1 /*
2 * xsave/xrstor support.
3 *
4 * Author: Suresh Siddha <suresh.b.siddha@intel.com>
5 */
6 #include <linux/compat.h>
7 #include <linux/cpu.h>
8
9 #include <asm/fpu/api.h>
10 #include <asm/fpu/internal.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/regset.h>
13
14 #include <asm/tlbflush.h>
15
16 static const char *xfeature_names[] =
17 {
18 "x87 floating point registers" ,
19 "SSE registers" ,
20 "AVX registers" ,
21 "MPX bounds registers" ,
22 "MPX CSR" ,
23 "AVX-512 opmask" ,
24 "AVX-512 Hi256" ,
25 "AVX-512 ZMM_Hi256" ,
26 "unknown xstate feature" ,
27 };
28
29 /*
30 * Mask of xstate features supported by the CPU and the kernel:
31 */
32 u64 xfeatures_mask __read_mostly;
33
34 static unsigned int xstate_offsets[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
35 static unsigned int xstate_sizes[XFEATURE_MAX] = { [ 0 ... XFEATURE_MAX - 1] = -1};
36 static unsigned int xstate_comp_offsets[sizeof(xfeatures_mask)*8];
37
38 /*
39 * Clear all of the X86_FEATURE_* bits that are unavailable
40 * when the CPU has no XSAVE support.
41 */
fpu__xstate_clear_all_cpu_caps(void)42 void fpu__xstate_clear_all_cpu_caps(void)
43 {
44 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
45 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
46 setup_clear_cpu_cap(X86_FEATURE_XSAVEC);
47 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
48 setup_clear_cpu_cap(X86_FEATURE_AVX);
49 setup_clear_cpu_cap(X86_FEATURE_AVX2);
50 setup_clear_cpu_cap(X86_FEATURE_AVX512F);
51 setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
52 setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
53 setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
54 setup_clear_cpu_cap(X86_FEATURE_MPX);
55 }
56
57 /*
58 * Return whether the system supports a given xfeature.
59 *
60 * Also return the name of the (most advanced) feature that the caller requested:
61 */
cpu_has_xfeatures(u64 xfeatures_needed,const char ** feature_name)62 int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
63 {
64 u64 xfeatures_missing = xfeatures_needed & ~xfeatures_mask;
65
66 if (unlikely(feature_name)) {
67 long xfeature_idx, max_idx;
68 u64 xfeatures_print;
69 /*
70 * So we use FLS here to be able to print the most advanced
71 * feature that was requested but is missing. So if a driver
72 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
73 * missing AVX feature - this is the most informative message
74 * to users:
75 */
76 if (xfeatures_missing)
77 xfeatures_print = xfeatures_missing;
78 else
79 xfeatures_print = xfeatures_needed;
80
81 xfeature_idx = fls64(xfeatures_print)-1;
82 max_idx = ARRAY_SIZE(xfeature_names)-1;
83 xfeature_idx = min(xfeature_idx, max_idx);
84
85 *feature_name = xfeature_names[xfeature_idx];
86 }
87
88 if (xfeatures_missing)
89 return 0;
90
91 return 1;
92 }
93 EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
94
95 /*
96 * When executing XSAVEOPT (or other optimized XSAVE instructions), if
97 * a processor implementation detects that an FPU state component is still
98 * (or is again) in its initialized state, it may clear the corresponding
99 * bit in the header.xfeatures field, and can skip the writeout of registers
100 * to the corresponding memory layout.
101 *
102 * This means that when the bit is zero, the state component might still contain
103 * some previous - non-initialized register state.
104 *
105 * Before writing xstate information to user-space we sanitize those components,
106 * to always ensure that the memory layout of a feature will be in the init state
107 * if the corresponding header bit is zero. This is to ensure that user-space doesn't
108 * see some stale state in the memory layout during signal handling, debugging etc.
109 */
fpstate_sanitize_xstate(struct fpu * fpu)110 void fpstate_sanitize_xstate(struct fpu *fpu)
111 {
112 struct fxregs_state *fx = &fpu->state.fxsave;
113 int feature_bit;
114 u64 xfeatures;
115
116 if (!use_xsaveopt())
117 return;
118
119 xfeatures = fpu->state.xsave.header.xfeatures;
120
121 /*
122 * None of the feature bits are in init state. So nothing else
123 * to do for us, as the memory layout is up to date.
124 */
125 if ((xfeatures & xfeatures_mask) == xfeatures_mask)
126 return;
127
128 /*
129 * FP is in init state
130 */
131 if (!(xfeatures & XFEATURE_MASK_FP)) {
132 fx->cwd = 0x37f;
133 fx->swd = 0;
134 fx->twd = 0;
135 fx->fop = 0;
136 fx->rip = 0;
137 fx->rdp = 0;
138 memset(&fx->st_space[0], 0, 128);
139 }
140
141 /*
142 * SSE is in init state
143 */
144 if (!(xfeatures & XFEATURE_MASK_SSE))
145 memset(&fx->xmm_space[0], 0, 256);
146
147 /*
148 * First two features are FPU and SSE, which above we handled
149 * in a special way already:
150 */
151 feature_bit = 0x2;
152 xfeatures = (xfeatures_mask & ~xfeatures) >> 2;
153
154 /*
155 * Update all the remaining memory layouts according to their
156 * standard xstate layout, if their header bit is in the init
157 * state:
158 */
159 while (xfeatures) {
160 if (xfeatures & 0x1) {
161 int offset = xstate_offsets[feature_bit];
162 int size = xstate_sizes[feature_bit];
163
164 memcpy((void *)fx + offset,
165 (void *)&init_fpstate.xsave + offset,
166 size);
167 }
168
169 xfeatures >>= 1;
170 feature_bit++;
171 }
172 }
173
174 /*
175 * Enable the extended processor state save/restore feature.
176 * Called once per CPU onlining.
177 */
fpu__init_cpu_xstate(void)178 void fpu__init_cpu_xstate(void)
179 {
180 if (!cpu_has_xsave || !xfeatures_mask)
181 return;
182
183 cr4_set_bits(X86_CR4_OSXSAVE);
184 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
185 }
186
187 /*
188 * Note that in the future we will likely need a pair of
189 * functions here: one for user xstates and the other for
190 * system xstates. For now, they are the same.
191 */
xfeature_enabled(enum xfeature xfeature)192 static int xfeature_enabled(enum xfeature xfeature)
193 {
194 return !!(xfeatures_mask & (1UL << xfeature));
195 }
196
197 /*
198 * Record the offsets and sizes of various xstates contained
199 * in the XSAVE state memory layout.
200 */
setup_xstate_features(void)201 static void __init setup_xstate_features(void)
202 {
203 u32 eax, ebx, ecx, edx, i;
204 /* start at the beginnning of the "extended state" */
205 unsigned int last_good_offset = offsetof(struct xregs_state,
206 extended_state_area);
207
208 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
209 if (!xfeature_enabled(i))
210 continue;
211
212 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
213 xstate_offsets[i] = ebx;
214 xstate_sizes[i] = eax;
215 /*
216 * In our xstate size checks, we assume that the
217 * highest-numbered xstate feature has the
218 * highest offset in the buffer. Ensure it does.
219 */
220 WARN_ONCE(last_good_offset > xstate_offsets[i],
221 "x86/fpu: misordered xstate at %d\n", last_good_offset);
222 last_good_offset = xstate_offsets[i];
223
224 printk(KERN_INFO "x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", i, ebx, i, eax);
225 }
226 }
227
print_xstate_feature(u64 xstate_mask)228 static void __init print_xstate_feature(u64 xstate_mask)
229 {
230 const char *feature_name;
231
232 if (cpu_has_xfeatures(xstate_mask, &feature_name))
233 pr_info("x86/fpu: Supporting XSAVE feature 0x%02Lx: '%s'\n", xstate_mask, feature_name);
234 }
235
236 /*
237 * Print out all the supported xstate features:
238 */
print_xstate_features(void)239 static void __init print_xstate_features(void)
240 {
241 print_xstate_feature(XFEATURE_MASK_FP);
242 print_xstate_feature(XFEATURE_MASK_SSE);
243 print_xstate_feature(XFEATURE_MASK_YMM);
244 print_xstate_feature(XFEATURE_MASK_BNDREGS);
245 print_xstate_feature(XFEATURE_MASK_BNDCSR);
246 print_xstate_feature(XFEATURE_MASK_OPMASK);
247 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
248 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
249 }
250
251 /*
252 * This function sets up offsets and sizes of all extended states in
253 * xsave area. This supports both standard format and compacted format
254 * of the xsave aread.
255 */
setup_xstate_comp(void)256 static void __init setup_xstate_comp(void)
257 {
258 unsigned int xstate_comp_sizes[sizeof(xfeatures_mask)*8];
259 int i;
260
261 /*
262 * The FP xstates and SSE xstates are legacy states. They are always
263 * in the fixed offsets in the xsave area in either compacted form
264 * or standard form.
265 */
266 xstate_comp_offsets[0] = 0;
267 xstate_comp_offsets[1] = offsetof(struct fxregs_state, xmm_space);
268
269 if (!cpu_has_xsaves) {
270 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
271 if (xfeature_enabled(i)) {
272 xstate_comp_offsets[i] = xstate_offsets[i];
273 xstate_comp_sizes[i] = xstate_sizes[i];
274 }
275 }
276 return;
277 }
278
279 xstate_comp_offsets[FIRST_EXTENDED_XFEATURE] =
280 FXSAVE_SIZE + XSAVE_HDR_SIZE;
281
282 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
283 if (xfeature_enabled(i))
284 xstate_comp_sizes[i] = xstate_sizes[i];
285 else
286 xstate_comp_sizes[i] = 0;
287
288 if (i > FIRST_EXTENDED_XFEATURE)
289 xstate_comp_offsets[i] = xstate_comp_offsets[i-1]
290 + xstate_comp_sizes[i-1];
291
292 }
293 }
294
295 /*
296 * All supported features have either init state all zeros or are
297 * handled in setup_init_fpu() individually. This is an explicit
298 * feature list and does not use XFEATURE_MASK*SUPPORTED to catch
299 * newly added supported features at build time and make people
300 * actually look at the init state for the new feature.
301 */
302 #define XFEATURES_INIT_FPSTATE_HANDLED \
303 (XFEATURE_MASK_FP | \
304 XFEATURE_MASK_SSE | \
305 XFEATURE_MASK_YMM | \
306 XFEATURE_MASK_OPMASK | \
307 XFEATURE_MASK_ZMM_Hi256 | \
308 XFEATURE_MASK_Hi16_ZMM | \
309 XFEATURE_MASK_BNDREGS | \
310 XFEATURE_MASK_BNDCSR)
311
312 /*
313 * setup the xstate image representing the init state
314 */
setup_init_fpu_buf(void)315 static void __init setup_init_fpu_buf(void)
316 {
317 static int on_boot_cpu = 1;
318
319 BUILD_BUG_ON(XCNTXT_MASK != XFEATURES_INIT_FPSTATE_HANDLED);
320
321 WARN_ON_FPU(!on_boot_cpu);
322 on_boot_cpu = 0;
323
324 if (!cpu_has_xsave)
325 return;
326
327 setup_xstate_features();
328 print_xstate_features();
329
330 if (cpu_has_xsaves) {
331 init_fpstate.xsave.header.xcomp_bv = (u64)1 << 63 | xfeatures_mask;
332 init_fpstate.xsave.header.xfeatures = xfeatures_mask;
333 }
334
335 /*
336 * Init all the features state with header_bv being 0x0
337 */
338 copy_kernel_to_xregs_booting(&init_fpstate.xsave);
339
340 /*
341 * All components are now in init state. Read the state back so
342 * that init_fpstate contains all non-zero init state. This only
343 * works with XSAVE, but not with XSAVEOPT and XSAVES because
344 * those use the init optimization which skips writing data for
345 * components in init state.
346 *
347 * XSAVE could be used, but that would require to reshuffle the
348 * data when XSAVES is available because XSAVES uses xstate
349 * compaction. But doing so is a pointless exercise because most
350 * components have an all zeros init state except for the legacy
351 * ones (FP and SSE). Those can be saved with FXSAVE into the
352 * legacy area. Adding new features requires to ensure that init
353 * state is all zeroes or if not to add the necessary handling
354 * here.
355 */
356 fxsave(&init_fpstate.fxsave);
357 }
358
xfeature_is_supervisor(int xfeature_nr)359 static int xfeature_is_supervisor(int xfeature_nr)
360 {
361 /*
362 * We currently do not support supervisor states, but if
363 * we did, we could find out like this.
364 *
365 * SDM says: If state component i is a user state component,
366 * ECX[0] return 0; if state component i is a supervisor
367 * state component, ECX[0] returns 1.
368 u32 eax, ebx, ecx, edx;
369 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx;
370 return !!(ecx & 1);
371 */
372 return 0;
373 }
374 /*
375 static int xfeature_is_user(int xfeature_nr)
376 {
377 return !xfeature_is_supervisor(xfeature_nr);
378 }
379 */
380
381 /*
382 * This check is important because it is easy to get XSTATE_*
383 * confused with XSTATE_BIT_*.
384 */
385 #define CHECK_XFEATURE(nr) do { \
386 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
387 WARN_ON(nr >= XFEATURE_MAX); \
388 } while (0)
389
390 /*
391 * We could cache this like xstate_size[], but we only use
392 * it here, so it would be a waste of space.
393 */
xfeature_is_aligned(int xfeature_nr)394 static int xfeature_is_aligned(int xfeature_nr)
395 {
396 u32 eax, ebx, ecx, edx;
397
398 CHECK_XFEATURE(xfeature_nr);
399 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
400 /*
401 * The value returned by ECX[1] indicates the alignment
402 * of state component i when the compacted format
403 * of the extended region of an XSAVE area is used
404 */
405 return !!(ecx & 2);
406 }
407
xfeature_uncompacted_offset(int xfeature_nr)408 static int xfeature_uncompacted_offset(int xfeature_nr)
409 {
410 u32 eax, ebx, ecx, edx;
411
412 CHECK_XFEATURE(xfeature_nr);
413 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
414 return ebx;
415 }
416
xfeature_size(int xfeature_nr)417 static int xfeature_size(int xfeature_nr)
418 {
419 u32 eax, ebx, ecx, edx;
420
421 CHECK_XFEATURE(xfeature_nr);
422 cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx);
423 return eax;
424 }
425
426 /*
427 * 'XSAVES' implies two different things:
428 * 1. saving of supervisor/system state
429 * 2. using the compacted format
430 *
431 * Use this function when dealing with the compacted format so
432 * that it is obvious which aspect of 'XSAVES' is being handled
433 * by the calling code.
434 */
using_compacted_format(void)435 static int using_compacted_format(void)
436 {
437 return cpu_has_xsaves;
438 }
439
__xstate_dump_leaves(void)440 static void __xstate_dump_leaves(void)
441 {
442 int i;
443 u32 eax, ebx, ecx, edx;
444 static int should_dump = 1;
445
446 if (!should_dump)
447 return;
448 should_dump = 0;
449 /*
450 * Dump out a few leaves past the ones that we support
451 * just in case there are some goodies up there
452 */
453 for (i = 0; i < XFEATURE_MAX + 10; i++) {
454 cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx);
455 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
456 XSTATE_CPUID, i, eax, ebx, ecx, edx);
457 }
458 }
459
460 #define XSTATE_WARN_ON(x) do { \
461 if (WARN_ONCE(x, "XSAVE consistency problem, dumping leaves")) { \
462 __xstate_dump_leaves(); \
463 } \
464 } while (0)
465
466 #define XCHECK_SZ(sz, nr, nr_macro, __struct) do { \
467 if ((nr == nr_macro) && \
468 WARN_ONCE(sz != sizeof(__struct), \
469 "%s: struct is %zu bytes, cpu state %d bytes\n", \
470 __stringify(nr_macro), sizeof(__struct), sz)) { \
471 __xstate_dump_leaves(); \
472 } \
473 } while (0)
474
475 /*
476 * We have a C struct for each 'xstate'. We need to ensure
477 * that our software representation matches what the CPU
478 * tells us about the state's size.
479 */
check_xstate_against_struct(int nr)480 static void check_xstate_against_struct(int nr)
481 {
482 /*
483 * Ask the CPU for the size of the state.
484 */
485 int sz = xfeature_size(nr);
486 /*
487 * Match each CPU state with the corresponding software
488 * structure.
489 */
490 XCHECK_SZ(sz, nr, XFEATURE_YMM, struct ymmh_struct);
491 XCHECK_SZ(sz, nr, XFEATURE_BNDREGS, struct mpx_bndreg_state);
492 XCHECK_SZ(sz, nr, XFEATURE_BNDCSR, struct mpx_bndcsr_state);
493 XCHECK_SZ(sz, nr, XFEATURE_OPMASK, struct avx_512_opmask_state);
494 XCHECK_SZ(sz, nr, XFEATURE_ZMM_Hi256, struct avx_512_zmm_uppers_state);
495 XCHECK_SZ(sz, nr, XFEATURE_Hi16_ZMM, struct avx_512_hi16_state);
496
497 /*
498 * Make *SURE* to add any feature numbers in below if
499 * there are "holes" in the xsave state component
500 * numbers.
501 */
502 if ((nr < XFEATURE_YMM) ||
503 (nr >= XFEATURE_MAX)) {
504 WARN_ONCE(1, "no structure for xstate: %d\n", nr);
505 XSTATE_WARN_ON(1);
506 }
507 }
508
509 /*
510 * This essentially double-checks what the cpu told us about
511 * how large the XSAVE buffer needs to be. We are recalculating
512 * it to be safe.
513 */
do_extra_xstate_size_checks(void)514 static void do_extra_xstate_size_checks(void)
515 {
516 int paranoid_xstate_size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
517 int i;
518
519 for (i = FIRST_EXTENDED_XFEATURE; i < XFEATURE_MAX; i++) {
520 if (!xfeature_enabled(i))
521 continue;
522
523 check_xstate_against_struct(i);
524 /*
525 * Supervisor state components can be managed only by
526 * XSAVES, which is compacted-format only.
527 */
528 if (!using_compacted_format())
529 XSTATE_WARN_ON(xfeature_is_supervisor(i));
530
531 /* Align from the end of the previous feature */
532 if (xfeature_is_aligned(i))
533 paranoid_xstate_size = ALIGN(paranoid_xstate_size, 64);
534 /*
535 * The offset of a given state in the non-compacted
536 * format is given to us in a CPUID leaf. We check
537 * them for being ordered (increasing offsets) in
538 * setup_xstate_features().
539 */
540 if (!using_compacted_format())
541 paranoid_xstate_size = xfeature_uncompacted_offset(i);
542 /*
543 * The compacted-format offset always depends on where
544 * the previous state ended.
545 */
546 paranoid_xstate_size += xfeature_size(i);
547 }
548 XSTATE_WARN_ON(paranoid_xstate_size != xstate_size);
549 }
550
551 /*
552 * Calculate total size of enabled xstates in XCR0/xfeatures_mask.
553 *
554 * Note the SDM's wording here. "sub-function 0" only enumerates
555 * the size of the *user* states. If we use it to size a buffer
556 * that we use 'XSAVES' on, we could potentially overflow the
557 * buffer because 'XSAVES' saves system states too.
558 *
559 * Note that we do not currently set any bits on IA32_XSS so
560 * 'XCR0 | IA32_XSS == XCR0' for now.
561 */
calculate_xstate_size(void)562 static unsigned int __init calculate_xstate_size(void)
563 {
564 unsigned int eax, ebx, ecx, edx;
565 unsigned int calculated_xstate_size;
566
567 if (!cpu_has_xsaves) {
568 /*
569 * - CPUID function 0DH, sub-function 0:
570 * EBX enumerates the size (in bytes) required by
571 * the XSAVE instruction for an XSAVE area
572 * containing all the *user* state components
573 * corresponding to bits currently set in XCR0.
574 */
575 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
576 calculated_xstate_size = ebx;
577 } else {
578 /*
579 * - CPUID function 0DH, sub-function 1:
580 * EBX enumerates the size (in bytes) required by
581 * the XSAVES instruction for an XSAVE area
582 * containing all the state components
583 * corresponding to bits currently set in
584 * XCR0 | IA32_XSS.
585 */
586 cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx);
587 calculated_xstate_size = ebx;
588 }
589 return calculated_xstate_size;
590 }
591
592 /*
593 * Will the runtime-enumerated 'xstate_size' fit in the init
594 * task's statically-allocated buffer?
595 */
is_supported_xstate_size(unsigned int test_xstate_size)596 static bool is_supported_xstate_size(unsigned int test_xstate_size)
597 {
598 if (test_xstate_size <= sizeof(union fpregs_state))
599 return true;
600
601 pr_warn("x86/fpu: xstate buffer too small (%zu < %d), disabling xsave\n",
602 sizeof(union fpregs_state), test_xstate_size);
603 return false;
604 }
605
init_xstate_size(void)606 static int init_xstate_size(void)
607 {
608 /* Recompute the context size for enabled features: */
609 unsigned int possible_xstate_size = calculate_xstate_size();
610
611 /* Ensure we have the space to store all enabled: */
612 if (!is_supported_xstate_size(possible_xstate_size))
613 return -EINVAL;
614
615 /*
616 * The size is OK, we are definitely going to use xsave,
617 * make it known to the world that we need more space.
618 */
619 xstate_size = possible_xstate_size;
620 do_extra_xstate_size_checks();
621 return 0;
622 }
623
624 /*
625 * We enabled the XSAVE hardware, but something went wrong and
626 * we can not use it. Disable it.
627 */
fpu__init_disable_system_xstate(void)628 static void fpu__init_disable_system_xstate(void)
629 {
630 xfeatures_mask = 0;
631 cr4_clear_bits(X86_CR4_OSXSAVE);
632 fpu__xstate_clear_all_cpu_caps();
633 }
634
635 /*
636 * Enable and initialize the xsave feature.
637 * Called once per system bootup.
638 */
fpu__init_system_xstate(void)639 void __init fpu__init_system_xstate(void)
640 {
641 unsigned int eax, ebx, ecx, edx;
642 static int on_boot_cpu = 1;
643 int err;
644
645 WARN_ON_FPU(!on_boot_cpu);
646 on_boot_cpu = 0;
647
648 if (!cpu_has_xsave) {
649 pr_info("x86/fpu: Legacy x87 FPU detected.\n");
650 return;
651 }
652
653 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
654 WARN_ON_FPU(1);
655 return;
656 }
657
658 cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
659 xfeatures_mask = eax + ((u64)edx << 32);
660
661 if ((xfeatures_mask & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
662 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", xfeatures_mask);
663 BUG();
664 }
665
666 xfeatures_mask &= fpu__get_supported_xfeatures_mask();
667
668 /* Enable xstate instructions to be able to continue with initialization: */
669 fpu__init_cpu_xstate();
670 err = init_xstate_size();
671 if (err) {
672 /* something went wrong, boot without any XSAVE support */
673 fpu__init_disable_system_xstate();
674 return;
675 }
676
677 update_regset_xstate_info(xstate_size, xfeatures_mask);
678 fpu__init_prepare_fx_sw_frame();
679 setup_init_fpu_buf();
680 setup_xstate_comp();
681
682 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
683 xfeatures_mask,
684 xstate_size,
685 cpu_has_xsaves ? "compacted" : "standard");
686 }
687
688 /*
689 * Restore minimal FPU state after suspend:
690 */
fpu__resume_cpu(void)691 void fpu__resume_cpu(void)
692 {
693 /*
694 * Restore XCR0 on xsave capable CPUs:
695 */
696 if (cpu_has_xsave)
697 xsetbv(XCR_XFEATURE_ENABLED_MASK, xfeatures_mask);
698 }
699
700 /*
701 * Given the xsave area and a state inside, this function returns the
702 * address of the state.
703 *
704 * This is the API that is called to get xstate address in either
705 * standard format or compacted format of xsave area.
706 *
707 * Note that if there is no data for the field in the xsave buffer
708 * this will return NULL.
709 *
710 * Inputs:
711 * xstate: the thread's storage area for all FPU data
712 * xstate_feature: state which is defined in xsave.h (e.g.
713 * XFEATURE_MASK_FP, XFEATURE_MASK_SSE, etc...)
714 * Output:
715 * address of the state in the xsave area, or NULL if the
716 * field is not present in the xsave buffer.
717 */
get_xsave_addr(struct xregs_state * xsave,int xstate_feature)718 void *get_xsave_addr(struct xregs_state *xsave, int xstate_feature)
719 {
720 int feature_nr = fls64(xstate_feature) - 1;
721 /*
722 * Do we even *have* xsave state?
723 */
724 if (!boot_cpu_has(X86_FEATURE_XSAVE))
725 return NULL;
726
727 /*
728 * We should not ever be requesting features that we
729 * have not enabled. Remember that pcntxt_mask is
730 * what we write to the XCR0 register.
731 */
732 WARN_ONCE(!(xfeatures_mask & xstate_feature),
733 "get of unsupported state");
734 /*
735 * This assumes the last 'xsave*' instruction to
736 * have requested that 'xstate_feature' be saved.
737 * If it did not, we might be seeing and old value
738 * of the field in the buffer.
739 *
740 * This can happen because the last 'xsave' did not
741 * request that this feature be saved (unlikely)
742 * or because the "init optimization" caused it
743 * to not be saved.
744 */
745 if (!(xsave->header.xfeatures & xstate_feature))
746 return NULL;
747
748 return (void *)xsave + xstate_comp_offsets[feature_nr];
749 }
750 EXPORT_SYMBOL_GPL(get_xsave_addr);
751
752 /*
753 * This wraps up the common operations that need to occur when retrieving
754 * data from xsave state. It first ensures that the current task was
755 * using the FPU and retrieves the data in to a buffer. It then calculates
756 * the offset of the requested field in the buffer.
757 *
758 * This function is safe to call whether the FPU is in use or not.
759 *
760 * Note that this only works on the current task.
761 *
762 * Inputs:
763 * @xsave_state: state which is defined in xsave.h (e.g. XFEATURE_MASK_FP,
764 * XFEATURE_MASK_SSE, etc...)
765 * Output:
766 * address of the state in the xsave area or NULL if the state
767 * is not present or is in its 'init state'.
768 */
get_xsave_field_ptr(int xsave_state)769 const void *get_xsave_field_ptr(int xsave_state)
770 {
771 struct fpu *fpu = ¤t->thread.fpu;
772
773 if (!fpu->fpstate_active)
774 return NULL;
775 /*
776 * fpu__save() takes the CPU's xstate registers
777 * and saves them off to the 'fpu memory buffer.
778 */
779 fpu__save(fpu);
780
781 return get_xsave_addr(&fpu->state.xsave, xsave_state);
782 }
783