an inode number.
563 * For non-IGIF FIDs this starts just over 2^32, and continues without
564 * conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
565 * into the range where there may not be many OID values in use, to minimize
566 * the risk of conflict.
567 *
568 * Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
569 * the time between re-used inode numbers is very long - 2^40 SEQ numbers,
570 * or about 2^40 client mounts, if clients create less than 2^24 files/mount.
571 */
fid_flatten(const struct lu_fid * fid)572 static inline __u64 fid_flatten(const struct lu_fid *fid)
573 {
574 __u64 ino;
575 __u64 seq;
576
577 if (fid_is_igif(fid)) {
578 ino = lu_igif_ino(fid);
579 return ino;
580 }
581
582 seq = fid_seq(fid);
583
584 ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
585
586 return ino ? ino : fid_oid(fid);
587 }
588
fid_hash(const struct lu_fid * f,int bits)589 static inline __u32 fid_hash(const struct lu_fid *f, int bits)
590 {
591 /* all objects with same id and different versions will belong to same
592 * collisions list. */
593 return hash_long(fid_flatten(f), bits);
594 }
595
596 /**
597 * map fid to 32 bit value for ino on 32bit systems. */
fid_flatten32(const struct lu_fid * fid)598 static inline __u32 fid_flatten32(const struct lu_fid *fid)
599 {
600 __u32 ino;
601 __u64 seq;
602
603 if (fid_is_igif(fid)) {
604 ino = lu_igif_ino(fid);
605 return ino;
606 }
607
608 seq = fid_seq(fid) - FID_SEQ_START;
609
610 /* Map the high bits of the OID into higher bits of the inode number so
611 * that inodes generated at about the same time have a reduced chance
612 * of collisions. This will give a period of 2^12 = 1024 unique clients
613 * (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
614 * (from OID), or up to 128M inodes without collisions for new files. */
615 ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
616 (seq >> (64 - (40-8)) & 0xffffff00) +
617 (fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
618
619 return ino ? ino : fid_oid(fid);
620 }
621
lu_fid_diff(struct lu_fid * fid1,struct lu_fid * fid2)622 static inline int lu_fid_diff(struct lu_fid *fid1, struct lu_fid *fid2)
623 {
624 LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:"DFID", fid2:"DFID"\n",
625 PFID(fid1), PFID(fid2));
626
627 if (fid_is_idif(fid1) && fid_is_idif(fid2))
628 return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) -
629 fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver);
630
631 return fid_oid(fid1) - fid_oid(fid2);
632 }
633
634 #define LUSTRE_SEQ_SRV_NAME "seq_srv"
635 #define LUSTRE_SEQ_CTL_NAME "seq_ctl"
636
637 /* Range common stuff */
range_cpu_to_le(struct lu_seq_range * dst,const struct lu_seq_range * src)638 static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
639 {
640 dst->lsr_start = cpu_to_le64(src->lsr_start);
641 dst->lsr_end = cpu_to_le64(src->lsr_end);
642 dst->lsr_index = cpu_to_le32(src->lsr_index);
643 dst->lsr_flags = cpu_to_le32(src->lsr_flags);
644 }
645
range_le_to_cpu(struct lu_seq_range * dst,const struct lu_seq_range * src)646 static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
647 {
648 dst->lsr_start = le64_to_cpu(src->lsr_start);
649 dst->lsr_end = le64_to_cpu(src->lsr_end);
650 dst->lsr_index = le32_to_cpu(src->lsr_index);
651 dst->lsr_flags = le32_to_cpu(src->lsr_flags);
652 }
653
range_cpu_to_be(struct lu_seq_range * dst,const struct lu_seq_range * src)654 static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
655 {
656 dst->lsr_start = cpu_to_be64(src->lsr_start);
657 dst->lsr_end = cpu_to_be64(src->lsr_end);
658 dst->lsr_index = cpu_to_be32(src->lsr_index);
659 dst->lsr_flags = cpu_to_be32(src->lsr_flags);
660 }
661
range_be_to_cpu(struct lu_seq_range * dst,const struct lu_seq_range * src)662 static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
663 {
664 dst->lsr_start = be64_to_cpu(src->lsr_start);
665 dst->lsr_end = be64_to_cpu(src->lsr_end);
666 dst->lsr_index = be32_to_cpu(src->lsr_index);
667 dst->lsr_flags = be32_to_cpu(src->lsr_flags);
668 }
669
670 /** @} fid */
671
672 #endif /* __LUSTRE_FID_H */
673