1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29
30 #include <asm/addrspace.h>
31 #include <asm/bootinfo.h>
32 #include <asm/bugs.h>
33 #include <asm/cache.h>
34 #include <asm/cdmm.h>
35 #include <asm/cpu.h>
36 #include <asm/debug.h>
37 #include <asm/sections.h>
38 #include <asm/setup.h>
39 #include <asm/smp-ops.h>
40 #include <asm/prom.h>
41
42 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
43 const char __section(.appended_dtb) __appended_dtb[0x100000];
44 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
45
46 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
47
48 EXPORT_SYMBOL(cpu_data);
49
50 #ifdef CONFIG_VT
51 struct screen_info screen_info;
52 #endif
53
54 /*
55 * Despite it's name this variable is even if we don't have PCI
56 */
57 unsigned int PCI_DMA_BUS_IS_PHYS;
58
59 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
60
61 /*
62 * Setup information
63 *
64 * These are initialized so they are in the .data section
65 */
66 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
67
68 EXPORT_SYMBOL(mips_machtype);
69
70 struct boot_mem_map boot_mem_map;
71
72 static char __initdata command_line[COMMAND_LINE_SIZE];
73 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
74
75 #ifdef CONFIG_CMDLINE_BOOL
76 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
77 #endif
78
79 /*
80 * mips_io_port_base is the begin of the address space to which x86 style
81 * I/O ports are mapped.
82 */
83 unsigned long mips_io_port_base = -1;
84 EXPORT_SYMBOL(mips_io_port_base);
85
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88
89 static void *detect_magic __initdata = detect_memory_region;
90
add_memory_region(phys_addr_t start,phys_addr_t size,long type)91 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
92 {
93 int x = boot_mem_map.nr_map;
94 int i;
95
96 /* Sanity check */
97 if (start + size < start) {
98 pr_warn("Trying to add an invalid memory region, skipped\n");
99 return;
100 }
101
102 /*
103 * Try to merge with existing entry, if any.
104 */
105 for (i = 0; i < boot_mem_map.nr_map; i++) {
106 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
107 unsigned long top;
108
109 if (entry->type != type)
110 continue;
111
112 if (start + size < entry->addr)
113 continue; /* no overlap */
114
115 if (entry->addr + entry->size < start)
116 continue; /* no overlap */
117
118 top = max(entry->addr + entry->size, start + size);
119 entry->addr = min(entry->addr, start);
120 entry->size = top - entry->addr;
121
122 return;
123 }
124
125 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
126 pr_err("Ooops! Too many entries in the memory map!\n");
127 return;
128 }
129
130 boot_mem_map.map[x].addr = start;
131 boot_mem_map.map[x].size = size;
132 boot_mem_map.map[x].type = type;
133 boot_mem_map.nr_map++;
134 }
135
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)136 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
137 {
138 void *dm = &detect_magic;
139 phys_addr_t size;
140
141 for (size = sz_min; size < sz_max; size <<= 1) {
142 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
143 break;
144 }
145
146 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
147 ((unsigned long long) size) / SZ_1M,
148 (unsigned long long) start,
149 ((unsigned long long) sz_min) / SZ_1M,
150 ((unsigned long long) sz_max) / SZ_1M);
151
152 add_memory_region(start, size, BOOT_MEM_RAM);
153 }
154
memory_region_available(phys_addr_t start,phys_addr_t size)155 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
156 {
157 int i;
158 bool in_ram = false, free = true;
159
160 for (i = 0; i < boot_mem_map.nr_map; i++) {
161 phys_addr_t start_, end_;
162
163 start_ = boot_mem_map.map[i].addr;
164 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
165
166 switch (boot_mem_map.map[i].type) {
167 case BOOT_MEM_RAM:
168 if (start >= start_ && start + size <= end_)
169 in_ram = true;
170 break;
171 case BOOT_MEM_RESERVED:
172 if ((start >= start_ && start < end_) ||
173 (start < start_ && start + size >= start_))
174 free = false;
175 break;
176 default:
177 continue;
178 }
179 }
180
181 return in_ram && free;
182 }
183
print_memory_map(void)184 static void __init print_memory_map(void)
185 {
186 int i;
187 const int field = 2 * sizeof(unsigned long);
188
189 for (i = 0; i < boot_mem_map.nr_map; i++) {
190 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
191 field, (unsigned long long) boot_mem_map.map[i].size,
192 field, (unsigned long long) boot_mem_map.map[i].addr);
193
194 switch (boot_mem_map.map[i].type) {
195 case BOOT_MEM_RAM:
196 printk(KERN_CONT "(usable)\n");
197 break;
198 case BOOT_MEM_INIT_RAM:
199 printk(KERN_CONT "(usable after init)\n");
200 break;
201 case BOOT_MEM_ROM_DATA:
202 printk(KERN_CONT "(ROM data)\n");
203 break;
204 case BOOT_MEM_RESERVED:
205 printk(KERN_CONT "(reserved)\n");
206 break;
207 default:
208 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
209 break;
210 }
211 }
212 }
213
214 /*
215 * Manage initrd
216 */
217 #ifdef CONFIG_BLK_DEV_INITRD
218
rd_start_early(char * p)219 static int __init rd_start_early(char *p)
220 {
221 unsigned long start = memparse(p, &p);
222
223 #ifdef CONFIG_64BIT
224 /* Guess if the sign extension was forgotten by bootloader */
225 if (start < XKPHYS)
226 start = (int)start;
227 #endif
228 initrd_start = start;
229 initrd_end += start;
230 return 0;
231 }
232 early_param("rd_start", rd_start_early);
233
rd_size_early(char * p)234 static int __init rd_size_early(char *p)
235 {
236 initrd_end += memparse(p, &p);
237 return 0;
238 }
239 early_param("rd_size", rd_size_early);
240
241 /* it returns the next free pfn after initrd */
init_initrd(void)242 static unsigned long __init init_initrd(void)
243 {
244 unsigned long end;
245
246 /*
247 * Board specific code or command line parser should have
248 * already set up initrd_start and initrd_end. In these cases
249 * perfom sanity checks and use them if all looks good.
250 */
251 if (!initrd_start || initrd_end <= initrd_start)
252 goto disable;
253
254 if (initrd_start & ~PAGE_MASK) {
255 pr_err("initrd start must be page aligned\n");
256 goto disable;
257 }
258 if (initrd_start < PAGE_OFFSET) {
259 pr_err("initrd start < PAGE_OFFSET\n");
260 goto disable;
261 }
262
263 /*
264 * Sanitize initrd addresses. For example firmware
265 * can't guess if they need to pass them through
266 * 64-bits values if the kernel has been built in pure
267 * 32-bit. We need also to switch from KSEG0 to XKPHYS
268 * addresses now, so the code can now safely use __pa().
269 */
270 end = __pa(initrd_end);
271 initrd_end = (unsigned long)__va(end);
272 initrd_start = (unsigned long)__va(__pa(initrd_start));
273
274 ROOT_DEV = Root_RAM0;
275 return PFN_UP(end);
276 disable:
277 initrd_start = 0;
278 initrd_end = 0;
279 return 0;
280 }
281
finalize_initrd(void)282 static void __init finalize_initrd(void)
283 {
284 unsigned long size = initrd_end - initrd_start;
285
286 if (size == 0) {
287 printk(KERN_INFO "Initrd not found or empty");
288 goto disable;
289 }
290 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
291 printk(KERN_ERR "Initrd extends beyond end of memory");
292 goto disable;
293 }
294
295 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
296 initrd_below_start_ok = 1;
297
298 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
299 initrd_start, size);
300 return;
301 disable:
302 printk(KERN_CONT " - disabling initrd\n");
303 initrd_start = 0;
304 initrd_end = 0;
305 }
306
307 #else /* !CONFIG_BLK_DEV_INITRD */
308
init_initrd(void)309 static unsigned long __init init_initrd(void)
310 {
311 return 0;
312 }
313
314 #define finalize_initrd() do {} while (0)
315
316 #endif
317
318 /*
319 * Initialize the bootmem allocator. It also setup initrd related data
320 * if needed.
321 */
322 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
323
bootmem_init(void)324 static void __init bootmem_init(void)
325 {
326 init_initrd();
327 finalize_initrd();
328 }
329
330 #else /* !CONFIG_SGI_IP27 */
331
bootmap_bytes(unsigned long pages)332 static unsigned long __init bootmap_bytes(unsigned long pages)
333 {
334 unsigned long bytes = DIV_ROUND_UP(pages, 8);
335
336 return ALIGN(bytes, sizeof(long));
337 }
338
bootmem_init(void)339 static void __init bootmem_init(void)
340 {
341 unsigned long reserved_end;
342 unsigned long mapstart = ~0UL;
343 unsigned long bootmap_size;
344 bool bootmap_valid = false;
345 int i;
346
347 /*
348 * Sanity check any INITRD first. We don't take it into account
349 * for bootmem setup initially, rely on the end-of-kernel-code
350 * as our memory range starting point. Once bootmem is inited we
351 * will reserve the area used for the initrd.
352 */
353 init_initrd();
354 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
355
356 /*
357 * max_low_pfn is not a number of pages. The number of pages
358 * of the system is given by 'max_low_pfn - min_low_pfn'.
359 */
360 min_low_pfn = ~0UL;
361 max_low_pfn = 0;
362
363 /*
364 * Find the highest page frame number we have available.
365 */
366 for (i = 0; i < boot_mem_map.nr_map; i++) {
367 unsigned long start, end;
368
369 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
370 continue;
371
372 start = PFN_UP(boot_mem_map.map[i].addr);
373 end = PFN_DOWN(boot_mem_map.map[i].addr
374 + boot_mem_map.map[i].size);
375
376 if (end > max_low_pfn)
377 max_low_pfn = end;
378 if (start < min_low_pfn)
379 min_low_pfn = start;
380 if (end <= reserved_end)
381 continue;
382 #ifdef CONFIG_BLK_DEV_INITRD
383 /* Skip zones before initrd and initrd itself */
384 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
385 continue;
386 #endif
387 if (start >= mapstart)
388 continue;
389 mapstart = max(reserved_end, start);
390 }
391
392 if (min_low_pfn >= max_low_pfn)
393 panic("Incorrect memory mapping !!!");
394 if (min_low_pfn > ARCH_PFN_OFFSET) {
395 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
396 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
397 min_low_pfn - ARCH_PFN_OFFSET);
398 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
399 pr_info("%lu free pages won't be used\n",
400 ARCH_PFN_OFFSET - min_low_pfn);
401 }
402 min_low_pfn = ARCH_PFN_OFFSET;
403
404 /*
405 * Determine low and high memory ranges
406 */
407 max_pfn = max_low_pfn;
408 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
409 #ifdef CONFIG_HIGHMEM
410 highstart_pfn = PFN_DOWN(HIGHMEM_START);
411 highend_pfn = max_low_pfn;
412 #endif
413 max_low_pfn = PFN_DOWN(HIGHMEM_START);
414 }
415
416 #ifdef CONFIG_BLK_DEV_INITRD
417 /*
418 * mapstart should be after initrd_end
419 */
420 if (initrd_end)
421 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
422 #endif
423
424 /*
425 * check that mapstart doesn't overlap with any of
426 * memory regions that have been reserved through eg. DTB
427 */
428 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
429
430 bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
431 bootmap_size);
432 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
433 unsigned long mapstart_addr;
434
435 switch (boot_mem_map.map[i].type) {
436 case BOOT_MEM_RESERVED:
437 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
438 boot_mem_map.map[i].size);
439 if (PHYS_PFN(mapstart_addr) < mapstart)
440 break;
441
442 bootmap_valid = memory_region_available(mapstart_addr,
443 bootmap_size);
444 if (bootmap_valid)
445 mapstart = PHYS_PFN(mapstart_addr);
446 break;
447 default:
448 break;
449 }
450 }
451
452 if (!bootmap_valid)
453 panic("No memory area to place a bootmap bitmap");
454
455 /*
456 * Initialize the boot-time allocator with low memory only.
457 */
458 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
459 min_low_pfn, max_low_pfn))
460 panic("Unexpected memory size required for bootmap");
461
462 for (i = 0; i < boot_mem_map.nr_map; i++) {
463 unsigned long start, end;
464
465 start = PFN_UP(boot_mem_map.map[i].addr);
466 end = PFN_DOWN(boot_mem_map.map[i].addr
467 + boot_mem_map.map[i].size);
468
469 if (start <= min_low_pfn)
470 start = min_low_pfn;
471 if (start >= end)
472 continue;
473
474 #ifndef CONFIG_HIGHMEM
475 if (end > max_low_pfn)
476 end = max_low_pfn;
477
478 /*
479 * ... finally, is the area going away?
480 */
481 if (end <= start)
482 continue;
483 #endif
484
485 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
486 }
487
488 /*
489 * Register fully available low RAM pages with the bootmem allocator.
490 */
491 for (i = 0; i < boot_mem_map.nr_map; i++) {
492 unsigned long start, end, size;
493
494 start = PFN_UP(boot_mem_map.map[i].addr);
495 end = PFN_DOWN(boot_mem_map.map[i].addr
496 + boot_mem_map.map[i].size);
497
498 /*
499 * Reserve usable memory.
500 */
501 switch (boot_mem_map.map[i].type) {
502 case BOOT_MEM_RAM:
503 break;
504 case BOOT_MEM_INIT_RAM:
505 memory_present(0, start, end);
506 continue;
507 default:
508 /* Not usable memory */
509 if (start > min_low_pfn && end < max_low_pfn)
510 reserve_bootmem(boot_mem_map.map[i].addr,
511 boot_mem_map.map[i].size,
512 BOOTMEM_DEFAULT);
513 continue;
514 }
515
516 /*
517 * We are rounding up the start address of usable memory
518 * and at the end of the usable range downwards.
519 */
520 if (start >= max_low_pfn)
521 continue;
522 if (start < reserved_end)
523 start = reserved_end;
524 if (end > max_low_pfn)
525 end = max_low_pfn;
526
527 /*
528 * ... finally, is the area going away?
529 */
530 if (end <= start)
531 continue;
532 size = end - start;
533
534 /* Register lowmem ranges */
535 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
536 memory_present(0, start, end);
537 }
538
539 /*
540 * Reserve the bootmap memory.
541 */
542 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
543
544 /*
545 * Reserve initrd memory if needed.
546 */
547 finalize_initrd();
548 }
549
550 #endif /* CONFIG_SGI_IP27 */
551
552 /*
553 * arch_mem_init - initialize memory management subsystem
554 *
555 * o plat_mem_setup() detects the memory configuration and will record detected
556 * memory areas using add_memory_region.
557 *
558 * At this stage the memory configuration of the system is known to the
559 * kernel but generic memory management system is still entirely uninitialized.
560 *
561 * o bootmem_init()
562 * o sparse_init()
563 * o paging_init()
564 * o dma_contiguous_reserve()
565 *
566 * At this stage the bootmem allocator is ready to use.
567 *
568 * NOTE: historically plat_mem_setup did the entire platform initialization.
569 * This was rather impractical because it meant plat_mem_setup had to
570 * get away without any kind of memory allocator. To keep old code from
571 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
572 * initialization hook for anything else was introduced.
573 */
574
575 static int usermem __initdata;
576
early_parse_mem(char * p)577 static int __init early_parse_mem(char *p)
578 {
579 phys_addr_t start, size;
580
581 /*
582 * If a user specifies memory size, we
583 * blow away any automatically generated
584 * size.
585 */
586 if (usermem == 0) {
587 boot_mem_map.nr_map = 0;
588 usermem = 1;
589 }
590 start = 0;
591 size = memparse(p, &p);
592 if (*p == '@')
593 start = memparse(p + 1, &p);
594
595 add_memory_region(start, size, BOOT_MEM_RAM);
596 return 0;
597 }
598 early_param("mem", early_parse_mem);
599
early_parse_memmap(char * p)600 static int __init early_parse_memmap(char *p)
601 {
602 char *oldp;
603 u64 start_at, mem_size;
604
605 if (!p)
606 return -EINVAL;
607
608 if (!strncmp(p, "exactmap", 8)) {
609 pr_err("\"memmap=exactmap\" invalid on MIPS\n");
610 return 0;
611 }
612
613 oldp = p;
614 mem_size = memparse(p, &p);
615 if (p == oldp)
616 return -EINVAL;
617
618 if (*p == '@') {
619 start_at = memparse(p+1, &p);
620 add_memory_region(start_at, mem_size, BOOT_MEM_RAM);
621 } else if (*p == '#') {
622 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n");
623 return -EINVAL;
624 } else if (*p == '$') {
625 start_at = memparse(p+1, &p);
626 add_memory_region(start_at, mem_size, BOOT_MEM_RESERVED);
627 } else {
628 pr_err("\"memmap\" invalid format!\n");
629 return -EINVAL;
630 }
631
632 if (*p == '\0') {
633 usermem = 1;
634 return 0;
635 } else
636 return -EINVAL;
637 }
638 early_param("memmap", early_parse_memmap);
639
640 #ifdef CONFIG_PROC_VMCORE
641 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)642 static int __init early_parse_elfcorehdr(char *p)
643 {
644 int i;
645
646 setup_elfcorehdr = memparse(p, &p);
647
648 for (i = 0; i < boot_mem_map.nr_map; i++) {
649 unsigned long start = boot_mem_map.map[i].addr;
650 unsigned long end = (boot_mem_map.map[i].addr +
651 boot_mem_map.map[i].size);
652 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
653 /*
654 * Reserve from the elf core header to the end of
655 * the memory segment, that should all be kdump
656 * reserved memory.
657 */
658 setup_elfcorehdr_size = end - setup_elfcorehdr;
659 break;
660 }
661 }
662 /*
663 * If we don't find it in the memory map, then we shouldn't
664 * have to worry about it, as the new kernel won't use it.
665 */
666 return 0;
667 }
668 early_param("elfcorehdr", early_parse_elfcorehdr);
669 #endif
670
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)671 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
672 {
673 phys_addr_t size;
674 int i;
675
676 size = end - mem;
677 if (!size)
678 return;
679
680 /* Make sure it is in the boot_mem_map */
681 for (i = 0; i < boot_mem_map.nr_map; i++) {
682 if (mem >= boot_mem_map.map[i].addr &&
683 mem < (boot_mem_map.map[i].addr +
684 boot_mem_map.map[i].size))
685 return;
686 }
687 add_memory_region(mem, size, type);
688 }
689
690 #ifdef CONFIG_KEXEC
get_total_mem(void)691 static inline unsigned long long get_total_mem(void)
692 {
693 unsigned long long total;
694
695 total = max_pfn - min_low_pfn;
696 return total << PAGE_SHIFT;
697 }
698
mips_parse_crashkernel(void)699 static void __init mips_parse_crashkernel(void)
700 {
701 unsigned long long total_mem;
702 unsigned long long crash_size, crash_base;
703 int ret;
704
705 total_mem = get_total_mem();
706 ret = parse_crashkernel(boot_command_line, total_mem,
707 &crash_size, &crash_base);
708 if (ret != 0 || crash_size <= 0)
709 return;
710
711 crashk_res.start = crash_base;
712 crashk_res.end = crash_base + crash_size - 1;
713 }
714
request_crashkernel(struct resource * res)715 static void __init request_crashkernel(struct resource *res)
716 {
717 int ret;
718
719 ret = request_resource(res, &crashk_res);
720 if (!ret)
721 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
722 (unsigned long)((crashk_res.end -
723 crashk_res.start + 1) >> 20),
724 (unsigned long)(crashk_res.start >> 20));
725 }
726 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)727 static void __init mips_parse_crashkernel(void)
728 {
729 }
730
request_crashkernel(struct resource * res)731 static void __init request_crashkernel(struct resource *res)
732 {
733 }
734 #endif /* !defined(CONFIG_KEXEC) */
735
736 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
737 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
738 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
739
arch_mem_init(char ** cmdline_p)740 static void __init arch_mem_init(char **cmdline_p)
741 {
742 struct memblock_region *reg;
743 extern void plat_mem_setup(void);
744
745 /* call board setup routine */
746 plat_mem_setup();
747
748 /*
749 * Make sure all kernel memory is in the maps. The "UP" and
750 * "DOWN" are opposite for initdata since if it crosses over
751 * into another memory section you don't want that to be
752 * freed when the initdata is freed.
753 */
754 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
755 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
756 BOOT_MEM_RAM);
757 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
758 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
759 BOOT_MEM_INIT_RAM);
760
761 pr_info("Determined physical RAM map:\n");
762 print_memory_map();
763
764 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
765 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
766 #else
767 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
768 (USE_DTB_CMDLINE && !boot_command_line[0]))
769 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
770
771 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
772 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
773 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
774 }
775
776 #if defined(CONFIG_CMDLINE_BOOL)
777 if (builtin_cmdline[0]) {
778 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
779 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
780 }
781 #endif
782 #endif
783 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
784
785 *cmdline_p = command_line;
786
787 parse_early_param();
788
789 if (usermem) {
790 pr_info("User-defined physical RAM map:\n");
791 print_memory_map();
792 }
793
794 bootmem_init();
795 #ifdef CONFIG_PROC_VMCORE
796 if (setup_elfcorehdr && setup_elfcorehdr_size) {
797 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
798 setup_elfcorehdr, setup_elfcorehdr_size);
799 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
800 BOOTMEM_DEFAULT);
801 }
802 #endif
803
804 mips_parse_crashkernel();
805 #ifdef CONFIG_KEXEC
806 if (crashk_res.start != crashk_res.end)
807 reserve_bootmem(crashk_res.start,
808 crashk_res.end - crashk_res.start + 1,
809 BOOTMEM_DEFAULT);
810 #endif
811 device_tree_init();
812
813 /*
814 * In order to reduce the possibility of kernel panic when failed to
815 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
816 * low memory as small as possible before plat_swiotlb_setup(), so
817 * make sparse_init() using top-down allocation.
818 */
819 memblock_set_bottom_up(false);
820 sparse_init();
821 memblock_set_bottom_up(true);
822
823 plat_swiotlb_setup();
824 paging_init();
825
826 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
827 /* Tell bootmem about cma reserved memblock section */
828 for_each_memblock(reserved, reg)
829 if (reg->size != 0)
830 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
831
832 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
833 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
834 }
835
resource_init(void)836 static void __init resource_init(void)
837 {
838 int i;
839
840 if (UNCAC_BASE != IO_BASE)
841 return;
842
843 code_resource.start = __pa_symbol(&_text);
844 code_resource.end = __pa_symbol(&_etext) - 1;
845 data_resource.start = __pa_symbol(&_etext);
846 data_resource.end = __pa_symbol(&_edata) - 1;
847
848 for (i = 0; i < boot_mem_map.nr_map; i++) {
849 struct resource *res;
850 unsigned long start, end;
851
852 start = boot_mem_map.map[i].addr;
853 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
854 if (start >= HIGHMEM_START)
855 continue;
856 if (end >= HIGHMEM_START)
857 end = HIGHMEM_START - 1;
858
859 res = alloc_bootmem(sizeof(struct resource));
860 switch (boot_mem_map.map[i].type) {
861 case BOOT_MEM_RAM:
862 case BOOT_MEM_INIT_RAM:
863 case BOOT_MEM_ROM_DATA:
864 res->name = "System RAM";
865 break;
866 case BOOT_MEM_RESERVED:
867 default:
868 res->name = "reserved";
869 }
870
871 res->start = start;
872 res->end = end;
873
874 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
875 request_resource(&iomem_resource, res);
876
877 /*
878 * We don't know which RAM region contains kernel data,
879 * so we try it repeatedly and let the resource manager
880 * test it.
881 */
882 request_resource(res, &code_resource);
883 request_resource(res, &data_resource);
884 request_crashkernel(res);
885 }
886 }
887
888 #ifdef CONFIG_SMP
prefill_possible_map(void)889 static void __init prefill_possible_map(void)
890 {
891 int i, possible = num_possible_cpus();
892
893 if (possible > nr_cpu_ids)
894 possible = nr_cpu_ids;
895
896 for (i = 0; i < possible; i++)
897 set_cpu_possible(i, true);
898 for (; i < NR_CPUS; i++)
899 set_cpu_possible(i, false);
900
901 nr_cpu_ids = possible;
902 }
903 #else
prefill_possible_map(void)904 static inline void prefill_possible_map(void) {}
905 #endif
906
setup_arch(char ** cmdline_p)907 void __init setup_arch(char **cmdline_p)
908 {
909 cpu_probe();
910 mips_cm_probe();
911 prom_init();
912
913 setup_early_fdc_console();
914 #ifdef CONFIG_EARLY_PRINTK
915 setup_early_printk();
916 #endif
917 cpu_report();
918 check_bugs_early();
919
920 #if defined(CONFIG_VT)
921 #if defined(CONFIG_VGA_CONSOLE)
922 conswitchp = &vga_con;
923 #elif defined(CONFIG_DUMMY_CONSOLE)
924 conswitchp = &dummy_con;
925 #endif
926 #endif
927
928 arch_mem_init(cmdline_p);
929
930 resource_init();
931 plat_smp_setup();
932 prefill_possible_map();
933
934 cpu_cache_init();
935 }
936
937 unsigned long kernelsp[NR_CPUS];
938 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
939
940 #ifdef CONFIG_USE_OF
941 unsigned long fw_passed_dtb;
942 #endif
943
944 #ifdef CONFIG_DEBUG_FS
945 struct dentry *mips_debugfs_dir;
debugfs_mips(void)946 static int __init debugfs_mips(void)
947 {
948 struct dentry *d;
949
950 d = debugfs_create_dir("mips", NULL);
951 if (!d)
952 return -ENOMEM;
953 mips_debugfs_dir = d;
954 return 0;
955 }
956 arch_initcall(debugfs_mips);
957 #endif
958