• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 
74 	/* worker flags */
75 	WORKER_DIE		= 1 << 1,	/* die die die */
76 	WORKER_IDLE		= 1 << 2,	/* is idle */
77 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81 
82 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
83 				  WORKER_UNBOUND | WORKER_REBOUND,
84 
85 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86 
87 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
88 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89 
90 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
91 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
92 
93 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
94 						/* call for help after 10ms
95 						   (min two ticks) */
96 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
97 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
98 
99 	/*
100 	 * Rescue workers are used only on emergencies and shared by
101 	 * all cpus.  Give MIN_NICE.
102 	 */
103 	RESCUER_NICE_LEVEL	= MIN_NICE,
104 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 
106 	WQ_NAME_LEN		= 24,
107 };
108 
109 /*
110  * Structure fields follow one of the following exclusion rules.
111  *
112  * I: Modifiable by initialization/destruction paths and read-only for
113  *    everyone else.
114  *
115  * P: Preemption protected.  Disabling preemption is enough and should
116  *    only be modified and accessed from the local cpu.
117  *
118  * L: pool->lock protected.  Access with pool->lock held.
119  *
120  * X: During normal operation, modification requires pool->lock and should
121  *    be done only from local cpu.  Either disabling preemption on local
122  *    cpu or grabbing pool->lock is enough for read access.  If
123  *    POOL_DISASSOCIATED is set, it's identical to L.
124  *
125  * A: pool->attach_mutex protected.
126  *
127  * PL: wq_pool_mutex protected.
128  *
129  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130  *
131  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
132  *
133  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
134  *      sched-RCU for reads.
135  *
136  * WQ: wq->mutex protected.
137  *
138  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139  *
140  * MD: wq_mayday_lock protected.
141  */
142 
143 /* struct worker is defined in workqueue_internal.h */
144 
145 struct worker_pool {
146 	spinlock_t		lock;		/* the pool lock */
147 	int			cpu;		/* I: the associated cpu */
148 	int			node;		/* I: the associated node ID */
149 	int			id;		/* I: pool ID */
150 	unsigned int		flags;		/* X: flags */
151 
152 	struct list_head	worklist;	/* L: list of pending works */
153 	int			nr_workers;	/* L: total number of workers */
154 
155 	/* nr_idle includes the ones off idle_list for rebinding */
156 	int			nr_idle;	/* L: currently idle ones */
157 
158 	struct list_head	idle_list;	/* X: list of idle workers */
159 	struct timer_list	idle_timer;	/* L: worker idle timeout */
160 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
161 
162 	/* a workers is either on busy_hash or idle_list, or the manager */
163 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
164 						/* L: hash of busy workers */
165 
166 	/* see manage_workers() for details on the two manager mutexes */
167 	struct worker		*manager;	/* L: purely informational */
168 	struct mutex		attach_mutex;	/* attach/detach exclusion */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	struct lockdep_map	lockdep_map;
263 #endif
264 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
265 
266 	/*
267 	 * Destruction of workqueue_struct is sched-RCU protected to allow
268 	 * walking the workqueues list without grabbing wq_pool_mutex.
269 	 * This is used to dump all workqueues from sysrq.
270 	 */
271 	struct rcu_head		rcu;
272 
273 	/* hot fields used during command issue, aligned to cacheline */
274 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
276 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
277 };
278 
279 static struct kmem_cache *pwq_cache;
280 
281 static cpumask_var_t *wq_numa_possible_cpumask;
282 					/* possible CPUs of each node */
283 
284 static bool wq_disable_numa;
285 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286 
287 /* see the comment above the definition of WQ_POWER_EFFICIENT */
288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290 
291 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
292 
293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295 
296 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
299 
300 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
301 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
302 
303 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */
304 
305 /* the per-cpu worker pools */
306 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
307 				     cpu_worker_pools);
308 
309 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
310 
311 /* PL: hash of all unbound pools keyed by pool->attrs */
312 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
313 
314 /* I: attributes used when instantiating standard unbound pools on demand */
315 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
316 
317 /* I: attributes used when instantiating ordered pools on demand */
318 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
319 
320 struct workqueue_struct *system_wq __read_mostly;
321 EXPORT_SYMBOL(system_wq);
322 struct workqueue_struct *system_highpri_wq __read_mostly;
323 EXPORT_SYMBOL_GPL(system_highpri_wq);
324 struct workqueue_struct *system_long_wq __read_mostly;
325 EXPORT_SYMBOL_GPL(system_long_wq);
326 struct workqueue_struct *system_unbound_wq __read_mostly;
327 EXPORT_SYMBOL_GPL(system_unbound_wq);
328 struct workqueue_struct *system_freezable_wq __read_mostly;
329 EXPORT_SYMBOL_GPL(system_freezable_wq);
330 struct workqueue_struct *system_power_efficient_wq __read_mostly;
331 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
332 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
333 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
334 
335 static int worker_thread(void *__worker);
336 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
337 
338 #define CREATE_TRACE_POINTS
339 #include <trace/events/workqueue.h>
340 
341 #define assert_rcu_or_pool_mutex()					\
342 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
343 			 !lockdep_is_held(&wq_pool_mutex),		\
344 			 "sched RCU or wq_pool_mutex should be held")
345 
346 #define assert_rcu_or_wq_mutex(wq)					\
347 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
348 			 !lockdep_is_held(&wq->mutex),			\
349 			 "sched RCU or wq->mutex should be held")
350 
351 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
352 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
353 			 !lockdep_is_held(&wq->mutex) &&		\
354 			 !lockdep_is_held(&wq_pool_mutex),		\
355 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
356 
357 #define for_each_cpu_worker_pool(pool, cpu)				\
358 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
359 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
360 	     (pool)++)
361 
362 /**
363  * for_each_pool - iterate through all worker_pools in the system
364  * @pool: iteration cursor
365  * @pi: integer used for iteration
366  *
367  * This must be called either with wq_pool_mutex held or sched RCU read
368  * locked.  If the pool needs to be used beyond the locking in effect, the
369  * caller is responsible for guaranteeing that the pool stays online.
370  *
371  * The if/else clause exists only for the lockdep assertion and can be
372  * ignored.
373  */
374 #define for_each_pool(pool, pi)						\
375 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
376 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
377 		else
378 
379 /**
380  * for_each_pool_worker - iterate through all workers of a worker_pool
381  * @worker: iteration cursor
382  * @pool: worker_pool to iterate workers of
383  *
384  * This must be called with @pool->attach_mutex.
385  *
386  * The if/else clause exists only for the lockdep assertion and can be
387  * ignored.
388  */
389 #define for_each_pool_worker(worker, pool)				\
390 	list_for_each_entry((worker), &(pool)->workers, node)		\
391 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
392 		else
393 
394 /**
395  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
396  * @pwq: iteration cursor
397  * @wq: the target workqueue
398  *
399  * This must be called either with wq->mutex held or sched RCU read locked.
400  * If the pwq needs to be used beyond the locking in effect, the caller is
401  * responsible for guaranteeing that the pwq stays online.
402  *
403  * The if/else clause exists only for the lockdep assertion and can be
404  * ignored.
405  */
406 #define for_each_pwq(pwq, wq)						\
407 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
408 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
409 		else
410 
411 #ifdef CONFIG_DEBUG_OBJECTS_WORK
412 
413 static struct debug_obj_descr work_debug_descr;
414 
work_debug_hint(void * addr)415 static void *work_debug_hint(void *addr)
416 {
417 	return ((struct work_struct *) addr)->func;
418 }
419 
420 /*
421  * fixup_init is called when:
422  * - an active object is initialized
423  */
work_fixup_init(void * addr,enum debug_obj_state state)424 static int work_fixup_init(void *addr, enum debug_obj_state state)
425 {
426 	struct work_struct *work = addr;
427 
428 	switch (state) {
429 	case ODEBUG_STATE_ACTIVE:
430 		cancel_work_sync(work);
431 		debug_object_init(work, &work_debug_descr);
432 		return 1;
433 	default:
434 		return 0;
435 	}
436 }
437 
438 /*
439  * fixup_activate is called when:
440  * - an active object is activated
441  * - an unknown object is activated (might be a statically initialized object)
442  */
work_fixup_activate(void * addr,enum debug_obj_state state)443 static int work_fixup_activate(void *addr, enum debug_obj_state state)
444 {
445 	struct work_struct *work = addr;
446 
447 	switch (state) {
448 
449 	case ODEBUG_STATE_NOTAVAILABLE:
450 		/*
451 		 * This is not really a fixup. The work struct was
452 		 * statically initialized. We just make sure that it
453 		 * is tracked in the object tracker.
454 		 */
455 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
456 			debug_object_init(work, &work_debug_descr);
457 			debug_object_activate(work, &work_debug_descr);
458 			return 0;
459 		}
460 		WARN_ON_ONCE(1);
461 		return 0;
462 
463 	case ODEBUG_STATE_ACTIVE:
464 		WARN_ON(1);
465 
466 	default:
467 		return 0;
468 	}
469 }
470 
471 /*
472  * fixup_free is called when:
473  * - an active object is freed
474  */
work_fixup_free(void * addr,enum debug_obj_state state)475 static int work_fixup_free(void *addr, enum debug_obj_state state)
476 {
477 	struct work_struct *work = addr;
478 
479 	switch (state) {
480 	case ODEBUG_STATE_ACTIVE:
481 		cancel_work_sync(work);
482 		debug_object_free(work, &work_debug_descr);
483 		return 1;
484 	default:
485 		return 0;
486 	}
487 }
488 
489 static struct debug_obj_descr work_debug_descr = {
490 	.name		= "work_struct",
491 	.debug_hint	= work_debug_hint,
492 	.fixup_init	= work_fixup_init,
493 	.fixup_activate	= work_fixup_activate,
494 	.fixup_free	= work_fixup_free,
495 };
496 
debug_work_activate(struct work_struct * work)497 static inline void debug_work_activate(struct work_struct *work)
498 {
499 	debug_object_activate(work, &work_debug_descr);
500 }
501 
debug_work_deactivate(struct work_struct * work)502 static inline void debug_work_deactivate(struct work_struct *work)
503 {
504 	debug_object_deactivate(work, &work_debug_descr);
505 }
506 
__init_work(struct work_struct * work,int onstack)507 void __init_work(struct work_struct *work, int onstack)
508 {
509 	if (onstack)
510 		debug_object_init_on_stack(work, &work_debug_descr);
511 	else
512 		debug_object_init(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(__init_work);
515 
destroy_work_on_stack(struct work_struct * work)516 void destroy_work_on_stack(struct work_struct *work)
517 {
518 	debug_object_free(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521 
destroy_delayed_work_on_stack(struct delayed_work * work)522 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 {
524 	destroy_timer_on_stack(&work->timer);
525 	debug_object_free(&work->work, &work_debug_descr);
526 }
527 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
528 
529 #else
debug_work_activate(struct work_struct * work)530 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)531 static inline void debug_work_deactivate(struct work_struct *work) { }
532 #endif
533 
534 /**
535  * worker_pool_assign_id - allocate ID and assing it to @pool
536  * @pool: the pool pointer of interest
537  *
538  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
539  * successfully, -errno on failure.
540  */
worker_pool_assign_id(struct worker_pool * pool)541 static int worker_pool_assign_id(struct worker_pool *pool)
542 {
543 	int ret;
544 
545 	lockdep_assert_held(&wq_pool_mutex);
546 
547 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
548 			GFP_KERNEL);
549 	if (ret >= 0) {
550 		pool->id = ret;
551 		return 0;
552 	}
553 	return ret;
554 }
555 
556 /**
557  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
558  * @wq: the target workqueue
559  * @node: the node ID
560  *
561  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
562  * read locked.
563  * If the pwq needs to be used beyond the locking in effect, the caller is
564  * responsible for guaranteeing that the pwq stays online.
565  *
566  * Return: The unbound pool_workqueue for @node.
567  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)568 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
569 						  int node)
570 {
571 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
572 
573 	/*
574 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
575 	 * delayed item is pending.  The plan is to keep CPU -> NODE
576 	 * mapping valid and stable across CPU on/offlines.  Once that
577 	 * happens, this workaround can be removed.
578 	 */
579 	if (unlikely(node == NUMA_NO_NODE))
580 		return wq->dfl_pwq;
581 
582 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
583 }
584 
work_color_to_flags(int color)585 static unsigned int work_color_to_flags(int color)
586 {
587 	return color << WORK_STRUCT_COLOR_SHIFT;
588 }
589 
get_work_color(struct work_struct * work)590 static int get_work_color(struct work_struct *work)
591 {
592 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
593 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
594 }
595 
work_next_color(int color)596 static int work_next_color(int color)
597 {
598 	return (color + 1) % WORK_NR_COLORS;
599 }
600 
601 /*
602  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
603  * contain the pointer to the queued pwq.  Once execution starts, the flag
604  * is cleared and the high bits contain OFFQ flags and pool ID.
605  *
606  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
607  * and clear_work_data() can be used to set the pwq, pool or clear
608  * work->data.  These functions should only be called while the work is
609  * owned - ie. while the PENDING bit is set.
610  *
611  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
612  * corresponding to a work.  Pool is available once the work has been
613  * queued anywhere after initialization until it is sync canceled.  pwq is
614  * available only while the work item is queued.
615  *
616  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
617  * canceled.  While being canceled, a work item may have its PENDING set
618  * but stay off timer and worklist for arbitrarily long and nobody should
619  * try to steal the PENDING bit.
620  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)621 static inline void set_work_data(struct work_struct *work, unsigned long data,
622 				 unsigned long flags)
623 {
624 	WARN_ON_ONCE(!work_pending(work));
625 	atomic_long_set(&work->data, data | flags | work_static(work));
626 }
627 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)628 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
629 			 unsigned long extra_flags)
630 {
631 	set_work_data(work, (unsigned long)pwq,
632 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
633 }
634 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)635 static void set_work_pool_and_keep_pending(struct work_struct *work,
636 					   int pool_id)
637 {
638 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
639 		      WORK_STRUCT_PENDING);
640 }
641 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)642 static void set_work_pool_and_clear_pending(struct work_struct *work,
643 					    int pool_id)
644 {
645 	/*
646 	 * The following wmb is paired with the implied mb in
647 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
648 	 * here are visible to and precede any updates by the next PENDING
649 	 * owner.
650 	 */
651 	smp_wmb();
652 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 	/*
654 	 * The following mb guarantees that previous clear of a PENDING bit
655 	 * will not be reordered with any speculative LOADS or STORES from
656 	 * work->current_func, which is executed afterwards.  This possible
657 	 * reordering can lead to a missed execution on attempt to qeueue
658 	 * the same @work.  E.g. consider this case:
659 	 *
660 	 *   CPU#0                         CPU#1
661 	 *   ----------------------------  --------------------------------
662 	 *
663 	 * 1  STORE event_indicated
664 	 * 2  queue_work_on() {
665 	 * 3    test_and_set_bit(PENDING)
666 	 * 4 }                             set_..._and_clear_pending() {
667 	 * 5                                 set_work_data() # clear bit
668 	 * 6                                 smp_mb()
669 	 * 7                               work->current_func() {
670 	 * 8				      LOAD event_indicated
671 	 *				   }
672 	 *
673 	 * Without an explicit full barrier speculative LOAD on line 8 can
674 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
675 	 * CPU#0 observes the PENDING bit is still set and new execution of
676 	 * a @work is not queued in a hope, that CPU#1 will eventually
677 	 * finish the queued @work.  Meanwhile CPU#1 does not see
678 	 * event_indicated is set, because speculative LOAD was executed
679 	 * before actual STORE.
680 	 */
681 	smp_mb();
682 }
683 
clear_work_data(struct work_struct * work)684 static void clear_work_data(struct work_struct *work)
685 {
686 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
687 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
688 }
689 
get_work_pwq(struct work_struct * work)690 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
691 {
692 	unsigned long data = atomic_long_read(&work->data);
693 
694 	if (data & WORK_STRUCT_PWQ)
695 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
696 	else
697 		return NULL;
698 }
699 
700 /**
701  * get_work_pool - return the worker_pool a given work was associated with
702  * @work: the work item of interest
703  *
704  * Pools are created and destroyed under wq_pool_mutex, and allows read
705  * access under sched-RCU read lock.  As such, this function should be
706  * called under wq_pool_mutex or with preemption disabled.
707  *
708  * All fields of the returned pool are accessible as long as the above
709  * mentioned locking is in effect.  If the returned pool needs to be used
710  * beyond the critical section, the caller is responsible for ensuring the
711  * returned pool is and stays online.
712  *
713  * Return: The worker_pool @work was last associated with.  %NULL if none.
714  */
get_work_pool(struct work_struct * work)715 static struct worker_pool *get_work_pool(struct work_struct *work)
716 {
717 	unsigned long data = atomic_long_read(&work->data);
718 	int pool_id;
719 
720 	assert_rcu_or_pool_mutex();
721 
722 	if (data & WORK_STRUCT_PWQ)
723 		return ((struct pool_workqueue *)
724 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
725 
726 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
727 	if (pool_id == WORK_OFFQ_POOL_NONE)
728 		return NULL;
729 
730 	return idr_find(&worker_pool_idr, pool_id);
731 }
732 
733 /**
734  * get_work_pool_id - return the worker pool ID a given work is associated with
735  * @work: the work item of interest
736  *
737  * Return: The worker_pool ID @work was last associated with.
738  * %WORK_OFFQ_POOL_NONE if none.
739  */
get_work_pool_id(struct work_struct * work)740 static int get_work_pool_id(struct work_struct *work)
741 {
742 	unsigned long data = atomic_long_read(&work->data);
743 
744 	if (data & WORK_STRUCT_PWQ)
745 		return ((struct pool_workqueue *)
746 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
747 
748 	return data >> WORK_OFFQ_POOL_SHIFT;
749 }
750 
mark_work_canceling(struct work_struct * work)751 static void mark_work_canceling(struct work_struct *work)
752 {
753 	unsigned long pool_id = get_work_pool_id(work);
754 
755 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
756 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
757 }
758 
work_is_canceling(struct work_struct * work)759 static bool work_is_canceling(struct work_struct *work)
760 {
761 	unsigned long data = atomic_long_read(&work->data);
762 
763 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
764 }
765 
766 /*
767  * Policy functions.  These define the policies on how the global worker
768  * pools are managed.  Unless noted otherwise, these functions assume that
769  * they're being called with pool->lock held.
770  */
771 
__need_more_worker(struct worker_pool * pool)772 static bool __need_more_worker(struct worker_pool *pool)
773 {
774 	return !atomic_read(&pool->nr_running);
775 }
776 
777 /*
778  * Need to wake up a worker?  Called from anything but currently
779  * running workers.
780  *
781  * Note that, because unbound workers never contribute to nr_running, this
782  * function will always return %true for unbound pools as long as the
783  * worklist isn't empty.
784  */
need_more_worker(struct worker_pool * pool)785 static bool need_more_worker(struct worker_pool *pool)
786 {
787 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
788 }
789 
790 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)791 static bool may_start_working(struct worker_pool *pool)
792 {
793 	return pool->nr_idle;
794 }
795 
796 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)797 static bool keep_working(struct worker_pool *pool)
798 {
799 	return !list_empty(&pool->worklist) &&
800 		atomic_read(&pool->nr_running) <= 1;
801 }
802 
803 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)804 static bool need_to_create_worker(struct worker_pool *pool)
805 {
806 	return need_more_worker(pool) && !may_start_working(pool);
807 }
808 
809 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)810 static bool too_many_workers(struct worker_pool *pool)
811 {
812 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
813 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
814 	int nr_busy = pool->nr_workers - nr_idle;
815 
816 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
817 }
818 
819 /*
820  * Wake up functions.
821  */
822 
823 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)824 static struct worker *first_idle_worker(struct worker_pool *pool)
825 {
826 	if (unlikely(list_empty(&pool->idle_list)))
827 		return NULL;
828 
829 	return list_first_entry(&pool->idle_list, struct worker, entry);
830 }
831 
832 /**
833  * wake_up_worker - wake up an idle worker
834  * @pool: worker pool to wake worker from
835  *
836  * Wake up the first idle worker of @pool.
837  *
838  * CONTEXT:
839  * spin_lock_irq(pool->lock).
840  */
wake_up_worker(struct worker_pool * pool)841 static void wake_up_worker(struct worker_pool *pool)
842 {
843 	struct worker *worker = first_idle_worker(pool);
844 
845 	if (likely(worker))
846 		wake_up_process(worker->task);
847 }
848 
849 /**
850  * wq_worker_waking_up - a worker is waking up
851  * @task: task waking up
852  * @cpu: CPU @task is waking up to
853  *
854  * This function is called during try_to_wake_up() when a worker is
855  * being awoken.
856  *
857  * CONTEXT:
858  * spin_lock_irq(rq->lock)
859  */
wq_worker_waking_up(struct task_struct * task,int cpu)860 void wq_worker_waking_up(struct task_struct *task, int cpu)
861 {
862 	struct worker *worker = kthread_data(task);
863 
864 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
865 		WARN_ON_ONCE(worker->pool->cpu != cpu);
866 		atomic_inc(&worker->pool->nr_running);
867 	}
868 }
869 
870 /**
871  * wq_worker_sleeping - a worker is going to sleep
872  * @task: task going to sleep
873  * @cpu: CPU in question, must be the current CPU number
874  *
875  * This function is called during schedule() when a busy worker is
876  * going to sleep.  Worker on the same cpu can be woken up by
877  * returning pointer to its task.
878  *
879  * CONTEXT:
880  * spin_lock_irq(rq->lock)
881  *
882  * Return:
883  * Worker task on @cpu to wake up, %NULL if none.
884  */
wq_worker_sleeping(struct task_struct * task,int cpu)885 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
886 {
887 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
888 	struct worker_pool *pool;
889 
890 	/*
891 	 * Rescuers, which may not have all the fields set up like normal
892 	 * workers, also reach here, let's not access anything before
893 	 * checking NOT_RUNNING.
894 	 */
895 	if (worker->flags & WORKER_NOT_RUNNING)
896 		return NULL;
897 
898 	pool = worker->pool;
899 
900 	/* this can only happen on the local cpu */
901 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
902 		return NULL;
903 
904 	/*
905 	 * The counterpart of the following dec_and_test, implied mb,
906 	 * worklist not empty test sequence is in insert_work().
907 	 * Please read comment there.
908 	 *
909 	 * NOT_RUNNING is clear.  This means that we're bound to and
910 	 * running on the local cpu w/ rq lock held and preemption
911 	 * disabled, which in turn means that none else could be
912 	 * manipulating idle_list, so dereferencing idle_list without pool
913 	 * lock is safe.
914 	 */
915 	if (atomic_dec_and_test(&pool->nr_running) &&
916 	    !list_empty(&pool->worklist))
917 		to_wakeup = first_idle_worker(pool);
918 	return to_wakeup ? to_wakeup->task : NULL;
919 }
920 
921 /**
922  * worker_set_flags - set worker flags and adjust nr_running accordingly
923  * @worker: self
924  * @flags: flags to set
925  *
926  * Set @flags in @worker->flags and adjust nr_running accordingly.
927  *
928  * CONTEXT:
929  * spin_lock_irq(pool->lock)
930  */
worker_set_flags(struct worker * worker,unsigned int flags)931 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
932 {
933 	struct worker_pool *pool = worker->pool;
934 
935 	WARN_ON_ONCE(worker->task != current);
936 
937 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
938 	if ((flags & WORKER_NOT_RUNNING) &&
939 	    !(worker->flags & WORKER_NOT_RUNNING)) {
940 		atomic_dec(&pool->nr_running);
941 	}
942 
943 	worker->flags |= flags;
944 }
945 
946 /**
947  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
948  * @worker: self
949  * @flags: flags to clear
950  *
951  * Clear @flags in @worker->flags and adjust nr_running accordingly.
952  *
953  * CONTEXT:
954  * spin_lock_irq(pool->lock)
955  */
worker_clr_flags(struct worker * worker,unsigned int flags)956 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
957 {
958 	struct worker_pool *pool = worker->pool;
959 	unsigned int oflags = worker->flags;
960 
961 	WARN_ON_ONCE(worker->task != current);
962 
963 	worker->flags &= ~flags;
964 
965 	/*
966 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
967 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
968 	 * of multiple flags, not a single flag.
969 	 */
970 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
971 		if (!(worker->flags & WORKER_NOT_RUNNING))
972 			atomic_inc(&pool->nr_running);
973 }
974 
975 /**
976  * find_worker_executing_work - find worker which is executing a work
977  * @pool: pool of interest
978  * @work: work to find worker for
979  *
980  * Find a worker which is executing @work on @pool by searching
981  * @pool->busy_hash which is keyed by the address of @work.  For a worker
982  * to match, its current execution should match the address of @work and
983  * its work function.  This is to avoid unwanted dependency between
984  * unrelated work executions through a work item being recycled while still
985  * being executed.
986  *
987  * This is a bit tricky.  A work item may be freed once its execution
988  * starts and nothing prevents the freed area from being recycled for
989  * another work item.  If the same work item address ends up being reused
990  * before the original execution finishes, workqueue will identify the
991  * recycled work item as currently executing and make it wait until the
992  * current execution finishes, introducing an unwanted dependency.
993  *
994  * This function checks the work item address and work function to avoid
995  * false positives.  Note that this isn't complete as one may construct a
996  * work function which can introduce dependency onto itself through a
997  * recycled work item.  Well, if somebody wants to shoot oneself in the
998  * foot that badly, there's only so much we can do, and if such deadlock
999  * actually occurs, it should be easy to locate the culprit work function.
1000  *
1001  * CONTEXT:
1002  * spin_lock_irq(pool->lock).
1003  *
1004  * Return:
1005  * Pointer to worker which is executing @work if found, %NULL
1006  * otherwise.
1007  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1008 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1009 						 struct work_struct *work)
1010 {
1011 	struct worker *worker;
1012 
1013 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1014 			       (unsigned long)work)
1015 		if (worker->current_work == work &&
1016 		    worker->current_func == work->func)
1017 			return worker;
1018 
1019 	return NULL;
1020 }
1021 
1022 /**
1023  * move_linked_works - move linked works to a list
1024  * @work: start of series of works to be scheduled
1025  * @head: target list to append @work to
1026  * @nextp: out parameter for nested worklist walking
1027  *
1028  * Schedule linked works starting from @work to @head.  Work series to
1029  * be scheduled starts at @work and includes any consecutive work with
1030  * WORK_STRUCT_LINKED set in its predecessor.
1031  *
1032  * If @nextp is not NULL, it's updated to point to the next work of
1033  * the last scheduled work.  This allows move_linked_works() to be
1034  * nested inside outer list_for_each_entry_safe().
1035  *
1036  * CONTEXT:
1037  * spin_lock_irq(pool->lock).
1038  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1039 static void move_linked_works(struct work_struct *work, struct list_head *head,
1040 			      struct work_struct **nextp)
1041 {
1042 	struct work_struct *n;
1043 
1044 	/*
1045 	 * Linked worklist will always end before the end of the list,
1046 	 * use NULL for list head.
1047 	 */
1048 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1049 		list_move_tail(&work->entry, head);
1050 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1051 			break;
1052 	}
1053 
1054 	/*
1055 	 * If we're already inside safe list traversal and have moved
1056 	 * multiple works to the scheduled queue, the next position
1057 	 * needs to be updated.
1058 	 */
1059 	if (nextp)
1060 		*nextp = n;
1061 }
1062 
1063 /**
1064  * get_pwq - get an extra reference on the specified pool_workqueue
1065  * @pwq: pool_workqueue to get
1066  *
1067  * Obtain an extra reference on @pwq.  The caller should guarantee that
1068  * @pwq has positive refcnt and be holding the matching pool->lock.
1069  */
get_pwq(struct pool_workqueue * pwq)1070 static void get_pwq(struct pool_workqueue *pwq)
1071 {
1072 	lockdep_assert_held(&pwq->pool->lock);
1073 	WARN_ON_ONCE(pwq->refcnt <= 0);
1074 	pwq->refcnt++;
1075 }
1076 
1077 /**
1078  * put_pwq - put a pool_workqueue reference
1079  * @pwq: pool_workqueue to put
1080  *
1081  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1082  * destruction.  The caller should be holding the matching pool->lock.
1083  */
put_pwq(struct pool_workqueue * pwq)1084 static void put_pwq(struct pool_workqueue *pwq)
1085 {
1086 	lockdep_assert_held(&pwq->pool->lock);
1087 	if (likely(--pwq->refcnt))
1088 		return;
1089 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1090 		return;
1091 	/*
1092 	 * @pwq can't be released under pool->lock, bounce to
1093 	 * pwq_unbound_release_workfn().  This never recurses on the same
1094 	 * pool->lock as this path is taken only for unbound workqueues and
1095 	 * the release work item is scheduled on a per-cpu workqueue.  To
1096 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1097 	 * subclass of 1 in get_unbound_pool().
1098 	 */
1099 	schedule_work(&pwq->unbound_release_work);
1100 }
1101 
1102 /**
1103  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1104  * @pwq: pool_workqueue to put (can be %NULL)
1105  *
1106  * put_pwq() with locking.  This function also allows %NULL @pwq.
1107  */
put_pwq_unlocked(struct pool_workqueue * pwq)1108 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1109 {
1110 	if (pwq) {
1111 		/*
1112 		 * As both pwqs and pools are sched-RCU protected, the
1113 		 * following lock operations are safe.
1114 		 */
1115 		spin_lock_irq(&pwq->pool->lock);
1116 		put_pwq(pwq);
1117 		spin_unlock_irq(&pwq->pool->lock);
1118 	}
1119 }
1120 
pwq_activate_delayed_work(struct work_struct * work)1121 static void pwq_activate_delayed_work(struct work_struct *work)
1122 {
1123 	struct pool_workqueue *pwq = get_work_pwq(work);
1124 
1125 	trace_workqueue_activate_work(work);
1126 	move_linked_works(work, &pwq->pool->worklist, NULL);
1127 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1128 	pwq->nr_active++;
1129 }
1130 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1131 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1132 {
1133 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1134 						    struct work_struct, entry);
1135 
1136 	pwq_activate_delayed_work(work);
1137 }
1138 
1139 /**
1140  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1141  * @pwq: pwq of interest
1142  * @color: color of work which left the queue
1143  *
1144  * A work either has completed or is removed from pending queue,
1145  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1146  *
1147  * CONTEXT:
1148  * spin_lock_irq(pool->lock).
1149  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1150 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1151 {
1152 	/* uncolored work items don't participate in flushing or nr_active */
1153 	if (color == WORK_NO_COLOR)
1154 		goto out_put;
1155 
1156 	pwq->nr_in_flight[color]--;
1157 
1158 	pwq->nr_active--;
1159 	if (!list_empty(&pwq->delayed_works)) {
1160 		/* one down, submit a delayed one */
1161 		if (pwq->nr_active < pwq->max_active)
1162 			pwq_activate_first_delayed(pwq);
1163 	}
1164 
1165 	/* is flush in progress and are we at the flushing tip? */
1166 	if (likely(pwq->flush_color != color))
1167 		goto out_put;
1168 
1169 	/* are there still in-flight works? */
1170 	if (pwq->nr_in_flight[color])
1171 		goto out_put;
1172 
1173 	/* this pwq is done, clear flush_color */
1174 	pwq->flush_color = -1;
1175 
1176 	/*
1177 	 * If this was the last pwq, wake up the first flusher.  It
1178 	 * will handle the rest.
1179 	 */
1180 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1181 		complete(&pwq->wq->first_flusher->done);
1182 out_put:
1183 	put_pwq(pwq);
1184 }
1185 
1186 /**
1187  * try_to_grab_pending - steal work item from worklist and disable irq
1188  * @work: work item to steal
1189  * @is_dwork: @work is a delayed_work
1190  * @flags: place to store irq state
1191  *
1192  * Try to grab PENDING bit of @work.  This function can handle @work in any
1193  * stable state - idle, on timer or on worklist.
1194  *
1195  * Return:
1196  *  1		if @work was pending and we successfully stole PENDING
1197  *  0		if @work was idle and we claimed PENDING
1198  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1199  *  -ENOENT	if someone else is canceling @work, this state may persist
1200  *		for arbitrarily long
1201  *
1202  * Note:
1203  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1204  * interrupted while holding PENDING and @work off queue, irq must be
1205  * disabled on entry.  This, combined with delayed_work->timer being
1206  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1207  *
1208  * On successful return, >= 0, irq is disabled and the caller is
1209  * responsible for releasing it using local_irq_restore(*@flags).
1210  *
1211  * This function is safe to call from any context including IRQ handler.
1212  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1213 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1214 			       unsigned long *flags)
1215 {
1216 	struct worker_pool *pool;
1217 	struct pool_workqueue *pwq;
1218 
1219 	local_irq_save(*flags);
1220 
1221 	/* try to steal the timer if it exists */
1222 	if (is_dwork) {
1223 		struct delayed_work *dwork = to_delayed_work(work);
1224 
1225 		/*
1226 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1227 		 * guaranteed that the timer is not queued anywhere and not
1228 		 * running on the local CPU.
1229 		 */
1230 		if (likely(del_timer(&dwork->timer)))
1231 			return 1;
1232 	}
1233 
1234 	/* try to claim PENDING the normal way */
1235 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1236 		return 0;
1237 
1238 	/*
1239 	 * The queueing is in progress, or it is already queued. Try to
1240 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1241 	 */
1242 	pool = get_work_pool(work);
1243 	if (!pool)
1244 		goto fail;
1245 
1246 	spin_lock(&pool->lock);
1247 	/*
1248 	 * work->data is guaranteed to point to pwq only while the work
1249 	 * item is queued on pwq->wq, and both updating work->data to point
1250 	 * to pwq on queueing and to pool on dequeueing are done under
1251 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1252 	 * points to pwq which is associated with a locked pool, the work
1253 	 * item is currently queued on that pool.
1254 	 */
1255 	pwq = get_work_pwq(work);
1256 	if (pwq && pwq->pool == pool) {
1257 		debug_work_deactivate(work);
1258 
1259 		/*
1260 		 * A delayed work item cannot be grabbed directly because
1261 		 * it might have linked NO_COLOR work items which, if left
1262 		 * on the delayed_list, will confuse pwq->nr_active
1263 		 * management later on and cause stall.  Make sure the work
1264 		 * item is activated before grabbing.
1265 		 */
1266 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1267 			pwq_activate_delayed_work(work);
1268 
1269 		list_del_init(&work->entry);
1270 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1271 
1272 		/* work->data points to pwq iff queued, point to pool */
1273 		set_work_pool_and_keep_pending(work, pool->id);
1274 
1275 		spin_unlock(&pool->lock);
1276 		return 1;
1277 	}
1278 	spin_unlock(&pool->lock);
1279 fail:
1280 	local_irq_restore(*flags);
1281 	if (work_is_canceling(work))
1282 		return -ENOENT;
1283 	cpu_relax();
1284 	return -EAGAIN;
1285 }
1286 
1287 /**
1288  * insert_work - insert a work into a pool
1289  * @pwq: pwq @work belongs to
1290  * @work: work to insert
1291  * @head: insertion point
1292  * @extra_flags: extra WORK_STRUCT_* flags to set
1293  *
1294  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1295  * work_struct flags.
1296  *
1297  * CONTEXT:
1298  * spin_lock_irq(pool->lock).
1299  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1300 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1301 			struct list_head *head, unsigned int extra_flags)
1302 {
1303 	struct worker_pool *pool = pwq->pool;
1304 
1305 	/* we own @work, set data and link */
1306 	set_work_pwq(work, pwq, extra_flags);
1307 	list_add_tail(&work->entry, head);
1308 	get_pwq(pwq);
1309 
1310 	/*
1311 	 * Ensure either wq_worker_sleeping() sees the above
1312 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1313 	 * around lazily while there are works to be processed.
1314 	 */
1315 	smp_mb();
1316 
1317 	if (__need_more_worker(pool))
1318 		wake_up_worker(pool);
1319 }
1320 
1321 /*
1322  * Test whether @work is being queued from another work executing on the
1323  * same workqueue.
1324  */
is_chained_work(struct workqueue_struct * wq)1325 static bool is_chained_work(struct workqueue_struct *wq)
1326 {
1327 	struct worker *worker;
1328 
1329 	worker = current_wq_worker();
1330 	/*
1331 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1332 	 * I'm @worker, it's safe to dereference it without locking.
1333 	 */
1334 	return worker && worker->current_pwq->wq == wq;
1335 }
1336 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1337 static void __queue_work(int cpu, struct workqueue_struct *wq,
1338 			 struct work_struct *work)
1339 {
1340 	struct pool_workqueue *pwq;
1341 	struct worker_pool *last_pool;
1342 	struct list_head *worklist;
1343 	unsigned int work_flags;
1344 	unsigned int req_cpu = cpu;
1345 
1346 	/*
1347 	 * While a work item is PENDING && off queue, a task trying to
1348 	 * steal the PENDING will busy-loop waiting for it to either get
1349 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1350 	 * happen with IRQ disabled.
1351 	 */
1352 	WARN_ON_ONCE(!irqs_disabled());
1353 
1354 
1355 	/* if draining, only works from the same workqueue are allowed */
1356 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1357 	    WARN_ON_ONCE(!is_chained_work(wq)))
1358 		return;
1359 retry:
1360 	if (req_cpu == WORK_CPU_UNBOUND)
1361 		cpu = raw_smp_processor_id();
1362 
1363 	/* pwq which will be used unless @work is executing elsewhere */
1364 	if (!(wq->flags & WQ_UNBOUND))
1365 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1366 	else
1367 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1368 
1369 	/*
1370 	 * If @work was previously on a different pool, it might still be
1371 	 * running there, in which case the work needs to be queued on that
1372 	 * pool to guarantee non-reentrancy.
1373 	 */
1374 	last_pool = get_work_pool(work);
1375 	if (last_pool && last_pool != pwq->pool) {
1376 		struct worker *worker;
1377 
1378 		spin_lock(&last_pool->lock);
1379 
1380 		worker = find_worker_executing_work(last_pool, work);
1381 
1382 		if (worker && worker->current_pwq->wq == wq) {
1383 			pwq = worker->current_pwq;
1384 		} else {
1385 			/* meh... not running there, queue here */
1386 			spin_unlock(&last_pool->lock);
1387 			spin_lock(&pwq->pool->lock);
1388 		}
1389 	} else {
1390 		spin_lock(&pwq->pool->lock);
1391 	}
1392 
1393 	/*
1394 	 * pwq is determined and locked.  For unbound pools, we could have
1395 	 * raced with pwq release and it could already be dead.  If its
1396 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1397 	 * without another pwq replacing it in the numa_pwq_tbl or while
1398 	 * work items are executing on it, so the retrying is guaranteed to
1399 	 * make forward-progress.
1400 	 */
1401 	if (unlikely(!pwq->refcnt)) {
1402 		if (wq->flags & WQ_UNBOUND) {
1403 			spin_unlock(&pwq->pool->lock);
1404 			cpu_relax();
1405 			goto retry;
1406 		}
1407 		/* oops */
1408 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1409 			  wq->name, cpu);
1410 	}
1411 
1412 	/* pwq determined, queue */
1413 	trace_workqueue_queue_work(req_cpu, pwq, work);
1414 
1415 	if (WARN_ON(!list_empty(&work->entry))) {
1416 		spin_unlock(&pwq->pool->lock);
1417 		return;
1418 	}
1419 
1420 	pwq->nr_in_flight[pwq->work_color]++;
1421 	work_flags = work_color_to_flags(pwq->work_color);
1422 
1423 	if (likely(pwq->nr_active < pwq->max_active)) {
1424 		trace_workqueue_activate_work(work);
1425 		pwq->nr_active++;
1426 		worklist = &pwq->pool->worklist;
1427 	} else {
1428 		work_flags |= WORK_STRUCT_DELAYED;
1429 		worklist = &pwq->delayed_works;
1430 	}
1431 
1432 	debug_work_activate(work);
1433 	insert_work(pwq, work, worklist, work_flags);
1434 
1435 	spin_unlock(&pwq->pool->lock);
1436 }
1437 
1438 /**
1439  * queue_work_on - queue work on specific cpu
1440  * @cpu: CPU number to execute work on
1441  * @wq: workqueue to use
1442  * @work: work to queue
1443  *
1444  * We queue the work to a specific CPU, the caller must ensure it
1445  * can't go away.
1446  *
1447  * Return: %false if @work was already on a queue, %true otherwise.
1448  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1449 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1450 		   struct work_struct *work)
1451 {
1452 	bool ret = false;
1453 	unsigned long flags;
1454 
1455 	local_irq_save(flags);
1456 
1457 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1458 		__queue_work(cpu, wq, work);
1459 		ret = true;
1460 	}
1461 
1462 	local_irq_restore(flags);
1463 	return ret;
1464 }
1465 EXPORT_SYMBOL(queue_work_on);
1466 
delayed_work_timer_fn(unsigned long __data)1467 void delayed_work_timer_fn(unsigned long __data)
1468 {
1469 	struct delayed_work *dwork = (struct delayed_work *)__data;
1470 
1471 	/* should have been called from irqsafe timer with irq already off */
1472 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1473 }
1474 EXPORT_SYMBOL(delayed_work_timer_fn);
1475 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1476 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1477 				struct delayed_work *dwork, unsigned long delay)
1478 {
1479 	struct timer_list *timer = &dwork->timer;
1480 	struct work_struct *work = &dwork->work;
1481 
1482 	WARN_ON_ONCE(!wq);
1483 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1484 		     timer->data != (unsigned long)dwork);
1485 	WARN_ON_ONCE(timer_pending(timer));
1486 	WARN_ON_ONCE(!list_empty(&work->entry));
1487 
1488 	/*
1489 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1490 	 * both optimization and correctness.  The earliest @timer can
1491 	 * expire is on the closest next tick and delayed_work users depend
1492 	 * on that there's no such delay when @delay is 0.
1493 	 */
1494 	if (!delay) {
1495 		__queue_work(cpu, wq, &dwork->work);
1496 		return;
1497 	}
1498 
1499 	timer_stats_timer_set_start_info(&dwork->timer);
1500 
1501 	dwork->wq = wq;
1502 	dwork->cpu = cpu;
1503 	timer->expires = jiffies + delay;
1504 
1505 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1506 		add_timer_on(timer, cpu);
1507 	else
1508 		add_timer(timer);
1509 }
1510 
1511 /**
1512  * queue_delayed_work_on - queue work on specific CPU after delay
1513  * @cpu: CPU number to execute work on
1514  * @wq: workqueue to use
1515  * @dwork: work to queue
1516  * @delay: number of jiffies to wait before queueing
1517  *
1518  * Return: %false if @work was already on a queue, %true otherwise.  If
1519  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1520  * execution.
1521  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1522 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1523 			   struct delayed_work *dwork, unsigned long delay)
1524 {
1525 	struct work_struct *work = &dwork->work;
1526 	bool ret = false;
1527 	unsigned long flags;
1528 
1529 	/* read the comment in __queue_work() */
1530 	local_irq_save(flags);
1531 
1532 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1533 		__queue_delayed_work(cpu, wq, dwork, delay);
1534 		ret = true;
1535 	}
1536 
1537 	local_irq_restore(flags);
1538 	return ret;
1539 }
1540 EXPORT_SYMBOL(queue_delayed_work_on);
1541 
1542 /**
1543  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1544  * @cpu: CPU number to execute work on
1545  * @wq: workqueue to use
1546  * @dwork: work to queue
1547  * @delay: number of jiffies to wait before queueing
1548  *
1549  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1550  * modify @dwork's timer so that it expires after @delay.  If @delay is
1551  * zero, @work is guaranteed to be scheduled immediately regardless of its
1552  * current state.
1553  *
1554  * Return: %false if @dwork was idle and queued, %true if @dwork was
1555  * pending and its timer was modified.
1556  *
1557  * This function is safe to call from any context including IRQ handler.
1558  * See try_to_grab_pending() for details.
1559  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1560 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1561 			 struct delayed_work *dwork, unsigned long delay)
1562 {
1563 	unsigned long flags;
1564 	int ret;
1565 
1566 	do {
1567 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1568 	} while (unlikely(ret == -EAGAIN));
1569 
1570 	if (likely(ret >= 0)) {
1571 		__queue_delayed_work(cpu, wq, dwork, delay);
1572 		local_irq_restore(flags);
1573 	}
1574 
1575 	/* -ENOENT from try_to_grab_pending() becomes %true */
1576 	return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1579 
1580 /**
1581  * worker_enter_idle - enter idle state
1582  * @worker: worker which is entering idle state
1583  *
1584  * @worker is entering idle state.  Update stats and idle timer if
1585  * necessary.
1586  *
1587  * LOCKING:
1588  * spin_lock_irq(pool->lock).
1589  */
worker_enter_idle(struct worker * worker)1590 static void worker_enter_idle(struct worker *worker)
1591 {
1592 	struct worker_pool *pool = worker->pool;
1593 
1594 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1595 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1596 			 (worker->hentry.next || worker->hentry.pprev)))
1597 		return;
1598 
1599 	/* can't use worker_set_flags(), also called from create_worker() */
1600 	worker->flags |= WORKER_IDLE;
1601 	pool->nr_idle++;
1602 	worker->last_active = jiffies;
1603 
1604 	/* idle_list is LIFO */
1605 	list_add(&worker->entry, &pool->idle_list);
1606 
1607 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1608 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1609 
1610 	/*
1611 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1612 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1613 	 * nr_running, the warning may trigger spuriously.  Check iff
1614 	 * unbind is not in progress.
1615 	 */
1616 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1617 		     pool->nr_workers == pool->nr_idle &&
1618 		     atomic_read(&pool->nr_running));
1619 }
1620 
1621 /**
1622  * worker_leave_idle - leave idle state
1623  * @worker: worker which is leaving idle state
1624  *
1625  * @worker is leaving idle state.  Update stats.
1626  *
1627  * LOCKING:
1628  * spin_lock_irq(pool->lock).
1629  */
worker_leave_idle(struct worker * worker)1630 static void worker_leave_idle(struct worker *worker)
1631 {
1632 	struct worker_pool *pool = worker->pool;
1633 
1634 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1635 		return;
1636 	worker_clr_flags(worker, WORKER_IDLE);
1637 	pool->nr_idle--;
1638 	list_del_init(&worker->entry);
1639 }
1640 
alloc_worker(int node)1641 static struct worker *alloc_worker(int node)
1642 {
1643 	struct worker *worker;
1644 
1645 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1646 	if (worker) {
1647 		INIT_LIST_HEAD(&worker->entry);
1648 		INIT_LIST_HEAD(&worker->scheduled);
1649 		INIT_LIST_HEAD(&worker->node);
1650 		/* on creation a worker is in !idle && prep state */
1651 		worker->flags = WORKER_PREP;
1652 	}
1653 	return worker;
1654 }
1655 
1656 /**
1657  * worker_attach_to_pool() - attach a worker to a pool
1658  * @worker: worker to be attached
1659  * @pool: the target pool
1660  *
1661  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1662  * cpu-binding of @worker are kept coordinated with the pool across
1663  * cpu-[un]hotplugs.
1664  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1665 static void worker_attach_to_pool(struct worker *worker,
1666 				   struct worker_pool *pool)
1667 {
1668 	mutex_lock(&pool->attach_mutex);
1669 
1670 	/*
1671 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1672 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1673 	 */
1674 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1675 
1676 	/*
1677 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1678 	 * stable across this function.  See the comments above the
1679 	 * flag definition for details.
1680 	 */
1681 	if (pool->flags & POOL_DISASSOCIATED)
1682 		worker->flags |= WORKER_UNBOUND;
1683 
1684 	list_add_tail(&worker->node, &pool->workers);
1685 
1686 	mutex_unlock(&pool->attach_mutex);
1687 }
1688 
1689 /**
1690  * worker_detach_from_pool() - detach a worker from its pool
1691  * @worker: worker which is attached to its pool
1692  * @pool: the pool @worker is attached to
1693  *
1694  * Undo the attaching which had been done in worker_attach_to_pool().  The
1695  * caller worker shouldn't access to the pool after detached except it has
1696  * other reference to the pool.
1697  */
worker_detach_from_pool(struct worker * worker,struct worker_pool * pool)1698 static void worker_detach_from_pool(struct worker *worker,
1699 				    struct worker_pool *pool)
1700 {
1701 	struct completion *detach_completion = NULL;
1702 
1703 	mutex_lock(&pool->attach_mutex);
1704 	list_del(&worker->node);
1705 	if (list_empty(&pool->workers))
1706 		detach_completion = pool->detach_completion;
1707 	mutex_unlock(&pool->attach_mutex);
1708 
1709 	/* clear leftover flags without pool->lock after it is detached */
1710 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1711 
1712 	if (detach_completion)
1713 		complete(detach_completion);
1714 }
1715 
1716 /**
1717  * create_worker - create a new workqueue worker
1718  * @pool: pool the new worker will belong to
1719  *
1720  * Create and start a new worker which is attached to @pool.
1721  *
1722  * CONTEXT:
1723  * Might sleep.  Does GFP_KERNEL allocations.
1724  *
1725  * Return:
1726  * Pointer to the newly created worker.
1727  */
create_worker(struct worker_pool * pool)1728 static struct worker *create_worker(struct worker_pool *pool)
1729 {
1730 	struct worker *worker = NULL;
1731 	int id = -1;
1732 	char id_buf[16];
1733 
1734 	/* ID is needed to determine kthread name */
1735 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1736 	if (id < 0)
1737 		goto fail;
1738 
1739 	worker = alloc_worker(pool->node);
1740 	if (!worker)
1741 		goto fail;
1742 
1743 	worker->pool = pool;
1744 	worker->id = id;
1745 
1746 	if (pool->cpu >= 0)
1747 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1748 			 pool->attrs->nice < 0  ? "H" : "");
1749 	else
1750 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1751 
1752 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1753 					      "kworker/%s", id_buf);
1754 	if (IS_ERR(worker->task))
1755 		goto fail;
1756 
1757 	set_user_nice(worker->task, pool->attrs->nice);
1758 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1759 
1760 	/* successful, attach the worker to the pool */
1761 	worker_attach_to_pool(worker, pool);
1762 
1763 	/* start the newly created worker */
1764 	spin_lock_irq(&pool->lock);
1765 	worker->pool->nr_workers++;
1766 	worker_enter_idle(worker);
1767 	wake_up_process(worker->task);
1768 	spin_unlock_irq(&pool->lock);
1769 
1770 	return worker;
1771 
1772 fail:
1773 	if (id >= 0)
1774 		ida_simple_remove(&pool->worker_ida, id);
1775 	kfree(worker);
1776 	return NULL;
1777 }
1778 
1779 /**
1780  * destroy_worker - destroy a workqueue worker
1781  * @worker: worker to be destroyed
1782  *
1783  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1784  * be idle.
1785  *
1786  * CONTEXT:
1787  * spin_lock_irq(pool->lock).
1788  */
destroy_worker(struct worker * worker)1789 static void destroy_worker(struct worker *worker)
1790 {
1791 	struct worker_pool *pool = worker->pool;
1792 
1793 	lockdep_assert_held(&pool->lock);
1794 
1795 	/* sanity check frenzy */
1796 	if (WARN_ON(worker->current_work) ||
1797 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1798 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1799 		return;
1800 
1801 	pool->nr_workers--;
1802 	pool->nr_idle--;
1803 
1804 	list_del_init(&worker->entry);
1805 	worker->flags |= WORKER_DIE;
1806 	wake_up_process(worker->task);
1807 }
1808 
idle_worker_timeout(unsigned long __pool)1809 static void idle_worker_timeout(unsigned long __pool)
1810 {
1811 	struct worker_pool *pool = (void *)__pool;
1812 
1813 	spin_lock_irq(&pool->lock);
1814 
1815 	while (too_many_workers(pool)) {
1816 		struct worker *worker;
1817 		unsigned long expires;
1818 
1819 		/* idle_list is kept in LIFO order, check the last one */
1820 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1821 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1822 
1823 		if (time_before(jiffies, expires)) {
1824 			mod_timer(&pool->idle_timer, expires);
1825 			break;
1826 		}
1827 
1828 		destroy_worker(worker);
1829 	}
1830 
1831 	spin_unlock_irq(&pool->lock);
1832 }
1833 
send_mayday(struct work_struct * work)1834 static void send_mayday(struct work_struct *work)
1835 {
1836 	struct pool_workqueue *pwq = get_work_pwq(work);
1837 	struct workqueue_struct *wq = pwq->wq;
1838 
1839 	lockdep_assert_held(&wq_mayday_lock);
1840 
1841 	if (!wq->rescuer)
1842 		return;
1843 
1844 	/* mayday mayday mayday */
1845 	if (list_empty(&pwq->mayday_node)) {
1846 		/*
1847 		 * If @pwq is for an unbound wq, its base ref may be put at
1848 		 * any time due to an attribute change.  Pin @pwq until the
1849 		 * rescuer is done with it.
1850 		 */
1851 		get_pwq(pwq);
1852 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1853 		wake_up_process(wq->rescuer->task);
1854 	}
1855 }
1856 
pool_mayday_timeout(unsigned long __pool)1857 static void pool_mayday_timeout(unsigned long __pool)
1858 {
1859 	struct worker_pool *pool = (void *)__pool;
1860 	struct work_struct *work;
1861 
1862 	spin_lock_irq(&pool->lock);
1863 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1864 
1865 	if (need_to_create_worker(pool)) {
1866 		/*
1867 		 * We've been trying to create a new worker but
1868 		 * haven't been successful.  We might be hitting an
1869 		 * allocation deadlock.  Send distress signals to
1870 		 * rescuers.
1871 		 */
1872 		list_for_each_entry(work, &pool->worklist, entry)
1873 			send_mayday(work);
1874 	}
1875 
1876 	spin_unlock(&wq_mayday_lock);
1877 	spin_unlock_irq(&pool->lock);
1878 
1879 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1880 }
1881 
1882 /**
1883  * maybe_create_worker - create a new worker if necessary
1884  * @pool: pool to create a new worker for
1885  *
1886  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1887  * have at least one idle worker on return from this function.  If
1888  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1889  * sent to all rescuers with works scheduled on @pool to resolve
1890  * possible allocation deadlock.
1891  *
1892  * On return, need_to_create_worker() is guaranteed to be %false and
1893  * may_start_working() %true.
1894  *
1895  * LOCKING:
1896  * spin_lock_irq(pool->lock) which may be released and regrabbed
1897  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1898  * manager.
1899  */
maybe_create_worker(struct worker_pool * pool)1900 static void maybe_create_worker(struct worker_pool *pool)
1901 __releases(&pool->lock)
1902 __acquires(&pool->lock)
1903 {
1904 restart:
1905 	spin_unlock_irq(&pool->lock);
1906 
1907 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1908 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1909 
1910 	while (true) {
1911 		if (create_worker(pool) || !need_to_create_worker(pool))
1912 			break;
1913 
1914 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1915 
1916 		if (!need_to_create_worker(pool))
1917 			break;
1918 	}
1919 
1920 	del_timer_sync(&pool->mayday_timer);
1921 	spin_lock_irq(&pool->lock);
1922 	/*
1923 	 * This is necessary even after a new worker was just successfully
1924 	 * created as @pool->lock was dropped and the new worker might have
1925 	 * already become busy.
1926 	 */
1927 	if (need_to_create_worker(pool))
1928 		goto restart;
1929 }
1930 
1931 /**
1932  * manage_workers - manage worker pool
1933  * @worker: self
1934  *
1935  * Assume the manager role and manage the worker pool @worker belongs
1936  * to.  At any given time, there can be only zero or one manager per
1937  * pool.  The exclusion is handled automatically by this function.
1938  *
1939  * The caller can safely start processing works on false return.  On
1940  * true return, it's guaranteed that need_to_create_worker() is false
1941  * and may_start_working() is true.
1942  *
1943  * CONTEXT:
1944  * spin_lock_irq(pool->lock) which may be released and regrabbed
1945  * multiple times.  Does GFP_KERNEL allocations.
1946  *
1947  * Return:
1948  * %false if the pool doesn't need management and the caller can safely
1949  * start processing works, %true if management function was performed and
1950  * the conditions that the caller verified before calling the function may
1951  * no longer be true.
1952  */
manage_workers(struct worker * worker)1953 static bool manage_workers(struct worker *worker)
1954 {
1955 	struct worker_pool *pool = worker->pool;
1956 
1957 	if (pool->flags & POOL_MANAGER_ACTIVE)
1958 		return false;
1959 
1960 	pool->flags |= POOL_MANAGER_ACTIVE;
1961 	pool->manager = worker;
1962 
1963 	maybe_create_worker(pool);
1964 
1965 	pool->manager = NULL;
1966 	pool->flags &= ~POOL_MANAGER_ACTIVE;
1967 	wake_up(&wq_manager_wait);
1968 	return true;
1969 }
1970 
1971 /**
1972  * process_one_work - process single work
1973  * @worker: self
1974  * @work: work to process
1975  *
1976  * Process @work.  This function contains all the logics necessary to
1977  * process a single work including synchronization against and
1978  * interaction with other workers on the same cpu, queueing and
1979  * flushing.  As long as context requirement is met, any worker can
1980  * call this function to process a work.
1981  *
1982  * CONTEXT:
1983  * spin_lock_irq(pool->lock) which is released and regrabbed.
1984  */
process_one_work(struct worker * worker,struct work_struct * work)1985 static void process_one_work(struct worker *worker, struct work_struct *work)
1986 __releases(&pool->lock)
1987 __acquires(&pool->lock)
1988 {
1989 	struct pool_workqueue *pwq = get_work_pwq(work);
1990 	struct worker_pool *pool = worker->pool;
1991 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1992 	int work_color;
1993 	struct worker *collision;
1994 #ifdef CONFIG_LOCKDEP
1995 	/*
1996 	 * It is permissible to free the struct work_struct from
1997 	 * inside the function that is called from it, this we need to
1998 	 * take into account for lockdep too.  To avoid bogus "held
1999 	 * lock freed" warnings as well as problems when looking into
2000 	 * work->lockdep_map, make a copy and use that here.
2001 	 */
2002 	struct lockdep_map lockdep_map;
2003 
2004 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2005 #endif
2006 	/* ensure we're on the correct CPU */
2007 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2008 		     raw_smp_processor_id() != pool->cpu);
2009 
2010 	/*
2011 	 * A single work shouldn't be executed concurrently by
2012 	 * multiple workers on a single cpu.  Check whether anyone is
2013 	 * already processing the work.  If so, defer the work to the
2014 	 * currently executing one.
2015 	 */
2016 	collision = find_worker_executing_work(pool, work);
2017 	if (unlikely(collision)) {
2018 		move_linked_works(work, &collision->scheduled, NULL);
2019 		return;
2020 	}
2021 
2022 	/* claim and dequeue */
2023 	debug_work_deactivate(work);
2024 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2025 	worker->current_work = work;
2026 	worker->current_func = work->func;
2027 	worker->current_pwq = pwq;
2028 	work_color = get_work_color(work);
2029 
2030 	list_del_init(&work->entry);
2031 
2032 	/*
2033 	 * CPU intensive works don't participate in concurrency management.
2034 	 * They're the scheduler's responsibility.  This takes @worker out
2035 	 * of concurrency management and the next code block will chain
2036 	 * execution of the pending work items.
2037 	 */
2038 	if (unlikely(cpu_intensive))
2039 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2040 
2041 	/*
2042 	 * Wake up another worker if necessary.  The condition is always
2043 	 * false for normal per-cpu workers since nr_running would always
2044 	 * be >= 1 at this point.  This is used to chain execution of the
2045 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2046 	 * UNBOUND and CPU_INTENSIVE ones.
2047 	 */
2048 	if (need_more_worker(pool))
2049 		wake_up_worker(pool);
2050 
2051 	/*
2052 	 * Record the last pool and clear PENDING which should be the last
2053 	 * update to @work.  Also, do this inside @pool->lock so that
2054 	 * PENDING and queued state changes happen together while IRQ is
2055 	 * disabled.
2056 	 */
2057 	set_work_pool_and_clear_pending(work, pool->id);
2058 
2059 	spin_unlock_irq(&pool->lock);
2060 
2061 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2062 	lock_map_acquire(&lockdep_map);
2063 	trace_workqueue_execute_start(work);
2064 	worker->current_func(work);
2065 	/*
2066 	 * While we must be careful to not use "work" after this, the trace
2067 	 * point will only record its address.
2068 	 */
2069 	trace_workqueue_execute_end(work);
2070 	lock_map_release(&lockdep_map);
2071 	lock_map_release(&pwq->wq->lockdep_map);
2072 
2073 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2074 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2075 		       "     last function: %pf\n",
2076 		       current->comm, preempt_count(), task_pid_nr(current),
2077 		       worker->current_func);
2078 		debug_show_held_locks(current);
2079 		dump_stack();
2080 	}
2081 
2082 	/*
2083 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2084 	 * kernels, where a requeueing work item waiting for something to
2085 	 * happen could deadlock with stop_machine as such work item could
2086 	 * indefinitely requeue itself while all other CPUs are trapped in
2087 	 * stop_machine. At the same time, report a quiescent RCU state so
2088 	 * the same condition doesn't freeze RCU.
2089 	 */
2090 	cond_resched_rcu_qs();
2091 
2092 	spin_lock_irq(&pool->lock);
2093 
2094 	/* clear cpu intensive status */
2095 	if (unlikely(cpu_intensive))
2096 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2097 
2098 	/* we're done with it, release */
2099 	hash_del(&worker->hentry);
2100 	worker->current_work = NULL;
2101 	worker->current_func = NULL;
2102 	worker->current_pwq = NULL;
2103 	worker->desc_valid = false;
2104 	pwq_dec_nr_in_flight(pwq, work_color);
2105 }
2106 
2107 /**
2108  * process_scheduled_works - process scheduled works
2109  * @worker: self
2110  *
2111  * Process all scheduled works.  Please note that the scheduled list
2112  * may change while processing a work, so this function repeatedly
2113  * fetches a work from the top and executes it.
2114  *
2115  * CONTEXT:
2116  * spin_lock_irq(pool->lock) which may be released and regrabbed
2117  * multiple times.
2118  */
process_scheduled_works(struct worker * worker)2119 static void process_scheduled_works(struct worker *worker)
2120 {
2121 	while (!list_empty(&worker->scheduled)) {
2122 		struct work_struct *work = list_first_entry(&worker->scheduled,
2123 						struct work_struct, entry);
2124 		process_one_work(worker, work);
2125 	}
2126 }
2127 
2128 /**
2129  * worker_thread - the worker thread function
2130  * @__worker: self
2131  *
2132  * The worker thread function.  All workers belong to a worker_pool -
2133  * either a per-cpu one or dynamic unbound one.  These workers process all
2134  * work items regardless of their specific target workqueue.  The only
2135  * exception is work items which belong to workqueues with a rescuer which
2136  * will be explained in rescuer_thread().
2137  *
2138  * Return: 0
2139  */
worker_thread(void * __worker)2140 static int worker_thread(void *__worker)
2141 {
2142 	struct worker *worker = __worker;
2143 	struct worker_pool *pool = worker->pool;
2144 
2145 	/* tell the scheduler that this is a workqueue worker */
2146 	worker->task->flags |= PF_WQ_WORKER;
2147 woke_up:
2148 	spin_lock_irq(&pool->lock);
2149 
2150 	/* am I supposed to die? */
2151 	if (unlikely(worker->flags & WORKER_DIE)) {
2152 		spin_unlock_irq(&pool->lock);
2153 		WARN_ON_ONCE(!list_empty(&worker->entry));
2154 		worker->task->flags &= ~PF_WQ_WORKER;
2155 
2156 		set_task_comm(worker->task, "kworker/dying");
2157 		ida_simple_remove(&pool->worker_ida, worker->id);
2158 		worker_detach_from_pool(worker, pool);
2159 		kfree(worker);
2160 		return 0;
2161 	}
2162 
2163 	worker_leave_idle(worker);
2164 recheck:
2165 	/* no more worker necessary? */
2166 	if (!need_more_worker(pool))
2167 		goto sleep;
2168 
2169 	/* do we need to manage? */
2170 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2171 		goto recheck;
2172 
2173 	/*
2174 	 * ->scheduled list can only be filled while a worker is
2175 	 * preparing to process a work or actually processing it.
2176 	 * Make sure nobody diddled with it while I was sleeping.
2177 	 */
2178 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2179 
2180 	/*
2181 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2182 	 * worker or that someone else has already assumed the manager
2183 	 * role.  This is where @worker starts participating in concurrency
2184 	 * management if applicable and concurrency management is restored
2185 	 * after being rebound.  See rebind_workers() for details.
2186 	 */
2187 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2188 
2189 	do {
2190 		struct work_struct *work =
2191 			list_first_entry(&pool->worklist,
2192 					 struct work_struct, entry);
2193 
2194 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2195 			/* optimization path, not strictly necessary */
2196 			process_one_work(worker, work);
2197 			if (unlikely(!list_empty(&worker->scheduled)))
2198 				process_scheduled_works(worker);
2199 		} else {
2200 			move_linked_works(work, &worker->scheduled, NULL);
2201 			process_scheduled_works(worker);
2202 		}
2203 	} while (keep_working(pool));
2204 
2205 	worker_set_flags(worker, WORKER_PREP);
2206 sleep:
2207 	/*
2208 	 * pool->lock is held and there's no work to process and no need to
2209 	 * manage, sleep.  Workers are woken up only while holding
2210 	 * pool->lock or from local cpu, so setting the current state
2211 	 * before releasing pool->lock is enough to prevent losing any
2212 	 * event.
2213 	 */
2214 	worker_enter_idle(worker);
2215 	__set_current_state(TASK_INTERRUPTIBLE);
2216 	spin_unlock_irq(&pool->lock);
2217 	schedule();
2218 	goto woke_up;
2219 }
2220 
2221 /**
2222  * rescuer_thread - the rescuer thread function
2223  * @__rescuer: self
2224  *
2225  * Workqueue rescuer thread function.  There's one rescuer for each
2226  * workqueue which has WQ_MEM_RECLAIM set.
2227  *
2228  * Regular work processing on a pool may block trying to create a new
2229  * worker which uses GFP_KERNEL allocation which has slight chance of
2230  * developing into deadlock if some works currently on the same queue
2231  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2232  * the problem rescuer solves.
2233  *
2234  * When such condition is possible, the pool summons rescuers of all
2235  * workqueues which have works queued on the pool and let them process
2236  * those works so that forward progress can be guaranteed.
2237  *
2238  * This should happen rarely.
2239  *
2240  * Return: 0
2241  */
rescuer_thread(void * __rescuer)2242 static int rescuer_thread(void *__rescuer)
2243 {
2244 	struct worker *rescuer = __rescuer;
2245 	struct workqueue_struct *wq = rescuer->rescue_wq;
2246 	struct list_head *scheduled = &rescuer->scheduled;
2247 	bool should_stop;
2248 
2249 	set_user_nice(current, RESCUER_NICE_LEVEL);
2250 
2251 	/*
2252 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2253 	 * doesn't participate in concurrency management.
2254 	 */
2255 	rescuer->task->flags |= PF_WQ_WORKER;
2256 repeat:
2257 	set_current_state(TASK_INTERRUPTIBLE);
2258 
2259 	/*
2260 	 * By the time the rescuer is requested to stop, the workqueue
2261 	 * shouldn't have any work pending, but @wq->maydays may still have
2262 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2263 	 * all the work items before the rescuer got to them.  Go through
2264 	 * @wq->maydays processing before acting on should_stop so that the
2265 	 * list is always empty on exit.
2266 	 */
2267 	should_stop = kthread_should_stop();
2268 
2269 	/* see whether any pwq is asking for help */
2270 	spin_lock_irq(&wq_mayday_lock);
2271 
2272 	while (!list_empty(&wq->maydays)) {
2273 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2274 					struct pool_workqueue, mayday_node);
2275 		struct worker_pool *pool = pwq->pool;
2276 		struct work_struct *work, *n;
2277 
2278 		__set_current_state(TASK_RUNNING);
2279 		list_del_init(&pwq->mayday_node);
2280 
2281 		spin_unlock_irq(&wq_mayday_lock);
2282 
2283 		worker_attach_to_pool(rescuer, pool);
2284 
2285 		spin_lock_irq(&pool->lock);
2286 		rescuer->pool = pool;
2287 
2288 		/*
2289 		 * Slurp in all works issued via this workqueue and
2290 		 * process'em.
2291 		 */
2292 		WARN_ON_ONCE(!list_empty(scheduled));
2293 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2294 			if (get_work_pwq(work) == pwq)
2295 				move_linked_works(work, scheduled, &n);
2296 
2297 		if (!list_empty(scheduled)) {
2298 			process_scheduled_works(rescuer);
2299 
2300 			/*
2301 			 * The above execution of rescued work items could
2302 			 * have created more to rescue through
2303 			 * pwq_activate_first_delayed() or chained
2304 			 * queueing.  Let's put @pwq back on mayday list so
2305 			 * that such back-to-back work items, which may be
2306 			 * being used to relieve memory pressure, don't
2307 			 * incur MAYDAY_INTERVAL delay inbetween.
2308 			 */
2309 			if (need_to_create_worker(pool)) {
2310 				spin_lock(&wq_mayday_lock);
2311 				/*
2312 				 * Queue iff we aren't racing destruction
2313 				 * and somebody else hasn't queued it already.
2314 				 */
2315 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2316 					get_pwq(pwq);
2317 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2318 				}
2319 				spin_unlock(&wq_mayday_lock);
2320 			}
2321 		}
2322 
2323 		/*
2324 		 * Put the reference grabbed by send_mayday().  @pool won't
2325 		 * go away while we're still attached to it.
2326 		 */
2327 		put_pwq(pwq);
2328 
2329 		/*
2330 		 * Leave this pool.  If need_more_worker() is %true, notify a
2331 		 * regular worker; otherwise, we end up with 0 concurrency
2332 		 * and stalling the execution.
2333 		 */
2334 		if (need_more_worker(pool))
2335 			wake_up_worker(pool);
2336 
2337 		rescuer->pool = NULL;
2338 		spin_unlock_irq(&pool->lock);
2339 
2340 		worker_detach_from_pool(rescuer, pool);
2341 
2342 		spin_lock_irq(&wq_mayday_lock);
2343 	}
2344 
2345 	spin_unlock_irq(&wq_mayday_lock);
2346 
2347 	if (should_stop) {
2348 		__set_current_state(TASK_RUNNING);
2349 		rescuer->task->flags &= ~PF_WQ_WORKER;
2350 		return 0;
2351 	}
2352 
2353 	/* rescuers should never participate in concurrency management */
2354 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2355 	schedule();
2356 	goto repeat;
2357 }
2358 
2359 struct wq_barrier {
2360 	struct work_struct	work;
2361 	struct completion	done;
2362 	struct task_struct	*task;	/* purely informational */
2363 };
2364 
wq_barrier_func(struct work_struct * work)2365 static void wq_barrier_func(struct work_struct *work)
2366 {
2367 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2368 	complete(&barr->done);
2369 }
2370 
2371 /**
2372  * insert_wq_barrier - insert a barrier work
2373  * @pwq: pwq to insert barrier into
2374  * @barr: wq_barrier to insert
2375  * @target: target work to attach @barr to
2376  * @worker: worker currently executing @target, NULL if @target is not executing
2377  *
2378  * @barr is linked to @target such that @barr is completed only after
2379  * @target finishes execution.  Please note that the ordering
2380  * guarantee is observed only with respect to @target and on the local
2381  * cpu.
2382  *
2383  * Currently, a queued barrier can't be canceled.  This is because
2384  * try_to_grab_pending() can't determine whether the work to be
2385  * grabbed is at the head of the queue and thus can't clear LINKED
2386  * flag of the previous work while there must be a valid next work
2387  * after a work with LINKED flag set.
2388  *
2389  * Note that when @worker is non-NULL, @target may be modified
2390  * underneath us, so we can't reliably determine pwq from @target.
2391  *
2392  * CONTEXT:
2393  * spin_lock_irq(pool->lock).
2394  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2395 static void insert_wq_barrier(struct pool_workqueue *pwq,
2396 			      struct wq_barrier *barr,
2397 			      struct work_struct *target, struct worker *worker)
2398 {
2399 	struct list_head *head;
2400 	unsigned int linked = 0;
2401 
2402 	/*
2403 	 * debugobject calls are safe here even with pool->lock locked
2404 	 * as we know for sure that this will not trigger any of the
2405 	 * checks and call back into the fixup functions where we
2406 	 * might deadlock.
2407 	 */
2408 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2409 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2410 	init_completion(&barr->done);
2411 	barr->task = current;
2412 
2413 	/*
2414 	 * If @target is currently being executed, schedule the
2415 	 * barrier to the worker; otherwise, put it after @target.
2416 	 */
2417 	if (worker)
2418 		head = worker->scheduled.next;
2419 	else {
2420 		unsigned long *bits = work_data_bits(target);
2421 
2422 		head = target->entry.next;
2423 		/* there can already be other linked works, inherit and set */
2424 		linked = *bits & WORK_STRUCT_LINKED;
2425 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2426 	}
2427 
2428 	debug_work_activate(&barr->work);
2429 	insert_work(pwq, &barr->work, head,
2430 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2431 }
2432 
2433 /**
2434  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2435  * @wq: workqueue being flushed
2436  * @flush_color: new flush color, < 0 for no-op
2437  * @work_color: new work color, < 0 for no-op
2438  *
2439  * Prepare pwqs for workqueue flushing.
2440  *
2441  * If @flush_color is non-negative, flush_color on all pwqs should be
2442  * -1.  If no pwq has in-flight commands at the specified color, all
2443  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2444  * has in flight commands, its pwq->flush_color is set to
2445  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2446  * wakeup logic is armed and %true is returned.
2447  *
2448  * The caller should have initialized @wq->first_flusher prior to
2449  * calling this function with non-negative @flush_color.  If
2450  * @flush_color is negative, no flush color update is done and %false
2451  * is returned.
2452  *
2453  * If @work_color is non-negative, all pwqs should have the same
2454  * work_color which is previous to @work_color and all will be
2455  * advanced to @work_color.
2456  *
2457  * CONTEXT:
2458  * mutex_lock(wq->mutex).
2459  *
2460  * Return:
2461  * %true if @flush_color >= 0 and there's something to flush.  %false
2462  * otherwise.
2463  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2464 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2465 				      int flush_color, int work_color)
2466 {
2467 	bool wait = false;
2468 	struct pool_workqueue *pwq;
2469 
2470 	if (flush_color >= 0) {
2471 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2472 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2473 	}
2474 
2475 	for_each_pwq(pwq, wq) {
2476 		struct worker_pool *pool = pwq->pool;
2477 
2478 		spin_lock_irq(&pool->lock);
2479 
2480 		if (flush_color >= 0) {
2481 			WARN_ON_ONCE(pwq->flush_color != -1);
2482 
2483 			if (pwq->nr_in_flight[flush_color]) {
2484 				pwq->flush_color = flush_color;
2485 				atomic_inc(&wq->nr_pwqs_to_flush);
2486 				wait = true;
2487 			}
2488 		}
2489 
2490 		if (work_color >= 0) {
2491 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2492 			pwq->work_color = work_color;
2493 		}
2494 
2495 		spin_unlock_irq(&pool->lock);
2496 	}
2497 
2498 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2499 		complete(&wq->first_flusher->done);
2500 
2501 	return wait;
2502 }
2503 
2504 /**
2505  * flush_workqueue - ensure that any scheduled work has run to completion.
2506  * @wq: workqueue to flush
2507  *
2508  * This function sleeps until all work items which were queued on entry
2509  * have finished execution, but it is not livelocked by new incoming ones.
2510  */
flush_workqueue(struct workqueue_struct * wq)2511 void flush_workqueue(struct workqueue_struct *wq)
2512 {
2513 	struct wq_flusher this_flusher = {
2514 		.list = LIST_HEAD_INIT(this_flusher.list),
2515 		.flush_color = -1,
2516 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2517 	};
2518 	int next_color;
2519 
2520 	lock_map_acquire(&wq->lockdep_map);
2521 	lock_map_release(&wq->lockdep_map);
2522 
2523 	mutex_lock(&wq->mutex);
2524 
2525 	/*
2526 	 * Start-to-wait phase
2527 	 */
2528 	next_color = work_next_color(wq->work_color);
2529 
2530 	if (next_color != wq->flush_color) {
2531 		/*
2532 		 * Color space is not full.  The current work_color
2533 		 * becomes our flush_color and work_color is advanced
2534 		 * by one.
2535 		 */
2536 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2537 		this_flusher.flush_color = wq->work_color;
2538 		wq->work_color = next_color;
2539 
2540 		if (!wq->first_flusher) {
2541 			/* no flush in progress, become the first flusher */
2542 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2543 
2544 			wq->first_flusher = &this_flusher;
2545 
2546 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2547 						       wq->work_color)) {
2548 				/* nothing to flush, done */
2549 				wq->flush_color = next_color;
2550 				wq->first_flusher = NULL;
2551 				goto out_unlock;
2552 			}
2553 		} else {
2554 			/* wait in queue */
2555 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2556 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2557 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2558 		}
2559 	} else {
2560 		/*
2561 		 * Oops, color space is full, wait on overflow queue.
2562 		 * The next flush completion will assign us
2563 		 * flush_color and transfer to flusher_queue.
2564 		 */
2565 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2566 	}
2567 
2568 	mutex_unlock(&wq->mutex);
2569 
2570 	wait_for_completion(&this_flusher.done);
2571 
2572 	/*
2573 	 * Wake-up-and-cascade phase
2574 	 *
2575 	 * First flushers are responsible for cascading flushes and
2576 	 * handling overflow.  Non-first flushers can simply return.
2577 	 */
2578 	if (wq->first_flusher != &this_flusher)
2579 		return;
2580 
2581 	mutex_lock(&wq->mutex);
2582 
2583 	/* we might have raced, check again with mutex held */
2584 	if (wq->first_flusher != &this_flusher)
2585 		goto out_unlock;
2586 
2587 	wq->first_flusher = NULL;
2588 
2589 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2590 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2591 
2592 	while (true) {
2593 		struct wq_flusher *next, *tmp;
2594 
2595 		/* complete all the flushers sharing the current flush color */
2596 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2597 			if (next->flush_color != wq->flush_color)
2598 				break;
2599 			list_del_init(&next->list);
2600 			complete(&next->done);
2601 		}
2602 
2603 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2604 			     wq->flush_color != work_next_color(wq->work_color));
2605 
2606 		/* this flush_color is finished, advance by one */
2607 		wq->flush_color = work_next_color(wq->flush_color);
2608 
2609 		/* one color has been freed, handle overflow queue */
2610 		if (!list_empty(&wq->flusher_overflow)) {
2611 			/*
2612 			 * Assign the same color to all overflowed
2613 			 * flushers, advance work_color and append to
2614 			 * flusher_queue.  This is the start-to-wait
2615 			 * phase for these overflowed flushers.
2616 			 */
2617 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2618 				tmp->flush_color = wq->work_color;
2619 
2620 			wq->work_color = work_next_color(wq->work_color);
2621 
2622 			list_splice_tail_init(&wq->flusher_overflow,
2623 					      &wq->flusher_queue);
2624 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2625 		}
2626 
2627 		if (list_empty(&wq->flusher_queue)) {
2628 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2629 			break;
2630 		}
2631 
2632 		/*
2633 		 * Need to flush more colors.  Make the next flusher
2634 		 * the new first flusher and arm pwqs.
2635 		 */
2636 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2637 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2638 
2639 		list_del_init(&next->list);
2640 		wq->first_flusher = next;
2641 
2642 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2643 			break;
2644 
2645 		/*
2646 		 * Meh... this color is already done, clear first
2647 		 * flusher and repeat cascading.
2648 		 */
2649 		wq->first_flusher = NULL;
2650 	}
2651 
2652 out_unlock:
2653 	mutex_unlock(&wq->mutex);
2654 }
2655 EXPORT_SYMBOL(flush_workqueue);
2656 
2657 /**
2658  * drain_workqueue - drain a workqueue
2659  * @wq: workqueue to drain
2660  *
2661  * Wait until the workqueue becomes empty.  While draining is in progress,
2662  * only chain queueing is allowed.  IOW, only currently pending or running
2663  * work items on @wq can queue further work items on it.  @wq is flushed
2664  * repeatedly until it becomes empty.  The number of flushing is determined
2665  * by the depth of chaining and should be relatively short.  Whine if it
2666  * takes too long.
2667  */
drain_workqueue(struct workqueue_struct * wq)2668 void drain_workqueue(struct workqueue_struct *wq)
2669 {
2670 	unsigned int flush_cnt = 0;
2671 	struct pool_workqueue *pwq;
2672 
2673 	/*
2674 	 * __queue_work() needs to test whether there are drainers, is much
2675 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2676 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2677 	 */
2678 	mutex_lock(&wq->mutex);
2679 	if (!wq->nr_drainers++)
2680 		wq->flags |= __WQ_DRAINING;
2681 	mutex_unlock(&wq->mutex);
2682 reflush:
2683 	flush_workqueue(wq);
2684 
2685 	mutex_lock(&wq->mutex);
2686 
2687 	for_each_pwq(pwq, wq) {
2688 		bool drained;
2689 
2690 		spin_lock_irq(&pwq->pool->lock);
2691 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2692 		spin_unlock_irq(&pwq->pool->lock);
2693 
2694 		if (drained)
2695 			continue;
2696 
2697 		if (++flush_cnt == 10 ||
2698 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2699 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2700 				wq->name, flush_cnt);
2701 
2702 		mutex_unlock(&wq->mutex);
2703 		goto reflush;
2704 	}
2705 
2706 	if (!--wq->nr_drainers)
2707 		wq->flags &= ~__WQ_DRAINING;
2708 	mutex_unlock(&wq->mutex);
2709 }
2710 EXPORT_SYMBOL_GPL(drain_workqueue);
2711 
start_flush_work(struct work_struct * work,struct wq_barrier * barr)2712 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2713 {
2714 	struct worker *worker = NULL;
2715 	struct worker_pool *pool;
2716 	struct pool_workqueue *pwq;
2717 
2718 	might_sleep();
2719 
2720 	local_irq_disable();
2721 	pool = get_work_pool(work);
2722 	if (!pool) {
2723 		local_irq_enable();
2724 		return false;
2725 	}
2726 
2727 	spin_lock(&pool->lock);
2728 	/* see the comment in try_to_grab_pending() with the same code */
2729 	pwq = get_work_pwq(work);
2730 	if (pwq) {
2731 		if (unlikely(pwq->pool != pool))
2732 			goto already_gone;
2733 	} else {
2734 		worker = find_worker_executing_work(pool, work);
2735 		if (!worker)
2736 			goto already_gone;
2737 		pwq = worker->current_pwq;
2738 	}
2739 
2740 	insert_wq_barrier(pwq, barr, work, worker);
2741 	spin_unlock_irq(&pool->lock);
2742 
2743 	/*
2744 	 * If @max_active is 1 or rescuer is in use, flushing another work
2745 	 * item on the same workqueue may lead to deadlock.  Make sure the
2746 	 * flusher is not running on the same workqueue by verifying write
2747 	 * access.
2748 	 */
2749 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2750 		lock_map_acquire(&pwq->wq->lockdep_map);
2751 	else
2752 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2753 	lock_map_release(&pwq->wq->lockdep_map);
2754 
2755 	return true;
2756 already_gone:
2757 	spin_unlock_irq(&pool->lock);
2758 	return false;
2759 }
2760 
2761 /**
2762  * flush_work - wait for a work to finish executing the last queueing instance
2763  * @work: the work to flush
2764  *
2765  * Wait until @work has finished execution.  @work is guaranteed to be idle
2766  * on return if it hasn't been requeued since flush started.
2767  *
2768  * Return:
2769  * %true if flush_work() waited for the work to finish execution,
2770  * %false if it was already idle.
2771  */
flush_work(struct work_struct * work)2772 bool flush_work(struct work_struct *work)
2773 {
2774 	struct wq_barrier barr;
2775 
2776 	lock_map_acquire(&work->lockdep_map);
2777 	lock_map_release(&work->lockdep_map);
2778 
2779 	if (start_flush_work(work, &barr)) {
2780 		wait_for_completion(&barr.done);
2781 		destroy_work_on_stack(&barr.work);
2782 		return true;
2783 	} else {
2784 		return false;
2785 	}
2786 }
2787 EXPORT_SYMBOL_GPL(flush_work);
2788 
2789 struct cwt_wait {
2790 	wait_queue_t		wait;
2791 	struct work_struct	*work;
2792 };
2793 
cwt_wakefn(wait_queue_t * wait,unsigned mode,int sync,void * key)2794 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2795 {
2796 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2797 
2798 	if (cwait->work != key)
2799 		return 0;
2800 	return autoremove_wake_function(wait, mode, sync, key);
2801 }
2802 
__cancel_work_timer(struct work_struct * work,bool is_dwork)2803 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2804 {
2805 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2806 	unsigned long flags;
2807 	int ret;
2808 
2809 	do {
2810 		ret = try_to_grab_pending(work, is_dwork, &flags);
2811 		/*
2812 		 * If someone else is already canceling, wait for it to
2813 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2814 		 * because we may get scheduled between @work's completion
2815 		 * and the other canceling task resuming and clearing
2816 		 * CANCELING - flush_work() will return false immediately
2817 		 * as @work is no longer busy, try_to_grab_pending() will
2818 		 * return -ENOENT as @work is still being canceled and the
2819 		 * other canceling task won't be able to clear CANCELING as
2820 		 * we're hogging the CPU.
2821 		 *
2822 		 * Let's wait for completion using a waitqueue.  As this
2823 		 * may lead to the thundering herd problem, use a custom
2824 		 * wake function which matches @work along with exclusive
2825 		 * wait and wakeup.
2826 		 */
2827 		if (unlikely(ret == -ENOENT)) {
2828 			struct cwt_wait cwait;
2829 
2830 			init_wait(&cwait.wait);
2831 			cwait.wait.func = cwt_wakefn;
2832 			cwait.work = work;
2833 
2834 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2835 						  TASK_UNINTERRUPTIBLE);
2836 			if (work_is_canceling(work))
2837 				schedule();
2838 			finish_wait(&cancel_waitq, &cwait.wait);
2839 		}
2840 	} while (unlikely(ret < 0));
2841 
2842 	/* tell other tasks trying to grab @work to back off */
2843 	mark_work_canceling(work);
2844 	local_irq_restore(flags);
2845 
2846 	flush_work(work);
2847 	clear_work_data(work);
2848 
2849 	/*
2850 	 * Paired with prepare_to_wait() above so that either
2851 	 * waitqueue_active() is visible here or !work_is_canceling() is
2852 	 * visible there.
2853 	 */
2854 	smp_mb();
2855 	if (waitqueue_active(&cancel_waitq))
2856 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2857 
2858 	return ret;
2859 }
2860 
2861 /**
2862  * cancel_work_sync - cancel a work and wait for it to finish
2863  * @work: the work to cancel
2864  *
2865  * Cancel @work and wait for its execution to finish.  This function
2866  * can be used even if the work re-queues itself or migrates to
2867  * another workqueue.  On return from this function, @work is
2868  * guaranteed to be not pending or executing on any CPU.
2869  *
2870  * cancel_work_sync(&delayed_work->work) must not be used for
2871  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2872  *
2873  * The caller must ensure that the workqueue on which @work was last
2874  * queued can't be destroyed before this function returns.
2875  *
2876  * Return:
2877  * %true if @work was pending, %false otherwise.
2878  */
cancel_work_sync(struct work_struct * work)2879 bool cancel_work_sync(struct work_struct *work)
2880 {
2881 	return __cancel_work_timer(work, false);
2882 }
2883 EXPORT_SYMBOL_GPL(cancel_work_sync);
2884 
2885 /**
2886  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2887  * @dwork: the delayed work to flush
2888  *
2889  * Delayed timer is cancelled and the pending work is queued for
2890  * immediate execution.  Like flush_work(), this function only
2891  * considers the last queueing instance of @dwork.
2892  *
2893  * Return:
2894  * %true if flush_work() waited for the work to finish execution,
2895  * %false if it was already idle.
2896  */
flush_delayed_work(struct delayed_work * dwork)2897 bool flush_delayed_work(struct delayed_work *dwork)
2898 {
2899 	local_irq_disable();
2900 	if (del_timer_sync(&dwork->timer))
2901 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2902 	local_irq_enable();
2903 	return flush_work(&dwork->work);
2904 }
2905 EXPORT_SYMBOL(flush_delayed_work);
2906 
2907 /**
2908  * cancel_delayed_work - cancel a delayed work
2909  * @dwork: delayed_work to cancel
2910  *
2911  * Kill off a pending delayed_work.
2912  *
2913  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2914  * pending.
2915  *
2916  * Note:
2917  * The work callback function may still be running on return, unless
2918  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2919  * use cancel_delayed_work_sync() to wait on it.
2920  *
2921  * This function is safe to call from any context including IRQ handler.
2922  */
cancel_delayed_work(struct delayed_work * dwork)2923 bool cancel_delayed_work(struct delayed_work *dwork)
2924 {
2925 	unsigned long flags;
2926 	int ret;
2927 
2928 	do {
2929 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2930 	} while (unlikely(ret == -EAGAIN));
2931 
2932 	if (unlikely(ret < 0))
2933 		return false;
2934 
2935 	set_work_pool_and_clear_pending(&dwork->work,
2936 					get_work_pool_id(&dwork->work));
2937 	local_irq_restore(flags);
2938 	return ret;
2939 }
2940 EXPORT_SYMBOL(cancel_delayed_work);
2941 
2942 /**
2943  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2944  * @dwork: the delayed work cancel
2945  *
2946  * This is cancel_work_sync() for delayed works.
2947  *
2948  * Return:
2949  * %true if @dwork was pending, %false otherwise.
2950  */
cancel_delayed_work_sync(struct delayed_work * dwork)2951 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2952 {
2953 	return __cancel_work_timer(&dwork->work, true);
2954 }
2955 EXPORT_SYMBOL(cancel_delayed_work_sync);
2956 
2957 /**
2958  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2959  * @func: the function to call
2960  *
2961  * schedule_on_each_cpu() executes @func on each online CPU using the
2962  * system workqueue and blocks until all CPUs have completed.
2963  * schedule_on_each_cpu() is very slow.
2964  *
2965  * Return:
2966  * 0 on success, -errno on failure.
2967  */
schedule_on_each_cpu(work_func_t func)2968 int schedule_on_each_cpu(work_func_t func)
2969 {
2970 	int cpu;
2971 	struct work_struct __percpu *works;
2972 
2973 	works = alloc_percpu(struct work_struct);
2974 	if (!works)
2975 		return -ENOMEM;
2976 
2977 	get_online_cpus();
2978 
2979 	for_each_online_cpu(cpu) {
2980 		struct work_struct *work = per_cpu_ptr(works, cpu);
2981 
2982 		INIT_WORK(work, func);
2983 		schedule_work_on(cpu, work);
2984 	}
2985 
2986 	for_each_online_cpu(cpu)
2987 		flush_work(per_cpu_ptr(works, cpu));
2988 
2989 	put_online_cpus();
2990 	free_percpu(works);
2991 	return 0;
2992 }
2993 
2994 /**
2995  * execute_in_process_context - reliably execute the routine with user context
2996  * @fn:		the function to execute
2997  * @ew:		guaranteed storage for the execute work structure (must
2998  *		be available when the work executes)
2999  *
3000  * Executes the function immediately if process context is available,
3001  * otherwise schedules the function for delayed execution.
3002  *
3003  * Return:	0 - function was executed
3004  *		1 - function was scheduled for execution
3005  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3006 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3007 {
3008 	if (!in_interrupt()) {
3009 		fn(&ew->work);
3010 		return 0;
3011 	}
3012 
3013 	INIT_WORK(&ew->work, fn);
3014 	schedule_work(&ew->work);
3015 
3016 	return 1;
3017 }
3018 EXPORT_SYMBOL_GPL(execute_in_process_context);
3019 
3020 /**
3021  * free_workqueue_attrs - free a workqueue_attrs
3022  * @attrs: workqueue_attrs to free
3023  *
3024  * Undo alloc_workqueue_attrs().
3025  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3026 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3027 {
3028 	if (attrs) {
3029 		free_cpumask_var(attrs->cpumask);
3030 		kfree(attrs);
3031 	}
3032 }
3033 
3034 /**
3035  * alloc_workqueue_attrs - allocate a workqueue_attrs
3036  * @gfp_mask: allocation mask to use
3037  *
3038  * Allocate a new workqueue_attrs, initialize with default settings and
3039  * return it.
3040  *
3041  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3042  */
alloc_workqueue_attrs(gfp_t gfp_mask)3043 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3044 {
3045 	struct workqueue_attrs *attrs;
3046 
3047 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3048 	if (!attrs)
3049 		goto fail;
3050 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3051 		goto fail;
3052 
3053 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3054 	return attrs;
3055 fail:
3056 	free_workqueue_attrs(attrs);
3057 	return NULL;
3058 }
3059 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3060 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3061 				 const struct workqueue_attrs *from)
3062 {
3063 	to->nice = from->nice;
3064 	cpumask_copy(to->cpumask, from->cpumask);
3065 	/*
3066 	 * Unlike hash and equality test, this function doesn't ignore
3067 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3068 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3069 	 */
3070 	to->no_numa = from->no_numa;
3071 }
3072 
3073 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3074 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3075 {
3076 	u32 hash = 0;
3077 
3078 	hash = jhash_1word(attrs->nice, hash);
3079 	hash = jhash(cpumask_bits(attrs->cpumask),
3080 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3081 	return hash;
3082 }
3083 
3084 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3085 static bool wqattrs_equal(const struct workqueue_attrs *a,
3086 			  const struct workqueue_attrs *b)
3087 {
3088 	if (a->nice != b->nice)
3089 		return false;
3090 	if (!cpumask_equal(a->cpumask, b->cpumask))
3091 		return false;
3092 	return true;
3093 }
3094 
3095 /**
3096  * init_worker_pool - initialize a newly zalloc'd worker_pool
3097  * @pool: worker_pool to initialize
3098  *
3099  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3100  *
3101  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3102  * inside @pool proper are initialized and put_unbound_pool() can be called
3103  * on @pool safely to release it.
3104  */
init_worker_pool(struct worker_pool * pool)3105 static int init_worker_pool(struct worker_pool *pool)
3106 {
3107 	spin_lock_init(&pool->lock);
3108 	pool->id = -1;
3109 	pool->cpu = -1;
3110 	pool->node = NUMA_NO_NODE;
3111 	pool->flags |= POOL_DISASSOCIATED;
3112 	INIT_LIST_HEAD(&pool->worklist);
3113 	INIT_LIST_HEAD(&pool->idle_list);
3114 	hash_init(pool->busy_hash);
3115 
3116 	init_timer_deferrable(&pool->idle_timer);
3117 	pool->idle_timer.function = idle_worker_timeout;
3118 	pool->idle_timer.data = (unsigned long)pool;
3119 
3120 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3121 		    (unsigned long)pool);
3122 
3123 	mutex_init(&pool->attach_mutex);
3124 	INIT_LIST_HEAD(&pool->workers);
3125 
3126 	ida_init(&pool->worker_ida);
3127 	INIT_HLIST_NODE(&pool->hash_node);
3128 	pool->refcnt = 1;
3129 
3130 	/* shouldn't fail above this point */
3131 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3132 	if (!pool->attrs)
3133 		return -ENOMEM;
3134 	return 0;
3135 }
3136 
rcu_free_wq(struct rcu_head * rcu)3137 static void rcu_free_wq(struct rcu_head *rcu)
3138 {
3139 	struct workqueue_struct *wq =
3140 		container_of(rcu, struct workqueue_struct, rcu);
3141 
3142 	if (!(wq->flags & WQ_UNBOUND))
3143 		free_percpu(wq->cpu_pwqs);
3144 	else
3145 		free_workqueue_attrs(wq->unbound_attrs);
3146 
3147 	kfree(wq->rescuer);
3148 	kfree(wq);
3149 }
3150 
rcu_free_pool(struct rcu_head * rcu)3151 static void rcu_free_pool(struct rcu_head *rcu)
3152 {
3153 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3154 
3155 	ida_destroy(&pool->worker_ida);
3156 	free_workqueue_attrs(pool->attrs);
3157 	kfree(pool);
3158 }
3159 
3160 /**
3161  * put_unbound_pool - put a worker_pool
3162  * @pool: worker_pool to put
3163  *
3164  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3165  * safe manner.  get_unbound_pool() calls this function on its failure path
3166  * and this function should be able to release pools which went through,
3167  * successfully or not, init_worker_pool().
3168  *
3169  * Should be called with wq_pool_mutex held.
3170  */
put_unbound_pool(struct worker_pool * pool)3171 static void put_unbound_pool(struct worker_pool *pool)
3172 {
3173 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3174 	struct worker *worker;
3175 
3176 	lockdep_assert_held(&wq_pool_mutex);
3177 
3178 	if (--pool->refcnt)
3179 		return;
3180 
3181 	/* sanity checks */
3182 	if (WARN_ON(!(pool->cpu < 0)) ||
3183 	    WARN_ON(!list_empty(&pool->worklist)))
3184 		return;
3185 
3186 	/* release id and unhash */
3187 	if (pool->id >= 0)
3188 		idr_remove(&worker_pool_idr, pool->id);
3189 	hash_del(&pool->hash_node);
3190 
3191 	/*
3192 	 * Become the manager and destroy all workers.  This prevents
3193 	 * @pool's workers from blocking on attach_mutex.  We're the last
3194 	 * manager and @pool gets freed with the flag set.
3195 	 */
3196 	spin_lock_irq(&pool->lock);
3197 	wait_event_lock_irq(wq_manager_wait,
3198 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3199 	pool->flags |= POOL_MANAGER_ACTIVE;
3200 
3201 	while ((worker = first_idle_worker(pool)))
3202 		destroy_worker(worker);
3203 	WARN_ON(pool->nr_workers || pool->nr_idle);
3204 	spin_unlock_irq(&pool->lock);
3205 
3206 	mutex_lock(&pool->attach_mutex);
3207 	if (!list_empty(&pool->workers))
3208 		pool->detach_completion = &detach_completion;
3209 	mutex_unlock(&pool->attach_mutex);
3210 
3211 	if (pool->detach_completion)
3212 		wait_for_completion(pool->detach_completion);
3213 
3214 	/* shut down the timers */
3215 	del_timer_sync(&pool->idle_timer);
3216 	del_timer_sync(&pool->mayday_timer);
3217 
3218 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3219 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3220 }
3221 
3222 /**
3223  * get_unbound_pool - get a worker_pool with the specified attributes
3224  * @attrs: the attributes of the worker_pool to get
3225  *
3226  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3227  * reference count and return it.  If there already is a matching
3228  * worker_pool, it will be used; otherwise, this function attempts to
3229  * create a new one.
3230  *
3231  * Should be called with wq_pool_mutex held.
3232  *
3233  * Return: On success, a worker_pool with the same attributes as @attrs.
3234  * On failure, %NULL.
3235  */
get_unbound_pool(const struct workqueue_attrs * attrs)3236 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3237 {
3238 	u32 hash = wqattrs_hash(attrs);
3239 	struct worker_pool *pool;
3240 	int node;
3241 	int target_node = NUMA_NO_NODE;
3242 
3243 	lockdep_assert_held(&wq_pool_mutex);
3244 
3245 	/* do we already have a matching pool? */
3246 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3247 		if (wqattrs_equal(pool->attrs, attrs)) {
3248 			pool->refcnt++;
3249 			return pool;
3250 		}
3251 	}
3252 
3253 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3254 	if (wq_numa_enabled) {
3255 		for_each_node(node) {
3256 			if (cpumask_subset(attrs->cpumask,
3257 					   wq_numa_possible_cpumask[node])) {
3258 				target_node = node;
3259 				break;
3260 			}
3261 		}
3262 	}
3263 
3264 	/* nope, create a new one */
3265 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3266 	if (!pool || init_worker_pool(pool) < 0)
3267 		goto fail;
3268 
3269 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3270 	copy_workqueue_attrs(pool->attrs, attrs);
3271 	pool->node = target_node;
3272 
3273 	/*
3274 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3275 	 * 'struct workqueue_attrs' comments for detail.
3276 	 */
3277 	pool->attrs->no_numa = false;
3278 
3279 	if (worker_pool_assign_id(pool) < 0)
3280 		goto fail;
3281 
3282 	/* create and start the initial worker */
3283 	if (!create_worker(pool))
3284 		goto fail;
3285 
3286 	/* install */
3287 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3288 
3289 	return pool;
3290 fail:
3291 	if (pool)
3292 		put_unbound_pool(pool);
3293 	return NULL;
3294 }
3295 
rcu_free_pwq(struct rcu_head * rcu)3296 static void rcu_free_pwq(struct rcu_head *rcu)
3297 {
3298 	kmem_cache_free(pwq_cache,
3299 			container_of(rcu, struct pool_workqueue, rcu));
3300 }
3301 
3302 /*
3303  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3304  * and needs to be destroyed.
3305  */
pwq_unbound_release_workfn(struct work_struct * work)3306 static void pwq_unbound_release_workfn(struct work_struct *work)
3307 {
3308 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3309 						  unbound_release_work);
3310 	struct workqueue_struct *wq = pwq->wq;
3311 	struct worker_pool *pool = pwq->pool;
3312 	bool is_last = false;
3313 
3314 	/*
3315 	 * when @pwq is not linked, it doesn't hold any reference to the
3316 	 * @wq, and @wq is invalid to access.
3317 	 */
3318 	if (!list_empty(&pwq->pwqs_node)) {
3319 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3320 			return;
3321 
3322 		mutex_lock(&wq->mutex);
3323 		list_del_rcu(&pwq->pwqs_node);
3324 		is_last = list_empty(&wq->pwqs);
3325 		mutex_unlock(&wq->mutex);
3326 	}
3327 
3328 	mutex_lock(&wq_pool_mutex);
3329 	put_unbound_pool(pool);
3330 	mutex_unlock(&wq_pool_mutex);
3331 
3332 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3333 
3334 	/*
3335 	 * If we're the last pwq going away, @wq is already dead and no one
3336 	 * is gonna access it anymore.  Schedule RCU free.
3337 	 */
3338 	if (is_last)
3339 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3340 }
3341 
3342 /**
3343  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3344  * @pwq: target pool_workqueue
3345  *
3346  * If @pwq isn't freezing, set @pwq->max_active to the associated
3347  * workqueue's saved_max_active and activate delayed work items
3348  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3349  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3350 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3351 {
3352 	struct workqueue_struct *wq = pwq->wq;
3353 	bool freezable = wq->flags & WQ_FREEZABLE;
3354 
3355 	/* for @wq->saved_max_active */
3356 	lockdep_assert_held(&wq->mutex);
3357 
3358 	/* fast exit for non-freezable wqs */
3359 	if (!freezable && pwq->max_active == wq->saved_max_active)
3360 		return;
3361 
3362 	spin_lock_irq(&pwq->pool->lock);
3363 
3364 	/*
3365 	 * During [un]freezing, the caller is responsible for ensuring that
3366 	 * this function is called at least once after @workqueue_freezing
3367 	 * is updated and visible.
3368 	 */
3369 	if (!freezable || !workqueue_freezing) {
3370 		bool kick = false;
3371 
3372 		pwq->max_active = wq->saved_max_active;
3373 
3374 		while (!list_empty(&pwq->delayed_works) &&
3375 		       pwq->nr_active < pwq->max_active) {
3376 			pwq_activate_first_delayed(pwq);
3377 			kick = true;
3378 		}
3379 
3380 		/*
3381 		 * Need to kick a worker after thawed or an unbound wq's
3382 		 * max_active is bumped. In realtime scenarios, always kicking a
3383 		 * worker will cause interference on the isolated cpu cores, so
3384 		 * let's kick iff work items were activated.
3385 		 */
3386 		if (kick)
3387 			wake_up_worker(pwq->pool);
3388 	} else {
3389 		pwq->max_active = 0;
3390 	}
3391 
3392 	spin_unlock_irq(&pwq->pool->lock);
3393 }
3394 
3395 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3396 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3397 		     struct worker_pool *pool)
3398 {
3399 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3400 
3401 	memset(pwq, 0, sizeof(*pwq));
3402 
3403 	pwq->pool = pool;
3404 	pwq->wq = wq;
3405 	pwq->flush_color = -1;
3406 	pwq->refcnt = 1;
3407 	INIT_LIST_HEAD(&pwq->delayed_works);
3408 	INIT_LIST_HEAD(&pwq->pwqs_node);
3409 	INIT_LIST_HEAD(&pwq->mayday_node);
3410 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3411 }
3412 
3413 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3414 static void link_pwq(struct pool_workqueue *pwq)
3415 {
3416 	struct workqueue_struct *wq = pwq->wq;
3417 
3418 	lockdep_assert_held(&wq->mutex);
3419 
3420 	/* may be called multiple times, ignore if already linked */
3421 	if (!list_empty(&pwq->pwqs_node))
3422 		return;
3423 
3424 	/* set the matching work_color */
3425 	pwq->work_color = wq->work_color;
3426 
3427 	/* sync max_active to the current setting */
3428 	pwq_adjust_max_active(pwq);
3429 
3430 	/* link in @pwq */
3431 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3432 }
3433 
3434 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3435 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3436 					const struct workqueue_attrs *attrs)
3437 {
3438 	struct worker_pool *pool;
3439 	struct pool_workqueue *pwq;
3440 
3441 	lockdep_assert_held(&wq_pool_mutex);
3442 
3443 	pool = get_unbound_pool(attrs);
3444 	if (!pool)
3445 		return NULL;
3446 
3447 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3448 	if (!pwq) {
3449 		put_unbound_pool(pool);
3450 		return NULL;
3451 	}
3452 
3453 	init_pwq(pwq, wq, pool);
3454 	return pwq;
3455 }
3456 
3457 /**
3458  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3459  * @attrs: the wq_attrs of the default pwq of the target workqueue
3460  * @node: the target NUMA node
3461  * @cpu_going_down: if >= 0, the CPU to consider as offline
3462  * @cpumask: outarg, the resulting cpumask
3463  *
3464  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3465  * @cpu_going_down is >= 0, that cpu is considered offline during
3466  * calculation.  The result is stored in @cpumask.
3467  *
3468  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3469  * enabled and @node has online CPUs requested by @attrs, the returned
3470  * cpumask is the intersection of the possible CPUs of @node and
3471  * @attrs->cpumask.
3472  *
3473  * The caller is responsible for ensuring that the cpumask of @node stays
3474  * stable.
3475  *
3476  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3477  * %false if equal.
3478  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3479 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3480 				 int cpu_going_down, cpumask_t *cpumask)
3481 {
3482 	if (!wq_numa_enabled || attrs->no_numa)
3483 		goto use_dfl;
3484 
3485 	/* does @node have any online CPUs @attrs wants? */
3486 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3487 	if (cpu_going_down >= 0)
3488 		cpumask_clear_cpu(cpu_going_down, cpumask);
3489 
3490 	if (cpumask_empty(cpumask))
3491 		goto use_dfl;
3492 
3493 	/* yeap, return possible CPUs in @node that @attrs wants */
3494 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3495 	return !cpumask_equal(cpumask, attrs->cpumask);
3496 
3497 use_dfl:
3498 	cpumask_copy(cpumask, attrs->cpumask);
3499 	return false;
3500 }
3501 
3502 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3503 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3504 						   int node,
3505 						   struct pool_workqueue *pwq)
3506 {
3507 	struct pool_workqueue *old_pwq;
3508 
3509 	lockdep_assert_held(&wq_pool_mutex);
3510 	lockdep_assert_held(&wq->mutex);
3511 
3512 	/* link_pwq() can handle duplicate calls */
3513 	link_pwq(pwq);
3514 
3515 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3516 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3517 	return old_pwq;
3518 }
3519 
3520 /* context to store the prepared attrs & pwqs before applying */
3521 struct apply_wqattrs_ctx {
3522 	struct workqueue_struct	*wq;		/* target workqueue */
3523 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3524 	struct list_head	list;		/* queued for batching commit */
3525 	struct pool_workqueue	*dfl_pwq;
3526 	struct pool_workqueue	*pwq_tbl[];
3527 };
3528 
3529 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3530 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3531 {
3532 	if (ctx) {
3533 		int node;
3534 
3535 		for_each_node(node)
3536 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3537 		put_pwq_unlocked(ctx->dfl_pwq);
3538 
3539 		free_workqueue_attrs(ctx->attrs);
3540 
3541 		kfree(ctx);
3542 	}
3543 }
3544 
3545 /* allocate the attrs and pwqs for later installation */
3546 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3547 apply_wqattrs_prepare(struct workqueue_struct *wq,
3548 		      const struct workqueue_attrs *attrs)
3549 {
3550 	struct apply_wqattrs_ctx *ctx;
3551 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3552 	int node;
3553 
3554 	lockdep_assert_held(&wq_pool_mutex);
3555 
3556 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3557 		      GFP_KERNEL);
3558 
3559 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3560 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3561 	if (!ctx || !new_attrs || !tmp_attrs)
3562 		goto out_free;
3563 
3564 	/*
3565 	 * Calculate the attrs of the default pwq.
3566 	 * If the user configured cpumask doesn't overlap with the
3567 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3568 	 */
3569 	copy_workqueue_attrs(new_attrs, attrs);
3570 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3571 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3572 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3573 
3574 	/*
3575 	 * We may create multiple pwqs with differing cpumasks.  Make a
3576 	 * copy of @new_attrs which will be modified and used to obtain
3577 	 * pools.
3578 	 */
3579 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3580 
3581 	/*
3582 	 * If something goes wrong during CPU up/down, we'll fall back to
3583 	 * the default pwq covering whole @attrs->cpumask.  Always create
3584 	 * it even if we don't use it immediately.
3585 	 */
3586 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3587 	if (!ctx->dfl_pwq)
3588 		goto out_free;
3589 
3590 	for_each_node(node) {
3591 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3592 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3593 			if (!ctx->pwq_tbl[node])
3594 				goto out_free;
3595 		} else {
3596 			ctx->dfl_pwq->refcnt++;
3597 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3598 		}
3599 	}
3600 
3601 	/* save the user configured attrs and sanitize it. */
3602 	copy_workqueue_attrs(new_attrs, attrs);
3603 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3604 	ctx->attrs = new_attrs;
3605 
3606 	ctx->wq = wq;
3607 	free_workqueue_attrs(tmp_attrs);
3608 	return ctx;
3609 
3610 out_free:
3611 	free_workqueue_attrs(tmp_attrs);
3612 	free_workqueue_attrs(new_attrs);
3613 	apply_wqattrs_cleanup(ctx);
3614 	return NULL;
3615 }
3616 
3617 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3618 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3619 {
3620 	int node;
3621 
3622 	/* all pwqs have been created successfully, let's install'em */
3623 	mutex_lock(&ctx->wq->mutex);
3624 
3625 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3626 
3627 	/* save the previous pwq and install the new one */
3628 	for_each_node(node)
3629 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3630 							  ctx->pwq_tbl[node]);
3631 
3632 	/* @dfl_pwq might not have been used, ensure it's linked */
3633 	link_pwq(ctx->dfl_pwq);
3634 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3635 
3636 	mutex_unlock(&ctx->wq->mutex);
3637 }
3638 
apply_wqattrs_lock(void)3639 static void apply_wqattrs_lock(void)
3640 {
3641 	/* CPUs should stay stable across pwq creations and installations */
3642 	get_online_cpus();
3643 	mutex_lock(&wq_pool_mutex);
3644 }
3645 
apply_wqattrs_unlock(void)3646 static void apply_wqattrs_unlock(void)
3647 {
3648 	mutex_unlock(&wq_pool_mutex);
3649 	put_online_cpus();
3650 }
3651 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3652 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3653 					const struct workqueue_attrs *attrs)
3654 {
3655 	struct apply_wqattrs_ctx *ctx;
3656 	int ret = -ENOMEM;
3657 
3658 	/* only unbound workqueues can change attributes */
3659 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3660 		return -EINVAL;
3661 
3662 	/* creating multiple pwqs breaks ordering guarantee */
3663 	if (!list_empty(&wq->pwqs)) {
3664 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3665 			return -EINVAL;
3666 
3667 		wq->flags &= ~__WQ_ORDERED;
3668 	}
3669 
3670 	ctx = apply_wqattrs_prepare(wq, attrs);
3671 
3672 	/* the ctx has been prepared successfully, let's commit it */
3673 	if (ctx) {
3674 		apply_wqattrs_commit(ctx);
3675 		ret = 0;
3676 	}
3677 
3678 	apply_wqattrs_cleanup(ctx);
3679 
3680 	return ret;
3681 }
3682 
3683 /**
3684  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3685  * @wq: the target workqueue
3686  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3687  *
3688  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3689  * machines, this function maps a separate pwq to each NUMA node with
3690  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3691  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3692  * items finish.  Note that a work item which repeatedly requeues itself
3693  * back-to-back will stay on its current pwq.
3694  *
3695  * Performs GFP_KERNEL allocations.
3696  *
3697  * Return: 0 on success and -errno on failure.
3698  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3699 int apply_workqueue_attrs(struct workqueue_struct *wq,
3700 			  const struct workqueue_attrs *attrs)
3701 {
3702 	int ret;
3703 
3704 	apply_wqattrs_lock();
3705 	ret = apply_workqueue_attrs_locked(wq, attrs);
3706 	apply_wqattrs_unlock();
3707 
3708 	return ret;
3709 }
3710 
3711 /**
3712  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3713  * @wq: the target workqueue
3714  * @cpu: the CPU coming up or going down
3715  * @online: whether @cpu is coming up or going down
3716  *
3717  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3718  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3719  * @wq accordingly.
3720  *
3721  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3722  * falls back to @wq->dfl_pwq which may not be optimal but is always
3723  * correct.
3724  *
3725  * Note that when the last allowed CPU of a NUMA node goes offline for a
3726  * workqueue with a cpumask spanning multiple nodes, the workers which were
3727  * already executing the work items for the workqueue will lose their CPU
3728  * affinity and may execute on any CPU.  This is similar to how per-cpu
3729  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3730  * affinity, it's the user's responsibility to flush the work item from
3731  * CPU_DOWN_PREPARE.
3732  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)3733 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3734 				   bool online)
3735 {
3736 	int node = cpu_to_node(cpu);
3737 	int cpu_off = online ? -1 : cpu;
3738 	struct pool_workqueue *old_pwq = NULL, *pwq;
3739 	struct workqueue_attrs *target_attrs;
3740 	cpumask_t *cpumask;
3741 
3742 	lockdep_assert_held(&wq_pool_mutex);
3743 
3744 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3745 	    wq->unbound_attrs->no_numa)
3746 		return;
3747 
3748 	/*
3749 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3750 	 * Let's use a preallocated one.  The following buf is protected by
3751 	 * CPU hotplug exclusion.
3752 	 */
3753 	target_attrs = wq_update_unbound_numa_attrs_buf;
3754 	cpumask = target_attrs->cpumask;
3755 
3756 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3757 	pwq = unbound_pwq_by_node(wq, node);
3758 
3759 	/*
3760 	 * Let's determine what needs to be done.  If the target cpumask is
3761 	 * different from the default pwq's, we need to compare it to @pwq's
3762 	 * and create a new one if they don't match.  If the target cpumask
3763 	 * equals the default pwq's, the default pwq should be used.
3764 	 */
3765 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3766 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3767 			return;
3768 	} else {
3769 		goto use_dfl_pwq;
3770 	}
3771 
3772 	/* create a new pwq */
3773 	pwq = alloc_unbound_pwq(wq, target_attrs);
3774 	if (!pwq) {
3775 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3776 			wq->name);
3777 		goto use_dfl_pwq;
3778 	}
3779 
3780 	/* Install the new pwq. */
3781 	mutex_lock(&wq->mutex);
3782 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3783 	goto out_unlock;
3784 
3785 use_dfl_pwq:
3786 	mutex_lock(&wq->mutex);
3787 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3788 	get_pwq(wq->dfl_pwq);
3789 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3790 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3791 out_unlock:
3792 	mutex_unlock(&wq->mutex);
3793 	put_pwq_unlocked(old_pwq);
3794 }
3795 
alloc_and_link_pwqs(struct workqueue_struct * wq)3796 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3797 {
3798 	bool highpri = wq->flags & WQ_HIGHPRI;
3799 	int cpu, ret;
3800 
3801 	if (!(wq->flags & WQ_UNBOUND)) {
3802 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3803 		if (!wq->cpu_pwqs)
3804 			return -ENOMEM;
3805 
3806 		for_each_possible_cpu(cpu) {
3807 			struct pool_workqueue *pwq =
3808 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3809 			struct worker_pool *cpu_pools =
3810 				per_cpu(cpu_worker_pools, cpu);
3811 
3812 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3813 
3814 			mutex_lock(&wq->mutex);
3815 			link_pwq(pwq);
3816 			mutex_unlock(&wq->mutex);
3817 		}
3818 		return 0;
3819 	} else if (wq->flags & __WQ_ORDERED) {
3820 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3821 		/* there should only be single pwq for ordering guarantee */
3822 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3823 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3824 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3825 		return ret;
3826 	} else {
3827 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3828 	}
3829 }
3830 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)3831 static int wq_clamp_max_active(int max_active, unsigned int flags,
3832 			       const char *name)
3833 {
3834 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3835 
3836 	if (max_active < 1 || max_active > lim)
3837 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3838 			max_active, name, 1, lim);
3839 
3840 	return clamp_val(max_active, 1, lim);
3841 }
3842 
__alloc_workqueue_key(const char * fmt,unsigned int flags,int max_active,struct lock_class_key * key,const char * lock_name,...)3843 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3844 					       unsigned int flags,
3845 					       int max_active,
3846 					       struct lock_class_key *key,
3847 					       const char *lock_name, ...)
3848 {
3849 	size_t tbl_size = 0;
3850 	va_list args;
3851 	struct workqueue_struct *wq;
3852 	struct pool_workqueue *pwq;
3853 
3854 	/*
3855 	 * Unbound && max_active == 1 used to imply ordered, which is no
3856 	 * longer the case on NUMA machines due to per-node pools.  While
3857 	 * alloc_ordered_workqueue() is the right way to create an ordered
3858 	 * workqueue, keep the previous behavior to avoid subtle breakages
3859 	 * on NUMA.
3860 	 */
3861 	if ((flags & WQ_UNBOUND) && max_active == 1)
3862 		flags |= __WQ_ORDERED;
3863 
3864 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3865 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3866 		flags |= WQ_UNBOUND;
3867 
3868 	/* allocate wq and format name */
3869 	if (flags & WQ_UNBOUND)
3870 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3871 
3872 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3873 	if (!wq)
3874 		return NULL;
3875 
3876 	if (flags & WQ_UNBOUND) {
3877 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3878 		if (!wq->unbound_attrs)
3879 			goto err_free_wq;
3880 	}
3881 
3882 	va_start(args, lock_name);
3883 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3884 	va_end(args);
3885 
3886 	max_active = max_active ?: WQ_DFL_ACTIVE;
3887 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3888 
3889 	/* init wq */
3890 	wq->flags = flags;
3891 	wq->saved_max_active = max_active;
3892 	mutex_init(&wq->mutex);
3893 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3894 	INIT_LIST_HEAD(&wq->pwqs);
3895 	INIT_LIST_HEAD(&wq->flusher_queue);
3896 	INIT_LIST_HEAD(&wq->flusher_overflow);
3897 	INIT_LIST_HEAD(&wq->maydays);
3898 
3899 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3900 	INIT_LIST_HEAD(&wq->list);
3901 
3902 	if (alloc_and_link_pwqs(wq) < 0)
3903 		goto err_free_wq;
3904 
3905 	/*
3906 	 * Workqueues which may be used during memory reclaim should
3907 	 * have a rescuer to guarantee forward progress.
3908 	 */
3909 	if (flags & WQ_MEM_RECLAIM) {
3910 		struct worker *rescuer;
3911 
3912 		rescuer = alloc_worker(NUMA_NO_NODE);
3913 		if (!rescuer)
3914 			goto err_destroy;
3915 
3916 		rescuer->rescue_wq = wq;
3917 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3918 					       wq->name);
3919 		if (IS_ERR(rescuer->task)) {
3920 			kfree(rescuer);
3921 			goto err_destroy;
3922 		}
3923 
3924 		wq->rescuer = rescuer;
3925 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3926 		wake_up_process(rescuer->task);
3927 	}
3928 
3929 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3930 		goto err_destroy;
3931 
3932 	/*
3933 	 * wq_pool_mutex protects global freeze state and workqueues list.
3934 	 * Grab it, adjust max_active and add the new @wq to workqueues
3935 	 * list.
3936 	 */
3937 	mutex_lock(&wq_pool_mutex);
3938 
3939 	mutex_lock(&wq->mutex);
3940 	for_each_pwq(pwq, wq)
3941 		pwq_adjust_max_active(pwq);
3942 	mutex_unlock(&wq->mutex);
3943 
3944 	list_add_tail_rcu(&wq->list, &workqueues);
3945 
3946 	mutex_unlock(&wq_pool_mutex);
3947 
3948 	return wq;
3949 
3950 err_free_wq:
3951 	free_workqueue_attrs(wq->unbound_attrs);
3952 	kfree(wq);
3953 	return NULL;
3954 err_destroy:
3955 	destroy_workqueue(wq);
3956 	return NULL;
3957 }
3958 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3959 
3960 /**
3961  * destroy_workqueue - safely terminate a workqueue
3962  * @wq: target workqueue
3963  *
3964  * Safely destroy a workqueue. All work currently pending will be done first.
3965  */
destroy_workqueue(struct workqueue_struct * wq)3966 void destroy_workqueue(struct workqueue_struct *wq)
3967 {
3968 	struct pool_workqueue *pwq;
3969 	int node;
3970 
3971 	/*
3972 	 * Remove it from sysfs first so that sanity check failure doesn't
3973 	 * lead to sysfs name conflicts.
3974 	 */
3975 	workqueue_sysfs_unregister(wq);
3976 
3977 	/* drain it before proceeding with destruction */
3978 	drain_workqueue(wq);
3979 
3980 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
3981 	if (wq->rescuer) {
3982 		struct worker *rescuer = wq->rescuer;
3983 
3984 		/* this prevents new queueing */
3985 		spin_lock_irq(&wq_mayday_lock);
3986 		wq->rescuer = NULL;
3987 		spin_unlock_irq(&wq_mayday_lock);
3988 
3989 		/* rescuer will empty maydays list before exiting */
3990 		kthread_stop(rescuer->task);
3991 		kfree(rescuer);
3992 	}
3993 
3994 	/* sanity checks */
3995 	mutex_lock(&wq->mutex);
3996 	for_each_pwq(pwq, wq) {
3997 		int i;
3998 
3999 		for (i = 0; i < WORK_NR_COLORS; i++) {
4000 			if (WARN_ON(pwq->nr_in_flight[i])) {
4001 				mutex_unlock(&wq->mutex);
4002 				return;
4003 			}
4004 		}
4005 
4006 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4007 		    WARN_ON(pwq->nr_active) ||
4008 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4009 			mutex_unlock(&wq->mutex);
4010 			return;
4011 		}
4012 	}
4013 	mutex_unlock(&wq->mutex);
4014 
4015 	/*
4016 	 * wq list is used to freeze wq, remove from list after
4017 	 * flushing is complete in case freeze races us.
4018 	 */
4019 	mutex_lock(&wq_pool_mutex);
4020 	list_del_rcu(&wq->list);
4021 	mutex_unlock(&wq_pool_mutex);
4022 
4023 	if (!(wq->flags & WQ_UNBOUND)) {
4024 		/*
4025 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4026 		 * schedule RCU free.
4027 		 */
4028 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4029 	} else {
4030 		/*
4031 		 * We're the sole accessor of @wq at this point.  Directly
4032 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4033 		 * @wq will be freed when the last pwq is released.
4034 		 */
4035 		for_each_node(node) {
4036 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4037 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4038 			put_pwq_unlocked(pwq);
4039 		}
4040 
4041 		/*
4042 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4043 		 * put.  Don't access it afterwards.
4044 		 */
4045 		pwq = wq->dfl_pwq;
4046 		wq->dfl_pwq = NULL;
4047 		put_pwq_unlocked(pwq);
4048 	}
4049 }
4050 EXPORT_SYMBOL_GPL(destroy_workqueue);
4051 
4052 /**
4053  * workqueue_set_max_active - adjust max_active of a workqueue
4054  * @wq: target workqueue
4055  * @max_active: new max_active value.
4056  *
4057  * Set max_active of @wq to @max_active.
4058  *
4059  * CONTEXT:
4060  * Don't call from IRQ context.
4061  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4062 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4063 {
4064 	struct pool_workqueue *pwq;
4065 
4066 	/* disallow meddling with max_active for ordered workqueues */
4067 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4068 		return;
4069 
4070 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4071 
4072 	mutex_lock(&wq->mutex);
4073 
4074 	wq->flags &= ~__WQ_ORDERED;
4075 	wq->saved_max_active = max_active;
4076 
4077 	for_each_pwq(pwq, wq)
4078 		pwq_adjust_max_active(pwq);
4079 
4080 	mutex_unlock(&wq->mutex);
4081 }
4082 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4083 
4084 /**
4085  * current_work - retrieve %current task's work struct
4086  *
4087  * Determine if %current task is a workqueue worker and what it's working on.
4088  * Useful to find out the context that the %current task is running in.
4089  *
4090  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4091  */
current_work(void)4092 struct work_struct *current_work(void)
4093 {
4094 	struct worker *worker = current_wq_worker();
4095 
4096 	return worker ? worker->current_work : NULL;
4097 }
4098 EXPORT_SYMBOL(current_work);
4099 
4100 /**
4101  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4102  *
4103  * Determine whether %current is a workqueue rescuer.  Can be used from
4104  * work functions to determine whether it's being run off the rescuer task.
4105  *
4106  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4107  */
current_is_workqueue_rescuer(void)4108 bool current_is_workqueue_rescuer(void)
4109 {
4110 	struct worker *worker = current_wq_worker();
4111 
4112 	return worker && worker->rescue_wq;
4113 }
4114 
4115 /**
4116  * workqueue_congested - test whether a workqueue is congested
4117  * @cpu: CPU in question
4118  * @wq: target workqueue
4119  *
4120  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4121  * no synchronization around this function and the test result is
4122  * unreliable and only useful as advisory hints or for debugging.
4123  *
4124  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4125  * Note that both per-cpu and unbound workqueues may be associated with
4126  * multiple pool_workqueues which have separate congested states.  A
4127  * workqueue being congested on one CPU doesn't mean the workqueue is also
4128  * contested on other CPUs / NUMA nodes.
4129  *
4130  * Return:
4131  * %true if congested, %false otherwise.
4132  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4133 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4134 {
4135 	struct pool_workqueue *pwq;
4136 	bool ret;
4137 
4138 	rcu_read_lock_sched();
4139 
4140 	if (cpu == WORK_CPU_UNBOUND)
4141 		cpu = smp_processor_id();
4142 
4143 	if (!(wq->flags & WQ_UNBOUND))
4144 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4145 	else
4146 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4147 
4148 	ret = !list_empty(&pwq->delayed_works);
4149 	rcu_read_unlock_sched();
4150 
4151 	return ret;
4152 }
4153 EXPORT_SYMBOL_GPL(workqueue_congested);
4154 
4155 /**
4156  * work_busy - test whether a work is currently pending or running
4157  * @work: the work to be tested
4158  *
4159  * Test whether @work is currently pending or running.  There is no
4160  * synchronization around this function and the test result is
4161  * unreliable and only useful as advisory hints or for debugging.
4162  *
4163  * Return:
4164  * OR'd bitmask of WORK_BUSY_* bits.
4165  */
work_busy(struct work_struct * work)4166 unsigned int work_busy(struct work_struct *work)
4167 {
4168 	struct worker_pool *pool;
4169 	unsigned long flags;
4170 	unsigned int ret = 0;
4171 
4172 	if (work_pending(work))
4173 		ret |= WORK_BUSY_PENDING;
4174 
4175 	local_irq_save(flags);
4176 	pool = get_work_pool(work);
4177 	if (pool) {
4178 		spin_lock(&pool->lock);
4179 		if (find_worker_executing_work(pool, work))
4180 			ret |= WORK_BUSY_RUNNING;
4181 		spin_unlock(&pool->lock);
4182 	}
4183 	local_irq_restore(flags);
4184 
4185 	return ret;
4186 }
4187 EXPORT_SYMBOL_GPL(work_busy);
4188 
4189 /**
4190  * set_worker_desc - set description for the current work item
4191  * @fmt: printf-style format string
4192  * @...: arguments for the format string
4193  *
4194  * This function can be called by a running work function to describe what
4195  * the work item is about.  If the worker task gets dumped, this
4196  * information will be printed out together to help debugging.  The
4197  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4198  */
set_worker_desc(const char * fmt,...)4199 void set_worker_desc(const char *fmt, ...)
4200 {
4201 	struct worker *worker = current_wq_worker();
4202 	va_list args;
4203 
4204 	if (worker) {
4205 		va_start(args, fmt);
4206 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4207 		va_end(args);
4208 		worker->desc_valid = true;
4209 	}
4210 }
4211 
4212 /**
4213  * print_worker_info - print out worker information and description
4214  * @log_lvl: the log level to use when printing
4215  * @task: target task
4216  *
4217  * If @task is a worker and currently executing a work item, print out the
4218  * name of the workqueue being serviced and worker description set with
4219  * set_worker_desc() by the currently executing work item.
4220  *
4221  * This function can be safely called on any task as long as the
4222  * task_struct itself is accessible.  While safe, this function isn't
4223  * synchronized and may print out mixups or garbages of limited length.
4224  */
print_worker_info(const char * log_lvl,struct task_struct * task)4225 void print_worker_info(const char *log_lvl, struct task_struct *task)
4226 {
4227 	work_func_t *fn = NULL;
4228 	char name[WQ_NAME_LEN] = { };
4229 	char desc[WORKER_DESC_LEN] = { };
4230 	struct pool_workqueue *pwq = NULL;
4231 	struct workqueue_struct *wq = NULL;
4232 	bool desc_valid = false;
4233 	struct worker *worker;
4234 
4235 	if (!(task->flags & PF_WQ_WORKER))
4236 		return;
4237 
4238 	/*
4239 	 * This function is called without any synchronization and @task
4240 	 * could be in any state.  Be careful with dereferences.
4241 	 */
4242 	worker = probe_kthread_data(task);
4243 
4244 	/*
4245 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4246 	 * the original last '\0' in case the original contains garbage.
4247 	 */
4248 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4249 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4250 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4251 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4252 
4253 	/* copy worker description */
4254 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4255 	if (desc_valid)
4256 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4257 
4258 	if (fn || name[0] || desc[0]) {
4259 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4260 		if (desc[0])
4261 			pr_cont(" (%s)", desc);
4262 		pr_cont("\n");
4263 	}
4264 }
4265 
pr_cont_pool_info(struct worker_pool * pool)4266 static void pr_cont_pool_info(struct worker_pool *pool)
4267 {
4268 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4269 	if (pool->node != NUMA_NO_NODE)
4270 		pr_cont(" node=%d", pool->node);
4271 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4272 }
4273 
pr_cont_work(bool comma,struct work_struct * work)4274 static void pr_cont_work(bool comma, struct work_struct *work)
4275 {
4276 	if (work->func == wq_barrier_func) {
4277 		struct wq_barrier *barr;
4278 
4279 		barr = container_of(work, struct wq_barrier, work);
4280 
4281 		pr_cont("%s BAR(%d)", comma ? "," : "",
4282 			task_pid_nr(barr->task));
4283 	} else {
4284 		pr_cont("%s %pf", comma ? "," : "", work->func);
4285 	}
4286 }
4287 
show_pwq(struct pool_workqueue * pwq)4288 static void show_pwq(struct pool_workqueue *pwq)
4289 {
4290 	struct worker_pool *pool = pwq->pool;
4291 	struct work_struct *work;
4292 	struct worker *worker;
4293 	bool has_in_flight = false, has_pending = false;
4294 	int bkt;
4295 
4296 	pr_info("  pwq %d:", pool->id);
4297 	pr_cont_pool_info(pool);
4298 
4299 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4300 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4301 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4302 
4303 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4304 		if (worker->current_pwq == pwq) {
4305 			has_in_flight = true;
4306 			break;
4307 		}
4308 	}
4309 	if (has_in_flight) {
4310 		bool comma = false;
4311 
4312 		pr_info("    in-flight:");
4313 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4314 			if (worker->current_pwq != pwq)
4315 				continue;
4316 
4317 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4318 				task_pid_nr(worker->task),
4319 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4320 				worker->current_func);
4321 			list_for_each_entry(work, &worker->scheduled, entry)
4322 				pr_cont_work(false, work);
4323 			comma = true;
4324 		}
4325 		pr_cont("\n");
4326 	}
4327 
4328 	list_for_each_entry(work, &pool->worklist, entry) {
4329 		if (get_work_pwq(work) == pwq) {
4330 			has_pending = true;
4331 			break;
4332 		}
4333 	}
4334 	if (has_pending) {
4335 		bool comma = false;
4336 
4337 		pr_info("    pending:");
4338 		list_for_each_entry(work, &pool->worklist, entry) {
4339 			if (get_work_pwq(work) != pwq)
4340 				continue;
4341 
4342 			pr_cont_work(comma, work);
4343 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4344 		}
4345 		pr_cont("\n");
4346 	}
4347 
4348 	if (!list_empty(&pwq->delayed_works)) {
4349 		bool comma = false;
4350 
4351 		pr_info("    delayed:");
4352 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4353 			pr_cont_work(comma, work);
4354 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4355 		}
4356 		pr_cont("\n");
4357 	}
4358 }
4359 
4360 /**
4361  * show_workqueue_state - dump workqueue state
4362  *
4363  * Called from a sysrq handler and prints out all busy workqueues and
4364  * pools.
4365  */
show_workqueue_state(void)4366 void show_workqueue_state(void)
4367 {
4368 	struct workqueue_struct *wq;
4369 	struct worker_pool *pool;
4370 	unsigned long flags;
4371 	int pi;
4372 
4373 	rcu_read_lock_sched();
4374 
4375 	pr_info("Showing busy workqueues and worker pools:\n");
4376 
4377 	list_for_each_entry_rcu(wq, &workqueues, list) {
4378 		struct pool_workqueue *pwq;
4379 		bool idle = true;
4380 
4381 		for_each_pwq(pwq, wq) {
4382 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4383 				idle = false;
4384 				break;
4385 			}
4386 		}
4387 		if (idle)
4388 			continue;
4389 
4390 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4391 
4392 		for_each_pwq(pwq, wq) {
4393 			spin_lock_irqsave(&pwq->pool->lock, flags);
4394 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4395 				show_pwq(pwq);
4396 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4397 		}
4398 	}
4399 
4400 	for_each_pool(pool, pi) {
4401 		struct worker *worker;
4402 		bool first = true;
4403 
4404 		spin_lock_irqsave(&pool->lock, flags);
4405 		if (pool->nr_workers == pool->nr_idle)
4406 			goto next_pool;
4407 
4408 		pr_info("pool %d:", pool->id);
4409 		pr_cont_pool_info(pool);
4410 		pr_cont(" workers=%d", pool->nr_workers);
4411 		if (pool->manager)
4412 			pr_cont(" manager: %d",
4413 				task_pid_nr(pool->manager->task));
4414 		list_for_each_entry(worker, &pool->idle_list, entry) {
4415 			pr_cont(" %s%d", first ? "idle: " : "",
4416 				task_pid_nr(worker->task));
4417 			first = false;
4418 		}
4419 		pr_cont("\n");
4420 	next_pool:
4421 		spin_unlock_irqrestore(&pool->lock, flags);
4422 	}
4423 
4424 	rcu_read_unlock_sched();
4425 }
4426 
4427 /*
4428  * CPU hotplug.
4429  *
4430  * There are two challenges in supporting CPU hotplug.  Firstly, there
4431  * are a lot of assumptions on strong associations among work, pwq and
4432  * pool which make migrating pending and scheduled works very
4433  * difficult to implement without impacting hot paths.  Secondly,
4434  * worker pools serve mix of short, long and very long running works making
4435  * blocked draining impractical.
4436  *
4437  * This is solved by allowing the pools to be disassociated from the CPU
4438  * running as an unbound one and allowing it to be reattached later if the
4439  * cpu comes back online.
4440  */
4441 
wq_unbind_fn(struct work_struct * work)4442 static void wq_unbind_fn(struct work_struct *work)
4443 {
4444 	int cpu = smp_processor_id();
4445 	struct worker_pool *pool;
4446 	struct worker *worker;
4447 
4448 	for_each_cpu_worker_pool(pool, cpu) {
4449 		mutex_lock(&pool->attach_mutex);
4450 		spin_lock_irq(&pool->lock);
4451 
4452 		/*
4453 		 * We've blocked all attach/detach operations. Make all workers
4454 		 * unbound and set DISASSOCIATED.  Before this, all workers
4455 		 * except for the ones which are still executing works from
4456 		 * before the last CPU down must be on the cpu.  After
4457 		 * this, they may become diasporas.
4458 		 */
4459 		for_each_pool_worker(worker, pool)
4460 			worker->flags |= WORKER_UNBOUND;
4461 
4462 		pool->flags |= POOL_DISASSOCIATED;
4463 
4464 		spin_unlock_irq(&pool->lock);
4465 		mutex_unlock(&pool->attach_mutex);
4466 
4467 		/*
4468 		 * Call schedule() so that we cross rq->lock and thus can
4469 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4470 		 * This is necessary as scheduler callbacks may be invoked
4471 		 * from other cpus.
4472 		 */
4473 		schedule();
4474 
4475 		/*
4476 		 * Sched callbacks are disabled now.  Zap nr_running.
4477 		 * After this, nr_running stays zero and need_more_worker()
4478 		 * and keep_working() are always true as long as the
4479 		 * worklist is not empty.  This pool now behaves as an
4480 		 * unbound (in terms of concurrency management) pool which
4481 		 * are served by workers tied to the pool.
4482 		 */
4483 		atomic_set(&pool->nr_running, 0);
4484 
4485 		/*
4486 		 * With concurrency management just turned off, a busy
4487 		 * worker blocking could lead to lengthy stalls.  Kick off
4488 		 * unbound chain execution of currently pending work items.
4489 		 */
4490 		spin_lock_irq(&pool->lock);
4491 		wake_up_worker(pool);
4492 		spin_unlock_irq(&pool->lock);
4493 	}
4494 }
4495 
4496 /**
4497  * rebind_workers - rebind all workers of a pool to the associated CPU
4498  * @pool: pool of interest
4499  *
4500  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4501  */
rebind_workers(struct worker_pool * pool)4502 static void rebind_workers(struct worker_pool *pool)
4503 {
4504 	struct worker *worker;
4505 
4506 	lockdep_assert_held(&pool->attach_mutex);
4507 
4508 	/*
4509 	 * Restore CPU affinity of all workers.  As all idle workers should
4510 	 * be on the run-queue of the associated CPU before any local
4511 	 * wake-ups for concurrency management happen, restore CPU affinity
4512 	 * of all workers first and then clear UNBOUND.  As we're called
4513 	 * from CPU_ONLINE, the following shouldn't fail.
4514 	 */
4515 	for_each_pool_worker(worker, pool)
4516 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4517 						  pool->attrs->cpumask) < 0);
4518 
4519 	spin_lock_irq(&pool->lock);
4520 
4521 	/*
4522 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4523 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4524 	 * being reworked and this can go away in time.
4525 	 */
4526 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4527 		spin_unlock_irq(&pool->lock);
4528 		return;
4529 	}
4530 
4531 	pool->flags &= ~POOL_DISASSOCIATED;
4532 
4533 	for_each_pool_worker(worker, pool) {
4534 		unsigned int worker_flags = worker->flags;
4535 
4536 		/*
4537 		 * A bound idle worker should actually be on the runqueue
4538 		 * of the associated CPU for local wake-ups targeting it to
4539 		 * work.  Kick all idle workers so that they migrate to the
4540 		 * associated CPU.  Doing this in the same loop as
4541 		 * replacing UNBOUND with REBOUND is safe as no worker will
4542 		 * be bound before @pool->lock is released.
4543 		 */
4544 		if (worker_flags & WORKER_IDLE)
4545 			wake_up_process(worker->task);
4546 
4547 		/*
4548 		 * We want to clear UNBOUND but can't directly call
4549 		 * worker_clr_flags() or adjust nr_running.  Atomically
4550 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4551 		 * @worker will clear REBOUND using worker_clr_flags() when
4552 		 * it initiates the next execution cycle thus restoring
4553 		 * concurrency management.  Note that when or whether
4554 		 * @worker clears REBOUND doesn't affect correctness.
4555 		 *
4556 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4557 		 * tested without holding any lock in
4558 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4559 		 * fail incorrectly leading to premature concurrency
4560 		 * management operations.
4561 		 */
4562 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4563 		worker_flags |= WORKER_REBOUND;
4564 		worker_flags &= ~WORKER_UNBOUND;
4565 		ACCESS_ONCE(worker->flags) = worker_flags;
4566 	}
4567 
4568 	spin_unlock_irq(&pool->lock);
4569 }
4570 
4571 /**
4572  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4573  * @pool: unbound pool of interest
4574  * @cpu: the CPU which is coming up
4575  *
4576  * An unbound pool may end up with a cpumask which doesn't have any online
4577  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4578  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4579  * online CPU before, cpus_allowed of all its workers should be restored.
4580  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)4581 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4582 {
4583 	static cpumask_t cpumask;
4584 	struct worker *worker;
4585 
4586 	lockdep_assert_held(&pool->attach_mutex);
4587 
4588 	/* is @cpu allowed for @pool? */
4589 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4590 		return;
4591 
4592 	/* is @cpu the only online CPU? */
4593 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4594 	if (cpumask_weight(&cpumask) != 1)
4595 		return;
4596 
4597 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4598 	for_each_pool_worker(worker, pool)
4599 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4600 						  pool->attrs->cpumask) < 0);
4601 }
4602 
4603 /*
4604  * Workqueues should be brought up before normal priority CPU notifiers.
4605  * This will be registered high priority CPU notifier.
4606  */
workqueue_cpu_up_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4607 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4608 					       unsigned long action,
4609 					       void *hcpu)
4610 {
4611 	int cpu = (unsigned long)hcpu;
4612 	struct worker_pool *pool;
4613 	struct workqueue_struct *wq;
4614 	int pi;
4615 
4616 	switch (action & ~CPU_TASKS_FROZEN) {
4617 	case CPU_UP_PREPARE:
4618 		for_each_cpu_worker_pool(pool, cpu) {
4619 			if (pool->nr_workers)
4620 				continue;
4621 			if (!create_worker(pool))
4622 				return NOTIFY_BAD;
4623 		}
4624 		break;
4625 
4626 	case CPU_DOWN_FAILED:
4627 	case CPU_ONLINE:
4628 		mutex_lock(&wq_pool_mutex);
4629 
4630 		for_each_pool(pool, pi) {
4631 			mutex_lock(&pool->attach_mutex);
4632 
4633 			if (pool->cpu == cpu)
4634 				rebind_workers(pool);
4635 			else if (pool->cpu < 0)
4636 				restore_unbound_workers_cpumask(pool, cpu);
4637 
4638 			mutex_unlock(&pool->attach_mutex);
4639 		}
4640 
4641 		/* update NUMA affinity of unbound workqueues */
4642 		list_for_each_entry(wq, &workqueues, list)
4643 			wq_update_unbound_numa(wq, cpu, true);
4644 
4645 		mutex_unlock(&wq_pool_mutex);
4646 		break;
4647 	}
4648 	return NOTIFY_OK;
4649 }
4650 
4651 /*
4652  * Workqueues should be brought down after normal priority CPU notifiers.
4653  * This will be registered as low priority CPU notifier.
4654  */
workqueue_cpu_down_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)4655 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4656 						 unsigned long action,
4657 						 void *hcpu)
4658 {
4659 	int cpu = (unsigned long)hcpu;
4660 	struct work_struct unbind_work;
4661 	struct workqueue_struct *wq;
4662 
4663 	switch (action & ~CPU_TASKS_FROZEN) {
4664 	case CPU_DOWN_PREPARE:
4665 		/* unbinding per-cpu workers should happen on the local CPU */
4666 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4667 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4668 
4669 		/* update NUMA affinity of unbound workqueues */
4670 		mutex_lock(&wq_pool_mutex);
4671 		list_for_each_entry(wq, &workqueues, list)
4672 			wq_update_unbound_numa(wq, cpu, false);
4673 		mutex_unlock(&wq_pool_mutex);
4674 
4675 		/* wait for per-cpu unbinding to finish */
4676 		flush_work(&unbind_work);
4677 		destroy_work_on_stack(&unbind_work);
4678 		break;
4679 	}
4680 	return NOTIFY_OK;
4681 }
4682 
4683 #ifdef CONFIG_SMP
4684 
4685 struct work_for_cpu {
4686 	struct work_struct work;
4687 	long (*fn)(void *);
4688 	void *arg;
4689 	long ret;
4690 };
4691 
work_for_cpu_fn(struct work_struct * work)4692 static void work_for_cpu_fn(struct work_struct *work)
4693 {
4694 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4695 
4696 	wfc->ret = wfc->fn(wfc->arg);
4697 }
4698 
4699 /**
4700  * work_on_cpu - run a function in user context on a particular cpu
4701  * @cpu: the cpu to run on
4702  * @fn: the function to run
4703  * @arg: the function arg
4704  *
4705  * It is up to the caller to ensure that the cpu doesn't go offline.
4706  * The caller must not hold any locks which would prevent @fn from completing.
4707  *
4708  * Return: The value @fn returns.
4709  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)4710 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4711 {
4712 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4713 
4714 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4715 	schedule_work_on(cpu, &wfc.work);
4716 	flush_work(&wfc.work);
4717 	destroy_work_on_stack(&wfc.work);
4718 	return wfc.ret;
4719 }
4720 EXPORT_SYMBOL_GPL(work_on_cpu);
4721 #endif /* CONFIG_SMP */
4722 
4723 #ifdef CONFIG_FREEZER
4724 
4725 /**
4726  * freeze_workqueues_begin - begin freezing workqueues
4727  *
4728  * Start freezing workqueues.  After this function returns, all freezable
4729  * workqueues will queue new works to their delayed_works list instead of
4730  * pool->worklist.
4731  *
4732  * CONTEXT:
4733  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4734  */
freeze_workqueues_begin(void)4735 void freeze_workqueues_begin(void)
4736 {
4737 	struct workqueue_struct *wq;
4738 	struct pool_workqueue *pwq;
4739 
4740 	mutex_lock(&wq_pool_mutex);
4741 
4742 	WARN_ON_ONCE(workqueue_freezing);
4743 	workqueue_freezing = true;
4744 
4745 	list_for_each_entry(wq, &workqueues, list) {
4746 		mutex_lock(&wq->mutex);
4747 		for_each_pwq(pwq, wq)
4748 			pwq_adjust_max_active(pwq);
4749 		mutex_unlock(&wq->mutex);
4750 	}
4751 
4752 	mutex_unlock(&wq_pool_mutex);
4753 }
4754 
4755 /**
4756  * freeze_workqueues_busy - are freezable workqueues still busy?
4757  *
4758  * Check whether freezing is complete.  This function must be called
4759  * between freeze_workqueues_begin() and thaw_workqueues().
4760  *
4761  * CONTEXT:
4762  * Grabs and releases wq_pool_mutex.
4763  *
4764  * Return:
4765  * %true if some freezable workqueues are still busy.  %false if freezing
4766  * is complete.
4767  */
freeze_workqueues_busy(void)4768 bool freeze_workqueues_busy(void)
4769 {
4770 	bool busy = false;
4771 	struct workqueue_struct *wq;
4772 	struct pool_workqueue *pwq;
4773 
4774 	mutex_lock(&wq_pool_mutex);
4775 
4776 	WARN_ON_ONCE(!workqueue_freezing);
4777 
4778 	list_for_each_entry(wq, &workqueues, list) {
4779 		if (!(wq->flags & WQ_FREEZABLE))
4780 			continue;
4781 		/*
4782 		 * nr_active is monotonically decreasing.  It's safe
4783 		 * to peek without lock.
4784 		 */
4785 		rcu_read_lock_sched();
4786 		for_each_pwq(pwq, wq) {
4787 			WARN_ON_ONCE(pwq->nr_active < 0);
4788 			if (pwq->nr_active) {
4789 				busy = true;
4790 				rcu_read_unlock_sched();
4791 				goto out_unlock;
4792 			}
4793 		}
4794 		rcu_read_unlock_sched();
4795 	}
4796 out_unlock:
4797 	mutex_unlock(&wq_pool_mutex);
4798 	return busy;
4799 }
4800 
4801 /**
4802  * thaw_workqueues - thaw workqueues
4803  *
4804  * Thaw workqueues.  Normal queueing is restored and all collected
4805  * frozen works are transferred to their respective pool worklists.
4806  *
4807  * CONTEXT:
4808  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809  */
thaw_workqueues(void)4810 void thaw_workqueues(void)
4811 {
4812 	struct workqueue_struct *wq;
4813 	struct pool_workqueue *pwq;
4814 
4815 	mutex_lock(&wq_pool_mutex);
4816 
4817 	if (!workqueue_freezing)
4818 		goto out_unlock;
4819 
4820 	workqueue_freezing = false;
4821 
4822 	/* restore max_active and repopulate worklist */
4823 	list_for_each_entry(wq, &workqueues, list) {
4824 		mutex_lock(&wq->mutex);
4825 		for_each_pwq(pwq, wq)
4826 			pwq_adjust_max_active(pwq);
4827 		mutex_unlock(&wq->mutex);
4828 	}
4829 
4830 out_unlock:
4831 	mutex_unlock(&wq_pool_mutex);
4832 }
4833 #endif /* CONFIG_FREEZER */
4834 
workqueue_apply_unbound_cpumask(void)4835 static int workqueue_apply_unbound_cpumask(void)
4836 {
4837 	LIST_HEAD(ctxs);
4838 	int ret = 0;
4839 	struct workqueue_struct *wq;
4840 	struct apply_wqattrs_ctx *ctx, *n;
4841 
4842 	lockdep_assert_held(&wq_pool_mutex);
4843 
4844 	list_for_each_entry(wq, &workqueues, list) {
4845 		if (!(wq->flags & WQ_UNBOUND))
4846 			continue;
4847 		/* creating multiple pwqs breaks ordering guarantee */
4848 		if (wq->flags & __WQ_ORDERED)
4849 			continue;
4850 
4851 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4852 		if (!ctx) {
4853 			ret = -ENOMEM;
4854 			break;
4855 		}
4856 
4857 		list_add_tail(&ctx->list, &ctxs);
4858 	}
4859 
4860 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4861 		if (!ret)
4862 			apply_wqattrs_commit(ctx);
4863 		apply_wqattrs_cleanup(ctx);
4864 	}
4865 
4866 	return ret;
4867 }
4868 
4869 /**
4870  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4871  *  @cpumask: the cpumask to set
4872  *
4873  *  The low-level workqueues cpumask is a global cpumask that limits
4874  *  the affinity of all unbound workqueues.  This function check the @cpumask
4875  *  and apply it to all unbound workqueues and updates all pwqs of them.
4876  *
4877  *  Retun:	0	- Success
4878  *  		-EINVAL	- Invalid @cpumask
4879  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4880  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)4881 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4882 {
4883 	int ret = -EINVAL;
4884 	cpumask_var_t saved_cpumask;
4885 
4886 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4887 		return -ENOMEM;
4888 
4889 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4890 	if (!cpumask_empty(cpumask)) {
4891 		apply_wqattrs_lock();
4892 
4893 		/* save the old wq_unbound_cpumask. */
4894 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4895 
4896 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4897 		cpumask_copy(wq_unbound_cpumask, cpumask);
4898 		ret = workqueue_apply_unbound_cpumask();
4899 
4900 		/* restore the wq_unbound_cpumask when failed. */
4901 		if (ret < 0)
4902 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4903 
4904 		apply_wqattrs_unlock();
4905 	}
4906 
4907 	free_cpumask_var(saved_cpumask);
4908 	return ret;
4909 }
4910 
4911 #ifdef CONFIG_SYSFS
4912 /*
4913  * Workqueues with WQ_SYSFS flag set is visible to userland via
4914  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4915  * following attributes.
4916  *
4917  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4918  *  max_active	RW int	: maximum number of in-flight work items
4919  *
4920  * Unbound workqueues have the following extra attributes.
4921  *
4922  *  id		RO int	: the associated pool ID
4923  *  nice	RW int	: nice value of the workers
4924  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4925  */
4926 struct wq_device {
4927 	struct workqueue_struct		*wq;
4928 	struct device			dev;
4929 };
4930 
dev_to_wq(struct device * dev)4931 static struct workqueue_struct *dev_to_wq(struct device *dev)
4932 {
4933 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4934 
4935 	return wq_dev->wq;
4936 }
4937 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)4938 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4939 			    char *buf)
4940 {
4941 	struct workqueue_struct *wq = dev_to_wq(dev);
4942 
4943 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4944 }
4945 static DEVICE_ATTR_RO(per_cpu);
4946 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)4947 static ssize_t max_active_show(struct device *dev,
4948 			       struct device_attribute *attr, char *buf)
4949 {
4950 	struct workqueue_struct *wq = dev_to_wq(dev);
4951 
4952 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4953 }
4954 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4955 static ssize_t max_active_store(struct device *dev,
4956 				struct device_attribute *attr, const char *buf,
4957 				size_t count)
4958 {
4959 	struct workqueue_struct *wq = dev_to_wq(dev);
4960 	int val;
4961 
4962 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4963 		return -EINVAL;
4964 
4965 	workqueue_set_max_active(wq, val);
4966 	return count;
4967 }
4968 static DEVICE_ATTR_RW(max_active);
4969 
4970 static struct attribute *wq_sysfs_attrs[] = {
4971 	&dev_attr_per_cpu.attr,
4972 	&dev_attr_max_active.attr,
4973 	NULL,
4974 };
4975 ATTRIBUTE_GROUPS(wq_sysfs);
4976 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)4977 static ssize_t wq_pool_ids_show(struct device *dev,
4978 				struct device_attribute *attr, char *buf)
4979 {
4980 	struct workqueue_struct *wq = dev_to_wq(dev);
4981 	const char *delim = "";
4982 	int node, written = 0;
4983 
4984 	rcu_read_lock_sched();
4985 	for_each_node(node) {
4986 		written += scnprintf(buf + written, PAGE_SIZE - written,
4987 				     "%s%d:%d", delim, node,
4988 				     unbound_pwq_by_node(wq, node)->pool->id);
4989 		delim = " ";
4990 	}
4991 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4992 	rcu_read_unlock_sched();
4993 
4994 	return written;
4995 }
4996 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)4997 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4998 			    char *buf)
4999 {
5000 	struct workqueue_struct *wq = dev_to_wq(dev);
5001 	int written;
5002 
5003 	mutex_lock(&wq->mutex);
5004 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5005 	mutex_unlock(&wq->mutex);
5006 
5007 	return written;
5008 }
5009 
5010 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5011 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5012 {
5013 	struct workqueue_attrs *attrs;
5014 
5015 	lockdep_assert_held(&wq_pool_mutex);
5016 
5017 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5018 	if (!attrs)
5019 		return NULL;
5020 
5021 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5022 	return attrs;
5023 }
5024 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5025 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5026 			     const char *buf, size_t count)
5027 {
5028 	struct workqueue_struct *wq = dev_to_wq(dev);
5029 	struct workqueue_attrs *attrs;
5030 	int ret = -ENOMEM;
5031 
5032 	apply_wqattrs_lock();
5033 
5034 	attrs = wq_sysfs_prep_attrs(wq);
5035 	if (!attrs)
5036 		goto out_unlock;
5037 
5038 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5039 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5040 		ret = apply_workqueue_attrs_locked(wq, attrs);
5041 	else
5042 		ret = -EINVAL;
5043 
5044 out_unlock:
5045 	apply_wqattrs_unlock();
5046 	free_workqueue_attrs(attrs);
5047 	return ret ?: count;
5048 }
5049 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5050 static ssize_t wq_cpumask_show(struct device *dev,
5051 			       struct device_attribute *attr, char *buf)
5052 {
5053 	struct workqueue_struct *wq = dev_to_wq(dev);
5054 	int written;
5055 
5056 	mutex_lock(&wq->mutex);
5057 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5058 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5059 	mutex_unlock(&wq->mutex);
5060 	return written;
5061 }
5062 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5063 static ssize_t wq_cpumask_store(struct device *dev,
5064 				struct device_attribute *attr,
5065 				const char *buf, size_t count)
5066 {
5067 	struct workqueue_struct *wq = dev_to_wq(dev);
5068 	struct workqueue_attrs *attrs;
5069 	int ret = -ENOMEM;
5070 
5071 	apply_wqattrs_lock();
5072 
5073 	attrs = wq_sysfs_prep_attrs(wq);
5074 	if (!attrs)
5075 		goto out_unlock;
5076 
5077 	ret = cpumask_parse(buf, attrs->cpumask);
5078 	if (!ret)
5079 		ret = apply_workqueue_attrs_locked(wq, attrs);
5080 
5081 out_unlock:
5082 	apply_wqattrs_unlock();
5083 	free_workqueue_attrs(attrs);
5084 	return ret ?: count;
5085 }
5086 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5087 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5088 			    char *buf)
5089 {
5090 	struct workqueue_struct *wq = dev_to_wq(dev);
5091 	int written;
5092 
5093 	mutex_lock(&wq->mutex);
5094 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5095 			    !wq->unbound_attrs->no_numa);
5096 	mutex_unlock(&wq->mutex);
5097 
5098 	return written;
5099 }
5100 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5101 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5102 			     const char *buf, size_t count)
5103 {
5104 	struct workqueue_struct *wq = dev_to_wq(dev);
5105 	struct workqueue_attrs *attrs;
5106 	int v, ret = -ENOMEM;
5107 
5108 	apply_wqattrs_lock();
5109 
5110 	attrs = wq_sysfs_prep_attrs(wq);
5111 	if (!attrs)
5112 		goto out_unlock;
5113 
5114 	ret = -EINVAL;
5115 	if (sscanf(buf, "%d", &v) == 1) {
5116 		attrs->no_numa = !v;
5117 		ret = apply_workqueue_attrs_locked(wq, attrs);
5118 	}
5119 
5120 out_unlock:
5121 	apply_wqattrs_unlock();
5122 	free_workqueue_attrs(attrs);
5123 	return ret ?: count;
5124 }
5125 
5126 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5127 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5128 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5129 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5130 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5131 	__ATTR_NULL,
5132 };
5133 
5134 static struct bus_type wq_subsys = {
5135 	.name				= "workqueue",
5136 	.dev_groups			= wq_sysfs_groups,
5137 };
5138 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5139 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5140 		struct device_attribute *attr, char *buf)
5141 {
5142 	int written;
5143 
5144 	mutex_lock(&wq_pool_mutex);
5145 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5146 			    cpumask_pr_args(wq_unbound_cpumask));
5147 	mutex_unlock(&wq_pool_mutex);
5148 
5149 	return written;
5150 }
5151 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5152 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5153 		struct device_attribute *attr, const char *buf, size_t count)
5154 {
5155 	cpumask_var_t cpumask;
5156 	int ret;
5157 
5158 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5159 		return -ENOMEM;
5160 
5161 	ret = cpumask_parse(buf, cpumask);
5162 	if (!ret)
5163 		ret = workqueue_set_unbound_cpumask(cpumask);
5164 
5165 	free_cpumask_var(cpumask);
5166 	return ret ? ret : count;
5167 }
5168 
5169 static struct device_attribute wq_sysfs_cpumask_attr =
5170 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5171 	       wq_unbound_cpumask_store);
5172 
wq_sysfs_init(void)5173 static int __init wq_sysfs_init(void)
5174 {
5175 	int err;
5176 
5177 	err = subsys_virtual_register(&wq_subsys, NULL);
5178 	if (err)
5179 		return err;
5180 
5181 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5182 }
5183 core_initcall(wq_sysfs_init);
5184 
wq_device_release(struct device * dev)5185 static void wq_device_release(struct device *dev)
5186 {
5187 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5188 
5189 	kfree(wq_dev);
5190 }
5191 
5192 /**
5193  * workqueue_sysfs_register - make a workqueue visible in sysfs
5194  * @wq: the workqueue to register
5195  *
5196  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5197  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5198  * which is the preferred method.
5199  *
5200  * Workqueue user should use this function directly iff it wants to apply
5201  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5202  * apply_workqueue_attrs() may race against userland updating the
5203  * attributes.
5204  *
5205  * Return: 0 on success, -errno on failure.
5206  */
workqueue_sysfs_register(struct workqueue_struct * wq)5207 int workqueue_sysfs_register(struct workqueue_struct *wq)
5208 {
5209 	struct wq_device *wq_dev;
5210 	int ret;
5211 
5212 	/*
5213 	 * Adjusting max_active or creating new pwqs by applying
5214 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5215 	 * workqueues.
5216 	 */
5217 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5218 		return -EINVAL;
5219 
5220 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5221 	if (!wq_dev)
5222 		return -ENOMEM;
5223 
5224 	wq_dev->wq = wq;
5225 	wq_dev->dev.bus = &wq_subsys;
5226 	wq_dev->dev.init_name = wq->name;
5227 	wq_dev->dev.release = wq_device_release;
5228 
5229 	/*
5230 	 * unbound_attrs are created separately.  Suppress uevent until
5231 	 * everything is ready.
5232 	 */
5233 	dev_set_uevent_suppress(&wq_dev->dev, true);
5234 
5235 	ret = device_register(&wq_dev->dev);
5236 	if (ret) {
5237 		put_device(&wq_dev->dev);
5238 		wq->wq_dev = NULL;
5239 		return ret;
5240 	}
5241 
5242 	if (wq->flags & WQ_UNBOUND) {
5243 		struct device_attribute *attr;
5244 
5245 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5246 			ret = device_create_file(&wq_dev->dev, attr);
5247 			if (ret) {
5248 				device_unregister(&wq_dev->dev);
5249 				wq->wq_dev = NULL;
5250 				return ret;
5251 			}
5252 		}
5253 	}
5254 
5255 	dev_set_uevent_suppress(&wq_dev->dev, false);
5256 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5257 	return 0;
5258 }
5259 
5260 /**
5261  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5262  * @wq: the workqueue to unregister
5263  *
5264  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5265  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5266 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5267 {
5268 	struct wq_device *wq_dev = wq->wq_dev;
5269 
5270 	if (!wq->wq_dev)
5271 		return;
5272 
5273 	wq->wq_dev = NULL;
5274 	device_unregister(&wq_dev->dev);
5275 }
5276 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5277 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5278 #endif	/* CONFIG_SYSFS */
5279 
wq_numa_init(void)5280 static void __init wq_numa_init(void)
5281 {
5282 	cpumask_var_t *tbl;
5283 	int node, cpu;
5284 
5285 	if (num_possible_nodes() <= 1)
5286 		return;
5287 
5288 	if (wq_disable_numa) {
5289 		pr_info("workqueue: NUMA affinity support disabled\n");
5290 		return;
5291 	}
5292 
5293 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5294 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5295 
5296 	/*
5297 	 * We want masks of possible CPUs of each node which isn't readily
5298 	 * available.  Build one from cpu_to_node() which should have been
5299 	 * fully initialized by now.
5300 	 */
5301 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5302 	BUG_ON(!tbl);
5303 
5304 	for_each_node(node)
5305 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5306 				node_online(node) ? node : NUMA_NO_NODE));
5307 
5308 	for_each_possible_cpu(cpu) {
5309 		node = cpu_to_node(cpu);
5310 		if (WARN_ON(node == NUMA_NO_NODE)) {
5311 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5312 			/* happens iff arch is bonkers, let's just proceed */
5313 			return;
5314 		}
5315 		cpumask_set_cpu(cpu, tbl[node]);
5316 	}
5317 
5318 	wq_numa_possible_cpumask = tbl;
5319 	wq_numa_enabled = true;
5320 }
5321 
init_workqueues(void)5322 static int __init init_workqueues(void)
5323 {
5324 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5325 	int i, cpu;
5326 
5327 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5328 
5329 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5330 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5331 
5332 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5333 
5334 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5335 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5336 
5337 	wq_numa_init();
5338 
5339 	/* initialize CPU pools */
5340 	for_each_possible_cpu(cpu) {
5341 		struct worker_pool *pool;
5342 
5343 		i = 0;
5344 		for_each_cpu_worker_pool(pool, cpu) {
5345 			BUG_ON(init_worker_pool(pool));
5346 			pool->cpu = cpu;
5347 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5348 			pool->attrs->nice = std_nice[i++];
5349 			pool->node = cpu_to_node(cpu);
5350 
5351 			/* alloc pool ID */
5352 			mutex_lock(&wq_pool_mutex);
5353 			BUG_ON(worker_pool_assign_id(pool));
5354 			mutex_unlock(&wq_pool_mutex);
5355 		}
5356 	}
5357 
5358 	/* create the initial worker */
5359 	for_each_online_cpu(cpu) {
5360 		struct worker_pool *pool;
5361 
5362 		for_each_cpu_worker_pool(pool, cpu) {
5363 			pool->flags &= ~POOL_DISASSOCIATED;
5364 			BUG_ON(!create_worker(pool));
5365 		}
5366 	}
5367 
5368 	/* create default unbound and ordered wq attrs */
5369 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5370 		struct workqueue_attrs *attrs;
5371 
5372 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5373 		attrs->nice = std_nice[i];
5374 		unbound_std_wq_attrs[i] = attrs;
5375 
5376 		/*
5377 		 * An ordered wq should have only one pwq as ordering is
5378 		 * guaranteed by max_active which is enforced by pwqs.
5379 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5380 		 */
5381 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5382 		attrs->nice = std_nice[i];
5383 		attrs->no_numa = true;
5384 		ordered_wq_attrs[i] = attrs;
5385 	}
5386 
5387 	system_wq = alloc_workqueue("events", 0, 0);
5388 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5389 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5390 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5391 					    WQ_UNBOUND_MAX_ACTIVE);
5392 	system_freezable_wq = alloc_workqueue("events_freezable",
5393 					      WQ_FREEZABLE, 0);
5394 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5395 					      WQ_POWER_EFFICIENT, 0);
5396 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5397 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5398 					      0);
5399 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5400 	       !system_unbound_wq || !system_freezable_wq ||
5401 	       !system_power_efficient_wq ||
5402 	       !system_freezable_power_efficient_wq);
5403 	return 0;
5404 }
5405 early_initcall(init_workqueues);
5406