1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47
48 int pid_max = PID_MAX_DEFAULT;
49
50 #define RESERVED_PIDS 300
51
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54
mk_pid(struct pid_namespace * pid_ns,struct pidmap * map,int off)55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57 {
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64 /*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70 struct pid_namespace init_pid_ns = {
71 .kref = KREF_INIT(2),
72 .pidmap = {
73 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
74 },
75 .last_pid = 0,
76 .nr_hashed = PIDNS_HASH_ADDING,
77 .level = 0,
78 .child_reaper = &init_task,
79 .user_ns = &init_user_ns,
80 .ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 .ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86
87 /*
88 * Note: disable interrupts while the pidmap_lock is held as an
89 * interrupt might come in and do read_lock(&tasklist_lock).
90 *
91 * If we don't disable interrupts there is a nasty deadlock between
92 * detach_pid()->free_pid() and another cpu that does
93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94 * read_lock(&tasklist_lock);
95 *
96 * After we clean up the tasklist_lock and know there are no
97 * irq handlers that take it we can leave the interrupts enabled.
98 * For now it is easier to be safe than to prove it can't happen.
99 */
100
101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102
free_pidmap(struct upid * upid)103 static void free_pidmap(struct upid *upid)
104 {
105 int nr = upid->nr;
106 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
107 int offset = nr & BITS_PER_PAGE_MASK;
108
109 clear_bit(offset, map->page);
110 atomic_inc(&map->nr_free);
111 }
112
113 /*
114 * If we started walking pids at 'base', is 'a' seen before 'b'?
115 */
pid_before(int base,int a,int b)116 static int pid_before(int base, int a, int b)
117 {
118 /*
119 * This is the same as saying
120 *
121 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
122 * and that mapping orders 'a' and 'b' with respect to 'base'.
123 */
124 return (unsigned)(a - base) < (unsigned)(b - base);
125 }
126
127 /*
128 * We might be racing with someone else trying to set pid_ns->last_pid
129 * at the pid allocation time (there's also a sysctl for this, but racing
130 * with this one is OK, see comment in kernel/pid_namespace.c about it).
131 * We want the winner to have the "later" value, because if the
132 * "earlier" value prevails, then a pid may get reused immediately.
133 *
134 * Since pids rollover, it is not sufficient to just pick the bigger
135 * value. We have to consider where we started counting from.
136 *
137 * 'base' is the value of pid_ns->last_pid that we observed when
138 * we started looking for a pid.
139 *
140 * 'pid' is the pid that we eventually found.
141 */
set_last_pid(struct pid_namespace * pid_ns,int base,int pid)142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
143 {
144 int prev;
145 int last_write = base;
146 do {
147 prev = last_write;
148 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
149 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
150 }
151
alloc_pidmap(struct pid_namespace * pid_ns)152 static int alloc_pidmap(struct pid_namespace *pid_ns)
153 {
154 int i, offset, max_scan, pid, last = pid_ns->last_pid;
155 struct pidmap *map;
156
157 pid = last + 1;
158 if (pid >= pid_max)
159 pid = RESERVED_PIDS;
160 offset = pid & BITS_PER_PAGE_MASK;
161 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
162 /*
163 * If last_pid points into the middle of the map->page we
164 * want to scan this bitmap block twice, the second time
165 * we start with offset == 0 (or RESERVED_PIDS).
166 */
167 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
168 for (i = 0; i <= max_scan; ++i) {
169 if (unlikely(!map->page)) {
170 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
171 /*
172 * Free the page if someone raced with us
173 * installing it:
174 */
175 spin_lock_irq(&pidmap_lock);
176 if (!map->page) {
177 map->page = page;
178 page = NULL;
179 }
180 spin_unlock_irq(&pidmap_lock);
181 kfree(page);
182 if (unlikely(!map->page))
183 return -ENOMEM;
184 }
185 if (likely(atomic_read(&map->nr_free))) {
186 for ( ; ; ) {
187 if (!test_and_set_bit(offset, map->page)) {
188 atomic_dec(&map->nr_free);
189 set_last_pid(pid_ns, last, pid);
190 return pid;
191 }
192 offset = find_next_offset(map, offset);
193 if (offset >= BITS_PER_PAGE)
194 break;
195 pid = mk_pid(pid_ns, map, offset);
196 if (pid >= pid_max)
197 break;
198 }
199 }
200 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
201 ++map;
202 offset = 0;
203 } else {
204 map = &pid_ns->pidmap[0];
205 offset = RESERVED_PIDS;
206 if (unlikely(last == offset))
207 break;
208 }
209 pid = mk_pid(pid_ns, map, offset);
210 }
211 return -EAGAIN;
212 }
213
next_pidmap(struct pid_namespace * pid_ns,unsigned int last)214 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
215 {
216 int offset;
217 struct pidmap *map, *end;
218
219 if (last >= PID_MAX_LIMIT)
220 return -1;
221
222 offset = (last + 1) & BITS_PER_PAGE_MASK;
223 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
224 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
225 for (; map < end; map++, offset = 0) {
226 if (unlikely(!map->page))
227 continue;
228 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
229 if (offset < BITS_PER_PAGE)
230 return mk_pid(pid_ns, map, offset);
231 }
232 return -1;
233 }
234
put_pid(struct pid * pid)235 void put_pid(struct pid *pid)
236 {
237 struct pid_namespace *ns;
238
239 if (!pid)
240 return;
241
242 ns = pid->numbers[pid->level].ns;
243 if ((atomic_read(&pid->count) == 1) ||
244 atomic_dec_and_test(&pid->count)) {
245 kmem_cache_free(ns->pid_cachep, pid);
246 put_pid_ns(ns);
247 }
248 }
249 EXPORT_SYMBOL_GPL(put_pid);
250
delayed_put_pid(struct rcu_head * rhp)251 static void delayed_put_pid(struct rcu_head *rhp)
252 {
253 struct pid *pid = container_of(rhp, struct pid, rcu);
254 put_pid(pid);
255 }
256
free_pid(struct pid * pid)257 void free_pid(struct pid *pid)
258 {
259 /* We can be called with write_lock_irq(&tasklist_lock) held */
260 int i;
261 unsigned long flags;
262
263 spin_lock_irqsave(&pidmap_lock, flags);
264 for (i = 0; i <= pid->level; i++) {
265 struct upid *upid = pid->numbers + i;
266 struct pid_namespace *ns = upid->ns;
267 hlist_del_rcu(&upid->pid_chain);
268 switch(--ns->nr_hashed) {
269 case 2:
270 case 1:
271 /* When all that is left in the pid namespace
272 * is the reaper wake up the reaper. The reaper
273 * may be sleeping in zap_pid_ns_processes().
274 */
275 wake_up_process(ns->child_reaper);
276 break;
277 case PIDNS_HASH_ADDING:
278 /* Handle a fork failure of the first process */
279 WARN_ON(ns->child_reaper);
280 ns->nr_hashed = 0;
281 /* fall through */
282 case 0:
283 schedule_work(&ns->proc_work);
284 break;
285 }
286 }
287 spin_unlock_irqrestore(&pidmap_lock, flags);
288
289 for (i = 0; i <= pid->level; i++)
290 free_pidmap(pid->numbers + i);
291
292 call_rcu(&pid->rcu, delayed_put_pid);
293 }
294
alloc_pid(struct pid_namespace * ns)295 struct pid *alloc_pid(struct pid_namespace *ns)
296 {
297 struct pid *pid;
298 enum pid_type type;
299 int i, nr;
300 struct pid_namespace *tmp;
301 struct upid *upid;
302 int retval = -ENOMEM;
303
304 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
305 if (!pid)
306 return ERR_PTR(retval);
307
308 tmp = ns;
309 pid->level = ns->level;
310 for (i = ns->level; i >= 0; i--) {
311 nr = alloc_pidmap(tmp);
312 if (IS_ERR_VALUE(nr)) {
313 retval = nr;
314 goto out_free;
315 }
316
317 pid->numbers[i].nr = nr;
318 pid->numbers[i].ns = tmp;
319 tmp = tmp->parent;
320 }
321
322 if (unlikely(is_child_reaper(pid))) {
323 if (pid_ns_prepare_proc(ns)) {
324 disable_pid_allocation(ns);
325 goto out_free;
326 }
327 }
328
329 get_pid_ns(ns);
330 atomic_set(&pid->count, 1);
331 for (type = 0; type < PIDTYPE_MAX; ++type)
332 INIT_HLIST_HEAD(&pid->tasks[type]);
333
334 upid = pid->numbers + ns->level;
335 spin_lock_irq(&pidmap_lock);
336 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
337 goto out_unlock;
338 for ( ; upid >= pid->numbers; --upid) {
339 hlist_add_head_rcu(&upid->pid_chain,
340 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
341 upid->ns->nr_hashed++;
342 }
343 spin_unlock_irq(&pidmap_lock);
344
345 return pid;
346
347 out_unlock:
348 spin_unlock_irq(&pidmap_lock);
349 put_pid_ns(ns);
350
351 out_free:
352 while (++i <= ns->level)
353 free_pidmap(pid->numbers + i);
354
355 kmem_cache_free(ns->pid_cachep, pid);
356 return ERR_PTR(retval);
357 }
358
disable_pid_allocation(struct pid_namespace * ns)359 void disable_pid_allocation(struct pid_namespace *ns)
360 {
361 spin_lock_irq(&pidmap_lock);
362 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
363 spin_unlock_irq(&pidmap_lock);
364 }
365
find_pid_ns(int nr,struct pid_namespace * ns)366 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
367 {
368 struct upid *pnr;
369
370 hlist_for_each_entry_rcu(pnr,
371 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
372 if (pnr->nr == nr && pnr->ns == ns)
373 return container_of(pnr, struct pid,
374 numbers[ns->level]);
375
376 return NULL;
377 }
378 EXPORT_SYMBOL_GPL(find_pid_ns);
379
find_vpid(int nr)380 struct pid *find_vpid(int nr)
381 {
382 return find_pid_ns(nr, task_active_pid_ns(current));
383 }
384 EXPORT_SYMBOL_GPL(find_vpid);
385
386 /*
387 * attach_pid() must be called with the tasklist_lock write-held.
388 */
attach_pid(struct task_struct * task,enum pid_type type)389 void attach_pid(struct task_struct *task, enum pid_type type)
390 {
391 struct pid_link *link = &task->pids[type];
392 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
393 }
394
__change_pid(struct task_struct * task,enum pid_type type,struct pid * new)395 static void __change_pid(struct task_struct *task, enum pid_type type,
396 struct pid *new)
397 {
398 struct pid_link *link;
399 struct pid *pid;
400 int tmp;
401
402 link = &task->pids[type];
403 pid = link->pid;
404
405 hlist_del_rcu(&link->node);
406 link->pid = new;
407
408 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
409 if (!hlist_empty(&pid->tasks[tmp]))
410 return;
411
412 free_pid(pid);
413 }
414
detach_pid(struct task_struct * task,enum pid_type type)415 void detach_pid(struct task_struct *task, enum pid_type type)
416 {
417 __change_pid(task, type, NULL);
418 }
419
change_pid(struct task_struct * task,enum pid_type type,struct pid * pid)420 void change_pid(struct task_struct *task, enum pid_type type,
421 struct pid *pid)
422 {
423 __change_pid(task, type, pid);
424 attach_pid(task, type);
425 }
426
427 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)428 void transfer_pid(struct task_struct *old, struct task_struct *new,
429 enum pid_type type)
430 {
431 new->pids[type].pid = old->pids[type].pid;
432 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
433 }
434
pid_task(struct pid * pid,enum pid_type type)435 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
436 {
437 struct task_struct *result = NULL;
438 if (pid) {
439 struct hlist_node *first;
440 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
441 lockdep_tasklist_lock_is_held());
442 if (first)
443 result = hlist_entry(first, struct task_struct, pids[(type)].node);
444 }
445 return result;
446 }
447 EXPORT_SYMBOL(pid_task);
448
449 /*
450 * Must be called under rcu_read_lock().
451 */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)452 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
453 {
454 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
455 "find_task_by_pid_ns() needs rcu_read_lock() protection");
456 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
457 }
458
find_task_by_vpid(pid_t vnr)459 struct task_struct *find_task_by_vpid(pid_t vnr)
460 {
461 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
462 }
463
get_task_pid(struct task_struct * task,enum pid_type type)464 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
465 {
466 struct pid *pid;
467 rcu_read_lock();
468 if (type != PIDTYPE_PID)
469 task = task->group_leader;
470 pid = get_pid(rcu_dereference(task->pids[type].pid));
471 rcu_read_unlock();
472 return pid;
473 }
474 EXPORT_SYMBOL_GPL(get_task_pid);
475
get_pid_task(struct pid * pid,enum pid_type type)476 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
477 {
478 struct task_struct *result;
479 rcu_read_lock();
480 result = pid_task(pid, type);
481 if (result)
482 get_task_struct(result);
483 rcu_read_unlock();
484 return result;
485 }
486 EXPORT_SYMBOL_GPL(get_pid_task);
487
find_get_pid(pid_t nr)488 struct pid *find_get_pid(pid_t nr)
489 {
490 struct pid *pid;
491
492 rcu_read_lock();
493 pid = get_pid(find_vpid(nr));
494 rcu_read_unlock();
495
496 return pid;
497 }
498 EXPORT_SYMBOL_GPL(find_get_pid);
499
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)500 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
501 {
502 struct upid *upid;
503 pid_t nr = 0;
504
505 if (pid && ns->level <= pid->level) {
506 upid = &pid->numbers[ns->level];
507 if (upid->ns == ns)
508 nr = upid->nr;
509 }
510 return nr;
511 }
512 EXPORT_SYMBOL_GPL(pid_nr_ns);
513
pid_vnr(struct pid * pid)514 pid_t pid_vnr(struct pid *pid)
515 {
516 return pid_nr_ns(pid, task_active_pid_ns(current));
517 }
518 EXPORT_SYMBOL_GPL(pid_vnr);
519
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)520 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
521 struct pid_namespace *ns)
522 {
523 pid_t nr = 0;
524
525 rcu_read_lock();
526 if (!ns)
527 ns = task_active_pid_ns(current);
528 if (likely(pid_alive(task))) {
529 if (type != PIDTYPE_PID) {
530 if (type == __PIDTYPE_TGID)
531 type = PIDTYPE_PID;
532 task = task->group_leader;
533 }
534 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
535 }
536 rcu_read_unlock();
537
538 return nr;
539 }
540 EXPORT_SYMBOL(__task_pid_nr_ns);
541
task_active_pid_ns(struct task_struct * tsk)542 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
543 {
544 return ns_of_pid(task_pid(tsk));
545 }
546 EXPORT_SYMBOL_GPL(task_active_pid_ns);
547
548 /*
549 * Used by proc to find the first pid that is greater than or equal to nr.
550 *
551 * If there is a pid at nr this function is exactly the same as find_pid_ns.
552 */
find_ge_pid(int nr,struct pid_namespace * ns)553 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
554 {
555 struct pid *pid;
556
557 do {
558 pid = find_pid_ns(nr, ns);
559 if (pid)
560 break;
561 nr = next_pidmap(ns, nr);
562 } while (nr > 0);
563
564 return pid;
565 }
566
567 /*
568 * The pid hash table is scaled according to the amount of memory in the
569 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
570 * more.
571 */
pidhash_init(void)572 void __init pidhash_init(void)
573 {
574 unsigned int i, pidhash_size;
575
576 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
577 HASH_EARLY | HASH_SMALL,
578 &pidhash_shift, NULL,
579 0, 4096);
580 pidhash_size = 1U << pidhash_shift;
581
582 for (i = 0; i < pidhash_size; i++)
583 INIT_HLIST_HEAD(&pid_hash[i]);
584 }
585
pidmap_init(void)586 void __init pidmap_init(void)
587 {
588 /* Veryify no one has done anything silly */
589 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
590
591 /* bump default and minimum pid_max based on number of cpus */
592 pid_max = min(pid_max_max, max_t(int, pid_max,
593 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
594 pid_max_min = max_t(int, pid_max_min,
595 PIDS_PER_CPU_MIN * num_possible_cpus());
596 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
597
598 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
599 /* Reserve PID 0. We never call free_pidmap(0) */
600 set_bit(0, init_pid_ns.pidmap[0].page);
601 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
602
603 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
604 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
605 }
606