1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
29
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
33
34 /*
35 * By default transparent hugepage support is disabled in order that avoid
36 * to risk increase the memory footprint of applications without a guaranteed
37 * benefit. When transparent hugepage support is enabled, is for all mappings,
38 * and khugepaged scans all mappings.
39 * Defrag is invoked by khugepaged hugepage allocations and by page faults
40 * for all hugepage allocations.
41 */
42 unsigned long transparent_hugepage_flags __read_mostly =
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
44 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
45 #endif
46 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
47 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
48 #endif
49 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
50 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
51 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
52
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 static DEFINE_SPINLOCK(khugepaged_mm_lock);
63 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
64 /*
65 * default collapse hugepages if there is at least one pte mapped like
66 * it would have happened if the vma was large enough during page
67 * fault.
68 */
69 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
70
71 static int khugepaged(void *none);
72 static int khugepaged_slab_init(void);
73 static void khugepaged_slab_exit(void);
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 /**
81 * struct mm_slot - hash lookup from mm to mm_slot
82 * @hash: hash collision list
83 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84 * @mm: the mm that this information is valid for
85 */
86 struct mm_slot {
87 struct hlist_node hash;
88 struct list_head mm_node;
89 struct mm_struct *mm;
90 };
91
92 /**
93 * struct khugepaged_scan - cursor for scanning
94 * @mm_head: the head of the mm list to scan
95 * @mm_slot: the current mm_slot we are scanning
96 * @address: the next address inside that to be scanned
97 *
98 * There is only the one khugepaged_scan instance of this cursor structure.
99 */
100 struct khugepaged_scan {
101 struct list_head mm_head;
102 struct mm_slot *mm_slot;
103 unsigned long address;
104 };
105 static struct khugepaged_scan khugepaged_scan = {
106 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
107 };
108
109
set_recommended_min_free_kbytes(void)110 static void set_recommended_min_free_kbytes(void)
111 {
112 struct zone *zone;
113 int nr_zones = 0;
114 unsigned long recommended_min;
115
116 for_each_populated_zone(zone)
117 nr_zones++;
118
119 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
120 recommended_min = pageblock_nr_pages * nr_zones * 2;
121
122 /*
123 * Make sure that on average at least two pageblocks are almost free
124 * of another type, one for a migratetype to fall back to and a
125 * second to avoid subsequent fallbacks of other types There are 3
126 * MIGRATE_TYPES we care about.
127 */
128 recommended_min += pageblock_nr_pages * nr_zones *
129 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130
131 /* don't ever allow to reserve more than 5% of the lowmem */
132 recommended_min = min(recommended_min,
133 (unsigned long) nr_free_buffer_pages() / 20);
134 recommended_min <<= (PAGE_SHIFT-10);
135
136 if (recommended_min > min_free_kbytes) {
137 if (user_min_free_kbytes >= 0)
138 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 }
145
start_stop_khugepaged(void)146 static int start_stop_khugepaged(void)
147 {
148 int err = 0;
149 if (khugepaged_enabled()) {
150 if (!khugepaged_thread)
151 khugepaged_thread = kthread_run(khugepaged, NULL,
152 "khugepaged");
153 if (IS_ERR(khugepaged_thread)) {
154 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
155 err = PTR_ERR(khugepaged_thread);
156 khugepaged_thread = NULL;
157 goto fail;
158 }
159
160 if (!list_empty(&khugepaged_scan.mm_head))
161 wake_up_interruptible(&khugepaged_wait);
162
163 set_recommended_min_free_kbytes();
164 } else if (khugepaged_thread) {
165 kthread_stop(khugepaged_thread);
166 khugepaged_thread = NULL;
167 }
168 fail:
169 return err;
170 }
171
172 static atomic_t huge_zero_refcount;
173 struct page *huge_zero_page __read_mostly;
174
get_huge_zero_page(void)175 struct page *get_huge_zero_page(void)
176 {
177 struct page *zero_page;
178 retry:
179 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
180 return READ_ONCE(huge_zero_page);
181
182 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
183 HPAGE_PMD_ORDER);
184 if (!zero_page) {
185 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
186 return NULL;
187 }
188 count_vm_event(THP_ZERO_PAGE_ALLOC);
189 preempt_disable();
190 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
191 preempt_enable();
192 __free_pages(zero_page, compound_order(zero_page));
193 goto retry;
194 }
195
196 /* We take additional reference here. It will be put back by shrinker */
197 atomic_set(&huge_zero_refcount, 2);
198 preempt_enable();
199 return READ_ONCE(huge_zero_page);
200 }
201
put_huge_zero_page(void)202 static void put_huge_zero_page(void)
203 {
204 /*
205 * Counter should never go to zero here. Only shrinker can put
206 * last reference.
207 */
208 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
209 }
210
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
213 {
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
220 {
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 __free_pages(zero_page, compound_order(zero_page));
225 return HPAGE_PMD_NR;
226 }
227
228 return 0;
229 }
230
231 static struct shrinker huge_zero_page_shrinker = {
232 .count_objects = shrink_huge_zero_page_count,
233 .scan_objects = shrink_huge_zero_page_scan,
234 .seeks = DEFAULT_SEEKS,
235 };
236
237 #ifdef CONFIG_SYSFS
238
double_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)239 static ssize_t double_flag_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf,
241 enum transparent_hugepage_flag enabled,
242 enum transparent_hugepage_flag req_madv)
243 {
244 if (test_bit(enabled, &transparent_hugepage_flags)) {
245 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
246 return sprintf(buf, "[always] madvise never\n");
247 } else if (test_bit(req_madv, &transparent_hugepage_flags))
248 return sprintf(buf, "always [madvise] never\n");
249 else
250 return sprintf(buf, "always madvise [never]\n");
251 }
double_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag enabled,enum transparent_hugepage_flag req_madv)252 static ssize_t double_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag enabled,
256 enum transparent_hugepage_flag req_madv)
257 {
258 if (!memcmp("always", buf,
259 min(sizeof("always")-1, count))) {
260 set_bit(enabled, &transparent_hugepage_flags);
261 clear_bit(req_madv, &transparent_hugepage_flags);
262 } else if (!memcmp("madvise", buf,
263 min(sizeof("madvise")-1, count))) {
264 clear_bit(enabled, &transparent_hugepage_flags);
265 set_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("never", buf,
267 min(sizeof("never")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 clear_bit(req_madv, &transparent_hugepage_flags);
270 } else
271 return -EINVAL;
272
273 return count;
274 }
275
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)276 static ssize_t enabled_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278 {
279 return double_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_FLAG,
281 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
282 }
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)283 static ssize_t enabled_store(struct kobject *kobj,
284 struct kobj_attribute *attr,
285 const char *buf, size_t count)
286 {
287 ssize_t ret;
288
289 ret = double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_FLAG,
291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292
293 if (ret > 0) {
294 int err;
295
296 mutex_lock(&khugepaged_mutex);
297 err = start_stop_khugepaged();
298 mutex_unlock(&khugepaged_mutex);
299
300 if (err)
301 ret = err;
302 }
303
304 return ret;
305 }
306 static struct kobj_attribute enabled_attr =
307 __ATTR(enabled, 0644, enabled_show, enabled_store);
308
single_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)309 static ssize_t single_flag_show(struct kobject *kobj,
310 struct kobj_attribute *attr, char *buf,
311 enum transparent_hugepage_flag flag)
312 {
313 return sprintf(buf, "%d\n",
314 !!test_bit(flag, &transparent_hugepage_flags));
315 }
316
single_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)317 static ssize_t single_flag_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count,
320 enum transparent_hugepage_flag flag)
321 {
322 unsigned long value;
323 int ret;
324
325 ret = kstrtoul(buf, 10, &value);
326 if (ret < 0)
327 return ret;
328 if (value > 1)
329 return -EINVAL;
330
331 if (value)
332 set_bit(flag, &transparent_hugepage_flags);
333 else
334 clear_bit(flag, &transparent_hugepage_flags);
335
336 return count;
337 }
338
339 /*
340 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
341 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
342 * memory just to allocate one more hugepage.
343 */
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)344 static ssize_t defrag_show(struct kobject *kobj,
345 struct kobj_attribute *attr, char *buf)
346 {
347 return double_flag_show(kobj, attr, buf,
348 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
349 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
350 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)351 static ssize_t defrag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354 {
355 return double_flag_store(kobj, attr, buf, count,
356 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
357 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
358 }
359 static struct kobj_attribute defrag_attr =
360 __ATTR(defrag, 0644, defrag_show, defrag_store);
361
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)362 static ssize_t use_zero_page_show(struct kobject *kobj,
363 struct kobj_attribute *attr, char *buf)
364 {
365 return single_flag_show(kobj, attr, buf,
366 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
367 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)368 static ssize_t use_zero_page_store(struct kobject *kobj,
369 struct kobj_attribute *attr, const char *buf, size_t count)
370 {
371 return single_flag_store(kobj, attr, buf, count,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static struct kobj_attribute use_zero_page_attr =
375 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
376 #ifdef CONFIG_DEBUG_VM
debug_cow_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)377 static ssize_t debug_cow_show(struct kobject *kobj,
378 struct kobj_attribute *attr, char *buf)
379 {
380 return single_flag_show(kobj, attr, buf,
381 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
382 }
debug_cow_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)383 static ssize_t debug_cow_store(struct kobject *kobj,
384 struct kobj_attribute *attr,
385 const char *buf, size_t count)
386 {
387 return single_flag_store(kobj, attr, buf, count,
388 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 }
390 static struct kobj_attribute debug_cow_attr =
391 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
392 #endif /* CONFIG_DEBUG_VM */
393
394 static struct attribute *hugepage_attr[] = {
395 &enabled_attr.attr,
396 &defrag_attr.attr,
397 &use_zero_page_attr.attr,
398 #ifdef CONFIG_DEBUG_VM
399 &debug_cow_attr.attr,
400 #endif
401 NULL,
402 };
403
404 static struct attribute_group hugepage_attr_group = {
405 .attrs = hugepage_attr,
406 };
407
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)408 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
409 struct kobj_attribute *attr,
410 char *buf)
411 {
412 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
413 }
414
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)415 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 const char *buf, size_t count)
418 {
419 unsigned long msecs;
420 int err;
421
422 err = kstrtoul(buf, 10, &msecs);
423 if (err || msecs > UINT_MAX)
424 return -EINVAL;
425
426 khugepaged_scan_sleep_millisecs = msecs;
427 wake_up_interruptible(&khugepaged_wait);
428
429 return count;
430 }
431 static struct kobj_attribute scan_sleep_millisecs_attr =
432 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
433 scan_sleep_millisecs_store);
434
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)435 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
436 struct kobj_attribute *attr,
437 char *buf)
438 {
439 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
440 }
441
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)442 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 const char *buf, size_t count)
445 {
446 unsigned long msecs;
447 int err;
448
449 err = kstrtoul(buf, 10, &msecs);
450 if (err || msecs > UINT_MAX)
451 return -EINVAL;
452
453 khugepaged_alloc_sleep_millisecs = msecs;
454 wake_up_interruptible(&khugepaged_wait);
455
456 return count;
457 }
458 static struct kobj_attribute alloc_sleep_millisecs_attr =
459 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
460 alloc_sleep_millisecs_store);
461
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)462 static ssize_t pages_to_scan_show(struct kobject *kobj,
463 struct kobj_attribute *attr,
464 char *buf)
465 {
466 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
467 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)468 static ssize_t pages_to_scan_store(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 const char *buf, size_t count)
471 {
472 int err;
473 unsigned long pages;
474
475 err = kstrtoul(buf, 10, &pages);
476 if (err || !pages || pages > UINT_MAX)
477 return -EINVAL;
478
479 khugepaged_pages_to_scan = pages;
480
481 return count;
482 }
483 static struct kobj_attribute pages_to_scan_attr =
484 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
485 pages_to_scan_store);
486
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)487 static ssize_t pages_collapsed_show(struct kobject *kobj,
488 struct kobj_attribute *attr,
489 char *buf)
490 {
491 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
492 }
493 static struct kobj_attribute pages_collapsed_attr =
494 __ATTR_RO(pages_collapsed);
495
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)496 static ssize_t full_scans_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499 {
500 return sprintf(buf, "%u\n", khugepaged_full_scans);
501 }
502 static struct kobj_attribute full_scans_attr =
503 __ATTR_RO(full_scans);
504
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)505 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
506 struct kobj_attribute *attr, char *buf)
507 {
508 return single_flag_show(kobj, attr, buf,
509 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
510 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)511 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
512 struct kobj_attribute *attr,
513 const char *buf, size_t count)
514 {
515 return single_flag_store(kobj, attr, buf, count,
516 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 }
518 static struct kobj_attribute khugepaged_defrag_attr =
519 __ATTR(defrag, 0644, khugepaged_defrag_show,
520 khugepaged_defrag_store);
521
522 /*
523 * max_ptes_none controls if khugepaged should collapse hugepages over
524 * any unmapped ptes in turn potentially increasing the memory
525 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
526 * reduce the available free memory in the system as it
527 * runs. Increasing max_ptes_none will instead potentially reduce the
528 * free memory in the system during the khugepaged scan.
529 */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)530 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533 {
534 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
535 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)536 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 const char *buf, size_t count)
539 {
540 int err;
541 unsigned long max_ptes_none;
542
543 err = kstrtoul(buf, 10, &max_ptes_none);
544 if (err || max_ptes_none > HPAGE_PMD_NR-1)
545 return -EINVAL;
546
547 khugepaged_max_ptes_none = max_ptes_none;
548
549 return count;
550 }
551 static struct kobj_attribute khugepaged_max_ptes_none_attr =
552 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
553 khugepaged_max_ptes_none_store);
554
555 static struct attribute *khugepaged_attr[] = {
556 &khugepaged_defrag_attr.attr,
557 &khugepaged_max_ptes_none_attr.attr,
558 &pages_to_scan_attr.attr,
559 &pages_collapsed_attr.attr,
560 &full_scans_attr.attr,
561 &scan_sleep_millisecs_attr.attr,
562 &alloc_sleep_millisecs_attr.attr,
563 NULL,
564 };
565
566 static struct attribute_group khugepaged_attr_group = {
567 .attrs = khugepaged_attr,
568 .name = "khugepaged",
569 };
570
hugepage_init_sysfs(struct kobject ** hugepage_kobj)571 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
572 {
573 int err;
574
575 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
576 if (unlikely(!*hugepage_kobj)) {
577 pr_err("failed to create transparent hugepage kobject\n");
578 return -ENOMEM;
579 }
580
581 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
582 if (err) {
583 pr_err("failed to register transparent hugepage group\n");
584 goto delete_obj;
585 }
586
587 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
588 if (err) {
589 pr_err("failed to register transparent hugepage group\n");
590 goto remove_hp_group;
591 }
592
593 return 0;
594
595 remove_hp_group:
596 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
597 delete_obj:
598 kobject_put(*hugepage_kobj);
599 return err;
600 }
601
hugepage_exit_sysfs(struct kobject * hugepage_kobj)602 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
603 {
604 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
605 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
606 kobject_put(hugepage_kobj);
607 }
608 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)609 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
610 {
611 return 0;
612 }
613
hugepage_exit_sysfs(struct kobject * hugepage_kobj)614 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
615 {
616 }
617 #endif /* CONFIG_SYSFS */
618
hugepage_init(void)619 static int __init hugepage_init(void)
620 {
621 int err;
622 struct kobject *hugepage_kobj;
623
624 if (!has_transparent_hugepage()) {
625 transparent_hugepage_flags = 0;
626 return -EINVAL;
627 }
628
629 err = hugepage_init_sysfs(&hugepage_kobj);
630 if (err)
631 goto err_sysfs;
632
633 err = khugepaged_slab_init();
634 if (err)
635 goto err_slab;
636
637 err = register_shrinker(&huge_zero_page_shrinker);
638 if (err)
639 goto err_hzp_shrinker;
640
641 /*
642 * By default disable transparent hugepages on smaller systems,
643 * where the extra memory used could hurt more than TLB overhead
644 * is likely to save. The admin can still enable it through /sys.
645 */
646 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
647 transparent_hugepage_flags = 0;
648 return 0;
649 }
650
651 err = start_stop_khugepaged();
652 if (err)
653 goto err_khugepaged;
654
655 return 0;
656 err_khugepaged:
657 unregister_shrinker(&huge_zero_page_shrinker);
658 err_hzp_shrinker:
659 khugepaged_slab_exit();
660 err_slab:
661 hugepage_exit_sysfs(hugepage_kobj);
662 err_sysfs:
663 return err;
664 }
665 subsys_initcall(hugepage_init);
666
setup_transparent_hugepage(char * str)667 static int __init setup_transparent_hugepage(char *str)
668 {
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 }
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703 }
704
mk_huge_pmd(struct page * page,pgprot_t prot)705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
711 }
712
__do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,struct page * page,gfp_t gfp,unsigned int flags)713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long address, pmd_t *pmd,
716 struct page *page, gfp_t gfp,
717 unsigned int flags)
718 {
719 struct mem_cgroup *memcg;
720 pgtable_t pgtable;
721 spinlock_t *ptl;
722 unsigned long haddr = address & HPAGE_PMD_MASK;
723
724 VM_BUG_ON_PAGE(!PageCompound(page), page);
725
726 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
727 put_page(page);
728 count_vm_event(THP_FAULT_FALLBACK);
729 return VM_FAULT_FALLBACK;
730 }
731
732 pgtable = pte_alloc_one(mm, haddr);
733 if (unlikely(!pgtable)) {
734 mem_cgroup_cancel_charge(page, memcg);
735 put_page(page);
736 return VM_FAULT_OOM;
737 }
738
739 clear_huge_page(page, haddr, HPAGE_PMD_NR);
740 /*
741 * The memory barrier inside __SetPageUptodate makes sure that
742 * clear_huge_page writes become visible before the set_pmd_at()
743 * write.
744 */
745 __SetPageUptodate(page);
746
747 ptl = pmd_lock(mm, pmd);
748 if (unlikely(!pmd_none(*pmd))) {
749 spin_unlock(ptl);
750 mem_cgroup_cancel_charge(page, memcg);
751 put_page(page);
752 pte_free(mm, pgtable);
753 } else {
754 pmd_t entry;
755
756 /* Deliver the page fault to userland */
757 if (userfaultfd_missing(vma)) {
758 int ret;
759
760 spin_unlock(ptl);
761 mem_cgroup_cancel_charge(page, memcg);
762 put_page(page);
763 pte_free(mm, pgtable);
764 ret = handle_userfault(vma, address, flags,
765 VM_UFFD_MISSING);
766 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
767 return ret;
768 }
769
770 entry = mk_huge_pmd(page, vma->vm_page_prot);
771 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
772 page_add_new_anon_rmap(page, vma, haddr);
773 mem_cgroup_commit_charge(page, memcg, false);
774 lru_cache_add_active_or_unevictable(page, vma);
775 pgtable_trans_huge_deposit(mm, pmd, pgtable);
776 set_pmd_at(mm, haddr, pmd, entry);
777 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
778 atomic_long_inc(&mm->nr_ptes);
779 spin_unlock(ptl);
780 count_vm_event(THP_FAULT_ALLOC);
781 }
782
783 return 0;
784 }
785
alloc_hugepage_gfpmask(int defrag,gfp_t extra_gfp)786 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
787 {
788 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
789 }
790
791 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)792 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
793 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
794 struct page *zero_page)
795 {
796 pmd_t entry;
797 if (!pmd_none(*pmd))
798 return false;
799 entry = mk_pmd(zero_page, vma->vm_page_prot);
800 entry = pmd_mkhuge(entry);
801 pgtable_trans_huge_deposit(mm, pmd, pgtable);
802 set_pmd_at(mm, haddr, pmd, entry);
803 atomic_long_inc(&mm->nr_ptes);
804 return true;
805 }
806
do_huge_pmd_anonymous_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags)807 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
808 unsigned long address, pmd_t *pmd,
809 unsigned int flags)
810 {
811 gfp_t gfp;
812 struct page *page;
813 unsigned long haddr = address & HPAGE_PMD_MASK;
814
815 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
816 return VM_FAULT_FALLBACK;
817 if (unlikely(anon_vma_prepare(vma)))
818 return VM_FAULT_OOM;
819 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
820 return VM_FAULT_OOM;
821 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
822 transparent_hugepage_use_zero_page()) {
823 spinlock_t *ptl;
824 pgtable_t pgtable;
825 struct page *zero_page;
826 int ret;
827 pgtable = pte_alloc_one(mm, haddr);
828 if (unlikely(!pgtable))
829 return VM_FAULT_OOM;
830 zero_page = get_huge_zero_page();
831 if (unlikely(!zero_page)) {
832 pte_free(mm, pgtable);
833 count_vm_event(THP_FAULT_FALLBACK);
834 return VM_FAULT_FALLBACK;
835 }
836 ptl = pmd_lock(mm, pmd);
837 ret = 0;
838 if (pmd_none(*pmd)) {
839 if (userfaultfd_missing(vma)) {
840 spin_unlock(ptl);
841 pte_free(mm, pgtable);
842 put_huge_zero_page();
843 ret = handle_userfault(vma, address, flags,
844 VM_UFFD_MISSING);
845 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
846 } else {
847 set_huge_zero_page(pgtable, mm, vma,
848 haddr, pmd,
849 zero_page);
850 spin_unlock(ptl);
851 }
852 } else {
853 spin_unlock(ptl);
854 pte_free(mm, pgtable);
855 put_huge_zero_page();
856 }
857 return ret;
858 }
859 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
860 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
861 if (unlikely(!page)) {
862 count_vm_event(THP_FAULT_FALLBACK);
863 return VM_FAULT_FALLBACK;
864 }
865 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
866 flags);
867 }
868
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned long pfn,pgprot_t prot,bool write)869 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
870 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
871 {
872 struct mm_struct *mm = vma->vm_mm;
873 pmd_t entry;
874 spinlock_t *ptl;
875
876 ptl = pmd_lock(mm, pmd);
877 if (pmd_none(*pmd)) {
878 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
879 if (write) {
880 entry = pmd_mkyoung(pmd_mkdirty(entry));
881 entry = maybe_pmd_mkwrite(entry, vma);
882 }
883 set_pmd_at(mm, addr, pmd, entry);
884 update_mmu_cache_pmd(vma, addr, pmd);
885 }
886 spin_unlock(ptl);
887 }
888
vmf_insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned long pfn,bool write)889 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
890 pmd_t *pmd, unsigned long pfn, bool write)
891 {
892 pgprot_t pgprot = vma->vm_page_prot;
893 /*
894 * If we had pmd_special, we could avoid all these restrictions,
895 * but we need to be consistent with PTEs and architectures that
896 * can't support a 'special' bit.
897 */
898 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
899 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
900 (VM_PFNMAP|VM_MIXEDMAP));
901 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
902 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
903
904 if (addr < vma->vm_start || addr >= vma->vm_end)
905 return VM_FAULT_SIGBUS;
906 if (track_pfn_insert(vma, &pgprot, pfn))
907 return VM_FAULT_SIGBUS;
908 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
909 return VM_FAULT_NOPAGE;
910 }
911
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * vma)912 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
914 struct vm_area_struct *vma)
915 {
916 spinlock_t *dst_ptl, *src_ptl;
917 struct page *src_page;
918 pmd_t pmd;
919 pgtable_t pgtable;
920 int ret;
921
922 ret = -ENOMEM;
923 pgtable = pte_alloc_one(dst_mm, addr);
924 if (unlikely(!pgtable))
925 goto out;
926
927 dst_ptl = pmd_lock(dst_mm, dst_pmd);
928 src_ptl = pmd_lockptr(src_mm, src_pmd);
929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930
931 ret = -EAGAIN;
932 pmd = *src_pmd;
933 if (unlikely(!pmd_trans_huge(pmd))) {
934 pte_free(dst_mm, pgtable);
935 goto out_unlock;
936 }
937 /*
938 * When page table lock is held, the huge zero pmd should not be
939 * under splitting since we don't split the page itself, only pmd to
940 * a page table.
941 */
942 if (is_huge_zero_pmd(pmd)) {
943 struct page *zero_page;
944 /*
945 * get_huge_zero_page() will never allocate a new page here,
946 * since we already have a zero page to copy. It just takes a
947 * reference.
948 */
949 zero_page = get_huge_zero_page();
950 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
951 zero_page);
952 ret = 0;
953 goto out_unlock;
954 }
955
956 if (unlikely(pmd_trans_splitting(pmd))) {
957 /* split huge page running from under us */
958 spin_unlock(src_ptl);
959 spin_unlock(dst_ptl);
960 pte_free(dst_mm, pgtable);
961
962 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
963 goto out;
964 }
965 src_page = pmd_page(pmd);
966 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
967 get_page(src_page);
968 page_dup_rmap(src_page);
969 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
970
971 pmdp_set_wrprotect(src_mm, addr, src_pmd);
972 pmd = pmd_mkold(pmd_wrprotect(pmd));
973 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
974 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
975 atomic_long_inc(&dst_mm->nr_ptes);
976
977 ret = 0;
978 out_unlock:
979 spin_unlock(src_ptl);
980 spin_unlock(dst_ptl);
981 out:
982 return ret;
983 }
984
huge_pmd_set_accessed(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,int dirty)985 void huge_pmd_set_accessed(struct mm_struct *mm,
986 struct vm_area_struct *vma,
987 unsigned long address,
988 pmd_t *pmd, pmd_t orig_pmd,
989 int dirty)
990 {
991 spinlock_t *ptl;
992 pmd_t entry;
993 unsigned long haddr;
994
995 ptl = pmd_lock(mm, pmd);
996 if (unlikely(!pmd_same(*pmd, orig_pmd)))
997 goto unlock;
998
999 entry = pmd_mkyoung(orig_pmd);
1000 haddr = address & HPAGE_PMD_MASK;
1001 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1002 update_mmu_cache_pmd(vma, address, pmd);
1003
1004 unlock:
1005 spin_unlock(ptl);
1006 }
1007
1008 /*
1009 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1010 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1011 * the source page gets split and a tail freed before copy completes.
1012 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1013 */
get_user_huge_page(struct page * page)1014 static void get_user_huge_page(struct page *page)
1015 {
1016 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1017 struct page *endpage = page + HPAGE_PMD_NR;
1018
1019 atomic_add(HPAGE_PMD_NR, &page->_count);
1020 while (++page < endpage)
1021 get_huge_page_tail(page);
1022 } else {
1023 get_page(page);
1024 }
1025 }
1026
put_user_huge_page(struct page * page)1027 static void put_user_huge_page(struct page *page)
1028 {
1029 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1030 struct page *endpage = page + HPAGE_PMD_NR;
1031
1032 while (page < endpage)
1033 put_page(page++);
1034 } else {
1035 put_page(page);
1036 }
1037 }
1038
do_huge_pmd_wp_page_fallback(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd,struct page * page,unsigned long haddr)1039 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1040 struct vm_area_struct *vma,
1041 unsigned long address,
1042 pmd_t *pmd, pmd_t orig_pmd,
1043 struct page *page,
1044 unsigned long haddr)
1045 {
1046 struct mem_cgroup *memcg;
1047 spinlock_t *ptl;
1048 pgtable_t pgtable;
1049 pmd_t _pmd;
1050 int ret = 0, i;
1051 struct page **pages;
1052 unsigned long mmun_start; /* For mmu_notifiers */
1053 unsigned long mmun_end; /* For mmu_notifiers */
1054
1055 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1056 GFP_KERNEL);
1057 if (unlikely(!pages)) {
1058 ret |= VM_FAULT_OOM;
1059 goto out;
1060 }
1061
1062 for (i = 0; i < HPAGE_PMD_NR; i++) {
1063 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1064 __GFP_OTHER_NODE,
1065 vma, address, page_to_nid(page));
1066 if (unlikely(!pages[i] ||
1067 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1068 &memcg))) {
1069 if (pages[i])
1070 put_page(pages[i]);
1071 while (--i >= 0) {
1072 memcg = (void *)page_private(pages[i]);
1073 set_page_private(pages[i], 0);
1074 mem_cgroup_cancel_charge(pages[i], memcg);
1075 put_page(pages[i]);
1076 }
1077 kfree(pages);
1078 ret |= VM_FAULT_OOM;
1079 goto out;
1080 }
1081 set_page_private(pages[i], (unsigned long)memcg);
1082 }
1083
1084 for (i = 0; i < HPAGE_PMD_NR; i++) {
1085 copy_user_highpage(pages[i], page + i,
1086 haddr + PAGE_SIZE * i, vma);
1087 __SetPageUptodate(pages[i]);
1088 cond_resched();
1089 }
1090
1091 mmun_start = haddr;
1092 mmun_end = haddr + HPAGE_PMD_SIZE;
1093 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1094
1095 ptl = pmd_lock(mm, pmd);
1096 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1097 goto out_free_pages;
1098 VM_BUG_ON_PAGE(!PageHead(page), page);
1099
1100 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1101 /* leave pmd empty until pte is filled */
1102
1103 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1104 pmd_populate(mm, &_pmd, pgtable);
1105
1106 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1107 pte_t *pte, entry;
1108 entry = mk_pte(pages[i], vma->vm_page_prot);
1109 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1110 memcg = (void *)page_private(pages[i]);
1111 set_page_private(pages[i], 0);
1112 page_add_new_anon_rmap(pages[i], vma, haddr);
1113 mem_cgroup_commit_charge(pages[i], memcg, false);
1114 lru_cache_add_active_or_unevictable(pages[i], vma);
1115 pte = pte_offset_map(&_pmd, haddr);
1116 VM_BUG_ON(!pte_none(*pte));
1117 set_pte_at(mm, haddr, pte, entry);
1118 pte_unmap(pte);
1119 }
1120 kfree(pages);
1121
1122 smp_wmb(); /* make pte visible before pmd */
1123 pmd_populate(mm, pmd, pgtable);
1124 page_remove_rmap(page);
1125 spin_unlock(ptl);
1126
1127 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1128
1129 ret |= VM_FAULT_WRITE;
1130 put_page(page);
1131
1132 out:
1133 return ret;
1134
1135 out_free_pages:
1136 spin_unlock(ptl);
1137 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1138 for (i = 0; i < HPAGE_PMD_NR; i++) {
1139 memcg = (void *)page_private(pages[i]);
1140 set_page_private(pages[i], 0);
1141 mem_cgroup_cancel_charge(pages[i], memcg);
1142 put_page(pages[i]);
1143 }
1144 kfree(pages);
1145 goto out;
1146 }
1147
do_huge_pmd_wp_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,pmd_t orig_pmd)1148 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1149 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1150 {
1151 spinlock_t *ptl;
1152 int ret = 0;
1153 struct page *page = NULL, *new_page;
1154 struct mem_cgroup *memcg;
1155 unsigned long haddr;
1156 unsigned long mmun_start; /* For mmu_notifiers */
1157 unsigned long mmun_end; /* For mmu_notifiers */
1158 gfp_t huge_gfp; /* for allocation and charge */
1159
1160 ptl = pmd_lockptr(mm, pmd);
1161 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1162 haddr = address & HPAGE_PMD_MASK;
1163 if (is_huge_zero_pmd(orig_pmd))
1164 goto alloc;
1165 spin_lock(ptl);
1166 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1167 goto out_unlock;
1168
1169 page = pmd_page(orig_pmd);
1170 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1171 if (page_mapcount(page) == 1) {
1172 pmd_t entry;
1173 entry = pmd_mkyoung(orig_pmd);
1174 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1175 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1176 update_mmu_cache_pmd(vma, address, pmd);
1177 ret |= VM_FAULT_WRITE;
1178 goto out_unlock;
1179 }
1180 get_user_huge_page(page);
1181 spin_unlock(ptl);
1182 alloc:
1183 if (transparent_hugepage_enabled(vma) &&
1184 !transparent_hugepage_debug_cow()) {
1185 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1186 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1187 } else
1188 new_page = NULL;
1189
1190 if (unlikely(!new_page)) {
1191 if (!page) {
1192 split_huge_page_pmd(vma, address, pmd);
1193 ret |= VM_FAULT_FALLBACK;
1194 } else {
1195 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1196 pmd, orig_pmd, page, haddr);
1197 if (ret & VM_FAULT_OOM) {
1198 split_huge_page(page);
1199 ret |= VM_FAULT_FALLBACK;
1200 }
1201 put_user_huge_page(page);
1202 }
1203 count_vm_event(THP_FAULT_FALLBACK);
1204 goto out;
1205 }
1206
1207 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1208 put_page(new_page);
1209 if (page) {
1210 split_huge_page(page);
1211 put_user_huge_page(page);
1212 } else
1213 split_huge_page_pmd(vma, address, pmd);
1214 ret |= VM_FAULT_FALLBACK;
1215 count_vm_event(THP_FAULT_FALLBACK);
1216 goto out;
1217 }
1218
1219 count_vm_event(THP_FAULT_ALLOC);
1220
1221 if (!page)
1222 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1223 else
1224 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1225 __SetPageUptodate(new_page);
1226
1227 mmun_start = haddr;
1228 mmun_end = haddr + HPAGE_PMD_SIZE;
1229 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1230
1231 spin_lock(ptl);
1232 if (page)
1233 put_user_huge_page(page);
1234 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1235 spin_unlock(ptl);
1236 mem_cgroup_cancel_charge(new_page, memcg);
1237 put_page(new_page);
1238 goto out_mn;
1239 } else {
1240 pmd_t entry;
1241 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1242 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1243 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1244 page_add_new_anon_rmap(new_page, vma, haddr);
1245 mem_cgroup_commit_charge(new_page, memcg, false);
1246 lru_cache_add_active_or_unevictable(new_page, vma);
1247 set_pmd_at(mm, haddr, pmd, entry);
1248 update_mmu_cache_pmd(vma, address, pmd);
1249 if (!page) {
1250 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1251 put_huge_zero_page();
1252 } else {
1253 VM_BUG_ON_PAGE(!PageHead(page), page);
1254 page_remove_rmap(page);
1255 put_page(page);
1256 }
1257 ret |= VM_FAULT_WRITE;
1258 }
1259 spin_unlock(ptl);
1260 out_mn:
1261 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1262 out:
1263 return ret;
1264 out_unlock:
1265 spin_unlock(ptl);
1266 return ret;
1267 }
1268
1269 /*
1270 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1271 * but only after we've gone through a COW cycle and they are dirty.
1272 */
can_follow_write_pmd(pmd_t pmd,unsigned int flags)1273 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1274 {
1275 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1276 }
1277
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1278 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1279 unsigned long addr,
1280 pmd_t *pmd,
1281 unsigned int flags)
1282 {
1283 struct mm_struct *mm = vma->vm_mm;
1284 struct page *page = NULL;
1285
1286 assert_spin_locked(pmd_lockptr(mm, pmd));
1287
1288 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1289 goto out;
1290
1291 /* Avoid dumping huge zero page */
1292 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1293 return ERR_PTR(-EFAULT);
1294
1295 /* Full NUMA hinting faults to serialise migration in fault paths */
1296 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1297 goto out;
1298
1299 page = pmd_page(*pmd);
1300 VM_BUG_ON_PAGE(!PageHead(page), page);
1301 if (flags & FOLL_TOUCH) {
1302 pmd_t _pmd;
1303 _pmd = pmd_mkyoung(*pmd);
1304 if (flags & FOLL_WRITE)
1305 _pmd = pmd_mkdirty(_pmd);
1306 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1307 pmd, _pmd, flags & FOLL_WRITE))
1308 update_mmu_cache_pmd(vma, addr, pmd);
1309 }
1310 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1311 if (page->mapping && trylock_page(page)) {
1312 lru_add_drain();
1313 if (page->mapping)
1314 mlock_vma_page(page);
1315 unlock_page(page);
1316 }
1317 }
1318 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1319 VM_BUG_ON_PAGE(!PageCompound(page), page);
1320 if (flags & FOLL_GET)
1321 get_page_foll(page);
1322
1323 out:
1324 return page;
1325 }
1326
1327 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,pmd_t * pmdp)1328 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1329 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1330 {
1331 spinlock_t *ptl;
1332 struct anon_vma *anon_vma = NULL;
1333 struct page *page;
1334 unsigned long haddr = addr & HPAGE_PMD_MASK;
1335 int page_nid = -1, this_nid = numa_node_id();
1336 int target_nid, last_cpupid = -1;
1337 bool page_locked;
1338 bool migrated = false;
1339 bool was_writable;
1340 int flags = 0;
1341
1342 ptl = pmd_lock(mm, pmdp);
1343 if (unlikely(!pmd_same(pmd, *pmdp)))
1344 goto out_unlock;
1345
1346 /*
1347 * If there are potential migrations, wait for completion and retry
1348 * without disrupting NUMA hinting information. Do not relock and
1349 * check_same as the page may no longer be mapped.
1350 */
1351 if (unlikely(pmd_trans_migrating(*pmdp))) {
1352 page = pmd_page(*pmdp);
1353 if (!get_page_unless_zero(page))
1354 goto out_unlock;
1355 spin_unlock(ptl);
1356 wait_on_page_locked(page);
1357 put_page(page);
1358 goto out;
1359 }
1360
1361 page = pmd_page(pmd);
1362 BUG_ON(is_huge_zero_page(page));
1363 page_nid = page_to_nid(page);
1364 last_cpupid = page_cpupid_last(page);
1365 count_vm_numa_event(NUMA_HINT_FAULTS);
1366 if (page_nid == this_nid) {
1367 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1368 flags |= TNF_FAULT_LOCAL;
1369 }
1370
1371 /* See similar comment in do_numa_page for explanation */
1372 if (!(vma->vm_flags & VM_WRITE))
1373 flags |= TNF_NO_GROUP;
1374
1375 /*
1376 * Acquire the page lock to serialise THP migrations but avoid dropping
1377 * page_table_lock if at all possible
1378 */
1379 page_locked = trylock_page(page);
1380 target_nid = mpol_misplaced(page, vma, haddr);
1381 if (target_nid == -1) {
1382 /* If the page was locked, there are no parallel migrations */
1383 if (page_locked)
1384 goto clear_pmdnuma;
1385 }
1386
1387 /* Migration could have started since the pmd_trans_migrating check */
1388 if (!page_locked) {
1389 page_nid = -1;
1390 if (!get_page_unless_zero(page))
1391 goto out_unlock;
1392 spin_unlock(ptl);
1393 wait_on_page_locked(page);
1394 put_page(page);
1395 goto out;
1396 }
1397
1398 /*
1399 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1400 * to serialises splits
1401 */
1402 get_page(page);
1403 spin_unlock(ptl);
1404 anon_vma = page_lock_anon_vma_read(page);
1405
1406 /* Confirm the PMD did not change while page_table_lock was released */
1407 spin_lock(ptl);
1408 if (unlikely(!pmd_same(pmd, *pmdp))) {
1409 unlock_page(page);
1410 put_page(page);
1411 page_nid = -1;
1412 goto out_unlock;
1413 }
1414
1415 /* Bail if we fail to protect against THP splits for any reason */
1416 if (unlikely(!anon_vma)) {
1417 put_page(page);
1418 page_nid = -1;
1419 goto clear_pmdnuma;
1420 }
1421
1422 /*
1423 * Migrate the THP to the requested node, returns with page unlocked
1424 * and access rights restored.
1425 */
1426 spin_unlock(ptl);
1427 migrated = migrate_misplaced_transhuge_page(mm, vma,
1428 pmdp, pmd, addr, page, target_nid);
1429 if (migrated) {
1430 flags |= TNF_MIGRATED;
1431 page_nid = target_nid;
1432 } else
1433 flags |= TNF_MIGRATE_FAIL;
1434
1435 goto out;
1436 clear_pmdnuma:
1437 BUG_ON(!PageLocked(page));
1438 was_writable = pmd_write(pmd);
1439 pmd = pmd_modify(pmd, vma->vm_page_prot);
1440 pmd = pmd_mkyoung(pmd);
1441 if (was_writable)
1442 pmd = pmd_mkwrite(pmd);
1443 set_pmd_at(mm, haddr, pmdp, pmd);
1444 update_mmu_cache_pmd(vma, addr, pmdp);
1445 unlock_page(page);
1446 out_unlock:
1447 spin_unlock(ptl);
1448
1449 out:
1450 if (anon_vma)
1451 page_unlock_anon_vma_read(anon_vma);
1452
1453 if (page_nid != -1)
1454 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1455
1456 return 0;
1457 }
1458
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1459 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1460 pmd_t *pmd, unsigned long addr)
1461 {
1462 pmd_t orig_pmd;
1463 spinlock_t *ptl;
1464
1465 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1466 return 0;
1467 /*
1468 * For architectures like ppc64 we look at deposited pgtable
1469 * when calling pmdp_huge_get_and_clear. So do the
1470 * pgtable_trans_huge_withdraw after finishing pmdp related
1471 * operations.
1472 */
1473 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1474 tlb->fullmm);
1475 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1476 if (vma_is_dax(vma)) {
1477 spin_unlock(ptl);
1478 if (is_huge_zero_pmd(orig_pmd))
1479 put_huge_zero_page();
1480 } else if (is_huge_zero_pmd(orig_pmd)) {
1481 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1482 atomic_long_dec(&tlb->mm->nr_ptes);
1483 spin_unlock(ptl);
1484 put_huge_zero_page();
1485 } else {
1486 struct page *page = pmd_page(orig_pmd);
1487 page_remove_rmap(page);
1488 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1489 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1490 VM_BUG_ON_PAGE(!PageHead(page), page);
1491 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1492 atomic_long_dec(&tlb->mm->nr_ptes);
1493 spin_unlock(ptl);
1494 tlb_remove_page(tlb, page);
1495 }
1496 return 1;
1497 }
1498
move_huge_pmd(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long old_end,pmd_t * old_pmd,pmd_t * new_pmd)1499 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1500 unsigned long old_addr,
1501 unsigned long new_addr, unsigned long old_end,
1502 pmd_t *old_pmd, pmd_t *new_pmd)
1503 {
1504 spinlock_t *old_ptl, *new_ptl;
1505 int ret = 0;
1506 pmd_t pmd;
1507 bool force_flush = false;
1508 struct mm_struct *mm = vma->vm_mm;
1509
1510 if ((old_addr & ~HPAGE_PMD_MASK) ||
1511 (new_addr & ~HPAGE_PMD_MASK) ||
1512 old_end - old_addr < HPAGE_PMD_SIZE ||
1513 (new_vma->vm_flags & VM_NOHUGEPAGE))
1514 goto out;
1515
1516 /*
1517 * The destination pmd shouldn't be established, free_pgtables()
1518 * should have release it.
1519 */
1520 if (WARN_ON(!pmd_none(*new_pmd))) {
1521 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1522 goto out;
1523 }
1524
1525 /*
1526 * We don't have to worry about the ordering of src and dst
1527 * ptlocks because exclusive mmap_sem prevents deadlock.
1528 */
1529 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1530 if (ret == 1) {
1531 new_ptl = pmd_lockptr(mm, new_pmd);
1532 if (new_ptl != old_ptl)
1533 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1534 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1535 if (pmd_present(pmd))
1536 force_flush = true;
1537 VM_BUG_ON(!pmd_none(*new_pmd));
1538
1539 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1540 pgtable_t pgtable;
1541 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1542 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1543 }
1544 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1545 if (force_flush)
1546 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1547 if (new_ptl != old_ptl)
1548 spin_unlock(new_ptl);
1549 spin_unlock(old_ptl);
1550 }
1551 out:
1552 return ret;
1553 }
1554
1555 /*
1556 * Returns
1557 * - 0 if PMD could not be locked
1558 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1559 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1560 */
change_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,int prot_numa)1561 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1562 unsigned long addr, pgprot_t newprot, int prot_numa)
1563 {
1564 struct mm_struct *mm = vma->vm_mm;
1565 spinlock_t *ptl;
1566 pmd_t entry;
1567 bool preserve_write;
1568
1569 int ret = 0;
1570
1571 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1572 return 0;
1573
1574 preserve_write = prot_numa && pmd_write(*pmd);
1575 ret = 1;
1576
1577 /*
1578 * Avoid trapping faults against the zero page. The read-only
1579 * data is likely to be read-cached on the local CPU and
1580 * local/remote hits to the zero page are not interesting.
1581 */
1582 if (prot_numa && is_huge_zero_pmd(*pmd))
1583 goto unlock;
1584
1585 if (prot_numa && pmd_protnone(*pmd))
1586 goto unlock;
1587
1588 /*
1589 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1590 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1591 * which is also under down_read(mmap_sem):
1592 *
1593 * CPU0: CPU1:
1594 * change_huge_pmd(prot_numa=1)
1595 * pmdp_huge_get_and_clear_notify()
1596 * madvise_dontneed()
1597 * zap_pmd_range()
1598 * pmd_trans_huge(*pmd) == 0 (without ptl)
1599 * // skip the pmd
1600 * set_pmd_at();
1601 * // pmd is re-established
1602 *
1603 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1604 * which may break userspace.
1605 *
1606 * pmdp_invalidate() is required to make sure we don't miss
1607 * dirty/young flags set by hardware.
1608 */
1609 entry = *pmd;
1610 pmdp_invalidate(vma, addr, pmd);
1611
1612 /*
1613 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1614 * corrupt them.
1615 */
1616 if (pmd_dirty(*pmd))
1617 entry = pmd_mkdirty(entry);
1618 if (pmd_young(*pmd))
1619 entry = pmd_mkyoung(entry);
1620
1621 entry = pmd_modify(entry, newprot);
1622 if (preserve_write)
1623 entry = pmd_mkwrite(entry);
1624 ret = HPAGE_PMD_NR;
1625 set_pmd_at(mm, addr, pmd, entry);
1626 BUG_ON(!preserve_write && pmd_write(entry));
1627 unlock:
1628 spin_unlock(ptl);
1629 return ret;
1630 }
1631
1632 /*
1633 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1634 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1635 *
1636 * Note that if it returns 1, this routine returns without unlocking page
1637 * table locks. So callers must unlock them.
1638 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma,spinlock_t ** ptl)1639 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1640 spinlock_t **ptl)
1641 {
1642 *ptl = pmd_lock(vma->vm_mm, pmd);
1643 if (likely(pmd_trans_huge(*pmd))) {
1644 if (unlikely(pmd_trans_splitting(*pmd))) {
1645 spin_unlock(*ptl);
1646 wait_split_huge_page(vma->anon_vma, pmd);
1647 return -1;
1648 } else {
1649 /* Thp mapped by 'pmd' is stable, so we can
1650 * handle it as it is. */
1651 return 1;
1652 }
1653 }
1654 spin_unlock(*ptl);
1655 return 0;
1656 }
1657
1658 /*
1659 * This function returns whether a given @page is mapped onto the @address
1660 * in the virtual space of @mm.
1661 *
1662 * When it's true, this function returns *pmd with holding the page table lock
1663 * and passing it back to the caller via @ptl.
1664 * If it's false, returns NULL without holding the page table lock.
1665 */
page_check_address_pmd(struct page * page,struct mm_struct * mm,unsigned long address,enum page_check_address_pmd_flag flag,spinlock_t ** ptl)1666 pmd_t *page_check_address_pmd(struct page *page,
1667 struct mm_struct *mm,
1668 unsigned long address,
1669 enum page_check_address_pmd_flag flag,
1670 spinlock_t **ptl)
1671 {
1672 pgd_t *pgd;
1673 pud_t *pud;
1674 pmd_t *pmd;
1675
1676 if (address & ~HPAGE_PMD_MASK)
1677 return NULL;
1678
1679 pgd = pgd_offset(mm, address);
1680 if (!pgd_present(*pgd))
1681 return NULL;
1682 pud = pud_offset(pgd, address);
1683 if (!pud_present(*pud))
1684 return NULL;
1685 pmd = pmd_offset(pud, address);
1686
1687 *ptl = pmd_lock(mm, pmd);
1688 if (!pmd_present(*pmd))
1689 goto unlock;
1690 if (pmd_page(*pmd) != page)
1691 goto unlock;
1692 /*
1693 * split_vma() may create temporary aliased mappings. There is
1694 * no risk as long as all huge pmd are found and have their
1695 * splitting bit set before __split_huge_page_refcount
1696 * runs. Finding the same huge pmd more than once during the
1697 * same rmap walk is not a problem.
1698 */
1699 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1700 pmd_trans_splitting(*pmd))
1701 goto unlock;
1702 if (pmd_trans_huge(*pmd)) {
1703 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1704 !pmd_trans_splitting(*pmd));
1705 return pmd;
1706 }
1707 unlock:
1708 spin_unlock(*ptl);
1709 return NULL;
1710 }
1711
__split_huge_page_splitting(struct page * page,struct vm_area_struct * vma,unsigned long address)1712 static int __split_huge_page_splitting(struct page *page,
1713 struct vm_area_struct *vma,
1714 unsigned long address)
1715 {
1716 struct mm_struct *mm = vma->vm_mm;
1717 spinlock_t *ptl;
1718 pmd_t *pmd;
1719 int ret = 0;
1720 /* For mmu_notifiers */
1721 const unsigned long mmun_start = address;
1722 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1723
1724 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1725 pmd = page_check_address_pmd(page, mm, address,
1726 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1727 if (pmd) {
1728 /*
1729 * We can't temporarily set the pmd to null in order
1730 * to split it, the pmd must remain marked huge at all
1731 * times or the VM won't take the pmd_trans_huge paths
1732 * and it won't wait on the anon_vma->root->rwsem to
1733 * serialize against split_huge_page*.
1734 */
1735 pmdp_splitting_flush(vma, address, pmd);
1736
1737 ret = 1;
1738 spin_unlock(ptl);
1739 }
1740 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1741
1742 return ret;
1743 }
1744
__split_huge_page_refcount(struct page * page,struct list_head * list)1745 static void __split_huge_page_refcount(struct page *page,
1746 struct list_head *list)
1747 {
1748 int i;
1749 struct zone *zone = page_zone(page);
1750 struct lruvec *lruvec;
1751 int tail_count = 0;
1752
1753 /* prevent PageLRU to go away from under us, and freeze lru stats */
1754 spin_lock_irq(&zone->lru_lock);
1755 lruvec = mem_cgroup_page_lruvec(page, zone);
1756
1757 compound_lock(page);
1758 /* complete memcg works before add pages to LRU */
1759 mem_cgroup_split_huge_fixup(page);
1760
1761 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1762 struct page *page_tail = page + i;
1763
1764 /* tail_page->_mapcount cannot change */
1765 BUG_ON(page_mapcount(page_tail) < 0);
1766 tail_count += page_mapcount(page_tail);
1767 /* check for overflow */
1768 BUG_ON(tail_count < 0);
1769 BUG_ON(atomic_read(&page_tail->_count) != 0);
1770 /*
1771 * tail_page->_count is zero and not changing from
1772 * under us. But get_page_unless_zero() may be running
1773 * from under us on the tail_page. If we used
1774 * atomic_set() below instead of atomic_add(), we
1775 * would then run atomic_set() concurrently with
1776 * get_page_unless_zero(), and atomic_set() is
1777 * implemented in C not using locked ops. spin_unlock
1778 * on x86 sometime uses locked ops because of PPro
1779 * errata 66, 92, so unless somebody can guarantee
1780 * atomic_set() here would be safe on all archs (and
1781 * not only on x86), it's safer to use atomic_add().
1782 */
1783 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1784 &page_tail->_count);
1785
1786 /* after clearing PageTail the gup refcount can be released */
1787 smp_mb__after_atomic();
1788
1789 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1790 page_tail->flags |= (page->flags &
1791 ((1L << PG_referenced) |
1792 (1L << PG_swapbacked) |
1793 (1L << PG_mlocked) |
1794 (1L << PG_uptodate) |
1795 (1L << PG_active) |
1796 (1L << PG_unevictable)));
1797 page_tail->flags |= (1L << PG_dirty);
1798
1799 clear_compound_head(page_tail);
1800
1801 if (page_is_young(page))
1802 set_page_young(page_tail);
1803 if (page_is_idle(page))
1804 set_page_idle(page_tail);
1805
1806 /*
1807 * __split_huge_page_splitting() already set the
1808 * splitting bit in all pmd that could map this
1809 * hugepage, that will ensure no CPU can alter the
1810 * mapcount on the head page. The mapcount is only
1811 * accounted in the head page and it has to be
1812 * transferred to all tail pages in the below code. So
1813 * for this code to be safe, the split the mapcount
1814 * can't change. But that doesn't mean userland can't
1815 * keep changing and reading the page contents while
1816 * we transfer the mapcount, so the pmd splitting
1817 * status is achieved setting a reserved bit in the
1818 * pmd, not by clearing the present bit.
1819 */
1820 page_tail->_mapcount = page->_mapcount;
1821
1822 BUG_ON(page_tail->mapping);
1823 page_tail->mapping = page->mapping;
1824
1825 page_tail->index = page->index + i;
1826 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1827
1828 BUG_ON(!PageAnon(page_tail));
1829 BUG_ON(!PageUptodate(page_tail));
1830 BUG_ON(!PageDirty(page_tail));
1831 BUG_ON(!PageSwapBacked(page_tail));
1832
1833 lru_add_page_tail(page, page_tail, lruvec, list);
1834 }
1835 atomic_sub(tail_count, &page->_count);
1836 BUG_ON(atomic_read(&page->_count) <= 0);
1837
1838 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1839
1840 ClearPageCompound(page);
1841 compound_unlock(page);
1842 spin_unlock_irq(&zone->lru_lock);
1843
1844 for (i = 1; i < HPAGE_PMD_NR; i++) {
1845 struct page *page_tail = page + i;
1846 BUG_ON(page_count(page_tail) <= 0);
1847 /*
1848 * Tail pages may be freed if there wasn't any mapping
1849 * like if add_to_swap() is running on a lru page that
1850 * had its mapping zapped. And freeing these pages
1851 * requires taking the lru_lock so we do the put_page
1852 * of the tail pages after the split is complete.
1853 */
1854 put_page(page_tail);
1855 }
1856
1857 /*
1858 * Only the head page (now become a regular page) is required
1859 * to be pinned by the caller.
1860 */
1861 BUG_ON(page_count(page) <= 0);
1862 }
1863
__split_huge_page_map(struct page * page,struct vm_area_struct * vma,unsigned long address)1864 static int __split_huge_page_map(struct page *page,
1865 struct vm_area_struct *vma,
1866 unsigned long address)
1867 {
1868 struct mm_struct *mm = vma->vm_mm;
1869 spinlock_t *ptl;
1870 pmd_t *pmd, _pmd;
1871 int ret = 0, i;
1872 pgtable_t pgtable;
1873 unsigned long haddr;
1874
1875 pmd = page_check_address_pmd(page, mm, address,
1876 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1877 if (pmd) {
1878 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1879 pmd_populate(mm, &_pmd, pgtable);
1880 if (pmd_write(*pmd))
1881 BUG_ON(page_mapcount(page) != 1);
1882
1883 haddr = address;
1884 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1885 pte_t *pte, entry;
1886 BUG_ON(PageCompound(page+i));
1887 /*
1888 * Note that NUMA hinting access restrictions are not
1889 * transferred to avoid any possibility of altering
1890 * permissions across VMAs.
1891 */
1892 entry = mk_pte(page + i, vma->vm_page_prot);
1893 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1894 if (!pmd_write(*pmd))
1895 entry = pte_wrprotect(entry);
1896 if (!pmd_young(*pmd))
1897 entry = pte_mkold(entry);
1898 pte = pte_offset_map(&_pmd, haddr);
1899 BUG_ON(!pte_none(*pte));
1900 set_pte_at(mm, haddr, pte, entry);
1901 pte_unmap(pte);
1902 }
1903
1904 smp_wmb(); /* make pte visible before pmd */
1905 /*
1906 * Up to this point the pmd is present and huge and
1907 * userland has the whole access to the hugepage
1908 * during the split (which happens in place). If we
1909 * overwrite the pmd with the not-huge version
1910 * pointing to the pte here (which of course we could
1911 * if all CPUs were bug free), userland could trigger
1912 * a small page size TLB miss on the small sized TLB
1913 * while the hugepage TLB entry is still established
1914 * in the huge TLB. Some CPU doesn't like that. See
1915 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1916 * Erratum 383 on page 93. Intel should be safe but is
1917 * also warns that it's only safe if the permission
1918 * and cache attributes of the two entries loaded in
1919 * the two TLB is identical (which should be the case
1920 * here). But it is generally safer to never allow
1921 * small and huge TLB entries for the same virtual
1922 * address to be loaded simultaneously. So instead of
1923 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1924 * mark the current pmd notpresent (atomically because
1925 * here the pmd_trans_huge and pmd_trans_splitting
1926 * must remain set at all times on the pmd until the
1927 * split is complete for this pmd), then we flush the
1928 * SMP TLB and finally we write the non-huge version
1929 * of the pmd entry with pmd_populate.
1930 */
1931 pmdp_invalidate(vma, address, pmd);
1932 pmd_populate(mm, pmd, pgtable);
1933 ret = 1;
1934 spin_unlock(ptl);
1935 }
1936
1937 return ret;
1938 }
1939
1940 /* must be called with anon_vma->root->rwsem held */
__split_huge_page(struct page * page,struct anon_vma * anon_vma,struct list_head * list)1941 static void __split_huge_page(struct page *page,
1942 struct anon_vma *anon_vma,
1943 struct list_head *list)
1944 {
1945 int mapcount, mapcount2;
1946 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1947 struct anon_vma_chain *avc;
1948
1949 BUG_ON(!PageHead(page));
1950 BUG_ON(PageTail(page));
1951
1952 mapcount = 0;
1953 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1954 struct vm_area_struct *vma = avc->vma;
1955 unsigned long addr = vma_address(page, vma);
1956 BUG_ON(is_vma_temporary_stack(vma));
1957 mapcount += __split_huge_page_splitting(page, vma, addr);
1958 }
1959 /*
1960 * It is critical that new vmas are added to the tail of the
1961 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1962 * and establishes a child pmd before
1963 * __split_huge_page_splitting() freezes the parent pmd (so if
1964 * we fail to prevent copy_huge_pmd() from running until the
1965 * whole __split_huge_page() is complete), we will still see
1966 * the newly established pmd of the child later during the
1967 * walk, to be able to set it as pmd_trans_splitting too.
1968 */
1969 if (mapcount != page_mapcount(page)) {
1970 pr_err("mapcount %d page_mapcount %d\n",
1971 mapcount, page_mapcount(page));
1972 BUG();
1973 }
1974
1975 __split_huge_page_refcount(page, list);
1976
1977 mapcount2 = 0;
1978 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1979 struct vm_area_struct *vma = avc->vma;
1980 unsigned long addr = vma_address(page, vma);
1981 BUG_ON(is_vma_temporary_stack(vma));
1982 mapcount2 += __split_huge_page_map(page, vma, addr);
1983 }
1984 if (mapcount != mapcount2) {
1985 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1986 mapcount, mapcount2, page_mapcount(page));
1987 BUG();
1988 }
1989 }
1990
1991 /*
1992 * Split a hugepage into normal pages. This doesn't change the position of head
1993 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1994 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1995 * from the hugepage.
1996 * Return 0 if the hugepage is split successfully otherwise return 1.
1997 */
split_huge_page_to_list(struct page * page,struct list_head * list)1998 int split_huge_page_to_list(struct page *page, struct list_head *list)
1999 {
2000 struct anon_vma *anon_vma;
2001 int ret = 1;
2002
2003 BUG_ON(is_huge_zero_page(page));
2004 BUG_ON(!PageAnon(page));
2005
2006 /*
2007 * The caller does not necessarily hold an mmap_sem that would prevent
2008 * the anon_vma disappearing so we first we take a reference to it
2009 * and then lock the anon_vma for write. This is similar to
2010 * page_lock_anon_vma_read except the write lock is taken to serialise
2011 * against parallel split or collapse operations.
2012 */
2013 anon_vma = page_get_anon_vma(page);
2014 if (!anon_vma)
2015 goto out;
2016 anon_vma_lock_write(anon_vma);
2017
2018 ret = 0;
2019 if (!PageCompound(page))
2020 goto out_unlock;
2021
2022 BUG_ON(!PageSwapBacked(page));
2023 __split_huge_page(page, anon_vma, list);
2024 count_vm_event(THP_SPLIT);
2025
2026 BUG_ON(PageCompound(page));
2027 out_unlock:
2028 anon_vma_unlock_write(anon_vma);
2029 put_anon_vma(anon_vma);
2030 out:
2031 return ret;
2032 }
2033
2034 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2035
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)2036 int hugepage_madvise(struct vm_area_struct *vma,
2037 unsigned long *vm_flags, int advice)
2038 {
2039 switch (advice) {
2040 case MADV_HUGEPAGE:
2041 #ifdef CONFIG_S390
2042 /*
2043 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2044 * can't handle this properly after s390_enable_sie, so we simply
2045 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2046 */
2047 if (mm_has_pgste(vma->vm_mm))
2048 return 0;
2049 #endif
2050 /*
2051 * Be somewhat over-protective like KSM for now!
2052 */
2053 if (*vm_flags & VM_NO_THP)
2054 return -EINVAL;
2055 *vm_flags &= ~VM_NOHUGEPAGE;
2056 *vm_flags |= VM_HUGEPAGE;
2057 /*
2058 * If the vma become good for khugepaged to scan,
2059 * register it here without waiting a page fault that
2060 * may not happen any time soon.
2061 */
2062 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2063 return -ENOMEM;
2064 break;
2065 case MADV_NOHUGEPAGE:
2066 /*
2067 * Be somewhat over-protective like KSM for now!
2068 */
2069 if (*vm_flags & VM_NO_THP)
2070 return -EINVAL;
2071 *vm_flags &= ~VM_HUGEPAGE;
2072 *vm_flags |= VM_NOHUGEPAGE;
2073 /*
2074 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2075 * this vma even if we leave the mm registered in khugepaged if
2076 * it got registered before VM_NOHUGEPAGE was set.
2077 */
2078 break;
2079 }
2080
2081 return 0;
2082 }
2083
khugepaged_slab_init(void)2084 static int __init khugepaged_slab_init(void)
2085 {
2086 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2087 sizeof(struct mm_slot),
2088 __alignof__(struct mm_slot), 0, NULL);
2089 if (!mm_slot_cache)
2090 return -ENOMEM;
2091
2092 return 0;
2093 }
2094
khugepaged_slab_exit(void)2095 static void __init khugepaged_slab_exit(void)
2096 {
2097 kmem_cache_destroy(mm_slot_cache);
2098 }
2099
alloc_mm_slot(void)2100 static inline struct mm_slot *alloc_mm_slot(void)
2101 {
2102 if (!mm_slot_cache) /* initialization failed */
2103 return NULL;
2104 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2105 }
2106
free_mm_slot(struct mm_slot * mm_slot)2107 static inline void free_mm_slot(struct mm_slot *mm_slot)
2108 {
2109 kmem_cache_free(mm_slot_cache, mm_slot);
2110 }
2111
get_mm_slot(struct mm_struct * mm)2112 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2113 {
2114 struct mm_slot *mm_slot;
2115
2116 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2117 if (mm == mm_slot->mm)
2118 return mm_slot;
2119
2120 return NULL;
2121 }
2122
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)2123 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2124 struct mm_slot *mm_slot)
2125 {
2126 mm_slot->mm = mm;
2127 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2128 }
2129
khugepaged_test_exit(struct mm_struct * mm)2130 static inline int khugepaged_test_exit(struct mm_struct *mm)
2131 {
2132 return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
2133 }
2134
__khugepaged_enter(struct mm_struct * mm)2135 int __khugepaged_enter(struct mm_struct *mm)
2136 {
2137 struct mm_slot *mm_slot;
2138 int wakeup;
2139
2140 mm_slot = alloc_mm_slot();
2141 if (!mm_slot)
2142 return -ENOMEM;
2143
2144 /* __khugepaged_exit() must not run from under us */
2145 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
2146 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2147 free_mm_slot(mm_slot);
2148 return 0;
2149 }
2150
2151 spin_lock(&khugepaged_mm_lock);
2152 insert_to_mm_slots_hash(mm, mm_slot);
2153 /*
2154 * Insert just behind the scanning cursor, to let the area settle
2155 * down a little.
2156 */
2157 wakeup = list_empty(&khugepaged_scan.mm_head);
2158 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2159 spin_unlock(&khugepaged_mm_lock);
2160
2161 atomic_inc(&mm->mm_count);
2162 if (wakeup)
2163 wake_up_interruptible(&khugepaged_wait);
2164
2165 return 0;
2166 }
2167
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)2168 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2169 unsigned long vm_flags)
2170 {
2171 unsigned long hstart, hend;
2172 if (!vma->anon_vma)
2173 /*
2174 * Not yet faulted in so we will register later in the
2175 * page fault if needed.
2176 */
2177 return 0;
2178 if (vma->vm_ops || (vm_flags & VM_NO_THP))
2179 /* khugepaged not yet working on file or special mappings */
2180 return 0;
2181 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2182 hend = vma->vm_end & HPAGE_PMD_MASK;
2183 if (hstart < hend)
2184 return khugepaged_enter(vma, vm_flags);
2185 return 0;
2186 }
2187
__khugepaged_exit(struct mm_struct * mm)2188 void __khugepaged_exit(struct mm_struct *mm)
2189 {
2190 struct mm_slot *mm_slot;
2191 int free = 0;
2192
2193 spin_lock(&khugepaged_mm_lock);
2194 mm_slot = get_mm_slot(mm);
2195 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2196 hash_del(&mm_slot->hash);
2197 list_del(&mm_slot->mm_node);
2198 free = 1;
2199 }
2200 spin_unlock(&khugepaged_mm_lock);
2201
2202 if (free) {
2203 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2204 free_mm_slot(mm_slot);
2205 mmdrop(mm);
2206 } else if (mm_slot) {
2207 /*
2208 * This is required to serialize against
2209 * khugepaged_test_exit() (which is guaranteed to run
2210 * under mmap sem read mode). Stop here (after we
2211 * return all pagetables will be destroyed) until
2212 * khugepaged has finished working on the pagetables
2213 * under the mmap_sem.
2214 */
2215 down_write(&mm->mmap_sem);
2216 up_write(&mm->mmap_sem);
2217 }
2218 }
2219
release_pte_page(struct page * page)2220 static void release_pte_page(struct page *page)
2221 {
2222 /* 0 stands for page_is_file_cache(page) == false */
2223 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2224 unlock_page(page);
2225 putback_lru_page(page);
2226 }
2227
release_pte_pages(pte_t * pte,pte_t * _pte)2228 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2229 {
2230 while (--_pte >= pte) {
2231 pte_t pteval = *_pte;
2232 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2233 release_pte_page(pte_page(pteval));
2234 }
2235 }
2236
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte)2237 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2238 unsigned long address,
2239 pte_t *pte)
2240 {
2241 struct page *page;
2242 pte_t *_pte;
2243 int none_or_zero = 0;
2244 bool referenced = false, writable = false;
2245 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2246 _pte++, address += PAGE_SIZE) {
2247 pte_t pteval = *_pte;
2248 if (pte_none(pteval) || (pte_present(pteval) &&
2249 is_zero_pfn(pte_pfn(pteval)))) {
2250 if (!userfaultfd_armed(vma) &&
2251 ++none_or_zero <= khugepaged_max_ptes_none)
2252 continue;
2253 else
2254 goto out;
2255 }
2256 if (!pte_present(pteval))
2257 goto out;
2258 page = vm_normal_page(vma, address, pteval);
2259 if (unlikely(!page))
2260 goto out;
2261
2262 VM_BUG_ON_PAGE(PageCompound(page), page);
2263 VM_BUG_ON_PAGE(!PageAnon(page), page);
2264 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2265
2266 /*
2267 * We can do it before isolate_lru_page because the
2268 * page can't be freed from under us. NOTE: PG_lock
2269 * is needed to serialize against split_huge_page
2270 * when invoked from the VM.
2271 */
2272 if (!trylock_page(page))
2273 goto out;
2274
2275 /*
2276 * cannot use mapcount: can't collapse if there's a gup pin.
2277 * The page must only be referenced by the scanned process
2278 * and page swap cache.
2279 */
2280 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2281 unlock_page(page);
2282 goto out;
2283 }
2284 if (pte_write(pteval)) {
2285 writable = true;
2286 } else {
2287 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2288 unlock_page(page);
2289 goto out;
2290 }
2291 /*
2292 * Page is not in the swap cache. It can be collapsed
2293 * into a THP.
2294 */
2295 }
2296
2297 /*
2298 * Isolate the page to avoid collapsing an hugepage
2299 * currently in use by the VM.
2300 */
2301 if (isolate_lru_page(page)) {
2302 unlock_page(page);
2303 goto out;
2304 }
2305 /* 0 stands for page_is_file_cache(page) == false */
2306 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2307 VM_BUG_ON_PAGE(!PageLocked(page), page);
2308 VM_BUG_ON_PAGE(PageLRU(page), page);
2309
2310 /* If there is no mapped pte young don't collapse the page */
2311 if (pte_young(pteval) ||
2312 page_is_young(page) || PageReferenced(page) ||
2313 mmu_notifier_test_young(vma->vm_mm, address))
2314 referenced = true;
2315 }
2316 if (likely(referenced && writable))
2317 return 1;
2318 out:
2319 release_pte_pages(pte, _pte);
2320 return 0;
2321 }
2322
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl)2323 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2324 struct vm_area_struct *vma,
2325 unsigned long address,
2326 spinlock_t *ptl)
2327 {
2328 pte_t *_pte;
2329 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2330 pte_t pteval = *_pte;
2331 struct page *src_page;
2332
2333 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2334 clear_user_highpage(page, address);
2335 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2336 if (is_zero_pfn(pte_pfn(pteval))) {
2337 /*
2338 * ptl mostly unnecessary.
2339 */
2340 spin_lock(ptl);
2341 /*
2342 * paravirt calls inside pte_clear here are
2343 * superfluous.
2344 */
2345 pte_clear(vma->vm_mm, address, _pte);
2346 spin_unlock(ptl);
2347 }
2348 } else {
2349 src_page = pte_page(pteval);
2350 copy_user_highpage(page, src_page, address, vma);
2351 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2352 release_pte_page(src_page);
2353 /*
2354 * ptl mostly unnecessary, but preempt has to
2355 * be disabled to update the per-cpu stats
2356 * inside page_remove_rmap().
2357 */
2358 spin_lock(ptl);
2359 /*
2360 * paravirt calls inside pte_clear here are
2361 * superfluous.
2362 */
2363 pte_clear(vma->vm_mm, address, _pte);
2364 page_remove_rmap(src_page);
2365 spin_unlock(ptl);
2366 free_page_and_swap_cache(src_page);
2367 }
2368
2369 address += PAGE_SIZE;
2370 page++;
2371 }
2372 }
2373
khugepaged_alloc_sleep(void)2374 static void khugepaged_alloc_sleep(void)
2375 {
2376 DEFINE_WAIT(wait);
2377
2378 add_wait_queue(&khugepaged_wait, &wait);
2379 freezable_schedule_timeout_interruptible(
2380 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2381 remove_wait_queue(&khugepaged_wait, &wait);
2382 }
2383
2384 static int khugepaged_node_load[MAX_NUMNODES];
2385
khugepaged_scan_abort(int nid)2386 static bool khugepaged_scan_abort(int nid)
2387 {
2388 int i;
2389
2390 /*
2391 * If zone_reclaim_mode is disabled, then no extra effort is made to
2392 * allocate memory locally.
2393 */
2394 if (!zone_reclaim_mode)
2395 return false;
2396
2397 /* If there is a count for this node already, it must be acceptable */
2398 if (khugepaged_node_load[nid])
2399 return false;
2400
2401 for (i = 0; i < MAX_NUMNODES; i++) {
2402 if (!khugepaged_node_load[i])
2403 continue;
2404 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2405 return true;
2406 }
2407 return false;
2408 }
2409
2410 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)2411 static int khugepaged_find_target_node(void)
2412 {
2413 static int last_khugepaged_target_node = NUMA_NO_NODE;
2414 int nid, target_node = 0, max_value = 0;
2415
2416 /* find first node with max normal pages hit */
2417 for (nid = 0; nid < MAX_NUMNODES; nid++)
2418 if (khugepaged_node_load[nid] > max_value) {
2419 max_value = khugepaged_node_load[nid];
2420 target_node = nid;
2421 }
2422
2423 /* do some balance if several nodes have the same hit record */
2424 if (target_node <= last_khugepaged_target_node)
2425 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2426 nid++)
2427 if (max_value == khugepaged_node_load[nid]) {
2428 target_node = nid;
2429 break;
2430 }
2431
2432 last_khugepaged_target_node = target_node;
2433 return target_node;
2434 }
2435
khugepaged_prealloc_page(struct page ** hpage,bool * wait)2436 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2437 {
2438 if (IS_ERR(*hpage)) {
2439 if (!*wait)
2440 return false;
2441
2442 *wait = false;
2443 *hpage = NULL;
2444 khugepaged_alloc_sleep();
2445 } else if (*hpage) {
2446 put_page(*hpage);
2447 *hpage = NULL;
2448 }
2449
2450 return true;
2451 }
2452
2453 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,struct mm_struct * mm,unsigned long address,int node)2454 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2455 unsigned long address, int node)
2456 {
2457 VM_BUG_ON_PAGE(*hpage, *hpage);
2458
2459 /*
2460 * Before allocating the hugepage, release the mmap_sem read lock.
2461 * The allocation can take potentially a long time if it involves
2462 * sync compaction, and we do not need to hold the mmap_sem during
2463 * that. We will recheck the vma after taking it again in write mode.
2464 */
2465 up_read(&mm->mmap_sem);
2466
2467 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2468 if (unlikely(!*hpage)) {
2469 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2470 *hpage = ERR_PTR(-ENOMEM);
2471 return NULL;
2472 }
2473
2474 count_vm_event(THP_COLLAPSE_ALLOC);
2475 return *hpage;
2476 }
2477 #else
khugepaged_find_target_node(void)2478 static int khugepaged_find_target_node(void)
2479 {
2480 return 0;
2481 }
2482
alloc_hugepage(int defrag)2483 static inline struct page *alloc_hugepage(int defrag)
2484 {
2485 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2486 HPAGE_PMD_ORDER);
2487 }
2488
khugepaged_alloc_hugepage(bool * wait)2489 static struct page *khugepaged_alloc_hugepage(bool *wait)
2490 {
2491 struct page *hpage;
2492
2493 do {
2494 hpage = alloc_hugepage(khugepaged_defrag());
2495 if (!hpage) {
2496 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2497 if (!*wait)
2498 return NULL;
2499
2500 *wait = false;
2501 khugepaged_alloc_sleep();
2502 } else
2503 count_vm_event(THP_COLLAPSE_ALLOC);
2504 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2505
2506 return hpage;
2507 }
2508
khugepaged_prealloc_page(struct page ** hpage,bool * wait)2509 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2510 {
2511 if (!*hpage)
2512 *hpage = khugepaged_alloc_hugepage(wait);
2513
2514 if (unlikely(!*hpage))
2515 return false;
2516
2517 return true;
2518 }
2519
2520 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,struct mm_struct * mm,unsigned long address,int node)2521 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2522 unsigned long address, int node)
2523 {
2524 up_read(&mm->mmap_sem);
2525 VM_BUG_ON(!*hpage);
2526
2527 return *hpage;
2528 }
2529 #endif
2530
hugepage_vma_check(struct vm_area_struct * vma)2531 static bool hugepage_vma_check(struct vm_area_struct *vma)
2532 {
2533 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2534 (vma->vm_flags & VM_NOHUGEPAGE))
2535 return false;
2536
2537 if (!vma->anon_vma || vma->vm_ops)
2538 return false;
2539 if (is_vma_temporary_stack(vma))
2540 return false;
2541 return !(vma->vm_flags & VM_NO_THP);
2542 }
2543
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,struct vm_area_struct * vma,int node)2544 static void collapse_huge_page(struct mm_struct *mm,
2545 unsigned long address,
2546 struct page **hpage,
2547 struct vm_area_struct *vma,
2548 int node)
2549 {
2550 pmd_t *pmd, _pmd;
2551 pte_t *pte;
2552 pgtable_t pgtable;
2553 struct page *new_page;
2554 spinlock_t *pmd_ptl, *pte_ptl;
2555 int isolated;
2556 unsigned long hstart, hend;
2557 struct mem_cgroup *memcg;
2558 unsigned long mmun_start; /* For mmu_notifiers */
2559 unsigned long mmun_end; /* For mmu_notifiers */
2560 gfp_t gfp;
2561
2562 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2563
2564 /* Only allocate from the target node */
2565 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2566 __GFP_THISNODE;
2567
2568 /* release the mmap_sem read lock. */
2569 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2570 if (!new_page)
2571 return;
2572
2573 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2574 gfp, &memcg)))
2575 return;
2576
2577 /*
2578 * Prevent all access to pagetables with the exception of
2579 * gup_fast later hanlded by the ptep_clear_flush and the VM
2580 * handled by the anon_vma lock + PG_lock.
2581 */
2582 down_write(&mm->mmap_sem);
2583 if (unlikely(khugepaged_test_exit(mm)))
2584 goto out;
2585
2586 vma = find_vma(mm, address);
2587 if (!vma)
2588 goto out;
2589 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2590 hend = vma->vm_end & HPAGE_PMD_MASK;
2591 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2592 goto out;
2593 if (!hugepage_vma_check(vma))
2594 goto out;
2595 pmd = mm_find_pmd(mm, address);
2596 if (!pmd)
2597 goto out;
2598
2599 anon_vma_lock_write(vma->anon_vma);
2600
2601 pte = pte_offset_map(pmd, address);
2602 pte_ptl = pte_lockptr(mm, pmd);
2603
2604 mmun_start = address;
2605 mmun_end = address + HPAGE_PMD_SIZE;
2606 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2607 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2608 /*
2609 * After this gup_fast can't run anymore. This also removes
2610 * any huge TLB entry from the CPU so we won't allow
2611 * huge and small TLB entries for the same virtual address
2612 * to avoid the risk of CPU bugs in that area.
2613 */
2614 _pmd = pmdp_collapse_flush(vma, address, pmd);
2615 spin_unlock(pmd_ptl);
2616 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2617
2618 spin_lock(pte_ptl);
2619 isolated = __collapse_huge_page_isolate(vma, address, pte);
2620 spin_unlock(pte_ptl);
2621
2622 if (unlikely(!isolated)) {
2623 pte_unmap(pte);
2624 spin_lock(pmd_ptl);
2625 BUG_ON(!pmd_none(*pmd));
2626 /*
2627 * We can only use set_pmd_at when establishing
2628 * hugepmds and never for establishing regular pmds that
2629 * points to regular pagetables. Use pmd_populate for that
2630 */
2631 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2632 spin_unlock(pmd_ptl);
2633 anon_vma_unlock_write(vma->anon_vma);
2634 goto out;
2635 }
2636
2637 /*
2638 * All pages are isolated and locked so anon_vma rmap
2639 * can't run anymore.
2640 */
2641 anon_vma_unlock_write(vma->anon_vma);
2642
2643 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2644 pte_unmap(pte);
2645 __SetPageUptodate(new_page);
2646 pgtable = pmd_pgtable(_pmd);
2647
2648 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2649 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2650
2651 /*
2652 * spin_lock() below is not the equivalent of smp_wmb(), so
2653 * this is needed to avoid the copy_huge_page writes to become
2654 * visible after the set_pmd_at() write.
2655 */
2656 smp_wmb();
2657
2658 spin_lock(pmd_ptl);
2659 BUG_ON(!pmd_none(*pmd));
2660 page_add_new_anon_rmap(new_page, vma, address);
2661 mem_cgroup_commit_charge(new_page, memcg, false);
2662 lru_cache_add_active_or_unevictable(new_page, vma);
2663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2664 set_pmd_at(mm, address, pmd, _pmd);
2665 update_mmu_cache_pmd(vma, address, pmd);
2666 spin_unlock(pmd_ptl);
2667
2668 *hpage = NULL;
2669
2670 khugepaged_pages_collapsed++;
2671 out_up_write:
2672 up_write(&mm->mmap_sem);
2673 return;
2674
2675 out:
2676 mem_cgroup_cancel_charge(new_page, memcg);
2677 goto out_up_write;
2678 }
2679
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)2680 static int khugepaged_scan_pmd(struct mm_struct *mm,
2681 struct vm_area_struct *vma,
2682 unsigned long address,
2683 struct page **hpage)
2684 {
2685 pmd_t *pmd;
2686 pte_t *pte, *_pte;
2687 int ret = 0, none_or_zero = 0;
2688 struct page *page;
2689 unsigned long _address;
2690 spinlock_t *ptl;
2691 int node = NUMA_NO_NODE;
2692 bool writable = false, referenced = false;
2693
2694 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2695
2696 pmd = mm_find_pmd(mm, address);
2697 if (!pmd)
2698 goto out;
2699
2700 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2701 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2702 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2703 _pte++, _address += PAGE_SIZE) {
2704 pte_t pteval = *_pte;
2705 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2706 if (!userfaultfd_armed(vma) &&
2707 ++none_or_zero <= khugepaged_max_ptes_none)
2708 continue;
2709 else
2710 goto out_unmap;
2711 }
2712 if (!pte_present(pteval))
2713 goto out_unmap;
2714 if (pte_write(pteval))
2715 writable = true;
2716
2717 page = vm_normal_page(vma, _address, pteval);
2718 if (unlikely(!page))
2719 goto out_unmap;
2720 /*
2721 * Record which node the original page is from and save this
2722 * information to khugepaged_node_load[].
2723 * Khupaged will allocate hugepage from the node has the max
2724 * hit record.
2725 */
2726 node = page_to_nid(page);
2727 if (khugepaged_scan_abort(node))
2728 goto out_unmap;
2729 khugepaged_node_load[node]++;
2730 VM_BUG_ON_PAGE(PageCompound(page), page);
2731 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2732 goto out_unmap;
2733 /*
2734 * cannot use mapcount: can't collapse if there's a gup pin.
2735 * The page must only be referenced by the scanned process
2736 * and page swap cache.
2737 */
2738 if (page_count(page) != 1 + !!PageSwapCache(page))
2739 goto out_unmap;
2740 if (pte_young(pteval) ||
2741 page_is_young(page) || PageReferenced(page) ||
2742 mmu_notifier_test_young(vma->vm_mm, address))
2743 referenced = true;
2744 }
2745 if (referenced && writable)
2746 ret = 1;
2747 out_unmap:
2748 pte_unmap_unlock(pte, ptl);
2749 if (ret) {
2750 node = khugepaged_find_target_node();
2751 /* collapse_huge_page will return with the mmap_sem released */
2752 collapse_huge_page(mm, address, hpage, vma, node);
2753 }
2754 out:
2755 return ret;
2756 }
2757
collect_mm_slot(struct mm_slot * mm_slot)2758 static void collect_mm_slot(struct mm_slot *mm_slot)
2759 {
2760 struct mm_struct *mm = mm_slot->mm;
2761
2762 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2763
2764 if (khugepaged_test_exit(mm)) {
2765 /* free mm_slot */
2766 hash_del(&mm_slot->hash);
2767 list_del(&mm_slot->mm_node);
2768
2769 /*
2770 * Not strictly needed because the mm exited already.
2771 *
2772 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2773 */
2774
2775 /* khugepaged_mm_lock actually not necessary for the below */
2776 free_mm_slot(mm_slot);
2777 mmdrop(mm);
2778 }
2779 }
2780
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2781 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2782 struct page **hpage)
2783 __releases(&khugepaged_mm_lock)
2784 __acquires(&khugepaged_mm_lock)
2785 {
2786 struct mm_slot *mm_slot;
2787 struct mm_struct *mm;
2788 struct vm_area_struct *vma;
2789 int progress = 0;
2790
2791 VM_BUG_ON(!pages);
2792 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2793
2794 if (khugepaged_scan.mm_slot)
2795 mm_slot = khugepaged_scan.mm_slot;
2796 else {
2797 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2798 struct mm_slot, mm_node);
2799 khugepaged_scan.address = 0;
2800 khugepaged_scan.mm_slot = mm_slot;
2801 }
2802 spin_unlock(&khugepaged_mm_lock);
2803
2804 mm = mm_slot->mm;
2805 down_read(&mm->mmap_sem);
2806 if (unlikely(khugepaged_test_exit(mm)))
2807 vma = NULL;
2808 else
2809 vma = find_vma(mm, khugepaged_scan.address);
2810
2811 progress++;
2812 for (; vma; vma = vma->vm_next) {
2813 unsigned long hstart, hend;
2814
2815 cond_resched();
2816 if (unlikely(khugepaged_test_exit(mm))) {
2817 progress++;
2818 break;
2819 }
2820 if (!hugepage_vma_check(vma)) {
2821 skip:
2822 progress++;
2823 continue;
2824 }
2825 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2826 hend = vma->vm_end & HPAGE_PMD_MASK;
2827 if (hstart >= hend)
2828 goto skip;
2829 if (khugepaged_scan.address > hend)
2830 goto skip;
2831 if (khugepaged_scan.address < hstart)
2832 khugepaged_scan.address = hstart;
2833 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2834
2835 while (khugepaged_scan.address < hend) {
2836 int ret;
2837 cond_resched();
2838 if (unlikely(khugepaged_test_exit(mm)))
2839 goto breakouterloop;
2840
2841 VM_BUG_ON(khugepaged_scan.address < hstart ||
2842 khugepaged_scan.address + HPAGE_PMD_SIZE >
2843 hend);
2844 ret = khugepaged_scan_pmd(mm, vma,
2845 khugepaged_scan.address,
2846 hpage);
2847 /* move to next address */
2848 khugepaged_scan.address += HPAGE_PMD_SIZE;
2849 progress += HPAGE_PMD_NR;
2850 if (ret)
2851 /* we released mmap_sem so break loop */
2852 goto breakouterloop_mmap_sem;
2853 if (progress >= pages)
2854 goto breakouterloop;
2855 }
2856 }
2857 breakouterloop:
2858 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2859 breakouterloop_mmap_sem:
2860
2861 spin_lock(&khugepaged_mm_lock);
2862 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2863 /*
2864 * Release the current mm_slot if this mm is about to die, or
2865 * if we scanned all vmas of this mm.
2866 */
2867 if (khugepaged_test_exit(mm) || !vma) {
2868 /*
2869 * Make sure that if mm_users is reaching zero while
2870 * khugepaged runs here, khugepaged_exit will find
2871 * mm_slot not pointing to the exiting mm.
2872 */
2873 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2874 khugepaged_scan.mm_slot = list_entry(
2875 mm_slot->mm_node.next,
2876 struct mm_slot, mm_node);
2877 khugepaged_scan.address = 0;
2878 } else {
2879 khugepaged_scan.mm_slot = NULL;
2880 khugepaged_full_scans++;
2881 }
2882
2883 collect_mm_slot(mm_slot);
2884 }
2885
2886 return progress;
2887 }
2888
khugepaged_has_work(void)2889 static int khugepaged_has_work(void)
2890 {
2891 return !list_empty(&khugepaged_scan.mm_head) &&
2892 khugepaged_enabled();
2893 }
2894
khugepaged_wait_event(void)2895 static int khugepaged_wait_event(void)
2896 {
2897 return !list_empty(&khugepaged_scan.mm_head) ||
2898 kthread_should_stop();
2899 }
2900
khugepaged_do_scan(void)2901 static void khugepaged_do_scan(void)
2902 {
2903 struct page *hpage = NULL;
2904 unsigned int progress = 0, pass_through_head = 0;
2905 unsigned int pages = khugepaged_pages_to_scan;
2906 bool wait = true;
2907
2908 barrier(); /* write khugepaged_pages_to_scan to local stack */
2909
2910 while (progress < pages) {
2911 if (!khugepaged_prealloc_page(&hpage, &wait))
2912 break;
2913
2914 cond_resched();
2915
2916 if (unlikely(kthread_should_stop() || try_to_freeze()))
2917 break;
2918
2919 spin_lock(&khugepaged_mm_lock);
2920 if (!khugepaged_scan.mm_slot)
2921 pass_through_head++;
2922 if (khugepaged_has_work() &&
2923 pass_through_head < 2)
2924 progress += khugepaged_scan_mm_slot(pages - progress,
2925 &hpage);
2926 else
2927 progress = pages;
2928 spin_unlock(&khugepaged_mm_lock);
2929 }
2930
2931 if (!IS_ERR_OR_NULL(hpage))
2932 put_page(hpage);
2933 }
2934
khugepaged_wait_work(void)2935 static void khugepaged_wait_work(void)
2936 {
2937 if (khugepaged_has_work()) {
2938 if (!khugepaged_scan_sleep_millisecs)
2939 return;
2940
2941 wait_event_freezable_timeout(khugepaged_wait,
2942 kthread_should_stop(),
2943 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2944 return;
2945 }
2946
2947 if (khugepaged_enabled())
2948 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2949 }
2950
khugepaged(void * none)2951 static int khugepaged(void *none)
2952 {
2953 struct mm_slot *mm_slot;
2954
2955 set_freezable();
2956 set_user_nice(current, MAX_NICE);
2957
2958 while (!kthread_should_stop()) {
2959 khugepaged_do_scan();
2960 khugepaged_wait_work();
2961 }
2962
2963 spin_lock(&khugepaged_mm_lock);
2964 mm_slot = khugepaged_scan.mm_slot;
2965 khugepaged_scan.mm_slot = NULL;
2966 if (mm_slot)
2967 collect_mm_slot(mm_slot);
2968 spin_unlock(&khugepaged_mm_lock);
2969 return 0;
2970 }
2971
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2972 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2973 unsigned long haddr, pmd_t *pmd)
2974 {
2975 struct mm_struct *mm = vma->vm_mm;
2976 pgtable_t pgtable;
2977 pmd_t _pmd;
2978 int i;
2979
2980 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2981 /* leave pmd empty until pte is filled */
2982
2983 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2984 pmd_populate(mm, &_pmd, pgtable);
2985
2986 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2987 pte_t *pte, entry;
2988 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2989 entry = pte_mkspecial(entry);
2990 pte = pte_offset_map(&_pmd, haddr);
2991 VM_BUG_ON(!pte_none(*pte));
2992 set_pte_at(mm, haddr, pte, entry);
2993 pte_unmap(pte);
2994 }
2995 smp_wmb(); /* make pte visible before pmd */
2996 pmd_populate(mm, pmd, pgtable);
2997 put_huge_zero_page();
2998 }
2999
__split_huge_page_pmd(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd)3000 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3001 pmd_t *pmd)
3002 {
3003 spinlock_t *ptl;
3004 struct page *page = NULL;
3005 struct mm_struct *mm = vma->vm_mm;
3006 unsigned long haddr = address & HPAGE_PMD_MASK;
3007 unsigned long mmun_start; /* For mmu_notifiers */
3008 unsigned long mmun_end; /* For mmu_notifiers */
3009
3010 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3011
3012 mmun_start = haddr;
3013 mmun_end = haddr + HPAGE_PMD_SIZE;
3014 again:
3015 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3016 ptl = pmd_lock(mm, pmd);
3017 if (unlikely(!pmd_trans_huge(*pmd)))
3018 goto unlock;
3019 if (vma_is_dax(vma)) {
3020 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3021 if (is_huge_zero_pmd(_pmd))
3022 put_huge_zero_page();
3023 } else if (is_huge_zero_pmd(*pmd)) {
3024 __split_huge_zero_page_pmd(vma, haddr, pmd);
3025 } else {
3026 page = pmd_page(*pmd);
3027 VM_BUG_ON_PAGE(!page_count(page), page);
3028 get_page(page);
3029 }
3030 unlock:
3031 spin_unlock(ptl);
3032 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3033
3034 if (!page)
3035 return;
3036
3037 split_huge_page(page);
3038 put_page(page);
3039
3040 /*
3041 * We don't always have down_write of mmap_sem here: a racing
3042 * do_huge_pmd_wp_page() might have copied-on-write to another
3043 * huge page before our split_huge_page() got the anon_vma lock.
3044 */
3045 if (unlikely(pmd_trans_huge(*pmd)))
3046 goto again;
3047 }
3048
split_huge_page_pmd_mm(struct mm_struct * mm,unsigned long address,pmd_t * pmd)3049 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3050 pmd_t *pmd)
3051 {
3052 struct vm_area_struct *vma;
3053
3054 vma = find_vma(mm, address);
3055 BUG_ON(vma == NULL);
3056 split_huge_page_pmd(vma, address, pmd);
3057 }
3058
split_huge_page_address(struct mm_struct * mm,unsigned long address)3059 static void split_huge_page_address(struct mm_struct *mm,
3060 unsigned long address)
3061 {
3062 pgd_t *pgd;
3063 pud_t *pud;
3064 pmd_t *pmd;
3065
3066 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3067
3068 pgd = pgd_offset(mm, address);
3069 if (!pgd_present(*pgd))
3070 return;
3071
3072 pud = pud_offset(pgd, address);
3073 if (!pud_present(*pud))
3074 return;
3075
3076 pmd = pmd_offset(pud, address);
3077 if (!pmd_present(*pmd))
3078 return;
3079 /*
3080 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3081 * materialize from under us.
3082 */
3083 split_huge_page_pmd_mm(mm, address, pmd);
3084 }
3085
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)3086 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3087 unsigned long start,
3088 unsigned long end,
3089 long adjust_next)
3090 {
3091 /*
3092 * If the new start address isn't hpage aligned and it could
3093 * previously contain an hugepage: check if we need to split
3094 * an huge pmd.
3095 */
3096 if (start & ~HPAGE_PMD_MASK &&
3097 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3098 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3099 split_huge_page_address(vma->vm_mm, start);
3100
3101 /*
3102 * If the new end address isn't hpage aligned and it could
3103 * previously contain an hugepage: check if we need to split
3104 * an huge pmd.
3105 */
3106 if (end & ~HPAGE_PMD_MASK &&
3107 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3108 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3109 split_huge_page_address(vma->vm_mm, end);
3110
3111 /*
3112 * If we're also updating the vma->vm_next->vm_start, if the new
3113 * vm_next->vm_start isn't page aligned and it could previously
3114 * contain an hugepage: check if we need to split an huge pmd.
3115 */
3116 if (adjust_next > 0) {
3117 struct vm_area_struct *next = vma->vm_next;
3118 unsigned long nstart = next->vm_start;
3119 nstart += adjust_next << PAGE_SHIFT;
3120 if (nstart & ~HPAGE_PMD_MASK &&
3121 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3122 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3123 split_huge_page_address(next->vm_mm, nstart);
3124 }
3125 }
3126