• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 
30 #include <asm/addrspace.h>
31 #include <asm/bootinfo.h>
32 #include <asm/bugs.h>
33 #include <asm/cache.h>
34 #include <asm/cdmm.h>
35 #include <asm/cpu.h>
36 #include <asm/debug.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/smp-ops.h>
40 #include <asm/prom.h>
41 
42 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
43 const char __section(.appended_dtb) __appended_dtb[0x100000];
44 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
45 
46 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
47 
48 EXPORT_SYMBOL(cpu_data);
49 
50 #ifdef CONFIG_VT
51 struct screen_info screen_info;
52 #endif
53 
54 /*
55  * Despite it's name this variable is even if we don't have PCI
56  */
57 unsigned int PCI_DMA_BUS_IS_PHYS;
58 
59 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
60 
61 /*
62  * Setup information
63  *
64  * These are initialized so they are in the .data section
65  */
66 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
67 
68 EXPORT_SYMBOL(mips_machtype);
69 
70 struct boot_mem_map boot_mem_map;
71 
72 static char __initdata command_line[COMMAND_LINE_SIZE];
73 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
74 
75 #ifdef CONFIG_CMDLINE_BOOL
76 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
77 #endif
78 
79 /*
80  * mips_io_port_base is the begin of the address space to which x86 style
81  * I/O ports are mapped.
82  */
83 unsigned long mips_io_port_base = -1;
84 EXPORT_SYMBOL(mips_io_port_base);
85 
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88 
89 static void *detect_magic __initdata = detect_memory_region;
90 
add_memory_region(phys_addr_t start,phys_addr_t size,long type)91 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
92 {
93 	int x = boot_mem_map.nr_map;
94 	int i;
95 
96 	/* Sanity check */
97 	if (start + size < start) {
98 		pr_warn("Trying to add an invalid memory region, skipped\n");
99 		return;
100 	}
101 
102 	/*
103 	 * Try to merge with existing entry, if any.
104 	 */
105 	for (i = 0; i < boot_mem_map.nr_map; i++) {
106 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
107 		unsigned long top;
108 
109 		if (entry->type != type)
110 			continue;
111 
112 		if (start + size < entry->addr)
113 			continue;			/* no overlap */
114 
115 		if (entry->addr + entry->size < start)
116 			continue;			/* no overlap */
117 
118 		top = max(entry->addr + entry->size, start + size);
119 		entry->addr = min(entry->addr, start);
120 		entry->size = top - entry->addr;
121 
122 		return;
123 	}
124 
125 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
126 		pr_err("Ooops! Too many entries in the memory map!\n");
127 		return;
128 	}
129 
130 	boot_mem_map.map[x].addr = start;
131 	boot_mem_map.map[x].size = size;
132 	boot_mem_map.map[x].type = type;
133 	boot_mem_map.nr_map++;
134 }
135 
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)136 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
137 {
138 	void *dm = &detect_magic;
139 	phys_addr_t size;
140 
141 	for (size = sz_min; size < sz_max; size <<= 1) {
142 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
143 			break;
144 	}
145 
146 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
147 		((unsigned long long) size) / SZ_1M,
148 		(unsigned long long) start,
149 		((unsigned long long) sz_min) / SZ_1M,
150 		((unsigned long long) sz_max) / SZ_1M);
151 
152 	add_memory_region(start, size, BOOT_MEM_RAM);
153 }
154 
memory_region_available(phys_addr_t start,phys_addr_t size)155 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
156 {
157 	int i;
158 	bool in_ram = false, free = true;
159 
160 	for (i = 0; i < boot_mem_map.nr_map; i++) {
161 		phys_addr_t start_, end_;
162 
163 		start_ = boot_mem_map.map[i].addr;
164 		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
165 
166 		switch (boot_mem_map.map[i].type) {
167 		case BOOT_MEM_RAM:
168 			if (start >= start_ && start + size <= end_)
169 				in_ram = true;
170 			break;
171 		case BOOT_MEM_RESERVED:
172 			if ((start >= start_ && start < end_) ||
173 			    (start < start_ && start + size >= start_))
174 				free = false;
175 			break;
176 		default:
177 			continue;
178 		}
179 	}
180 
181 	return in_ram && free;
182 }
183 
print_memory_map(void)184 static void __init print_memory_map(void)
185 {
186 	int i;
187 	const int field = 2 * sizeof(unsigned long);
188 
189 	for (i = 0; i < boot_mem_map.nr_map; i++) {
190 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
191 		       field, (unsigned long long) boot_mem_map.map[i].size,
192 		       field, (unsigned long long) boot_mem_map.map[i].addr);
193 
194 		switch (boot_mem_map.map[i].type) {
195 		case BOOT_MEM_RAM:
196 			printk(KERN_CONT "(usable)\n");
197 			break;
198 		case BOOT_MEM_INIT_RAM:
199 			printk(KERN_CONT "(usable after init)\n");
200 			break;
201 		case BOOT_MEM_ROM_DATA:
202 			printk(KERN_CONT "(ROM data)\n");
203 			break;
204 		case BOOT_MEM_RESERVED:
205 			printk(KERN_CONT "(reserved)\n");
206 			break;
207 		default:
208 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
209 			break;
210 		}
211 	}
212 }
213 
214 /*
215  * Manage initrd
216  */
217 #ifdef CONFIG_BLK_DEV_INITRD
218 
rd_start_early(char * p)219 static int __init rd_start_early(char *p)
220 {
221 	unsigned long start = memparse(p, &p);
222 
223 #ifdef CONFIG_64BIT
224 	/* Guess if the sign extension was forgotten by bootloader */
225 	if (start < XKPHYS)
226 		start = (int)start;
227 #endif
228 	initrd_start = start;
229 	initrd_end += start;
230 	return 0;
231 }
232 early_param("rd_start", rd_start_early);
233 
rd_size_early(char * p)234 static int __init rd_size_early(char *p)
235 {
236 	initrd_end += memparse(p, &p);
237 	return 0;
238 }
239 early_param("rd_size", rd_size_early);
240 
241 /* it returns the next free pfn after initrd */
init_initrd(void)242 static unsigned long __init init_initrd(void)
243 {
244 	unsigned long end;
245 
246 	/*
247 	 * Board specific code or command line parser should have
248 	 * already set up initrd_start and initrd_end. In these cases
249 	 * perfom sanity checks and use them if all looks good.
250 	 */
251 	if (!initrd_start || initrd_end <= initrd_start)
252 		goto disable;
253 
254 	if (initrd_start & ~PAGE_MASK) {
255 		pr_err("initrd start must be page aligned\n");
256 		goto disable;
257 	}
258 	if (initrd_start < PAGE_OFFSET) {
259 		pr_err("initrd start < PAGE_OFFSET\n");
260 		goto disable;
261 	}
262 
263 	/*
264 	 * Sanitize initrd addresses. For example firmware
265 	 * can't guess if they need to pass them through
266 	 * 64-bits values if the kernel has been built in pure
267 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
268 	 * addresses now, so the code can now safely use __pa().
269 	 */
270 	end = __pa(initrd_end);
271 	initrd_end = (unsigned long)__va(end);
272 	initrd_start = (unsigned long)__va(__pa(initrd_start));
273 
274 	ROOT_DEV = Root_RAM0;
275 	return PFN_UP(end);
276 disable:
277 	initrd_start = 0;
278 	initrd_end = 0;
279 	return 0;
280 }
281 
finalize_initrd(void)282 static void __init finalize_initrd(void)
283 {
284 	unsigned long size = initrd_end - initrd_start;
285 
286 	if (size == 0) {
287 		printk(KERN_INFO "Initrd not found or empty");
288 		goto disable;
289 	}
290 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
291 		printk(KERN_ERR "Initrd extends beyond end of memory");
292 		goto disable;
293 	}
294 
295 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
296 	initrd_below_start_ok = 1;
297 
298 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
299 		initrd_start, size);
300 	return;
301 disable:
302 	printk(KERN_CONT " - disabling initrd\n");
303 	initrd_start = 0;
304 	initrd_end = 0;
305 }
306 
307 #else  /* !CONFIG_BLK_DEV_INITRD */
308 
init_initrd(void)309 static unsigned long __init init_initrd(void)
310 {
311 	return 0;
312 }
313 
314 #define finalize_initrd()	do {} while (0)
315 
316 #endif
317 
318 /*
319  * Initialize the bootmem allocator. It also setup initrd related data
320  * if needed.
321  */
322 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
323 
bootmem_init(void)324 static void __init bootmem_init(void)
325 {
326 	init_initrd();
327 	finalize_initrd();
328 }
329 
330 #else  /* !CONFIG_SGI_IP27 */
331 
bootmap_bytes(unsigned long pages)332 static unsigned long __init bootmap_bytes(unsigned long pages)
333 {
334 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
335 
336 	return ALIGN(bytes, sizeof(long));
337 }
338 
bootmem_init(void)339 static void __init bootmem_init(void)
340 {
341 	unsigned long reserved_end;
342 	unsigned long mapstart = ~0UL;
343 	unsigned long bootmap_size;
344 	bool bootmap_valid = false;
345 	int i;
346 
347 	/*
348 	 * Sanity check any INITRD first. We don't take it into account
349 	 * for bootmem setup initially, rely on the end-of-kernel-code
350 	 * as our memory range starting point. Once bootmem is inited we
351 	 * will reserve the area used for the initrd.
352 	 */
353 	init_initrd();
354 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
355 
356 	/*
357 	 * max_low_pfn is not a number of pages. The number of pages
358 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
359 	 */
360 	min_low_pfn = ~0UL;
361 	max_low_pfn = 0;
362 
363 	/*
364 	 * Find the highest page frame number we have available.
365 	 */
366 	for (i = 0; i < boot_mem_map.nr_map; i++) {
367 		unsigned long start, end;
368 
369 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
370 			continue;
371 
372 		start = PFN_UP(boot_mem_map.map[i].addr);
373 		end = PFN_DOWN(boot_mem_map.map[i].addr
374 				+ boot_mem_map.map[i].size);
375 
376 		if (end > max_low_pfn)
377 			max_low_pfn = end;
378 		if (start < min_low_pfn)
379 			min_low_pfn = start;
380 		if (end <= reserved_end)
381 			continue;
382 #ifdef CONFIG_BLK_DEV_INITRD
383 		/* Skip zones before initrd and initrd itself */
384 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
385 			continue;
386 #endif
387 		if (start >= mapstart)
388 			continue;
389 		mapstart = max(reserved_end, start);
390 	}
391 
392 	if (min_low_pfn >= max_low_pfn)
393 		panic("Incorrect memory mapping !!!");
394 	if (min_low_pfn > ARCH_PFN_OFFSET) {
395 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
396 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
397 			min_low_pfn - ARCH_PFN_OFFSET);
398 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
399 		pr_info("%lu free pages won't be used\n",
400 			ARCH_PFN_OFFSET - min_low_pfn);
401 	}
402 	min_low_pfn = ARCH_PFN_OFFSET;
403 
404 	/*
405 	 * Determine low and high memory ranges
406 	 */
407 	max_pfn = max_low_pfn;
408 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
409 #ifdef CONFIG_HIGHMEM
410 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
411 		highend_pfn = max_low_pfn;
412 #endif
413 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
414 	}
415 
416 #ifdef CONFIG_BLK_DEV_INITRD
417 	/*
418 	 * mapstart should be after initrd_end
419 	 */
420 	if (initrd_end)
421 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
422 #endif
423 
424 	/*
425 	 * check that mapstart doesn't overlap with any of
426 	 * memory regions that have been reserved through eg. DTB
427 	 */
428 	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
429 
430 	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
431 						bootmap_size);
432 	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
433 		unsigned long mapstart_addr;
434 
435 		switch (boot_mem_map.map[i].type) {
436 		case BOOT_MEM_RESERVED:
437 			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
438 						boot_mem_map.map[i].size);
439 			if (PHYS_PFN(mapstart_addr) < mapstart)
440 				break;
441 
442 			bootmap_valid = memory_region_available(mapstart_addr,
443 								bootmap_size);
444 			if (bootmap_valid)
445 				mapstart = PHYS_PFN(mapstart_addr);
446 			break;
447 		default:
448 			break;
449 		}
450 	}
451 
452 	if (!bootmap_valid)
453 		panic("No memory area to place a bootmap bitmap");
454 
455 	/*
456 	 * Initialize the boot-time allocator with low memory only.
457 	 */
458 	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
459 					 min_low_pfn, max_low_pfn))
460 		panic("Unexpected memory size required for bootmap");
461 
462 	for (i = 0; i < boot_mem_map.nr_map; i++) {
463 		unsigned long start, end;
464 
465 		start = PFN_UP(boot_mem_map.map[i].addr);
466 		end = PFN_DOWN(boot_mem_map.map[i].addr
467 				+ boot_mem_map.map[i].size);
468 
469 		if (start <= min_low_pfn)
470 			start = min_low_pfn;
471 		if (start >= end)
472 			continue;
473 
474 #ifndef CONFIG_HIGHMEM
475 		if (end > max_low_pfn)
476 			end = max_low_pfn;
477 
478 		/*
479 		 * ... finally, is the area going away?
480 		 */
481 		if (end <= start)
482 			continue;
483 #endif
484 
485 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
486 	}
487 
488 	/*
489 	 * Register fully available low RAM pages with the bootmem allocator.
490 	 */
491 	for (i = 0; i < boot_mem_map.nr_map; i++) {
492 		unsigned long start, end, size;
493 
494 		start = PFN_UP(boot_mem_map.map[i].addr);
495 		end   = PFN_DOWN(boot_mem_map.map[i].addr
496 				    + boot_mem_map.map[i].size);
497 
498 		/*
499 		 * Reserve usable memory.
500 		 */
501 		switch (boot_mem_map.map[i].type) {
502 		case BOOT_MEM_RAM:
503 			break;
504 		case BOOT_MEM_INIT_RAM:
505 			memory_present(0, start, end);
506 			continue;
507 		default:
508 			/* Not usable memory */
509 			if (start > min_low_pfn && end < max_low_pfn)
510 				reserve_bootmem(boot_mem_map.map[i].addr,
511 						boot_mem_map.map[i].size,
512 						BOOTMEM_DEFAULT);
513 			continue;
514 		}
515 
516 		/*
517 		 * We are rounding up the start address of usable memory
518 		 * and at the end of the usable range downwards.
519 		 */
520 		if (start >= max_low_pfn)
521 			continue;
522 		if (start < reserved_end)
523 			start = reserved_end;
524 		if (end > max_low_pfn)
525 			end = max_low_pfn;
526 
527 		/*
528 		 * ... finally, is the area going away?
529 		 */
530 		if (end <= start)
531 			continue;
532 		size = end - start;
533 
534 		/* Register lowmem ranges */
535 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
536 		memory_present(0, start, end);
537 	}
538 
539 	/*
540 	 * Reserve the bootmap memory.
541 	 */
542 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
543 
544 	/*
545 	 * Reserve initrd memory if needed.
546 	 */
547 	finalize_initrd();
548 }
549 
550 #endif	/* CONFIG_SGI_IP27 */
551 
552 /*
553  * arch_mem_init - initialize memory management subsystem
554  *
555  *  o plat_mem_setup() detects the memory configuration and will record detected
556  *    memory areas using add_memory_region.
557  *
558  * At this stage the memory configuration of the system is known to the
559  * kernel but generic memory management system is still entirely uninitialized.
560  *
561  *  o bootmem_init()
562  *  o sparse_init()
563  *  o paging_init()
564  *  o dma_contiguous_reserve()
565  *
566  * At this stage the bootmem allocator is ready to use.
567  *
568  * NOTE: historically plat_mem_setup did the entire platform initialization.
569  *	 This was rather impractical because it meant plat_mem_setup had to
570  * get away without any kind of memory allocator.  To keep old code from
571  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
572  * initialization hook for anything else was introduced.
573  */
574 
575 static int usermem __initdata;
576 
early_parse_mem(char * p)577 static int __init early_parse_mem(char *p)
578 {
579 	phys_addr_t start, size;
580 
581 	/*
582 	 * If a user specifies memory size, we
583 	 * blow away any automatically generated
584 	 * size.
585 	 */
586 	if (usermem == 0) {
587 		boot_mem_map.nr_map = 0;
588 		usermem = 1;
589 	}
590 	start = 0;
591 	size = memparse(p, &p);
592 	if (*p == '@')
593 		start = memparse(p + 1, &p);
594 
595 	add_memory_region(start, size, BOOT_MEM_RAM);
596 	return 0;
597 }
598 early_param("mem", early_parse_mem);
599 
early_parse_memmap(char * p)600 static int __init early_parse_memmap(char *p)
601 {
602 	char *oldp;
603 	u64 start_at, mem_size;
604 
605 	if (!p)
606 		return -EINVAL;
607 
608 	if (!strncmp(p, "exactmap", 8)) {
609 		pr_err("\"memmap=exactmap\" invalid on MIPS\n");
610 		return 0;
611 	}
612 
613 	oldp = p;
614 	mem_size = memparse(p, &p);
615 	if (p == oldp)
616 		return -EINVAL;
617 
618 	if (*p == '@') {
619 		start_at = memparse(p+1, &p);
620 		add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
621 	} else if (*p == '#') {
622 		pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
623 		return -EINVAL;
624 	} else if (*p == '$') {
625 		start_at = memparse(p+1, &p);
626 		add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
627 	} else {
628 		pr_err("\"memmap\" invalid format!\n");
629 		return -EINVAL;
630 	}
631 
632 	if (*p == '\0') {
633 		usermem = 1;
634 		return 0;
635 	} else
636 		return -EINVAL;
637 }
638 early_param("memmap", early_parse_memmap);
639 
640 #ifdef CONFIG_PROC_VMCORE
641 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)642 static int __init early_parse_elfcorehdr(char *p)
643 {
644 	int i;
645 
646 	setup_elfcorehdr = memparse(p, &p);
647 
648 	for (i = 0; i < boot_mem_map.nr_map; i++) {
649 		unsigned long start = boot_mem_map.map[i].addr;
650 		unsigned long end = (boot_mem_map.map[i].addr +
651 				     boot_mem_map.map[i].size);
652 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
653 			/*
654 			 * Reserve from the elf core header to the end of
655 			 * the memory segment, that should all be kdump
656 			 * reserved memory.
657 			 */
658 			setup_elfcorehdr_size = end - setup_elfcorehdr;
659 			break;
660 		}
661 	}
662 	/*
663 	 * If we don't find it in the memory map, then we shouldn't
664 	 * have to worry about it, as the new kernel won't use it.
665 	 */
666 	return 0;
667 }
668 early_param("elfcorehdr", early_parse_elfcorehdr);
669 #endif
670 
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)671 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
672 {
673 	phys_addr_t size;
674 	int i;
675 
676 	size = end - mem;
677 	if (!size)
678 		return;
679 
680 	/* Make sure it is in the boot_mem_map */
681 	for (i = 0; i < boot_mem_map.nr_map; i++) {
682 		if (mem >= boot_mem_map.map[i].addr &&
683 		    mem < (boot_mem_map.map[i].addr +
684 			   boot_mem_map.map[i].size))
685 			return;
686 	}
687 	add_memory_region(mem, size, type);
688 }
689 
690 #ifdef CONFIG_KEXEC
get_total_mem(void)691 static inline unsigned long long get_total_mem(void)
692 {
693 	unsigned long long total;
694 
695 	total = max_pfn - min_low_pfn;
696 	return total << PAGE_SHIFT;
697 }
698 
mips_parse_crashkernel(void)699 static void __init mips_parse_crashkernel(void)
700 {
701 	unsigned long long total_mem;
702 	unsigned long long crash_size, crash_base;
703 	int ret;
704 
705 	total_mem = get_total_mem();
706 	ret = parse_crashkernel(boot_command_line, total_mem,
707 				&crash_size, &crash_base);
708 	if (ret != 0 || crash_size <= 0)
709 		return;
710 
711 	crashk_res.start = crash_base;
712 	crashk_res.end	 = crash_base + crash_size - 1;
713 }
714 
request_crashkernel(struct resource * res)715 static void __init request_crashkernel(struct resource *res)
716 {
717 	int ret;
718 
719 	ret = request_resource(res, &crashk_res);
720 	if (!ret)
721 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
722 			(unsigned long)((crashk_res.end -
723 					 crashk_res.start + 1) >> 20),
724 			(unsigned long)(crashk_res.start  >> 20));
725 }
726 #else /* !defined(CONFIG_KEXEC)		*/
mips_parse_crashkernel(void)727 static void __init mips_parse_crashkernel(void)
728 {
729 }
730 
request_crashkernel(struct resource * res)731 static void __init request_crashkernel(struct resource *res)
732 {
733 }
734 #endif /* !defined(CONFIG_KEXEC)  */
735 
736 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
737 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
738 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
739 
arch_mem_init(char ** cmdline_p)740 static void __init arch_mem_init(char **cmdline_p)
741 {
742 	struct memblock_region *reg;
743 	extern void plat_mem_setup(void);
744 
745 	/* call board setup routine */
746 	plat_mem_setup();
747 
748 	/*
749 	 * Make sure all kernel memory is in the maps.  The "UP" and
750 	 * "DOWN" are opposite for initdata since if it crosses over
751 	 * into another memory section you don't want that to be
752 	 * freed when the initdata is freed.
753 	 */
754 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
755 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
756 			 BOOT_MEM_RAM);
757 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
758 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
759 			 BOOT_MEM_INIT_RAM);
760 
761 	pr_info("Determined physical RAM map:\n");
762 	print_memory_map();
763 
764 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
765 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
766 #else
767 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
768 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
769 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
770 
771 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
772 		strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
773 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
774 	}
775 
776 #if defined(CONFIG_CMDLINE_BOOL)
777 	if (builtin_cmdline[0]) {
778 		strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
779 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
780 	}
781 #endif
782 #endif
783 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
784 
785 	*cmdline_p = command_line;
786 
787 	parse_early_param();
788 
789 	if (usermem) {
790 		pr_info("User-defined physical RAM map:\n");
791 		print_memory_map();
792 	}
793 
794 	bootmem_init();
795 #ifdef CONFIG_PROC_VMCORE
796 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
797 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
798 		       setup_elfcorehdr, setup_elfcorehdr_size);
799 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
800 				BOOTMEM_DEFAULT);
801 	}
802 #endif
803 
804 	mips_parse_crashkernel();
805 #ifdef CONFIG_KEXEC
806 	if (crashk_res.start != crashk_res.end)
807 		reserve_bootmem(crashk_res.start,
808 				crashk_res.end - crashk_res.start + 1,
809 				BOOTMEM_DEFAULT);
810 #endif
811 	device_tree_init();
812 
813 	/*
814 	 * In order to reduce the possibility of kernel panic when failed to
815 	 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
816 	 * low memory as small as possible before plat_swiotlb_setup(), so
817 	 * make sparse_init() using top-down allocation.
818 	 */
819 	memblock_set_bottom_up(false);
820 	sparse_init();
821 	memblock_set_bottom_up(true);
822 
823 	plat_swiotlb_setup();
824 	paging_init();
825 
826 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
827 	/* Tell bootmem about cma reserved memblock section */
828 	for_each_memblock(reserved, reg)
829 		if (reg->size != 0)
830 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
831 
832 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
833 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
834 }
835 
resource_init(void)836 static void __init resource_init(void)
837 {
838 	int i;
839 
840 	if (UNCAC_BASE != IO_BASE)
841 		return;
842 
843 	code_resource.start = __pa_symbol(&_text);
844 	code_resource.end = __pa_symbol(&_etext) - 1;
845 	data_resource.start = __pa_symbol(&_etext);
846 	data_resource.end = __pa_symbol(&_edata) - 1;
847 
848 	for (i = 0; i < boot_mem_map.nr_map; i++) {
849 		struct resource *res;
850 		unsigned long start, end;
851 
852 		start = boot_mem_map.map[i].addr;
853 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
854 		if (start >= HIGHMEM_START)
855 			continue;
856 		if (end >= HIGHMEM_START)
857 			end = HIGHMEM_START - 1;
858 
859 		res = alloc_bootmem(sizeof(struct resource));
860 		switch (boot_mem_map.map[i].type) {
861 		case BOOT_MEM_RAM:
862 		case BOOT_MEM_INIT_RAM:
863 		case BOOT_MEM_ROM_DATA:
864 			res->name = "System RAM";
865 			break;
866 		case BOOT_MEM_RESERVED:
867 		default:
868 			res->name = "reserved";
869 		}
870 
871 		res->start = start;
872 		res->end = end;
873 
874 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
875 		request_resource(&iomem_resource, res);
876 
877 		/*
878 		 *  We don't know which RAM region contains kernel data,
879 		 *  so we try it repeatedly and let the resource manager
880 		 *  test it.
881 		 */
882 		request_resource(res, &code_resource);
883 		request_resource(res, &data_resource);
884 		request_crashkernel(res);
885 	}
886 }
887 
888 #ifdef CONFIG_SMP
prefill_possible_map(void)889 static void __init prefill_possible_map(void)
890 {
891 	int i, possible = num_possible_cpus();
892 
893 	if (possible > nr_cpu_ids)
894 		possible = nr_cpu_ids;
895 
896 	for (i = 0; i < possible; i++)
897 		set_cpu_possible(i, true);
898 	for (; i < NR_CPUS; i++)
899 		set_cpu_possible(i, false);
900 
901 	nr_cpu_ids = possible;
902 }
903 #else
prefill_possible_map(void)904 static inline void prefill_possible_map(void) {}
905 #endif
906 
setup_arch(char ** cmdline_p)907 void __init setup_arch(char **cmdline_p)
908 {
909 	cpu_probe();
910 	mips_cm_probe();
911 	prom_init();
912 
913 	setup_early_fdc_console();
914 #ifdef CONFIG_EARLY_PRINTK
915 	setup_early_printk();
916 #endif
917 	cpu_report();
918 	check_bugs_early();
919 
920 #if defined(CONFIG_VT)
921 #if defined(CONFIG_VGA_CONSOLE)
922 	conswitchp = &vga_con;
923 #elif defined(CONFIG_DUMMY_CONSOLE)
924 	conswitchp = &dummy_con;
925 #endif
926 #endif
927 
928 	arch_mem_init(cmdline_p);
929 
930 	resource_init();
931 	plat_smp_setup();
932 	prefill_possible_map();
933 
934 	cpu_cache_init();
935 }
936 
937 unsigned long kernelsp[NR_CPUS];
938 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
939 
940 #ifdef CONFIG_USE_OF
941 unsigned long fw_passed_dtb;
942 #endif
943 
944 #ifdef CONFIG_DEBUG_FS
945 struct dentry *mips_debugfs_dir;
debugfs_mips(void)946 static int __init debugfs_mips(void)
947 {
948 	struct dentry *d;
949 
950 	d = debugfs_create_dir("mips", NULL);
951 	if (!d)
952 		return -ENOMEM;
953 	mips_debugfs_dir = d;
954 	return 0;
955 }
956 arch_initcall(debugfs_mips);
957 #endif
958