• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7 
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53 
54 #include "init_64.h"
55 
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58 
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *	0	==>	4MB
66  *	1	==>	256MB
67  *	2	==>	2GB
68  *	3	==>	16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79 
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88 
89 static unsigned long cpu_pgsz_mask;
90 
91 #define MAX_BANKS	1024
92 
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95 
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97 
cmp_p64(const void * a,const void * b)98 static int cmp_p64(const void *a, const void *b)
99 {
100 	const struct linux_prom64_registers *x = a, *y = b;
101 
102 	if (x->phys_addr > y->phys_addr)
103 		return 1;
104 	if (x->phys_addr < y->phys_addr)
105 		return -1;
106 	return 0;
107 }
108 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)109 static void __init read_obp_memory(const char *property,
110 				   struct linux_prom64_registers *regs,
111 				   int *num_ents)
112 {
113 	phandle node = prom_finddevice("/memory");
114 	int prop_size = prom_getproplen(node, property);
115 	int ents, ret, i;
116 
117 	ents = prop_size / sizeof(struct linux_prom64_registers);
118 	if (ents > MAX_BANKS) {
119 		prom_printf("The machine has more %s property entries than "
120 			    "this kernel can support (%d).\n",
121 			    property, MAX_BANKS);
122 		prom_halt();
123 	}
124 
125 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 	if (ret == -1) {
127 		prom_printf("Couldn't get %s property from /memory.\n",
128 				property);
129 		prom_halt();
130 	}
131 
132 	/* Sanitize what we got from the firmware, by page aligning
133 	 * everything.
134 	 */
135 	for (i = 0; i < ents; i++) {
136 		unsigned long base, size;
137 
138 		base = regs[i].phys_addr;
139 		size = regs[i].reg_size;
140 
141 		size &= PAGE_MASK;
142 		if (base & ~PAGE_MASK) {
143 			unsigned long new_base = PAGE_ALIGN(base);
144 
145 			size -= new_base - base;
146 			if ((long) size < 0L)
147 				size = 0UL;
148 			base = new_base;
149 		}
150 		if (size == 0UL) {
151 			/* If it is empty, simply get rid of it.
152 			 * This simplifies the logic of the other
153 			 * functions that process these arrays.
154 			 */
155 			memmove(&regs[i], &regs[i + 1],
156 				(ents - i - 1) * sizeof(regs[0]));
157 			i--;
158 			ents--;
159 			continue;
160 		}
161 		regs[i].phys_addr = base;
162 		regs[i].reg_size = size;
163 	}
164 
165 	*num_ents = ents;
166 
167 	sort(regs, ents, sizeof(struct linux_prom64_registers),
168 	     cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
flush_dcache_page_impl(struct page * page)198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 	BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 	atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 	__flush_dcache_page(page_address(page),
207 			    ((tlb_type == spitfire) &&
208 			     page_mapping(page) != NULL));
209 #else
210 	if (page_mapping(page) != NULL &&
211 	    tlb_type == spitfire)
212 		__flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty		PG_arch_1
217 #define PG_dcache_cpu_shift	32UL
218 #define PG_dcache_cpu_mask	\
219 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
set_dcache_dirty(struct page * page,int this_cpu)224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 	unsigned long mask = this_cpu;
227 	unsigned long non_cpu_bits;
228 
229 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232 	__asm__ __volatile__("1:\n\t"
233 			     "ldx	[%2], %%g7\n\t"
234 			     "and	%%g7, %1, %%g1\n\t"
235 			     "or	%%g1, %0, %%g1\n\t"
236 			     "casx	[%2], %%g7, %%g1\n\t"
237 			     "cmp	%%g7, %%g1\n\t"
238 			     "bne,pn	%%xcc, 1b\n\t"
239 			     " nop"
240 			     : /* no outputs */
241 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 			     : "g1", "g7");
243 }
244 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 	unsigned long mask = (1UL << PG_dcache_dirty);
248 
249 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 			     "1:\n\t"
251 			     "ldx	[%2], %%g7\n\t"
252 			     "srlx	%%g7, %4, %%g1\n\t"
253 			     "and	%%g1, %3, %%g1\n\t"
254 			     "cmp	%%g1, %0\n\t"
255 			     "bne,pn	%%icc, 2f\n\t"
256 			     " andn	%%g7, %1, %%g1\n\t"
257 			     "casx	[%2], %%g7, %%g1\n\t"
258 			     "cmp	%%g7, %%g1\n\t"
259 			     "bne,pn	%%xcc, 1b\n\t"
260 			     " nop\n"
261 			     "2:"
262 			     : /* no outputs */
263 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
264 			       "i" (PG_dcache_cpu_mask),
265 			       "i" (PG_dcache_cpu_shift)
266 			     : "g1", "g7");
267 }
268 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 	unsigned long tsb_addr = (unsigned long) ent;
272 
273 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 		tsb_addr = __pa(tsb_addr);
275 
276 	__tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
flush_dcache(unsigned long pfn)281 static void flush_dcache(unsigned long pfn)
282 {
283 	struct page *page;
284 
285 	page = pfn_to_page(pfn);
286 	if (page) {
287 		unsigned long pg_flags;
288 
289 		pg_flags = page->flags;
290 		if (pg_flags & (1UL << PG_dcache_dirty)) {
291 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 				   PG_dcache_cpu_mask);
293 			int this_cpu = get_cpu();
294 
295 			/* This is just to optimize away some function calls
296 			 * in the SMP case.
297 			 */
298 			if (cpu == this_cpu)
299 				flush_dcache_page_impl(page);
300 			else
301 				smp_flush_dcache_page_impl(page, cpu);
302 
303 			clear_dcache_dirty_cpu(page, cpu);
304 
305 			put_cpu();
306 		}
307 	}
308 }
309 
310 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 				    unsigned long tsb_hash_shift, unsigned long address,
313 				    unsigned long tte)
314 {
315 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 	unsigned long tag;
317 
318 	if (unlikely(!tsb))
319 		return;
320 
321 	tsb += ((address >> tsb_hash_shift) &
322 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 	tag = (address >> 22UL);
324 	tsb_insert(tsb, tag, tte);
325 }
326 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)327 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
328 {
329 	struct mm_struct *mm;
330 	unsigned long flags;
331 	pte_t pte = *ptep;
332 
333 	if (tlb_type != hypervisor) {
334 		unsigned long pfn = pte_pfn(pte);
335 
336 		if (pfn_valid(pfn))
337 			flush_dcache(pfn);
338 	}
339 
340 	mm = vma->vm_mm;
341 
342 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
343 	if (!pte_accessible(mm, pte))
344 		return;
345 
346 	spin_lock_irqsave(&mm->context.lock, flags);
347 
348 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
349 	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
350 	    is_hugetlb_pte(pte))
351 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
352 					address, pte_val(pte));
353 	else
354 #endif
355 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
356 					address, pte_val(pte));
357 
358 	spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360 
flush_dcache_page(struct page * page)361 void flush_dcache_page(struct page *page)
362 {
363 	struct address_space *mapping;
364 	int this_cpu;
365 
366 	if (tlb_type == hypervisor)
367 		return;
368 
369 	/* Do not bother with the expensive D-cache flush if it
370 	 * is merely the zero page.  The 'bigcore' testcase in GDB
371 	 * causes this case to run millions of times.
372 	 */
373 	if (page == ZERO_PAGE(0))
374 		return;
375 
376 	this_cpu = get_cpu();
377 
378 	mapping = page_mapping(page);
379 	if (mapping && !mapping_mapped(mapping)) {
380 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
381 		if (dirty) {
382 			int dirty_cpu = dcache_dirty_cpu(page);
383 
384 			if (dirty_cpu == this_cpu)
385 				goto out;
386 			smp_flush_dcache_page_impl(page, dirty_cpu);
387 		}
388 		set_dcache_dirty(page, this_cpu);
389 	} else {
390 		/* We could delay the flush for the !page_mapping
391 		 * case too.  But that case is for exec env/arg
392 		 * pages and those are %99 certainly going to get
393 		 * faulted into the tlb (and thus flushed) anyways.
394 		 */
395 		flush_dcache_page_impl(page);
396 	}
397 
398 out:
399 	put_cpu();
400 }
401 EXPORT_SYMBOL(flush_dcache_page);
402 
flush_icache_range(unsigned long start,unsigned long end)403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406 	if (tlb_type == spitfire) {
407 		unsigned long kaddr;
408 
409 		/* This code only runs on Spitfire cpus so this is
410 		 * why we can assume _PAGE_PADDR_4U.
411 		 */
412 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413 			unsigned long paddr, mask = _PAGE_PADDR_4U;
414 
415 			if (kaddr >= PAGE_OFFSET)
416 				paddr = kaddr & mask;
417 			else {
418 				pgd_t *pgdp = pgd_offset_k(kaddr);
419 				pud_t *pudp = pud_offset(pgdp, kaddr);
420 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
421 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422 
423 				paddr = pte_val(*ptep) & mask;
424 			}
425 			__flush_icache_page(paddr);
426 		}
427 	}
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430 
mmu_info(struct seq_file * m)431 void mmu_info(struct seq_file *m)
432 {
433 	static const char *pgsz_strings[] = {
434 		"8K", "64K", "512K", "4MB", "32MB",
435 		"256MB", "2GB", "16GB",
436 	};
437 	int i, printed;
438 
439 	if (tlb_type == cheetah)
440 		seq_printf(m, "MMU Type\t: Cheetah\n");
441 	else if (tlb_type == cheetah_plus)
442 		seq_printf(m, "MMU Type\t: Cheetah+\n");
443 	else if (tlb_type == spitfire)
444 		seq_printf(m, "MMU Type\t: Spitfire\n");
445 	else if (tlb_type == hypervisor)
446 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447 	else
448 		seq_printf(m, "MMU Type\t: ???\n");
449 
450 	seq_printf(m, "MMU PGSZs\t: ");
451 	printed = 0;
452 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453 		if (cpu_pgsz_mask & (1UL << i)) {
454 			seq_printf(m, "%s%s",
455 				   printed ? "," : "", pgsz_strings[i]);
456 			printed++;
457 		}
458 	}
459 	seq_putc(m, '\n');
460 
461 #ifdef CONFIG_DEBUG_DCFLUSH
462 	seq_printf(m, "DCPageFlushes\t: %d\n",
463 		   atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
466 		   atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470 
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473 
474 unsigned long kern_locked_tte_data;
475 
476 /* The obp translations are saved based on 8k pagesize, since obp can
477  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478  * HI_OBP_ADDRESS range are handled in ktlb.S.
479  */
in_obp_range(unsigned long vaddr)480 static inline int in_obp_range(unsigned long vaddr)
481 {
482 	return (vaddr >= LOW_OBP_ADDRESS &&
483 		vaddr < HI_OBP_ADDRESS);
484 }
485 
cmp_ptrans(const void * a,const void * b)486 static int cmp_ptrans(const void *a, const void *b)
487 {
488 	const struct linux_prom_translation *x = a, *y = b;
489 
490 	if (x->virt > y->virt)
491 		return 1;
492 	if (x->virt < y->virt)
493 		return -1;
494 	return 0;
495 }
496 
497 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)498 static void __init read_obp_translations(void)
499 {
500 	int n, node, ents, first, last, i;
501 
502 	node = prom_finddevice("/virtual-memory");
503 	n = prom_getproplen(node, "translations");
504 	if (unlikely(n == 0 || n == -1)) {
505 		prom_printf("prom_mappings: Couldn't get size.\n");
506 		prom_halt();
507 	}
508 	if (unlikely(n > sizeof(prom_trans))) {
509 		prom_printf("prom_mappings: Size %d is too big.\n", n);
510 		prom_halt();
511 	}
512 
513 	if ((n = prom_getproperty(node, "translations",
514 				  (char *)&prom_trans[0],
515 				  sizeof(prom_trans))) == -1) {
516 		prom_printf("prom_mappings: Couldn't get property.\n");
517 		prom_halt();
518 	}
519 
520 	n = n / sizeof(struct linux_prom_translation);
521 
522 	ents = n;
523 
524 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525 	     cmp_ptrans, NULL);
526 
527 	/* Now kick out all the non-OBP entries.  */
528 	for (i = 0; i < ents; i++) {
529 		if (in_obp_range(prom_trans[i].virt))
530 			break;
531 	}
532 	first = i;
533 	for (; i < ents; i++) {
534 		if (!in_obp_range(prom_trans[i].virt))
535 			break;
536 	}
537 	last = i;
538 
539 	for (i = 0; i < (last - first); i++) {
540 		struct linux_prom_translation *src = &prom_trans[i + first];
541 		struct linux_prom_translation *dest = &prom_trans[i];
542 
543 		*dest = *src;
544 	}
545 	for (; i < ents; i++) {
546 		struct linux_prom_translation *dest = &prom_trans[i];
547 		dest->virt = dest->size = dest->data = 0x0UL;
548 	}
549 
550 	prom_trans_ents = last - first;
551 
552 	if (tlb_type == spitfire) {
553 		/* Clear diag TTE bits. */
554 		for (i = 0; i < prom_trans_ents; i++)
555 			prom_trans[i].data &= ~0x0003fe0000000000UL;
556 	}
557 
558 	/* Force execute bit on.  */
559 	for (i = 0; i < prom_trans_ents; i++)
560 		prom_trans[i].data |= (tlb_type == hypervisor ?
561 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
562 }
563 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565 				       unsigned long pte,
566 				       unsigned long mmu)
567 {
568 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569 
570 	if (ret != 0) {
571 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573 		prom_halt();
574 	}
575 }
576 
577 static unsigned long kern_large_tte(unsigned long paddr);
578 
remap_kernel(void)579 static void __init remap_kernel(void)
580 {
581 	unsigned long phys_page, tte_vaddr, tte_data;
582 	int i, tlb_ent = sparc64_highest_locked_tlbent();
583 
584 	tte_vaddr = (unsigned long) KERNBASE;
585 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
586 	tte_data = kern_large_tte(phys_page);
587 
588 	kern_locked_tte_data = tte_data;
589 
590 	/* Now lock us into the TLBs via Hypervisor or OBP. */
591 	if (tlb_type == hypervisor) {
592 		for (i = 0; i < num_kernel_image_mappings; i++) {
593 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595 			tte_vaddr += 0x400000;
596 			tte_data += 0x400000;
597 		}
598 	} else {
599 		for (i = 0; i < num_kernel_image_mappings; i++) {
600 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602 			tte_vaddr += 0x400000;
603 			tte_data += 0x400000;
604 		}
605 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
606 	}
607 	if (tlb_type == cheetah_plus) {
608 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609 					    CTX_CHEETAH_PLUS_NUC);
610 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612 	}
613 }
614 
615 
inherit_prom_mappings(void)616 static void __init inherit_prom_mappings(void)
617 {
618 	/* Now fixup OBP's idea about where we really are mapped. */
619 	printk("Remapping the kernel... ");
620 	remap_kernel();
621 	printk("done.\n");
622 }
623 
prom_world(int enter)624 void prom_world(int enter)
625 {
626 	if (!enter)
627 		set_fs(get_fs());
628 
629 	__asm__ __volatile__("flushw");
630 }
631 
__flush_dcache_range(unsigned long start,unsigned long end)632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634 	unsigned long va;
635 
636 	if (tlb_type == spitfire) {
637 		int n = 0;
638 
639 		for (va = start; va < end; va += 32) {
640 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641 			if (++n >= 512)
642 				break;
643 		}
644 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645 		start = __pa(start);
646 		end = __pa(end);
647 		for (va = start; va < end; va += 32)
648 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649 					     "membar #Sync"
650 					     : /* no outputs */
651 					     : "r" (va),
652 					       "i" (ASI_DCACHE_INVALIDATE));
653 	}
654 }
655 EXPORT_SYMBOL(__flush_dcache_range);
656 
657 /* get_new_mmu_context() uses "cache + 1".  */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
659 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
660 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
664 
mmu_context_wrap(void)665 static void mmu_context_wrap(void)
666 {
667 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
668 	unsigned long new_ver, new_ctx, old_ctx;
669 	struct mm_struct *mm;
670 	int cpu;
671 
672 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
673 
674 	/* Reserve kernel context */
675 	set_bit(0, mmu_context_bmap);
676 
677 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
678 	if (unlikely(new_ver == 0))
679 		new_ver = CTX_FIRST_VERSION;
680 	tlb_context_cache = new_ver;
681 
682 	/*
683 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
684 	 * are going to go through get_new_mmu_context() path.
685 	 */
686 	mb();
687 
688 	/*
689 	 * Updated versions to current on those CPUs that had valid secondary
690 	 * contexts
691 	 */
692 	for_each_online_cpu(cpu) {
693 		/*
694 		 * If a new mm is stored after we took this mm from the array,
695 		 * it will go into get_new_mmu_context() path, because we
696 		 * already bumped the version in tlb_context_cache.
697 		 */
698 		mm = per_cpu(per_cpu_secondary_mm, cpu);
699 
700 		if (unlikely(!mm || mm == &init_mm))
701 			continue;
702 
703 		old_ctx = mm->context.sparc64_ctx_val;
704 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
705 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
706 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
707 			mm->context.sparc64_ctx_val = new_ctx;
708 		}
709 	}
710 }
711 
712 /* Caller does TLB context flushing on local CPU if necessary.
713  * The caller also ensures that CTX_VALID(mm->context) is false.
714  *
715  * We must be careful about boundary cases so that we never
716  * let the user have CTX 0 (nucleus) or we ever use a CTX
717  * version of zero (and thus NO_CONTEXT would not be caught
718  * by version mis-match tests in mmu_context.h).
719  *
720  * Always invoked with interrupts disabled.
721  */
get_new_mmu_context(struct mm_struct * mm)722 void get_new_mmu_context(struct mm_struct *mm)
723 {
724 	unsigned long ctx, new_ctx;
725 	unsigned long orig_pgsz_bits;
726 
727 	spin_lock(&ctx_alloc_lock);
728 retry:
729 	/* wrap might have happened, test again if our context became valid */
730 	if (unlikely(CTX_VALID(mm->context)))
731 		goto out;
732 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
733 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
734 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
735 	if (new_ctx >= (1 << CTX_NR_BITS)) {
736 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
737 		if (new_ctx >= ctx) {
738 			mmu_context_wrap();
739 			goto retry;
740 		}
741 	}
742 	if (mm->context.sparc64_ctx_val)
743 		cpumask_clear(mm_cpumask(mm));
744 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
745 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
746 	tlb_context_cache = new_ctx;
747 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
748 out:
749 	spin_unlock(&ctx_alloc_lock);
750 }
751 
752 static int numa_enabled = 1;
753 static int numa_debug;
754 
early_numa(char * p)755 static int __init early_numa(char *p)
756 {
757 	if (!p)
758 		return 0;
759 
760 	if (strstr(p, "off"))
761 		numa_enabled = 0;
762 
763 	if (strstr(p, "debug"))
764 		numa_debug = 1;
765 
766 	return 0;
767 }
768 early_param("numa", early_numa);
769 
770 #define numadbg(f, a...) \
771 do {	if (numa_debug) \
772 		printk(KERN_INFO f, ## a); \
773 } while (0)
774 
find_ramdisk(unsigned long phys_base)775 static void __init find_ramdisk(unsigned long phys_base)
776 {
777 #ifdef CONFIG_BLK_DEV_INITRD
778 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
779 		unsigned long ramdisk_image;
780 
781 		/* Older versions of the bootloader only supported a
782 		 * 32-bit physical address for the ramdisk image
783 		 * location, stored at sparc_ramdisk_image.  Newer
784 		 * SILO versions set sparc_ramdisk_image to zero and
785 		 * provide a full 64-bit physical address at
786 		 * sparc_ramdisk_image64.
787 		 */
788 		ramdisk_image = sparc_ramdisk_image;
789 		if (!ramdisk_image)
790 			ramdisk_image = sparc_ramdisk_image64;
791 
792 		/* Another bootloader quirk.  The bootloader normalizes
793 		 * the physical address to KERNBASE, so we have to
794 		 * factor that back out and add in the lowest valid
795 		 * physical page address to get the true physical address.
796 		 */
797 		ramdisk_image -= KERNBASE;
798 		ramdisk_image += phys_base;
799 
800 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
801 			ramdisk_image, sparc_ramdisk_size);
802 
803 		initrd_start = ramdisk_image;
804 		initrd_end = ramdisk_image + sparc_ramdisk_size;
805 
806 		memblock_reserve(initrd_start, sparc_ramdisk_size);
807 
808 		initrd_start += PAGE_OFFSET;
809 		initrd_end += PAGE_OFFSET;
810 	}
811 #endif
812 }
813 
814 struct node_mem_mask {
815 	unsigned long mask;
816 	unsigned long val;
817 };
818 static struct node_mem_mask node_masks[MAX_NUMNODES];
819 static int num_node_masks;
820 
821 #ifdef CONFIG_NEED_MULTIPLE_NODES
822 
823 int numa_cpu_lookup_table[NR_CPUS];
824 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
825 
826 struct mdesc_mblock {
827 	u64	base;
828 	u64	size;
829 	u64	offset; /* RA-to-PA */
830 };
831 static struct mdesc_mblock *mblocks;
832 static int num_mblocks;
833 static int find_numa_node_for_addr(unsigned long pa,
834 				   struct node_mem_mask *pnode_mask);
835 
ra_to_pa(unsigned long addr)836 static unsigned long __init ra_to_pa(unsigned long addr)
837 {
838 	int i;
839 
840 	for (i = 0; i < num_mblocks; i++) {
841 		struct mdesc_mblock *m = &mblocks[i];
842 
843 		if (addr >= m->base &&
844 		    addr < (m->base + m->size)) {
845 			addr += m->offset;
846 			break;
847 		}
848 	}
849 	return addr;
850 }
851 
find_node(unsigned long addr)852 static int __init find_node(unsigned long addr)
853 {
854 	static bool search_mdesc = true;
855 	static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL };
856 	static int last_index;
857 	int i;
858 
859 	addr = ra_to_pa(addr);
860 	for (i = 0; i < num_node_masks; i++) {
861 		struct node_mem_mask *p = &node_masks[i];
862 
863 		if ((addr & p->mask) == p->val)
864 			return i;
865 	}
866 	/* The following condition has been observed on LDOM guests because
867 	 * node_masks only contains the best latency mask and value.
868 	 * LDOM guest's mdesc can contain a single latency group to
869 	 * cover multiple address range. Print warning message only if the
870 	 * address cannot be found in node_masks nor mdesc.
871 	 */
872 	if ((search_mdesc) &&
873 	    ((addr & last_mem_mask.mask) != last_mem_mask.val)) {
874 		/* find the available node in the mdesc */
875 		last_index = find_numa_node_for_addr(addr, &last_mem_mask);
876 		numadbg("find_node: latency group for address 0x%lx is %d\n",
877 			addr, last_index);
878 		if ((last_index < 0) || (last_index >= num_node_masks)) {
879 			/* WARN_ONCE() and use default group 0 */
880 			WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.");
881 			search_mdesc = false;
882 			last_index = 0;
883 		}
884 	}
885 
886 	return last_index;
887 }
888 
memblock_nid_range(u64 start,u64 end,int * nid)889 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
890 {
891 	*nid = find_node(start);
892 	start += PAGE_SIZE;
893 	while (start < end) {
894 		int n = find_node(start);
895 
896 		if (n != *nid)
897 			break;
898 		start += PAGE_SIZE;
899 	}
900 
901 	if (start > end)
902 		start = end;
903 
904 	return start;
905 }
906 #endif
907 
908 /* This must be invoked after performing all of the necessary
909  * memblock_set_node() calls for 'nid'.  We need to be able to get
910  * correct data from get_pfn_range_for_nid().
911  */
allocate_node_data(int nid)912 static void __init allocate_node_data(int nid)
913 {
914 	struct pglist_data *p;
915 	unsigned long start_pfn, end_pfn;
916 #ifdef CONFIG_NEED_MULTIPLE_NODES
917 	unsigned long paddr;
918 
919 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
920 	if (!paddr) {
921 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
922 		prom_halt();
923 	}
924 	NODE_DATA(nid) = __va(paddr);
925 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
926 
927 	NODE_DATA(nid)->node_id = nid;
928 #endif
929 
930 	p = NODE_DATA(nid);
931 
932 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
933 	p->node_start_pfn = start_pfn;
934 	p->node_spanned_pages = end_pfn - start_pfn;
935 }
936 
init_node_masks_nonnuma(void)937 static void init_node_masks_nonnuma(void)
938 {
939 #ifdef CONFIG_NEED_MULTIPLE_NODES
940 	int i;
941 #endif
942 
943 	numadbg("Initializing tables for non-numa.\n");
944 
945 	node_masks[0].mask = node_masks[0].val = 0;
946 	num_node_masks = 1;
947 
948 #ifdef CONFIG_NEED_MULTIPLE_NODES
949 	for (i = 0; i < NR_CPUS; i++)
950 		numa_cpu_lookup_table[i] = 0;
951 
952 	cpumask_setall(&numa_cpumask_lookup_table[0]);
953 #endif
954 }
955 
956 #ifdef CONFIG_NEED_MULTIPLE_NODES
957 struct pglist_data *node_data[MAX_NUMNODES];
958 
959 EXPORT_SYMBOL(numa_cpu_lookup_table);
960 EXPORT_SYMBOL(numa_cpumask_lookup_table);
961 EXPORT_SYMBOL(node_data);
962 
963 struct mdesc_mlgroup {
964 	u64	node;
965 	u64	latency;
966 	u64	match;
967 	u64	mask;
968 };
969 static struct mdesc_mlgroup *mlgroups;
970 static int num_mlgroups;
971 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)972 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
973 				   u32 cfg_handle)
974 {
975 	u64 arc;
976 
977 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
978 		u64 target = mdesc_arc_target(md, arc);
979 		const u64 *val;
980 
981 		val = mdesc_get_property(md, target,
982 					 "cfg-handle", NULL);
983 		if (val && *val == cfg_handle)
984 			return 0;
985 	}
986 	return -ENODEV;
987 }
988 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)989 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
990 				    u32 cfg_handle)
991 {
992 	u64 arc, candidate, best_latency = ~(u64)0;
993 
994 	candidate = MDESC_NODE_NULL;
995 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
996 		u64 target = mdesc_arc_target(md, arc);
997 		const char *name = mdesc_node_name(md, target);
998 		const u64 *val;
999 
1000 		if (strcmp(name, "pio-latency-group"))
1001 			continue;
1002 
1003 		val = mdesc_get_property(md, target, "latency", NULL);
1004 		if (!val)
1005 			continue;
1006 
1007 		if (*val < best_latency) {
1008 			candidate = target;
1009 			best_latency = *val;
1010 		}
1011 	}
1012 
1013 	if (candidate == MDESC_NODE_NULL)
1014 		return -ENODEV;
1015 
1016 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1017 }
1018 
of_node_to_nid(struct device_node * dp)1019 int of_node_to_nid(struct device_node *dp)
1020 {
1021 	const struct linux_prom64_registers *regs;
1022 	struct mdesc_handle *md;
1023 	u32 cfg_handle;
1024 	int count, nid;
1025 	u64 grp;
1026 
1027 	/* This is the right thing to do on currently supported
1028 	 * SUN4U NUMA platforms as well, as the PCI controller does
1029 	 * not sit behind any particular memory controller.
1030 	 */
1031 	if (!mlgroups)
1032 		return -1;
1033 
1034 	regs = of_get_property(dp, "reg", NULL);
1035 	if (!regs)
1036 		return -1;
1037 
1038 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1039 
1040 	md = mdesc_grab();
1041 
1042 	count = 0;
1043 	nid = -1;
1044 	mdesc_for_each_node_by_name(md, grp, "group") {
1045 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1046 			nid = count;
1047 			break;
1048 		}
1049 		count++;
1050 	}
1051 
1052 	mdesc_release(md);
1053 
1054 	return nid;
1055 }
1056 
add_node_ranges(void)1057 static void __init add_node_ranges(void)
1058 {
1059 	struct memblock_region *reg;
1060 
1061 	for_each_memblock(memory, reg) {
1062 		unsigned long size = reg->size;
1063 		unsigned long start, end;
1064 
1065 		start = reg->base;
1066 		end = start + size;
1067 		while (start < end) {
1068 			unsigned long this_end;
1069 			int nid;
1070 
1071 			this_end = memblock_nid_range(start, end, &nid);
1072 
1073 			numadbg("Setting memblock NUMA node nid[%d] "
1074 				"start[%lx] end[%lx]\n",
1075 				nid, start, this_end);
1076 
1077 			memblock_set_node(start, this_end - start,
1078 					  &memblock.memory, nid);
1079 			start = this_end;
1080 		}
1081 	}
1082 }
1083 
grab_mlgroups(struct mdesc_handle * md)1084 static int __init grab_mlgroups(struct mdesc_handle *md)
1085 {
1086 	unsigned long paddr;
1087 	int count = 0;
1088 	u64 node;
1089 
1090 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1091 		count++;
1092 	if (!count)
1093 		return -ENOENT;
1094 
1095 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1096 			  SMP_CACHE_BYTES);
1097 	if (!paddr)
1098 		return -ENOMEM;
1099 
1100 	mlgroups = __va(paddr);
1101 	num_mlgroups = count;
1102 
1103 	count = 0;
1104 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1105 		struct mdesc_mlgroup *m = &mlgroups[count++];
1106 		const u64 *val;
1107 
1108 		m->node = node;
1109 
1110 		val = mdesc_get_property(md, node, "latency", NULL);
1111 		m->latency = *val;
1112 		val = mdesc_get_property(md, node, "address-match", NULL);
1113 		m->match = *val;
1114 		val = mdesc_get_property(md, node, "address-mask", NULL);
1115 		m->mask = *val;
1116 
1117 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1118 			"match[%llx] mask[%llx]\n",
1119 			count - 1, m->node, m->latency, m->match, m->mask);
1120 	}
1121 
1122 	return 0;
1123 }
1124 
grab_mblocks(struct mdesc_handle * md)1125 static int __init grab_mblocks(struct mdesc_handle *md)
1126 {
1127 	unsigned long paddr;
1128 	int count = 0;
1129 	u64 node;
1130 
1131 	mdesc_for_each_node_by_name(md, node, "mblock")
1132 		count++;
1133 	if (!count)
1134 		return -ENOENT;
1135 
1136 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1137 			  SMP_CACHE_BYTES);
1138 	if (!paddr)
1139 		return -ENOMEM;
1140 
1141 	mblocks = __va(paddr);
1142 	num_mblocks = count;
1143 
1144 	count = 0;
1145 	mdesc_for_each_node_by_name(md, node, "mblock") {
1146 		struct mdesc_mblock *m = &mblocks[count++];
1147 		const u64 *val;
1148 
1149 		val = mdesc_get_property(md, node, "base", NULL);
1150 		m->base = *val;
1151 		val = mdesc_get_property(md, node, "size", NULL);
1152 		m->size = *val;
1153 		val = mdesc_get_property(md, node,
1154 					 "address-congruence-offset", NULL);
1155 
1156 		/* The address-congruence-offset property is optional.
1157 		 * Explicity zero it be identifty this.
1158 		 */
1159 		if (val)
1160 			m->offset = *val;
1161 		else
1162 			m->offset = 0UL;
1163 
1164 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1165 			count - 1, m->base, m->size, m->offset);
1166 	}
1167 
1168 	return 0;
1169 }
1170 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1171 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1172 					       u64 grp, cpumask_t *mask)
1173 {
1174 	u64 arc;
1175 
1176 	cpumask_clear(mask);
1177 
1178 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1179 		u64 target = mdesc_arc_target(md, arc);
1180 		const char *name = mdesc_node_name(md, target);
1181 		const u64 *id;
1182 
1183 		if (strcmp(name, "cpu"))
1184 			continue;
1185 		id = mdesc_get_property(md, target, "id", NULL);
1186 		if (*id < nr_cpu_ids)
1187 			cpumask_set_cpu(*id, mask);
1188 	}
1189 }
1190 
find_mlgroup(u64 node)1191 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1192 {
1193 	int i;
1194 
1195 	for (i = 0; i < num_mlgroups; i++) {
1196 		struct mdesc_mlgroup *m = &mlgroups[i];
1197 		if (m->node == node)
1198 			return m;
1199 	}
1200 	return NULL;
1201 }
1202 
__node_distance(int from,int to)1203 int __node_distance(int from, int to)
1204 {
1205 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1206 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1207 			from, to);
1208 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1209 	}
1210 	return numa_latency[from][to];
1211 }
1212 
find_numa_node_for_addr(unsigned long pa,struct node_mem_mask * pnode_mask)1213 static int find_numa_node_for_addr(unsigned long pa,
1214 				   struct node_mem_mask *pnode_mask)
1215 {
1216 	struct mdesc_handle *md = mdesc_grab();
1217 	u64 node, arc;
1218 	int i = 0;
1219 
1220 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1221 	if (node == MDESC_NODE_NULL)
1222 		goto out;
1223 
1224 	mdesc_for_each_node_by_name(md, node, "group") {
1225 		mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) {
1226 			u64 target = mdesc_arc_target(md, arc);
1227 			struct mdesc_mlgroup *m = find_mlgroup(target);
1228 
1229 			if (!m)
1230 				continue;
1231 			if ((pa & m->mask) == m->match) {
1232 				if (pnode_mask) {
1233 					pnode_mask->mask = m->mask;
1234 					pnode_mask->val = m->match;
1235 				}
1236 				mdesc_release(md);
1237 				return i;
1238 			}
1239 		}
1240 		i++;
1241 	}
1242 
1243 out:
1244 	mdesc_release(md);
1245 	return -1;
1246 }
1247 
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1248 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1249 {
1250 	int i;
1251 
1252 	for (i = 0; i < MAX_NUMNODES; i++) {
1253 		struct node_mem_mask *n = &node_masks[i];
1254 
1255 		if ((grp->mask == n->mask) && (grp->match == n->val))
1256 			break;
1257 	}
1258 	return i;
1259 }
1260 
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1261 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1262 					  int index)
1263 {
1264 	u64 arc;
1265 
1266 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1267 		int tnode;
1268 		u64 target = mdesc_arc_target(md, arc);
1269 		struct mdesc_mlgroup *m = find_mlgroup(target);
1270 
1271 		if (!m)
1272 			continue;
1273 		tnode = find_best_numa_node_for_mlgroup(m);
1274 		if (tnode == MAX_NUMNODES)
1275 			continue;
1276 		numa_latency[index][tnode] = m->latency;
1277 	}
1278 }
1279 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1280 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1281 				      int index)
1282 {
1283 	struct mdesc_mlgroup *candidate = NULL;
1284 	u64 arc, best_latency = ~(u64)0;
1285 	struct node_mem_mask *n;
1286 
1287 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1288 		u64 target = mdesc_arc_target(md, arc);
1289 		struct mdesc_mlgroup *m = find_mlgroup(target);
1290 		if (!m)
1291 			continue;
1292 		if (m->latency < best_latency) {
1293 			candidate = m;
1294 			best_latency = m->latency;
1295 		}
1296 	}
1297 	if (!candidate)
1298 		return -ENOENT;
1299 
1300 	if (num_node_masks != index) {
1301 		printk(KERN_ERR "Inconsistent NUMA state, "
1302 		       "index[%d] != num_node_masks[%d]\n",
1303 		       index, num_node_masks);
1304 		return -EINVAL;
1305 	}
1306 
1307 	n = &node_masks[num_node_masks++];
1308 
1309 	n->mask = candidate->mask;
1310 	n->val = candidate->match;
1311 
1312 	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1313 		index, n->mask, n->val, candidate->latency);
1314 
1315 	return 0;
1316 }
1317 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1318 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1319 					 int index)
1320 {
1321 	cpumask_t mask;
1322 	int cpu;
1323 
1324 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1325 
1326 	for_each_cpu(cpu, &mask)
1327 		numa_cpu_lookup_table[cpu] = index;
1328 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1329 
1330 	if (numa_debug) {
1331 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1332 		for_each_cpu(cpu, &mask)
1333 			printk("%d ", cpu);
1334 		printk("]\n");
1335 	}
1336 
1337 	return numa_attach_mlgroup(md, grp, index);
1338 }
1339 
numa_parse_mdesc(void)1340 static int __init numa_parse_mdesc(void)
1341 {
1342 	struct mdesc_handle *md = mdesc_grab();
1343 	int i, j, err, count;
1344 	u64 node;
1345 
1346 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1347 	if (node == MDESC_NODE_NULL) {
1348 		mdesc_release(md);
1349 		return -ENOENT;
1350 	}
1351 
1352 	err = grab_mblocks(md);
1353 	if (err < 0)
1354 		goto out;
1355 
1356 	err = grab_mlgroups(md);
1357 	if (err < 0)
1358 		goto out;
1359 
1360 	count = 0;
1361 	mdesc_for_each_node_by_name(md, node, "group") {
1362 		err = numa_parse_mdesc_group(md, node, count);
1363 		if (err < 0)
1364 			break;
1365 		count++;
1366 	}
1367 
1368 	count = 0;
1369 	mdesc_for_each_node_by_name(md, node, "group") {
1370 		find_numa_latencies_for_group(md, node, count);
1371 		count++;
1372 	}
1373 
1374 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1375 	for (i = 0; i < MAX_NUMNODES; i++) {
1376 		u64 self_latency = numa_latency[i][i];
1377 
1378 		for (j = 0; j < MAX_NUMNODES; j++) {
1379 			numa_latency[i][j] =
1380 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1381 				self_latency;
1382 		}
1383 	}
1384 
1385 	add_node_ranges();
1386 
1387 	for (i = 0; i < num_node_masks; i++) {
1388 		allocate_node_data(i);
1389 		node_set_online(i);
1390 	}
1391 
1392 	err = 0;
1393 out:
1394 	mdesc_release(md);
1395 	return err;
1396 }
1397 
numa_parse_jbus(void)1398 static int __init numa_parse_jbus(void)
1399 {
1400 	unsigned long cpu, index;
1401 
1402 	/* NUMA node id is encoded in bits 36 and higher, and there is
1403 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1404 	 */
1405 	index = 0;
1406 	for_each_present_cpu(cpu) {
1407 		numa_cpu_lookup_table[cpu] = index;
1408 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1409 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1410 		node_masks[index].val = cpu << 36UL;
1411 
1412 		index++;
1413 	}
1414 	num_node_masks = index;
1415 
1416 	add_node_ranges();
1417 
1418 	for (index = 0; index < num_node_masks; index++) {
1419 		allocate_node_data(index);
1420 		node_set_online(index);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
numa_parse_sun4u(void)1426 static int __init numa_parse_sun4u(void)
1427 {
1428 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1429 		unsigned long ver;
1430 
1431 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1432 		if ((ver >> 32UL) == __JALAPENO_ID ||
1433 		    (ver >> 32UL) == __SERRANO_ID)
1434 			return numa_parse_jbus();
1435 	}
1436 	return -1;
1437 }
1438 
bootmem_init_numa(void)1439 static int __init bootmem_init_numa(void)
1440 {
1441 	int i, j;
1442 	int err = -1;
1443 
1444 	numadbg("bootmem_init_numa()\n");
1445 
1446 	/* Some sane defaults for numa latency values */
1447 	for (i = 0; i < MAX_NUMNODES; i++) {
1448 		for (j = 0; j < MAX_NUMNODES; j++)
1449 			numa_latency[i][j] = (i == j) ?
1450 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1451 	}
1452 
1453 	if (numa_enabled) {
1454 		if (tlb_type == hypervisor)
1455 			err = numa_parse_mdesc();
1456 		else
1457 			err = numa_parse_sun4u();
1458 	}
1459 	return err;
1460 }
1461 
1462 #else
1463 
bootmem_init_numa(void)1464 static int bootmem_init_numa(void)
1465 {
1466 	return -1;
1467 }
1468 
1469 #endif
1470 
bootmem_init_nonnuma(void)1471 static void __init bootmem_init_nonnuma(void)
1472 {
1473 	unsigned long top_of_ram = memblock_end_of_DRAM();
1474 	unsigned long total_ram = memblock_phys_mem_size();
1475 
1476 	numadbg("bootmem_init_nonnuma()\n");
1477 
1478 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1479 	       top_of_ram, total_ram);
1480 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1481 	       (top_of_ram - total_ram) >> 20);
1482 
1483 	init_node_masks_nonnuma();
1484 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1485 	allocate_node_data(0);
1486 	node_set_online(0);
1487 }
1488 
bootmem_init(unsigned long phys_base)1489 static unsigned long __init bootmem_init(unsigned long phys_base)
1490 {
1491 	unsigned long end_pfn;
1492 
1493 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1494 	max_pfn = max_low_pfn = end_pfn;
1495 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1496 
1497 	if (bootmem_init_numa() < 0)
1498 		bootmem_init_nonnuma();
1499 
1500 	/* Dump memblock with node info. */
1501 	memblock_dump_all();
1502 
1503 	/* XXX cpu notifier XXX */
1504 
1505 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1506 	sparse_init();
1507 
1508 	return end_pfn;
1509 }
1510 
1511 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1512 static int pall_ents __initdata;
1513 
1514 static unsigned long max_phys_bits = 40;
1515 
kern_addr_valid(unsigned long addr)1516 bool kern_addr_valid(unsigned long addr)
1517 {
1518 	pgd_t *pgd;
1519 	pud_t *pud;
1520 	pmd_t *pmd;
1521 	pte_t *pte;
1522 
1523 	if ((long)addr < 0L) {
1524 		unsigned long pa = __pa(addr);
1525 
1526 		if ((pa >> max_phys_bits) != 0UL)
1527 			return false;
1528 
1529 		return pfn_valid(pa >> PAGE_SHIFT);
1530 	}
1531 
1532 	if (addr >= (unsigned long) KERNBASE &&
1533 	    addr < (unsigned long)&_end)
1534 		return true;
1535 
1536 	pgd = pgd_offset_k(addr);
1537 	if (pgd_none(*pgd))
1538 		return 0;
1539 
1540 	pud = pud_offset(pgd, addr);
1541 	if (pud_none(*pud))
1542 		return 0;
1543 
1544 	if (pud_large(*pud))
1545 		return pfn_valid(pud_pfn(*pud));
1546 
1547 	pmd = pmd_offset(pud, addr);
1548 	if (pmd_none(*pmd))
1549 		return 0;
1550 
1551 	if (pmd_large(*pmd))
1552 		return pfn_valid(pmd_pfn(*pmd));
1553 
1554 	pte = pte_offset_kernel(pmd, addr);
1555 	if (pte_none(*pte))
1556 		return 0;
1557 
1558 	return pfn_valid(pte_pfn(*pte));
1559 }
1560 EXPORT_SYMBOL(kern_addr_valid);
1561 
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1562 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1563 					      unsigned long vend,
1564 					      pud_t *pud)
1565 {
1566 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1567 	u64 pte_val = vstart;
1568 
1569 	/* Each PUD is 8GB */
1570 	if ((vstart & mask16gb) ||
1571 	    (vend - vstart <= mask16gb)) {
1572 		pte_val ^= kern_linear_pte_xor[2];
1573 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1574 
1575 		return vstart + PUD_SIZE;
1576 	}
1577 
1578 	pte_val ^= kern_linear_pte_xor[3];
1579 	pte_val |= _PAGE_PUD_HUGE;
1580 
1581 	vend = vstart + mask16gb + 1UL;
1582 	while (vstart < vend) {
1583 		pud_val(*pud) = pte_val;
1584 
1585 		pte_val += PUD_SIZE;
1586 		vstart += PUD_SIZE;
1587 		pud++;
1588 	}
1589 	return vstart;
1590 }
1591 
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1592 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1593 				   bool guard)
1594 {
1595 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1596 		return true;
1597 
1598 	return false;
1599 }
1600 
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1601 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1602 					      unsigned long vend,
1603 					      pmd_t *pmd)
1604 {
1605 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1606 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1607 	u64 pte_val = vstart;
1608 
1609 	/* Each PMD is 8MB */
1610 	if ((vstart & mask256mb) ||
1611 	    (vend - vstart <= mask256mb)) {
1612 		pte_val ^= kern_linear_pte_xor[0];
1613 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1614 
1615 		return vstart + PMD_SIZE;
1616 	}
1617 
1618 	if ((vstart & mask2gb) ||
1619 	    (vend - vstart <= mask2gb)) {
1620 		pte_val ^= kern_linear_pte_xor[1];
1621 		pte_val |= _PAGE_PMD_HUGE;
1622 		vend = vstart + mask256mb + 1UL;
1623 	} else {
1624 		pte_val ^= kern_linear_pte_xor[2];
1625 		pte_val |= _PAGE_PMD_HUGE;
1626 		vend = vstart + mask2gb + 1UL;
1627 	}
1628 
1629 	while (vstart < vend) {
1630 		pmd_val(*pmd) = pte_val;
1631 
1632 		pte_val += PMD_SIZE;
1633 		vstart += PMD_SIZE;
1634 		pmd++;
1635 	}
1636 
1637 	return vstart;
1638 }
1639 
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1640 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1641 				   bool guard)
1642 {
1643 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1644 		return true;
1645 
1646 	return false;
1647 }
1648 
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1649 static unsigned long __ref kernel_map_range(unsigned long pstart,
1650 					    unsigned long pend, pgprot_t prot,
1651 					    bool use_huge)
1652 {
1653 	unsigned long vstart = PAGE_OFFSET + pstart;
1654 	unsigned long vend = PAGE_OFFSET + pend;
1655 	unsigned long alloc_bytes = 0UL;
1656 
1657 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1658 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1659 			    vstart, vend);
1660 		prom_halt();
1661 	}
1662 
1663 	while (vstart < vend) {
1664 		unsigned long this_end, paddr = __pa(vstart);
1665 		pgd_t *pgd = pgd_offset_k(vstart);
1666 		pud_t *pud;
1667 		pmd_t *pmd;
1668 		pte_t *pte;
1669 
1670 		if (pgd_none(*pgd)) {
1671 			pud_t *new;
1672 
1673 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1674 			alloc_bytes += PAGE_SIZE;
1675 			pgd_populate(&init_mm, pgd, new);
1676 		}
1677 		pud = pud_offset(pgd, vstart);
1678 		if (pud_none(*pud)) {
1679 			pmd_t *new;
1680 
1681 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1682 				vstart = kernel_map_hugepud(vstart, vend, pud);
1683 				continue;
1684 			}
1685 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1686 			alloc_bytes += PAGE_SIZE;
1687 			pud_populate(&init_mm, pud, new);
1688 		}
1689 
1690 		pmd = pmd_offset(pud, vstart);
1691 		if (pmd_none(*pmd)) {
1692 			pte_t *new;
1693 
1694 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1695 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1696 				continue;
1697 			}
1698 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1699 			alloc_bytes += PAGE_SIZE;
1700 			pmd_populate_kernel(&init_mm, pmd, new);
1701 		}
1702 
1703 		pte = pte_offset_kernel(pmd, vstart);
1704 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1705 		if (this_end > vend)
1706 			this_end = vend;
1707 
1708 		while (vstart < this_end) {
1709 			pte_val(*pte) = (paddr | pgprot_val(prot));
1710 
1711 			vstart += PAGE_SIZE;
1712 			paddr += PAGE_SIZE;
1713 			pte++;
1714 		}
1715 	}
1716 
1717 	return alloc_bytes;
1718 }
1719 
flush_all_kernel_tsbs(void)1720 static void __init flush_all_kernel_tsbs(void)
1721 {
1722 	int i;
1723 
1724 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1725 		struct tsb *ent = &swapper_tsb[i];
1726 
1727 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1728 	}
1729 #ifndef CONFIG_DEBUG_PAGEALLOC
1730 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1731 		struct tsb *ent = &swapper_4m_tsb[i];
1732 
1733 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1734 	}
1735 #endif
1736 }
1737 
1738 extern unsigned int kvmap_linear_patch[1];
1739 
kernel_physical_mapping_init(void)1740 static void __init kernel_physical_mapping_init(void)
1741 {
1742 	unsigned long i, mem_alloced = 0UL;
1743 	bool use_huge = true;
1744 
1745 #ifdef CONFIG_DEBUG_PAGEALLOC
1746 	use_huge = false;
1747 #endif
1748 	for (i = 0; i < pall_ents; i++) {
1749 		unsigned long phys_start, phys_end;
1750 
1751 		phys_start = pall[i].phys_addr;
1752 		phys_end = phys_start + pall[i].reg_size;
1753 
1754 		mem_alloced += kernel_map_range(phys_start, phys_end,
1755 						PAGE_KERNEL, use_huge);
1756 	}
1757 
1758 	printk("Allocated %ld bytes for kernel page tables.\n",
1759 	       mem_alloced);
1760 
1761 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1762 	flushi(&kvmap_linear_patch[0]);
1763 
1764 	flush_all_kernel_tsbs();
1765 
1766 	__flush_tlb_all();
1767 }
1768 
1769 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1770 void __kernel_map_pages(struct page *page, int numpages, int enable)
1771 {
1772 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1773 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1774 
1775 	kernel_map_range(phys_start, phys_end,
1776 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1777 
1778 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1779 			       PAGE_OFFSET + phys_end);
1780 
1781 	/* we should perform an IPI and flush all tlbs,
1782 	 * but that can deadlock->flush only current cpu.
1783 	 */
1784 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1785 				 PAGE_OFFSET + phys_end);
1786 }
1787 #endif
1788 
find_ecache_flush_span(unsigned long size)1789 unsigned long __init find_ecache_flush_span(unsigned long size)
1790 {
1791 	int i;
1792 
1793 	for (i = 0; i < pavail_ents; i++) {
1794 		if (pavail[i].reg_size >= size)
1795 			return pavail[i].phys_addr;
1796 	}
1797 
1798 	return ~0UL;
1799 }
1800 
1801 unsigned long PAGE_OFFSET;
1802 EXPORT_SYMBOL(PAGE_OFFSET);
1803 
1804 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1805 EXPORT_SYMBOL(VMALLOC_END);
1806 
1807 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1808 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1809 
setup_page_offset(void)1810 static void __init setup_page_offset(void)
1811 {
1812 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1813 		/* Cheetah/Panther support a full 64-bit virtual
1814 		 * address, so we can use all that our page tables
1815 		 * support.
1816 		 */
1817 		sparc64_va_hole_top =    0xfff0000000000000UL;
1818 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1819 
1820 		max_phys_bits = 42;
1821 	} else if (tlb_type == hypervisor) {
1822 		switch (sun4v_chip_type) {
1823 		case SUN4V_CHIP_NIAGARA1:
1824 		case SUN4V_CHIP_NIAGARA2:
1825 			/* T1 and T2 support 48-bit virtual addresses.  */
1826 			sparc64_va_hole_top =    0xffff800000000000UL;
1827 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1828 
1829 			max_phys_bits = 39;
1830 			break;
1831 		case SUN4V_CHIP_NIAGARA3:
1832 			/* T3 supports 48-bit virtual addresses.  */
1833 			sparc64_va_hole_top =    0xffff800000000000UL;
1834 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1835 
1836 			max_phys_bits = 43;
1837 			break;
1838 		case SUN4V_CHIP_NIAGARA4:
1839 		case SUN4V_CHIP_NIAGARA5:
1840 		case SUN4V_CHIP_SPARC64X:
1841 		case SUN4V_CHIP_SPARC_M6:
1842 			/* T4 and later support 52-bit virtual addresses.  */
1843 			sparc64_va_hole_top =    0xfff8000000000000UL;
1844 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1845 			max_phys_bits = 47;
1846 			break;
1847 		case SUN4V_CHIP_SPARC_M7:
1848 		default:
1849 			/* M7 and later support 52-bit virtual addresses.  */
1850 			sparc64_va_hole_top =    0xfff8000000000000UL;
1851 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1852 			max_phys_bits = 49;
1853 			break;
1854 		}
1855 	}
1856 
1857 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1858 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1859 			    max_phys_bits);
1860 		prom_halt();
1861 	}
1862 
1863 	PAGE_OFFSET = sparc64_va_hole_top;
1864 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1865 		       (sparc64_va_hole_bottom >> 2));
1866 
1867 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1868 		PAGE_OFFSET, max_phys_bits);
1869 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1870 		VMALLOC_START, VMALLOC_END);
1871 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1872 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1873 }
1874 
tsb_phys_patch(void)1875 static void __init tsb_phys_patch(void)
1876 {
1877 	struct tsb_ldquad_phys_patch_entry *pquad;
1878 	struct tsb_phys_patch_entry *p;
1879 
1880 	pquad = &__tsb_ldquad_phys_patch;
1881 	while (pquad < &__tsb_ldquad_phys_patch_end) {
1882 		unsigned long addr = pquad->addr;
1883 
1884 		if (tlb_type == hypervisor)
1885 			*(unsigned int *) addr = pquad->sun4v_insn;
1886 		else
1887 			*(unsigned int *) addr = pquad->sun4u_insn;
1888 		wmb();
1889 		__asm__ __volatile__("flush	%0"
1890 				     : /* no outputs */
1891 				     : "r" (addr));
1892 
1893 		pquad++;
1894 	}
1895 
1896 	p = &__tsb_phys_patch;
1897 	while (p < &__tsb_phys_patch_end) {
1898 		unsigned long addr = p->addr;
1899 
1900 		*(unsigned int *) addr = p->insn;
1901 		wmb();
1902 		__asm__ __volatile__("flush	%0"
1903 				     : /* no outputs */
1904 				     : "r" (addr));
1905 
1906 		p++;
1907 	}
1908 }
1909 
1910 /* Don't mark as init, we give this to the Hypervisor.  */
1911 #ifndef CONFIG_DEBUG_PAGEALLOC
1912 #define NUM_KTSB_DESCR	2
1913 #else
1914 #define NUM_KTSB_DESCR	1
1915 #endif
1916 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1917 
1918 /* The swapper TSBs are loaded with a base sequence of:
1919  *
1920  *	sethi	%uhi(SYMBOL), REG1
1921  *	sethi	%hi(SYMBOL), REG2
1922  *	or	REG1, %ulo(SYMBOL), REG1
1923  *	or	REG2, %lo(SYMBOL), REG2
1924  *	sllx	REG1, 32, REG1
1925  *	or	REG1, REG2, REG1
1926  *
1927  * When we use physical addressing for the TSB accesses, we patch the
1928  * first four instructions in the above sequence.
1929  */
1930 
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)1931 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1932 {
1933 	unsigned long high_bits, low_bits;
1934 
1935 	high_bits = (pa >> 32) & 0xffffffff;
1936 	low_bits = (pa >> 0) & 0xffffffff;
1937 
1938 	while (start < end) {
1939 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1940 
1941 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1942 		__asm__ __volatile__("flush	%0" : : "r" (ia));
1943 
1944 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1945 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1946 
1947 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1948 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1949 
1950 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1951 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1952 
1953 		start++;
1954 	}
1955 }
1956 
ktsb_phys_patch(void)1957 static void ktsb_phys_patch(void)
1958 {
1959 	extern unsigned int __swapper_tsb_phys_patch;
1960 	extern unsigned int __swapper_tsb_phys_patch_end;
1961 	unsigned long ktsb_pa;
1962 
1963 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1964 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1965 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1966 #ifndef CONFIG_DEBUG_PAGEALLOC
1967 	{
1968 	extern unsigned int __swapper_4m_tsb_phys_patch;
1969 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1970 	ktsb_pa = (kern_base +
1971 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1972 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1973 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1974 	}
1975 #endif
1976 }
1977 
sun4v_ktsb_init(void)1978 static void __init sun4v_ktsb_init(void)
1979 {
1980 	unsigned long ktsb_pa;
1981 
1982 	/* First KTSB for PAGE_SIZE mappings.  */
1983 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1984 
1985 	switch (PAGE_SIZE) {
1986 	case 8 * 1024:
1987 	default:
1988 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1989 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1990 		break;
1991 
1992 	case 64 * 1024:
1993 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1994 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1995 		break;
1996 
1997 	case 512 * 1024:
1998 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1999 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2000 		break;
2001 
2002 	case 4 * 1024 * 1024:
2003 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2004 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2005 		break;
2006 	}
2007 
2008 	ktsb_descr[0].assoc = 1;
2009 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2010 	ktsb_descr[0].ctx_idx = 0;
2011 	ktsb_descr[0].tsb_base = ktsb_pa;
2012 	ktsb_descr[0].resv = 0;
2013 
2014 #ifndef CONFIG_DEBUG_PAGEALLOC
2015 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2016 	ktsb_pa = (kern_base +
2017 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2018 
2019 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2020 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2021 				    HV_PGSZ_MASK_256MB |
2022 				    HV_PGSZ_MASK_2GB |
2023 				    HV_PGSZ_MASK_16GB) &
2024 				   cpu_pgsz_mask);
2025 	ktsb_descr[1].assoc = 1;
2026 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2027 	ktsb_descr[1].ctx_idx = 0;
2028 	ktsb_descr[1].tsb_base = ktsb_pa;
2029 	ktsb_descr[1].resv = 0;
2030 #endif
2031 }
2032 
sun4v_ktsb_register(void)2033 void sun4v_ktsb_register(void)
2034 {
2035 	unsigned long pa, ret;
2036 
2037 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2038 
2039 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2040 	if (ret != 0) {
2041 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2042 			    "errors with %lx\n", pa, ret);
2043 		prom_halt();
2044 	}
2045 }
2046 
sun4u_linear_pte_xor_finalize(void)2047 static void __init sun4u_linear_pte_xor_finalize(void)
2048 {
2049 #ifndef CONFIG_DEBUG_PAGEALLOC
2050 	/* This is where we would add Panther support for
2051 	 * 32MB and 256MB pages.
2052 	 */
2053 #endif
2054 }
2055 
sun4v_linear_pte_xor_finalize(void)2056 static void __init sun4v_linear_pte_xor_finalize(void)
2057 {
2058 	unsigned long pagecv_flag;
2059 
2060 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2061 	 * enables MCD error. Do not set bit 9 on M7 processor.
2062 	 */
2063 	switch (sun4v_chip_type) {
2064 	case SUN4V_CHIP_SPARC_M7:
2065 		pagecv_flag = 0x00;
2066 		break;
2067 	default:
2068 		pagecv_flag = _PAGE_CV_4V;
2069 		break;
2070 	}
2071 #ifndef CONFIG_DEBUG_PAGEALLOC
2072 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2073 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2074 			PAGE_OFFSET;
2075 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2076 					   _PAGE_P_4V | _PAGE_W_4V);
2077 	} else {
2078 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2079 	}
2080 
2081 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2082 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2083 			PAGE_OFFSET;
2084 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2085 					   _PAGE_P_4V | _PAGE_W_4V);
2086 	} else {
2087 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2088 	}
2089 
2090 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2091 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2092 			PAGE_OFFSET;
2093 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2094 					   _PAGE_P_4V | _PAGE_W_4V);
2095 	} else {
2096 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2097 	}
2098 #endif
2099 }
2100 
2101 /* paging_init() sets up the page tables */
2102 
2103 static unsigned long last_valid_pfn;
2104 
2105 static void sun4u_pgprot_init(void);
2106 static void sun4v_pgprot_init(void);
2107 
available_memory(void)2108 static phys_addr_t __init available_memory(void)
2109 {
2110 	phys_addr_t available = 0ULL;
2111 	phys_addr_t pa_start, pa_end;
2112 	u64 i;
2113 
2114 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2115 				&pa_end, NULL)
2116 		available = available + (pa_end  - pa_start);
2117 
2118 	return available;
2119 }
2120 
2121 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2122 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2123 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2124 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2125 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2126 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2127 
2128 /* We need to exclude reserved regions. This exclusion will include
2129  * vmlinux and initrd. To be more precise the initrd size could be used to
2130  * compute a new lower limit because it is freed later during initialization.
2131  */
reduce_memory(phys_addr_t limit_ram)2132 static void __init reduce_memory(phys_addr_t limit_ram)
2133 {
2134 	phys_addr_t avail_ram = available_memory();
2135 	phys_addr_t pa_start, pa_end;
2136 	u64 i;
2137 
2138 	if (limit_ram >= avail_ram)
2139 		return;
2140 
2141 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2142 				&pa_end, NULL) {
2143 		phys_addr_t region_size = pa_end - pa_start;
2144 		phys_addr_t clip_start = pa_start;
2145 
2146 		avail_ram = avail_ram - region_size;
2147 		/* Are we consuming too much? */
2148 		if (avail_ram < limit_ram) {
2149 			phys_addr_t give_back = limit_ram - avail_ram;
2150 
2151 			region_size = region_size - give_back;
2152 			clip_start = clip_start + give_back;
2153 		}
2154 
2155 		memblock_remove(clip_start, region_size);
2156 
2157 		if (avail_ram <= limit_ram)
2158 			break;
2159 		i = 0UL;
2160 	}
2161 }
2162 
paging_init(void)2163 void __init paging_init(void)
2164 {
2165 	unsigned long end_pfn, shift, phys_base;
2166 	unsigned long real_end, i;
2167 	int node;
2168 
2169 	setup_page_offset();
2170 
2171 	/* These build time checkes make sure that the dcache_dirty_cpu()
2172 	 * page->flags usage will work.
2173 	 *
2174 	 * When a page gets marked as dcache-dirty, we store the
2175 	 * cpu number starting at bit 32 in the page->flags.  Also,
2176 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2177 	 * in 13-bit signed-immediate instruction fields.
2178 	 */
2179 
2180 	/*
2181 	 * Page flags must not reach into upper 32 bits that are used
2182 	 * for the cpu number
2183 	 */
2184 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2185 
2186 	/*
2187 	 * The bit fields placed in the high range must not reach below
2188 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2189 	 * at the 32 bit boundary.
2190 	 */
2191 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2192 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2193 
2194 	BUILD_BUG_ON(NR_CPUS > 4096);
2195 
2196 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2197 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2198 
2199 	/* Invalidate both kernel TSBs.  */
2200 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2201 #ifndef CONFIG_DEBUG_PAGEALLOC
2202 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2203 #endif
2204 
2205 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2206 	 * bit on M7 processor. This is a conflicting usage of the same
2207 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2208 	 * Detection error on all pages and this will lead to problems
2209 	 * later. Kernel does not run with MCD enabled and hence rest
2210 	 * of the required steps to fully configure memory corruption
2211 	 * detection are not taken. We need to ensure TTE.mcde is not
2212 	 * set on M7 processor. Compute the value of cacheability
2213 	 * flag for use later taking this into consideration.
2214 	 */
2215 	switch (sun4v_chip_type) {
2216 	case SUN4V_CHIP_SPARC_M7:
2217 		page_cache4v_flag = _PAGE_CP_4V;
2218 		break;
2219 	default:
2220 		page_cache4v_flag = _PAGE_CACHE_4V;
2221 		break;
2222 	}
2223 
2224 	if (tlb_type == hypervisor)
2225 		sun4v_pgprot_init();
2226 	else
2227 		sun4u_pgprot_init();
2228 
2229 	if (tlb_type == cheetah_plus ||
2230 	    tlb_type == hypervisor) {
2231 		tsb_phys_patch();
2232 		ktsb_phys_patch();
2233 	}
2234 
2235 	if (tlb_type == hypervisor)
2236 		sun4v_patch_tlb_handlers();
2237 
2238 	/* Find available physical memory...
2239 	 *
2240 	 * Read it twice in order to work around a bug in openfirmware.
2241 	 * The call to grab this table itself can cause openfirmware to
2242 	 * allocate memory, which in turn can take away some space from
2243 	 * the list of available memory.  Reading it twice makes sure
2244 	 * we really do get the final value.
2245 	 */
2246 	read_obp_translations();
2247 	read_obp_memory("reg", &pall[0], &pall_ents);
2248 	read_obp_memory("available", &pavail[0], &pavail_ents);
2249 	read_obp_memory("available", &pavail[0], &pavail_ents);
2250 
2251 	phys_base = 0xffffffffffffffffUL;
2252 	for (i = 0; i < pavail_ents; i++) {
2253 		phys_base = min(phys_base, pavail[i].phys_addr);
2254 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2255 	}
2256 
2257 	memblock_reserve(kern_base, kern_size);
2258 
2259 	find_ramdisk(phys_base);
2260 
2261 	if (cmdline_memory_size)
2262 		reduce_memory(cmdline_memory_size);
2263 
2264 	memblock_allow_resize();
2265 	memblock_dump_all();
2266 
2267 	set_bit(0, mmu_context_bmap);
2268 
2269 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2270 
2271 	real_end = (unsigned long)_end;
2272 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2273 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2274 	       num_kernel_image_mappings);
2275 
2276 	/* Set kernel pgd to upper alias so physical page computations
2277 	 * work.
2278 	 */
2279 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2280 
2281 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2282 
2283 	inherit_prom_mappings();
2284 
2285 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2286 	setup_tba();
2287 
2288 	__flush_tlb_all();
2289 
2290 	prom_build_devicetree();
2291 	of_populate_present_mask();
2292 #ifndef CONFIG_SMP
2293 	of_fill_in_cpu_data();
2294 #endif
2295 
2296 	if (tlb_type == hypervisor) {
2297 		sun4v_mdesc_init();
2298 		mdesc_populate_present_mask(cpu_all_mask);
2299 #ifndef CONFIG_SMP
2300 		mdesc_fill_in_cpu_data(cpu_all_mask);
2301 #endif
2302 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2303 
2304 		sun4v_linear_pte_xor_finalize();
2305 
2306 		sun4v_ktsb_init();
2307 		sun4v_ktsb_register();
2308 	} else {
2309 		unsigned long impl, ver;
2310 
2311 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2312 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2313 
2314 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2315 		impl = ((ver >> 32) & 0xffff);
2316 		if (impl == PANTHER_IMPL)
2317 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2318 					  HV_PGSZ_MASK_256MB);
2319 
2320 		sun4u_linear_pte_xor_finalize();
2321 	}
2322 
2323 	/* Flush the TLBs and the 4M TSB so that the updated linear
2324 	 * pte XOR settings are realized for all mappings.
2325 	 */
2326 	__flush_tlb_all();
2327 #ifndef CONFIG_DEBUG_PAGEALLOC
2328 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2329 #endif
2330 	__flush_tlb_all();
2331 
2332 	/* Setup bootmem... */
2333 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2334 
2335 	/* Once the OF device tree and MDESC have been setup, we know
2336 	 * the list of possible cpus.  Therefore we can allocate the
2337 	 * IRQ stacks.
2338 	 */
2339 	for_each_possible_cpu(i) {
2340 		node = cpu_to_node(i);
2341 
2342 		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2343 							THREAD_SIZE,
2344 							THREAD_SIZE, 0);
2345 		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2346 							THREAD_SIZE,
2347 							THREAD_SIZE, 0);
2348 	}
2349 
2350 	kernel_physical_mapping_init();
2351 
2352 	{
2353 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2354 
2355 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2356 
2357 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2358 
2359 		free_area_init_nodes(max_zone_pfns);
2360 	}
2361 
2362 	printk("Booting Linux...\n");
2363 }
2364 
page_in_phys_avail(unsigned long paddr)2365 int page_in_phys_avail(unsigned long paddr)
2366 {
2367 	int i;
2368 
2369 	paddr &= PAGE_MASK;
2370 
2371 	for (i = 0; i < pavail_ents; i++) {
2372 		unsigned long start, end;
2373 
2374 		start = pavail[i].phys_addr;
2375 		end = start + pavail[i].reg_size;
2376 
2377 		if (paddr >= start && paddr < end)
2378 			return 1;
2379 	}
2380 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2381 		return 1;
2382 #ifdef CONFIG_BLK_DEV_INITRD
2383 	if (paddr >= __pa(initrd_start) &&
2384 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2385 		return 1;
2386 #endif
2387 
2388 	return 0;
2389 }
2390 
register_page_bootmem_info(void)2391 static void __init register_page_bootmem_info(void)
2392 {
2393 #ifdef CONFIG_NEED_MULTIPLE_NODES
2394 	int i;
2395 
2396 	for_each_online_node(i)
2397 		if (NODE_DATA(i)->node_spanned_pages)
2398 			register_page_bootmem_info_node(NODE_DATA(i));
2399 #endif
2400 }
mem_init(void)2401 void __init mem_init(void)
2402 {
2403 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2404 
2405 	free_all_bootmem();
2406 
2407 	/*
2408 	 * Must be done after boot memory is put on freelist, because here we
2409 	 * might set fields in deferred struct pages that have not yet been
2410 	 * initialized, and free_all_bootmem() initializes all the reserved
2411 	 * deferred pages for us.
2412 	 */
2413 	register_page_bootmem_info();
2414 
2415 	/*
2416 	 * Set up the zero page, mark it reserved, so that page count
2417 	 * is not manipulated when freeing the page from user ptes.
2418 	 */
2419 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2420 	if (mem_map_zero == NULL) {
2421 		prom_printf("paging_init: Cannot alloc zero page.\n");
2422 		prom_halt();
2423 	}
2424 	mark_page_reserved(mem_map_zero);
2425 
2426 	mem_init_print_info(NULL);
2427 
2428 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2429 		cheetah_ecache_flush_init();
2430 }
2431 
free_initmem(void)2432 void free_initmem(void)
2433 {
2434 	unsigned long addr, initend;
2435 	int do_free = 1;
2436 
2437 	/* If the physical memory maps were trimmed by kernel command
2438 	 * line options, don't even try freeing this initmem stuff up.
2439 	 * The kernel image could have been in the trimmed out region
2440 	 * and if so the freeing below will free invalid page structs.
2441 	 */
2442 	if (cmdline_memory_size)
2443 		do_free = 0;
2444 
2445 	/*
2446 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2447 	 */
2448 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2449 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2450 	for (; addr < initend; addr += PAGE_SIZE) {
2451 		unsigned long page;
2452 
2453 		page = (addr +
2454 			((unsigned long) __va(kern_base)) -
2455 			((unsigned long) KERNBASE));
2456 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2457 
2458 		if (do_free)
2459 			free_reserved_page(virt_to_page(page));
2460 	}
2461 }
2462 
2463 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2464 void free_initrd_mem(unsigned long start, unsigned long end)
2465 {
2466 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2467 			   "initrd");
2468 }
2469 #endif
2470 
2471 pgprot_t PAGE_KERNEL __read_mostly;
2472 EXPORT_SYMBOL(PAGE_KERNEL);
2473 
2474 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2475 pgprot_t PAGE_COPY __read_mostly;
2476 
2477 pgprot_t PAGE_SHARED __read_mostly;
2478 EXPORT_SYMBOL(PAGE_SHARED);
2479 
2480 unsigned long pg_iobits __read_mostly;
2481 
2482 unsigned long _PAGE_IE __read_mostly;
2483 EXPORT_SYMBOL(_PAGE_IE);
2484 
2485 unsigned long _PAGE_E __read_mostly;
2486 EXPORT_SYMBOL(_PAGE_E);
2487 
2488 unsigned long _PAGE_CACHE __read_mostly;
2489 EXPORT_SYMBOL(_PAGE_CACHE);
2490 
2491 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node)2492 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2493 			       int node)
2494 {
2495 	unsigned long pte_base;
2496 
2497 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2498 		    _PAGE_CP_4U | _PAGE_CV_4U |
2499 		    _PAGE_P_4U | _PAGE_W_4U);
2500 	if (tlb_type == hypervisor)
2501 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2502 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2503 
2504 	pte_base |= _PAGE_PMD_HUGE;
2505 
2506 	vstart = vstart & PMD_MASK;
2507 	vend = ALIGN(vend, PMD_SIZE);
2508 	for (; vstart < vend; vstart += PMD_SIZE) {
2509 		pgd_t *pgd = pgd_offset_k(vstart);
2510 		unsigned long pte;
2511 		pud_t *pud;
2512 		pmd_t *pmd;
2513 
2514 		if (pgd_none(*pgd)) {
2515 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2516 
2517 			if (!new)
2518 				return -ENOMEM;
2519 			pgd_populate(&init_mm, pgd, new);
2520 		}
2521 
2522 		pud = pud_offset(pgd, vstart);
2523 		if (pud_none(*pud)) {
2524 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2525 
2526 			if (!new)
2527 				return -ENOMEM;
2528 			pud_populate(&init_mm, pud, new);
2529 		}
2530 
2531 		pmd = pmd_offset(pud, vstart);
2532 
2533 		pte = pmd_val(*pmd);
2534 		if (!(pte & _PAGE_VALID)) {
2535 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2536 
2537 			if (!block)
2538 				return -ENOMEM;
2539 
2540 			pmd_val(*pmd) = pte_base | __pa(block);
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
vmemmap_free(unsigned long start,unsigned long end)2547 void vmemmap_free(unsigned long start, unsigned long end)
2548 {
2549 }
2550 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2551 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2552 static void prot_init_common(unsigned long page_none,
2553 			     unsigned long page_shared,
2554 			     unsigned long page_copy,
2555 			     unsigned long page_readonly,
2556 			     unsigned long page_exec_bit)
2557 {
2558 	PAGE_COPY = __pgprot(page_copy);
2559 	PAGE_SHARED = __pgprot(page_shared);
2560 
2561 	protection_map[0x0] = __pgprot(page_none);
2562 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2563 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2564 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2565 	protection_map[0x4] = __pgprot(page_readonly);
2566 	protection_map[0x5] = __pgprot(page_readonly);
2567 	protection_map[0x6] = __pgprot(page_copy);
2568 	protection_map[0x7] = __pgprot(page_copy);
2569 	protection_map[0x8] = __pgprot(page_none);
2570 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2571 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2572 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2573 	protection_map[0xc] = __pgprot(page_readonly);
2574 	protection_map[0xd] = __pgprot(page_readonly);
2575 	protection_map[0xe] = __pgprot(page_shared);
2576 	protection_map[0xf] = __pgprot(page_shared);
2577 }
2578 
sun4u_pgprot_init(void)2579 static void __init sun4u_pgprot_init(void)
2580 {
2581 	unsigned long page_none, page_shared, page_copy, page_readonly;
2582 	unsigned long page_exec_bit;
2583 	int i;
2584 
2585 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2586 				_PAGE_CACHE_4U | _PAGE_P_4U |
2587 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2588 				_PAGE_EXEC_4U);
2589 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2590 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2591 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2592 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2593 
2594 	_PAGE_IE = _PAGE_IE_4U;
2595 	_PAGE_E = _PAGE_E_4U;
2596 	_PAGE_CACHE = _PAGE_CACHE_4U;
2597 
2598 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2599 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2600 
2601 #ifdef CONFIG_DEBUG_PAGEALLOC
2602 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2603 #else
2604 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2605 		PAGE_OFFSET;
2606 #endif
2607 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2608 				   _PAGE_P_4U | _PAGE_W_4U);
2609 
2610 	for (i = 1; i < 4; i++)
2611 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2612 
2613 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2614 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2615 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2616 
2617 
2618 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2619 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2620 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2621 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2622 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2623 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2624 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2625 
2626 	page_exec_bit = _PAGE_EXEC_4U;
2627 
2628 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2629 			 page_exec_bit);
2630 }
2631 
sun4v_pgprot_init(void)2632 static void __init sun4v_pgprot_init(void)
2633 {
2634 	unsigned long page_none, page_shared, page_copy, page_readonly;
2635 	unsigned long page_exec_bit;
2636 	int i;
2637 
2638 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2639 				page_cache4v_flag | _PAGE_P_4V |
2640 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2641 				_PAGE_EXEC_4V);
2642 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2643 
2644 	_PAGE_IE = _PAGE_IE_4V;
2645 	_PAGE_E = _PAGE_E_4V;
2646 	_PAGE_CACHE = page_cache4v_flag;
2647 
2648 #ifdef CONFIG_DEBUG_PAGEALLOC
2649 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2650 #else
2651 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2652 		PAGE_OFFSET;
2653 #endif
2654 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2655 				   _PAGE_W_4V);
2656 
2657 	for (i = 1; i < 4; i++)
2658 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2659 
2660 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2661 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2662 
2663 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2664 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2665 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2666 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2667 
2668 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2669 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2670 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2671 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2672 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2673 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2674 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2675 
2676 	page_exec_bit = _PAGE_EXEC_4V;
2677 
2678 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2679 			 page_exec_bit);
2680 }
2681 
pte_sz_bits(unsigned long sz)2682 unsigned long pte_sz_bits(unsigned long sz)
2683 {
2684 	if (tlb_type == hypervisor) {
2685 		switch (sz) {
2686 		case 8 * 1024:
2687 		default:
2688 			return _PAGE_SZ8K_4V;
2689 		case 64 * 1024:
2690 			return _PAGE_SZ64K_4V;
2691 		case 512 * 1024:
2692 			return _PAGE_SZ512K_4V;
2693 		case 4 * 1024 * 1024:
2694 			return _PAGE_SZ4MB_4V;
2695 		}
2696 	} else {
2697 		switch (sz) {
2698 		case 8 * 1024:
2699 		default:
2700 			return _PAGE_SZ8K_4U;
2701 		case 64 * 1024:
2702 			return _PAGE_SZ64K_4U;
2703 		case 512 * 1024:
2704 			return _PAGE_SZ512K_4U;
2705 		case 4 * 1024 * 1024:
2706 			return _PAGE_SZ4MB_4U;
2707 		}
2708 	}
2709 }
2710 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2711 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2712 {
2713 	pte_t pte;
2714 
2715 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2716 	pte_val(pte) |= (((unsigned long)space) << 32);
2717 	pte_val(pte) |= pte_sz_bits(page_size);
2718 
2719 	return pte;
2720 }
2721 
kern_large_tte(unsigned long paddr)2722 static unsigned long kern_large_tte(unsigned long paddr)
2723 {
2724 	unsigned long val;
2725 
2726 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2727 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2728 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2729 	if (tlb_type == hypervisor)
2730 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2731 		       page_cache4v_flag | _PAGE_P_4V |
2732 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2733 
2734 	return val | paddr;
2735 }
2736 
2737 /* If not locked, zap it. */
__flush_tlb_all(void)2738 void __flush_tlb_all(void)
2739 {
2740 	unsigned long pstate;
2741 	int i;
2742 
2743 	__asm__ __volatile__("flushw\n\t"
2744 			     "rdpr	%%pstate, %0\n\t"
2745 			     "wrpr	%0, %1, %%pstate"
2746 			     : "=r" (pstate)
2747 			     : "i" (PSTATE_IE));
2748 	if (tlb_type == hypervisor) {
2749 		sun4v_mmu_demap_all();
2750 	} else if (tlb_type == spitfire) {
2751 		for (i = 0; i < 64; i++) {
2752 			/* Spitfire Errata #32 workaround */
2753 			/* NOTE: Always runs on spitfire, so no
2754 			 *       cheetah+ page size encodings.
2755 			 */
2756 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2757 					     "flush	%%g6"
2758 					     : /* No outputs */
2759 					     : "r" (0),
2760 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2761 
2762 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2763 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2764 						     "membar #Sync"
2765 						     : /* no outputs */
2766 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2767 				spitfire_put_dtlb_data(i, 0x0UL);
2768 			}
2769 
2770 			/* Spitfire Errata #32 workaround */
2771 			/* NOTE: Always runs on spitfire, so no
2772 			 *       cheetah+ page size encodings.
2773 			 */
2774 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2775 					     "flush	%%g6"
2776 					     : /* No outputs */
2777 					     : "r" (0),
2778 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2779 
2780 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2781 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2782 						     "membar #Sync"
2783 						     : /* no outputs */
2784 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2785 				spitfire_put_itlb_data(i, 0x0UL);
2786 			}
2787 		}
2788 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2789 		cheetah_flush_dtlb_all();
2790 		cheetah_flush_itlb_all();
2791 	}
2792 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2793 			     : : "r" (pstate));
2794 }
2795 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2796 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2797 			    unsigned long address)
2798 {
2799 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2800 				       __GFP_REPEAT | __GFP_ZERO);
2801 	pte_t *pte = NULL;
2802 
2803 	if (page)
2804 		pte = (pte_t *) page_address(page);
2805 
2806 	return pte;
2807 }
2808 
pte_alloc_one(struct mm_struct * mm,unsigned long address)2809 pgtable_t pte_alloc_one(struct mm_struct *mm,
2810 			unsigned long address)
2811 {
2812 	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2813 				       __GFP_REPEAT | __GFP_ZERO);
2814 	if (!page)
2815 		return NULL;
2816 	if (!pgtable_page_ctor(page)) {
2817 		free_hot_cold_page(page, 0);
2818 		return NULL;
2819 	}
2820 	return (pte_t *) page_address(page);
2821 }
2822 
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2823 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2824 {
2825 	free_page((unsigned long)pte);
2826 }
2827 
__pte_free(pgtable_t pte)2828 static void __pte_free(pgtable_t pte)
2829 {
2830 	struct page *page = virt_to_page(pte);
2831 
2832 	pgtable_page_dtor(page);
2833 	__free_page(page);
2834 }
2835 
pte_free(struct mm_struct * mm,pgtable_t pte)2836 void pte_free(struct mm_struct *mm, pgtable_t pte)
2837 {
2838 	__pte_free(pte);
2839 }
2840 
pgtable_free(void * table,bool is_page)2841 void pgtable_free(void *table, bool is_page)
2842 {
2843 	if (is_page)
2844 		__pte_free(table);
2845 	else
2846 		kmem_cache_free(pgtable_cache, table);
2847 }
2848 
2849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2850 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2851 			  pmd_t *pmd)
2852 {
2853 	unsigned long pte, flags;
2854 	struct mm_struct *mm;
2855 	pmd_t entry = *pmd;
2856 
2857 	if (!pmd_large(entry) || !pmd_young(entry))
2858 		return;
2859 
2860 	pte = pmd_val(entry);
2861 
2862 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2863 	if (!(pte & _PAGE_VALID))
2864 		return;
2865 
2866 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2867 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2868 
2869 	mm = vma->vm_mm;
2870 
2871 	spin_lock_irqsave(&mm->context.lock, flags);
2872 
2873 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2874 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2875 					addr, pte);
2876 
2877 	spin_unlock_irqrestore(&mm->context.lock, flags);
2878 }
2879 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2880 
2881 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2882 static void context_reload(void *__data)
2883 {
2884 	struct mm_struct *mm = __data;
2885 
2886 	if (mm == current->mm)
2887 		load_secondary_context(mm);
2888 }
2889 
hugetlb_setup(struct pt_regs * regs)2890 void hugetlb_setup(struct pt_regs *regs)
2891 {
2892 	struct mm_struct *mm = current->mm;
2893 	struct tsb_config *tp;
2894 
2895 	if (faulthandler_disabled() || !mm) {
2896 		const struct exception_table_entry *entry;
2897 
2898 		entry = search_exception_tables(regs->tpc);
2899 		if (entry) {
2900 			regs->tpc = entry->fixup;
2901 			regs->tnpc = regs->tpc + 4;
2902 			return;
2903 		}
2904 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2905 		die_if_kernel("HugeTSB in atomic", regs);
2906 	}
2907 
2908 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2909 	if (likely(tp->tsb == NULL))
2910 		tsb_grow(mm, MM_TSB_HUGE, 0);
2911 
2912 	tsb_context_switch(mm);
2913 	smp_tsb_sync(mm);
2914 
2915 	/* On UltraSPARC-III+ and later, configure the second half of
2916 	 * the Data-TLB for huge pages.
2917 	 */
2918 	if (tlb_type == cheetah_plus) {
2919 		bool need_context_reload = false;
2920 		unsigned long ctx;
2921 
2922 		spin_lock_irq(&ctx_alloc_lock);
2923 		ctx = mm->context.sparc64_ctx_val;
2924 		ctx &= ~CTX_PGSZ_MASK;
2925 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2926 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2927 
2928 		if (ctx != mm->context.sparc64_ctx_val) {
2929 			/* When changing the page size fields, we
2930 			 * must perform a context flush so that no
2931 			 * stale entries match.  This flush must
2932 			 * occur with the original context register
2933 			 * settings.
2934 			 */
2935 			do_flush_tlb_mm(mm);
2936 
2937 			/* Reload the context register of all processors
2938 			 * also executing in this address space.
2939 			 */
2940 			mm->context.sparc64_ctx_val = ctx;
2941 			need_context_reload = true;
2942 		}
2943 		spin_unlock_irq(&ctx_alloc_lock);
2944 
2945 		if (need_context_reload)
2946 			on_each_cpu(context_reload, mm, 0);
2947 	}
2948 }
2949 #endif
2950 
2951 static struct resource code_resource = {
2952 	.name	= "Kernel code",
2953 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2954 };
2955 
2956 static struct resource data_resource = {
2957 	.name	= "Kernel data",
2958 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2959 };
2960 
2961 static struct resource bss_resource = {
2962 	.name	= "Kernel bss",
2963 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
2964 };
2965 
compute_kern_paddr(void * addr)2966 static inline resource_size_t compute_kern_paddr(void *addr)
2967 {
2968 	return (resource_size_t) (addr - KERNBASE + kern_base);
2969 }
2970 
kernel_lds_init(void)2971 static void __init kernel_lds_init(void)
2972 {
2973 	code_resource.start = compute_kern_paddr(_text);
2974 	code_resource.end   = compute_kern_paddr(_etext - 1);
2975 	data_resource.start = compute_kern_paddr(_etext);
2976 	data_resource.end   = compute_kern_paddr(_edata - 1);
2977 	bss_resource.start  = compute_kern_paddr(__bss_start);
2978 	bss_resource.end    = compute_kern_paddr(_end - 1);
2979 }
2980 
report_memory(void)2981 static int __init report_memory(void)
2982 {
2983 	int i;
2984 	struct resource *res;
2985 
2986 	kernel_lds_init();
2987 
2988 	for (i = 0; i < pavail_ents; i++) {
2989 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2990 
2991 		if (!res) {
2992 			pr_warn("Failed to allocate source.\n");
2993 			break;
2994 		}
2995 
2996 		res->name = "System RAM";
2997 		res->start = pavail[i].phys_addr;
2998 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2999 		res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
3000 
3001 		if (insert_resource(&iomem_resource, res) < 0) {
3002 			pr_warn("Resource insertion failed.\n");
3003 			break;
3004 		}
3005 
3006 		insert_resource(res, &code_resource);
3007 		insert_resource(res, &data_resource);
3008 		insert_resource(res, &bss_resource);
3009 	}
3010 
3011 	return 0;
3012 }
3013 arch_initcall(report_memory);
3014 
3015 #ifdef CONFIG_SMP
3016 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3017 #else
3018 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3019 #endif
3020 
flush_tlb_kernel_range(unsigned long start,unsigned long end)3021 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3022 {
3023 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3024 		if (start < LOW_OBP_ADDRESS) {
3025 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3026 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3027 		}
3028 		if (end > HI_OBP_ADDRESS) {
3029 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3030 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3031 		}
3032 	} else {
3033 		flush_tsb_kernel_range(start, end);
3034 		do_flush_tlb_kernel_range(start, end);
3035 	}
3036 }
3037