1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/mm.h>
45 #include <linux/mempolicy.h>
46
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/binfmts.h>
52
53 #include <linux/sched.h>
54 #include <linux/rcupdate.h>
55 #include <linux/uidgid.h>
56 #include <linux/cred.h>
57
58 #include <linux/nospec.h>
59
60 #include <linux/kmsg_dump.h>
61 /* Move somewhere else to avoid recompiling? */
62 #include <generated/utsrelease.h>
63
64 #include <asm/uaccess.h>
65 #include <asm/io.h>
66 #include <asm/unistd.h>
67
68 #ifndef SET_UNALIGN_CTL
69 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
70 #endif
71 #ifndef GET_UNALIGN_CTL
72 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
73 #endif
74 #ifndef SET_FPEMU_CTL
75 # define SET_FPEMU_CTL(a, b) (-EINVAL)
76 #endif
77 #ifndef GET_FPEMU_CTL
78 # define GET_FPEMU_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef SET_FPEXC_CTL
81 # define SET_FPEXC_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef GET_FPEXC_CTL
84 # define GET_FPEXC_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef GET_ENDIAN
87 # define GET_ENDIAN(a, b) (-EINVAL)
88 #endif
89 #ifndef SET_ENDIAN
90 # define SET_ENDIAN(a, b) (-EINVAL)
91 #endif
92 #ifndef GET_TSC_CTL
93 # define GET_TSC_CTL(a) (-EINVAL)
94 #endif
95 #ifndef SET_TSC_CTL
96 # define SET_TSC_CTL(a) (-EINVAL)
97 #endif
98 #ifndef MPX_ENABLE_MANAGEMENT
99 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
100 #endif
101 #ifndef MPX_DISABLE_MANAGEMENT
102 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
103 #endif
104 #ifndef GET_FP_MODE
105 # define GET_FP_MODE(a) (-EINVAL)
106 #endif
107 #ifndef SET_FP_MODE
108 # define SET_FP_MODE(a,b) (-EINVAL)
109 #endif
110
111 /*
112 * this is where the system-wide overflow UID and GID are defined, for
113 * architectures that now have 32-bit UID/GID but didn't in the past
114 */
115
116 int overflowuid = DEFAULT_OVERFLOWUID;
117 int overflowgid = DEFAULT_OVERFLOWGID;
118
119 EXPORT_SYMBOL(overflowuid);
120 EXPORT_SYMBOL(overflowgid);
121
122 /*
123 * the same as above, but for filesystems which can only store a 16-bit
124 * UID and GID. as such, this is needed on all architectures
125 */
126
127 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
128 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
129
130 EXPORT_SYMBOL(fs_overflowuid);
131 EXPORT_SYMBOL(fs_overflowgid);
132
133 /*
134 * Returns true if current's euid is same as p's uid or euid,
135 * or has CAP_SYS_NICE to p's user_ns.
136 *
137 * Called with rcu_read_lock, creds are safe
138 */
set_one_prio_perm(struct task_struct * p)139 static bool set_one_prio_perm(struct task_struct *p)
140 {
141 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
142
143 if (uid_eq(pcred->uid, cred->euid) ||
144 uid_eq(pcred->euid, cred->euid))
145 return true;
146 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
147 return true;
148 return false;
149 }
150
151 /*
152 * set the priority of a task
153 * - the caller must hold the RCU read lock
154 */
set_one_prio(struct task_struct * p,int niceval,int error)155 static int set_one_prio(struct task_struct *p, int niceval, int error)
156 {
157 int no_nice;
158
159 if (!set_one_prio_perm(p)) {
160 error = -EPERM;
161 goto out;
162 }
163 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
164 error = -EACCES;
165 goto out;
166 }
167 no_nice = security_task_setnice(p, niceval);
168 if (no_nice) {
169 error = no_nice;
170 goto out;
171 }
172 if (error == -ESRCH)
173 error = 0;
174 set_user_nice(p, niceval);
175 out:
176 return error;
177 }
178
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)179 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
180 {
181 struct task_struct *g, *p;
182 struct user_struct *user;
183 const struct cred *cred = current_cred();
184 int error = -EINVAL;
185 struct pid *pgrp;
186 kuid_t uid;
187
188 if (which > PRIO_USER || which < PRIO_PROCESS)
189 goto out;
190
191 /* normalize: avoid signed division (rounding problems) */
192 error = -ESRCH;
193 if (niceval < MIN_NICE)
194 niceval = MIN_NICE;
195 if (niceval > MAX_NICE)
196 niceval = MAX_NICE;
197
198 rcu_read_lock();
199 read_lock(&tasklist_lock);
200 switch (which) {
201 case PRIO_PROCESS:
202 if (who)
203 p = find_task_by_vpid(who);
204 else
205 p = current;
206 if (p)
207 error = set_one_prio(p, niceval, error);
208 break;
209 case PRIO_PGRP:
210 if (who)
211 pgrp = find_vpid(who);
212 else
213 pgrp = task_pgrp(current);
214 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
215 error = set_one_prio(p, niceval, error);
216 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
217 break;
218 case PRIO_USER:
219 uid = make_kuid(cred->user_ns, who);
220 user = cred->user;
221 if (!who)
222 uid = cred->uid;
223 else if (!uid_eq(uid, cred->uid)) {
224 user = find_user(uid);
225 if (!user)
226 goto out_unlock; /* No processes for this user */
227 }
228 do_each_thread(g, p) {
229 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
230 error = set_one_prio(p, niceval, error);
231 } while_each_thread(g, p);
232 if (!uid_eq(uid, cred->uid))
233 free_uid(user); /* For find_user() */
234 break;
235 }
236 out_unlock:
237 read_unlock(&tasklist_lock);
238 rcu_read_unlock();
239 out:
240 return error;
241 }
242
243 /*
244 * Ugh. To avoid negative return values, "getpriority()" will
245 * not return the normal nice-value, but a negated value that
246 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
247 * to stay compatible.
248 */
SYSCALL_DEFINE2(getpriority,int,which,int,who)249 SYSCALL_DEFINE2(getpriority, int, which, int, who)
250 {
251 struct task_struct *g, *p;
252 struct user_struct *user;
253 const struct cred *cred = current_cred();
254 long niceval, retval = -ESRCH;
255 struct pid *pgrp;
256 kuid_t uid;
257
258 if (which > PRIO_USER || which < PRIO_PROCESS)
259 return -EINVAL;
260
261 rcu_read_lock();
262 read_lock(&tasklist_lock);
263 switch (which) {
264 case PRIO_PROCESS:
265 if (who)
266 p = find_task_by_vpid(who);
267 else
268 p = current;
269 if (p) {
270 niceval = nice_to_rlimit(task_nice(p));
271 if (niceval > retval)
272 retval = niceval;
273 }
274 break;
275 case PRIO_PGRP:
276 if (who)
277 pgrp = find_vpid(who);
278 else
279 pgrp = task_pgrp(current);
280 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
281 niceval = nice_to_rlimit(task_nice(p));
282 if (niceval > retval)
283 retval = niceval;
284 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
285 break;
286 case PRIO_USER:
287 uid = make_kuid(cred->user_ns, who);
288 user = cred->user;
289 if (!who)
290 uid = cred->uid;
291 else if (!uid_eq(uid, cred->uid)) {
292 user = find_user(uid);
293 if (!user)
294 goto out_unlock; /* No processes for this user */
295 }
296 do_each_thread(g, p) {
297 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 }
302 } while_each_thread(g, p);
303 if (!uid_eq(uid, cred->uid))
304 free_uid(user); /* for find_user() */
305 break;
306 }
307 out_unlock:
308 read_unlock(&tasklist_lock);
309 rcu_read_unlock();
310
311 return retval;
312 }
313
314 /*
315 * Unprivileged users may change the real gid to the effective gid
316 * or vice versa. (BSD-style)
317 *
318 * If you set the real gid at all, or set the effective gid to a value not
319 * equal to the real gid, then the saved gid is set to the new effective gid.
320 *
321 * This makes it possible for a setgid program to completely drop its
322 * privileges, which is often a useful assertion to make when you are doing
323 * a security audit over a program.
324 *
325 * The general idea is that a program which uses just setregid() will be
326 * 100% compatible with BSD. A program which uses just setgid() will be
327 * 100% compatible with POSIX with saved IDs.
328 *
329 * SMP: There are not races, the GIDs are checked only by filesystem
330 * operations (as far as semantic preservation is concerned).
331 */
332 #ifdef CONFIG_MULTIUSER
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)333 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
334 {
335 struct user_namespace *ns = current_user_ns();
336 const struct cred *old;
337 struct cred *new;
338 int retval;
339 kgid_t krgid, kegid;
340
341 krgid = make_kgid(ns, rgid);
342 kegid = make_kgid(ns, egid);
343
344 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
345 return -EINVAL;
346 if ((egid != (gid_t) -1) && !gid_valid(kegid))
347 return -EINVAL;
348
349 new = prepare_creds();
350 if (!new)
351 return -ENOMEM;
352 old = current_cred();
353
354 retval = -EPERM;
355 if (rgid != (gid_t) -1) {
356 if (gid_eq(old->gid, krgid) ||
357 gid_eq(old->egid, krgid) ||
358 ns_capable(old->user_ns, CAP_SETGID))
359 new->gid = krgid;
360 else
361 goto error;
362 }
363 if (egid != (gid_t) -1) {
364 if (gid_eq(old->gid, kegid) ||
365 gid_eq(old->egid, kegid) ||
366 gid_eq(old->sgid, kegid) ||
367 ns_capable(old->user_ns, CAP_SETGID))
368 new->egid = kegid;
369 else
370 goto error;
371 }
372
373 if (rgid != (gid_t) -1 ||
374 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
375 new->sgid = new->egid;
376 new->fsgid = new->egid;
377
378 return commit_creds(new);
379
380 error:
381 abort_creds(new);
382 return retval;
383 }
384
385 /*
386 * setgid() is implemented like SysV w/ SAVED_IDS
387 *
388 * SMP: Same implicit races as above.
389 */
SYSCALL_DEFINE1(setgid,gid_t,gid)390 SYSCALL_DEFINE1(setgid, gid_t, gid)
391 {
392 struct user_namespace *ns = current_user_ns();
393 const struct cred *old;
394 struct cred *new;
395 int retval;
396 kgid_t kgid;
397
398 kgid = make_kgid(ns, gid);
399 if (!gid_valid(kgid))
400 return -EINVAL;
401
402 new = prepare_creds();
403 if (!new)
404 return -ENOMEM;
405 old = current_cred();
406
407 retval = -EPERM;
408 if (ns_capable(old->user_ns, CAP_SETGID))
409 new->gid = new->egid = new->sgid = new->fsgid = kgid;
410 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
411 new->egid = new->fsgid = kgid;
412 else
413 goto error;
414
415 return commit_creds(new);
416
417 error:
418 abort_creds(new);
419 return retval;
420 }
421
422 /*
423 * change the user struct in a credentials set to match the new UID
424 */
set_user(struct cred * new)425 static int set_user(struct cred *new)
426 {
427 struct user_struct *new_user;
428
429 new_user = alloc_uid(new->uid);
430 if (!new_user)
431 return -EAGAIN;
432
433 /*
434 * We don't fail in case of NPROC limit excess here because too many
435 * poorly written programs don't check set*uid() return code, assuming
436 * it never fails if called by root. We may still enforce NPROC limit
437 * for programs doing set*uid()+execve() by harmlessly deferring the
438 * failure to the execve() stage.
439 */
440 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
441 new_user != INIT_USER)
442 current->flags |= PF_NPROC_EXCEEDED;
443 else
444 current->flags &= ~PF_NPROC_EXCEEDED;
445
446 free_uid(new->user);
447 new->user = new_user;
448 return 0;
449 }
450
451 /*
452 * Unprivileged users may change the real uid to the effective uid
453 * or vice versa. (BSD-style)
454 *
455 * If you set the real uid at all, or set the effective uid to a value not
456 * equal to the real uid, then the saved uid is set to the new effective uid.
457 *
458 * This makes it possible for a setuid program to completely drop its
459 * privileges, which is often a useful assertion to make when you are doing
460 * a security audit over a program.
461 *
462 * The general idea is that a program which uses just setreuid() will be
463 * 100% compatible with BSD. A program which uses just setuid() will be
464 * 100% compatible with POSIX with saved IDs.
465 */
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)466 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
467 {
468 struct user_namespace *ns = current_user_ns();
469 const struct cred *old;
470 struct cred *new;
471 int retval;
472 kuid_t kruid, keuid;
473
474 kruid = make_kuid(ns, ruid);
475 keuid = make_kuid(ns, euid);
476
477 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
478 return -EINVAL;
479 if ((euid != (uid_t) -1) && !uid_valid(keuid))
480 return -EINVAL;
481
482 new = prepare_creds();
483 if (!new)
484 return -ENOMEM;
485 old = current_cred();
486
487 retval = -EPERM;
488 if (ruid != (uid_t) -1) {
489 new->uid = kruid;
490 if (!uid_eq(old->uid, kruid) &&
491 !uid_eq(old->euid, kruid) &&
492 !ns_capable(old->user_ns, CAP_SETUID))
493 goto error;
494 }
495
496 if (euid != (uid_t) -1) {
497 new->euid = keuid;
498 if (!uid_eq(old->uid, keuid) &&
499 !uid_eq(old->euid, keuid) &&
500 !uid_eq(old->suid, keuid) &&
501 !ns_capable(old->user_ns, CAP_SETUID))
502 goto error;
503 }
504
505 if (!uid_eq(new->uid, old->uid)) {
506 retval = set_user(new);
507 if (retval < 0)
508 goto error;
509 }
510 if (ruid != (uid_t) -1 ||
511 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
512 new->suid = new->euid;
513 new->fsuid = new->euid;
514
515 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
516 if (retval < 0)
517 goto error;
518
519 return commit_creds(new);
520
521 error:
522 abort_creds(new);
523 return retval;
524 }
525
526 /*
527 * setuid() is implemented like SysV with SAVED_IDS
528 *
529 * Note that SAVED_ID's is deficient in that a setuid root program
530 * like sendmail, for example, cannot set its uid to be a normal
531 * user and then switch back, because if you're root, setuid() sets
532 * the saved uid too. If you don't like this, blame the bright people
533 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
534 * will allow a root program to temporarily drop privileges and be able to
535 * regain them by swapping the real and effective uid.
536 */
SYSCALL_DEFINE1(setuid,uid_t,uid)537 SYSCALL_DEFINE1(setuid, uid_t, uid)
538 {
539 struct user_namespace *ns = current_user_ns();
540 const struct cred *old;
541 struct cred *new;
542 int retval;
543 kuid_t kuid;
544
545 kuid = make_kuid(ns, uid);
546 if (!uid_valid(kuid))
547 return -EINVAL;
548
549 new = prepare_creds();
550 if (!new)
551 return -ENOMEM;
552 old = current_cred();
553
554 retval = -EPERM;
555 if (ns_capable(old->user_ns, CAP_SETUID)) {
556 new->suid = new->uid = kuid;
557 if (!uid_eq(kuid, old->uid)) {
558 retval = set_user(new);
559 if (retval < 0)
560 goto error;
561 }
562 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
563 goto error;
564 }
565
566 new->fsuid = new->euid = kuid;
567
568 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
569 if (retval < 0)
570 goto error;
571
572 return commit_creds(new);
573
574 error:
575 abort_creds(new);
576 return retval;
577 }
578
579
580 /*
581 * This function implements a generic ability to update ruid, euid,
582 * and suid. This allows you to implement the 4.4 compatible seteuid().
583 */
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)584 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
585 {
586 struct user_namespace *ns = current_user_ns();
587 const struct cred *old;
588 struct cred *new;
589 int retval;
590 kuid_t kruid, keuid, ksuid;
591
592 kruid = make_kuid(ns, ruid);
593 keuid = make_kuid(ns, euid);
594 ksuid = make_kuid(ns, suid);
595
596 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
597 return -EINVAL;
598
599 if ((euid != (uid_t) -1) && !uid_valid(keuid))
600 return -EINVAL;
601
602 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
603 return -EINVAL;
604
605 new = prepare_creds();
606 if (!new)
607 return -ENOMEM;
608
609 old = current_cred();
610
611 retval = -EPERM;
612 if (!ns_capable(old->user_ns, CAP_SETUID)) {
613 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
614 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
615 goto error;
616 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
617 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
618 goto error;
619 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
620 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
621 goto error;
622 }
623
624 if (ruid != (uid_t) -1) {
625 new->uid = kruid;
626 if (!uid_eq(kruid, old->uid)) {
627 retval = set_user(new);
628 if (retval < 0)
629 goto error;
630 }
631 }
632 if (euid != (uid_t) -1)
633 new->euid = keuid;
634 if (suid != (uid_t) -1)
635 new->suid = ksuid;
636 new->fsuid = new->euid;
637
638 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
639 if (retval < 0)
640 goto error;
641
642 return commit_creds(new);
643
644 error:
645 abort_creds(new);
646 return retval;
647 }
648
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)649 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
650 {
651 const struct cred *cred = current_cred();
652 int retval;
653 uid_t ruid, euid, suid;
654
655 ruid = from_kuid_munged(cred->user_ns, cred->uid);
656 euid = from_kuid_munged(cred->user_ns, cred->euid);
657 suid = from_kuid_munged(cred->user_ns, cred->suid);
658
659 retval = put_user(ruid, ruidp);
660 if (!retval) {
661 retval = put_user(euid, euidp);
662 if (!retval)
663 return put_user(suid, suidp);
664 }
665 return retval;
666 }
667
668 /*
669 * Same as above, but for rgid, egid, sgid.
670 */
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)671 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
672 {
673 struct user_namespace *ns = current_user_ns();
674 const struct cred *old;
675 struct cred *new;
676 int retval;
677 kgid_t krgid, kegid, ksgid;
678
679 krgid = make_kgid(ns, rgid);
680 kegid = make_kgid(ns, egid);
681 ksgid = make_kgid(ns, sgid);
682
683 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
684 return -EINVAL;
685 if ((egid != (gid_t) -1) && !gid_valid(kegid))
686 return -EINVAL;
687 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
688 return -EINVAL;
689
690 new = prepare_creds();
691 if (!new)
692 return -ENOMEM;
693 old = current_cred();
694
695 retval = -EPERM;
696 if (!ns_capable(old->user_ns, CAP_SETGID)) {
697 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
698 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
699 goto error;
700 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
701 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
702 goto error;
703 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
704 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
705 goto error;
706 }
707
708 if (rgid != (gid_t) -1)
709 new->gid = krgid;
710 if (egid != (gid_t) -1)
711 new->egid = kegid;
712 if (sgid != (gid_t) -1)
713 new->sgid = ksgid;
714 new->fsgid = new->egid;
715
716 return commit_creds(new);
717
718 error:
719 abort_creds(new);
720 return retval;
721 }
722
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)723 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
724 {
725 const struct cred *cred = current_cred();
726 int retval;
727 gid_t rgid, egid, sgid;
728
729 rgid = from_kgid_munged(cred->user_ns, cred->gid);
730 egid = from_kgid_munged(cred->user_ns, cred->egid);
731 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
732
733 retval = put_user(rgid, rgidp);
734 if (!retval) {
735 retval = put_user(egid, egidp);
736 if (!retval)
737 retval = put_user(sgid, sgidp);
738 }
739
740 return retval;
741 }
742
743
744 /*
745 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
746 * is used for "access()" and for the NFS daemon (letting nfsd stay at
747 * whatever uid it wants to). It normally shadows "euid", except when
748 * explicitly set by setfsuid() or for access..
749 */
SYSCALL_DEFINE1(setfsuid,uid_t,uid)750 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
751 {
752 const struct cred *old;
753 struct cred *new;
754 uid_t old_fsuid;
755 kuid_t kuid;
756
757 old = current_cred();
758 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
759
760 kuid = make_kuid(old->user_ns, uid);
761 if (!uid_valid(kuid))
762 return old_fsuid;
763
764 new = prepare_creds();
765 if (!new)
766 return old_fsuid;
767
768 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
769 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
770 ns_capable(old->user_ns, CAP_SETUID)) {
771 if (!uid_eq(kuid, old->fsuid)) {
772 new->fsuid = kuid;
773 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
774 goto change_okay;
775 }
776 }
777
778 abort_creds(new);
779 return old_fsuid;
780
781 change_okay:
782 commit_creds(new);
783 return old_fsuid;
784 }
785
786 /*
787 * Samma på svenska..
788 */
SYSCALL_DEFINE1(setfsgid,gid_t,gid)789 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
790 {
791 const struct cred *old;
792 struct cred *new;
793 gid_t old_fsgid;
794 kgid_t kgid;
795
796 old = current_cred();
797 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
798
799 kgid = make_kgid(old->user_ns, gid);
800 if (!gid_valid(kgid))
801 return old_fsgid;
802
803 new = prepare_creds();
804 if (!new)
805 return old_fsgid;
806
807 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
808 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
809 ns_capable(old->user_ns, CAP_SETGID)) {
810 if (!gid_eq(kgid, old->fsgid)) {
811 new->fsgid = kgid;
812 goto change_okay;
813 }
814 }
815
816 abort_creds(new);
817 return old_fsgid;
818
819 change_okay:
820 commit_creds(new);
821 return old_fsgid;
822 }
823 #endif /* CONFIG_MULTIUSER */
824
825 /**
826 * sys_getpid - return the thread group id of the current process
827 *
828 * Note, despite the name, this returns the tgid not the pid. The tgid and
829 * the pid are identical unless CLONE_THREAD was specified on clone() in
830 * which case the tgid is the same in all threads of the same group.
831 *
832 * This is SMP safe as current->tgid does not change.
833 */
SYSCALL_DEFINE0(getpid)834 SYSCALL_DEFINE0(getpid)
835 {
836 return task_tgid_vnr(current);
837 }
838
839 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)840 SYSCALL_DEFINE0(gettid)
841 {
842 return task_pid_vnr(current);
843 }
844
845 /*
846 * Accessing ->real_parent is not SMP-safe, it could
847 * change from under us. However, we can use a stale
848 * value of ->real_parent under rcu_read_lock(), see
849 * release_task()->call_rcu(delayed_put_task_struct).
850 */
SYSCALL_DEFINE0(getppid)851 SYSCALL_DEFINE0(getppid)
852 {
853 int pid;
854
855 rcu_read_lock();
856 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
857 rcu_read_unlock();
858
859 return pid;
860 }
861
SYSCALL_DEFINE0(getuid)862 SYSCALL_DEFINE0(getuid)
863 {
864 /* Only we change this so SMP safe */
865 return from_kuid_munged(current_user_ns(), current_uid());
866 }
867
SYSCALL_DEFINE0(geteuid)868 SYSCALL_DEFINE0(geteuid)
869 {
870 /* Only we change this so SMP safe */
871 return from_kuid_munged(current_user_ns(), current_euid());
872 }
873
SYSCALL_DEFINE0(getgid)874 SYSCALL_DEFINE0(getgid)
875 {
876 /* Only we change this so SMP safe */
877 return from_kgid_munged(current_user_ns(), current_gid());
878 }
879
SYSCALL_DEFINE0(getegid)880 SYSCALL_DEFINE0(getegid)
881 {
882 /* Only we change this so SMP safe */
883 return from_kgid_munged(current_user_ns(), current_egid());
884 }
885
do_sys_times(struct tms * tms)886 void do_sys_times(struct tms *tms)
887 {
888 cputime_t tgutime, tgstime, cutime, cstime;
889
890 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
891 cutime = current->signal->cutime;
892 cstime = current->signal->cstime;
893 tms->tms_utime = cputime_to_clock_t(tgutime);
894 tms->tms_stime = cputime_to_clock_t(tgstime);
895 tms->tms_cutime = cputime_to_clock_t(cutime);
896 tms->tms_cstime = cputime_to_clock_t(cstime);
897 }
898
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)899 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
900 {
901 if (tbuf) {
902 struct tms tmp;
903
904 do_sys_times(&tmp);
905 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
906 return -EFAULT;
907 }
908 force_successful_syscall_return();
909 return (long) jiffies_64_to_clock_t(get_jiffies_64());
910 }
911
912 /*
913 * This needs some heavy checking ...
914 * I just haven't the stomach for it. I also don't fully
915 * understand sessions/pgrp etc. Let somebody who does explain it.
916 *
917 * OK, I think I have the protection semantics right.... this is really
918 * only important on a multi-user system anyway, to make sure one user
919 * can't send a signal to a process owned by another. -TYT, 12/12/91
920 *
921 * !PF_FORKNOEXEC check to conform completely to POSIX.
922 */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)923 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
924 {
925 struct task_struct *p;
926 struct task_struct *group_leader = current->group_leader;
927 struct pid *pgrp;
928 int err;
929
930 if (!pid)
931 pid = task_pid_vnr(group_leader);
932 if (!pgid)
933 pgid = pid;
934 if (pgid < 0)
935 return -EINVAL;
936 rcu_read_lock();
937
938 /* From this point forward we keep holding onto the tasklist lock
939 * so that our parent does not change from under us. -DaveM
940 */
941 write_lock_irq(&tasklist_lock);
942
943 err = -ESRCH;
944 p = find_task_by_vpid(pid);
945 if (!p)
946 goto out;
947
948 err = -EINVAL;
949 if (!thread_group_leader(p))
950 goto out;
951
952 if (same_thread_group(p->real_parent, group_leader)) {
953 err = -EPERM;
954 if (task_session(p) != task_session(group_leader))
955 goto out;
956 err = -EACCES;
957 if (!(p->flags & PF_FORKNOEXEC))
958 goto out;
959 } else {
960 err = -ESRCH;
961 if (p != group_leader)
962 goto out;
963 }
964
965 err = -EPERM;
966 if (p->signal->leader)
967 goto out;
968
969 pgrp = task_pid(p);
970 if (pgid != pid) {
971 struct task_struct *g;
972
973 pgrp = find_vpid(pgid);
974 g = pid_task(pgrp, PIDTYPE_PGID);
975 if (!g || task_session(g) != task_session(group_leader))
976 goto out;
977 }
978
979 err = security_task_setpgid(p, pgid);
980 if (err)
981 goto out;
982
983 if (task_pgrp(p) != pgrp)
984 change_pid(p, PIDTYPE_PGID, pgrp);
985
986 err = 0;
987 out:
988 /* All paths lead to here, thus we are safe. -DaveM */
989 write_unlock_irq(&tasklist_lock);
990 rcu_read_unlock();
991 return err;
992 }
993
SYSCALL_DEFINE1(getpgid,pid_t,pid)994 SYSCALL_DEFINE1(getpgid, pid_t, pid)
995 {
996 struct task_struct *p;
997 struct pid *grp;
998 int retval;
999
1000 rcu_read_lock();
1001 if (!pid)
1002 grp = task_pgrp(current);
1003 else {
1004 retval = -ESRCH;
1005 p = find_task_by_vpid(pid);
1006 if (!p)
1007 goto out;
1008 grp = task_pgrp(p);
1009 if (!grp)
1010 goto out;
1011
1012 retval = security_task_getpgid(p);
1013 if (retval)
1014 goto out;
1015 }
1016 retval = pid_vnr(grp);
1017 out:
1018 rcu_read_unlock();
1019 return retval;
1020 }
1021
1022 #ifdef __ARCH_WANT_SYS_GETPGRP
1023
SYSCALL_DEFINE0(getpgrp)1024 SYSCALL_DEFINE0(getpgrp)
1025 {
1026 return sys_getpgid(0);
1027 }
1028
1029 #endif
1030
SYSCALL_DEFINE1(getsid,pid_t,pid)1031 SYSCALL_DEFINE1(getsid, pid_t, pid)
1032 {
1033 struct task_struct *p;
1034 struct pid *sid;
1035 int retval;
1036
1037 rcu_read_lock();
1038 if (!pid)
1039 sid = task_session(current);
1040 else {
1041 retval = -ESRCH;
1042 p = find_task_by_vpid(pid);
1043 if (!p)
1044 goto out;
1045 sid = task_session(p);
1046 if (!sid)
1047 goto out;
1048
1049 retval = security_task_getsid(p);
1050 if (retval)
1051 goto out;
1052 }
1053 retval = pid_vnr(sid);
1054 out:
1055 rcu_read_unlock();
1056 return retval;
1057 }
1058
set_special_pids(struct pid * pid)1059 static void set_special_pids(struct pid *pid)
1060 {
1061 struct task_struct *curr = current->group_leader;
1062
1063 if (task_session(curr) != pid)
1064 change_pid(curr, PIDTYPE_SID, pid);
1065
1066 if (task_pgrp(curr) != pid)
1067 change_pid(curr, PIDTYPE_PGID, pid);
1068 }
1069
SYSCALL_DEFINE0(setsid)1070 SYSCALL_DEFINE0(setsid)
1071 {
1072 struct task_struct *group_leader = current->group_leader;
1073 struct pid *sid = task_pid(group_leader);
1074 pid_t session = pid_vnr(sid);
1075 int err = -EPERM;
1076
1077 write_lock_irq(&tasklist_lock);
1078 /* Fail if I am already a session leader */
1079 if (group_leader->signal->leader)
1080 goto out;
1081
1082 /* Fail if a process group id already exists that equals the
1083 * proposed session id.
1084 */
1085 if (pid_task(sid, PIDTYPE_PGID))
1086 goto out;
1087
1088 group_leader->signal->leader = 1;
1089 set_special_pids(sid);
1090
1091 proc_clear_tty(group_leader);
1092
1093 err = session;
1094 out:
1095 write_unlock_irq(&tasklist_lock);
1096 if (err > 0) {
1097 proc_sid_connector(group_leader);
1098 sched_autogroup_create_attach(group_leader);
1099 }
1100 return err;
1101 }
1102
1103 DECLARE_RWSEM(uts_sem);
1104
1105 #ifdef COMPAT_UTS_MACHINE
1106 #define override_architecture(name) \
1107 (personality(current->personality) == PER_LINUX32 && \
1108 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1109 sizeof(COMPAT_UTS_MACHINE)))
1110 #else
1111 #define override_architecture(name) 0
1112 #endif
1113
1114 /*
1115 * Work around broken programs that cannot handle "Linux 3.0".
1116 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1117 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1118 */
override_release(char __user * release,size_t len)1119 static int override_release(char __user *release, size_t len)
1120 {
1121 int ret = 0;
1122
1123 if (current->personality & UNAME26) {
1124 const char *rest = UTS_RELEASE;
1125 char buf[65] = { 0 };
1126 int ndots = 0;
1127 unsigned v;
1128 size_t copy;
1129
1130 while (*rest) {
1131 if (*rest == '.' && ++ndots >= 3)
1132 break;
1133 if (!isdigit(*rest) && *rest != '.')
1134 break;
1135 rest++;
1136 }
1137 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1138 copy = clamp_t(size_t, len, 1, sizeof(buf));
1139 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1140 ret = copy_to_user(release, buf, copy + 1);
1141 }
1142 return ret;
1143 }
1144
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1145 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1146 {
1147 struct new_utsname tmp;
1148
1149 down_read(&uts_sem);
1150 memcpy(&tmp, utsname(), sizeof(tmp));
1151 up_read(&uts_sem);
1152 if (copy_to_user(name, &tmp, sizeof(tmp)))
1153 return -EFAULT;
1154
1155 if (override_release(name->release, sizeof(name->release)))
1156 return -EFAULT;
1157 if (override_architecture(name))
1158 return -EFAULT;
1159 return 0;
1160 }
1161
1162 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1163 /*
1164 * Old cruft
1165 */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1166 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1167 {
1168 struct old_utsname tmp;
1169
1170 if (!name)
1171 return -EFAULT;
1172
1173 down_read(&uts_sem);
1174 memcpy(&tmp, utsname(), sizeof(tmp));
1175 up_read(&uts_sem);
1176 if (copy_to_user(name, &tmp, sizeof(tmp)))
1177 return -EFAULT;
1178
1179 if (override_release(name->release, sizeof(name->release)))
1180 return -EFAULT;
1181 if (override_architecture(name))
1182 return -EFAULT;
1183 return 0;
1184 }
1185
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1186 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1187 {
1188 struct oldold_utsname tmp;
1189
1190 if (!name)
1191 return -EFAULT;
1192
1193 memset(&tmp, 0, sizeof(tmp));
1194
1195 down_read(&uts_sem);
1196 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1197 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1198 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1199 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1200 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1201 up_read(&uts_sem);
1202 if (copy_to_user(name, &tmp, sizeof(tmp)))
1203 return -EFAULT;
1204
1205 if (override_architecture(name))
1206 return -EFAULT;
1207 if (override_release(name->release, sizeof(name->release)))
1208 return -EFAULT;
1209 return 0;
1210 }
1211 #endif
1212
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1213 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1214 {
1215 int errno;
1216 char tmp[__NEW_UTS_LEN];
1217
1218 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1219 return -EPERM;
1220
1221 if (len < 0 || len > __NEW_UTS_LEN)
1222 return -EINVAL;
1223 errno = -EFAULT;
1224 if (!copy_from_user(tmp, name, len)) {
1225 struct new_utsname *u;
1226
1227 down_write(&uts_sem);
1228 u = utsname();
1229 memcpy(u->nodename, tmp, len);
1230 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1231 errno = 0;
1232 uts_proc_notify(UTS_PROC_HOSTNAME);
1233 up_write(&uts_sem);
1234 }
1235 return errno;
1236 }
1237
1238 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1239
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1240 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1241 {
1242 int i;
1243 struct new_utsname *u;
1244 char tmp[__NEW_UTS_LEN + 1];
1245
1246 if (len < 0)
1247 return -EINVAL;
1248 down_read(&uts_sem);
1249 u = utsname();
1250 i = 1 + strlen(u->nodename);
1251 if (i > len)
1252 i = len;
1253 memcpy(tmp, u->nodename, i);
1254 up_read(&uts_sem);
1255 if (copy_to_user(name, tmp, i))
1256 return -EFAULT;
1257 return 0;
1258 }
1259
1260 #endif
1261
1262 /*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1266 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267 {
1268 int errno;
1269 char tmp[__NEW_UTS_LEN];
1270
1271 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272 return -EPERM;
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275
1276 errno = -EFAULT;
1277 if (!copy_from_user(tmp, name, len)) {
1278 struct new_utsname *u;
1279
1280 down_write(&uts_sem);
1281 u = utsname();
1282 memcpy(u->domainname, tmp, len);
1283 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1284 errno = 0;
1285 uts_proc_notify(UTS_PROC_DOMAINNAME);
1286 up_write(&uts_sem);
1287 }
1288 return errno;
1289 }
1290
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1291 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1292 {
1293 struct rlimit value;
1294 int ret;
1295
1296 ret = do_prlimit(current, resource, NULL, &value);
1297 if (!ret)
1298 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1299
1300 return ret;
1301 }
1302
1303 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1304
1305 /*
1306 * Back compatibility for getrlimit. Needed for some apps.
1307 */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1308 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1309 struct rlimit __user *, rlim)
1310 {
1311 struct rlimit x;
1312 if (resource >= RLIM_NLIMITS)
1313 return -EINVAL;
1314
1315 resource = array_index_nospec(resource, RLIM_NLIMITS);
1316 task_lock(current->group_leader);
1317 x = current->signal->rlim[resource];
1318 task_unlock(current->group_leader);
1319 if (x.rlim_cur > 0x7FFFFFFF)
1320 x.rlim_cur = 0x7FFFFFFF;
1321 if (x.rlim_max > 0x7FFFFFFF)
1322 x.rlim_max = 0x7FFFFFFF;
1323 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1324 }
1325
1326 #endif
1327
rlim64_is_infinity(__u64 rlim64)1328 static inline bool rlim64_is_infinity(__u64 rlim64)
1329 {
1330 #if BITS_PER_LONG < 64
1331 return rlim64 >= ULONG_MAX;
1332 #else
1333 return rlim64 == RLIM64_INFINITY;
1334 #endif
1335 }
1336
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1337 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1338 {
1339 if (rlim->rlim_cur == RLIM_INFINITY)
1340 rlim64->rlim_cur = RLIM64_INFINITY;
1341 else
1342 rlim64->rlim_cur = rlim->rlim_cur;
1343 if (rlim->rlim_max == RLIM_INFINITY)
1344 rlim64->rlim_max = RLIM64_INFINITY;
1345 else
1346 rlim64->rlim_max = rlim->rlim_max;
1347 }
1348
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1349 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1350 {
1351 if (rlim64_is_infinity(rlim64->rlim_cur))
1352 rlim->rlim_cur = RLIM_INFINITY;
1353 else
1354 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1355 if (rlim64_is_infinity(rlim64->rlim_max))
1356 rlim->rlim_max = RLIM_INFINITY;
1357 else
1358 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1359 }
1360
1361 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1362 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1363 struct rlimit *new_rlim, struct rlimit *old_rlim)
1364 {
1365 struct rlimit *rlim;
1366 int retval = 0;
1367
1368 if (resource >= RLIM_NLIMITS)
1369 return -EINVAL;
1370 if (new_rlim) {
1371 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1372 return -EINVAL;
1373 if (resource == RLIMIT_NOFILE &&
1374 new_rlim->rlim_max > sysctl_nr_open)
1375 return -EPERM;
1376 }
1377
1378 /* protect tsk->signal and tsk->sighand from disappearing */
1379 read_lock(&tasklist_lock);
1380 if (!tsk->sighand) {
1381 retval = -ESRCH;
1382 goto out;
1383 }
1384
1385 rlim = tsk->signal->rlim + resource;
1386 task_lock(tsk->group_leader);
1387 if (new_rlim) {
1388 /* Keep the capable check against init_user_ns until
1389 cgroups can contain all limits */
1390 if (new_rlim->rlim_max > rlim->rlim_max &&
1391 !capable(CAP_SYS_RESOURCE))
1392 retval = -EPERM;
1393 if (!retval)
1394 retval = security_task_setrlimit(tsk->group_leader,
1395 resource, new_rlim);
1396 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1397 /*
1398 * The caller is asking for an immediate RLIMIT_CPU
1399 * expiry. But we use the zero value to mean "it was
1400 * never set". So let's cheat and make it one second
1401 * instead
1402 */
1403 new_rlim->rlim_cur = 1;
1404 }
1405 }
1406 if (!retval) {
1407 if (old_rlim)
1408 *old_rlim = *rlim;
1409 if (new_rlim)
1410 *rlim = *new_rlim;
1411 }
1412 task_unlock(tsk->group_leader);
1413
1414 /*
1415 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1416 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1417 * very long-standing error, and fixing it now risks breakage of
1418 * applications, so we live with it
1419 */
1420 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1421 new_rlim->rlim_cur != RLIM_INFINITY)
1422 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1423 out:
1424 read_unlock(&tasklist_lock);
1425 return retval;
1426 }
1427
1428 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task)1429 static int check_prlimit_permission(struct task_struct *task)
1430 {
1431 const struct cred *cred = current_cred(), *tcred;
1432
1433 if (current == task)
1434 return 0;
1435
1436 tcred = __task_cred(task);
1437 if (uid_eq(cred->uid, tcred->euid) &&
1438 uid_eq(cred->uid, tcred->suid) &&
1439 uid_eq(cred->uid, tcred->uid) &&
1440 gid_eq(cred->gid, tcred->egid) &&
1441 gid_eq(cred->gid, tcred->sgid) &&
1442 gid_eq(cred->gid, tcred->gid))
1443 return 0;
1444 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1445 return 0;
1446
1447 return -EPERM;
1448 }
1449
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1450 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1451 const struct rlimit64 __user *, new_rlim,
1452 struct rlimit64 __user *, old_rlim)
1453 {
1454 struct rlimit64 old64, new64;
1455 struct rlimit old, new;
1456 struct task_struct *tsk;
1457 int ret;
1458
1459 if (new_rlim) {
1460 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1461 return -EFAULT;
1462 rlim64_to_rlim(&new64, &new);
1463 }
1464
1465 rcu_read_lock();
1466 tsk = pid ? find_task_by_vpid(pid) : current;
1467 if (!tsk) {
1468 rcu_read_unlock();
1469 return -ESRCH;
1470 }
1471 ret = check_prlimit_permission(tsk);
1472 if (ret) {
1473 rcu_read_unlock();
1474 return ret;
1475 }
1476 get_task_struct(tsk);
1477 rcu_read_unlock();
1478
1479 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1480 old_rlim ? &old : NULL);
1481
1482 if (!ret && old_rlim) {
1483 rlim_to_rlim64(&old, &old64);
1484 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1485 ret = -EFAULT;
1486 }
1487
1488 put_task_struct(tsk);
1489 return ret;
1490 }
1491
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1492 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1493 {
1494 struct rlimit new_rlim;
1495
1496 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1497 return -EFAULT;
1498 return do_prlimit(current, resource, &new_rlim, NULL);
1499 }
1500
1501 /*
1502 * It would make sense to put struct rusage in the task_struct,
1503 * except that would make the task_struct be *really big*. After
1504 * task_struct gets moved into malloc'ed memory, it would
1505 * make sense to do this. It will make moving the rest of the information
1506 * a lot simpler! (Which we're not doing right now because we're not
1507 * measuring them yet).
1508 *
1509 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1510 * races with threads incrementing their own counters. But since word
1511 * reads are atomic, we either get new values or old values and we don't
1512 * care which for the sums. We always take the siglock to protect reading
1513 * the c* fields from p->signal from races with exit.c updating those
1514 * fields when reaping, so a sample either gets all the additions of a
1515 * given child after it's reaped, or none so this sample is before reaping.
1516 *
1517 * Locking:
1518 * We need to take the siglock for CHILDEREN, SELF and BOTH
1519 * for the cases current multithreaded, non-current single threaded
1520 * non-current multithreaded. Thread traversal is now safe with
1521 * the siglock held.
1522 * Strictly speaking, we donot need to take the siglock if we are current and
1523 * single threaded, as no one else can take our signal_struct away, no one
1524 * else can reap the children to update signal->c* counters, and no one else
1525 * can race with the signal-> fields. If we do not take any lock, the
1526 * signal-> fields could be read out of order while another thread was just
1527 * exiting. So we should place a read memory barrier when we avoid the lock.
1528 * On the writer side, write memory barrier is implied in __exit_signal
1529 * as __exit_signal releases the siglock spinlock after updating the signal->
1530 * fields. But we don't do this yet to keep things simple.
1531 *
1532 */
1533
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1534 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1535 {
1536 r->ru_nvcsw += t->nvcsw;
1537 r->ru_nivcsw += t->nivcsw;
1538 r->ru_minflt += t->min_flt;
1539 r->ru_majflt += t->maj_flt;
1540 r->ru_inblock += task_io_get_inblock(t);
1541 r->ru_oublock += task_io_get_oublock(t);
1542 }
1543
k_getrusage(struct task_struct * p,int who,struct rusage * r)1544 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1545 {
1546 struct task_struct *t;
1547 unsigned long flags;
1548 cputime_t tgutime, tgstime, utime, stime;
1549 unsigned long maxrss = 0;
1550
1551 memset((char *)r, 0, sizeof (*r));
1552 utime = stime = 0;
1553
1554 if (who == RUSAGE_THREAD) {
1555 task_cputime_adjusted(current, &utime, &stime);
1556 accumulate_thread_rusage(p, r);
1557 maxrss = p->signal->maxrss;
1558 goto out;
1559 }
1560
1561 if (!lock_task_sighand(p, &flags))
1562 return;
1563
1564 switch (who) {
1565 case RUSAGE_BOTH:
1566 case RUSAGE_CHILDREN:
1567 utime = p->signal->cutime;
1568 stime = p->signal->cstime;
1569 r->ru_nvcsw = p->signal->cnvcsw;
1570 r->ru_nivcsw = p->signal->cnivcsw;
1571 r->ru_minflt = p->signal->cmin_flt;
1572 r->ru_majflt = p->signal->cmaj_flt;
1573 r->ru_inblock = p->signal->cinblock;
1574 r->ru_oublock = p->signal->coublock;
1575 maxrss = p->signal->cmaxrss;
1576
1577 if (who == RUSAGE_CHILDREN)
1578 break;
1579
1580 case RUSAGE_SELF:
1581 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1582 utime += tgutime;
1583 stime += tgstime;
1584 r->ru_nvcsw += p->signal->nvcsw;
1585 r->ru_nivcsw += p->signal->nivcsw;
1586 r->ru_minflt += p->signal->min_flt;
1587 r->ru_majflt += p->signal->maj_flt;
1588 r->ru_inblock += p->signal->inblock;
1589 r->ru_oublock += p->signal->oublock;
1590 if (maxrss < p->signal->maxrss)
1591 maxrss = p->signal->maxrss;
1592 t = p;
1593 do {
1594 accumulate_thread_rusage(t, r);
1595 } while_each_thread(p, t);
1596 break;
1597
1598 default:
1599 BUG();
1600 }
1601 unlock_task_sighand(p, &flags);
1602
1603 out:
1604 cputime_to_timeval(utime, &r->ru_utime);
1605 cputime_to_timeval(stime, &r->ru_stime);
1606
1607 if (who != RUSAGE_CHILDREN) {
1608 struct mm_struct *mm = get_task_mm(p);
1609
1610 if (mm) {
1611 setmax_mm_hiwater_rss(&maxrss, mm);
1612 mmput(mm);
1613 }
1614 }
1615 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1616 }
1617
getrusage(struct task_struct * p,int who,struct rusage __user * ru)1618 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1619 {
1620 struct rusage r;
1621
1622 k_getrusage(p, who, &r);
1623 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1624 }
1625
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1626 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1627 {
1628 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1629 who != RUSAGE_THREAD)
1630 return -EINVAL;
1631 return getrusage(current, who, ru);
1632 }
1633
1634 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1635 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1636 {
1637 struct rusage r;
1638
1639 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1640 who != RUSAGE_THREAD)
1641 return -EINVAL;
1642
1643 k_getrusage(current, who, &r);
1644 return put_compat_rusage(&r, ru);
1645 }
1646 #endif
1647
SYSCALL_DEFINE1(umask,int,mask)1648 SYSCALL_DEFINE1(umask, int, mask)
1649 {
1650 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1651 return mask;
1652 }
1653
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1654 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1655 {
1656 struct fd exe;
1657 struct file *old_exe, *exe_file;
1658 struct inode *inode;
1659 int err;
1660
1661 exe = fdget(fd);
1662 if (!exe.file)
1663 return -EBADF;
1664
1665 inode = file_inode(exe.file);
1666
1667 /*
1668 * Because the original mm->exe_file points to executable file, make
1669 * sure that this one is executable as well, to avoid breaking an
1670 * overall picture.
1671 */
1672 err = -EACCES;
1673 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1674 goto exit;
1675
1676 err = inode_permission(inode, MAY_EXEC);
1677 if (err)
1678 goto exit;
1679
1680 /*
1681 * Forbid mm->exe_file change if old file still mapped.
1682 */
1683 exe_file = get_mm_exe_file(mm);
1684 err = -EBUSY;
1685 if (exe_file) {
1686 struct vm_area_struct *vma;
1687
1688 down_read(&mm->mmap_sem);
1689 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1690 if (!vma->vm_file)
1691 continue;
1692 if (path_equal(&vma->vm_file->f_path,
1693 &exe_file->f_path))
1694 goto exit_err;
1695 }
1696
1697 up_read(&mm->mmap_sem);
1698 fput(exe_file);
1699 }
1700
1701 /*
1702 * The symlink can be changed only once, just to disallow arbitrary
1703 * transitions malicious software might bring in. This means one
1704 * could make a snapshot over all processes running and monitor
1705 * /proc/pid/exe changes to notice unusual activity if needed.
1706 */
1707 err = -EPERM;
1708 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1709 goto exit;
1710
1711 err = 0;
1712 /* set the new file, lockless */
1713 get_file(exe.file);
1714 old_exe = xchg(&mm->exe_file, exe.file);
1715 if (old_exe)
1716 fput(old_exe);
1717 exit:
1718 fdput(exe);
1719 return err;
1720 exit_err:
1721 up_read(&mm->mmap_sem);
1722 fput(exe_file);
1723 goto exit;
1724 }
1725
1726 /*
1727 * WARNING: we don't require any capability here so be very careful
1728 * in what is allowed for modification from userspace.
1729 */
validate_prctl_map(struct prctl_mm_map * prctl_map)1730 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1731 {
1732 unsigned long mmap_max_addr = TASK_SIZE;
1733 struct mm_struct *mm = current->mm;
1734 int error = -EINVAL, i;
1735
1736 static const unsigned char offsets[] = {
1737 offsetof(struct prctl_mm_map, start_code),
1738 offsetof(struct prctl_mm_map, end_code),
1739 offsetof(struct prctl_mm_map, start_data),
1740 offsetof(struct prctl_mm_map, end_data),
1741 offsetof(struct prctl_mm_map, start_brk),
1742 offsetof(struct prctl_mm_map, brk),
1743 offsetof(struct prctl_mm_map, start_stack),
1744 offsetof(struct prctl_mm_map, arg_start),
1745 offsetof(struct prctl_mm_map, arg_end),
1746 offsetof(struct prctl_mm_map, env_start),
1747 offsetof(struct prctl_mm_map, env_end),
1748 };
1749
1750 /*
1751 * Make sure the members are not somewhere outside
1752 * of allowed address space.
1753 */
1754 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1755 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1756
1757 if ((unsigned long)val >= mmap_max_addr ||
1758 (unsigned long)val < mmap_min_addr)
1759 goto out;
1760 }
1761
1762 /*
1763 * Make sure the pairs are ordered.
1764 */
1765 #define __prctl_check_order(__m1, __op, __m2) \
1766 ((unsigned long)prctl_map->__m1 __op \
1767 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1768 error = __prctl_check_order(start_code, <, end_code);
1769 error |= __prctl_check_order(start_data,<=, end_data);
1770 error |= __prctl_check_order(start_brk, <=, brk);
1771 error |= __prctl_check_order(arg_start, <=, arg_end);
1772 error |= __prctl_check_order(env_start, <=, env_end);
1773 if (error)
1774 goto out;
1775 #undef __prctl_check_order
1776
1777 error = -EINVAL;
1778
1779 /*
1780 * Neither we should allow to override limits if they set.
1781 */
1782 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1783 prctl_map->start_brk, prctl_map->end_data,
1784 prctl_map->start_data))
1785 goto out;
1786
1787 /*
1788 * Someone is trying to cheat the auxv vector.
1789 */
1790 if (prctl_map->auxv_size) {
1791 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1792 goto out;
1793 }
1794
1795 /*
1796 * Finally, make sure the caller has the rights to
1797 * change /proc/pid/exe link: only local root should
1798 * be allowed to.
1799 */
1800 if (prctl_map->exe_fd != (u32)-1) {
1801 struct user_namespace *ns = current_user_ns();
1802 const struct cred *cred = current_cred();
1803
1804 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1805 !gid_eq(cred->gid, make_kgid(ns, 0)))
1806 goto out;
1807 }
1808
1809 error = 0;
1810 out:
1811 return error;
1812 }
1813
1814 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1815 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1816 {
1817 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1818 unsigned long user_auxv[AT_VECTOR_SIZE];
1819 struct mm_struct *mm = current->mm;
1820 int error;
1821
1822 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1823 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1824
1825 if (opt == PR_SET_MM_MAP_SIZE)
1826 return put_user((unsigned int)sizeof(prctl_map),
1827 (unsigned int __user *)addr);
1828
1829 if (data_size != sizeof(prctl_map))
1830 return -EINVAL;
1831
1832 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1833 return -EFAULT;
1834
1835 error = validate_prctl_map(&prctl_map);
1836 if (error)
1837 return error;
1838
1839 if (prctl_map.auxv_size) {
1840 memset(user_auxv, 0, sizeof(user_auxv));
1841 if (copy_from_user(user_auxv,
1842 (const void __user *)prctl_map.auxv,
1843 prctl_map.auxv_size))
1844 return -EFAULT;
1845
1846 /* Last entry must be AT_NULL as specification requires */
1847 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1848 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1849 }
1850
1851 if (prctl_map.exe_fd != (u32)-1) {
1852 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1853 if (error)
1854 return error;
1855 }
1856
1857 down_write(&mm->mmap_sem);
1858
1859 /*
1860 * We don't validate if these members are pointing to
1861 * real present VMAs because application may have correspond
1862 * VMAs already unmapped and kernel uses these members for statistics
1863 * output in procfs mostly, except
1864 *
1865 * - @start_brk/@brk which are used in do_brk but kernel lookups
1866 * for VMAs when updating these memvers so anything wrong written
1867 * here cause kernel to swear at userspace program but won't lead
1868 * to any problem in kernel itself
1869 */
1870
1871 mm->start_code = prctl_map.start_code;
1872 mm->end_code = prctl_map.end_code;
1873 mm->start_data = prctl_map.start_data;
1874 mm->end_data = prctl_map.end_data;
1875 mm->start_brk = prctl_map.start_brk;
1876 mm->brk = prctl_map.brk;
1877 mm->start_stack = prctl_map.start_stack;
1878 mm->arg_start = prctl_map.arg_start;
1879 mm->arg_end = prctl_map.arg_end;
1880 mm->env_start = prctl_map.env_start;
1881 mm->env_end = prctl_map.env_end;
1882
1883 /*
1884 * Note this update of @saved_auxv is lockless thus
1885 * if someone reads this member in procfs while we're
1886 * updating -- it may get partly updated results. It's
1887 * known and acceptable trade off: we leave it as is to
1888 * not introduce additional locks here making the kernel
1889 * more complex.
1890 */
1891 if (prctl_map.auxv_size)
1892 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1893
1894 up_write(&mm->mmap_sem);
1895 return 0;
1896 }
1897 #endif /* CONFIG_CHECKPOINT_RESTORE */
1898
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)1899 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1900 unsigned long len)
1901 {
1902 /*
1903 * This doesn't move the auxiliary vector itself since it's pinned to
1904 * mm_struct, but it permits filling the vector with new values. It's
1905 * up to the caller to provide sane values here, otherwise userspace
1906 * tools which use this vector might be unhappy.
1907 */
1908 unsigned long user_auxv[AT_VECTOR_SIZE];
1909
1910 if (len > sizeof(user_auxv))
1911 return -EINVAL;
1912
1913 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1914 return -EFAULT;
1915
1916 /* Make sure the last entry is always AT_NULL */
1917 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1918 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1919
1920 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1921
1922 task_lock(current);
1923 memcpy(mm->saved_auxv, user_auxv, len);
1924 task_unlock(current);
1925
1926 return 0;
1927 }
1928
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)1929 static int prctl_set_mm(int opt, unsigned long addr,
1930 unsigned long arg4, unsigned long arg5)
1931 {
1932 struct mm_struct *mm = current->mm;
1933 struct prctl_mm_map prctl_map;
1934 struct vm_area_struct *vma;
1935 int error;
1936
1937 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1938 opt != PR_SET_MM_MAP &&
1939 opt != PR_SET_MM_MAP_SIZE)))
1940 return -EINVAL;
1941
1942 #ifdef CONFIG_CHECKPOINT_RESTORE
1943 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1944 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1945 #endif
1946
1947 if (!capable(CAP_SYS_RESOURCE))
1948 return -EPERM;
1949
1950 if (opt == PR_SET_MM_EXE_FILE)
1951 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1952
1953 if (opt == PR_SET_MM_AUXV)
1954 return prctl_set_auxv(mm, addr, arg4);
1955
1956 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1957 return -EINVAL;
1958
1959 error = -EINVAL;
1960
1961 down_write(&mm->mmap_sem);
1962 vma = find_vma(mm, addr);
1963
1964 prctl_map.start_code = mm->start_code;
1965 prctl_map.end_code = mm->end_code;
1966 prctl_map.start_data = mm->start_data;
1967 prctl_map.end_data = mm->end_data;
1968 prctl_map.start_brk = mm->start_brk;
1969 prctl_map.brk = mm->brk;
1970 prctl_map.start_stack = mm->start_stack;
1971 prctl_map.arg_start = mm->arg_start;
1972 prctl_map.arg_end = mm->arg_end;
1973 prctl_map.env_start = mm->env_start;
1974 prctl_map.env_end = mm->env_end;
1975 prctl_map.auxv = NULL;
1976 prctl_map.auxv_size = 0;
1977 prctl_map.exe_fd = -1;
1978
1979 switch (opt) {
1980 case PR_SET_MM_START_CODE:
1981 prctl_map.start_code = addr;
1982 break;
1983 case PR_SET_MM_END_CODE:
1984 prctl_map.end_code = addr;
1985 break;
1986 case PR_SET_MM_START_DATA:
1987 prctl_map.start_data = addr;
1988 break;
1989 case PR_SET_MM_END_DATA:
1990 prctl_map.end_data = addr;
1991 break;
1992 case PR_SET_MM_START_STACK:
1993 prctl_map.start_stack = addr;
1994 break;
1995 case PR_SET_MM_START_BRK:
1996 prctl_map.start_brk = addr;
1997 break;
1998 case PR_SET_MM_BRK:
1999 prctl_map.brk = addr;
2000 break;
2001 case PR_SET_MM_ARG_START:
2002 prctl_map.arg_start = addr;
2003 break;
2004 case PR_SET_MM_ARG_END:
2005 prctl_map.arg_end = addr;
2006 break;
2007 case PR_SET_MM_ENV_START:
2008 prctl_map.env_start = addr;
2009 break;
2010 case PR_SET_MM_ENV_END:
2011 prctl_map.env_end = addr;
2012 break;
2013 default:
2014 goto out;
2015 }
2016
2017 error = validate_prctl_map(&prctl_map);
2018 if (error)
2019 goto out;
2020
2021 switch (opt) {
2022 /*
2023 * If command line arguments and environment
2024 * are placed somewhere else on stack, we can
2025 * set them up here, ARG_START/END to setup
2026 * command line argumets and ENV_START/END
2027 * for environment.
2028 */
2029 case PR_SET_MM_START_STACK:
2030 case PR_SET_MM_ARG_START:
2031 case PR_SET_MM_ARG_END:
2032 case PR_SET_MM_ENV_START:
2033 case PR_SET_MM_ENV_END:
2034 if (!vma) {
2035 error = -EFAULT;
2036 goto out;
2037 }
2038 }
2039
2040 mm->start_code = prctl_map.start_code;
2041 mm->end_code = prctl_map.end_code;
2042 mm->start_data = prctl_map.start_data;
2043 mm->end_data = prctl_map.end_data;
2044 mm->start_brk = prctl_map.start_brk;
2045 mm->brk = prctl_map.brk;
2046 mm->start_stack = prctl_map.start_stack;
2047 mm->arg_start = prctl_map.arg_start;
2048 mm->arg_end = prctl_map.arg_end;
2049 mm->env_start = prctl_map.env_start;
2050 mm->env_end = prctl_map.env_end;
2051
2052 error = 0;
2053 out:
2054 up_write(&mm->mmap_sem);
2055 return error;
2056 }
2057
2058 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2059 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2060 {
2061 return put_user(me->clear_child_tid, tid_addr);
2062 }
2063 #else
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2064 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065 {
2066 return -EINVAL;
2067 }
2068 #endif
2069
2070 #ifdef CONFIG_MMU
prctl_update_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,const char __user * name_addr)2071 static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2072 struct vm_area_struct **prev,
2073 unsigned long start, unsigned long end,
2074 const char __user *name_addr)
2075 {
2076 struct mm_struct *mm = vma->vm_mm;
2077 int error = 0;
2078 pgoff_t pgoff;
2079
2080 if (name_addr == vma_get_anon_name(vma)) {
2081 *prev = vma;
2082 goto out;
2083 }
2084
2085 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2086 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2087 vma->vm_file, pgoff, vma_policy(vma),
2088 vma->vm_userfaultfd_ctx, name_addr);
2089 if (*prev) {
2090 vma = *prev;
2091 goto success;
2092 }
2093
2094 *prev = vma;
2095
2096 if (start != vma->vm_start) {
2097 error = split_vma(mm, vma, start, 1);
2098 if (error)
2099 goto out;
2100 }
2101
2102 if (end != vma->vm_end) {
2103 error = split_vma(mm, vma, end, 0);
2104 if (error)
2105 goto out;
2106 }
2107
2108 success:
2109 if (!vma->vm_file)
2110 vma->anon_name = name_addr;
2111
2112 out:
2113 if (error == -ENOMEM)
2114 error = -EAGAIN;
2115 return error;
2116 }
2117
prctl_set_vma_anon_name(unsigned long start,unsigned long end,unsigned long arg)2118 static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2119 unsigned long arg)
2120 {
2121 unsigned long tmp;
2122 struct vm_area_struct *vma, *prev;
2123 int unmapped_error = 0;
2124 int error = -EINVAL;
2125
2126 /*
2127 * If the interval [start,end) covers some unmapped address
2128 * ranges, just ignore them, but return -ENOMEM at the end.
2129 * - this matches the handling in madvise.
2130 */
2131 vma = find_vma_prev(current->mm, start, &prev);
2132 if (vma && start > vma->vm_start)
2133 prev = vma;
2134
2135 for (;;) {
2136 /* Still start < end. */
2137 error = -ENOMEM;
2138 if (!vma)
2139 return error;
2140
2141 /* Here start < (end|vma->vm_end). */
2142 if (start < vma->vm_start) {
2143 unmapped_error = -ENOMEM;
2144 start = vma->vm_start;
2145 if (start >= end)
2146 return error;
2147 }
2148
2149 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2150 tmp = vma->vm_end;
2151 if (end < tmp)
2152 tmp = end;
2153
2154 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2155 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2156 (const char __user *)arg);
2157 if (error)
2158 return error;
2159 start = tmp;
2160 if (prev && start < prev->vm_end)
2161 start = prev->vm_end;
2162 error = unmapped_error;
2163 if (start >= end)
2164 return error;
2165 if (prev)
2166 vma = prev->vm_next;
2167 else /* madvise_remove dropped mmap_sem */
2168 vma = find_vma(current->mm, start);
2169 }
2170 }
2171
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2172 static int prctl_set_vma(unsigned long opt, unsigned long start,
2173 unsigned long len_in, unsigned long arg)
2174 {
2175 struct mm_struct *mm = current->mm;
2176 int error;
2177 unsigned long len;
2178 unsigned long end;
2179
2180 if (start & ~PAGE_MASK)
2181 return -EINVAL;
2182 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2183
2184 /* Check to see whether len was rounded up from small -ve to zero */
2185 if (len_in && !len)
2186 return -EINVAL;
2187
2188 end = start + len;
2189 if (end < start)
2190 return -EINVAL;
2191
2192 if (end == start)
2193 return 0;
2194
2195 down_write(&mm->mmap_sem);
2196
2197 switch (opt) {
2198 case PR_SET_VMA_ANON_NAME:
2199 error = prctl_set_vma_anon_name(start, end, arg);
2200 break;
2201 default:
2202 error = -EINVAL;
2203 }
2204
2205 up_write(&mm->mmap_sem);
2206
2207 return error;
2208 }
2209 #else /* CONFIG_MMU */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2210 static int prctl_set_vma(unsigned long opt, unsigned long start,
2211 unsigned long len_in, unsigned long arg)
2212 {
2213 return -EINVAL;
2214 }
2215 #endif
2216
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2217 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2218 {
2219 return -EINVAL;
2220 }
2221
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2222 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2223 unsigned long ctrl)
2224 {
2225 return -EINVAL;
2226 }
2227
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2228 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2229 unsigned long, arg4, unsigned long, arg5)
2230 {
2231 struct task_struct *me = current;
2232 struct task_struct *tsk;
2233 unsigned char comm[sizeof(me->comm)];
2234 long error;
2235
2236 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2237 if (error != -ENOSYS)
2238 return error;
2239
2240 error = 0;
2241 switch (option) {
2242 case PR_SET_PDEATHSIG:
2243 if (!valid_signal(arg2)) {
2244 error = -EINVAL;
2245 break;
2246 }
2247 me->pdeath_signal = arg2;
2248 break;
2249 case PR_GET_PDEATHSIG:
2250 error = put_user(me->pdeath_signal, (int __user *)arg2);
2251 break;
2252 case PR_GET_DUMPABLE:
2253 error = get_dumpable(me->mm);
2254 break;
2255 case PR_SET_DUMPABLE:
2256 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2257 error = -EINVAL;
2258 break;
2259 }
2260 set_dumpable(me->mm, arg2);
2261 break;
2262
2263 case PR_SET_UNALIGN:
2264 error = SET_UNALIGN_CTL(me, arg2);
2265 break;
2266 case PR_GET_UNALIGN:
2267 error = GET_UNALIGN_CTL(me, arg2);
2268 break;
2269 case PR_SET_FPEMU:
2270 error = SET_FPEMU_CTL(me, arg2);
2271 break;
2272 case PR_GET_FPEMU:
2273 error = GET_FPEMU_CTL(me, arg2);
2274 break;
2275 case PR_SET_FPEXC:
2276 error = SET_FPEXC_CTL(me, arg2);
2277 break;
2278 case PR_GET_FPEXC:
2279 error = GET_FPEXC_CTL(me, arg2);
2280 break;
2281 case PR_GET_TIMING:
2282 error = PR_TIMING_STATISTICAL;
2283 break;
2284 case PR_SET_TIMING:
2285 if (arg2 != PR_TIMING_STATISTICAL)
2286 error = -EINVAL;
2287 break;
2288 case PR_SET_NAME:
2289 comm[sizeof(me->comm) - 1] = 0;
2290 if (strncpy_from_user(comm, (char __user *)arg2,
2291 sizeof(me->comm) - 1) < 0)
2292 return -EFAULT;
2293 set_task_comm(me, comm);
2294 proc_comm_connector(me);
2295 break;
2296 case PR_GET_NAME:
2297 get_task_comm(comm, me);
2298 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2299 return -EFAULT;
2300 break;
2301 case PR_GET_ENDIAN:
2302 error = GET_ENDIAN(me, arg2);
2303 break;
2304 case PR_SET_ENDIAN:
2305 error = SET_ENDIAN(me, arg2);
2306 break;
2307 case PR_GET_SECCOMP:
2308 error = prctl_get_seccomp();
2309 break;
2310 case PR_SET_SECCOMP:
2311 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2312 break;
2313 case PR_GET_TSC:
2314 error = GET_TSC_CTL(arg2);
2315 break;
2316 case PR_SET_TSC:
2317 error = SET_TSC_CTL(arg2);
2318 break;
2319 case PR_TASK_PERF_EVENTS_DISABLE:
2320 error = perf_event_task_disable();
2321 break;
2322 case PR_TASK_PERF_EVENTS_ENABLE:
2323 error = perf_event_task_enable();
2324 break;
2325 case PR_GET_TIMERSLACK:
2326 if (current->timer_slack_ns > ULONG_MAX)
2327 error = ULONG_MAX;
2328 else
2329 error = current->timer_slack_ns;
2330 break;
2331 case PR_SET_TIMERSLACK:
2332 if (arg2 <= 0)
2333 current->timer_slack_ns =
2334 current->default_timer_slack_ns;
2335 else
2336 current->timer_slack_ns = arg2;
2337 break;
2338 case PR_MCE_KILL:
2339 if (arg4 | arg5)
2340 return -EINVAL;
2341 switch (arg2) {
2342 case PR_MCE_KILL_CLEAR:
2343 if (arg3 != 0)
2344 return -EINVAL;
2345 current->flags &= ~PF_MCE_PROCESS;
2346 break;
2347 case PR_MCE_KILL_SET:
2348 current->flags |= PF_MCE_PROCESS;
2349 if (arg3 == PR_MCE_KILL_EARLY)
2350 current->flags |= PF_MCE_EARLY;
2351 else if (arg3 == PR_MCE_KILL_LATE)
2352 current->flags &= ~PF_MCE_EARLY;
2353 else if (arg3 == PR_MCE_KILL_DEFAULT)
2354 current->flags &=
2355 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2356 else
2357 return -EINVAL;
2358 break;
2359 default:
2360 return -EINVAL;
2361 }
2362 break;
2363 case PR_MCE_KILL_GET:
2364 if (arg2 | arg3 | arg4 | arg5)
2365 return -EINVAL;
2366 if (current->flags & PF_MCE_PROCESS)
2367 error = (current->flags & PF_MCE_EARLY) ?
2368 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2369 else
2370 error = PR_MCE_KILL_DEFAULT;
2371 break;
2372 case PR_SET_MM:
2373 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2374 break;
2375 case PR_GET_TID_ADDRESS:
2376 error = prctl_get_tid_address(me, (int __user **)arg2);
2377 break;
2378 case PR_SET_TIMERSLACK_PID:
2379 if (task_pid_vnr(current) != (pid_t)arg3 &&
2380 !capable(CAP_SYS_NICE))
2381 return -EPERM;
2382 rcu_read_lock();
2383 tsk = find_task_by_vpid((pid_t)arg3);
2384 if (tsk == NULL) {
2385 rcu_read_unlock();
2386 return -EINVAL;
2387 }
2388 get_task_struct(tsk);
2389 rcu_read_unlock();
2390 if (arg2 <= 0)
2391 tsk->timer_slack_ns =
2392 tsk->default_timer_slack_ns;
2393 else
2394 tsk->timer_slack_ns = arg2;
2395 put_task_struct(tsk);
2396 error = 0;
2397 break;
2398 case PR_SET_CHILD_SUBREAPER:
2399 me->signal->is_child_subreaper = !!arg2;
2400 break;
2401 case PR_GET_CHILD_SUBREAPER:
2402 error = put_user(me->signal->is_child_subreaper,
2403 (int __user *)arg2);
2404 break;
2405 case PR_SET_NO_NEW_PRIVS:
2406 if (arg2 != 1 || arg3 || arg4 || arg5)
2407 return -EINVAL;
2408
2409 task_set_no_new_privs(current);
2410 break;
2411 case PR_GET_NO_NEW_PRIVS:
2412 if (arg2 || arg3 || arg4 || arg5)
2413 return -EINVAL;
2414 return task_no_new_privs(current) ? 1 : 0;
2415 case PR_GET_THP_DISABLE:
2416 if (arg2 || arg3 || arg4 || arg5)
2417 return -EINVAL;
2418 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2419 break;
2420 case PR_SET_THP_DISABLE:
2421 if (arg3 || arg4 || arg5)
2422 return -EINVAL;
2423 down_write(&me->mm->mmap_sem);
2424 if (arg2)
2425 me->mm->def_flags |= VM_NOHUGEPAGE;
2426 else
2427 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2428 up_write(&me->mm->mmap_sem);
2429 break;
2430 case PR_MPX_ENABLE_MANAGEMENT:
2431 if (arg2 || arg3 || arg4 || arg5)
2432 return -EINVAL;
2433 error = MPX_ENABLE_MANAGEMENT();
2434 break;
2435 case PR_MPX_DISABLE_MANAGEMENT:
2436 if (arg2 || arg3 || arg4 || arg5)
2437 return -EINVAL;
2438 error = MPX_DISABLE_MANAGEMENT();
2439 break;
2440 case PR_SET_FP_MODE:
2441 error = SET_FP_MODE(me, arg2);
2442 break;
2443 case PR_GET_FP_MODE:
2444 error = GET_FP_MODE(me);
2445 break;
2446 case PR_SET_VMA:
2447 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2448 break;
2449 case PR_GET_SPECULATION_CTRL:
2450 if (arg3 || arg4 || arg5)
2451 return -EINVAL;
2452 error = arch_prctl_spec_ctrl_get(me, arg2);
2453 break;
2454 case PR_SET_SPECULATION_CTRL:
2455 if (arg4 || arg5)
2456 return -EINVAL;
2457 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2458 break;
2459 default:
2460 error = -EINVAL;
2461 break;
2462 }
2463 return error;
2464 }
2465
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2466 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2467 struct getcpu_cache __user *, unused)
2468 {
2469 int err = 0;
2470 int cpu = raw_smp_processor_id();
2471
2472 if (cpup)
2473 err |= put_user(cpu, cpup);
2474 if (nodep)
2475 err |= put_user(cpu_to_node(cpu), nodep);
2476 return err ? -EFAULT : 0;
2477 }
2478
2479 /**
2480 * do_sysinfo - fill in sysinfo struct
2481 * @info: pointer to buffer to fill
2482 */
do_sysinfo(struct sysinfo * info)2483 static int do_sysinfo(struct sysinfo *info)
2484 {
2485 unsigned long mem_total, sav_total;
2486 unsigned int mem_unit, bitcount;
2487 struct timespec tp;
2488
2489 memset(info, 0, sizeof(struct sysinfo));
2490
2491 get_monotonic_boottime(&tp);
2492 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2493
2494 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2495
2496 info->procs = nr_threads;
2497
2498 si_meminfo(info);
2499 si_swapinfo(info);
2500
2501 /*
2502 * If the sum of all the available memory (i.e. ram + swap)
2503 * is less than can be stored in a 32 bit unsigned long then
2504 * we can be binary compatible with 2.2.x kernels. If not,
2505 * well, in that case 2.2.x was broken anyways...
2506 *
2507 * -Erik Andersen <andersee@debian.org>
2508 */
2509
2510 mem_total = info->totalram + info->totalswap;
2511 if (mem_total < info->totalram || mem_total < info->totalswap)
2512 goto out;
2513 bitcount = 0;
2514 mem_unit = info->mem_unit;
2515 while (mem_unit > 1) {
2516 bitcount++;
2517 mem_unit >>= 1;
2518 sav_total = mem_total;
2519 mem_total <<= 1;
2520 if (mem_total < sav_total)
2521 goto out;
2522 }
2523
2524 /*
2525 * If mem_total did not overflow, multiply all memory values by
2526 * info->mem_unit and set it to 1. This leaves things compatible
2527 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2528 * kernels...
2529 */
2530
2531 info->mem_unit = 1;
2532 info->totalram <<= bitcount;
2533 info->freeram <<= bitcount;
2534 info->sharedram <<= bitcount;
2535 info->bufferram <<= bitcount;
2536 info->totalswap <<= bitcount;
2537 info->freeswap <<= bitcount;
2538 info->totalhigh <<= bitcount;
2539 info->freehigh <<= bitcount;
2540
2541 out:
2542 return 0;
2543 }
2544
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2545 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2546 {
2547 struct sysinfo val;
2548
2549 do_sysinfo(&val);
2550
2551 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2552 return -EFAULT;
2553
2554 return 0;
2555 }
2556
2557 #ifdef CONFIG_COMPAT
2558 struct compat_sysinfo {
2559 s32 uptime;
2560 u32 loads[3];
2561 u32 totalram;
2562 u32 freeram;
2563 u32 sharedram;
2564 u32 bufferram;
2565 u32 totalswap;
2566 u32 freeswap;
2567 u16 procs;
2568 u16 pad;
2569 u32 totalhigh;
2570 u32 freehigh;
2571 u32 mem_unit;
2572 char _f[20-2*sizeof(u32)-sizeof(int)];
2573 };
2574
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2575 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2576 {
2577 struct sysinfo s;
2578
2579 do_sysinfo(&s);
2580
2581 /* Check to see if any memory value is too large for 32-bit and scale
2582 * down if needed
2583 */
2584 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2585 int bitcount = 0;
2586
2587 while (s.mem_unit < PAGE_SIZE) {
2588 s.mem_unit <<= 1;
2589 bitcount++;
2590 }
2591
2592 s.totalram >>= bitcount;
2593 s.freeram >>= bitcount;
2594 s.sharedram >>= bitcount;
2595 s.bufferram >>= bitcount;
2596 s.totalswap >>= bitcount;
2597 s.freeswap >>= bitcount;
2598 s.totalhigh >>= bitcount;
2599 s.freehigh >>= bitcount;
2600 }
2601
2602 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2603 __put_user(s.uptime, &info->uptime) ||
2604 __put_user(s.loads[0], &info->loads[0]) ||
2605 __put_user(s.loads[1], &info->loads[1]) ||
2606 __put_user(s.loads[2], &info->loads[2]) ||
2607 __put_user(s.totalram, &info->totalram) ||
2608 __put_user(s.freeram, &info->freeram) ||
2609 __put_user(s.sharedram, &info->sharedram) ||
2610 __put_user(s.bufferram, &info->bufferram) ||
2611 __put_user(s.totalswap, &info->totalswap) ||
2612 __put_user(s.freeswap, &info->freeswap) ||
2613 __put_user(s.procs, &info->procs) ||
2614 __put_user(s.totalhigh, &info->totalhigh) ||
2615 __put_user(s.freehigh, &info->freehigh) ||
2616 __put_user(s.mem_unit, &info->mem_unit))
2617 return -EFAULT;
2618
2619 return 0;
2620 }
2621 #endif /* CONFIG_COMPAT */
2622