• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60 
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64 
65 #include <trace/events/task.h>
66 #include "internal.h"
67 
68 #include <trace/events/sched.h>
69 
70 int suid_dumpable = 0;
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
__register_binfmt(struct linux_binfmt * fmt,int insert)75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	BUG_ON(!fmt);
78 	if (WARN_ON(!fmt->load_binary))
79 		return;
80 	write_lock(&binfmt_lock);
81 	insert ? list_add(&fmt->lh, &formats) :
82 		 list_add_tail(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
unregister_binfmt(struct linux_binfmt * fmt)88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
put_binfmt(struct linux_binfmt * fmt)97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
path_noexec(const struct path * path)102 bool path_noexec(const struct path *path)
103 {
104 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107 
108 #ifdef CONFIG_USELIB
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
SYSCALL_DEFINE1(uselib,const char __user *,library)115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct linux_binfmt *fmt;
118 	struct file *file;
119 	struct filename *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 		.intent = LOOKUP_OPEN,
125 		.lookup_flags = LOOKUP_FOLLOW,
126 	};
127 
128 	if (IS_ERR(tmp))
129 		goto out;
130 
131 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 	putname(tmp);
133 	error = PTR_ERR(file);
134 	if (IS_ERR(file))
135 		goto out;
136 
137 	error = -EINVAL;
138 	if (!S_ISREG(file_inode(file)->i_mode))
139 		goto exit;
140 
141 	error = -EACCES;
142 	if (path_noexec(&file->f_path))
143 		goto exit;
144 
145 	fsnotify_open(file);
146 
147 	error = -ENOEXEC;
148 
149 	read_lock(&binfmt_lock);
150 	list_for_each_entry(fmt, &formats, lh) {
151 		if (!fmt->load_shlib)
152 			continue;
153 		if (!try_module_get(fmt->module))
154 			continue;
155 		read_unlock(&binfmt_lock);
156 		error = fmt->load_shlib(file);
157 		read_lock(&binfmt_lock);
158 		put_binfmt(fmt);
159 		if (error != -ENOEXEC)
160 			break;
161 	}
162 	read_unlock(&binfmt_lock);
163 exit:
164 	fput(file);
165 out:
166   	return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 	unsigned int gup_flags = FOLL_FORCE;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 
204 	if (write)
205 		gup_flags |= FOLL_WRITE;
206 
207 	ret = get_user_pages(current, bprm->mm, pos, 1, gup_flags,
208 			&page, NULL);
209 	if (ret <= 0)
210 		return NULL;
211 
212 	if (write) {
213 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214 		unsigned long ptr_size, limit;
215 
216 		/*
217 		 * Since the stack will hold pointers to the strings, we
218 		 * must account for them as well.
219 		 *
220 		 * The size calculation is the entire vma while each arg page is
221 		 * built, so each time we get here it's calculating how far it
222 		 * is currently (rather than each call being just the newly
223 		 * added size from the arg page).  As a result, we need to
224 		 * always add the entire size of the pointers, so that on the
225 		 * last call to get_arg_page() we'll actually have the entire
226 		 * correct size.
227 		 */
228 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
229 		if (ptr_size > ULONG_MAX - size)
230 			goto fail;
231 		size += ptr_size;
232 
233 		acct_arg_size(bprm, size / PAGE_SIZE);
234 
235 		/*
236 		 * We've historically supported up to 32 pages (ARG_MAX)
237 		 * of argument strings even with small stacks
238 		 */
239 		if (size <= ARG_MAX)
240 			return page;
241 
242 		/*
243 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
244 		 * (whichever is smaller) for the argv+env strings.
245 		 * This ensures that:
246 		 *  - the remaining binfmt code will not run out of stack space,
247 		 *  - the program will have a reasonable amount of stack left
248 		 *    to work from.
249 		 */
250 		limit = _STK_LIM / 4 * 3;
251 		limit = min(limit, rlimit(RLIMIT_STACK) / 4);
252 		if (size > limit)
253 			goto fail;
254 	}
255 
256 	return page;
257 
258 fail:
259 	put_page(page);
260 	return NULL;
261 }
262 
put_arg_page(struct page * page)263 static void put_arg_page(struct page *page)
264 {
265 	put_page(page);
266 }
267 
free_arg_page(struct linux_binprm * bprm,int i)268 static void free_arg_page(struct linux_binprm *bprm, int i)
269 {
270 }
271 
free_arg_pages(struct linux_binprm * bprm)272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 		struct page *page)
278 {
279 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281 
__bprm_mm_init(struct linux_binprm * bprm)282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284 	int err;
285 	struct vm_area_struct *vma = NULL;
286 	struct mm_struct *mm = bprm->mm;
287 
288 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289 	if (!vma)
290 		return -ENOMEM;
291 
292 	down_write(&mm->mmap_sem);
293 	vma->vm_mm = mm;
294 
295 	/*
296 	 * Place the stack at the largest stack address the architecture
297 	 * supports. Later, we'll move this to an appropriate place. We don't
298 	 * use STACK_TOP because that can depend on attributes which aren't
299 	 * configured yet.
300 	 */
301 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
302 	vma->vm_end = STACK_TOP_MAX;
303 	vma->vm_start = vma->vm_end - PAGE_SIZE;
304 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
305 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
306 	INIT_LIST_HEAD(&vma->anon_vma_chain);
307 
308 	err = insert_vm_struct(mm, vma);
309 	if (err)
310 		goto err;
311 
312 	mm->stack_vm = mm->total_vm = 1;
313 	arch_bprm_mm_init(mm, vma);
314 	up_write(&mm->mmap_sem);
315 	bprm->p = vma->vm_end - sizeof(void *);
316 	return 0;
317 err:
318 	up_write(&mm->mmap_sem);
319 	bprm->vma = NULL;
320 	kmem_cache_free(vm_area_cachep, vma);
321 	return err;
322 }
323 
valid_arg_len(struct linux_binprm * bprm,long len)324 static bool valid_arg_len(struct linux_binprm *bprm, long len)
325 {
326 	return len <= MAX_ARG_STRLEN;
327 }
328 
329 #else
330 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)331 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
332 {
333 }
334 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)335 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		int write)
337 {
338 	struct page *page;
339 
340 	page = bprm->page[pos / PAGE_SIZE];
341 	if (!page && write) {
342 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
343 		if (!page)
344 			return NULL;
345 		bprm->page[pos / PAGE_SIZE] = page;
346 	}
347 
348 	return page;
349 }
350 
put_arg_page(struct page * page)351 static void put_arg_page(struct page *page)
352 {
353 }
354 
free_arg_page(struct linux_binprm * bprm,int i)355 static void free_arg_page(struct linux_binprm *bprm, int i)
356 {
357 	if (bprm->page[i]) {
358 		__free_page(bprm->page[i]);
359 		bprm->page[i] = NULL;
360 	}
361 }
362 
free_arg_pages(struct linux_binprm * bprm)363 static void free_arg_pages(struct linux_binprm *bprm)
364 {
365 	int i;
366 
367 	for (i = 0; i < MAX_ARG_PAGES; i++)
368 		free_arg_page(bprm, i);
369 }
370 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)371 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
372 		struct page *page)
373 {
374 }
375 
__bprm_mm_init(struct linux_binprm * bprm)376 static int __bprm_mm_init(struct linux_binprm *bprm)
377 {
378 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
379 	return 0;
380 }
381 
valid_arg_len(struct linux_binprm * bprm,long len)382 static bool valid_arg_len(struct linux_binprm *bprm, long len)
383 {
384 	return len <= bprm->p;
385 }
386 
387 #endif /* CONFIG_MMU */
388 
389 /*
390  * Create a new mm_struct and populate it with a temporary stack
391  * vm_area_struct.  We don't have enough context at this point to set the stack
392  * flags, permissions, and offset, so we use temporary values.  We'll update
393  * them later in setup_arg_pages().
394  */
bprm_mm_init(struct linux_binprm * bprm)395 static int bprm_mm_init(struct linux_binprm *bprm)
396 {
397 	int err;
398 	struct mm_struct *mm = NULL;
399 
400 	bprm->mm = mm = mm_alloc();
401 	err = -ENOMEM;
402 	if (!mm)
403 		goto err;
404 
405 	err = __bprm_mm_init(bprm);
406 	if (err)
407 		goto err;
408 
409 	return 0;
410 
411 err:
412 	if (mm) {
413 		bprm->mm = NULL;
414 		mmdrop(mm);
415 	}
416 
417 	return err;
418 }
419 
420 struct user_arg_ptr {
421 #ifdef CONFIG_COMPAT
422 	bool is_compat;
423 #endif
424 	union {
425 		const char __user *const __user *native;
426 #ifdef CONFIG_COMPAT
427 		const compat_uptr_t __user *compat;
428 #endif
429 	} ptr;
430 };
431 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)432 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
433 {
434 	const char __user *native;
435 
436 #ifdef CONFIG_COMPAT
437 	if (unlikely(argv.is_compat)) {
438 		compat_uptr_t compat;
439 
440 		if (get_user(compat, argv.ptr.compat + nr))
441 			return ERR_PTR(-EFAULT);
442 
443 		return compat_ptr(compat);
444 	}
445 #endif
446 
447 	if (get_user(native, argv.ptr.native + nr))
448 		return ERR_PTR(-EFAULT);
449 
450 	return native;
451 }
452 
453 /*
454  * count() counts the number of strings in array ARGV.
455  */
count(struct user_arg_ptr argv,int max)456 static int count(struct user_arg_ptr argv, int max)
457 {
458 	int i = 0;
459 
460 	if (argv.ptr.native != NULL) {
461 		for (;;) {
462 			const char __user *p = get_user_arg_ptr(argv, i);
463 
464 			if (!p)
465 				break;
466 
467 			if (IS_ERR(p))
468 				return -EFAULT;
469 
470 			if (i >= max)
471 				return -E2BIG;
472 			++i;
473 
474 			if (fatal_signal_pending(current))
475 				return -ERESTARTNOHAND;
476 			cond_resched();
477 		}
478 	}
479 	return i;
480 }
481 
482 /*
483  * 'copy_strings()' copies argument/environment strings from the old
484  * processes's memory to the new process's stack.  The call to get_user_pages()
485  * ensures the destination page is created and not swapped out.
486  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)487 static int copy_strings(int argc, struct user_arg_ptr argv,
488 			struct linux_binprm *bprm)
489 {
490 	struct page *kmapped_page = NULL;
491 	char *kaddr = NULL;
492 	unsigned long kpos = 0;
493 	int ret;
494 
495 	while (argc-- > 0) {
496 		const char __user *str;
497 		int len;
498 		unsigned long pos;
499 
500 		ret = -EFAULT;
501 		str = get_user_arg_ptr(argv, argc);
502 		if (IS_ERR(str))
503 			goto out;
504 
505 		len = strnlen_user(str, MAX_ARG_STRLEN);
506 		if (!len)
507 			goto out;
508 
509 		ret = -E2BIG;
510 		if (!valid_arg_len(bprm, len))
511 			goto out;
512 
513 		/* We're going to work our way backwords. */
514 		pos = bprm->p;
515 		str += len;
516 		bprm->p -= len;
517 
518 		while (len > 0) {
519 			int offset, bytes_to_copy;
520 
521 			if (fatal_signal_pending(current)) {
522 				ret = -ERESTARTNOHAND;
523 				goto out;
524 			}
525 			cond_resched();
526 
527 			offset = pos % PAGE_SIZE;
528 			if (offset == 0)
529 				offset = PAGE_SIZE;
530 
531 			bytes_to_copy = offset;
532 			if (bytes_to_copy > len)
533 				bytes_to_copy = len;
534 
535 			offset -= bytes_to_copy;
536 			pos -= bytes_to_copy;
537 			str -= bytes_to_copy;
538 			len -= bytes_to_copy;
539 
540 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
541 				struct page *page;
542 
543 				page = get_arg_page(bprm, pos, 1);
544 				if (!page) {
545 					ret = -E2BIG;
546 					goto out;
547 				}
548 
549 				if (kmapped_page) {
550 					flush_kernel_dcache_page(kmapped_page);
551 					kunmap(kmapped_page);
552 					put_arg_page(kmapped_page);
553 				}
554 				kmapped_page = page;
555 				kaddr = kmap(kmapped_page);
556 				kpos = pos & PAGE_MASK;
557 				flush_arg_page(bprm, kpos, kmapped_page);
558 			}
559 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
560 				ret = -EFAULT;
561 				goto out;
562 			}
563 		}
564 	}
565 	ret = 0;
566 out:
567 	if (kmapped_page) {
568 		flush_kernel_dcache_page(kmapped_page);
569 		kunmap(kmapped_page);
570 		put_arg_page(kmapped_page);
571 	}
572 	return ret;
573 }
574 
575 /*
576  * Like copy_strings, but get argv and its values from kernel memory.
577  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)578 int copy_strings_kernel(int argc, const char *const *__argv,
579 			struct linux_binprm *bprm)
580 {
581 	int r;
582 	mm_segment_t oldfs = get_fs();
583 	struct user_arg_ptr argv = {
584 		.ptr.native = (const char __user *const  __user *)__argv,
585 	};
586 
587 	set_fs(KERNEL_DS);
588 	r = copy_strings(argc, argv, bprm);
589 	set_fs(oldfs);
590 
591 	return r;
592 }
593 EXPORT_SYMBOL(copy_strings_kernel);
594 
595 #ifdef CONFIG_MMU
596 
597 /*
598  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
599  * the binfmt code determines where the new stack should reside, we shift it to
600  * its final location.  The process proceeds as follows:
601  *
602  * 1) Use shift to calculate the new vma endpoints.
603  * 2) Extend vma to cover both the old and new ranges.  This ensures the
604  *    arguments passed to subsequent functions are consistent.
605  * 3) Move vma's page tables to the new range.
606  * 4) Free up any cleared pgd range.
607  * 5) Shrink the vma to cover only the new range.
608  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)609 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
610 {
611 	struct mm_struct *mm = vma->vm_mm;
612 	unsigned long old_start = vma->vm_start;
613 	unsigned long old_end = vma->vm_end;
614 	unsigned long length = old_end - old_start;
615 	unsigned long new_start = old_start - shift;
616 	unsigned long new_end = old_end - shift;
617 	struct mmu_gather tlb;
618 
619 	BUG_ON(new_start > new_end);
620 
621 	/*
622 	 * ensure there are no vmas between where we want to go
623 	 * and where we are
624 	 */
625 	if (vma != find_vma(mm, new_start))
626 		return -EFAULT;
627 
628 	/*
629 	 * cover the whole range: [new_start, old_end)
630 	 */
631 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
632 		return -ENOMEM;
633 
634 	/*
635 	 * move the page tables downwards, on failure we rely on
636 	 * process cleanup to remove whatever mess we made.
637 	 */
638 	if (length != move_page_tables(vma, old_start,
639 				       vma, new_start, length, false))
640 		return -ENOMEM;
641 
642 	lru_add_drain();
643 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
644 	if (new_end > old_start) {
645 		/*
646 		 * when the old and new regions overlap clear from new_end.
647 		 */
648 		free_pgd_range(&tlb, new_end, old_end, new_end,
649 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
650 	} else {
651 		/*
652 		 * otherwise, clean from old_start; this is done to not touch
653 		 * the address space in [new_end, old_start) some architectures
654 		 * have constraints on va-space that make this illegal (IA64) -
655 		 * for the others its just a little faster.
656 		 */
657 		free_pgd_range(&tlb, old_start, old_end, new_end,
658 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659 	}
660 	tlb_finish_mmu(&tlb, old_start, old_end);
661 
662 	/*
663 	 * Shrink the vma to just the new range.  Always succeeds.
664 	 */
665 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
666 
667 	return 0;
668 }
669 
670 /*
671  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
672  * the stack is optionally relocated, and some extra space is added.
673  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)674 int setup_arg_pages(struct linux_binprm *bprm,
675 		    unsigned long stack_top,
676 		    int executable_stack)
677 {
678 	unsigned long ret;
679 	unsigned long stack_shift;
680 	struct mm_struct *mm = current->mm;
681 	struct vm_area_struct *vma = bprm->vma;
682 	struct vm_area_struct *prev = NULL;
683 	unsigned long vm_flags;
684 	unsigned long stack_base;
685 	unsigned long stack_size;
686 	unsigned long stack_expand;
687 	unsigned long rlim_stack;
688 
689 #ifdef CONFIG_STACK_GROWSUP
690 	/* Limit stack size */
691 	stack_base = rlimit_max(RLIMIT_STACK);
692 	if (stack_base > STACK_SIZE_MAX)
693 		stack_base = STACK_SIZE_MAX;
694 
695 	/* Add space for stack randomization. */
696 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
697 
698 	/* Make sure we didn't let the argument array grow too large. */
699 	if (vma->vm_end - vma->vm_start > stack_base)
700 		return -ENOMEM;
701 
702 	stack_base = PAGE_ALIGN(stack_top - stack_base);
703 
704 	stack_shift = vma->vm_start - stack_base;
705 	mm->arg_start = bprm->p - stack_shift;
706 	bprm->p = vma->vm_end - stack_shift;
707 #else
708 	stack_top = arch_align_stack(stack_top);
709 	stack_top = PAGE_ALIGN(stack_top);
710 
711 	if (unlikely(stack_top < mmap_min_addr) ||
712 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
713 		return -ENOMEM;
714 
715 	stack_shift = vma->vm_end - stack_top;
716 
717 	bprm->p -= stack_shift;
718 	mm->arg_start = bprm->p;
719 #endif
720 
721 	if (bprm->loader)
722 		bprm->loader -= stack_shift;
723 	bprm->exec -= stack_shift;
724 
725 	down_write(&mm->mmap_sem);
726 	vm_flags = VM_STACK_FLAGS;
727 
728 	/*
729 	 * Adjust stack execute permissions; explicitly enable for
730 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
731 	 * (arch default) otherwise.
732 	 */
733 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
734 		vm_flags |= VM_EXEC;
735 	else if (executable_stack == EXSTACK_DISABLE_X)
736 		vm_flags &= ~VM_EXEC;
737 	vm_flags |= mm->def_flags;
738 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
739 
740 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
741 			vm_flags);
742 	if (ret)
743 		goto out_unlock;
744 	BUG_ON(prev != vma);
745 
746 	/* Move stack pages down in memory. */
747 	if (stack_shift) {
748 		ret = shift_arg_pages(vma, stack_shift);
749 		if (ret)
750 			goto out_unlock;
751 	}
752 
753 	/* mprotect_fixup is overkill to remove the temporary stack flags */
754 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
755 
756 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
757 	stack_size = vma->vm_end - vma->vm_start;
758 	/*
759 	 * Align this down to a page boundary as expand_stack
760 	 * will align it up.
761 	 */
762 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
763 #ifdef CONFIG_STACK_GROWSUP
764 	if (stack_size + stack_expand > rlim_stack)
765 		stack_base = vma->vm_start + rlim_stack;
766 	else
767 		stack_base = vma->vm_end + stack_expand;
768 #else
769 	if (stack_size + stack_expand > rlim_stack)
770 		stack_base = vma->vm_end - rlim_stack;
771 	else
772 		stack_base = vma->vm_start - stack_expand;
773 #endif
774 	current->mm->start_stack = bprm->p;
775 	ret = expand_stack(vma, stack_base);
776 	if (ret)
777 		ret = -EFAULT;
778 
779 out_unlock:
780 	up_write(&mm->mmap_sem);
781 	return ret;
782 }
783 EXPORT_SYMBOL(setup_arg_pages);
784 
785 #endif /* CONFIG_MMU */
786 
do_open_execat(int fd,struct filename * name,int flags)787 static struct file *do_open_execat(int fd, struct filename *name, int flags)
788 {
789 	struct file *file;
790 	int err;
791 	struct open_flags open_exec_flags = {
792 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
793 		.acc_mode = MAY_EXEC | MAY_OPEN,
794 		.intent = LOOKUP_OPEN,
795 		.lookup_flags = LOOKUP_FOLLOW,
796 	};
797 
798 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
799 		return ERR_PTR(-EINVAL);
800 	if (flags & AT_SYMLINK_NOFOLLOW)
801 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
802 	if (flags & AT_EMPTY_PATH)
803 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
804 
805 	file = do_filp_open(fd, name, &open_exec_flags);
806 	if (IS_ERR(file))
807 		goto out;
808 
809 	err = -EACCES;
810 	if (!S_ISREG(file_inode(file)->i_mode))
811 		goto exit;
812 
813 	if (path_noexec(&file->f_path))
814 		goto exit;
815 
816 	err = deny_write_access(file);
817 	if (err)
818 		goto exit;
819 
820 	if (name->name[0] != '\0')
821 		fsnotify_open(file);
822 
823 out:
824 	return file;
825 
826 exit:
827 	fput(file);
828 	return ERR_PTR(err);
829 }
830 
open_exec(const char * name)831 struct file *open_exec(const char *name)
832 {
833 	struct filename *filename = getname_kernel(name);
834 	struct file *f = ERR_CAST(filename);
835 
836 	if (!IS_ERR(filename)) {
837 		f = do_open_execat(AT_FDCWD, filename, 0);
838 		putname(filename);
839 	}
840 	return f;
841 }
842 EXPORT_SYMBOL(open_exec);
843 
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)844 int kernel_read(struct file *file, loff_t offset,
845 		char *addr, unsigned long count)
846 {
847 	mm_segment_t old_fs;
848 	loff_t pos = offset;
849 	int result;
850 
851 	old_fs = get_fs();
852 	set_fs(get_ds());
853 	/* The cast to a user pointer is valid due to the set_fs() */
854 	result = vfs_read(file, (void __user *)addr, count, &pos);
855 	set_fs(old_fs);
856 	return result;
857 }
858 
859 EXPORT_SYMBOL(kernel_read);
860 
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)861 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
862 {
863 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
864 	if (res > 0)
865 		flush_icache_range(addr, addr + len);
866 	return res;
867 }
868 EXPORT_SYMBOL(read_code);
869 
exec_mmap(struct mm_struct * mm)870 static int exec_mmap(struct mm_struct *mm)
871 {
872 	struct task_struct *tsk;
873 	struct mm_struct *old_mm, *active_mm;
874 
875 	/* Notify parent that we're no longer interested in the old VM */
876 	tsk = current;
877 	old_mm = current->mm;
878 	exec_mm_release(tsk, old_mm);
879 
880 	if (old_mm) {
881 		sync_mm_rss(old_mm);
882 		/*
883 		 * Make sure that if there is a core dump in progress
884 		 * for the old mm, we get out and die instead of going
885 		 * through with the exec.  We must hold mmap_sem around
886 		 * checking core_state and changing tsk->mm.
887 		 */
888 		down_read(&old_mm->mmap_sem);
889 		if (unlikely(old_mm->core_state)) {
890 			up_read(&old_mm->mmap_sem);
891 			return -EINTR;
892 		}
893 	}
894 	task_lock(tsk);
895 	active_mm = tsk->active_mm;
896 	tsk->mm = mm;
897 	tsk->active_mm = mm;
898 	activate_mm(active_mm, mm);
899 	tsk->mm->vmacache_seqnum = 0;
900 	vmacache_flush(tsk);
901 	task_unlock(tsk);
902 	if (old_mm) {
903 		up_read(&old_mm->mmap_sem);
904 		BUG_ON(active_mm != old_mm);
905 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
906 		mm_update_next_owner(old_mm);
907 		mmput(old_mm);
908 		return 0;
909 	}
910 	mmdrop(active_mm);
911 	return 0;
912 }
913 
914 /*
915  * This function makes sure the current process has its own signal table,
916  * so that flush_signal_handlers can later reset the handlers without
917  * disturbing other processes.  (Other processes might share the signal
918  * table via the CLONE_SIGHAND option to clone().)
919  */
de_thread(struct task_struct * tsk)920 static int de_thread(struct task_struct *tsk)
921 {
922 	struct signal_struct *sig = tsk->signal;
923 	struct sighand_struct *oldsighand = tsk->sighand;
924 	spinlock_t *lock = &oldsighand->siglock;
925 
926 	if (thread_group_empty(tsk))
927 		goto no_thread_group;
928 
929 	/*
930 	 * Kill all other threads in the thread group.
931 	 */
932 	spin_lock_irq(lock);
933 	if (signal_group_exit(sig)) {
934 		/*
935 		 * Another group action in progress, just
936 		 * return so that the signal is processed.
937 		 */
938 		spin_unlock_irq(lock);
939 		return -EAGAIN;
940 	}
941 
942 	sig->group_exit_task = tsk;
943 	sig->notify_count = zap_other_threads(tsk);
944 	if (!thread_group_leader(tsk))
945 		sig->notify_count--;
946 
947 	while (sig->notify_count) {
948 		__set_current_state(TASK_KILLABLE);
949 		spin_unlock_irq(lock);
950 		schedule();
951 		if (unlikely(__fatal_signal_pending(tsk)))
952 			goto killed;
953 		spin_lock_irq(lock);
954 	}
955 	spin_unlock_irq(lock);
956 
957 	/*
958 	 * At this point all other threads have exited, all we have to
959 	 * do is to wait for the thread group leader to become inactive,
960 	 * and to assume its PID:
961 	 */
962 	if (!thread_group_leader(tsk)) {
963 		struct task_struct *leader = tsk->group_leader;
964 
965 		for (;;) {
966 			threadgroup_change_begin(tsk);
967 			write_lock_irq(&tasklist_lock);
968 			/*
969 			 * Do this under tasklist_lock to ensure that
970 			 * exit_notify() can't miss ->group_exit_task
971 			 */
972 			sig->notify_count = -1;
973 			if (likely(leader->exit_state))
974 				break;
975 			__set_current_state(TASK_KILLABLE);
976 			write_unlock_irq(&tasklist_lock);
977 			threadgroup_change_end(tsk);
978 			schedule();
979 			if (unlikely(__fatal_signal_pending(tsk)))
980 				goto killed;
981 		}
982 
983 		/*
984 		 * The only record we have of the real-time age of a
985 		 * process, regardless of execs it's done, is start_time.
986 		 * All the past CPU time is accumulated in signal_struct
987 		 * from sister threads now dead.  But in this non-leader
988 		 * exec, nothing survives from the original leader thread,
989 		 * whose birth marks the true age of this process now.
990 		 * When we take on its identity by switching to its PID, we
991 		 * also take its birthdate (always earlier than our own).
992 		 */
993 		tsk->start_time = leader->start_time;
994 		tsk->real_start_time = leader->real_start_time;
995 
996 		BUG_ON(!same_thread_group(leader, tsk));
997 		BUG_ON(has_group_leader_pid(tsk));
998 		/*
999 		 * An exec() starts a new thread group with the
1000 		 * TGID of the previous thread group. Rehash the
1001 		 * two threads with a switched PID, and release
1002 		 * the former thread group leader:
1003 		 */
1004 
1005 		/* Become a process group leader with the old leader's pid.
1006 		 * The old leader becomes a thread of the this thread group.
1007 		 * Note: The old leader also uses this pid until release_task
1008 		 *       is called.  Odd but simple and correct.
1009 		 */
1010 		tsk->pid = leader->pid;
1011 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1012 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1013 		transfer_pid(leader, tsk, PIDTYPE_SID);
1014 
1015 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1016 		list_replace_init(&leader->sibling, &tsk->sibling);
1017 
1018 		tsk->group_leader = tsk;
1019 		leader->group_leader = tsk;
1020 
1021 		tsk->exit_signal = SIGCHLD;
1022 		leader->exit_signal = -1;
1023 
1024 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1025 		leader->exit_state = EXIT_DEAD;
1026 
1027 		/*
1028 		 * We are going to release_task()->ptrace_unlink() silently,
1029 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1030 		 * the tracer wont't block again waiting for this thread.
1031 		 */
1032 		if (unlikely(leader->ptrace))
1033 			__wake_up_parent(leader, leader->parent);
1034 		write_unlock_irq(&tasklist_lock);
1035 		threadgroup_change_end(tsk);
1036 
1037 		release_task(leader);
1038 	}
1039 
1040 	sig->group_exit_task = NULL;
1041 	sig->notify_count = 0;
1042 
1043 no_thread_group:
1044 	/* we have changed execution domain */
1045 	tsk->exit_signal = SIGCHLD;
1046 
1047 	exit_itimers(sig);
1048 	flush_itimer_signals();
1049 
1050 	if (atomic_read(&oldsighand->count) != 1) {
1051 		struct sighand_struct *newsighand;
1052 		/*
1053 		 * This ->sighand is shared with the CLONE_SIGHAND
1054 		 * but not CLONE_THREAD task, switch to the new one.
1055 		 */
1056 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1057 		if (!newsighand)
1058 			return -ENOMEM;
1059 
1060 		atomic_set(&newsighand->count, 1);
1061 		memcpy(newsighand->action, oldsighand->action,
1062 		       sizeof(newsighand->action));
1063 
1064 		write_lock_irq(&tasklist_lock);
1065 		spin_lock(&oldsighand->siglock);
1066 		rcu_assign_pointer(tsk->sighand, newsighand);
1067 		spin_unlock(&oldsighand->siglock);
1068 		write_unlock_irq(&tasklist_lock);
1069 
1070 		__cleanup_sighand(oldsighand);
1071 	}
1072 
1073 	BUG_ON(!thread_group_leader(tsk));
1074 	return 0;
1075 
1076 killed:
1077 	/* protects against exit_notify() and __exit_signal() */
1078 	read_lock(&tasklist_lock);
1079 	sig->group_exit_task = NULL;
1080 	sig->notify_count = 0;
1081 	read_unlock(&tasklist_lock);
1082 	return -EAGAIN;
1083 }
1084 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1085 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1086 {
1087 	task_lock(tsk);
1088 	strncpy(buf, tsk->comm, buf_size);
1089 	task_unlock(tsk);
1090 	return buf;
1091 }
1092 EXPORT_SYMBOL_GPL(__get_task_comm);
1093 
1094 /*
1095  * These functions flushes out all traces of the currently running executable
1096  * so that a new one can be started
1097  */
1098 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1099 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1100 {
1101 	task_lock(tsk);
1102 	trace_task_rename(tsk, buf);
1103 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1104 	task_unlock(tsk);
1105 	perf_event_comm(tsk, exec);
1106 }
1107 
flush_old_exec(struct linux_binprm * bprm)1108 int flush_old_exec(struct linux_binprm * bprm)
1109 {
1110 	int retval;
1111 
1112 	/*
1113 	 * Make sure we have a private signal table and that
1114 	 * we are unassociated from the previous thread group.
1115 	 */
1116 	retval = de_thread(current);
1117 	if (retval)
1118 		goto out;
1119 
1120 	/*
1121 	 * Must be called _before_ exec_mmap() as bprm->mm is
1122 	 * not visibile until then. This also enables the update
1123 	 * to be lockless.
1124 	 */
1125 	set_mm_exe_file(bprm->mm, bprm->file);
1126 
1127 	would_dump(bprm, bprm->file);
1128 
1129 	/*
1130 	 * Release all of the old mmap stuff
1131 	 */
1132 	acct_arg_size(bprm, 0);
1133 	retval = exec_mmap(bprm->mm);
1134 	if (retval)
1135 		goto out;
1136 
1137 	bprm->mm = NULL;		/* We're using it now */
1138 
1139 	set_fs(USER_DS);
1140 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1141 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1142 	flush_thread();
1143 	current->personality &= ~bprm->per_clear;
1144 
1145 	/*
1146 	 * We have to apply CLOEXEC before we change whether the process is
1147 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1148 	 * trying to access the should-be-closed file descriptors of a process
1149 	 * undergoing exec(2).
1150 	 */
1151 	do_close_on_exec(current->files);
1152 	return 0;
1153 
1154 out:
1155 	return retval;
1156 }
1157 EXPORT_SYMBOL(flush_old_exec);
1158 
would_dump(struct linux_binprm * bprm,struct file * file)1159 void would_dump(struct linux_binprm *bprm, struct file *file)
1160 {
1161 	struct inode *inode = file_inode(file);
1162 
1163 	if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1164 		struct user_namespace *old, *user_ns;
1165 
1166 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1167 
1168 		/* Ensure mm->user_ns contains the executable */
1169 		user_ns = old = bprm->mm->user_ns;
1170 		while ((user_ns != &init_user_ns) &&
1171 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1172 			user_ns = user_ns->parent;
1173 
1174 		if (old != user_ns) {
1175 			bprm->mm->user_ns = get_user_ns(user_ns);
1176 			put_user_ns(old);
1177 		}
1178 	}
1179 }
1180 EXPORT_SYMBOL(would_dump);
1181 
setup_new_exec(struct linux_binprm * bprm)1182 void setup_new_exec(struct linux_binprm * bprm)
1183 {
1184 	arch_pick_mmap_layout(current->mm);
1185 
1186 	/* This is the point of no return */
1187 	current->sas_ss_sp = current->sas_ss_size = 0;
1188 
1189 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1190 		set_dumpable(current->mm, SUID_DUMP_USER);
1191 	else
1192 		set_dumpable(current->mm, suid_dumpable);
1193 
1194 	perf_event_exec();
1195 	__set_task_comm(current, kbasename(bprm->filename), true);
1196 
1197 	/* Set the new mm task size. We have to do that late because it may
1198 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1199 	 * some architectures like powerpc
1200 	 */
1201 	current->mm->task_size = TASK_SIZE;
1202 
1203 	/* install the new credentials */
1204 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1205 	    !gid_eq(bprm->cred->gid, current_egid())) {
1206 		current->pdeath_signal = 0;
1207 	} else {
1208 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1209 			set_dumpable(current->mm, suid_dumpable);
1210 	}
1211 
1212 	/* An exec changes our domain. We are no longer part of the thread
1213 	   group */
1214 	WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1215 	flush_signal_handlers(current, 0);
1216 }
1217 EXPORT_SYMBOL(setup_new_exec);
1218 
1219 /*
1220  * Prepare credentials and lock ->cred_guard_mutex.
1221  * install_exec_creds() commits the new creds and drops the lock.
1222  * Or, if exec fails before, free_bprm() should release ->cred and
1223  * and unlock.
1224  */
prepare_bprm_creds(struct linux_binprm * bprm)1225 int prepare_bprm_creds(struct linux_binprm *bprm)
1226 {
1227 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1228 		return -ERESTARTNOINTR;
1229 
1230 	bprm->cred = prepare_exec_creds();
1231 	if (likely(bprm->cred))
1232 		return 0;
1233 
1234 	mutex_unlock(&current->signal->cred_guard_mutex);
1235 	return -ENOMEM;
1236 }
1237 
free_bprm(struct linux_binprm * bprm)1238 static void free_bprm(struct linux_binprm *bprm)
1239 {
1240 	free_arg_pages(bprm);
1241 	if (bprm->cred) {
1242 		mutex_unlock(&current->signal->cred_guard_mutex);
1243 		abort_creds(bprm->cred);
1244 	}
1245 	if (bprm->file) {
1246 		allow_write_access(bprm->file);
1247 		fput(bprm->file);
1248 	}
1249 	/* If a binfmt changed the interp, free it. */
1250 	if (bprm->interp != bprm->filename)
1251 		kfree(bprm->interp);
1252 	kfree(bprm);
1253 }
1254 
bprm_change_interp(char * interp,struct linux_binprm * bprm)1255 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1256 {
1257 	/* If a binfmt changed the interp, free it first. */
1258 	if (bprm->interp != bprm->filename)
1259 		kfree(bprm->interp);
1260 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1261 	if (!bprm->interp)
1262 		return -ENOMEM;
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL(bprm_change_interp);
1266 
1267 /*
1268  * install the new credentials for this executable
1269  */
install_exec_creds(struct linux_binprm * bprm)1270 void install_exec_creds(struct linux_binprm *bprm)
1271 {
1272 	security_bprm_committing_creds(bprm);
1273 
1274 	commit_creds(bprm->cred);
1275 	bprm->cred = NULL;
1276 
1277 	/*
1278 	 * Disable monitoring for regular users
1279 	 * when executing setuid binaries. Must
1280 	 * wait until new credentials are committed
1281 	 * by commit_creds() above
1282 	 */
1283 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1284 		perf_event_exit_task(current);
1285 	/*
1286 	 * cred_guard_mutex must be held at least to this point to prevent
1287 	 * ptrace_attach() from altering our determination of the task's
1288 	 * credentials; any time after this it may be unlocked.
1289 	 */
1290 	security_bprm_committed_creds(bprm);
1291 	mutex_unlock(&current->signal->cred_guard_mutex);
1292 }
1293 EXPORT_SYMBOL(install_exec_creds);
1294 
1295 /*
1296  * determine how safe it is to execute the proposed program
1297  * - the caller must hold ->cred_guard_mutex to protect against
1298  *   PTRACE_ATTACH or seccomp thread-sync
1299  */
check_unsafe_exec(struct linux_binprm * bprm)1300 static void check_unsafe_exec(struct linux_binprm *bprm)
1301 {
1302 	struct task_struct *p = current, *t;
1303 	unsigned n_fs;
1304 
1305 	if (p->ptrace) {
1306 		if (ptracer_capable(p, current_user_ns()))
1307 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1308 		else
1309 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1310 	}
1311 
1312 	/*
1313 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1314 	 * mess up.
1315 	 */
1316 	if (task_no_new_privs(current))
1317 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1318 
1319 	t = p;
1320 	n_fs = 1;
1321 	spin_lock(&p->fs->lock);
1322 	rcu_read_lock();
1323 	while_each_thread(p, t) {
1324 		if (t->fs == p->fs)
1325 			n_fs++;
1326 	}
1327 	rcu_read_unlock();
1328 
1329 	if (p->fs->users > n_fs)
1330 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1331 	else
1332 		p->fs->in_exec = 1;
1333 	spin_unlock(&p->fs->lock);
1334 }
1335 
bprm_fill_uid(struct linux_binprm * bprm)1336 static void bprm_fill_uid(struct linux_binprm *bprm)
1337 {
1338 	struct inode *inode;
1339 	unsigned int mode;
1340 	kuid_t uid;
1341 	kgid_t gid;
1342 
1343 	/* clear any previous set[ug]id data from a previous binary */
1344 	bprm->cred->euid = current_euid();
1345 	bprm->cred->egid = current_egid();
1346 
1347 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1348 		return;
1349 
1350 	if (task_no_new_privs(current))
1351 		return;
1352 
1353 	inode = file_inode(bprm->file);
1354 	mode = READ_ONCE(inode->i_mode);
1355 	if (!(mode & (S_ISUID|S_ISGID)))
1356 		return;
1357 
1358 	/* Be careful if suid/sgid is set */
1359 	mutex_lock(&inode->i_mutex);
1360 
1361 	/* reload atomically mode/uid/gid now that lock held */
1362 	mode = inode->i_mode;
1363 	uid = inode->i_uid;
1364 	gid = inode->i_gid;
1365 	mutex_unlock(&inode->i_mutex);
1366 
1367 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1368 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1369 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1370 		return;
1371 
1372 	if (mode & S_ISUID) {
1373 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1374 		bprm->cred->euid = uid;
1375 	}
1376 
1377 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1378 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1379 		bprm->cred->egid = gid;
1380 	}
1381 }
1382 
1383 /*
1384  * Fill the binprm structure from the inode.
1385  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1386  *
1387  * This may be called multiple times for binary chains (scripts for example).
1388  */
prepare_binprm(struct linux_binprm * bprm)1389 int prepare_binprm(struct linux_binprm *bprm)
1390 {
1391 	int retval;
1392 
1393 	bprm_fill_uid(bprm);
1394 
1395 	/* fill in binprm security blob */
1396 	retval = security_bprm_set_creds(bprm);
1397 	if (retval)
1398 		return retval;
1399 	bprm->cred_prepared = 1;
1400 
1401 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1402 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1403 }
1404 
1405 EXPORT_SYMBOL(prepare_binprm);
1406 
1407 /*
1408  * Arguments are '\0' separated strings found at the location bprm->p
1409  * points to; chop off the first by relocating brpm->p to right after
1410  * the first '\0' encountered.
1411  */
remove_arg_zero(struct linux_binprm * bprm)1412 int remove_arg_zero(struct linux_binprm *bprm)
1413 {
1414 	int ret = 0;
1415 	unsigned long offset;
1416 	char *kaddr;
1417 	struct page *page;
1418 
1419 	if (!bprm->argc)
1420 		return 0;
1421 
1422 	do {
1423 		offset = bprm->p & ~PAGE_MASK;
1424 		page = get_arg_page(bprm, bprm->p, 0);
1425 		if (!page) {
1426 			ret = -EFAULT;
1427 			goto out;
1428 		}
1429 		kaddr = kmap_atomic(page);
1430 
1431 		for (; offset < PAGE_SIZE && kaddr[offset];
1432 				offset++, bprm->p++)
1433 			;
1434 
1435 		kunmap_atomic(kaddr);
1436 		put_arg_page(page);
1437 
1438 		if (offset == PAGE_SIZE)
1439 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1440 	} while (offset == PAGE_SIZE);
1441 
1442 	bprm->p++;
1443 	bprm->argc--;
1444 	ret = 0;
1445 
1446 out:
1447 	return ret;
1448 }
1449 EXPORT_SYMBOL(remove_arg_zero);
1450 
1451 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1452 /*
1453  * cycle the list of binary formats handler, until one recognizes the image
1454  */
search_binary_handler(struct linux_binprm * bprm)1455 int search_binary_handler(struct linux_binprm *bprm)
1456 {
1457 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1458 	struct linux_binfmt *fmt;
1459 	int retval;
1460 
1461 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1462 	if (bprm->recursion_depth > 5)
1463 		return -ELOOP;
1464 
1465 	retval = security_bprm_check(bprm);
1466 	if (retval)
1467 		return retval;
1468 
1469 	retval = -ENOENT;
1470  retry:
1471 	read_lock(&binfmt_lock);
1472 	list_for_each_entry(fmt, &formats, lh) {
1473 		if (!try_module_get(fmt->module))
1474 			continue;
1475 		read_unlock(&binfmt_lock);
1476 		bprm->recursion_depth++;
1477 		retval = fmt->load_binary(bprm);
1478 		read_lock(&binfmt_lock);
1479 		put_binfmt(fmt);
1480 		bprm->recursion_depth--;
1481 		if (retval < 0 && !bprm->mm) {
1482 			/* we got to flush_old_exec() and failed after it */
1483 			read_unlock(&binfmt_lock);
1484 			force_sigsegv(SIGSEGV, current);
1485 			return retval;
1486 		}
1487 		if (retval != -ENOEXEC || !bprm->file) {
1488 			read_unlock(&binfmt_lock);
1489 			return retval;
1490 		}
1491 	}
1492 	read_unlock(&binfmt_lock);
1493 
1494 	if (need_retry) {
1495 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1496 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1497 			return retval;
1498 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1499 			return retval;
1500 		need_retry = false;
1501 		goto retry;
1502 	}
1503 
1504 	return retval;
1505 }
1506 EXPORT_SYMBOL(search_binary_handler);
1507 
exec_binprm(struct linux_binprm * bprm)1508 static int exec_binprm(struct linux_binprm *bprm)
1509 {
1510 	pid_t old_pid, old_vpid;
1511 	int ret;
1512 
1513 	/* Need to fetch pid before load_binary changes it */
1514 	old_pid = current->pid;
1515 	rcu_read_lock();
1516 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1517 	rcu_read_unlock();
1518 
1519 	ret = search_binary_handler(bprm);
1520 	if (ret >= 0) {
1521 		audit_bprm(bprm);
1522 		trace_sched_process_exec(current, old_pid, bprm);
1523 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1524 		proc_exec_connector(current);
1525 	}
1526 
1527 	return ret;
1528 }
1529 
1530 /*
1531  * sys_execve() executes a new program.
1532  */
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1533 static int do_execveat_common(int fd, struct filename *filename,
1534 			      struct user_arg_ptr argv,
1535 			      struct user_arg_ptr envp,
1536 			      int flags)
1537 {
1538 	char *pathbuf = NULL;
1539 	struct linux_binprm *bprm;
1540 	struct file *file;
1541 	struct files_struct *displaced;
1542 	int retval;
1543 
1544 	if (IS_ERR(filename))
1545 		return PTR_ERR(filename);
1546 
1547 	/*
1548 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1549 	 * set*uid() to execve() because too many poorly written programs
1550 	 * don't check setuid() return code.  Here we additionally recheck
1551 	 * whether NPROC limit is still exceeded.
1552 	 */
1553 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1554 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1555 		retval = -EAGAIN;
1556 		goto out_ret;
1557 	}
1558 
1559 	/* We're below the limit (still or again), so we don't want to make
1560 	 * further execve() calls fail. */
1561 	current->flags &= ~PF_NPROC_EXCEEDED;
1562 
1563 	retval = unshare_files(&displaced);
1564 	if (retval)
1565 		goto out_ret;
1566 
1567 	retval = -ENOMEM;
1568 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1569 	if (!bprm)
1570 		goto out_files;
1571 
1572 	retval = prepare_bprm_creds(bprm);
1573 	if (retval)
1574 		goto out_free;
1575 
1576 	check_unsafe_exec(bprm);
1577 	current->in_execve = 1;
1578 
1579 	file = do_open_execat(fd, filename, flags);
1580 	retval = PTR_ERR(file);
1581 	if (IS_ERR(file))
1582 		goto out_unmark;
1583 
1584 	sched_exec();
1585 
1586 	bprm->file = file;
1587 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1588 		bprm->filename = filename->name;
1589 	} else {
1590 		if (filename->name[0] == '\0')
1591 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1592 		else
1593 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1594 					    fd, filename->name);
1595 		if (!pathbuf) {
1596 			retval = -ENOMEM;
1597 			goto out_unmark;
1598 		}
1599 		/*
1600 		 * Record that a name derived from an O_CLOEXEC fd will be
1601 		 * inaccessible after exec. Relies on having exclusive access to
1602 		 * current->files (due to unshare_files above).
1603 		 */
1604 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1605 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1606 		bprm->filename = pathbuf;
1607 	}
1608 	bprm->interp = bprm->filename;
1609 
1610 	retval = bprm_mm_init(bprm);
1611 	if (retval)
1612 		goto out_unmark;
1613 
1614 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1615 	if ((retval = bprm->argc) < 0)
1616 		goto out;
1617 
1618 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1619 	if ((retval = bprm->envc) < 0)
1620 		goto out;
1621 
1622 	retval = prepare_binprm(bprm);
1623 	if (retval < 0)
1624 		goto out;
1625 
1626 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1627 	if (retval < 0)
1628 		goto out;
1629 
1630 	bprm->exec = bprm->p;
1631 	retval = copy_strings(bprm->envc, envp, bprm);
1632 	if (retval < 0)
1633 		goto out;
1634 
1635 	retval = copy_strings(bprm->argc, argv, bprm);
1636 	if (retval < 0)
1637 		goto out;
1638 
1639 	retval = exec_binprm(bprm);
1640 	if (retval < 0)
1641 		goto out;
1642 
1643 	/* execve succeeded */
1644 	current->fs->in_exec = 0;
1645 	current->in_execve = 0;
1646 	acct_update_integrals(current);
1647 	task_numa_free(current, false);
1648 	free_bprm(bprm);
1649 	kfree(pathbuf);
1650 	putname(filename);
1651 	if (displaced)
1652 		put_files_struct(displaced);
1653 	return retval;
1654 
1655 out:
1656 	if (bprm->mm) {
1657 		acct_arg_size(bprm, 0);
1658 		mmput(bprm->mm);
1659 	}
1660 
1661 out_unmark:
1662 	current->fs->in_exec = 0;
1663 	current->in_execve = 0;
1664 
1665 out_free:
1666 	free_bprm(bprm);
1667 	kfree(pathbuf);
1668 
1669 out_files:
1670 	if (displaced)
1671 		reset_files_struct(displaced);
1672 out_ret:
1673 	putname(filename);
1674 	return retval;
1675 }
1676 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1677 int do_execve(struct filename *filename,
1678 	const char __user *const __user *__argv,
1679 	const char __user *const __user *__envp)
1680 {
1681 	struct user_arg_ptr argv = { .ptr.native = __argv };
1682 	struct user_arg_ptr envp = { .ptr.native = __envp };
1683 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1684 }
1685 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1686 int do_execveat(int fd, struct filename *filename,
1687 		const char __user *const __user *__argv,
1688 		const char __user *const __user *__envp,
1689 		int flags)
1690 {
1691 	struct user_arg_ptr argv = { .ptr.native = __argv };
1692 	struct user_arg_ptr envp = { .ptr.native = __envp };
1693 
1694 	return do_execveat_common(fd, filename, argv, envp, flags);
1695 }
1696 
1697 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1698 static int compat_do_execve(struct filename *filename,
1699 	const compat_uptr_t __user *__argv,
1700 	const compat_uptr_t __user *__envp)
1701 {
1702 	struct user_arg_ptr argv = {
1703 		.is_compat = true,
1704 		.ptr.compat = __argv,
1705 	};
1706 	struct user_arg_ptr envp = {
1707 		.is_compat = true,
1708 		.ptr.compat = __envp,
1709 	};
1710 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1711 }
1712 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1713 static int compat_do_execveat(int fd, struct filename *filename,
1714 			      const compat_uptr_t __user *__argv,
1715 			      const compat_uptr_t __user *__envp,
1716 			      int flags)
1717 {
1718 	struct user_arg_ptr argv = {
1719 		.is_compat = true,
1720 		.ptr.compat = __argv,
1721 	};
1722 	struct user_arg_ptr envp = {
1723 		.is_compat = true,
1724 		.ptr.compat = __envp,
1725 	};
1726 	return do_execveat_common(fd, filename, argv, envp, flags);
1727 }
1728 #endif
1729 
set_binfmt(struct linux_binfmt * new)1730 void set_binfmt(struct linux_binfmt *new)
1731 {
1732 	struct mm_struct *mm = current->mm;
1733 
1734 	if (mm->binfmt)
1735 		module_put(mm->binfmt->module);
1736 
1737 	mm->binfmt = new;
1738 	if (new)
1739 		__module_get(new->module);
1740 }
1741 EXPORT_SYMBOL(set_binfmt);
1742 
1743 /*
1744  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1745  */
set_dumpable(struct mm_struct * mm,int value)1746 void set_dumpable(struct mm_struct *mm, int value)
1747 {
1748 	unsigned long old, new;
1749 
1750 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1751 		return;
1752 
1753 	do {
1754 		old = ACCESS_ONCE(mm->flags);
1755 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1756 	} while (cmpxchg(&mm->flags, old, new) != old);
1757 }
1758 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1759 SYSCALL_DEFINE3(execve,
1760 		const char __user *, filename,
1761 		const char __user *const __user *, argv,
1762 		const char __user *const __user *, envp)
1763 {
1764 	return do_execve(getname(filename), argv, envp);
1765 }
1766 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1767 SYSCALL_DEFINE5(execveat,
1768 		int, fd, const char __user *, filename,
1769 		const char __user *const __user *, argv,
1770 		const char __user *const __user *, envp,
1771 		int, flags)
1772 {
1773 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1774 
1775 	return do_execveat(fd,
1776 			   getname_flags(filename, lookup_flags, NULL),
1777 			   argv, envp, flags);
1778 }
1779 
1780 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1781 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1782 	const compat_uptr_t __user *, argv,
1783 	const compat_uptr_t __user *, envp)
1784 {
1785 	return compat_do_execve(getname(filename), argv, envp);
1786 }
1787 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)1788 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1789 		       const char __user *, filename,
1790 		       const compat_uptr_t __user *, argv,
1791 		       const compat_uptr_t __user *, envp,
1792 		       int,  flags)
1793 {
1794 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1795 
1796 	return compat_do_execveat(fd,
1797 				  getname_flags(filename, lookup_flags, NULL),
1798 				  argv, envp, flags);
1799 }
1800 #endif
1801