• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap,
77 			 const struct gfs2_alloc_parms *ap);
78 
79 
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87 
gfs2_setbit(const struct gfs2_rbm * rbm,bool do_clone,unsigned char new_state)88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 			       unsigned char new_state)
90 {
91 	unsigned char *byte1, *byte2, *end, cur_state;
92 	struct gfs2_bitmap *bi = rbm_bi(rbm);
93 	unsigned int buflen = bi->bi_len;
94 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95 
96 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98 
99 	BUG_ON(byte1 >= end);
100 
101 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102 
103 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 			rbm->offset, cur_state, new_state);
106 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 			bi->bi_offset, bi->bi_len);
110 		dump_stack();
111 		gfs2_consist_rgrpd(rbm->rgd);
112 		return;
113 	}
114 	*byte1 ^= (cur_state ^ new_state) << bit;
115 
116 	if (do_clone && bi->bi_clone) {
117 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 		*byte2 ^= (cur_state ^ new_state) << bit;
120 	}
121 }
122 
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129 
gfs2_testbit(const struct gfs2_rbm * rbm)130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132 	struct gfs2_bitmap *bi = rbm_bi(rbm);
133 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 	const u8 *byte;
135 	unsigned int bit;
136 
137 	byte = buffer + (rbm->offset / GFS2_NBBY);
138 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139 
140 	return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142 
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160 
gfs2_bit_search(const __le64 * ptr,u64 mask,u8 state)161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 	u64 tmp;
164 	static const u64 search[] = {
165 		[0] = 0xffffffffffffffffULL,
166 		[1] = 0xaaaaaaaaaaaaaaaaULL,
167 		[2] = 0x5555555555555555ULL,
168 		[3] = 0x0000000000000000ULL,
169 	};
170 	tmp = le64_to_cpu(*ptr) ^ search[state];
171 	tmp &= (tmp >> 1);
172 	tmp &= mask;
173 	return tmp;
174 }
175 
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
rs_cmp(u64 blk,u32 len,struct gfs2_blkreserv * rs)186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189 
190 	if (blk >= startblk + rs->rs_free)
191 		return 1;
192 	if (blk + len - 1 < startblk)
193 		return -1;
194 	return 0;
195 }
196 
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217 
gfs2_bitfit(const u8 * buf,const unsigned int len,u32 goal,u8 state)218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 		       u32 goal, u8 state)
220 {
221 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 	u64 tmp;
225 	u64 mask = 0x5555555555555555ULL;
226 	u32 bit;
227 
228 	/* Mask off bits we don't care about at the start of the search */
229 	mask <<= spoint;
230 	tmp = gfs2_bit_search(ptr, mask, state);
231 	ptr++;
232 	while(tmp == 0 && ptr < end) {
233 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 		ptr++;
235 	}
236 	/* Mask off any bits which are more than len bytes from the start */
237 	if (ptr == end && (len & (sizeof(u64) - 1)))
238 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 	/* Didn't find anything, so return */
240 	if (tmp == 0)
241 		return BFITNOENT;
242 	ptr--;
243 	bit = __ffs64(tmp);
244 	bit /= 2;	/* two bits per entry in the bitmap */
245 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247 
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260 
gfs2_rbm_from_block(struct gfs2_rbm * rbm,u64 block)261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 	u64 rblock = block - rbm->rgd->rd_data0;
264 
265 	if (WARN_ON_ONCE(rblock > UINT_MAX))
266 		return -EINVAL;
267 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 		return -E2BIG;
269 
270 	rbm->bii = 0;
271 	rbm->offset = (u32)(rblock);
272 	/* Check if the block is within the first block */
273 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 		return 0;
275 
276 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 	rbm->offset += (sizeof(struct gfs2_rgrp) -
278 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 	return 0;
282 }
283 
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295 
gfs2_rbm_incr(struct gfs2_rbm * rbm)296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 		rbm->offset++;
300 		return false;
301 	}
302 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 		return true;
304 
305 	rbm->offset = 0;
306 	rbm->bii++;
307 	return false;
308 }
309 
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318 
gfs2_unaligned_extlen(struct gfs2_rbm * rbm,u32 n_unaligned,u32 * len)319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321 	u32 n;
322 	u8 res;
323 
324 	for (n = 0; n < n_unaligned; n++) {
325 		res = gfs2_testbit(rbm);
326 		if (res != GFS2_BLKST_FREE)
327 			return true;
328 		(*len)--;
329 		if (*len == 0)
330 			return true;
331 		if (gfs2_rbm_incr(rbm))
332 			return true;
333 	}
334 
335 	return false;
336 }
337 
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352 
gfs2_free_extlen(const struct gfs2_rbm * rrbm,u32 len)353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355 	struct gfs2_rbm rbm = *rrbm;
356 	u32 n_unaligned = rbm.offset & 3;
357 	u32 size = len;
358 	u32 bytes;
359 	u32 chunk_size;
360 	u8 *ptr, *start, *end;
361 	u64 block;
362 	struct gfs2_bitmap *bi;
363 
364 	if (n_unaligned &&
365 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 		goto out;
367 
368 	n_unaligned = len & 3;
369 	/* Start is now byte aligned */
370 	while (len > 3) {
371 		bi = rbm_bi(&rbm);
372 		start = bi->bi_bh->b_data;
373 		if (bi->bi_clone)
374 			start = bi->bi_clone;
375 		end = start + bi->bi_bh->b_size;
376 		start += bi->bi_offset;
377 		BUG_ON(rbm.offset & 3);
378 		start += (rbm.offset / GFS2_NBBY);
379 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 		ptr = memchr_inv(start, 0, bytes);
381 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 		chunk_size *= GFS2_NBBY;
383 		BUG_ON(len < chunk_size);
384 		len -= chunk_size;
385 		block = gfs2_rbm_to_block(&rbm);
386 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 			n_unaligned = 0;
388 			break;
389 		}
390 		if (ptr) {
391 			n_unaligned = 3;
392 			break;
393 		}
394 		n_unaligned = len & 3;
395 	}
396 
397 	/* Deal with any bits left over at the end */
398 	if (n_unaligned)
399 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401 	return size - len;
402 }
403 
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413 
gfs2_bitcount(struct gfs2_rgrpd * rgd,const u8 * buffer,unsigned int buflen,u8 state)414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 			 unsigned int buflen, u8 state)
416 {
417 	const u8 *byte = buffer;
418 	const u8 *end = buffer + buflen;
419 	const u8 state1 = state << 2;
420 	const u8 state2 = state << 4;
421 	const u8 state3 = state << 6;
422 	u32 count = 0;
423 
424 	for (; byte < end; byte++) {
425 		if (((*byte) & 0x03) == state)
426 			count++;
427 		if (((*byte) & 0x0C) == state1)
428 			count++;
429 		if (((*byte) & 0x30) == state2)
430 			count++;
431 		if (((*byte) & 0xC0) == state3)
432 			count++;
433 	}
434 
435 	return count;
436 }
437 
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443 
gfs2_rgrp_verify(struct gfs2_rgrpd * rgd)444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446 	struct gfs2_sbd *sdp = rgd->rd_sbd;
447 	struct gfs2_bitmap *bi = NULL;
448 	u32 length = rgd->rd_length;
449 	u32 count[4], tmp;
450 	int buf, x;
451 
452 	memset(count, 0, 4 * sizeof(u32));
453 
454 	/* Count # blocks in each of 4 possible allocation states */
455 	for (buf = 0; buf < length; buf++) {
456 		bi = rgd->rd_bits + buf;
457 		for (x = 0; x < 4; x++)
458 			count[x] += gfs2_bitcount(rgd,
459 						  bi->bi_bh->b_data +
460 						  bi->bi_offset,
461 						  bi->bi_len, x);
462 	}
463 
464 	if (count[0] != rgd->rd_free) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "free data mismatch:  %u != %u\n",
467 			       count[0], rgd->rd_free);
468 		return;
469 	}
470 
471 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 	if (count[1] != tmp) {
473 		if (gfs2_consist_rgrpd(rgd))
474 			fs_err(sdp, "used data mismatch:  %u != %u\n",
475 			       count[1], tmp);
476 		return;
477 	}
478 
479 	if (count[2] + count[3] != rgd->rd_dinodes) {
480 		if (gfs2_consist_rgrpd(rgd))
481 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482 			       count[2] + count[3], rgd->rd_dinodes);
483 		return;
484 	}
485 }
486 
rgrp_contains_block(struct gfs2_rgrpd * rgd,u64 block)487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488 {
489 	u64 first = rgd->rd_data0;
490 	u64 last = first + rgd->rd_data;
491 	return first <= block && block < last;
492 }
493 
494 /**
495  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496  * @sdp: The GFS2 superblock
497  * @blk: The data block number
498  * @exact: True if this needs to be an exact match
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502 
gfs2_blk2rgrpd(struct gfs2_sbd * sdp,u64 blk,bool exact)503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505 	struct rb_node *n, *next;
506 	struct gfs2_rgrpd *cur;
507 
508 	spin_lock(&sdp->sd_rindex_spin);
509 	n = sdp->sd_rindex_tree.rb_node;
510 	while (n) {
511 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 		next = NULL;
513 		if (blk < cur->rd_addr)
514 			next = n->rb_left;
515 		else if (blk >= cur->rd_data0 + cur->rd_data)
516 			next = n->rb_right;
517 		if (next == NULL) {
518 			spin_unlock(&sdp->sd_rindex_spin);
519 			if (exact) {
520 				if (blk < cur->rd_addr)
521 					return NULL;
522 				if (blk >= cur->rd_data0 + cur->rd_data)
523 					return NULL;
524 			}
525 			return cur;
526 		}
527 		n = next;
528 	}
529 	spin_unlock(&sdp->sd_rindex_spin);
530 
531 	return NULL;
532 }
533 
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540 
gfs2_rgrpd_get_first(struct gfs2_sbd * sdp)541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543 	const struct rb_node *n;
544 	struct gfs2_rgrpd *rgd;
545 
546 	spin_lock(&sdp->sd_rindex_spin);
547 	n = rb_first(&sdp->sd_rindex_tree);
548 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 	spin_unlock(&sdp->sd_rindex_spin);
550 
551 	return rgd;
552 }
553 
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560 
gfs2_rgrpd_get_next(struct gfs2_rgrpd * rgd)561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563 	struct gfs2_sbd *sdp = rgd->rd_sbd;
564 	const struct rb_node *n;
565 
566 	spin_lock(&sdp->sd_rindex_spin);
567 	n = rb_next(&rgd->rd_node);
568 	if (n == NULL)
569 		n = rb_first(&sdp->sd_rindex_tree);
570 
571 	if (unlikely(&rgd->rd_node == n)) {
572 		spin_unlock(&sdp->sd_rindex_spin);
573 		return NULL;
574 	}
575 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 	spin_unlock(&sdp->sd_rindex_spin);
577 	return rgd;
578 }
579 
check_and_update_goal(struct gfs2_inode * ip)580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 		ip->i_goal = ip->i_no_addr;
585 }
586 
gfs2_free_clones(struct gfs2_rgrpd * rgd)587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589 	int x;
590 
591 	for (x = 0; x < rgd->rd_length; x++) {
592 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 		kfree(bi->bi_clone);
594 		bi->bi_clone = NULL;
595 	}
596 }
597 
598 /**
599  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
600  * @ip: the inode for this reservation
601  */
gfs2_rs_alloc(struct gfs2_inode * ip)602 int gfs2_rs_alloc(struct gfs2_inode *ip)
603 {
604 	int error = 0;
605 
606 	down_write(&ip->i_rw_mutex);
607 	if (ip->i_res)
608 		goto out;
609 
610 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
611 	if (!ip->i_res) {
612 		error = -ENOMEM;
613 		goto out;
614 	}
615 
616 	RB_CLEAR_NODE(&ip->i_res->rs_node);
617 out:
618 	up_write(&ip->i_rw_mutex);
619 	return error;
620 }
621 
dump_rs(struct seq_file * seq,const struct gfs2_blkreserv * rs)622 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
623 {
624 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
625 		       (unsigned long long)rs->rs_inum,
626 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
627 		       rs->rs_rbm.offset, rs->rs_free);
628 }
629 
630 /**
631  * __rs_deltree - remove a multi-block reservation from the rgd tree
632  * @rs: The reservation to remove
633  *
634  */
__rs_deltree(struct gfs2_blkreserv * rs)635 static void __rs_deltree(struct gfs2_blkreserv *rs)
636 {
637 	struct gfs2_rgrpd *rgd;
638 
639 	if (!gfs2_rs_active(rs))
640 		return;
641 
642 	rgd = rs->rs_rbm.rgd;
643 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
644 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
645 	RB_CLEAR_NODE(&rs->rs_node);
646 
647 	if (rs->rs_free) {
648 		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
649 				 rs->rs_free - 1;
650 		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
651 		struct gfs2_bitmap *start, *last;
652 
653 		/* return reserved blocks to the rgrp */
654 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
655 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
656 		/* The rgrp extent failure point is likely not to increase;
657 		   it will only do so if the freed blocks are somehow
658 		   contiguous with a span of free blocks that follows. Still,
659 		   it will force the number to be recalculated later. */
660 		rgd->rd_extfail_pt += rs->rs_free;
661 		rs->rs_free = 0;
662 		if (gfs2_rbm_from_block(&last_rbm, last_block))
663 			return;
664 		start = rbm_bi(&rs->rs_rbm);
665 		last = rbm_bi(&last_rbm);
666 		do
667 			clear_bit(GBF_FULL, &start->bi_flags);
668 		while (start++ != last);
669 	}
670 }
671 
672 /**
673  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
674  * @rs: The reservation to remove
675  *
676  */
gfs2_rs_deltree(struct gfs2_blkreserv * rs)677 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
678 {
679 	struct gfs2_rgrpd *rgd;
680 
681 	rgd = rs->rs_rbm.rgd;
682 	if (rgd) {
683 		spin_lock(&rgd->rd_rsspin);
684 		__rs_deltree(rs);
685 		spin_unlock(&rgd->rd_rsspin);
686 	}
687 }
688 
689 /**
690  * gfs2_rs_delete - delete a multi-block reservation
691  * @ip: The inode for this reservation
692  * @wcount: The inode's write count, or NULL
693  *
694  */
gfs2_rs_delete(struct gfs2_inode * ip,atomic_t * wcount)695 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
696 {
697 	down_write(&ip->i_rw_mutex);
698 	if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
699 		gfs2_rs_deltree(ip->i_res);
700 		BUG_ON(ip->i_res->rs_free);
701 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
702 		ip->i_res = NULL;
703 	}
704 	up_write(&ip->i_rw_mutex);
705 }
706 
707 /**
708  * return_all_reservations - return all reserved blocks back to the rgrp.
709  * @rgd: the rgrp that needs its space back
710  *
711  * We previously reserved a bunch of blocks for allocation. Now we need to
712  * give them back. This leave the reservation structures in tact, but removes
713  * all of their corresponding "no-fly zones".
714  */
return_all_reservations(struct gfs2_rgrpd * rgd)715 static void return_all_reservations(struct gfs2_rgrpd *rgd)
716 {
717 	struct rb_node *n;
718 	struct gfs2_blkreserv *rs;
719 
720 	spin_lock(&rgd->rd_rsspin);
721 	while ((n = rb_first(&rgd->rd_rstree))) {
722 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
723 		__rs_deltree(rs);
724 	}
725 	spin_unlock(&rgd->rd_rsspin);
726 }
727 
gfs2_clear_rgrpd(struct gfs2_sbd * sdp)728 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
729 {
730 	struct rb_node *n;
731 	struct gfs2_rgrpd *rgd;
732 	struct gfs2_glock *gl;
733 
734 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
735 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
736 		gl = rgd->rd_gl;
737 
738 		rb_erase(n, &sdp->sd_rindex_tree);
739 
740 		if (gl) {
741 			spin_lock(&gl->gl_lockref.lock);
742 			gl->gl_object = NULL;
743 			spin_unlock(&gl->gl_lockref.lock);
744 			gfs2_rgrp_brelse(rgd);
745 			gfs2_glock_add_to_lru(gl);
746 			gfs2_glock_put(gl);
747 		}
748 
749 		gfs2_free_clones(rgd);
750 		return_all_reservations(rgd);
751 		kfree(rgd->rd_bits);
752 		rgd->rd_bits = NULL;
753 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
754 	}
755 }
756 
gfs2_rindex_print(const struct gfs2_rgrpd * rgd)757 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
758 {
759 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
760 	pr_info("ri_length = %u\n", rgd->rd_length);
761 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
762 	pr_info("ri_data = %u\n", rgd->rd_data);
763 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
764 }
765 
766 /**
767  * gfs2_compute_bitstructs - Compute the bitmap sizes
768  * @rgd: The resource group descriptor
769  *
770  * Calculates bitmap descriptors, one for each block that contains bitmap data
771  *
772  * Returns: errno
773  */
774 
compute_bitstructs(struct gfs2_rgrpd * rgd)775 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
776 {
777 	struct gfs2_sbd *sdp = rgd->rd_sbd;
778 	struct gfs2_bitmap *bi;
779 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
780 	u32 bytes_left, bytes;
781 	int x;
782 
783 	if (!length)
784 		return -EINVAL;
785 
786 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
787 	if (!rgd->rd_bits)
788 		return -ENOMEM;
789 
790 	bytes_left = rgd->rd_bitbytes;
791 
792 	for (x = 0; x < length; x++) {
793 		bi = rgd->rd_bits + x;
794 
795 		bi->bi_flags = 0;
796 		/* small rgrp; bitmap stored completely in header block */
797 		if (length == 1) {
798 			bytes = bytes_left;
799 			bi->bi_offset = sizeof(struct gfs2_rgrp);
800 			bi->bi_start = 0;
801 			bi->bi_len = bytes;
802 			bi->bi_blocks = bytes * GFS2_NBBY;
803 		/* header block */
804 		} else if (x == 0) {
805 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
806 			bi->bi_offset = sizeof(struct gfs2_rgrp);
807 			bi->bi_start = 0;
808 			bi->bi_len = bytes;
809 			bi->bi_blocks = bytes * GFS2_NBBY;
810 		/* last block */
811 		} else if (x + 1 == length) {
812 			bytes = bytes_left;
813 			bi->bi_offset = sizeof(struct gfs2_meta_header);
814 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
815 			bi->bi_len = bytes;
816 			bi->bi_blocks = bytes * GFS2_NBBY;
817 		/* other blocks */
818 		} else {
819 			bytes = sdp->sd_sb.sb_bsize -
820 				sizeof(struct gfs2_meta_header);
821 			bi->bi_offset = sizeof(struct gfs2_meta_header);
822 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
823 			bi->bi_len = bytes;
824 			bi->bi_blocks = bytes * GFS2_NBBY;
825 		}
826 
827 		bytes_left -= bytes;
828 	}
829 
830 	if (bytes_left) {
831 		gfs2_consist_rgrpd(rgd);
832 		return -EIO;
833 	}
834 	bi = rgd->rd_bits + (length - 1);
835 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
836 		if (gfs2_consist_rgrpd(rgd)) {
837 			gfs2_rindex_print(rgd);
838 			fs_err(sdp, "start=%u len=%u offset=%u\n",
839 			       bi->bi_start, bi->bi_len, bi->bi_offset);
840 		}
841 		return -EIO;
842 	}
843 
844 	return 0;
845 }
846 
847 /**
848  * gfs2_ri_total - Total up the file system space, according to the rindex.
849  * @sdp: the filesystem
850  *
851  */
gfs2_ri_total(struct gfs2_sbd * sdp)852 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
853 {
854 	u64 total_data = 0;
855 	struct inode *inode = sdp->sd_rindex;
856 	struct gfs2_inode *ip = GFS2_I(inode);
857 	char buf[sizeof(struct gfs2_rindex)];
858 	int error, rgrps;
859 
860 	for (rgrps = 0;; rgrps++) {
861 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
862 
863 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
864 			break;
865 		error = gfs2_internal_read(ip, buf, &pos,
866 					   sizeof(struct gfs2_rindex));
867 		if (error != sizeof(struct gfs2_rindex))
868 			break;
869 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
870 	}
871 	return total_data;
872 }
873 
rgd_insert(struct gfs2_rgrpd * rgd)874 static int rgd_insert(struct gfs2_rgrpd *rgd)
875 {
876 	struct gfs2_sbd *sdp = rgd->rd_sbd;
877 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
878 
879 	/* Figure out where to put new node */
880 	while (*newn) {
881 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
882 						  rd_node);
883 
884 		parent = *newn;
885 		if (rgd->rd_addr < cur->rd_addr)
886 			newn = &((*newn)->rb_left);
887 		else if (rgd->rd_addr > cur->rd_addr)
888 			newn = &((*newn)->rb_right);
889 		else
890 			return -EEXIST;
891 	}
892 
893 	rb_link_node(&rgd->rd_node, parent, newn);
894 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
895 	sdp->sd_rgrps++;
896 	return 0;
897 }
898 
899 /**
900  * read_rindex_entry - Pull in a new resource index entry from the disk
901  * @ip: Pointer to the rindex inode
902  *
903  * Returns: 0 on success, > 0 on EOF, error code otherwise
904  */
905 
read_rindex_entry(struct gfs2_inode * ip)906 static int read_rindex_entry(struct gfs2_inode *ip)
907 {
908 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
909 	const unsigned bsize = sdp->sd_sb.sb_bsize;
910 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
911 	struct gfs2_rindex buf;
912 	int error;
913 	struct gfs2_rgrpd *rgd;
914 
915 	if (pos >= i_size_read(&ip->i_inode))
916 		return 1;
917 
918 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
919 				   sizeof(struct gfs2_rindex));
920 
921 	if (error != sizeof(struct gfs2_rindex))
922 		return (error == 0) ? 1 : error;
923 
924 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
925 	error = -ENOMEM;
926 	if (!rgd)
927 		return error;
928 
929 	rgd->rd_sbd = sdp;
930 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
931 	rgd->rd_length = be32_to_cpu(buf.ri_length);
932 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
933 	rgd->rd_data = be32_to_cpu(buf.ri_data);
934 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
935 	spin_lock_init(&rgd->rd_rsspin);
936 
937 	error = compute_bitstructs(rgd);
938 	if (error)
939 		goto fail;
940 
941 	error = gfs2_glock_get(sdp, rgd->rd_addr,
942 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
943 	if (error)
944 		goto fail;
945 
946 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
947 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
948 	if (rgd->rd_data > sdp->sd_max_rg_data)
949 		sdp->sd_max_rg_data = rgd->rd_data;
950 	spin_lock(&sdp->sd_rindex_spin);
951 	error = rgd_insert(rgd);
952 	spin_unlock(&sdp->sd_rindex_spin);
953 	if (!error) {
954 		rgd->rd_gl->gl_object = rgd;
955 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
956 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
957 						    rgd->rd_length) * bsize) - 1;
958 		return 0;
959 	}
960 
961 	error = 0; /* someone else read in the rgrp; free it and ignore it */
962 	gfs2_glock_put(rgd->rd_gl);
963 
964 fail:
965 	kfree(rgd->rd_bits);
966 	rgd->rd_bits = NULL;
967 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
968 	return error;
969 }
970 
971 /**
972  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
973  * @sdp: the GFS2 superblock
974  *
975  * The purpose of this function is to select a subset of the resource groups
976  * and mark them as PREFERRED. We do it in such a way that each node prefers
977  * to use a unique set of rgrps to minimize glock contention.
978  */
set_rgrp_preferences(struct gfs2_sbd * sdp)979 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
980 {
981 	struct gfs2_rgrpd *rgd, *first;
982 	int i;
983 
984 	/* Skip an initial number of rgrps, based on this node's journal ID.
985 	   That should start each node out on its own set. */
986 	rgd = gfs2_rgrpd_get_first(sdp);
987 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
988 		rgd = gfs2_rgrpd_get_next(rgd);
989 	first = rgd;
990 
991 	do {
992 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
993 		for (i = 0; i < sdp->sd_journals; i++) {
994 			rgd = gfs2_rgrpd_get_next(rgd);
995 			if (!rgd || rgd == first)
996 				break;
997 		}
998 	} while (rgd && rgd != first);
999 }
1000 
1001 /**
1002  * gfs2_ri_update - Pull in a new resource index from the disk
1003  * @ip: pointer to the rindex inode
1004  *
1005  * Returns: 0 on successful update, error code otherwise
1006  */
1007 
gfs2_ri_update(struct gfs2_inode * ip)1008 static int gfs2_ri_update(struct gfs2_inode *ip)
1009 {
1010 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1011 	int error;
1012 
1013 	do {
1014 		error = read_rindex_entry(ip);
1015 	} while (error == 0);
1016 
1017 	if (error < 0)
1018 		return error;
1019 
1020 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1021 		fs_err(sdp, "no resource groups found in the file system.\n");
1022 		return -ENOENT;
1023 	}
1024 	set_rgrp_preferences(sdp);
1025 
1026 	sdp->sd_rindex_uptodate = 1;
1027 	return 0;
1028 }
1029 
1030 /**
1031  * gfs2_rindex_update - Update the rindex if required
1032  * @sdp: The GFS2 superblock
1033  *
1034  * We grab a lock on the rindex inode to make sure that it doesn't
1035  * change whilst we are performing an operation. We keep this lock
1036  * for quite long periods of time compared to other locks. This
1037  * doesn't matter, since it is shared and it is very, very rarely
1038  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1039  *
1040  * This makes sure that we're using the latest copy of the resource index
1041  * special file, which might have been updated if someone expanded the
1042  * filesystem (via gfs2_grow utility), which adds new resource groups.
1043  *
1044  * Returns: 0 on succeess, error code otherwise
1045  */
1046 
gfs2_rindex_update(struct gfs2_sbd * sdp)1047 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1048 {
1049 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1050 	struct gfs2_glock *gl = ip->i_gl;
1051 	struct gfs2_holder ri_gh;
1052 	int error = 0;
1053 	int unlock_required = 0;
1054 
1055 	/* Read new copy from disk if we don't have the latest */
1056 	if (!sdp->sd_rindex_uptodate) {
1057 		if (!gfs2_glock_is_locked_by_me(gl)) {
1058 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1059 			if (error)
1060 				return error;
1061 			unlock_required = 1;
1062 		}
1063 		if (!sdp->sd_rindex_uptodate)
1064 			error = gfs2_ri_update(ip);
1065 		if (unlock_required)
1066 			gfs2_glock_dq_uninit(&ri_gh);
1067 	}
1068 
1069 	return error;
1070 }
1071 
gfs2_rgrp_in(struct gfs2_rgrpd * rgd,const void * buf)1072 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1073 {
1074 	const struct gfs2_rgrp *str = buf;
1075 	u32 rg_flags;
1076 
1077 	rg_flags = be32_to_cpu(str->rg_flags);
1078 	rg_flags &= ~GFS2_RDF_MASK;
1079 	rgd->rd_flags &= GFS2_RDF_MASK;
1080 	rgd->rd_flags |= rg_flags;
1081 	rgd->rd_free = be32_to_cpu(str->rg_free);
1082 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1083 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1084 }
1085 
gfs2_rgrp_out(struct gfs2_rgrpd * rgd,void * buf)1086 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1087 {
1088 	struct gfs2_rgrp *str = buf;
1089 
1090 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1091 	str->rg_free = cpu_to_be32(rgd->rd_free);
1092 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1093 	str->__pad = cpu_to_be32(0);
1094 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1095 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1096 }
1097 
gfs2_rgrp_lvb_valid(struct gfs2_rgrpd * rgd)1098 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1099 {
1100 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1101 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1102 
1103 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1104 	    rgl->rl_dinodes != str->rg_dinodes ||
1105 	    rgl->rl_igeneration != str->rg_igeneration)
1106 		return 0;
1107 	return 1;
1108 }
1109 
gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb * rgl,const void * buf)1110 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1111 {
1112 	const struct gfs2_rgrp *str = buf;
1113 
1114 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1115 	rgl->rl_flags = str->rg_flags;
1116 	rgl->rl_free = str->rg_free;
1117 	rgl->rl_dinodes = str->rg_dinodes;
1118 	rgl->rl_igeneration = str->rg_igeneration;
1119 	rgl->__pad = 0UL;
1120 }
1121 
update_rgrp_lvb_unlinked(struct gfs2_rgrpd * rgd,u32 change)1122 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1123 {
1124 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1125 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1126 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1127 }
1128 
count_unlinked(struct gfs2_rgrpd * rgd)1129 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1130 {
1131 	struct gfs2_bitmap *bi;
1132 	const u32 length = rgd->rd_length;
1133 	const u8 *buffer = NULL;
1134 	u32 i, goal, count = 0;
1135 
1136 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1137 		goal = 0;
1138 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1139 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1140 		while (goal < bi->bi_len * GFS2_NBBY) {
1141 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1142 					   GFS2_BLKST_UNLINKED);
1143 			if (goal == BFITNOENT)
1144 				break;
1145 			count++;
1146 			goal++;
1147 		}
1148 	}
1149 
1150 	return count;
1151 }
1152 
1153 
1154 /**
1155  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1156  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1157  *
1158  * Read in all of a Resource Group's header and bitmap blocks.
1159  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1160  *
1161  * Returns: errno
1162  */
1163 
gfs2_rgrp_bh_get(struct gfs2_rgrpd * rgd)1164 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1165 {
1166 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1167 	struct gfs2_glock *gl = rgd->rd_gl;
1168 	unsigned int length = rgd->rd_length;
1169 	struct gfs2_bitmap *bi;
1170 	unsigned int x, y;
1171 	int error;
1172 
1173 	if (rgd->rd_bits[0].bi_bh != NULL)
1174 		return 0;
1175 
1176 	for (x = 0; x < length; x++) {
1177 		bi = rgd->rd_bits + x;
1178 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1179 		if (error)
1180 			goto fail;
1181 	}
1182 
1183 	for (y = length; y--;) {
1184 		bi = rgd->rd_bits + y;
1185 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1186 		if (error)
1187 			goto fail;
1188 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1189 					      GFS2_METATYPE_RG)) {
1190 			error = -EIO;
1191 			goto fail;
1192 		}
1193 	}
1194 
1195 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1196 		for (x = 0; x < length; x++)
1197 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1198 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1199 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1200 		rgd->rd_free_clone = rgd->rd_free;
1201 		/* max out the rgrp allocation failure point */
1202 		rgd->rd_extfail_pt = rgd->rd_free;
1203 	}
1204 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1205 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1206 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1207 				     rgd->rd_bits[0].bi_bh->b_data);
1208 	}
1209 	else if (sdp->sd_args.ar_rgrplvb) {
1210 		if (!gfs2_rgrp_lvb_valid(rgd)){
1211 			gfs2_consist_rgrpd(rgd);
1212 			error = -EIO;
1213 			goto fail;
1214 		}
1215 		if (rgd->rd_rgl->rl_unlinked == 0)
1216 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1217 	}
1218 	return 0;
1219 
1220 fail:
1221 	while (x--) {
1222 		bi = rgd->rd_bits + x;
1223 		brelse(bi->bi_bh);
1224 		bi->bi_bh = NULL;
1225 		gfs2_assert_warn(sdp, !bi->bi_clone);
1226 	}
1227 
1228 	return error;
1229 }
1230 
update_rgrp_lvb(struct gfs2_rgrpd * rgd)1231 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1232 {
1233 	u32 rl_flags;
1234 
1235 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1236 		return 0;
1237 
1238 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1239 		return gfs2_rgrp_bh_get(rgd);
1240 
1241 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1242 	rl_flags &= ~GFS2_RDF_MASK;
1243 	rgd->rd_flags &= GFS2_RDF_MASK;
1244 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1245 	if (rgd->rd_rgl->rl_unlinked == 0)
1246 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1247 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1248 	rgd->rd_free_clone = rgd->rd_free;
1249 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1250 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1251 	return 0;
1252 }
1253 
gfs2_rgrp_go_lock(struct gfs2_holder * gh)1254 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1255 {
1256 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1257 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1258 
1259 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1260 		return 0;
1261 	return gfs2_rgrp_bh_get(rgd);
1262 }
1263 
1264 /**
1265  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1266  * @rgd: The resource group
1267  *
1268  */
1269 
gfs2_rgrp_brelse(struct gfs2_rgrpd * rgd)1270 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1271 {
1272 	int x, length = rgd->rd_length;
1273 
1274 	for (x = 0; x < length; x++) {
1275 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1276 		if (bi->bi_bh) {
1277 			brelse(bi->bi_bh);
1278 			bi->bi_bh = NULL;
1279 		}
1280 	}
1281 
1282 }
1283 
1284 /**
1285  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1286  * @gh: The glock holder for the resource group
1287  *
1288  */
1289 
gfs2_rgrp_go_unlock(struct gfs2_holder * gh)1290 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1291 {
1292 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1293 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1294 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1295 
1296 	if (rgd && demote_requested)
1297 		gfs2_rgrp_brelse(rgd);
1298 }
1299 
gfs2_rgrp_send_discards(struct gfs2_sbd * sdp,u64 offset,struct buffer_head * bh,const struct gfs2_bitmap * bi,unsigned minlen,u64 * ptrimmed)1300 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1301 			     struct buffer_head *bh,
1302 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1303 {
1304 	struct super_block *sb = sdp->sd_vfs;
1305 	u64 blk;
1306 	sector_t start = 0;
1307 	sector_t nr_blks = 0;
1308 	int rv;
1309 	unsigned int x;
1310 	u32 trimmed = 0;
1311 	u8 diff;
1312 
1313 	for (x = 0; x < bi->bi_len; x++) {
1314 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1315 		clone += bi->bi_offset;
1316 		clone += x;
1317 		if (bh) {
1318 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1319 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1320 		} else {
1321 			diff = ~(*clone | (*clone >> 1));
1322 		}
1323 		diff &= 0x55;
1324 		if (diff == 0)
1325 			continue;
1326 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1327 		while(diff) {
1328 			if (diff & 1) {
1329 				if (nr_blks == 0)
1330 					goto start_new_extent;
1331 				if ((start + nr_blks) != blk) {
1332 					if (nr_blks >= minlen) {
1333 						rv = sb_issue_discard(sb,
1334 							start, nr_blks,
1335 							GFP_NOFS, 0);
1336 						if (rv)
1337 							goto fail;
1338 						trimmed += nr_blks;
1339 					}
1340 					nr_blks = 0;
1341 start_new_extent:
1342 					start = blk;
1343 				}
1344 				nr_blks++;
1345 			}
1346 			diff >>= 2;
1347 			blk++;
1348 		}
1349 	}
1350 	if (nr_blks >= minlen) {
1351 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1352 		if (rv)
1353 			goto fail;
1354 		trimmed += nr_blks;
1355 	}
1356 	if (ptrimmed)
1357 		*ptrimmed = trimmed;
1358 	return 0;
1359 
1360 fail:
1361 	if (sdp->sd_args.ar_discard)
1362 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1363 	sdp->sd_args.ar_discard = 0;
1364 	return -EIO;
1365 }
1366 
1367 /**
1368  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1369  * @filp: Any file on the filesystem
1370  * @argp: Pointer to the arguments (also used to pass result)
1371  *
1372  * Returns: 0 on success, otherwise error code
1373  */
1374 
gfs2_fitrim(struct file * filp,void __user * argp)1375 int gfs2_fitrim(struct file *filp, void __user *argp)
1376 {
1377 	struct inode *inode = file_inode(filp);
1378 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1379 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1380 	struct buffer_head *bh;
1381 	struct gfs2_rgrpd *rgd;
1382 	struct gfs2_rgrpd *rgd_end;
1383 	struct gfs2_holder gh;
1384 	struct fstrim_range r;
1385 	int ret = 0;
1386 	u64 amt;
1387 	u64 trimmed = 0;
1388 	u64 start, end, minlen;
1389 	unsigned int x;
1390 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1391 
1392 	if (!capable(CAP_SYS_ADMIN))
1393 		return -EPERM;
1394 
1395 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1396 		return -EROFS;
1397 
1398 	if (!blk_queue_discard(q))
1399 		return -EOPNOTSUPP;
1400 
1401 	if (copy_from_user(&r, argp, sizeof(r)))
1402 		return -EFAULT;
1403 
1404 	ret = gfs2_rindex_update(sdp);
1405 	if (ret)
1406 		return ret;
1407 
1408 	start = r.start >> bs_shift;
1409 	end = start + (r.len >> bs_shift);
1410 	minlen = max_t(u64, r.minlen,
1411 		       q->limits.discard_granularity) >> bs_shift;
1412 
1413 	if (end <= start || minlen > sdp->sd_max_rg_data)
1414 		return -EINVAL;
1415 
1416 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1417 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1418 
1419 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1420 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1421 		return -EINVAL; /* start is beyond the end of the fs */
1422 
1423 	while (1) {
1424 
1425 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1426 		if (ret)
1427 			goto out;
1428 
1429 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1430 			/* Trim each bitmap in the rgrp */
1431 			for (x = 0; x < rgd->rd_length; x++) {
1432 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1433 				ret = gfs2_rgrp_send_discards(sdp,
1434 						rgd->rd_data0, NULL, bi, minlen,
1435 						&amt);
1436 				if (ret) {
1437 					gfs2_glock_dq_uninit(&gh);
1438 					goto out;
1439 				}
1440 				trimmed += amt;
1441 			}
1442 
1443 			/* Mark rgrp as having been trimmed */
1444 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1445 			if (ret == 0) {
1446 				bh = rgd->rd_bits[0].bi_bh;
1447 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1448 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1449 				gfs2_rgrp_out(rgd, bh->b_data);
1450 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1451 				gfs2_trans_end(sdp);
1452 			}
1453 		}
1454 		gfs2_glock_dq_uninit(&gh);
1455 
1456 		if (rgd == rgd_end)
1457 			break;
1458 
1459 		rgd = gfs2_rgrpd_get_next(rgd);
1460 	}
1461 
1462 out:
1463 	r.len = trimmed << bs_shift;
1464 	if (copy_to_user(argp, &r, sizeof(r)))
1465 		return -EFAULT;
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1472  * @ip: the inode structure
1473  *
1474  */
rs_insert(struct gfs2_inode * ip)1475 static void rs_insert(struct gfs2_inode *ip)
1476 {
1477 	struct rb_node **newn, *parent = NULL;
1478 	int rc;
1479 	struct gfs2_blkreserv *rs = ip->i_res;
1480 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1481 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1482 
1483 	BUG_ON(gfs2_rs_active(rs));
1484 
1485 	spin_lock(&rgd->rd_rsspin);
1486 	newn = &rgd->rd_rstree.rb_node;
1487 	while (*newn) {
1488 		struct gfs2_blkreserv *cur =
1489 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1490 
1491 		parent = *newn;
1492 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1493 		if (rc > 0)
1494 			newn = &((*newn)->rb_right);
1495 		else if (rc < 0)
1496 			newn = &((*newn)->rb_left);
1497 		else {
1498 			spin_unlock(&rgd->rd_rsspin);
1499 			WARN_ON(1);
1500 			return;
1501 		}
1502 	}
1503 
1504 	rb_link_node(&rs->rs_node, parent, newn);
1505 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1506 
1507 	/* Do our rgrp accounting for the reservation */
1508 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1509 	spin_unlock(&rgd->rd_rsspin);
1510 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1511 }
1512 
1513 /**
1514  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1515  * @rgd: the resource group descriptor
1516  * @ip: pointer to the inode for which we're reserving blocks
1517  * @ap: the allocation parameters
1518  *
1519  */
1520 
rg_mblk_search(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip,const struct gfs2_alloc_parms * ap)1521 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1522 			   const struct gfs2_alloc_parms *ap)
1523 {
1524 	struct gfs2_rbm rbm = { .rgd = rgd, };
1525 	u64 goal;
1526 	struct gfs2_blkreserv *rs = ip->i_res;
1527 	u32 extlen;
1528 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1529 	int ret;
1530 	struct inode *inode = &ip->i_inode;
1531 
1532 	if (S_ISDIR(inode->i_mode))
1533 		extlen = 1;
1534 	else {
1535 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1536 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1537 	}
1538 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1539 		return;
1540 
1541 	/* Find bitmap block that contains bits for goal block */
1542 	if (rgrp_contains_block(rgd, ip->i_goal))
1543 		goal = ip->i_goal;
1544 	else
1545 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1546 
1547 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1548 		return;
1549 
1550 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1551 	if (ret == 0) {
1552 		rs->rs_rbm = rbm;
1553 		rs->rs_free = extlen;
1554 		rs->rs_inum = ip->i_no_addr;
1555 		rs_insert(ip);
1556 	} else {
1557 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1558 			rgd->rd_last_alloc = 0;
1559 	}
1560 }
1561 
1562 /**
1563  * gfs2_next_unreserved_block - Return next block that is not reserved
1564  * @rgd: The resource group
1565  * @block: The starting block
1566  * @length: The required length
1567  * @ip: Ignore any reservations for this inode
1568  *
1569  * If the block does not appear in any reservation, then return the
1570  * block number unchanged. If it does appear in the reservation, then
1571  * keep looking through the tree of reservations in order to find the
1572  * first block number which is not reserved.
1573  */
1574 
gfs2_next_unreserved_block(struct gfs2_rgrpd * rgd,u64 block,u32 length,const struct gfs2_inode * ip)1575 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1576 				      u32 length,
1577 				      const struct gfs2_inode *ip)
1578 {
1579 	struct gfs2_blkreserv *rs;
1580 	struct rb_node *n;
1581 	int rc;
1582 
1583 	spin_lock(&rgd->rd_rsspin);
1584 	n = rgd->rd_rstree.rb_node;
1585 	while (n) {
1586 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1587 		rc = rs_cmp(block, length, rs);
1588 		if (rc < 0)
1589 			n = n->rb_left;
1590 		else if (rc > 0)
1591 			n = n->rb_right;
1592 		else
1593 			break;
1594 	}
1595 
1596 	if (n) {
1597 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1598 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1599 			n = n->rb_right;
1600 			if (n == NULL)
1601 				break;
1602 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1603 		}
1604 	}
1605 
1606 	spin_unlock(&rgd->rd_rsspin);
1607 	return block;
1608 }
1609 
1610 /**
1611  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1612  * @rbm: The current position in the resource group
1613  * @ip: The inode for which we are searching for blocks
1614  * @minext: The minimum extent length
1615  * @maxext: A pointer to the maximum extent structure
1616  *
1617  * This checks the current position in the rgrp to see whether there is
1618  * a reservation covering this block. If not then this function is a
1619  * no-op. If there is, then the position is moved to the end of the
1620  * contiguous reservation(s) so that we are pointing at the first
1621  * non-reserved block.
1622  *
1623  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1624  */
1625 
gfs2_reservation_check_and_update(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,u32 minext,struct gfs2_extent * maxext)1626 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1627 					     const struct gfs2_inode *ip,
1628 					     u32 minext,
1629 					     struct gfs2_extent *maxext)
1630 {
1631 	u64 block = gfs2_rbm_to_block(rbm);
1632 	u32 extlen = 1;
1633 	u64 nblock;
1634 	int ret;
1635 
1636 	/*
1637 	 * If we have a minimum extent length, then skip over any extent
1638 	 * which is less than the min extent length in size.
1639 	 */
1640 	if (minext) {
1641 		extlen = gfs2_free_extlen(rbm, minext);
1642 		if (extlen <= maxext->len)
1643 			goto fail;
1644 	}
1645 
1646 	/*
1647 	 * Check the extent which has been found against the reservations
1648 	 * and skip if parts of it are already reserved
1649 	 */
1650 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1651 	if (nblock == block) {
1652 		if (!minext || extlen >= minext)
1653 			return 0;
1654 
1655 		if (extlen > maxext->len) {
1656 			maxext->len = extlen;
1657 			maxext->rbm = *rbm;
1658 		}
1659 fail:
1660 		nblock = block + extlen;
1661 	}
1662 	ret = gfs2_rbm_from_block(rbm, nblock);
1663 	if (ret < 0)
1664 		return ret;
1665 	return 1;
1666 }
1667 
1668 /**
1669  * gfs2_rbm_find - Look for blocks of a particular state
1670  * @rbm: Value/result starting position and final position
1671  * @state: The state which we want to find
1672  * @minext: Pointer to the requested extent length (NULL for a single block)
1673  *          This is updated to be the actual reservation size.
1674  * @ip: If set, check for reservations
1675  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1676  *          around until we've reached the starting point.
1677  * @ap: the allocation parameters
1678  *
1679  * Side effects:
1680  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1681  *   has no free blocks in it.
1682  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1683  *   has come up short on a free block search.
1684  *
1685  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1686  */
1687 
gfs2_rbm_find(struct gfs2_rbm * rbm,u8 state,u32 * minext,const struct gfs2_inode * ip,bool nowrap,const struct gfs2_alloc_parms * ap)1688 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1689 			 const struct gfs2_inode *ip, bool nowrap,
1690 			 const struct gfs2_alloc_parms *ap)
1691 {
1692 	struct buffer_head *bh;
1693 	int initial_bii;
1694 	u32 initial_offset;
1695 	int first_bii = rbm->bii;
1696 	u32 first_offset = rbm->offset;
1697 	u32 offset;
1698 	u8 *buffer;
1699 	int n = 0;
1700 	int iters = rbm->rgd->rd_length;
1701 	int ret;
1702 	struct gfs2_bitmap *bi;
1703 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1704 
1705 	/* If we are not starting at the beginning of a bitmap, then we
1706 	 * need to add one to the bitmap count to ensure that we search
1707 	 * the starting bitmap twice.
1708 	 */
1709 	if (rbm->offset != 0)
1710 		iters++;
1711 
1712 	while(1) {
1713 		bi = rbm_bi(rbm);
1714 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1715 		    (state == GFS2_BLKST_FREE))
1716 			goto next_bitmap;
1717 
1718 		bh = bi->bi_bh;
1719 		buffer = bh->b_data + bi->bi_offset;
1720 		WARN_ON(!buffer_uptodate(bh));
1721 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1722 			buffer = bi->bi_clone + bi->bi_offset;
1723 		initial_offset = rbm->offset;
1724 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1725 		if (offset == BFITNOENT)
1726 			goto bitmap_full;
1727 		rbm->offset = offset;
1728 		if (ip == NULL)
1729 			return 0;
1730 
1731 		initial_bii = rbm->bii;
1732 		ret = gfs2_reservation_check_and_update(rbm, ip,
1733 							minext ? *minext : 0,
1734 							&maxext);
1735 		if (ret == 0)
1736 			return 0;
1737 		if (ret > 0) {
1738 			n += (rbm->bii - initial_bii);
1739 			goto next_iter;
1740 		}
1741 		if (ret == -E2BIG) {
1742 			rbm->bii = 0;
1743 			rbm->offset = 0;
1744 			n += (rbm->bii - initial_bii);
1745 			goto res_covered_end_of_rgrp;
1746 		}
1747 		return ret;
1748 
1749 bitmap_full:	/* Mark bitmap as full and fall through */
1750 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1751 			set_bit(GBF_FULL, &bi->bi_flags);
1752 
1753 next_bitmap:	/* Find next bitmap in the rgrp */
1754 		rbm->offset = 0;
1755 		rbm->bii++;
1756 		if (rbm->bii == rbm->rgd->rd_length)
1757 			rbm->bii = 0;
1758 res_covered_end_of_rgrp:
1759 		if ((rbm->bii == 0) && nowrap)
1760 			break;
1761 		n++;
1762 next_iter:
1763 		if (n >= iters)
1764 			break;
1765 	}
1766 
1767 	if (minext == NULL || state != GFS2_BLKST_FREE)
1768 		return -ENOSPC;
1769 
1770 	/* If the extent was too small, and it's smaller than the smallest
1771 	   to have failed before, remember for future reference that it's
1772 	   useless to search this rgrp again for this amount or more. */
1773 	if ((first_offset == 0) && (first_bii == 0) &&
1774 	    (*minext < rbm->rgd->rd_extfail_pt))
1775 		rbm->rgd->rd_extfail_pt = *minext;
1776 
1777 	/* If the maximum extent we found is big enough to fulfill the
1778 	   minimum requirements, use it anyway. */
1779 	if (maxext.len) {
1780 		*rbm = maxext.rbm;
1781 		*minext = maxext.len;
1782 		return 0;
1783 	}
1784 
1785 	return -ENOSPC;
1786 }
1787 
1788 /**
1789  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1790  * @rgd: The rgrp
1791  * @last_unlinked: block address of the last dinode we unlinked
1792  * @skip: block address we should explicitly not unlink
1793  *
1794  * Returns: 0 if no error
1795  *          The inode, if one has been found, in inode.
1796  */
1797 
try_rgrp_unlink(struct gfs2_rgrpd * rgd,u64 * last_unlinked,u64 skip)1798 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1799 {
1800 	u64 block;
1801 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1802 	struct gfs2_glock *gl;
1803 	struct gfs2_inode *ip;
1804 	int error;
1805 	int found = 0;
1806 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1807 
1808 	while (1) {
1809 		down_write(&sdp->sd_log_flush_lock);
1810 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1811 				      true, NULL);
1812 		up_write(&sdp->sd_log_flush_lock);
1813 		if (error == -ENOSPC)
1814 			break;
1815 		if (WARN_ON_ONCE(error))
1816 			break;
1817 
1818 		block = gfs2_rbm_to_block(&rbm);
1819 		if (gfs2_rbm_from_block(&rbm, block + 1))
1820 			break;
1821 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1822 			continue;
1823 		if (block == skip)
1824 			continue;
1825 		*last_unlinked = block;
1826 
1827 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1828 		if (error)
1829 			continue;
1830 
1831 		/* If the inode is already in cache, we can ignore it here
1832 		 * because the existing inode disposal code will deal with
1833 		 * it when all refs have gone away. Accessing gl_object like
1834 		 * this is not safe in general. Here it is ok because we do
1835 		 * not dereference the pointer, and we only need an approx
1836 		 * answer to whether it is NULL or not.
1837 		 */
1838 		ip = gl->gl_object;
1839 
1840 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1841 			gfs2_glock_put(gl);
1842 		else
1843 			found++;
1844 
1845 		/* Limit reclaim to sensible number of tasks */
1846 		if (found > NR_CPUS)
1847 			return;
1848 	}
1849 
1850 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1851 	return;
1852 }
1853 
1854 /**
1855  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1856  * @rgd: The rgrp in question
1857  * @loops: An indication of how picky we can be (0=very, 1=less so)
1858  *
1859  * This function uses the recently added glock statistics in order to
1860  * figure out whether a parciular resource group is suffering from
1861  * contention from multiple nodes. This is done purely on the basis
1862  * of timings, since this is the only data we have to work with and
1863  * our aim here is to reject a resource group which is highly contended
1864  * but (very important) not to do this too often in order to ensure that
1865  * we do not land up introducing fragmentation by changing resource
1866  * groups when not actually required.
1867  *
1868  * The calculation is fairly simple, we want to know whether the SRTTB
1869  * (i.e. smoothed round trip time for blocking operations) to acquire
1870  * the lock for this rgrp's glock is significantly greater than the
1871  * time taken for resource groups on average. We introduce a margin in
1872  * the form of the variable @var which is computed as the sum of the two
1873  * respective variences, and multiplied by a factor depending on @loops
1874  * and whether we have a lot of data to base the decision on. This is
1875  * then tested against the square difference of the means in order to
1876  * decide whether the result is statistically significant or not.
1877  *
1878  * Returns: A boolean verdict on the congestion status
1879  */
1880 
gfs2_rgrp_congested(const struct gfs2_rgrpd * rgd,int loops)1881 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1882 {
1883 	const struct gfs2_glock *gl = rgd->rd_gl;
1884 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1885 	struct gfs2_lkstats *st;
1886 	u64 r_dcount, l_dcount;
1887 	u64 l_srttb, a_srttb = 0;
1888 	s64 srttb_diff;
1889 	u64 sqr_diff;
1890 	u64 var;
1891 	int cpu, nonzero = 0;
1892 
1893 	preempt_disable();
1894 	for_each_present_cpu(cpu) {
1895 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1896 		if (st->stats[GFS2_LKS_SRTTB]) {
1897 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1898 			nonzero++;
1899 		}
1900 	}
1901 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1902 	if (nonzero)
1903 		do_div(a_srttb, nonzero);
1904 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1905 	var = st->stats[GFS2_LKS_SRTTVARB] +
1906 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1907 	preempt_enable();
1908 
1909 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1910 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1911 
1912 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1913 		return false;
1914 
1915 	srttb_diff = a_srttb - l_srttb;
1916 	sqr_diff = srttb_diff * srttb_diff;
1917 
1918 	var *= 2;
1919 	if (l_dcount < 8 || r_dcount < 8)
1920 		var *= 2;
1921 	if (loops == 1)
1922 		var *= 2;
1923 
1924 	return ((srttb_diff < 0) && (sqr_diff > var));
1925 }
1926 
1927 /**
1928  * gfs2_rgrp_used_recently
1929  * @rs: The block reservation with the rgrp to test
1930  * @msecs: The time limit in milliseconds
1931  *
1932  * Returns: True if the rgrp glock has been used within the time limit
1933  */
gfs2_rgrp_used_recently(const struct gfs2_blkreserv * rs,u64 msecs)1934 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1935 				    u64 msecs)
1936 {
1937 	u64 tdiff;
1938 
1939 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1940                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1941 
1942 	return tdiff > (msecs * 1000 * 1000);
1943 }
1944 
gfs2_orlov_skip(const struct gfs2_inode * ip)1945 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1946 {
1947 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1948 	u32 skip;
1949 
1950 	get_random_bytes(&skip, sizeof(skip));
1951 	return skip % sdp->sd_rgrps;
1952 }
1953 
gfs2_select_rgrp(struct gfs2_rgrpd ** pos,const struct gfs2_rgrpd * begin)1954 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1955 {
1956 	struct gfs2_rgrpd *rgd = *pos;
1957 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1958 
1959 	rgd = gfs2_rgrpd_get_next(rgd);
1960 	if (rgd == NULL)
1961 		rgd = gfs2_rgrpd_get_first(sdp);
1962 	*pos = rgd;
1963 	if (rgd != begin) /* If we didn't wrap */
1964 		return true;
1965 	return false;
1966 }
1967 
1968 /**
1969  * fast_to_acquire - determine if a resource group will be fast to acquire
1970  *
1971  * If this is one of our preferred rgrps, it should be quicker to acquire,
1972  * because we tried to set ourselves up as dlm lock master.
1973  */
fast_to_acquire(struct gfs2_rgrpd * rgd)1974 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1975 {
1976 	struct gfs2_glock *gl = rgd->rd_gl;
1977 
1978 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1979 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1980 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1981 		return 1;
1982 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1983 		return 1;
1984 	return 0;
1985 }
1986 
1987 /**
1988  * gfs2_inplace_reserve - Reserve space in the filesystem
1989  * @ip: the inode to reserve space for
1990  * @ap: the allocation parameters
1991  *
1992  * We try our best to find an rgrp that has at least ap->target blocks
1993  * available. After a couple of passes (loops == 2), the prospects of finding
1994  * such an rgrp diminish. At this stage, we return the first rgrp that has
1995  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1996  * the number of blocks available in the chosen rgrp.
1997  *
1998  * Returns: 0 on success,
1999  *          -ENOMEM if a suitable rgrp can't be found
2000  *          errno otherwise
2001  */
2002 
gfs2_inplace_reserve(struct gfs2_inode * ip,struct gfs2_alloc_parms * ap)2003 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2004 {
2005 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2006 	struct gfs2_rgrpd *begin = NULL;
2007 	struct gfs2_blkreserv *rs = ip->i_res;
2008 	int error = 0, rg_locked, flags = 0;
2009 	u64 last_unlinked = NO_BLOCK;
2010 	int loops = 0;
2011 	u32 skip = 0;
2012 
2013 	if (sdp->sd_args.ar_rgrplvb)
2014 		flags |= GL_SKIP;
2015 	if (gfs2_assert_warn(sdp, ap->target))
2016 		return -EINVAL;
2017 	if (gfs2_rs_active(rs)) {
2018 		begin = rs->rs_rbm.rgd;
2019 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
2020 		rs->rs_rbm.rgd = begin = ip->i_rgd;
2021 	} else {
2022 		check_and_update_goal(ip);
2023 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2024 	}
2025 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2026 		skip = gfs2_orlov_skip(ip);
2027 	if (rs->rs_rbm.rgd == NULL)
2028 		return -EBADSLT;
2029 
2030 	while (loops < 3) {
2031 		rg_locked = 1;
2032 
2033 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2034 			rg_locked = 0;
2035 			if (skip && skip--)
2036 				goto next_rgrp;
2037 			if (!gfs2_rs_active(rs)) {
2038 				if (loops == 0 &&
2039 				    !fast_to_acquire(rs->rs_rbm.rgd))
2040 					goto next_rgrp;
2041 				if ((loops < 2) &&
2042 				    gfs2_rgrp_used_recently(rs, 1000) &&
2043 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2044 					goto next_rgrp;
2045 			}
2046 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2047 						   LM_ST_EXCLUSIVE, flags,
2048 						   &rs->rs_rgd_gh);
2049 			if (unlikely(error))
2050 				return error;
2051 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2052 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2053 				goto skip_rgrp;
2054 			if (sdp->sd_args.ar_rgrplvb) {
2055 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2056 				if (unlikely(error)) {
2057 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2058 					return error;
2059 				}
2060 			}
2061 		}
2062 
2063 		/* Skip unuseable resource groups */
2064 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2065 						 GFS2_RDF_ERROR)) ||
2066 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2067 			goto skip_rgrp;
2068 
2069 		if (sdp->sd_args.ar_rgrplvb)
2070 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2071 
2072 		/* Get a reservation if we don't already have one */
2073 		if (!gfs2_rs_active(rs))
2074 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2075 
2076 		/* Skip rgrps when we can't get a reservation on first pass */
2077 		if (!gfs2_rs_active(rs) && (loops < 1))
2078 			goto check_rgrp;
2079 
2080 		/* If rgrp has enough free space, use it */
2081 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2082 		    (loops == 2 && ap->min_target &&
2083 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2084 			ip->i_rgd = rs->rs_rbm.rgd;
2085 			ap->allowed = ip->i_rgd->rd_free_clone;
2086 			return 0;
2087 		}
2088 check_rgrp:
2089 		/* Check for unlinked inodes which can be reclaimed */
2090 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2091 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2092 					ip->i_no_addr);
2093 skip_rgrp:
2094 		/* Drop reservation, if we couldn't use reserved rgrp */
2095 		if (gfs2_rs_active(rs))
2096 			gfs2_rs_deltree(rs);
2097 
2098 		/* Unlock rgrp if required */
2099 		if (!rg_locked)
2100 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2101 next_rgrp:
2102 		/* Find the next rgrp, and continue looking */
2103 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2104 			continue;
2105 		if (skip)
2106 			continue;
2107 
2108 		/* If we've scanned all the rgrps, but found no free blocks
2109 		 * then this checks for some less likely conditions before
2110 		 * trying again.
2111 		 */
2112 		loops++;
2113 		/* Check that fs hasn't grown if writing to rindex */
2114 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2115 			error = gfs2_ri_update(ip);
2116 			if (error)
2117 				return error;
2118 		}
2119 		/* Flushing the log may release space */
2120 		if (loops == 2)
2121 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2122 	}
2123 
2124 	return -ENOSPC;
2125 }
2126 
2127 /**
2128  * gfs2_inplace_release - release an inplace reservation
2129  * @ip: the inode the reservation was taken out on
2130  *
2131  * Release a reservation made by gfs2_inplace_reserve().
2132  */
2133 
gfs2_inplace_release(struct gfs2_inode * ip)2134 void gfs2_inplace_release(struct gfs2_inode *ip)
2135 {
2136 	struct gfs2_blkreserv *rs = ip->i_res;
2137 
2138 	if (rs->rs_rgd_gh.gh_gl)
2139 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2140 }
2141 
2142 /**
2143  * gfs2_get_block_type - Check a block in a RG is of given type
2144  * @rgd: the resource group holding the block
2145  * @block: the block number
2146  *
2147  * Returns: The block type (GFS2_BLKST_*)
2148  */
2149 
gfs2_get_block_type(struct gfs2_rgrpd * rgd,u64 block)2150 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2151 {
2152 	struct gfs2_rbm rbm = { .rgd = rgd, };
2153 	int ret;
2154 
2155 	ret = gfs2_rbm_from_block(&rbm, block);
2156 	WARN_ON_ONCE(ret != 0);
2157 
2158 	return gfs2_testbit(&rbm);
2159 }
2160 
2161 
2162 /**
2163  * gfs2_alloc_extent - allocate an extent from a given bitmap
2164  * @rbm: the resource group information
2165  * @dinode: TRUE if the first block we allocate is for a dinode
2166  * @n: The extent length (value/result)
2167  *
2168  * Add the bitmap buffer to the transaction.
2169  * Set the found bits to @new_state to change block's allocation state.
2170  */
gfs2_alloc_extent(const struct gfs2_rbm * rbm,bool dinode,unsigned int * n)2171 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2172 			     unsigned int *n)
2173 {
2174 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2175 	const unsigned int elen = *n;
2176 	u64 block;
2177 	int ret;
2178 
2179 	*n = 1;
2180 	block = gfs2_rbm_to_block(rbm);
2181 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2182 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2183 	block++;
2184 	while (*n < elen) {
2185 		ret = gfs2_rbm_from_block(&pos, block);
2186 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2187 			break;
2188 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2189 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2190 		(*n)++;
2191 		block++;
2192 	}
2193 }
2194 
2195 /**
2196  * rgblk_free - Change alloc state of given block(s)
2197  * @sdp: the filesystem
2198  * @bstart: the start of a run of blocks to free
2199  * @blen: the length of the block run (all must lie within ONE RG!)
2200  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2201  *
2202  * Returns:  Resource group containing the block(s)
2203  */
2204 
rgblk_free(struct gfs2_sbd * sdp,u64 bstart,u32 blen,unsigned char new_state)2205 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2206 				     u32 blen, unsigned char new_state)
2207 {
2208 	struct gfs2_rbm rbm;
2209 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2210 
2211 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2212 	if (!rbm.rgd) {
2213 		if (gfs2_consist(sdp))
2214 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2215 		return NULL;
2216 	}
2217 
2218 	gfs2_rbm_from_block(&rbm, bstart);
2219 	while (blen--) {
2220 		bi = rbm_bi(&rbm);
2221 		if (bi != bi_prev) {
2222 			if (!bi->bi_clone) {
2223 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2224 						      GFP_NOFS | __GFP_NOFAIL);
2225 				memcpy(bi->bi_clone + bi->bi_offset,
2226 				       bi->bi_bh->b_data + bi->bi_offset,
2227 				       bi->bi_len);
2228 			}
2229 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2230 			bi_prev = bi;
2231 		}
2232 		gfs2_setbit(&rbm, false, new_state);
2233 		gfs2_rbm_incr(&rbm);
2234 	}
2235 
2236 	return rbm.rgd;
2237 }
2238 
2239 /**
2240  * gfs2_rgrp_dump - print out an rgrp
2241  * @seq: The iterator
2242  * @gl: The glock in question
2243  *
2244  */
2245 
gfs2_rgrp_dump(struct seq_file * seq,const struct gfs2_glock * gl)2246 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2247 {
2248 	struct gfs2_rgrpd *rgd = gl->gl_object;
2249 	struct gfs2_blkreserv *trs;
2250 	const struct rb_node *n;
2251 
2252 	if (rgd == NULL)
2253 		return;
2254 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2255 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2256 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2257 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2258 	spin_lock(&rgd->rd_rsspin);
2259 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2260 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2261 		dump_rs(seq, trs);
2262 	}
2263 	spin_unlock(&rgd->rd_rsspin);
2264 }
2265 
gfs2_rgrp_error(struct gfs2_rgrpd * rgd)2266 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2267 {
2268 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2269 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2270 		(unsigned long long)rgd->rd_addr);
2271 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2272 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2273 	rgd->rd_flags |= GFS2_RDF_ERROR;
2274 }
2275 
2276 /**
2277  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2278  * @ip: The inode we have just allocated blocks for
2279  * @rbm: The start of the allocated blocks
2280  * @len: The extent length
2281  *
2282  * Adjusts a reservation after an allocation has taken place. If the
2283  * reservation does not match the allocation, or if it is now empty
2284  * then it is removed.
2285  */
2286 
gfs2_adjust_reservation(struct gfs2_inode * ip,const struct gfs2_rbm * rbm,unsigned len)2287 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2288 				    const struct gfs2_rbm *rbm, unsigned len)
2289 {
2290 	struct gfs2_blkreserv *rs = ip->i_res;
2291 	struct gfs2_rgrpd *rgd = rbm->rgd;
2292 	unsigned rlen;
2293 	u64 block;
2294 	int ret;
2295 
2296 	spin_lock(&rgd->rd_rsspin);
2297 	if (gfs2_rs_active(rs)) {
2298 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2299 			block = gfs2_rbm_to_block(rbm);
2300 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2301 			rlen = min(rs->rs_free, len);
2302 			rs->rs_free -= rlen;
2303 			rgd->rd_reserved -= rlen;
2304 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2305 			if (rs->rs_free && !ret)
2306 				goto out;
2307 			/* We used up our block reservation, so we should
2308 			   reserve more blocks next time. */
2309 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2310 		}
2311 		__rs_deltree(rs);
2312 	}
2313 out:
2314 	spin_unlock(&rgd->rd_rsspin);
2315 }
2316 
2317 /**
2318  * gfs2_set_alloc_start - Set starting point for block allocation
2319  * @rbm: The rbm which will be set to the required location
2320  * @ip: The gfs2 inode
2321  * @dinode: Flag to say if allocation includes a new inode
2322  *
2323  * This sets the starting point from the reservation if one is active
2324  * otherwise it falls back to guessing a start point based on the
2325  * inode's goal block or the last allocation point in the rgrp.
2326  */
2327 
gfs2_set_alloc_start(struct gfs2_rbm * rbm,const struct gfs2_inode * ip,bool dinode)2328 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2329 				 const struct gfs2_inode *ip, bool dinode)
2330 {
2331 	u64 goal;
2332 
2333 	if (gfs2_rs_active(ip->i_res)) {
2334 		*rbm = ip->i_res->rs_rbm;
2335 		return;
2336 	}
2337 
2338 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2339 		goal = ip->i_goal;
2340 	else
2341 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2342 
2343 	gfs2_rbm_from_block(rbm, goal);
2344 }
2345 
2346 /**
2347  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2348  * @ip: the inode to allocate the block for
2349  * @bn: Used to return the starting block number
2350  * @nblocks: requested number of blocks/extent length (value/result)
2351  * @dinode: 1 if we're allocating a dinode block, else 0
2352  * @generation: the generation number of the inode
2353  *
2354  * Returns: 0 or error
2355  */
2356 
gfs2_alloc_blocks(struct gfs2_inode * ip,u64 * bn,unsigned int * nblocks,bool dinode,u64 * generation)2357 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2358 		      bool dinode, u64 *generation)
2359 {
2360 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2361 	struct buffer_head *dibh;
2362 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2363 	unsigned int ndata;
2364 	u64 block; /* block, within the file system scope */
2365 	int error;
2366 
2367 	gfs2_set_alloc_start(&rbm, ip, dinode);
2368 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2369 
2370 	if (error == -ENOSPC) {
2371 		gfs2_set_alloc_start(&rbm, ip, dinode);
2372 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2373 				      NULL);
2374 	}
2375 
2376 	/* Since all blocks are reserved in advance, this shouldn't happen */
2377 	if (error) {
2378 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2379 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2380 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2381 			rbm.rgd->rd_extfail_pt);
2382 		goto rgrp_error;
2383 	}
2384 
2385 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2386 	block = gfs2_rbm_to_block(&rbm);
2387 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2388 	if (gfs2_rs_active(ip->i_res))
2389 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2390 	ndata = *nblocks;
2391 	if (dinode)
2392 		ndata--;
2393 
2394 	if (!dinode) {
2395 		ip->i_goal = block + ndata - 1;
2396 		error = gfs2_meta_inode_buffer(ip, &dibh);
2397 		if (error == 0) {
2398 			struct gfs2_dinode *di =
2399 				(struct gfs2_dinode *)dibh->b_data;
2400 			gfs2_trans_add_meta(ip->i_gl, dibh);
2401 			di->di_goal_meta = di->di_goal_data =
2402 				cpu_to_be64(ip->i_goal);
2403 			brelse(dibh);
2404 		}
2405 	}
2406 	if (rbm.rgd->rd_free < *nblocks) {
2407 		pr_warn("nblocks=%u\n", *nblocks);
2408 		goto rgrp_error;
2409 	}
2410 
2411 	rbm.rgd->rd_free -= *nblocks;
2412 	if (dinode) {
2413 		rbm.rgd->rd_dinodes++;
2414 		*generation = rbm.rgd->rd_igeneration++;
2415 		if (*generation == 0)
2416 			*generation = rbm.rgd->rd_igeneration++;
2417 	}
2418 
2419 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2420 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2421 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2422 
2423 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2424 	if (dinode)
2425 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2426 
2427 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2428 
2429 	rbm.rgd->rd_free_clone -= *nblocks;
2430 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2431 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2432 	*bn = block;
2433 	return 0;
2434 
2435 rgrp_error:
2436 	gfs2_rgrp_error(rbm.rgd);
2437 	return -EIO;
2438 }
2439 
2440 /**
2441  * __gfs2_free_blocks - free a contiguous run of block(s)
2442  * @ip: the inode these blocks are being freed from
2443  * @bstart: first block of a run of contiguous blocks
2444  * @blen: the length of the block run
2445  * @meta: 1 if the blocks represent metadata
2446  *
2447  */
2448 
__gfs2_free_blocks(struct gfs2_inode * ip,u64 bstart,u32 blen,int meta)2449 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2450 {
2451 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2452 	struct gfs2_rgrpd *rgd;
2453 
2454 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2455 	if (!rgd)
2456 		return;
2457 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2458 	rgd->rd_free += blen;
2459 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2460 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2461 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2462 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2463 
2464 	/* Directories keep their data in the metadata address space */
2465 	if (meta || ip->i_depth)
2466 		gfs2_meta_wipe(ip, bstart, blen);
2467 }
2468 
2469 /**
2470  * gfs2_free_meta - free a contiguous run of data block(s)
2471  * @ip: the inode these blocks are being freed from
2472  * @bstart: first block of a run of contiguous blocks
2473  * @blen: the length of the block run
2474  *
2475  */
2476 
gfs2_free_meta(struct gfs2_inode * ip,u64 bstart,u32 blen)2477 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2478 {
2479 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2480 
2481 	__gfs2_free_blocks(ip, bstart, blen, 1);
2482 	gfs2_statfs_change(sdp, 0, +blen, 0);
2483 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2484 }
2485 
gfs2_unlink_di(struct inode * inode)2486 void gfs2_unlink_di(struct inode *inode)
2487 {
2488 	struct gfs2_inode *ip = GFS2_I(inode);
2489 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2490 	struct gfs2_rgrpd *rgd;
2491 	u64 blkno = ip->i_no_addr;
2492 
2493 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2494 	if (!rgd)
2495 		return;
2496 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2497 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2498 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2499 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2500 	update_rgrp_lvb_unlinked(rgd, 1);
2501 }
2502 
gfs2_free_uninit_di(struct gfs2_rgrpd * rgd,u64 blkno)2503 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2504 {
2505 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2506 	struct gfs2_rgrpd *tmp_rgd;
2507 
2508 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2509 	if (!tmp_rgd)
2510 		return;
2511 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2512 
2513 	if (!rgd->rd_dinodes)
2514 		gfs2_consist_rgrpd(rgd);
2515 	rgd->rd_dinodes--;
2516 	rgd->rd_free++;
2517 
2518 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2519 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2520 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2521 	update_rgrp_lvb_unlinked(rgd, -1);
2522 
2523 	gfs2_statfs_change(sdp, 0, +1, -1);
2524 }
2525 
2526 
gfs2_free_di(struct gfs2_rgrpd * rgd,struct gfs2_inode * ip)2527 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2528 {
2529 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2530 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2531 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2532 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2533 }
2534 
2535 /**
2536  * gfs2_check_blk_type - Check the type of a block
2537  * @sdp: The superblock
2538  * @no_addr: The block number to check
2539  * @type: The block type we are looking for
2540  *
2541  * Returns: 0 if the block type matches the expected type
2542  *          -ESTALE if it doesn't match
2543  *          or -ve errno if something went wrong while checking
2544  */
2545 
gfs2_check_blk_type(struct gfs2_sbd * sdp,u64 no_addr,unsigned int type)2546 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2547 {
2548 	struct gfs2_rgrpd *rgd;
2549 	struct gfs2_holder rgd_gh;
2550 	int error = -EINVAL;
2551 
2552 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2553 	if (!rgd)
2554 		goto fail;
2555 
2556 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2557 	if (error)
2558 		goto fail;
2559 
2560 	if (gfs2_get_block_type(rgd, no_addr) != type)
2561 		error = -ESTALE;
2562 
2563 	gfs2_glock_dq_uninit(&rgd_gh);
2564 fail:
2565 	return error;
2566 }
2567 
2568 /**
2569  * gfs2_rlist_add - add a RG to a list of RGs
2570  * @ip: the inode
2571  * @rlist: the list of resource groups
2572  * @block: the block
2573  *
2574  * Figure out what RG a block belongs to and add that RG to the list
2575  *
2576  * FIXME: Don't use NOFAIL
2577  *
2578  */
2579 
gfs2_rlist_add(struct gfs2_inode * ip,struct gfs2_rgrp_list * rlist,u64 block)2580 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2581 		    u64 block)
2582 {
2583 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2584 	struct gfs2_rgrpd *rgd;
2585 	struct gfs2_rgrpd **tmp;
2586 	unsigned int new_space;
2587 	unsigned int x;
2588 
2589 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2590 		return;
2591 
2592 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2593 		rgd = ip->i_rgd;
2594 	else
2595 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2596 	if (!rgd) {
2597 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2598 		return;
2599 	}
2600 	ip->i_rgd = rgd;
2601 
2602 	for (x = 0; x < rlist->rl_rgrps; x++)
2603 		if (rlist->rl_rgd[x] == rgd)
2604 			return;
2605 
2606 	if (rlist->rl_rgrps == rlist->rl_space) {
2607 		new_space = rlist->rl_space + 10;
2608 
2609 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2610 			      GFP_NOFS | __GFP_NOFAIL);
2611 
2612 		if (rlist->rl_rgd) {
2613 			memcpy(tmp, rlist->rl_rgd,
2614 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2615 			kfree(rlist->rl_rgd);
2616 		}
2617 
2618 		rlist->rl_space = new_space;
2619 		rlist->rl_rgd = tmp;
2620 	}
2621 
2622 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2623 }
2624 
2625 /**
2626  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2627  *      and initialize an array of glock holders for them
2628  * @rlist: the list of resource groups
2629  * @state: the lock state to acquire the RG lock in
2630  *
2631  * FIXME: Don't use NOFAIL
2632  *
2633  */
2634 
gfs2_rlist_alloc(struct gfs2_rgrp_list * rlist,unsigned int state)2635 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2636 {
2637 	unsigned int x;
2638 
2639 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2640 				GFP_NOFS | __GFP_NOFAIL);
2641 	for (x = 0; x < rlist->rl_rgrps; x++)
2642 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2643 				state, 0,
2644 				&rlist->rl_ghs[x]);
2645 }
2646 
2647 /**
2648  * gfs2_rlist_free - free a resource group list
2649  * @rlist: the list of resource groups
2650  *
2651  */
2652 
gfs2_rlist_free(struct gfs2_rgrp_list * rlist)2653 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2654 {
2655 	unsigned int x;
2656 
2657 	kfree(rlist->rl_rgd);
2658 
2659 	if (rlist->rl_ghs) {
2660 		for (x = 0; x < rlist->rl_rgrps; x++)
2661 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2662 		kfree(rlist->rl_ghs);
2663 		rlist->rl_ghs = NULL;
2664 	}
2665 }
2666 
2667