• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 
22 static const struct file_operations fuse_direct_io_file_operations;
23 
fuse_send_open(struct fuse_conn * fc,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)24 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
25 			  int opcode, struct fuse_open_out *outargp)
26 {
27 	struct fuse_open_in inarg;
28 	FUSE_ARGS(args);
29 
30 	memset(&inarg, 0, sizeof(inarg));
31 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 	if (!fc->atomic_o_trunc)
33 		inarg.flags &= ~O_TRUNC;
34 	args.in.h.opcode = opcode;
35 	args.in.h.nodeid = nodeid;
36 	args.in.numargs = 1;
37 	args.in.args[0].size = sizeof(inarg);
38 	args.in.args[0].value = &inarg;
39 	args.out.numargs = 1;
40 	args.out.args[0].size = sizeof(*outargp);
41 	args.out.args[0].value = outargp;
42 
43 	return fuse_simple_request(fc, &args);
44 }
45 
fuse_file_alloc(struct fuse_conn * fc)46 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
47 {
48 	struct fuse_file *ff;
49 
50 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
51 	if (unlikely(!ff))
52 		return NULL;
53 
54 	ff->fc = fc;
55 	ff->reserved_req = fuse_request_alloc(0);
56 	if (unlikely(!ff->reserved_req)) {
57 		kfree(ff);
58 		return NULL;
59 	}
60 
61 	INIT_LIST_HEAD(&ff->write_entry);
62 	atomic_set(&ff->count, 0);
63 	RB_CLEAR_NODE(&ff->polled_node);
64 	init_waitqueue_head(&ff->poll_wait);
65 
66 	spin_lock(&fc->lock);
67 	ff->kh = ++fc->khctr;
68 	spin_unlock(&fc->lock);
69 
70 	return ff;
71 }
72 
fuse_file_free(struct fuse_file * ff)73 void fuse_file_free(struct fuse_file *ff)
74 {
75 	fuse_request_free(ff->reserved_req);
76 	kfree(ff);
77 }
78 
fuse_file_get(struct fuse_file * ff)79 struct fuse_file *fuse_file_get(struct fuse_file *ff)
80 {
81 	atomic_inc(&ff->count);
82 	return ff;
83 }
84 
fuse_release_end(struct fuse_conn * fc,struct fuse_req * req)85 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
86 {
87 	iput(req->misc.release.inode);
88 }
89 
fuse_file_put(struct fuse_file * ff,bool sync)90 static void fuse_file_put(struct fuse_file *ff, bool sync)
91 {
92 	if (atomic_dec_and_test(&ff->count)) {
93 		struct fuse_req *req = ff->reserved_req;
94 
95 		if (ff->fc->no_open) {
96 			/*
97 			 * Drop the release request when client does not
98 			 * implement 'open'
99 			 */
100 			__clear_bit(FR_BACKGROUND, &req->flags);
101 			iput(req->misc.release.inode);
102 			fuse_put_request(ff->fc, req);
103 		} else if (sync) {
104 			__set_bit(FR_FORCE, &req->flags);
105 			__clear_bit(FR_BACKGROUND, &req->flags);
106 			fuse_request_send(ff->fc, req);
107 			iput(req->misc.release.inode);
108 			fuse_put_request(ff->fc, req);
109 		} else {
110 			req->end = fuse_release_end;
111 			__set_bit(FR_BACKGROUND, &req->flags);
112 			fuse_request_send_background(ff->fc, req);
113 		}
114 		kfree(ff);
115 	}
116 }
117 
fuse_do_open(struct fuse_conn * fc,u64 nodeid,struct file * file,bool isdir)118 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
119 		 bool isdir)
120 {
121 	struct fuse_file *ff;
122 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
123 
124 	ff = fuse_file_alloc(fc);
125 	if (!ff)
126 		return -ENOMEM;
127 
128 	ff->fh = 0;
129 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
130 	if (!fc->no_open || isdir) {
131 		struct fuse_open_out outarg;
132 		int err;
133 
134 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
135 		if (!err) {
136 			ff->fh = outarg.fh;
137 			ff->open_flags = outarg.open_flags;
138 
139 		} else if (err != -ENOSYS || isdir) {
140 			fuse_file_free(ff);
141 			return err;
142 		} else {
143 			fc->no_open = 1;
144 		}
145 	}
146 
147 	if (isdir)
148 		ff->open_flags &= ~FOPEN_DIRECT_IO;
149 
150 	ff->nodeid = nodeid;
151 	file->private_data = fuse_file_get(ff);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(fuse_do_open);
156 
fuse_link_write_file(struct file * file)157 static void fuse_link_write_file(struct file *file)
158 {
159 	struct inode *inode = file_inode(file);
160 	struct fuse_conn *fc = get_fuse_conn(inode);
161 	struct fuse_inode *fi = get_fuse_inode(inode);
162 	struct fuse_file *ff = file->private_data;
163 	/*
164 	 * file may be written through mmap, so chain it onto the
165 	 * inodes's write_file list
166 	 */
167 	spin_lock(&fc->lock);
168 	if (list_empty(&ff->write_entry))
169 		list_add(&ff->write_entry, &fi->write_files);
170 	spin_unlock(&fc->lock);
171 }
172 
fuse_finish_open(struct inode * inode,struct file * file)173 void fuse_finish_open(struct inode *inode, struct file *file)
174 {
175 	struct fuse_file *ff = file->private_data;
176 	struct fuse_conn *fc = get_fuse_conn(inode);
177 
178 	if (ff->open_flags & FOPEN_DIRECT_IO)
179 		file->f_op = &fuse_direct_io_file_operations;
180 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
181 		invalidate_inode_pages2(inode->i_mapping);
182 	if (ff->open_flags & FOPEN_STREAM)
183 		stream_open(inode, file);
184 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
185 		nonseekable_open(inode, file);
186 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
187 		struct fuse_inode *fi = get_fuse_inode(inode);
188 
189 		spin_lock(&fc->lock);
190 		fi->attr_version = ++fc->attr_version;
191 		i_size_write(inode, 0);
192 		spin_unlock(&fc->lock);
193 		fuse_invalidate_attr(inode);
194 		if (fc->writeback_cache)
195 			file_update_time(file);
196 	}
197 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
198 		fuse_link_write_file(file);
199 }
200 
fuse_open_common(struct inode * inode,struct file * file,bool isdir)201 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
202 {
203 	struct fuse_conn *fc = get_fuse_conn(inode);
204 	int err;
205 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
206 			  fc->atomic_o_trunc &&
207 			  fc->writeback_cache;
208 
209 	err = generic_file_open(inode, file);
210 	if (err)
211 		return err;
212 
213 	if (is_wb_truncate) {
214 		mutex_lock(&inode->i_mutex);
215 		fuse_set_nowrite(inode);
216 	}
217 
218 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
219 
220 	if (!err)
221 		fuse_finish_open(inode, file);
222 
223 	if (is_wb_truncate) {
224 		fuse_release_nowrite(inode);
225 		mutex_unlock(&inode->i_mutex);
226 	}
227 
228 	return err;
229 }
230 
fuse_prepare_release(struct fuse_file * ff,int flags,int opcode)231 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
232 {
233 	struct fuse_conn *fc = ff->fc;
234 	struct fuse_req *req = ff->reserved_req;
235 	struct fuse_release_in *inarg = &req->misc.release.in;
236 
237 	spin_lock(&fc->lock);
238 	list_del(&ff->write_entry);
239 	if (!RB_EMPTY_NODE(&ff->polled_node))
240 		rb_erase(&ff->polled_node, &fc->polled_files);
241 	spin_unlock(&fc->lock);
242 
243 	wake_up_interruptible_all(&ff->poll_wait);
244 
245 	inarg->fh = ff->fh;
246 	inarg->flags = flags;
247 	req->in.h.opcode = opcode;
248 	req->in.h.nodeid = ff->nodeid;
249 	req->in.numargs = 1;
250 	req->in.args[0].size = sizeof(struct fuse_release_in);
251 	req->in.args[0].value = inarg;
252 }
253 
fuse_release_common(struct file * file,int opcode)254 void fuse_release_common(struct file *file, int opcode)
255 {
256 	struct fuse_file *ff;
257 	struct fuse_req *req;
258 
259 	ff = file->private_data;
260 	if (unlikely(!ff))
261 		return;
262 
263 	req = ff->reserved_req;
264 	fuse_prepare_release(ff, file->f_flags, opcode);
265 
266 	if (ff->flock) {
267 		struct fuse_release_in *inarg = &req->misc.release.in;
268 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
269 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
270 						       (fl_owner_t) file);
271 	}
272 	/* Hold inode until release is finished */
273 	req->misc.release.inode = igrab(file_inode(file));
274 
275 	/*
276 	 * Normally this will send the RELEASE request, however if
277 	 * some asynchronous READ or WRITE requests are outstanding,
278 	 * the sending will be delayed.
279 	 *
280 	 * Make the release synchronous if this is a fuseblk mount,
281 	 * synchronous RELEASE is allowed (and desirable) in this case
282 	 * because the server can be trusted not to screw up.
283 	 */
284 	fuse_file_put(ff, ff->fc->destroy_req != NULL);
285 }
286 
fuse_open(struct inode * inode,struct file * file)287 static int fuse_open(struct inode *inode, struct file *file)
288 {
289 	return fuse_open_common(inode, file, false);
290 }
291 
fuse_release(struct inode * inode,struct file * file)292 static int fuse_release(struct inode *inode, struct file *file)
293 {
294 	struct fuse_conn *fc = get_fuse_conn(inode);
295 
296 	/* see fuse_vma_close() for !writeback_cache case */
297 	if (fc->writeback_cache)
298 		write_inode_now(inode, 1);
299 
300 	fuse_release_common(file, FUSE_RELEASE);
301 
302 	/* return value is ignored by VFS */
303 	return 0;
304 }
305 
fuse_sync_release(struct fuse_file * ff,int flags)306 void fuse_sync_release(struct fuse_file *ff, int flags)
307 {
308 	WARN_ON(atomic_read(&ff->count) > 1);
309 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
310 	__set_bit(FR_FORCE, &ff->reserved_req->flags);
311 	__clear_bit(FR_BACKGROUND, &ff->reserved_req->flags);
312 	fuse_request_send(ff->fc, ff->reserved_req);
313 	fuse_put_request(ff->fc, ff->reserved_req);
314 	kfree(ff);
315 }
316 EXPORT_SYMBOL_GPL(fuse_sync_release);
317 
318 /*
319  * Scramble the ID space with XTEA, so that the value of the files_struct
320  * pointer is not exposed to userspace.
321  */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)322 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
323 {
324 	u32 *k = fc->scramble_key;
325 	u64 v = (unsigned long) id;
326 	u32 v0 = v;
327 	u32 v1 = v >> 32;
328 	u32 sum = 0;
329 	int i;
330 
331 	for (i = 0; i < 32; i++) {
332 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
333 		sum += 0x9E3779B9;
334 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
335 	}
336 
337 	return (u64) v0 + ((u64) v1 << 32);
338 }
339 
340 /*
341  * Check if any page in a range is under writeback
342  *
343  * This is currently done by walking the list of writepage requests
344  * for the inode, which can be pretty inefficient.
345  */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)346 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
347 				   pgoff_t idx_to)
348 {
349 	struct fuse_conn *fc = get_fuse_conn(inode);
350 	struct fuse_inode *fi = get_fuse_inode(inode);
351 	struct fuse_req *req;
352 	bool found = false;
353 
354 	spin_lock(&fc->lock);
355 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
356 		pgoff_t curr_index;
357 
358 		BUG_ON(req->inode != inode);
359 		curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
360 		if (idx_from < curr_index + req->num_pages &&
361 		    curr_index <= idx_to) {
362 			found = true;
363 			break;
364 		}
365 	}
366 	spin_unlock(&fc->lock);
367 
368 	return found;
369 }
370 
fuse_page_is_writeback(struct inode * inode,pgoff_t index)371 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
372 {
373 	return fuse_range_is_writeback(inode, index, index);
374 }
375 
376 /*
377  * Wait for page writeback to be completed.
378  *
379  * Since fuse doesn't rely on the VM writeback tracking, this has to
380  * use some other means.
381  */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)382 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
383 {
384 	struct fuse_inode *fi = get_fuse_inode(inode);
385 
386 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
387 	return 0;
388 }
389 
390 /*
391  * Wait for all pending writepages on the inode to finish.
392  *
393  * This is currently done by blocking further writes with FUSE_NOWRITE
394  * and waiting for all sent writes to complete.
395  *
396  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
397  * could conflict with truncation.
398  */
fuse_sync_writes(struct inode * inode)399 static void fuse_sync_writes(struct inode *inode)
400 {
401 	fuse_set_nowrite(inode);
402 	fuse_release_nowrite(inode);
403 }
404 
fuse_flush(struct file * file,fl_owner_t id)405 static int fuse_flush(struct file *file, fl_owner_t id)
406 {
407 	struct inode *inode = file_inode(file);
408 	struct fuse_conn *fc = get_fuse_conn(inode);
409 	struct fuse_file *ff = file->private_data;
410 	struct fuse_req *req;
411 	struct fuse_flush_in inarg;
412 	int err;
413 
414 	if (is_bad_inode(inode))
415 		return -EIO;
416 
417 	if (fc->no_flush)
418 		return 0;
419 
420 	err = write_inode_now(inode, 1);
421 	if (err)
422 		return err;
423 
424 	mutex_lock(&inode->i_mutex);
425 	fuse_sync_writes(inode);
426 	mutex_unlock(&inode->i_mutex);
427 
428 	if (test_bit(AS_ENOSPC, &file->f_mapping->flags) &&
429 	    test_and_clear_bit(AS_ENOSPC, &file->f_mapping->flags))
430 		err = -ENOSPC;
431 	if (test_bit(AS_EIO, &file->f_mapping->flags) &&
432 	    test_and_clear_bit(AS_EIO, &file->f_mapping->flags))
433 		err = -EIO;
434 	if (err)
435 		return err;
436 
437 	req = fuse_get_req_nofail_nopages(fc, file);
438 	memset(&inarg, 0, sizeof(inarg));
439 	inarg.fh = ff->fh;
440 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
441 	req->in.h.opcode = FUSE_FLUSH;
442 	req->in.h.nodeid = get_node_id(inode);
443 	req->in.numargs = 1;
444 	req->in.args[0].size = sizeof(inarg);
445 	req->in.args[0].value = &inarg;
446 	__set_bit(FR_FORCE, &req->flags);
447 	fuse_request_send(fc, req);
448 	err = req->out.h.error;
449 	fuse_put_request(fc, req);
450 	if (err == -ENOSYS) {
451 		fc->no_flush = 1;
452 		err = 0;
453 	}
454 	return err;
455 }
456 
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int isdir)457 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
458 		      int datasync, int isdir)
459 {
460 	struct inode *inode = file->f_mapping->host;
461 	struct fuse_conn *fc = get_fuse_conn(inode);
462 	struct fuse_file *ff = file->private_data;
463 	FUSE_ARGS(args);
464 	struct fuse_fsync_in inarg;
465 	int err;
466 
467 	if (is_bad_inode(inode))
468 		return -EIO;
469 
470 	mutex_lock(&inode->i_mutex);
471 
472 	/*
473 	 * Start writeback against all dirty pages of the inode, then
474 	 * wait for all outstanding writes, before sending the FSYNC
475 	 * request.
476 	 */
477 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
478 	if (err)
479 		goto out;
480 
481 	fuse_sync_writes(inode);
482 
483 	/*
484 	 * Due to implementation of fuse writeback
485 	 * filemap_write_and_wait_range() does not catch errors.
486 	 * We have to do this directly after fuse_sync_writes()
487 	 */
488 	if (test_bit(AS_ENOSPC, &file->f_mapping->flags) &&
489 	    test_and_clear_bit(AS_ENOSPC, &file->f_mapping->flags))
490 		err = -ENOSPC;
491 	if (test_bit(AS_EIO, &file->f_mapping->flags) &&
492 	    test_and_clear_bit(AS_EIO, &file->f_mapping->flags))
493 		err = -EIO;
494 	if (err)
495 		goto out;
496 
497 	err = sync_inode_metadata(inode, 1);
498 	if (err)
499 		goto out;
500 
501 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
502 		goto out;
503 
504 	memset(&inarg, 0, sizeof(inarg));
505 	inarg.fh = ff->fh;
506 	inarg.fsync_flags = datasync ? 1 : 0;
507 	args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
508 	args.in.h.nodeid = get_node_id(inode);
509 	args.in.numargs = 1;
510 	args.in.args[0].size = sizeof(inarg);
511 	args.in.args[0].value = &inarg;
512 	err = fuse_simple_request(fc, &args);
513 	if (err == -ENOSYS) {
514 		if (isdir)
515 			fc->no_fsyncdir = 1;
516 		else
517 			fc->no_fsync = 1;
518 		err = 0;
519 	}
520 out:
521 	mutex_unlock(&inode->i_mutex);
522 	return err;
523 }
524 
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)525 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
526 		      int datasync)
527 {
528 	return fuse_fsync_common(file, start, end, datasync, 0);
529 }
530 
fuse_read_fill(struct fuse_req * req,struct file * file,loff_t pos,size_t count,int opcode)531 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
532 		    size_t count, int opcode)
533 {
534 	struct fuse_read_in *inarg = &req->misc.read.in;
535 	struct fuse_file *ff = file->private_data;
536 
537 	inarg->fh = ff->fh;
538 	inarg->offset = pos;
539 	inarg->size = count;
540 	inarg->flags = file->f_flags;
541 	req->in.h.opcode = opcode;
542 	req->in.h.nodeid = ff->nodeid;
543 	req->in.numargs = 1;
544 	req->in.args[0].size = sizeof(struct fuse_read_in);
545 	req->in.args[0].value = inarg;
546 	req->out.argvar = 1;
547 	req->out.numargs = 1;
548 	req->out.args[0].size = count;
549 }
550 
fuse_release_user_pages(struct fuse_req * req,bool should_dirty)551 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
552 {
553 	unsigned i;
554 
555 	for (i = 0; i < req->num_pages; i++) {
556 		struct page *page = req->pages[i];
557 		if (should_dirty)
558 			set_page_dirty_lock(page);
559 		put_page(page);
560 	}
561 }
562 
fuse_io_release(struct kref * kref)563 static void fuse_io_release(struct kref *kref)
564 {
565 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
566 }
567 
fuse_get_res_by_io(struct fuse_io_priv * io)568 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
569 {
570 	if (io->err)
571 		return io->err;
572 
573 	if (io->bytes >= 0 && io->write)
574 		return -EIO;
575 
576 	return io->bytes < 0 ? io->size : io->bytes;
577 }
578 
579 /**
580  * In case of short read, the caller sets 'pos' to the position of
581  * actual end of fuse request in IO request. Otherwise, if bytes_requested
582  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
583  *
584  * An example:
585  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
586  * both submitted asynchronously. The first of them was ACKed by userspace as
587  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
588  * second request was ACKed as short, e.g. only 1K was read, resulting in
589  * pos == 33K.
590  *
591  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
592  * will be equal to the length of the longest contiguous fragment of
593  * transferred data starting from the beginning of IO request.
594  */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)595 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
596 {
597 	bool is_sync = is_sync_kiocb(io->iocb);
598 	int left;
599 
600 	spin_lock(&io->lock);
601 	if (err)
602 		io->err = io->err ? : err;
603 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
604 		io->bytes = pos;
605 
606 	left = --io->reqs;
607 	if (!left && is_sync)
608 		complete(io->done);
609 	spin_unlock(&io->lock);
610 
611 	if (!left && !is_sync) {
612 		ssize_t res = fuse_get_res_by_io(io);
613 
614 		if (res >= 0) {
615 			struct inode *inode = file_inode(io->iocb->ki_filp);
616 			struct fuse_conn *fc = get_fuse_conn(inode);
617 			struct fuse_inode *fi = get_fuse_inode(inode);
618 
619 			spin_lock(&fc->lock);
620 			fi->attr_version = ++fc->attr_version;
621 			spin_unlock(&fc->lock);
622 		}
623 
624 		io->iocb->ki_complete(io->iocb, res, 0);
625 	}
626 
627 	kref_put(&io->refcnt, fuse_io_release);
628 }
629 
fuse_aio_complete_req(struct fuse_conn * fc,struct fuse_req * req)630 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
631 {
632 	struct fuse_io_priv *io = req->io;
633 	ssize_t pos = -1;
634 
635 	fuse_release_user_pages(req, io->should_dirty);
636 
637 	if (io->write) {
638 		if (req->misc.write.in.size != req->misc.write.out.size)
639 			pos = req->misc.write.in.offset - io->offset +
640 				req->misc.write.out.size;
641 	} else {
642 		if (req->misc.read.in.size != req->out.args[0].size)
643 			pos = req->misc.read.in.offset - io->offset +
644 				req->out.args[0].size;
645 	}
646 
647 	fuse_aio_complete(io, req->out.h.error, pos);
648 }
649 
fuse_async_req_send(struct fuse_conn * fc,struct fuse_req * req,size_t num_bytes,struct fuse_io_priv * io)650 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
651 		size_t num_bytes, struct fuse_io_priv *io)
652 {
653 	spin_lock(&io->lock);
654 	kref_get(&io->refcnt);
655 	io->size += num_bytes;
656 	io->reqs++;
657 	spin_unlock(&io->lock);
658 
659 	req->io = io;
660 	req->end = fuse_aio_complete_req;
661 
662 	__fuse_get_request(req);
663 	fuse_request_send_background(fc, req);
664 
665 	return num_bytes;
666 }
667 
fuse_send_read(struct fuse_req * req,struct fuse_io_priv * io,loff_t pos,size_t count,fl_owner_t owner)668 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
669 			     loff_t pos, size_t count, fl_owner_t owner)
670 {
671 	struct file *file = io->file;
672 	struct fuse_file *ff = file->private_data;
673 	struct fuse_conn *fc = ff->fc;
674 
675 	fuse_read_fill(req, file, pos, count, FUSE_READ);
676 	if (owner != NULL) {
677 		struct fuse_read_in *inarg = &req->misc.read.in;
678 
679 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
680 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
681 	}
682 
683 	if (io->async)
684 		return fuse_async_req_send(fc, req, count, io);
685 
686 	fuse_request_send(fc, req);
687 	return req->out.args[0].size;
688 }
689 
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)690 static void fuse_read_update_size(struct inode *inode, loff_t size,
691 				  u64 attr_ver)
692 {
693 	struct fuse_conn *fc = get_fuse_conn(inode);
694 	struct fuse_inode *fi = get_fuse_inode(inode);
695 
696 	spin_lock(&fc->lock);
697 	if (attr_ver == fi->attr_version && size < inode->i_size &&
698 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
699 		fi->attr_version = ++fc->attr_version;
700 		i_size_write(inode, size);
701 	}
702 	spin_unlock(&fc->lock);
703 }
704 
fuse_short_read(struct fuse_req * req,struct inode * inode,u64 attr_ver)705 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
706 			    u64 attr_ver)
707 {
708 	size_t num_read = req->out.args[0].size;
709 	struct fuse_conn *fc = get_fuse_conn(inode);
710 
711 	if (fc->writeback_cache) {
712 		/*
713 		 * A hole in a file. Some data after the hole are in page cache,
714 		 * but have not reached the client fs yet. So, the hole is not
715 		 * present there.
716 		 */
717 		int i;
718 		int start_idx = num_read >> PAGE_CACHE_SHIFT;
719 		size_t off = num_read & (PAGE_CACHE_SIZE - 1);
720 
721 		for (i = start_idx; i < req->num_pages; i++) {
722 			zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
723 			off = 0;
724 		}
725 	} else {
726 		loff_t pos = page_offset(req->pages[0]) + num_read;
727 		fuse_read_update_size(inode, pos, attr_ver);
728 	}
729 }
730 
fuse_do_readpage(struct file * file,struct page * page)731 static int fuse_do_readpage(struct file *file, struct page *page)
732 {
733 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file);
734 	struct inode *inode = page->mapping->host;
735 	struct fuse_conn *fc = get_fuse_conn(inode);
736 	struct fuse_req *req;
737 	size_t num_read;
738 	loff_t pos = page_offset(page);
739 	size_t count = PAGE_CACHE_SIZE;
740 	u64 attr_ver;
741 	int err;
742 
743 	/*
744 	 * Page writeback can extend beyond the lifetime of the
745 	 * page-cache page, so make sure we read a properly synced
746 	 * page.
747 	 */
748 	fuse_wait_on_page_writeback(inode, page->index);
749 
750 	req = fuse_get_req(fc, 1);
751 	if (IS_ERR(req))
752 		return PTR_ERR(req);
753 
754 	attr_ver = fuse_get_attr_version(fc);
755 
756 	req->out.page_zeroing = 1;
757 	req->out.argpages = 1;
758 	req->num_pages = 1;
759 	req->pages[0] = page;
760 	req->page_descs[0].length = count;
761 	num_read = fuse_send_read(req, &io, pos, count, NULL);
762 	err = req->out.h.error;
763 
764 	if (!err) {
765 		/*
766 		 * Short read means EOF.  If file size is larger, truncate it
767 		 */
768 		if (num_read < count)
769 			fuse_short_read(req, inode, attr_ver);
770 
771 		SetPageUptodate(page);
772 	}
773 
774 	fuse_put_request(fc, req);
775 
776 	return err;
777 }
778 
fuse_readpage(struct file * file,struct page * page)779 static int fuse_readpage(struct file *file, struct page *page)
780 {
781 	struct inode *inode = page->mapping->host;
782 	int err;
783 
784 	err = -EIO;
785 	if (is_bad_inode(inode))
786 		goto out;
787 
788 	err = fuse_do_readpage(file, page);
789 	fuse_invalidate_atime(inode);
790  out:
791 	unlock_page(page);
792 	return err;
793 }
794 
fuse_readpages_end(struct fuse_conn * fc,struct fuse_req * req)795 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
796 {
797 	int i;
798 	size_t count = req->misc.read.in.size;
799 	size_t num_read = req->out.args[0].size;
800 	struct address_space *mapping = NULL;
801 
802 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
803 		mapping = req->pages[i]->mapping;
804 
805 	if (mapping) {
806 		struct inode *inode = mapping->host;
807 
808 		/*
809 		 * Short read means EOF. If file size is larger, truncate it
810 		 */
811 		if (!req->out.h.error && num_read < count)
812 			fuse_short_read(req, inode, req->misc.read.attr_ver);
813 
814 		fuse_invalidate_atime(inode);
815 	}
816 
817 	for (i = 0; i < req->num_pages; i++) {
818 		struct page *page = req->pages[i];
819 		if (!req->out.h.error)
820 			SetPageUptodate(page);
821 		else
822 			SetPageError(page);
823 		unlock_page(page);
824 		page_cache_release(page);
825 	}
826 	if (req->ff)
827 		fuse_file_put(req->ff, false);
828 }
829 
fuse_send_readpages(struct fuse_req * req,struct file * file)830 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
831 {
832 	struct fuse_file *ff = file->private_data;
833 	struct fuse_conn *fc = ff->fc;
834 	loff_t pos = page_offset(req->pages[0]);
835 	size_t count = req->num_pages << PAGE_CACHE_SHIFT;
836 
837 	req->out.argpages = 1;
838 	req->out.page_zeroing = 1;
839 	req->out.page_replace = 1;
840 	fuse_read_fill(req, file, pos, count, FUSE_READ);
841 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
842 	if (fc->async_read) {
843 		req->ff = fuse_file_get(ff);
844 		req->end = fuse_readpages_end;
845 		fuse_request_send_background(fc, req);
846 	} else {
847 		fuse_request_send(fc, req);
848 		fuse_readpages_end(fc, req);
849 		fuse_put_request(fc, req);
850 	}
851 }
852 
853 struct fuse_fill_data {
854 	struct fuse_req *req;
855 	struct file *file;
856 	struct inode *inode;
857 	unsigned nr_pages;
858 };
859 
fuse_readpages_fill(void * _data,struct page * page)860 static int fuse_readpages_fill(void *_data, struct page *page)
861 {
862 	struct fuse_fill_data *data = _data;
863 	struct fuse_req *req = data->req;
864 	struct inode *inode = data->inode;
865 	struct fuse_conn *fc = get_fuse_conn(inode);
866 
867 	fuse_wait_on_page_writeback(inode, page->index);
868 
869 	if (req->num_pages &&
870 	    (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
871 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
872 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
873 		int nr_alloc = min_t(unsigned, data->nr_pages,
874 				     FUSE_MAX_PAGES_PER_REQ);
875 		fuse_send_readpages(req, data->file);
876 		if (fc->async_read)
877 			req = fuse_get_req_for_background(fc, nr_alloc);
878 		else
879 			req = fuse_get_req(fc, nr_alloc);
880 
881 		data->req = req;
882 		if (IS_ERR(req)) {
883 			unlock_page(page);
884 			return PTR_ERR(req);
885 		}
886 	}
887 
888 	if (WARN_ON(req->num_pages >= req->max_pages)) {
889 		unlock_page(page);
890 		fuse_put_request(fc, req);
891 		return -EIO;
892 	}
893 
894 	page_cache_get(page);
895 	req->pages[req->num_pages] = page;
896 	req->page_descs[req->num_pages].length = PAGE_SIZE;
897 	req->num_pages++;
898 	data->nr_pages--;
899 	return 0;
900 }
901 
fuse_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)902 static int fuse_readpages(struct file *file, struct address_space *mapping,
903 			  struct list_head *pages, unsigned nr_pages)
904 {
905 	struct inode *inode = mapping->host;
906 	struct fuse_conn *fc = get_fuse_conn(inode);
907 	struct fuse_fill_data data;
908 	int err;
909 	int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
910 
911 	err = -EIO;
912 	if (is_bad_inode(inode))
913 		goto out;
914 
915 	data.file = file;
916 	data.inode = inode;
917 	if (fc->async_read)
918 		data.req = fuse_get_req_for_background(fc, nr_alloc);
919 	else
920 		data.req = fuse_get_req(fc, nr_alloc);
921 	data.nr_pages = nr_pages;
922 	err = PTR_ERR(data.req);
923 	if (IS_ERR(data.req))
924 		goto out;
925 
926 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
927 	if (!err) {
928 		if (data.req->num_pages)
929 			fuse_send_readpages(data.req, file);
930 		else
931 			fuse_put_request(fc, data.req);
932 	}
933 out:
934 	return err;
935 }
936 
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)937 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
938 {
939 	struct inode *inode = iocb->ki_filp->f_mapping->host;
940 	struct fuse_conn *fc = get_fuse_conn(inode);
941 
942 	/*
943 	 * In auto invalidate mode, always update attributes on read.
944 	 * Otherwise, only update if we attempt to read past EOF (to ensure
945 	 * i_size is up to date).
946 	 */
947 	if (fc->auto_inval_data ||
948 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
949 		int err;
950 		err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
951 		if (err)
952 			return err;
953 	}
954 
955 	return generic_file_read_iter(iocb, to);
956 }
957 
fuse_write_fill(struct fuse_req * req,struct fuse_file * ff,loff_t pos,size_t count)958 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
959 			    loff_t pos, size_t count)
960 {
961 	struct fuse_write_in *inarg = &req->misc.write.in;
962 	struct fuse_write_out *outarg = &req->misc.write.out;
963 
964 	inarg->fh = ff->fh;
965 	inarg->offset = pos;
966 	inarg->size = count;
967 	req->in.h.opcode = FUSE_WRITE;
968 	req->in.h.nodeid = ff->nodeid;
969 	req->in.numargs = 2;
970 	if (ff->fc->minor < 9)
971 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
972 	else
973 		req->in.args[0].size = sizeof(struct fuse_write_in);
974 	req->in.args[0].value = inarg;
975 	req->in.args[1].size = count;
976 	req->out.numargs = 1;
977 	req->out.args[0].size = sizeof(struct fuse_write_out);
978 	req->out.args[0].value = outarg;
979 }
980 
fuse_send_write(struct fuse_req * req,struct fuse_io_priv * io,loff_t pos,size_t count,fl_owner_t owner)981 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
982 			      loff_t pos, size_t count, fl_owner_t owner)
983 {
984 	struct file *file = io->file;
985 	struct fuse_file *ff = file->private_data;
986 	struct fuse_conn *fc = ff->fc;
987 	struct fuse_write_in *inarg = &req->misc.write.in;
988 
989 	fuse_write_fill(req, ff, pos, count);
990 	inarg->flags = file->f_flags;
991 	if (owner != NULL) {
992 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
993 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
994 	}
995 
996 	if (io->async)
997 		return fuse_async_req_send(fc, req, count, io);
998 
999 	fuse_request_send(fc, req);
1000 	return req->misc.write.out.size;
1001 }
1002 
fuse_write_update_size(struct inode * inode,loff_t pos)1003 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1004 {
1005 	struct fuse_conn *fc = get_fuse_conn(inode);
1006 	struct fuse_inode *fi = get_fuse_inode(inode);
1007 	bool ret = false;
1008 
1009 	spin_lock(&fc->lock);
1010 	fi->attr_version = ++fc->attr_version;
1011 	if (pos > inode->i_size) {
1012 		i_size_write(inode, pos);
1013 		ret = true;
1014 	}
1015 	spin_unlock(&fc->lock);
1016 
1017 	return ret;
1018 }
1019 
fuse_send_write_pages(struct fuse_req * req,struct file * file,struct inode * inode,loff_t pos,size_t count)1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
1021 				    struct inode *inode, loff_t pos,
1022 				    size_t count)
1023 {
1024 	size_t res;
1025 	unsigned offset;
1026 	unsigned i;
1027 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file);
1028 
1029 	for (i = 0; i < req->num_pages; i++)
1030 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1031 
1032 	res = fuse_send_write(req, &io, pos, count, NULL);
1033 
1034 	offset = req->page_descs[0].offset;
1035 	count = res;
1036 	for (i = 0; i < req->num_pages; i++) {
1037 		struct page *page = req->pages[i];
1038 
1039 		if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
1040 			SetPageUptodate(page);
1041 
1042 		if (count > PAGE_CACHE_SIZE - offset)
1043 			count -= PAGE_CACHE_SIZE - offset;
1044 		else
1045 			count = 0;
1046 		offset = 0;
1047 
1048 		unlock_page(page);
1049 		page_cache_release(page);
1050 	}
1051 
1052 	return res;
1053 }
1054 
fuse_fill_write_pages(struct fuse_req * req,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1056 			       struct address_space *mapping,
1057 			       struct iov_iter *ii, loff_t pos)
1058 {
1059 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1060 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1061 	size_t count = 0;
1062 	int err;
1063 
1064 	req->in.argpages = 1;
1065 	req->page_descs[0].offset = offset;
1066 
1067 	do {
1068 		size_t tmp;
1069 		struct page *page;
1070 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1071 		size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1072 				     iov_iter_count(ii));
1073 
1074 		bytes = min_t(size_t, bytes, fc->max_write - count);
1075 
1076  again:
1077 		err = -EFAULT;
1078 		if (iov_iter_fault_in_readable(ii, bytes))
1079 			break;
1080 
1081 		err = -ENOMEM;
1082 		page = grab_cache_page_write_begin(mapping, index, 0);
1083 		if (!page)
1084 			break;
1085 
1086 		if (mapping_writably_mapped(mapping))
1087 			flush_dcache_page(page);
1088 
1089 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1090 		flush_dcache_page(page);
1091 
1092 		iov_iter_advance(ii, tmp);
1093 		if (!tmp) {
1094 			unlock_page(page);
1095 			page_cache_release(page);
1096 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1097 			goto again;
1098 		}
1099 
1100 		err = 0;
1101 		req->pages[req->num_pages] = page;
1102 		req->page_descs[req->num_pages].length = tmp;
1103 		req->num_pages++;
1104 
1105 		count += tmp;
1106 		pos += tmp;
1107 		offset += tmp;
1108 		if (offset == PAGE_CACHE_SIZE)
1109 			offset = 0;
1110 
1111 		if (!fc->big_writes)
1112 			break;
1113 	} while (iov_iter_count(ii) && count < fc->max_write &&
1114 		 req->num_pages < req->max_pages && offset == 0);
1115 
1116 	return count > 0 ? count : err;
1117 }
1118 
fuse_wr_pages(loff_t pos,size_t len)1119 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1120 {
1121 	return min_t(unsigned,
1122 		     ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1123 		     (pos >> PAGE_CACHE_SHIFT) + 1,
1124 		     FUSE_MAX_PAGES_PER_REQ);
1125 }
1126 
fuse_perform_write(struct file * file,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1127 static ssize_t fuse_perform_write(struct file *file,
1128 				  struct address_space *mapping,
1129 				  struct iov_iter *ii, loff_t pos)
1130 {
1131 	struct inode *inode = mapping->host;
1132 	struct fuse_conn *fc = get_fuse_conn(inode);
1133 	struct fuse_inode *fi = get_fuse_inode(inode);
1134 	int err = 0;
1135 	ssize_t res = 0;
1136 
1137 	if (is_bad_inode(inode))
1138 		return -EIO;
1139 
1140 	if (inode->i_size < pos + iov_iter_count(ii))
1141 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1142 
1143 	do {
1144 		struct fuse_req *req;
1145 		ssize_t count;
1146 		unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1147 
1148 		req = fuse_get_req(fc, nr_pages);
1149 		if (IS_ERR(req)) {
1150 			err = PTR_ERR(req);
1151 			break;
1152 		}
1153 
1154 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1155 		if (count <= 0) {
1156 			err = count;
1157 		} else {
1158 			size_t num_written;
1159 
1160 			num_written = fuse_send_write_pages(req, file, inode,
1161 							    pos, count);
1162 			err = req->out.h.error;
1163 			if (!err) {
1164 				res += num_written;
1165 				pos += num_written;
1166 
1167 				/* break out of the loop on short write */
1168 				if (num_written != count)
1169 					err = -EIO;
1170 			}
1171 		}
1172 		fuse_put_request(fc, req);
1173 	} while (!err && iov_iter_count(ii));
1174 
1175 	if (res > 0)
1176 		fuse_write_update_size(inode, pos);
1177 
1178 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1179 	fuse_invalidate_attr(inode);
1180 
1181 	return res > 0 ? res : err;
1182 }
1183 
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1184 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1185 {
1186 	struct file *file = iocb->ki_filp;
1187 	struct address_space *mapping = file->f_mapping;
1188 	ssize_t written = 0;
1189 	ssize_t written_buffered = 0;
1190 	struct inode *inode = mapping->host;
1191 	ssize_t err;
1192 	loff_t endbyte = 0;
1193 
1194 	if (get_fuse_conn(inode)->writeback_cache) {
1195 		/* Update size (EOF optimization) and mode (SUID clearing) */
1196 		err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1197 		if (err)
1198 			return err;
1199 
1200 		return generic_file_write_iter(iocb, from);
1201 	}
1202 
1203 	mutex_lock(&inode->i_mutex);
1204 
1205 	/* We can write back this queue in page reclaim */
1206 	current->backing_dev_info = inode_to_bdi(inode);
1207 
1208 	err = generic_write_checks(iocb, from);
1209 	if (err <= 0)
1210 		goto out;
1211 
1212 	err = file_remove_privs(file);
1213 	if (err)
1214 		goto out;
1215 
1216 	err = file_update_time(file);
1217 	if (err)
1218 		goto out;
1219 
1220 	if (iocb->ki_flags & IOCB_DIRECT) {
1221 		loff_t pos = iocb->ki_pos;
1222 		written = generic_file_direct_write(iocb, from, pos);
1223 		if (written < 0 || !iov_iter_count(from))
1224 			goto out;
1225 
1226 		pos += written;
1227 
1228 		written_buffered = fuse_perform_write(file, mapping, from, pos);
1229 		if (written_buffered < 0) {
1230 			err = written_buffered;
1231 			goto out;
1232 		}
1233 		endbyte = pos + written_buffered - 1;
1234 
1235 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1236 						   endbyte);
1237 		if (err)
1238 			goto out;
1239 
1240 		invalidate_mapping_pages(file->f_mapping,
1241 					 pos >> PAGE_CACHE_SHIFT,
1242 					 endbyte >> PAGE_CACHE_SHIFT);
1243 
1244 		written += written_buffered;
1245 		iocb->ki_pos = pos + written_buffered;
1246 	} else {
1247 		written = fuse_perform_write(file, mapping, from, iocb->ki_pos);
1248 		if (written >= 0)
1249 			iocb->ki_pos += written;
1250 	}
1251 out:
1252 	current->backing_dev_info = NULL;
1253 	mutex_unlock(&inode->i_mutex);
1254 
1255 	return written ? written : err;
1256 }
1257 
fuse_page_descs_length_init(struct fuse_req * req,unsigned index,unsigned nr_pages)1258 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1259 		unsigned index, unsigned nr_pages)
1260 {
1261 	int i;
1262 
1263 	for (i = index; i < index + nr_pages; i++)
1264 		req->page_descs[i].length = PAGE_SIZE -
1265 			req->page_descs[i].offset;
1266 }
1267 
fuse_get_user_addr(const struct iov_iter * ii)1268 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1269 {
1270 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1271 }
1272 
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1273 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1274 					size_t max_size)
1275 {
1276 	return min(iov_iter_single_seg_count(ii), max_size);
1277 }
1278 
fuse_get_user_pages(struct fuse_req * req,struct iov_iter * ii,size_t * nbytesp,int write)1279 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1280 			       size_t *nbytesp, int write)
1281 {
1282 	size_t nbytes = 0;  /* # bytes already packed in req */
1283 
1284 	/* Special case for kernel I/O: can copy directly into the buffer */
1285 	if (ii->type & ITER_KVEC) {
1286 		unsigned long user_addr = fuse_get_user_addr(ii);
1287 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1288 
1289 		if (write)
1290 			req->in.args[1].value = (void *) user_addr;
1291 		else
1292 			req->out.args[0].value = (void *) user_addr;
1293 
1294 		iov_iter_advance(ii, frag_size);
1295 		*nbytesp = frag_size;
1296 		return 0;
1297 	}
1298 
1299 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1300 		unsigned npages;
1301 		size_t start;
1302 		ssize_t ret = iov_iter_get_pages(ii,
1303 					&req->pages[req->num_pages],
1304 					*nbytesp - nbytes,
1305 					req->max_pages - req->num_pages,
1306 					&start);
1307 		if (ret < 0)
1308 			return ret;
1309 
1310 		iov_iter_advance(ii, ret);
1311 		nbytes += ret;
1312 
1313 		ret += start;
1314 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1315 
1316 		req->page_descs[req->num_pages].offset = start;
1317 		fuse_page_descs_length_init(req, req->num_pages, npages);
1318 
1319 		req->num_pages += npages;
1320 		req->page_descs[req->num_pages - 1].length -=
1321 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1322 	}
1323 
1324 	if (write)
1325 		req->in.argpages = 1;
1326 	else
1327 		req->out.argpages = 1;
1328 
1329 	*nbytesp = nbytes;
1330 
1331 	return 0;
1332 }
1333 
fuse_iter_npages(const struct iov_iter * ii_p)1334 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1335 {
1336 	return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1337 }
1338 
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1339 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1340 		       loff_t *ppos, int flags)
1341 {
1342 	int write = flags & FUSE_DIO_WRITE;
1343 	int cuse = flags & FUSE_DIO_CUSE;
1344 	struct file *file = io->file;
1345 	struct inode *inode = file->f_mapping->host;
1346 	struct fuse_file *ff = file->private_data;
1347 	struct fuse_conn *fc = ff->fc;
1348 	size_t nmax = write ? fc->max_write : fc->max_read;
1349 	loff_t pos = *ppos;
1350 	size_t count = iov_iter_count(iter);
1351 	pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1352 	pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1353 	ssize_t res = 0;
1354 	struct fuse_req *req;
1355 
1356 	if (io->async)
1357 		req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1358 	else
1359 		req = fuse_get_req(fc, fuse_iter_npages(iter));
1360 	if (IS_ERR(req))
1361 		return PTR_ERR(req);
1362 
1363 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1364 		if (!write)
1365 			mutex_lock(&inode->i_mutex);
1366 		fuse_sync_writes(inode);
1367 		if (!write)
1368 			mutex_unlock(&inode->i_mutex);
1369 	}
1370 
1371 	io->should_dirty = !write && iter_is_iovec(iter);
1372 	while (count) {
1373 		size_t nres;
1374 		fl_owner_t owner = current->files;
1375 		size_t nbytes = min(count, nmax);
1376 		int err = fuse_get_user_pages(req, iter, &nbytes, write);
1377 		if (err) {
1378 			res = err;
1379 			break;
1380 		}
1381 
1382 		if (write)
1383 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1384 		else
1385 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1386 
1387 		if (!io->async)
1388 			fuse_release_user_pages(req, io->should_dirty);
1389 		if (req->out.h.error) {
1390 			if (!res)
1391 				res = req->out.h.error;
1392 			break;
1393 		} else if (nres > nbytes) {
1394 			res = -EIO;
1395 			break;
1396 		}
1397 		count -= nres;
1398 		res += nres;
1399 		pos += nres;
1400 		if (nres != nbytes)
1401 			break;
1402 		if (count) {
1403 			fuse_put_request(fc, req);
1404 			if (io->async)
1405 				req = fuse_get_req_for_background(fc,
1406 					fuse_iter_npages(iter));
1407 			else
1408 				req = fuse_get_req(fc, fuse_iter_npages(iter));
1409 			if (IS_ERR(req))
1410 				break;
1411 		}
1412 	}
1413 	if (!IS_ERR(req))
1414 		fuse_put_request(fc, req);
1415 	if (res > 0)
1416 		*ppos = pos;
1417 
1418 	return res;
1419 }
1420 EXPORT_SYMBOL_GPL(fuse_direct_io);
1421 
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1422 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1423 				  struct iov_iter *iter,
1424 				  loff_t *ppos)
1425 {
1426 	ssize_t res;
1427 	struct file *file = io->file;
1428 	struct inode *inode = file_inode(file);
1429 
1430 	if (is_bad_inode(inode))
1431 		return -EIO;
1432 
1433 	res = fuse_direct_io(io, iter, ppos, 0);
1434 
1435 	fuse_invalidate_attr(inode);
1436 
1437 	return res;
1438 }
1439 
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1440 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1441 {
1442 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb->ki_filp);
1443 	return __fuse_direct_read(&io, to, &iocb->ki_pos);
1444 }
1445 
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1446 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1447 {
1448 	struct file *file = iocb->ki_filp;
1449 	struct inode *inode = file_inode(file);
1450 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(file);
1451 	ssize_t res;
1452 
1453 	if (is_bad_inode(inode))
1454 		return -EIO;
1455 
1456 	/* Don't allow parallel writes to the same file */
1457 	mutex_lock(&inode->i_mutex);
1458 	res = generic_write_checks(iocb, from);
1459 	if (res > 0)
1460 		res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1461 	fuse_invalidate_attr(inode);
1462 	if (res > 0)
1463 		fuse_write_update_size(inode, iocb->ki_pos);
1464 	mutex_unlock(&inode->i_mutex);
1465 
1466 	return res;
1467 }
1468 
fuse_writepage_free(struct fuse_conn * fc,struct fuse_req * req)1469 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1470 {
1471 	int i;
1472 
1473 	for (i = 0; i < req->num_pages; i++)
1474 		__free_page(req->pages[i]);
1475 
1476 	if (req->ff)
1477 		fuse_file_put(req->ff, false);
1478 }
1479 
fuse_writepage_finish(struct fuse_conn * fc,struct fuse_req * req)1480 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1481 {
1482 	struct inode *inode = req->inode;
1483 	struct fuse_inode *fi = get_fuse_inode(inode);
1484 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1485 	int i;
1486 
1487 	list_del(&req->writepages_entry);
1488 	for (i = 0; i < req->num_pages; i++) {
1489 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1490 		dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1491 		wb_writeout_inc(&bdi->wb);
1492 	}
1493 	wake_up(&fi->page_waitq);
1494 }
1495 
1496 /* Called under fc->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_conn * fc,struct fuse_req * req,loff_t size)1497 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1498 				loff_t size)
1499 __releases(fc->lock)
1500 __acquires(fc->lock)
1501 {
1502 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1503 	struct fuse_write_in *inarg = &req->misc.write.in;
1504 	__u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1505 
1506 	if (!fc->connected)
1507 		goto out_free;
1508 
1509 	if (inarg->offset + data_size <= size) {
1510 		inarg->size = data_size;
1511 	} else if (inarg->offset < size) {
1512 		inarg->size = size - inarg->offset;
1513 	} else {
1514 		/* Got truncated off completely */
1515 		goto out_free;
1516 	}
1517 
1518 	req->in.args[1].size = inarg->size;
1519 	fi->writectr++;
1520 	fuse_request_send_background_locked(fc, req);
1521 	return;
1522 
1523  out_free:
1524 	fuse_writepage_finish(fc, req);
1525 	spin_unlock(&fc->lock);
1526 	fuse_writepage_free(fc, req);
1527 	fuse_put_request(fc, req);
1528 	spin_lock(&fc->lock);
1529 }
1530 
1531 /*
1532  * If fi->writectr is positive (no truncate or fsync going on) send
1533  * all queued writepage requests.
1534  *
1535  * Called with fc->lock
1536  */
fuse_flush_writepages(struct inode * inode)1537 void fuse_flush_writepages(struct inode *inode)
1538 __releases(fc->lock)
1539 __acquires(fc->lock)
1540 {
1541 	struct fuse_conn *fc = get_fuse_conn(inode);
1542 	struct fuse_inode *fi = get_fuse_inode(inode);
1543 	loff_t crop = i_size_read(inode);
1544 	struct fuse_req *req;
1545 
1546 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1547 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1548 		list_del_init(&req->list);
1549 		fuse_send_writepage(fc, req, crop);
1550 	}
1551 }
1552 
fuse_writepage_end(struct fuse_conn * fc,struct fuse_req * req)1553 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1554 {
1555 	struct inode *inode = req->inode;
1556 	struct fuse_inode *fi = get_fuse_inode(inode);
1557 
1558 	mapping_set_error(inode->i_mapping, req->out.h.error);
1559 	spin_lock(&fc->lock);
1560 	while (req->misc.write.next) {
1561 		struct fuse_conn *fc = get_fuse_conn(inode);
1562 		struct fuse_write_in *inarg = &req->misc.write.in;
1563 		struct fuse_req *next = req->misc.write.next;
1564 		req->misc.write.next = next->misc.write.next;
1565 		next->misc.write.next = NULL;
1566 		next->ff = fuse_file_get(req->ff);
1567 		list_add(&next->writepages_entry, &fi->writepages);
1568 
1569 		/*
1570 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1571 		 * based on primary request size.
1572 		 *
1573 		 * 1st case (trivial): there are no concurrent activities using
1574 		 * fuse_set/release_nowrite.  Then we're on safe side because
1575 		 * fuse_flush_writepages() would call fuse_send_writepage()
1576 		 * anyway.
1577 		 *
1578 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1579 		 * now for completion of all in-flight requests.  This happens
1580 		 * rarely and no more than once per page, so this should be
1581 		 * okay.
1582 		 *
1583 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1584 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1585 		 * that fuse_set_nowrite returned implies that all in-flight
1586 		 * requests were completed along with all of their secondary
1587 		 * requests.  Further primary requests are blocked by negative
1588 		 * writectr.  Hence there cannot be any in-flight requests and
1589 		 * no invocations of fuse_writepage_end() while we're in
1590 		 * fuse_set_nowrite..fuse_release_nowrite section.
1591 		 */
1592 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1593 	}
1594 	fi->writectr--;
1595 	fuse_writepage_finish(fc, req);
1596 	spin_unlock(&fc->lock);
1597 	fuse_writepage_free(fc, req);
1598 }
1599 
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1600 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1601 					       struct fuse_inode *fi)
1602 {
1603 	struct fuse_file *ff = NULL;
1604 
1605 	spin_lock(&fc->lock);
1606 	if (!list_empty(&fi->write_files)) {
1607 		ff = list_entry(fi->write_files.next, struct fuse_file,
1608 				write_entry);
1609 		fuse_file_get(ff);
1610 	}
1611 	spin_unlock(&fc->lock);
1612 
1613 	return ff;
1614 }
1615 
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1616 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1617 					     struct fuse_inode *fi)
1618 {
1619 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1620 	WARN_ON(!ff);
1621 	return ff;
1622 }
1623 
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1624 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1625 {
1626 	struct fuse_conn *fc = get_fuse_conn(inode);
1627 	struct fuse_inode *fi = get_fuse_inode(inode);
1628 	struct fuse_file *ff;
1629 	int err;
1630 
1631 	ff = __fuse_write_file_get(fc, fi);
1632 	err = fuse_flush_times(inode, ff);
1633 	if (ff)
1634 		fuse_file_put(ff, 0);
1635 
1636 	return err;
1637 }
1638 
fuse_writepage_locked(struct page * page)1639 static int fuse_writepage_locked(struct page *page)
1640 {
1641 	struct address_space *mapping = page->mapping;
1642 	struct inode *inode = mapping->host;
1643 	struct fuse_conn *fc = get_fuse_conn(inode);
1644 	struct fuse_inode *fi = get_fuse_inode(inode);
1645 	struct fuse_req *req;
1646 	struct page *tmp_page;
1647 	int error = -ENOMEM;
1648 
1649 	set_page_writeback(page);
1650 
1651 	req = fuse_request_alloc_nofs(1);
1652 	if (!req)
1653 		goto err;
1654 
1655 	/* writeback always goes to bg_queue */
1656 	__set_bit(FR_BACKGROUND, &req->flags);
1657 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1658 	if (!tmp_page)
1659 		goto err_free;
1660 
1661 	error = -EIO;
1662 	req->ff = fuse_write_file_get(fc, fi);
1663 	if (!req->ff)
1664 		goto err_nofile;
1665 
1666 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1667 
1668 	copy_highpage(tmp_page, page);
1669 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1670 	req->misc.write.next = NULL;
1671 	req->in.argpages = 1;
1672 	req->num_pages = 1;
1673 	req->pages[0] = tmp_page;
1674 	req->page_descs[0].offset = 0;
1675 	req->page_descs[0].length = PAGE_SIZE;
1676 	req->end = fuse_writepage_end;
1677 	req->inode = inode;
1678 
1679 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1680 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1681 
1682 	spin_lock(&fc->lock);
1683 	list_add(&req->writepages_entry, &fi->writepages);
1684 	list_add_tail(&req->list, &fi->queued_writes);
1685 	fuse_flush_writepages(inode);
1686 	spin_unlock(&fc->lock);
1687 
1688 	end_page_writeback(page);
1689 
1690 	return 0;
1691 
1692 err_nofile:
1693 	__free_page(tmp_page);
1694 err_free:
1695 	fuse_request_free(req);
1696 err:
1697 	end_page_writeback(page);
1698 	return error;
1699 }
1700 
fuse_writepage(struct page * page,struct writeback_control * wbc)1701 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1702 {
1703 	int err;
1704 
1705 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1706 		/*
1707 		 * ->writepages() should be called for sync() and friends.  We
1708 		 * should only get here on direct reclaim and then we are
1709 		 * allowed to skip a page which is already in flight
1710 		 */
1711 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1712 
1713 		redirty_page_for_writepage(wbc, page);
1714 		unlock_page(page);
1715 		return 0;
1716 	}
1717 
1718 	err = fuse_writepage_locked(page);
1719 	unlock_page(page);
1720 
1721 	return err;
1722 }
1723 
1724 struct fuse_fill_wb_data {
1725 	struct fuse_req *req;
1726 	struct fuse_file *ff;
1727 	struct inode *inode;
1728 	struct page **orig_pages;
1729 };
1730 
fuse_writepages_send(struct fuse_fill_wb_data * data)1731 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1732 {
1733 	struct fuse_req *req = data->req;
1734 	struct inode *inode = data->inode;
1735 	struct fuse_conn *fc = get_fuse_conn(inode);
1736 	struct fuse_inode *fi = get_fuse_inode(inode);
1737 	int num_pages = req->num_pages;
1738 	int i;
1739 
1740 	req->ff = fuse_file_get(data->ff);
1741 	spin_lock(&fc->lock);
1742 	list_add_tail(&req->list, &fi->queued_writes);
1743 	fuse_flush_writepages(inode);
1744 	spin_unlock(&fc->lock);
1745 
1746 	for (i = 0; i < num_pages; i++)
1747 		end_page_writeback(data->orig_pages[i]);
1748 }
1749 
fuse_writepage_in_flight(struct fuse_req * new_req,struct page * page)1750 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1751 				     struct page *page)
1752 {
1753 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1754 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1755 	struct fuse_req *tmp;
1756 	struct fuse_req *old_req;
1757 	bool found = false;
1758 	pgoff_t curr_index;
1759 
1760 	BUG_ON(new_req->num_pages != 0);
1761 
1762 	spin_lock(&fc->lock);
1763 	list_del(&new_req->writepages_entry);
1764 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1765 		BUG_ON(old_req->inode != new_req->inode);
1766 		curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1767 		if (curr_index <= page->index &&
1768 		    page->index < curr_index + old_req->num_pages) {
1769 			found = true;
1770 			break;
1771 		}
1772 	}
1773 	if (!found) {
1774 		list_add(&new_req->writepages_entry, &fi->writepages);
1775 		goto out_unlock;
1776 	}
1777 
1778 	new_req->num_pages = 1;
1779 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1780 		BUG_ON(tmp->inode != new_req->inode);
1781 		curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1782 		if (tmp->num_pages == 1 &&
1783 		    curr_index == page->index) {
1784 			old_req = tmp;
1785 		}
1786 	}
1787 
1788 	if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) {
1789 		struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1790 
1791 		copy_highpage(old_req->pages[0], page);
1792 		spin_unlock(&fc->lock);
1793 
1794 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1795 		dec_zone_page_state(new_req->pages[0], NR_WRITEBACK_TEMP);
1796 		wb_writeout_inc(&bdi->wb);
1797 		fuse_writepage_free(fc, new_req);
1798 		fuse_request_free(new_req);
1799 		goto out;
1800 	} else {
1801 		new_req->misc.write.next = old_req->misc.write.next;
1802 		old_req->misc.write.next = new_req;
1803 	}
1804 out_unlock:
1805 	spin_unlock(&fc->lock);
1806 out:
1807 	return found;
1808 }
1809 
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)1810 static int fuse_writepages_fill(struct page *page,
1811 		struct writeback_control *wbc, void *_data)
1812 {
1813 	struct fuse_fill_wb_data *data = _data;
1814 	struct fuse_req *req = data->req;
1815 	struct inode *inode = data->inode;
1816 	struct fuse_conn *fc = get_fuse_conn(inode);
1817 	struct page *tmp_page;
1818 	bool is_writeback;
1819 	int err;
1820 
1821 	if (!data->ff) {
1822 		err = -EIO;
1823 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1824 		if (!data->ff)
1825 			goto out_unlock;
1826 	}
1827 
1828 	/*
1829 	 * Being under writeback is unlikely but possible.  For example direct
1830 	 * read to an mmaped fuse file will set the page dirty twice; once when
1831 	 * the pages are faulted with get_user_pages(), and then after the read
1832 	 * completed.
1833 	 */
1834 	is_writeback = fuse_page_is_writeback(inode, page->index);
1835 
1836 	if (req && req->num_pages &&
1837 	    (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1838 	     (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1839 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1840 		fuse_writepages_send(data);
1841 		data->req = NULL;
1842 	}
1843 	err = -ENOMEM;
1844 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1845 	if (!tmp_page)
1846 		goto out_unlock;
1847 
1848 	/*
1849 	 * The page must not be redirtied until the writeout is completed
1850 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1851 	 * there could be more than one temporary page instance for each real
1852 	 * page.
1853 	 *
1854 	 * This is ensured by holding the page lock in page_mkwrite() while
1855 	 * checking fuse_page_is_writeback().  We already hold the page lock
1856 	 * since clear_page_dirty_for_io() and keep it held until we add the
1857 	 * request to the fi->writepages list and increment req->num_pages.
1858 	 * After this fuse_page_is_writeback() will indicate that the page is
1859 	 * under writeback, so we can release the page lock.
1860 	 */
1861 	if (data->req == NULL) {
1862 		struct fuse_inode *fi = get_fuse_inode(inode);
1863 
1864 		err = -ENOMEM;
1865 		req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1866 		if (!req) {
1867 			__free_page(tmp_page);
1868 			goto out_unlock;
1869 		}
1870 
1871 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1872 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1873 		req->misc.write.next = NULL;
1874 		req->in.argpages = 1;
1875 		__set_bit(FR_BACKGROUND, &req->flags);
1876 		req->num_pages = 0;
1877 		req->end = fuse_writepage_end;
1878 		req->inode = inode;
1879 
1880 		spin_lock(&fc->lock);
1881 		list_add(&req->writepages_entry, &fi->writepages);
1882 		spin_unlock(&fc->lock);
1883 
1884 		data->req = req;
1885 	}
1886 	set_page_writeback(page);
1887 
1888 	copy_highpage(tmp_page, page);
1889 	req->pages[req->num_pages] = tmp_page;
1890 	req->page_descs[req->num_pages].offset = 0;
1891 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1892 
1893 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1894 	inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1895 
1896 	err = 0;
1897 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1898 		end_page_writeback(page);
1899 		data->req = NULL;
1900 		goto out_unlock;
1901 	}
1902 	data->orig_pages[req->num_pages] = page;
1903 
1904 	/*
1905 	 * Protected by fc->lock against concurrent access by
1906 	 * fuse_page_is_writeback().
1907 	 */
1908 	spin_lock(&fc->lock);
1909 	req->num_pages++;
1910 	spin_unlock(&fc->lock);
1911 
1912 out_unlock:
1913 	unlock_page(page);
1914 
1915 	return err;
1916 }
1917 
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)1918 static int fuse_writepages(struct address_space *mapping,
1919 			   struct writeback_control *wbc)
1920 {
1921 	struct inode *inode = mapping->host;
1922 	struct fuse_fill_wb_data data;
1923 	int err;
1924 
1925 	err = -EIO;
1926 	if (is_bad_inode(inode))
1927 		goto out;
1928 
1929 	data.inode = inode;
1930 	data.req = NULL;
1931 	data.ff = NULL;
1932 
1933 	err = -ENOMEM;
1934 	data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1935 				  sizeof(struct page *),
1936 				  GFP_NOFS);
1937 	if (!data.orig_pages)
1938 		goto out;
1939 
1940 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1941 	if (data.req) {
1942 		/* Ignore errors if we can write at least one page */
1943 		BUG_ON(!data.req->num_pages);
1944 		fuse_writepages_send(&data);
1945 		err = 0;
1946 	}
1947 	if (data.ff)
1948 		fuse_file_put(data.ff, false);
1949 
1950 	kfree(data.orig_pages);
1951 out:
1952 	return err;
1953 }
1954 
1955 /*
1956  * It's worthy to make sure that space is reserved on disk for the write,
1957  * but how to implement it without killing performance need more thinking.
1958  */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1959 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1960 		loff_t pos, unsigned len, unsigned flags,
1961 		struct page **pagep, void **fsdata)
1962 {
1963 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1964 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1965 	struct page *page;
1966 	loff_t fsize;
1967 	int err = -ENOMEM;
1968 
1969 	WARN_ON(!fc->writeback_cache);
1970 
1971 	page = grab_cache_page_write_begin(mapping, index, flags);
1972 	if (!page)
1973 		goto error;
1974 
1975 	fuse_wait_on_page_writeback(mapping->host, page->index);
1976 
1977 	if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
1978 		goto success;
1979 	/*
1980 	 * Check if the start this page comes after the end of file, in which
1981 	 * case the readpage can be optimized away.
1982 	 */
1983 	fsize = i_size_read(mapping->host);
1984 	if (fsize <= (pos & PAGE_CACHE_MASK)) {
1985 		size_t off = pos & ~PAGE_CACHE_MASK;
1986 		if (off)
1987 			zero_user_segment(page, 0, off);
1988 		goto success;
1989 	}
1990 	err = fuse_do_readpage(file, page);
1991 	if (err)
1992 		goto cleanup;
1993 success:
1994 	*pagep = page;
1995 	return 0;
1996 
1997 cleanup:
1998 	unlock_page(page);
1999 	page_cache_release(page);
2000 error:
2001 	return err;
2002 }
2003 
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2004 static int fuse_write_end(struct file *file, struct address_space *mapping,
2005 		loff_t pos, unsigned len, unsigned copied,
2006 		struct page *page, void *fsdata)
2007 {
2008 	struct inode *inode = page->mapping->host;
2009 
2010 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2011 	if (!copied)
2012 		goto unlock;
2013 
2014 	if (!PageUptodate(page)) {
2015 		/* Zero any unwritten bytes at the end of the page */
2016 		size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
2017 		if (endoff)
2018 			zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
2019 		SetPageUptodate(page);
2020 	}
2021 
2022 	fuse_write_update_size(inode, pos + copied);
2023 	set_page_dirty(page);
2024 
2025 unlock:
2026 	unlock_page(page);
2027 	page_cache_release(page);
2028 
2029 	return copied;
2030 }
2031 
fuse_launder_page(struct page * page)2032 static int fuse_launder_page(struct page *page)
2033 {
2034 	int err = 0;
2035 	if (clear_page_dirty_for_io(page)) {
2036 		struct inode *inode = page->mapping->host;
2037 		err = fuse_writepage_locked(page);
2038 		if (!err)
2039 			fuse_wait_on_page_writeback(inode, page->index);
2040 	}
2041 	return err;
2042 }
2043 
2044 /*
2045  * Write back dirty pages now, because there may not be any suitable
2046  * open files later
2047  */
fuse_vma_close(struct vm_area_struct * vma)2048 static void fuse_vma_close(struct vm_area_struct *vma)
2049 {
2050 	filemap_write_and_wait(vma->vm_file->f_mapping);
2051 }
2052 
2053 /*
2054  * Wait for writeback against this page to complete before allowing it
2055  * to be marked dirty again, and hence written back again, possibly
2056  * before the previous writepage completed.
2057  *
2058  * Block here, instead of in ->writepage(), so that the userspace fs
2059  * can only block processes actually operating on the filesystem.
2060  *
2061  * Otherwise unprivileged userspace fs would be able to block
2062  * unrelated:
2063  *
2064  * - page migration
2065  * - sync(2)
2066  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2067  */
fuse_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)2068 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2069 {
2070 	struct page *page = vmf->page;
2071 	struct inode *inode = file_inode(vma->vm_file);
2072 
2073 	file_update_time(vma->vm_file);
2074 	lock_page(page);
2075 	if (page->mapping != inode->i_mapping) {
2076 		unlock_page(page);
2077 		return VM_FAULT_NOPAGE;
2078 	}
2079 
2080 	fuse_wait_on_page_writeback(inode, page->index);
2081 	return VM_FAULT_LOCKED;
2082 }
2083 
2084 static const struct vm_operations_struct fuse_file_vm_ops = {
2085 	.close		= fuse_vma_close,
2086 	.fault		= filemap_fault,
2087 	.map_pages	= filemap_map_pages,
2088 	.page_mkwrite	= fuse_page_mkwrite,
2089 };
2090 
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2091 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2092 {
2093 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2094 		fuse_link_write_file(file);
2095 
2096 	file_accessed(file);
2097 	vma->vm_ops = &fuse_file_vm_ops;
2098 	return 0;
2099 }
2100 
fuse_direct_mmap(struct file * file,struct vm_area_struct * vma)2101 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2102 {
2103 	/* Can't provide the coherency needed for MAP_SHARED */
2104 	if (vma->vm_flags & VM_MAYSHARE)
2105 		return -ENODEV;
2106 
2107 	invalidate_inode_pages2(file->f_mapping);
2108 
2109 	return generic_file_mmap(file, vma);
2110 }
2111 
convert_fuse_file_lock(const struct fuse_file_lock * ffl,struct file_lock * fl)2112 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2113 				  struct file_lock *fl)
2114 {
2115 	switch (ffl->type) {
2116 	case F_UNLCK:
2117 		break;
2118 
2119 	case F_RDLCK:
2120 	case F_WRLCK:
2121 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2122 		    ffl->end < ffl->start)
2123 			return -EIO;
2124 
2125 		fl->fl_start = ffl->start;
2126 		fl->fl_end = ffl->end;
2127 		fl->fl_pid = ffl->pid;
2128 		break;
2129 
2130 	default:
2131 		return -EIO;
2132 	}
2133 	fl->fl_type = ffl->type;
2134 	return 0;
2135 }
2136 
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2137 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2138 			 const struct file_lock *fl, int opcode, pid_t pid,
2139 			 int flock, struct fuse_lk_in *inarg)
2140 {
2141 	struct inode *inode = file_inode(file);
2142 	struct fuse_conn *fc = get_fuse_conn(inode);
2143 	struct fuse_file *ff = file->private_data;
2144 
2145 	memset(inarg, 0, sizeof(*inarg));
2146 	inarg->fh = ff->fh;
2147 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2148 	inarg->lk.start = fl->fl_start;
2149 	inarg->lk.end = fl->fl_end;
2150 	inarg->lk.type = fl->fl_type;
2151 	inarg->lk.pid = pid;
2152 	if (flock)
2153 		inarg->lk_flags |= FUSE_LK_FLOCK;
2154 	args->in.h.opcode = opcode;
2155 	args->in.h.nodeid = get_node_id(inode);
2156 	args->in.numargs = 1;
2157 	args->in.args[0].size = sizeof(*inarg);
2158 	args->in.args[0].value = inarg;
2159 }
2160 
fuse_getlk(struct file * file,struct file_lock * fl)2161 static int fuse_getlk(struct file *file, struct file_lock *fl)
2162 {
2163 	struct inode *inode = file_inode(file);
2164 	struct fuse_conn *fc = get_fuse_conn(inode);
2165 	FUSE_ARGS(args);
2166 	struct fuse_lk_in inarg;
2167 	struct fuse_lk_out outarg;
2168 	int err;
2169 
2170 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2171 	args.out.numargs = 1;
2172 	args.out.args[0].size = sizeof(outarg);
2173 	args.out.args[0].value = &outarg;
2174 	err = fuse_simple_request(fc, &args);
2175 	if (!err)
2176 		err = convert_fuse_file_lock(&outarg.lk, fl);
2177 
2178 	return err;
2179 }
2180 
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2181 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2182 {
2183 	struct inode *inode = file_inode(file);
2184 	struct fuse_conn *fc = get_fuse_conn(inode);
2185 	FUSE_ARGS(args);
2186 	struct fuse_lk_in inarg;
2187 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2188 	pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2189 	int err;
2190 
2191 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2192 		/* NLM needs asynchronous locks, which we don't support yet */
2193 		return -ENOLCK;
2194 	}
2195 
2196 	/* Unlock on close is handled by the flush method */
2197 	if (fl->fl_flags & FL_CLOSE)
2198 		return 0;
2199 
2200 	fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg);
2201 	err = fuse_simple_request(fc, &args);
2202 
2203 	/* locking is restartable */
2204 	if (err == -EINTR)
2205 		err = -ERESTARTSYS;
2206 
2207 	return err;
2208 }
2209 
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2210 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2211 {
2212 	struct inode *inode = file_inode(file);
2213 	struct fuse_conn *fc = get_fuse_conn(inode);
2214 	int err;
2215 
2216 	if (cmd == F_CANCELLK) {
2217 		err = 0;
2218 	} else if (cmd == F_GETLK) {
2219 		if (fc->no_lock) {
2220 			posix_test_lock(file, fl);
2221 			err = 0;
2222 		} else
2223 			err = fuse_getlk(file, fl);
2224 	} else {
2225 		if (fc->no_lock)
2226 			err = posix_lock_file(file, fl, NULL);
2227 		else
2228 			err = fuse_setlk(file, fl, 0);
2229 	}
2230 	return err;
2231 }
2232 
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2233 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2234 {
2235 	struct inode *inode = file_inode(file);
2236 	struct fuse_conn *fc = get_fuse_conn(inode);
2237 	int err;
2238 
2239 	if (fc->no_flock) {
2240 		err = locks_lock_file_wait(file, fl);
2241 	} else {
2242 		struct fuse_file *ff = file->private_data;
2243 
2244 		/* emulate flock with POSIX locks */
2245 		ff->flock = true;
2246 		err = fuse_setlk(file, fl, 1);
2247 	}
2248 
2249 	return err;
2250 }
2251 
fuse_bmap(struct address_space * mapping,sector_t block)2252 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2253 {
2254 	struct inode *inode = mapping->host;
2255 	struct fuse_conn *fc = get_fuse_conn(inode);
2256 	FUSE_ARGS(args);
2257 	struct fuse_bmap_in inarg;
2258 	struct fuse_bmap_out outarg;
2259 	int err;
2260 
2261 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2262 		return 0;
2263 
2264 	memset(&inarg, 0, sizeof(inarg));
2265 	inarg.block = block;
2266 	inarg.blocksize = inode->i_sb->s_blocksize;
2267 	args.in.h.opcode = FUSE_BMAP;
2268 	args.in.h.nodeid = get_node_id(inode);
2269 	args.in.numargs = 1;
2270 	args.in.args[0].size = sizeof(inarg);
2271 	args.in.args[0].value = &inarg;
2272 	args.out.numargs = 1;
2273 	args.out.args[0].size = sizeof(outarg);
2274 	args.out.args[0].value = &outarg;
2275 	err = fuse_simple_request(fc, &args);
2276 	if (err == -ENOSYS)
2277 		fc->no_bmap = 1;
2278 
2279 	return err ? 0 : outarg.block;
2280 }
2281 
fuse_file_llseek(struct file * file,loff_t offset,int whence)2282 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2283 {
2284 	loff_t retval;
2285 	struct inode *inode = file_inode(file);
2286 
2287 	/* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2288 	if (whence == SEEK_CUR || whence == SEEK_SET)
2289 		return generic_file_llseek(file, offset, whence);
2290 
2291 	mutex_lock(&inode->i_mutex);
2292 	retval = fuse_update_attributes(inode, NULL, file, NULL);
2293 	if (!retval)
2294 		retval = generic_file_llseek(file, offset, whence);
2295 	mutex_unlock(&inode->i_mutex);
2296 
2297 	return retval;
2298 }
2299 
fuse_ioctl_copy_user(struct page ** pages,struct iovec * iov,unsigned int nr_segs,size_t bytes,bool to_user)2300 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2301 			unsigned int nr_segs, size_t bytes, bool to_user)
2302 {
2303 	struct iov_iter ii;
2304 	int page_idx = 0;
2305 
2306 	if (!bytes)
2307 		return 0;
2308 
2309 	iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes);
2310 
2311 	while (iov_iter_count(&ii)) {
2312 		struct page *page = pages[page_idx++];
2313 		size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2314 		void *kaddr;
2315 
2316 		kaddr = kmap(page);
2317 
2318 		while (todo) {
2319 			char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2320 			size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2321 			size_t copy = min(todo, iov_len);
2322 			size_t left;
2323 
2324 			if (!to_user)
2325 				left = copy_from_user(kaddr, uaddr, copy);
2326 			else
2327 				left = copy_to_user(uaddr, kaddr, copy);
2328 
2329 			if (unlikely(left))
2330 				return -EFAULT;
2331 
2332 			iov_iter_advance(&ii, copy);
2333 			todo -= copy;
2334 			kaddr += copy;
2335 		}
2336 
2337 		kunmap(page);
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 /*
2344  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2345  * ABI was defined to be 'struct iovec' which is different on 32bit
2346  * and 64bit.  Fortunately we can determine which structure the server
2347  * used from the size of the reply.
2348  */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2349 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2350 				     size_t transferred, unsigned count,
2351 				     bool is_compat)
2352 {
2353 #ifdef CONFIG_COMPAT
2354 	if (count * sizeof(struct compat_iovec) == transferred) {
2355 		struct compat_iovec *ciov = src;
2356 		unsigned i;
2357 
2358 		/*
2359 		 * With this interface a 32bit server cannot support
2360 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2361 		 * requests
2362 		 */
2363 		if (!is_compat)
2364 			return -EINVAL;
2365 
2366 		for (i = 0; i < count; i++) {
2367 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2368 			dst[i].iov_len = ciov[i].iov_len;
2369 		}
2370 		return 0;
2371 	}
2372 #endif
2373 
2374 	if (count * sizeof(struct iovec) != transferred)
2375 		return -EIO;
2376 
2377 	memcpy(dst, src, transferred);
2378 	return 0;
2379 }
2380 
2381 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct iovec * iov,size_t count)2382 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2383 {
2384 	size_t n;
2385 	u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2386 
2387 	for (n = 0; n < count; n++, iov++) {
2388 		if (iov->iov_len > (size_t) max)
2389 			return -ENOMEM;
2390 		max -= iov->iov_len;
2391 	}
2392 	return 0;
2393 }
2394 
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2395 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2396 				 void *src, size_t transferred, unsigned count,
2397 				 bool is_compat)
2398 {
2399 	unsigned i;
2400 	struct fuse_ioctl_iovec *fiov = src;
2401 
2402 	if (fc->minor < 16) {
2403 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2404 						 count, is_compat);
2405 	}
2406 
2407 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2408 		return -EIO;
2409 
2410 	for (i = 0; i < count; i++) {
2411 		/* Did the server supply an inappropriate value? */
2412 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2413 		    fiov[i].len != (unsigned long) fiov[i].len)
2414 			return -EIO;
2415 
2416 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2417 		dst[i].iov_len = (size_t) fiov[i].len;
2418 
2419 #ifdef CONFIG_COMPAT
2420 		if (is_compat &&
2421 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2422 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2423 			return -EIO;
2424 #endif
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 
2431 /*
2432  * For ioctls, there is no generic way to determine how much memory
2433  * needs to be read and/or written.  Furthermore, ioctls are allowed
2434  * to dereference the passed pointer, so the parameter requires deep
2435  * copying but FUSE has no idea whatsoever about what to copy in or
2436  * out.
2437  *
2438  * This is solved by allowing FUSE server to retry ioctl with
2439  * necessary in/out iovecs.  Let's assume the ioctl implementation
2440  * needs to read in the following structure.
2441  *
2442  * struct a {
2443  *	char	*buf;
2444  *	size_t	buflen;
2445  * }
2446  *
2447  * On the first callout to FUSE server, inarg->in_size and
2448  * inarg->out_size will be NULL; then, the server completes the ioctl
2449  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2450  * the actual iov array to
2451  *
2452  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2453  *
2454  * which tells FUSE to copy in the requested area and retry the ioctl.
2455  * On the second round, the server has access to the structure and
2456  * from that it can tell what to look for next, so on the invocation,
2457  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2458  *
2459  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2460  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2461  *
2462  * FUSE will copy both struct a and the pointed buffer from the
2463  * process doing the ioctl and retry ioctl with both struct a and the
2464  * buffer.
2465  *
2466  * This time, FUSE server has everything it needs and completes ioctl
2467  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2468  *
2469  * Copying data out works the same way.
2470  *
2471  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2472  * automatically initializes in and out iovs by decoding @cmd with
2473  * _IOC_* macros and the server is not allowed to request RETRY.  This
2474  * limits ioctl data transfers to well-formed ioctls and is the forced
2475  * behavior for all FUSE servers.
2476  */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2477 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2478 		   unsigned int flags)
2479 {
2480 	struct fuse_file *ff = file->private_data;
2481 	struct fuse_conn *fc = ff->fc;
2482 	struct fuse_ioctl_in inarg = {
2483 		.fh = ff->fh,
2484 		.cmd = cmd,
2485 		.arg = arg,
2486 		.flags = flags
2487 	};
2488 	struct fuse_ioctl_out outarg;
2489 	struct fuse_req *req = NULL;
2490 	struct page **pages = NULL;
2491 	struct iovec *iov_page = NULL;
2492 	struct iovec *in_iov = NULL, *out_iov = NULL;
2493 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2494 	size_t in_size, out_size, transferred;
2495 	int err;
2496 
2497 #if BITS_PER_LONG == 32
2498 	inarg.flags |= FUSE_IOCTL_32BIT;
2499 #else
2500 	if (flags & FUSE_IOCTL_COMPAT)
2501 		inarg.flags |= FUSE_IOCTL_32BIT;
2502 #endif
2503 
2504 	/* assume all the iovs returned by client always fits in a page */
2505 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2506 
2507 	err = -ENOMEM;
2508 	pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2509 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2510 	if (!pages || !iov_page)
2511 		goto out;
2512 
2513 	/*
2514 	 * If restricted, initialize IO parameters as encoded in @cmd.
2515 	 * RETRY from server is not allowed.
2516 	 */
2517 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2518 		struct iovec *iov = iov_page;
2519 
2520 		iov->iov_base = (void __user *)arg;
2521 
2522 		switch (cmd) {
2523 		case FS_IOC_GETFLAGS:
2524 		case FS_IOC_SETFLAGS:
2525 			iov->iov_len = sizeof(int);
2526 			break;
2527 		default:
2528 			iov->iov_len = _IOC_SIZE(cmd);
2529 			break;
2530 		}
2531 
2532 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2533 			in_iov = iov;
2534 			in_iovs = 1;
2535 		}
2536 
2537 		if (_IOC_DIR(cmd) & _IOC_READ) {
2538 			out_iov = iov;
2539 			out_iovs = 1;
2540 		}
2541 	}
2542 
2543  retry:
2544 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2545 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2546 
2547 	/*
2548 	 * Out data can be used either for actual out data or iovs,
2549 	 * make sure there always is at least one page.
2550 	 */
2551 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2552 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2553 
2554 	/* make sure there are enough buffer pages and init request with them */
2555 	err = -ENOMEM;
2556 	if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2557 		goto out;
2558 	while (num_pages < max_pages) {
2559 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2560 		if (!pages[num_pages])
2561 			goto out;
2562 		num_pages++;
2563 	}
2564 
2565 	req = fuse_get_req(fc, num_pages);
2566 	if (IS_ERR(req)) {
2567 		err = PTR_ERR(req);
2568 		req = NULL;
2569 		goto out;
2570 	}
2571 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2572 	req->num_pages = num_pages;
2573 	fuse_page_descs_length_init(req, 0, req->num_pages);
2574 
2575 	/* okay, let's send it to the client */
2576 	req->in.h.opcode = FUSE_IOCTL;
2577 	req->in.h.nodeid = ff->nodeid;
2578 	req->in.numargs = 1;
2579 	req->in.args[0].size = sizeof(inarg);
2580 	req->in.args[0].value = &inarg;
2581 	if (in_size) {
2582 		req->in.numargs++;
2583 		req->in.args[1].size = in_size;
2584 		req->in.argpages = 1;
2585 
2586 		err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2587 					   false);
2588 		if (err)
2589 			goto out;
2590 	}
2591 
2592 	req->out.numargs = 2;
2593 	req->out.args[0].size = sizeof(outarg);
2594 	req->out.args[0].value = &outarg;
2595 	req->out.args[1].size = out_size;
2596 	req->out.argpages = 1;
2597 	req->out.argvar = 1;
2598 
2599 	fuse_request_send(fc, req);
2600 	err = req->out.h.error;
2601 	transferred = req->out.args[1].size;
2602 	fuse_put_request(fc, req);
2603 	req = NULL;
2604 	if (err)
2605 		goto out;
2606 
2607 	/* did it ask for retry? */
2608 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2609 		void *vaddr;
2610 
2611 		/* no retry if in restricted mode */
2612 		err = -EIO;
2613 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2614 			goto out;
2615 
2616 		in_iovs = outarg.in_iovs;
2617 		out_iovs = outarg.out_iovs;
2618 
2619 		/*
2620 		 * Make sure things are in boundary, separate checks
2621 		 * are to protect against overflow.
2622 		 */
2623 		err = -ENOMEM;
2624 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2625 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2626 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2627 			goto out;
2628 
2629 		vaddr = kmap_atomic(pages[0]);
2630 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2631 					    transferred, in_iovs + out_iovs,
2632 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2633 		kunmap_atomic(vaddr);
2634 		if (err)
2635 			goto out;
2636 
2637 		in_iov = iov_page;
2638 		out_iov = in_iov + in_iovs;
2639 
2640 		err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2641 		if (err)
2642 			goto out;
2643 
2644 		err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2645 		if (err)
2646 			goto out;
2647 
2648 		goto retry;
2649 	}
2650 
2651 	err = -EIO;
2652 	if (transferred > inarg.out_size)
2653 		goto out;
2654 
2655 	err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2656  out:
2657 	if (req)
2658 		fuse_put_request(fc, req);
2659 	free_page((unsigned long) iov_page);
2660 	while (num_pages)
2661 		__free_page(pages[--num_pages]);
2662 	kfree(pages);
2663 
2664 	return err ? err : outarg.result;
2665 }
2666 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2667 
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2668 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2669 		       unsigned long arg, unsigned int flags)
2670 {
2671 	struct inode *inode = file_inode(file);
2672 	struct fuse_conn *fc = get_fuse_conn(inode);
2673 
2674 	if (!fuse_allow_current_process(fc))
2675 		return -EACCES;
2676 
2677 	if (is_bad_inode(inode))
2678 		return -EIO;
2679 
2680 	return fuse_do_ioctl(file, cmd, arg, flags);
2681 }
2682 
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2683 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2684 			    unsigned long arg)
2685 {
2686 	return fuse_ioctl_common(file, cmd, arg, 0);
2687 }
2688 
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2689 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2690 				   unsigned long arg)
2691 {
2692 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2693 }
2694 
2695 /*
2696  * All files which have been polled are linked to RB tree
2697  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2698  * find the matching one.
2699  */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2700 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2701 					      struct rb_node **parent_out)
2702 {
2703 	struct rb_node **link = &fc->polled_files.rb_node;
2704 	struct rb_node *last = NULL;
2705 
2706 	while (*link) {
2707 		struct fuse_file *ff;
2708 
2709 		last = *link;
2710 		ff = rb_entry(last, struct fuse_file, polled_node);
2711 
2712 		if (kh < ff->kh)
2713 			link = &last->rb_left;
2714 		else if (kh > ff->kh)
2715 			link = &last->rb_right;
2716 		else
2717 			return link;
2718 	}
2719 
2720 	if (parent_out)
2721 		*parent_out = last;
2722 	return link;
2723 }
2724 
2725 /*
2726  * The file is about to be polled.  Make sure it's on the polled_files
2727  * RB tree.  Note that files once added to the polled_files tree are
2728  * not removed before the file is released.  This is because a file
2729  * polled once is likely to be polled again.
2730  */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2731 static void fuse_register_polled_file(struct fuse_conn *fc,
2732 				      struct fuse_file *ff)
2733 {
2734 	spin_lock(&fc->lock);
2735 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2736 		struct rb_node **link, *uninitialized_var(parent);
2737 
2738 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2739 		BUG_ON(*link);
2740 		rb_link_node(&ff->polled_node, parent, link);
2741 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2742 	}
2743 	spin_unlock(&fc->lock);
2744 }
2745 
fuse_file_poll(struct file * file,poll_table * wait)2746 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2747 {
2748 	struct fuse_file *ff = file->private_data;
2749 	struct fuse_conn *fc = ff->fc;
2750 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2751 	struct fuse_poll_out outarg;
2752 	FUSE_ARGS(args);
2753 	int err;
2754 
2755 	if (fc->no_poll)
2756 		return DEFAULT_POLLMASK;
2757 
2758 	poll_wait(file, &ff->poll_wait, wait);
2759 	inarg.events = (__u32)poll_requested_events(wait);
2760 
2761 	/*
2762 	 * Ask for notification iff there's someone waiting for it.
2763 	 * The client may ignore the flag and always notify.
2764 	 */
2765 	if (waitqueue_active(&ff->poll_wait)) {
2766 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2767 		fuse_register_polled_file(fc, ff);
2768 	}
2769 
2770 	args.in.h.opcode = FUSE_POLL;
2771 	args.in.h.nodeid = ff->nodeid;
2772 	args.in.numargs = 1;
2773 	args.in.args[0].size = sizeof(inarg);
2774 	args.in.args[0].value = &inarg;
2775 	args.out.numargs = 1;
2776 	args.out.args[0].size = sizeof(outarg);
2777 	args.out.args[0].value = &outarg;
2778 	err = fuse_simple_request(fc, &args);
2779 
2780 	if (!err)
2781 		return outarg.revents;
2782 	if (err == -ENOSYS) {
2783 		fc->no_poll = 1;
2784 		return DEFAULT_POLLMASK;
2785 	}
2786 	return POLLERR;
2787 }
2788 EXPORT_SYMBOL_GPL(fuse_file_poll);
2789 
2790 /*
2791  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2792  * wakes up the poll waiters.
2793  */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)2794 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2795 			    struct fuse_notify_poll_wakeup_out *outarg)
2796 {
2797 	u64 kh = outarg->kh;
2798 	struct rb_node **link;
2799 
2800 	spin_lock(&fc->lock);
2801 
2802 	link = fuse_find_polled_node(fc, kh, NULL);
2803 	if (*link) {
2804 		struct fuse_file *ff;
2805 
2806 		ff = rb_entry(*link, struct fuse_file, polled_node);
2807 		wake_up_interruptible_sync(&ff->poll_wait);
2808 	}
2809 
2810 	spin_unlock(&fc->lock);
2811 	return 0;
2812 }
2813 
fuse_do_truncate(struct file * file)2814 static void fuse_do_truncate(struct file *file)
2815 {
2816 	struct inode *inode = file->f_mapping->host;
2817 	struct iattr attr;
2818 
2819 	attr.ia_valid = ATTR_SIZE;
2820 	attr.ia_size = i_size_read(inode);
2821 
2822 	attr.ia_file = file;
2823 	attr.ia_valid |= ATTR_FILE;
2824 
2825 	fuse_do_setattr(inode, &attr, file);
2826 }
2827 
fuse_round_up(loff_t off)2828 static inline loff_t fuse_round_up(loff_t off)
2829 {
2830 	return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2831 }
2832 
2833 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)2834 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
2835 {
2836 	DECLARE_COMPLETION_ONSTACK(wait);
2837 	ssize_t ret = 0;
2838 	struct file *file = iocb->ki_filp;
2839 	struct fuse_file *ff = file->private_data;
2840 	bool async_dio = ff->fc->async_dio;
2841 	loff_t pos = 0;
2842 	struct inode *inode;
2843 	loff_t i_size;
2844 	size_t count = iov_iter_count(iter);
2845 	struct fuse_io_priv *io;
2846 	bool is_sync = is_sync_kiocb(iocb);
2847 
2848 	pos = offset;
2849 	inode = file->f_mapping->host;
2850 	i_size = i_size_read(inode);
2851 
2852 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2853 		return 0;
2854 
2855 	/* optimization for short read */
2856 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2857 		if (offset >= i_size)
2858 			return 0;
2859 		iov_iter_truncate(iter, fuse_round_up(i_size - offset));
2860 		count = iov_iter_count(iter);
2861 	}
2862 
2863 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2864 	if (!io)
2865 		return -ENOMEM;
2866 	spin_lock_init(&io->lock);
2867 	kref_init(&io->refcnt);
2868 	io->reqs = 1;
2869 	io->bytes = -1;
2870 	io->size = 0;
2871 	io->offset = offset;
2872 	io->write = (iov_iter_rw(iter) == WRITE);
2873 	io->err = 0;
2874 	io->file = file;
2875 	/*
2876 	 * By default, we want to optimize all I/Os with async request
2877 	 * submission to the client filesystem if supported.
2878 	 */
2879 	io->async = async_dio;
2880 	io->iocb = iocb;
2881 
2882 	/*
2883 	 * We cannot asynchronously extend the size of a file. We have no method
2884 	 * to wait on real async I/O requests, so we must submit this request
2885 	 * synchronously.
2886 	 */
2887 	if (!is_sync && (offset + count > i_size) &&
2888 	    iov_iter_rw(iter) == WRITE)
2889 		io->async = false;
2890 
2891 	if (io->async && is_sync) {
2892 		/*
2893 		 * Additional reference to keep io around after
2894 		 * calling fuse_aio_complete()
2895 		 */
2896 		kref_get(&io->refcnt);
2897 		io->done = &wait;
2898 	}
2899 
2900 	if (iov_iter_rw(iter) == WRITE) {
2901 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2902 		fuse_invalidate_attr(inode);
2903 	} else {
2904 		ret = __fuse_direct_read(io, iter, &pos);
2905 	}
2906 
2907 	if (io->async) {
2908 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2909 
2910 		/* we have a non-extending, async request, so return */
2911 		if (!is_sync)
2912 			return -EIOCBQUEUED;
2913 
2914 		wait_for_completion(&wait);
2915 		ret = fuse_get_res_by_io(io);
2916 	}
2917 
2918 	kref_put(&io->refcnt, fuse_io_release);
2919 
2920 	if (iov_iter_rw(iter) == WRITE) {
2921 		if (ret > 0)
2922 			fuse_write_update_size(inode, pos);
2923 		else if (ret < 0 && offset + count > i_size)
2924 			fuse_do_truncate(file);
2925 	}
2926 
2927 	return ret;
2928 }
2929 
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)2930 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2931 				loff_t length)
2932 {
2933 	struct fuse_file *ff = file->private_data;
2934 	struct inode *inode = file_inode(file);
2935 	struct fuse_inode *fi = get_fuse_inode(inode);
2936 	struct fuse_conn *fc = ff->fc;
2937 	FUSE_ARGS(args);
2938 	struct fuse_fallocate_in inarg = {
2939 		.fh = ff->fh,
2940 		.offset = offset,
2941 		.length = length,
2942 		.mode = mode
2943 	};
2944 	int err;
2945 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2946 			   (mode & FALLOC_FL_PUNCH_HOLE);
2947 
2948 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2949 		return -EOPNOTSUPP;
2950 
2951 	if (fc->no_fallocate)
2952 		return -EOPNOTSUPP;
2953 
2954 	if (lock_inode) {
2955 		mutex_lock(&inode->i_mutex);
2956 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2957 			loff_t endbyte = offset + length - 1;
2958 			err = filemap_write_and_wait_range(inode->i_mapping,
2959 							   offset, endbyte);
2960 			if (err)
2961 				goto out;
2962 
2963 			fuse_sync_writes(inode);
2964 		}
2965 	}
2966 
2967 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2968 	    offset + length > i_size_read(inode)) {
2969 		err = inode_newsize_ok(inode, offset + length);
2970 		if (err)
2971 			goto out;
2972 	}
2973 
2974 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2975 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2976 
2977 	args.in.h.opcode = FUSE_FALLOCATE;
2978 	args.in.h.nodeid = ff->nodeid;
2979 	args.in.numargs = 1;
2980 	args.in.args[0].size = sizeof(inarg);
2981 	args.in.args[0].value = &inarg;
2982 	err = fuse_simple_request(fc, &args);
2983 	if (err == -ENOSYS) {
2984 		fc->no_fallocate = 1;
2985 		err = -EOPNOTSUPP;
2986 	}
2987 	if (err)
2988 		goto out;
2989 
2990 	/* we could have extended the file */
2991 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2992 		bool changed = fuse_write_update_size(inode, offset + length);
2993 
2994 		if (changed && fc->writeback_cache)
2995 			file_update_time(file);
2996 	}
2997 
2998 	if (mode & FALLOC_FL_PUNCH_HOLE)
2999 		truncate_pagecache_range(inode, offset, offset + length - 1);
3000 
3001 	fuse_invalidate_attr(inode);
3002 
3003 out:
3004 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3005 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3006 
3007 	if (lock_inode)
3008 		mutex_unlock(&inode->i_mutex);
3009 
3010 	return err;
3011 }
3012 
3013 static const struct file_operations fuse_file_operations = {
3014 	.llseek		= fuse_file_llseek,
3015 	.read_iter	= fuse_file_read_iter,
3016 	.write_iter	= fuse_file_write_iter,
3017 	.mmap		= fuse_file_mmap,
3018 	.open		= fuse_open,
3019 	.flush		= fuse_flush,
3020 	.release	= fuse_release,
3021 	.fsync		= fuse_fsync,
3022 	.lock		= fuse_file_lock,
3023 	.flock		= fuse_file_flock,
3024 	.splice_read	= generic_file_splice_read,
3025 	.unlocked_ioctl	= fuse_file_ioctl,
3026 	.compat_ioctl	= fuse_file_compat_ioctl,
3027 	.poll		= fuse_file_poll,
3028 	.fallocate	= fuse_file_fallocate,
3029 };
3030 
3031 static const struct file_operations fuse_direct_io_file_operations = {
3032 	.llseek		= fuse_file_llseek,
3033 	.read_iter	= fuse_direct_read_iter,
3034 	.write_iter	= fuse_direct_write_iter,
3035 	.mmap		= fuse_direct_mmap,
3036 	.open		= fuse_open,
3037 	.flush		= fuse_flush,
3038 	.release	= fuse_release,
3039 	.fsync		= fuse_fsync,
3040 	.lock		= fuse_file_lock,
3041 	.flock		= fuse_file_flock,
3042 	.unlocked_ioctl	= fuse_file_ioctl,
3043 	.compat_ioctl	= fuse_file_compat_ioctl,
3044 	.poll		= fuse_file_poll,
3045 	.fallocate	= fuse_file_fallocate,
3046 	/* no splice_read */
3047 };
3048 
3049 static const struct address_space_operations fuse_file_aops  = {
3050 	.readpage	= fuse_readpage,
3051 	.writepage	= fuse_writepage,
3052 	.writepages	= fuse_writepages,
3053 	.launder_page	= fuse_launder_page,
3054 	.readpages	= fuse_readpages,
3055 	.set_page_dirty	= __set_page_dirty_nobuffers,
3056 	.bmap		= fuse_bmap,
3057 	.direct_IO	= fuse_direct_IO,
3058 	.write_begin	= fuse_write_begin,
3059 	.write_end	= fuse_write_end,
3060 };
3061 
fuse_init_file_inode(struct inode * inode)3062 void fuse_init_file_inode(struct inode *inode)
3063 {
3064 	inode->i_fop = &fuse_file_operations;
3065 	inode->i_data.a_ops = &fuse_file_aops;
3066 }
3067