1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
64
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68 MODULE_LICENSE("GPL");
69
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
74
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77
nilfs_set_error(struct super_block * sb)78 static void nilfs_set_error(struct super_block *sb)
79 {
80 struct the_nilfs *nilfs = sb->s_fs_info;
81 struct nilfs_super_block **sbp;
82
83 down_write(&nilfs->ns_sem);
84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 sbp = nilfs_prepare_super(sb, 0);
87 if (likely(sbp)) {
88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 if (sbp[1])
90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
92 }
93 }
94 up_write(&nilfs->ns_sem);
95 }
96
97 /**
98 * nilfs_error() - report failure condition on a filesystem
99 *
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message. It should be called when NILFS detects
102 * incoherences or defects of meta data on disk. As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
105 *
106 * The segment constructor must not call this function because it can
107 * kill itself.
108 */
nilfs_error(struct super_block * sb,const char * function,const char * fmt,...)109 void nilfs_error(struct super_block *sb, const char *function,
110 const char *fmt, ...)
111 {
112 struct the_nilfs *nilfs = sb->s_fs_info;
113 struct va_format vaf;
114 va_list args;
115
116 va_start(args, fmt);
117
118 vaf.fmt = fmt;
119 vaf.va = &args;
120
121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 sb->s_id, function, &vaf);
123
124 va_end(args);
125
126 if (!(sb->s_flags & MS_RDONLY)) {
127 nilfs_set_error(sb);
128
129 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 printk(KERN_CRIT "Remounting filesystem read-only\n");
131 sb->s_flags |= MS_RDONLY;
132 }
133 }
134
135 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 panic("NILFS (device %s): panic forced after error\n",
137 sb->s_id);
138 }
139
nilfs_warning(struct super_block * sb,const char * function,const char * fmt,...)140 void nilfs_warning(struct super_block *sb, const char *function,
141 const char *fmt, ...)
142 {
143 struct va_format vaf;
144 va_list args;
145
146 va_start(args, fmt);
147
148 vaf.fmt = fmt;
149 vaf.va = &args;
150
151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 sb->s_id, function, &vaf);
153
154 va_end(args);
155 }
156
157
nilfs_alloc_inode(struct super_block * sb)158 struct inode *nilfs_alloc_inode(struct super_block *sb)
159 {
160 struct nilfs_inode_info *ii;
161
162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 if (!ii)
164 return NULL;
165 ii->i_bh = NULL;
166 ii->i_state = 0;
167 ii->i_cno = 0;
168 ii->vfs_inode.i_version = 1;
169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
170 return &ii->vfs_inode;
171 }
172
nilfs_i_callback(struct rcu_head * head)173 static void nilfs_i_callback(struct rcu_head *head)
174 {
175 struct inode *inode = container_of(head, struct inode, i_rcu);
176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
177
178 if (mdi) {
179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 kfree(mdi);
181 }
182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
183 }
184
nilfs_destroy_inode(struct inode * inode)185 void nilfs_destroy_inode(struct inode *inode)
186 {
187 call_rcu(&inode->i_rcu, nilfs_i_callback);
188 }
189
nilfs_sync_super(struct super_block * sb,int flag)190 static int nilfs_sync_super(struct super_block *sb, int flag)
191 {
192 struct the_nilfs *nilfs = sb->s_fs_info;
193 int err;
194
195 retry:
196 set_buffer_dirty(nilfs->ns_sbh[0]);
197 if (nilfs_test_opt(nilfs, BARRIER)) {
198 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 WRITE_SYNC | WRITE_FLUSH_FUA);
200 } else {
201 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
202 }
203
204 if (unlikely(err)) {
205 printk(KERN_ERR
206 "NILFS: unable to write superblock (err=%d)\n", err);
207 if (err == -EIO && nilfs->ns_sbh[1]) {
208 /*
209 * sbp[0] points to newer log than sbp[1],
210 * so copy sbp[0] to sbp[1] to take over sbp[0].
211 */
212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 nilfs->ns_sbsize);
214 nilfs_fall_back_super_block(nilfs);
215 goto retry;
216 }
217 } else {
218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
219
220 nilfs->ns_sbwcount++;
221
222 /*
223 * The latest segment becomes trailable from the position
224 * written in superblock.
225 */
226 clear_nilfs_discontinued(nilfs);
227
228 /* update GC protection for recent segments */
229 if (nilfs->ns_sbh[1]) {
230 if (flag == NILFS_SB_COMMIT_ALL) {
231 set_buffer_dirty(nilfs->ns_sbh[1]);
232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 goto out;
234 }
235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 sbp = nilfs->ns_sbp[1];
238 }
239
240 spin_lock(&nilfs->ns_last_segment_lock);
241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 spin_unlock(&nilfs->ns_last_segment_lock);
243 }
244 out:
245 return err;
246 }
247
nilfs_set_log_cursor(struct nilfs_super_block * sbp,struct the_nilfs * nilfs)248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 struct the_nilfs *nilfs)
250 {
251 sector_t nfreeblocks;
252
253 /* nilfs->ns_sem must be locked by the caller. */
254 nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
256
257 spin_lock(&nilfs->ns_last_segment_lock);
258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 spin_unlock(&nilfs->ns_last_segment_lock);
262 }
263
nilfs_prepare_super(struct super_block * sb,int flip)264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 int flip)
266 {
267 struct the_nilfs *nilfs = sb->s_fs_info;
268 struct nilfs_super_block **sbp = nilfs->ns_sbp;
269
270 /* nilfs->ns_sem must be locked by the caller. */
271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 if (sbp[1] &&
273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 } else {
276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 sb->s_id);
278 return NULL;
279 }
280 } else if (sbp[1] &&
281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
283 }
284
285 if (flip && sbp[1])
286 nilfs_swap_super_block(nilfs);
287
288 return sbp;
289 }
290
nilfs_commit_super(struct super_block * sb,int flag)291 int nilfs_commit_super(struct super_block *sb, int flag)
292 {
293 struct the_nilfs *nilfs = sb->s_fs_info;
294 struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 time_t t;
296
297 /* nilfs->ns_sem must be locked by the caller. */
298 t = get_seconds();
299 nilfs->ns_sbwtime = t;
300 sbp[0]->s_wtime = cpu_to_le64(t);
301 sbp[0]->s_sum = 0;
302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 (unsigned char *)sbp[0],
304 nilfs->ns_sbsize));
305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 sbp[1]->s_wtime = sbp[0]->s_wtime;
307 sbp[1]->s_sum = 0;
308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 (unsigned char *)sbp[1],
310 nilfs->ns_sbsize));
311 }
312 clear_nilfs_sb_dirty(nilfs);
313 nilfs->ns_flushed_device = 1;
314 /* make sure store to ns_flushed_device cannot be reordered */
315 smp_wmb();
316 return nilfs_sync_super(sb, flag);
317 }
318
319 /**
320 * nilfs_cleanup_super() - write filesystem state for cleanup
321 * @sb: super block instance to be unmounted or degraded to read-only
322 *
323 * This function restores state flags in the on-disk super block.
324 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
325 * filesystem was not clean previously.
326 */
nilfs_cleanup_super(struct super_block * sb)327 int nilfs_cleanup_super(struct super_block *sb)
328 {
329 struct the_nilfs *nilfs = sb->s_fs_info;
330 struct nilfs_super_block **sbp;
331 int flag = NILFS_SB_COMMIT;
332 int ret = -EIO;
333
334 sbp = nilfs_prepare_super(sb, 0);
335 if (sbp) {
336 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
337 nilfs_set_log_cursor(sbp[0], nilfs);
338 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
339 /*
340 * make the "clean" flag also to the opposite
341 * super block if both super blocks point to
342 * the same checkpoint.
343 */
344 sbp[1]->s_state = sbp[0]->s_state;
345 flag = NILFS_SB_COMMIT_ALL;
346 }
347 ret = nilfs_commit_super(sb, flag);
348 }
349 return ret;
350 }
351
352 /**
353 * nilfs_move_2nd_super - relocate secondary super block
354 * @sb: super block instance
355 * @sb2off: new offset of the secondary super block (in bytes)
356 */
nilfs_move_2nd_super(struct super_block * sb,loff_t sb2off)357 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
358 {
359 struct the_nilfs *nilfs = sb->s_fs_info;
360 struct buffer_head *nsbh;
361 struct nilfs_super_block *nsbp;
362 sector_t blocknr, newblocknr;
363 unsigned long offset;
364 int sb2i; /* array index of the secondary superblock */
365 int ret = 0;
366
367 /* nilfs->ns_sem must be locked by the caller. */
368 if (nilfs->ns_sbh[1] &&
369 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
370 sb2i = 1;
371 blocknr = nilfs->ns_sbh[1]->b_blocknr;
372 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
373 sb2i = 0;
374 blocknr = nilfs->ns_sbh[0]->b_blocknr;
375 } else {
376 sb2i = -1;
377 blocknr = 0;
378 }
379 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
380 goto out; /* super block location is unchanged */
381
382 /* Get new super block buffer */
383 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
384 offset = sb2off & (nilfs->ns_blocksize - 1);
385 nsbh = sb_getblk(sb, newblocknr);
386 if (!nsbh) {
387 printk(KERN_WARNING
388 "NILFS warning: unable to move secondary superblock "
389 "to block %llu\n", (unsigned long long)newblocknr);
390 ret = -EIO;
391 goto out;
392 }
393 nsbp = (void *)nsbh->b_data + offset;
394 memset(nsbp, 0, nilfs->ns_blocksize);
395
396 if (sb2i >= 0) {
397 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
398 brelse(nilfs->ns_sbh[sb2i]);
399 nilfs->ns_sbh[sb2i] = nsbh;
400 nilfs->ns_sbp[sb2i] = nsbp;
401 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
402 /* secondary super block will be restored to index 1 */
403 nilfs->ns_sbh[1] = nsbh;
404 nilfs->ns_sbp[1] = nsbp;
405 } else {
406 brelse(nsbh);
407 }
408 out:
409 return ret;
410 }
411
412 /**
413 * nilfs_resize_fs - resize the filesystem
414 * @sb: super block instance
415 * @newsize: new size of the filesystem (in bytes)
416 */
nilfs_resize_fs(struct super_block * sb,__u64 newsize)417 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
418 {
419 struct the_nilfs *nilfs = sb->s_fs_info;
420 struct nilfs_super_block **sbp;
421 __u64 devsize, newnsegs;
422 loff_t sb2off;
423 int ret;
424
425 ret = -ERANGE;
426 devsize = i_size_read(sb->s_bdev->bd_inode);
427 if (newsize > devsize)
428 goto out;
429
430 /*
431 * Write lock is required to protect some functions depending
432 * on the number of segments, the number of reserved segments,
433 * and so forth.
434 */
435 down_write(&nilfs->ns_segctor_sem);
436
437 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
438 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
439 do_div(newnsegs, nilfs->ns_blocks_per_segment);
440
441 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
442 up_write(&nilfs->ns_segctor_sem);
443 if (ret < 0)
444 goto out;
445
446 ret = nilfs_construct_segment(sb);
447 if (ret < 0)
448 goto out;
449
450 down_write(&nilfs->ns_sem);
451 nilfs_move_2nd_super(sb, sb2off);
452 ret = -EIO;
453 sbp = nilfs_prepare_super(sb, 0);
454 if (likely(sbp)) {
455 nilfs_set_log_cursor(sbp[0], nilfs);
456 /*
457 * Drop NILFS_RESIZE_FS flag for compatibility with
458 * mount-time resize which may be implemented in a
459 * future release.
460 */
461 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
462 ~NILFS_RESIZE_FS);
463 sbp[0]->s_dev_size = cpu_to_le64(newsize);
464 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
465 if (sbp[1])
466 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
467 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
468 }
469 up_write(&nilfs->ns_sem);
470
471 /*
472 * Reset the range of allocatable segments last. This order
473 * is important in the case of expansion because the secondary
474 * superblock must be protected from log write until migration
475 * completes.
476 */
477 if (!ret)
478 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
479 out:
480 return ret;
481 }
482
nilfs_put_super(struct super_block * sb)483 static void nilfs_put_super(struct super_block *sb)
484 {
485 struct the_nilfs *nilfs = sb->s_fs_info;
486
487 nilfs_detach_log_writer(sb);
488
489 if (!(sb->s_flags & MS_RDONLY)) {
490 down_write(&nilfs->ns_sem);
491 nilfs_cleanup_super(sb);
492 up_write(&nilfs->ns_sem);
493 }
494
495 iput(nilfs->ns_sufile);
496 iput(nilfs->ns_cpfile);
497 iput(nilfs->ns_dat);
498
499 destroy_nilfs(nilfs);
500 sb->s_fs_info = NULL;
501 }
502
nilfs_sync_fs(struct super_block * sb,int wait)503 static int nilfs_sync_fs(struct super_block *sb, int wait)
504 {
505 struct the_nilfs *nilfs = sb->s_fs_info;
506 struct nilfs_super_block **sbp;
507 int err = 0;
508
509 /* This function is called when super block should be written back */
510 if (wait)
511 err = nilfs_construct_segment(sb);
512
513 down_write(&nilfs->ns_sem);
514 if (nilfs_sb_dirty(nilfs)) {
515 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
516 if (likely(sbp)) {
517 nilfs_set_log_cursor(sbp[0], nilfs);
518 nilfs_commit_super(sb, NILFS_SB_COMMIT);
519 }
520 }
521 up_write(&nilfs->ns_sem);
522
523 if (!err)
524 err = nilfs_flush_device(nilfs);
525
526 return err;
527 }
528
nilfs_attach_checkpoint(struct super_block * sb,__u64 cno,int curr_mnt,struct nilfs_root ** rootp)529 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
530 struct nilfs_root **rootp)
531 {
532 struct the_nilfs *nilfs = sb->s_fs_info;
533 struct nilfs_root *root;
534 struct nilfs_checkpoint *raw_cp;
535 struct buffer_head *bh_cp;
536 int err = -ENOMEM;
537
538 root = nilfs_find_or_create_root(
539 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
540 if (!root)
541 return err;
542
543 if (root->ifile)
544 goto reuse; /* already attached checkpoint */
545
546 down_read(&nilfs->ns_segctor_sem);
547 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
548 &bh_cp);
549 up_read(&nilfs->ns_segctor_sem);
550 if (unlikely(err)) {
551 if (err == -ENOENT || err == -EINVAL) {
552 printk(KERN_ERR
553 "NILFS: Invalid checkpoint "
554 "(checkpoint number=%llu)\n",
555 (unsigned long long)cno);
556 err = -EINVAL;
557 }
558 goto failed;
559 }
560
561 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
562 &raw_cp->cp_ifile_inode, &root->ifile);
563 if (err)
564 goto failed_bh;
565
566 atomic64_set(&root->inodes_count,
567 le64_to_cpu(raw_cp->cp_inodes_count));
568 atomic64_set(&root->blocks_count,
569 le64_to_cpu(raw_cp->cp_blocks_count));
570
571 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
572
573 reuse:
574 *rootp = root;
575 return 0;
576
577 failed_bh:
578 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
579 failed:
580 nilfs_put_root(root);
581
582 return err;
583 }
584
nilfs_freeze(struct super_block * sb)585 static int nilfs_freeze(struct super_block *sb)
586 {
587 struct the_nilfs *nilfs = sb->s_fs_info;
588 int err;
589
590 if (sb->s_flags & MS_RDONLY)
591 return 0;
592
593 /* Mark super block clean */
594 down_write(&nilfs->ns_sem);
595 err = nilfs_cleanup_super(sb);
596 up_write(&nilfs->ns_sem);
597 return err;
598 }
599
nilfs_unfreeze(struct super_block * sb)600 static int nilfs_unfreeze(struct super_block *sb)
601 {
602 struct the_nilfs *nilfs = sb->s_fs_info;
603
604 if (sb->s_flags & MS_RDONLY)
605 return 0;
606
607 down_write(&nilfs->ns_sem);
608 nilfs_setup_super(sb, false);
609 up_write(&nilfs->ns_sem);
610 return 0;
611 }
612
nilfs_statfs(struct dentry * dentry,struct kstatfs * buf)613 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
614 {
615 struct super_block *sb = dentry->d_sb;
616 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
617 struct the_nilfs *nilfs = root->nilfs;
618 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
619 unsigned long long blocks;
620 unsigned long overhead;
621 unsigned long nrsvblocks;
622 sector_t nfreeblocks;
623 u64 nmaxinodes, nfreeinodes;
624 int err;
625
626 /*
627 * Compute all of the segment blocks
628 *
629 * The blocks before first segment and after last segment
630 * are excluded.
631 */
632 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
633 - nilfs->ns_first_data_block;
634 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
635
636 /*
637 * Compute the overhead
638 *
639 * When distributing meta data blocks outside segment structure,
640 * We must count them as the overhead.
641 */
642 overhead = 0;
643
644 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
645 if (unlikely(err))
646 return err;
647
648 err = nilfs_ifile_count_free_inodes(root->ifile,
649 &nmaxinodes, &nfreeinodes);
650 if (unlikely(err)) {
651 printk(KERN_WARNING
652 "NILFS warning: fail to count free inodes: err %d.\n",
653 err);
654 if (err == -ERANGE) {
655 /*
656 * If nilfs_palloc_count_max_entries() returns
657 * -ERANGE error code then we simply treat
658 * curent inodes count as maximum possible and
659 * zero as free inodes value.
660 */
661 nmaxinodes = atomic64_read(&root->inodes_count);
662 nfreeinodes = 0;
663 err = 0;
664 } else
665 return err;
666 }
667
668 buf->f_type = NILFS_SUPER_MAGIC;
669 buf->f_bsize = sb->s_blocksize;
670 buf->f_blocks = blocks - overhead;
671 buf->f_bfree = nfreeblocks;
672 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
673 (buf->f_bfree - nrsvblocks) : 0;
674 buf->f_files = nmaxinodes;
675 buf->f_ffree = nfreeinodes;
676 buf->f_namelen = NILFS_NAME_LEN;
677 buf->f_fsid.val[0] = (u32)id;
678 buf->f_fsid.val[1] = (u32)(id >> 32);
679
680 return 0;
681 }
682
nilfs_show_options(struct seq_file * seq,struct dentry * dentry)683 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
684 {
685 struct super_block *sb = dentry->d_sb;
686 struct the_nilfs *nilfs = sb->s_fs_info;
687 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
688
689 if (!nilfs_test_opt(nilfs, BARRIER))
690 seq_puts(seq, ",nobarrier");
691 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
692 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
693 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
694 seq_puts(seq, ",errors=panic");
695 if (nilfs_test_opt(nilfs, ERRORS_CONT))
696 seq_puts(seq, ",errors=continue");
697 if (nilfs_test_opt(nilfs, STRICT_ORDER))
698 seq_puts(seq, ",order=strict");
699 if (nilfs_test_opt(nilfs, NORECOVERY))
700 seq_puts(seq, ",norecovery");
701 if (nilfs_test_opt(nilfs, DISCARD))
702 seq_puts(seq, ",discard");
703
704 return 0;
705 }
706
707 static const struct super_operations nilfs_sops = {
708 .alloc_inode = nilfs_alloc_inode,
709 .destroy_inode = nilfs_destroy_inode,
710 .dirty_inode = nilfs_dirty_inode,
711 .evict_inode = nilfs_evict_inode,
712 .put_super = nilfs_put_super,
713 .sync_fs = nilfs_sync_fs,
714 .freeze_fs = nilfs_freeze,
715 .unfreeze_fs = nilfs_unfreeze,
716 .statfs = nilfs_statfs,
717 .remount_fs = nilfs_remount,
718 .show_options = nilfs_show_options
719 };
720
721 enum {
722 Opt_err_cont, Opt_err_panic, Opt_err_ro,
723 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
724 Opt_discard, Opt_nodiscard, Opt_err,
725 };
726
727 static match_table_t tokens = {
728 {Opt_err_cont, "errors=continue"},
729 {Opt_err_panic, "errors=panic"},
730 {Opt_err_ro, "errors=remount-ro"},
731 {Opt_barrier, "barrier"},
732 {Opt_nobarrier, "nobarrier"},
733 {Opt_snapshot, "cp=%u"},
734 {Opt_order, "order=%s"},
735 {Opt_norecovery, "norecovery"},
736 {Opt_discard, "discard"},
737 {Opt_nodiscard, "nodiscard"},
738 {Opt_err, NULL}
739 };
740
parse_options(char * options,struct super_block * sb,int is_remount)741 static int parse_options(char *options, struct super_block *sb, int is_remount)
742 {
743 struct the_nilfs *nilfs = sb->s_fs_info;
744 char *p;
745 substring_t args[MAX_OPT_ARGS];
746
747 if (!options)
748 return 1;
749
750 while ((p = strsep(&options, ",")) != NULL) {
751 int token;
752 if (!*p)
753 continue;
754
755 token = match_token(p, tokens, args);
756 switch (token) {
757 case Opt_barrier:
758 nilfs_set_opt(nilfs, BARRIER);
759 break;
760 case Opt_nobarrier:
761 nilfs_clear_opt(nilfs, BARRIER);
762 break;
763 case Opt_order:
764 if (strcmp(args[0].from, "relaxed") == 0)
765 /* Ordered data semantics */
766 nilfs_clear_opt(nilfs, STRICT_ORDER);
767 else if (strcmp(args[0].from, "strict") == 0)
768 /* Strict in-order semantics */
769 nilfs_set_opt(nilfs, STRICT_ORDER);
770 else
771 return 0;
772 break;
773 case Opt_err_panic:
774 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
775 break;
776 case Opt_err_ro:
777 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
778 break;
779 case Opt_err_cont:
780 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
781 break;
782 case Opt_snapshot:
783 if (is_remount) {
784 printk(KERN_ERR
785 "NILFS: \"%s\" option is invalid "
786 "for remount.\n", p);
787 return 0;
788 }
789 break;
790 case Opt_norecovery:
791 nilfs_set_opt(nilfs, NORECOVERY);
792 break;
793 case Opt_discard:
794 nilfs_set_opt(nilfs, DISCARD);
795 break;
796 case Opt_nodiscard:
797 nilfs_clear_opt(nilfs, DISCARD);
798 break;
799 default:
800 printk(KERN_ERR
801 "NILFS: Unrecognized mount option \"%s\"\n", p);
802 return 0;
803 }
804 }
805 return 1;
806 }
807
808 static inline void
nilfs_set_default_options(struct super_block * sb,struct nilfs_super_block * sbp)809 nilfs_set_default_options(struct super_block *sb,
810 struct nilfs_super_block *sbp)
811 {
812 struct the_nilfs *nilfs = sb->s_fs_info;
813
814 nilfs->ns_mount_opt =
815 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
816 }
817
nilfs_setup_super(struct super_block * sb,int is_mount)818 static int nilfs_setup_super(struct super_block *sb, int is_mount)
819 {
820 struct the_nilfs *nilfs = sb->s_fs_info;
821 struct nilfs_super_block **sbp;
822 int max_mnt_count;
823 int mnt_count;
824
825 /* nilfs->ns_sem must be locked by the caller. */
826 sbp = nilfs_prepare_super(sb, 0);
827 if (!sbp)
828 return -EIO;
829
830 if (!is_mount)
831 goto skip_mount_setup;
832
833 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
834 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
835
836 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
837 printk(KERN_WARNING
838 "NILFS warning: mounting fs with errors\n");
839 #if 0
840 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
841 printk(KERN_WARNING
842 "NILFS warning: maximal mount count reached\n");
843 #endif
844 }
845 if (!max_mnt_count)
846 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
847
848 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
849 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
850
851 skip_mount_setup:
852 sbp[0]->s_state =
853 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
854 /* synchronize sbp[1] with sbp[0] */
855 if (sbp[1])
856 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
857 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
858 }
859
nilfs_read_super_block(struct super_block * sb,u64 pos,int blocksize,struct buffer_head ** pbh)860 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
861 u64 pos, int blocksize,
862 struct buffer_head **pbh)
863 {
864 unsigned long long sb_index = pos;
865 unsigned long offset;
866
867 offset = do_div(sb_index, blocksize);
868 *pbh = sb_bread(sb, sb_index);
869 if (!*pbh)
870 return NULL;
871 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
872 }
873
nilfs_store_magic_and_option(struct super_block * sb,struct nilfs_super_block * sbp,char * data)874 int nilfs_store_magic_and_option(struct super_block *sb,
875 struct nilfs_super_block *sbp,
876 char *data)
877 {
878 struct the_nilfs *nilfs = sb->s_fs_info;
879
880 sb->s_magic = le16_to_cpu(sbp->s_magic);
881
882 /* FS independent flags */
883 #ifdef NILFS_ATIME_DISABLE
884 sb->s_flags |= MS_NOATIME;
885 #endif
886
887 nilfs_set_default_options(sb, sbp);
888
889 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
890 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
891 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
892 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
893
894 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
895 }
896
nilfs_check_feature_compatibility(struct super_block * sb,struct nilfs_super_block * sbp)897 int nilfs_check_feature_compatibility(struct super_block *sb,
898 struct nilfs_super_block *sbp)
899 {
900 __u64 features;
901
902 features = le64_to_cpu(sbp->s_feature_incompat) &
903 ~NILFS_FEATURE_INCOMPAT_SUPP;
904 if (features) {
905 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
906 "optional features (%llx)\n",
907 (unsigned long long)features);
908 return -EINVAL;
909 }
910 features = le64_to_cpu(sbp->s_feature_compat_ro) &
911 ~NILFS_FEATURE_COMPAT_RO_SUPP;
912 if (!(sb->s_flags & MS_RDONLY) && features) {
913 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
914 "unsupported optional features (%llx)\n",
915 (unsigned long long)features);
916 return -EINVAL;
917 }
918 return 0;
919 }
920
nilfs_get_root_dentry(struct super_block * sb,struct nilfs_root * root,struct dentry ** root_dentry)921 static int nilfs_get_root_dentry(struct super_block *sb,
922 struct nilfs_root *root,
923 struct dentry **root_dentry)
924 {
925 struct inode *inode;
926 struct dentry *dentry;
927 int ret = 0;
928
929 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
930 if (IS_ERR(inode)) {
931 printk(KERN_ERR "NILFS: get root inode failed\n");
932 ret = PTR_ERR(inode);
933 goto out;
934 }
935 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
936 iput(inode);
937 printk(KERN_ERR "NILFS: corrupt root inode.\n");
938 ret = -EINVAL;
939 goto out;
940 }
941
942 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
943 dentry = d_find_alias(inode);
944 if (!dentry) {
945 dentry = d_make_root(inode);
946 if (!dentry) {
947 ret = -ENOMEM;
948 goto failed_dentry;
949 }
950 } else {
951 iput(inode);
952 }
953 } else {
954 dentry = d_obtain_root(inode);
955 if (IS_ERR(dentry)) {
956 ret = PTR_ERR(dentry);
957 goto failed_dentry;
958 }
959 }
960 *root_dentry = dentry;
961 out:
962 return ret;
963
964 failed_dentry:
965 printk(KERN_ERR "NILFS: get root dentry failed\n");
966 goto out;
967 }
968
nilfs_attach_snapshot(struct super_block * s,__u64 cno,struct dentry ** root_dentry)969 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
970 struct dentry **root_dentry)
971 {
972 struct the_nilfs *nilfs = s->s_fs_info;
973 struct nilfs_root *root;
974 int ret;
975
976 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
977
978 down_read(&nilfs->ns_segctor_sem);
979 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
980 up_read(&nilfs->ns_segctor_sem);
981 if (ret < 0) {
982 ret = (ret == -ENOENT) ? -EINVAL : ret;
983 goto out;
984 } else if (!ret) {
985 printk(KERN_ERR "NILFS: The specified checkpoint is "
986 "not a snapshot (checkpoint number=%llu).\n",
987 (unsigned long long)cno);
988 ret = -EINVAL;
989 goto out;
990 }
991
992 ret = nilfs_attach_checkpoint(s, cno, false, &root);
993 if (ret) {
994 printk(KERN_ERR "NILFS: error loading snapshot "
995 "(checkpoint number=%llu).\n",
996 (unsigned long long)cno);
997 goto out;
998 }
999 ret = nilfs_get_root_dentry(s, root, root_dentry);
1000 nilfs_put_root(root);
1001 out:
1002 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1003 return ret;
1004 }
1005
1006 /**
1007 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1008 * @root_dentry: root dentry of the tree to be shrunk
1009 *
1010 * This function returns true if the tree was in-use.
1011 */
nilfs_tree_is_busy(struct dentry * root_dentry)1012 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1013 {
1014 shrink_dcache_parent(root_dentry);
1015 return d_count(root_dentry) > 1;
1016 }
1017
nilfs_checkpoint_is_mounted(struct super_block * sb,__u64 cno)1018 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1019 {
1020 struct the_nilfs *nilfs = sb->s_fs_info;
1021 struct nilfs_root *root;
1022 struct inode *inode;
1023 struct dentry *dentry;
1024 int ret;
1025
1026 if (cno > nilfs->ns_cno)
1027 return false;
1028
1029 if (cno >= nilfs_last_cno(nilfs))
1030 return true; /* protect recent checkpoints */
1031
1032 ret = false;
1033 root = nilfs_lookup_root(nilfs, cno);
1034 if (root) {
1035 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1036 if (inode) {
1037 dentry = d_find_alias(inode);
1038 if (dentry) {
1039 ret = nilfs_tree_is_busy(dentry);
1040 dput(dentry);
1041 }
1042 iput(inode);
1043 }
1044 nilfs_put_root(root);
1045 }
1046 return ret;
1047 }
1048
1049 /**
1050 * nilfs_fill_super() - initialize a super block instance
1051 * @sb: super_block
1052 * @data: mount options
1053 * @silent: silent mode flag
1054 *
1055 * This function is called exclusively by nilfs->ns_mount_mutex.
1056 * So, the recovery process is protected from other simultaneous mounts.
1057 */
1058 static int
nilfs_fill_super(struct super_block * sb,void * data,int silent)1059 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1060 {
1061 struct the_nilfs *nilfs;
1062 struct nilfs_root *fsroot;
1063 __u64 cno;
1064 int err;
1065
1066 nilfs = alloc_nilfs(sb->s_bdev);
1067 if (!nilfs)
1068 return -ENOMEM;
1069
1070 sb->s_fs_info = nilfs;
1071
1072 err = init_nilfs(nilfs, sb, (char *)data);
1073 if (err)
1074 goto failed_nilfs;
1075
1076 sb->s_op = &nilfs_sops;
1077 sb->s_export_op = &nilfs_export_ops;
1078 sb->s_root = NULL;
1079 sb->s_time_gran = 1;
1080 sb->s_max_links = NILFS_LINK_MAX;
1081
1082 sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1083
1084 err = load_nilfs(nilfs, sb);
1085 if (err)
1086 goto failed_nilfs;
1087
1088 cno = nilfs_last_cno(nilfs);
1089 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1090 if (err) {
1091 printk(KERN_ERR "NILFS: error loading last checkpoint "
1092 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1093 goto failed_unload;
1094 }
1095
1096 if (!(sb->s_flags & MS_RDONLY)) {
1097 err = nilfs_attach_log_writer(sb, fsroot);
1098 if (err)
1099 goto failed_checkpoint;
1100 }
1101
1102 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1103 if (err)
1104 goto failed_segctor;
1105
1106 nilfs_put_root(fsroot);
1107
1108 if (!(sb->s_flags & MS_RDONLY)) {
1109 down_write(&nilfs->ns_sem);
1110 nilfs_setup_super(sb, true);
1111 up_write(&nilfs->ns_sem);
1112 }
1113
1114 return 0;
1115
1116 failed_segctor:
1117 nilfs_detach_log_writer(sb);
1118
1119 failed_checkpoint:
1120 nilfs_put_root(fsroot);
1121
1122 failed_unload:
1123 iput(nilfs->ns_sufile);
1124 iput(nilfs->ns_cpfile);
1125 iput(nilfs->ns_dat);
1126
1127 failed_nilfs:
1128 destroy_nilfs(nilfs);
1129 return err;
1130 }
1131
nilfs_remount(struct super_block * sb,int * flags,char * data)1132 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1133 {
1134 struct the_nilfs *nilfs = sb->s_fs_info;
1135 unsigned long old_sb_flags;
1136 unsigned long old_mount_opt;
1137 int err;
1138
1139 sync_filesystem(sb);
1140 old_sb_flags = sb->s_flags;
1141 old_mount_opt = nilfs->ns_mount_opt;
1142
1143 if (!parse_options(data, sb, 1)) {
1144 err = -EINVAL;
1145 goto restore_opts;
1146 }
1147 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1148
1149 err = -EINVAL;
1150
1151 if (!nilfs_valid_fs(nilfs)) {
1152 printk(KERN_WARNING "NILFS (device %s): couldn't "
1153 "remount because the filesystem is in an "
1154 "incomplete recovery state.\n", sb->s_id);
1155 goto restore_opts;
1156 }
1157
1158 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1159 goto out;
1160 if (*flags & MS_RDONLY) {
1161 /* Shutting down log writer */
1162 nilfs_detach_log_writer(sb);
1163 sb->s_flags |= MS_RDONLY;
1164
1165 /*
1166 * Remounting a valid RW partition RDONLY, so set
1167 * the RDONLY flag and then mark the partition as valid again.
1168 */
1169 down_write(&nilfs->ns_sem);
1170 nilfs_cleanup_super(sb);
1171 up_write(&nilfs->ns_sem);
1172 } else {
1173 __u64 features;
1174 struct nilfs_root *root;
1175
1176 /*
1177 * Mounting a RDONLY partition read-write, so reread and
1178 * store the current valid flag. (It may have been changed
1179 * by fsck since we originally mounted the partition.)
1180 */
1181 down_read(&nilfs->ns_sem);
1182 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1183 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1184 up_read(&nilfs->ns_sem);
1185 if (features) {
1186 printk(KERN_WARNING "NILFS (device %s): couldn't "
1187 "remount RDWR because of unsupported optional "
1188 "features (%llx)\n",
1189 sb->s_id, (unsigned long long)features);
1190 err = -EROFS;
1191 goto restore_opts;
1192 }
1193
1194 sb->s_flags &= ~MS_RDONLY;
1195
1196 root = NILFS_I(d_inode(sb->s_root))->i_root;
1197 err = nilfs_attach_log_writer(sb, root);
1198 if (err)
1199 goto restore_opts;
1200
1201 down_write(&nilfs->ns_sem);
1202 nilfs_setup_super(sb, true);
1203 up_write(&nilfs->ns_sem);
1204 }
1205 out:
1206 return 0;
1207
1208 restore_opts:
1209 sb->s_flags = old_sb_flags;
1210 nilfs->ns_mount_opt = old_mount_opt;
1211 return err;
1212 }
1213
1214 struct nilfs_super_data {
1215 struct block_device *bdev;
1216 __u64 cno;
1217 int flags;
1218 };
1219
1220 /**
1221 * nilfs_identify - pre-read mount options needed to identify mount instance
1222 * @data: mount options
1223 * @sd: nilfs_super_data
1224 */
nilfs_identify(char * data,struct nilfs_super_data * sd)1225 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1226 {
1227 char *p, *options = data;
1228 substring_t args[MAX_OPT_ARGS];
1229 int token;
1230 int ret = 0;
1231
1232 do {
1233 p = strsep(&options, ",");
1234 if (p != NULL && *p) {
1235 token = match_token(p, tokens, args);
1236 if (token == Opt_snapshot) {
1237 if (!(sd->flags & MS_RDONLY)) {
1238 ret++;
1239 } else {
1240 sd->cno = simple_strtoull(args[0].from,
1241 NULL, 0);
1242 /*
1243 * No need to see the end pointer;
1244 * match_token() has done syntax
1245 * checking.
1246 */
1247 if (sd->cno == 0)
1248 ret++;
1249 }
1250 }
1251 if (ret)
1252 printk(KERN_ERR
1253 "NILFS: invalid mount option: %s\n", p);
1254 }
1255 if (!options)
1256 break;
1257 BUG_ON(options == data);
1258 *(options - 1) = ',';
1259 } while (!ret);
1260 return ret;
1261 }
1262
nilfs_set_bdev_super(struct super_block * s,void * data)1263 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1264 {
1265 s->s_bdev = data;
1266 s->s_dev = s->s_bdev->bd_dev;
1267 return 0;
1268 }
1269
nilfs_test_bdev_super(struct super_block * s,void * data)1270 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1271 {
1272 return (void *)s->s_bdev == data;
1273 }
1274
1275 static struct dentry *
nilfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1276 nilfs_mount(struct file_system_type *fs_type, int flags,
1277 const char *dev_name, void *data)
1278 {
1279 struct nilfs_super_data sd;
1280 struct super_block *s;
1281 fmode_t mode = FMODE_READ | FMODE_EXCL;
1282 struct dentry *root_dentry;
1283 int err, s_new = false;
1284
1285 if (!(flags & MS_RDONLY))
1286 mode |= FMODE_WRITE;
1287
1288 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1289 if (IS_ERR(sd.bdev))
1290 return ERR_CAST(sd.bdev);
1291
1292 sd.cno = 0;
1293 sd.flags = flags;
1294 if (nilfs_identify((char *)data, &sd)) {
1295 err = -EINVAL;
1296 goto failed;
1297 }
1298
1299 /*
1300 * once the super is inserted into the list by sget, s_umount
1301 * will protect the lockfs code from trying to start a snapshot
1302 * while we are mounting
1303 */
1304 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1305 if (sd.bdev->bd_fsfreeze_count > 0) {
1306 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307 err = -EBUSY;
1308 goto failed;
1309 }
1310 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1311 sd.bdev);
1312 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1313 if (IS_ERR(s)) {
1314 err = PTR_ERR(s);
1315 goto failed;
1316 }
1317
1318 if (!s->s_root) {
1319 char b[BDEVNAME_SIZE];
1320
1321 s_new = true;
1322
1323 /* New superblock instance created */
1324 s->s_mode = mode;
1325 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1326 sb_set_blocksize(s, block_size(sd.bdev));
1327
1328 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1329 if (err)
1330 goto failed_super;
1331
1332 s->s_flags |= MS_ACTIVE;
1333 } else if (!sd.cno) {
1334 if (nilfs_tree_is_busy(s->s_root)) {
1335 if ((flags ^ s->s_flags) & MS_RDONLY) {
1336 printk(KERN_ERR "NILFS: the device already "
1337 "has a %s mount.\n",
1338 (s->s_flags & MS_RDONLY) ?
1339 "read-only" : "read/write");
1340 err = -EBUSY;
1341 goto failed_super;
1342 }
1343 } else {
1344 /*
1345 * Try remount to setup mount states if the current
1346 * tree is not mounted and only snapshots use this sb.
1347 */
1348 err = nilfs_remount(s, &flags, data);
1349 if (err)
1350 goto failed_super;
1351 }
1352 }
1353
1354 if (sd.cno) {
1355 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1356 if (err)
1357 goto failed_super;
1358 } else {
1359 root_dentry = dget(s->s_root);
1360 }
1361
1362 if (!s_new)
1363 blkdev_put(sd.bdev, mode);
1364
1365 return root_dentry;
1366
1367 failed_super:
1368 deactivate_locked_super(s);
1369
1370 failed:
1371 if (!s_new)
1372 blkdev_put(sd.bdev, mode);
1373 return ERR_PTR(err);
1374 }
1375
1376 struct file_system_type nilfs_fs_type = {
1377 .owner = THIS_MODULE,
1378 .name = "nilfs2",
1379 .mount = nilfs_mount,
1380 .kill_sb = kill_block_super,
1381 .fs_flags = FS_REQUIRES_DEV,
1382 };
1383 MODULE_ALIAS_FS("nilfs2");
1384
nilfs_inode_init_once(void * obj)1385 static void nilfs_inode_init_once(void *obj)
1386 {
1387 struct nilfs_inode_info *ii = obj;
1388
1389 INIT_LIST_HEAD(&ii->i_dirty);
1390 #ifdef CONFIG_NILFS_XATTR
1391 init_rwsem(&ii->xattr_sem);
1392 #endif
1393 address_space_init_once(&ii->i_btnode_cache);
1394 ii->i_bmap = &ii->i_bmap_data;
1395 inode_init_once(&ii->vfs_inode);
1396 }
1397
nilfs_segbuf_init_once(void * obj)1398 static void nilfs_segbuf_init_once(void *obj)
1399 {
1400 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1401 }
1402
nilfs_destroy_cachep(void)1403 static void nilfs_destroy_cachep(void)
1404 {
1405 /*
1406 * Make sure all delayed rcu free inodes are flushed before we
1407 * destroy cache.
1408 */
1409 rcu_barrier();
1410
1411 kmem_cache_destroy(nilfs_inode_cachep);
1412 kmem_cache_destroy(nilfs_transaction_cachep);
1413 kmem_cache_destroy(nilfs_segbuf_cachep);
1414 kmem_cache_destroy(nilfs_btree_path_cache);
1415 }
1416
nilfs_init_cachep(void)1417 static int __init nilfs_init_cachep(void)
1418 {
1419 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1420 sizeof(struct nilfs_inode_info), 0,
1421 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1422 if (!nilfs_inode_cachep)
1423 goto fail;
1424
1425 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1426 sizeof(struct nilfs_transaction_info), 0,
1427 SLAB_RECLAIM_ACCOUNT, NULL);
1428 if (!nilfs_transaction_cachep)
1429 goto fail;
1430
1431 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1432 sizeof(struct nilfs_segment_buffer), 0,
1433 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1434 if (!nilfs_segbuf_cachep)
1435 goto fail;
1436
1437 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1438 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1439 0, 0, NULL);
1440 if (!nilfs_btree_path_cache)
1441 goto fail;
1442
1443 return 0;
1444
1445 fail:
1446 nilfs_destroy_cachep();
1447 return -ENOMEM;
1448 }
1449
init_nilfs_fs(void)1450 static int __init init_nilfs_fs(void)
1451 {
1452 int err;
1453
1454 err = nilfs_init_cachep();
1455 if (err)
1456 goto fail;
1457
1458 err = nilfs_sysfs_init();
1459 if (err)
1460 goto free_cachep;
1461
1462 err = register_filesystem(&nilfs_fs_type);
1463 if (err)
1464 goto deinit_sysfs_entry;
1465
1466 printk(KERN_INFO "NILFS version 2 loaded\n");
1467 return 0;
1468
1469 deinit_sysfs_entry:
1470 nilfs_sysfs_exit();
1471 free_cachep:
1472 nilfs_destroy_cachep();
1473 fail:
1474 return err;
1475 }
1476
exit_nilfs_fs(void)1477 static void __exit exit_nilfs_fs(void)
1478 {
1479 nilfs_destroy_cachep();
1480 nilfs_sysfs_exit();
1481 unregister_filesystem(&nilfs_fs_type);
1482 }
1483
1484 module_init(init_nilfs_fs)
1485 module_exit(exit_nilfs_fs)
1486