1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <linux/delay.h>
31 #include <linux/context_tracking.h>
32 #include <asm/stack.h>
33 #include <asm/switch_to.h>
34 #include <asm/homecache.h>
35 #include <asm/syscalls.h>
36 #include <asm/traps.h>
37 #include <asm/setup.h>
38 #include <asm/uaccess.h>
39 #ifdef CONFIG_HARDWALL
40 #include <asm/hardwall.h>
41 #endif
42 #include <arch/chip.h>
43 #include <arch/abi.h>
44 #include <arch/sim_def.h>
45
46 /*
47 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
48 * idle loop over low power while in the idle loop, e.g. if we have
49 * one thread per core and we want to get threads out of futex waits fast.
50 */
idle_setup(char * str)51 static int __init idle_setup(char *str)
52 {
53 if (!str)
54 return -EINVAL;
55
56 if (!strcmp(str, "poll")) {
57 pr_info("using polling idle threads\n");
58 cpu_idle_poll_ctrl(true);
59 return 0;
60 } else if (!strcmp(str, "halt")) {
61 return 0;
62 }
63 return -1;
64 }
65 early_param("idle", idle_setup);
66
arch_cpu_idle(void)67 void arch_cpu_idle(void)
68 {
69 __this_cpu_write(irq_stat.idle_timestamp, jiffies);
70 _cpu_idle();
71 }
72
73 /*
74 * Release a thread_info structure
75 */
arch_release_thread_stack(unsigned long * stack)76 void arch_release_thread_stack(unsigned long *stack)
77 {
78 struct thread_info *info = (void *)stack;
79 struct single_step_state *step_state = info->step_state;
80
81 if (step_state) {
82
83 /*
84 * FIXME: we don't munmap step_state->buffer
85 * because the mm_struct for this process (info->task->mm)
86 * has already been zeroed in exit_mm(). Keeping a
87 * reference to it here seems like a bad move, so this
88 * means we can't munmap() the buffer, and therefore if we
89 * ptrace multiple threads in a process, we will slowly
90 * leak user memory. (Note that as soon as the last
91 * thread in a process dies, we will reclaim all user
92 * memory including single-step buffers in the usual way.)
93 * We should either assign a kernel VA to this buffer
94 * somehow, or we should associate the buffer(s) with the
95 * mm itself so we can clean them up that way.
96 */
97 kfree(step_state);
98 }
99 }
100
101 static void save_arch_state(struct thread_struct *t);
102
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)103 int copy_thread(unsigned long clone_flags, unsigned long sp,
104 unsigned long arg, struct task_struct *p)
105 {
106 struct pt_regs *childregs = task_pt_regs(p);
107 unsigned long ksp;
108 unsigned long *callee_regs;
109
110 /*
111 * Set up the stack and stack pointer appropriately for the
112 * new child to find itself woken up in __switch_to().
113 * The callee-saved registers must be on the stack to be read;
114 * the new task will then jump to assembly support to handle
115 * calling schedule_tail(), etc., and (for userspace tasks)
116 * returning to the context set up in the pt_regs.
117 */
118 ksp = (unsigned long) childregs;
119 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
120 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
121 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
122 callee_regs = (unsigned long *)ksp;
123 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
124 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
125 p->thread.ksp = ksp;
126
127 /* Record the pid of the task that created this one. */
128 p->thread.creator_pid = current->pid;
129
130 if (unlikely(p->flags & PF_KTHREAD)) {
131 /* kernel thread */
132 memset(childregs, 0, sizeof(struct pt_regs));
133 memset(&callee_regs[2], 0,
134 (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
135 callee_regs[0] = sp; /* r30 = function */
136 callee_regs[1] = arg; /* r31 = arg */
137 p->thread.pc = (unsigned long) ret_from_kernel_thread;
138 return 0;
139 }
140
141 /*
142 * Start new thread in ret_from_fork so it schedules properly
143 * and then return from interrupt like the parent.
144 */
145 p->thread.pc = (unsigned long) ret_from_fork;
146
147 /*
148 * Do not clone step state from the parent; each thread
149 * must make its own lazily.
150 */
151 task_thread_info(p)->step_state = NULL;
152
153 #ifdef __tilegx__
154 /*
155 * Do not clone unalign jit fixup from the parent; each thread
156 * must allocate its own on demand.
157 */
158 task_thread_info(p)->unalign_jit_base = NULL;
159 #endif
160
161 /*
162 * Copy the registers onto the kernel stack so the
163 * return-from-interrupt code will reload it into registers.
164 */
165 *childregs = *current_pt_regs();
166 childregs->regs[0] = 0; /* return value is zero */
167 if (sp)
168 childregs->sp = sp; /* override with new user stack pointer */
169 memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
170 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
171
172 /* Save user stack top pointer so we can ID the stack vm area later. */
173 p->thread.usp0 = childregs->sp;
174
175 /*
176 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
177 * which is passed in as arg #5 to sys_clone().
178 */
179 if (clone_flags & CLONE_SETTLS)
180 childregs->tp = childregs->regs[4];
181
182
183 #if CHIP_HAS_TILE_DMA()
184 /*
185 * No DMA in the new thread. We model this on the fact that
186 * fork() clears the pending signals, alarms, and aio for the child.
187 */
188 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
189 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
190 #endif
191
192 /* New thread has its miscellaneous processor state bits clear. */
193 p->thread.proc_status = 0;
194
195 #ifdef CONFIG_HARDWALL
196 /* New thread does not own any networks. */
197 memset(&p->thread.hardwall[0], 0,
198 sizeof(struct hardwall_task) * HARDWALL_TYPES);
199 #endif
200
201
202 /*
203 * Start the new thread with the current architecture state
204 * (user interrupt masks, etc.).
205 */
206 save_arch_state(&p->thread);
207
208 return 0;
209 }
210
set_unalign_ctl(struct task_struct * tsk,unsigned int val)211 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
212 {
213 task_thread_info(tsk)->align_ctl = val;
214 return 0;
215 }
216
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)217 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
218 {
219 return put_user(task_thread_info(tsk)->align_ctl,
220 (unsigned int __user *)adr);
221 }
222
223 static struct task_struct corrupt_current = { .comm = "<corrupt>" };
224
225 /*
226 * Return "current" if it looks plausible, or else a pointer to a dummy.
227 * This can be helpful if we are just trying to emit a clean panic.
228 */
validate_current(void)229 struct task_struct *validate_current(void)
230 {
231 struct task_struct *tsk = current;
232 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
233 (high_memory && (void *)tsk > high_memory) ||
234 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
235 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
236 tsk = &corrupt_current;
237 }
238 return tsk;
239 }
240
241 /* Take and return the pointer to the previous task, for schedule_tail(). */
sim_notify_fork(struct task_struct * prev)242 struct task_struct *sim_notify_fork(struct task_struct *prev)
243 {
244 struct task_struct *tsk = current;
245 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
246 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
247 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
248 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
249 return prev;
250 }
251
dump_task_regs(struct task_struct * tsk,elf_gregset_t * regs)252 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
253 {
254 struct pt_regs *ptregs = task_pt_regs(tsk);
255 elf_core_copy_regs(regs, ptregs);
256 return 1;
257 }
258
259 #if CHIP_HAS_TILE_DMA()
260
261 /* Allow user processes to access the DMA SPRs */
grant_dma_mpls(void)262 void grant_dma_mpls(void)
263 {
264 #if CONFIG_KERNEL_PL == 2
265 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
266 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
267 #else
268 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
269 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
270 #endif
271 }
272
273 /* Forbid user processes from accessing the DMA SPRs */
restrict_dma_mpls(void)274 void restrict_dma_mpls(void)
275 {
276 #if CONFIG_KERNEL_PL == 2
277 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
278 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
279 #else
280 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
281 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
282 #endif
283 }
284
285 /* Pause the DMA engine, then save off its state registers. */
save_tile_dma_state(struct tile_dma_state * dma)286 static void save_tile_dma_state(struct tile_dma_state *dma)
287 {
288 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
289 unsigned long post_suspend_state;
290
291 /* If we're running, suspend the engine. */
292 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
293 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
294
295 /*
296 * Wait for the engine to idle, then save regs. Note that we
297 * want to record the "running" bit from before suspension,
298 * and the "done" bit from after, so that we can properly
299 * distinguish a case where the user suspended the engine from
300 * the case where the kernel suspended as part of the context
301 * swap.
302 */
303 do {
304 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
305 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
306
307 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
308 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
309 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
310 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
311 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
312 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
313 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
314 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
315 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
316 }
317
318 /* Restart a DMA that was running before we were context-switched out. */
restore_tile_dma_state(struct thread_struct * t)319 static void restore_tile_dma_state(struct thread_struct *t)
320 {
321 const struct tile_dma_state *dma = &t->tile_dma_state;
322
323 /*
324 * The only way to restore the done bit is to run a zero
325 * length transaction.
326 */
327 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
328 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
329 __insn_mtspr(SPR_DMA_BYTE, 0);
330 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
331 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
332 SPR_DMA_STATUS__BUSY_MASK)
333 ;
334 }
335
336 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
337 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
338 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
339 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
340 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
341 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
342 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
343
344 /*
345 * Restart the engine if we were running and not done.
346 * Clear a pending async DMA fault that we were waiting on return
347 * to user space to execute, since we expect the DMA engine
348 * to regenerate those faults for us now. Note that we don't
349 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
350 * harmless if set, and it covers both DMA and the SN processor.
351 */
352 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
353 t->dma_async_tlb.fault_num = 0;
354 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
355 }
356 }
357
358 #endif
359
save_arch_state(struct thread_struct * t)360 static void save_arch_state(struct thread_struct *t)
361 {
362 #if CHIP_HAS_SPLIT_INTR_MASK()
363 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
364 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
365 #else
366 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
367 #endif
368 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
369 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
370 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
371 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
372 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
373 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
374 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
375 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
376 #if !CHIP_HAS_FIXED_INTVEC_BASE()
377 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
378 #endif
379 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
380 #if CHIP_HAS_DSTREAM_PF()
381 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
382 #endif
383 }
384
restore_arch_state(const struct thread_struct * t)385 static void restore_arch_state(const struct thread_struct *t)
386 {
387 #if CHIP_HAS_SPLIT_INTR_MASK()
388 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
389 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
390 #else
391 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
392 #endif
393 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
394 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
395 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
396 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
397 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
398 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
399 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
400 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
401 #if !CHIP_HAS_FIXED_INTVEC_BASE()
402 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
403 #endif
404 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
405 #if CHIP_HAS_DSTREAM_PF()
406 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
407 #endif
408 }
409
410
_prepare_arch_switch(struct task_struct * next)411 void _prepare_arch_switch(struct task_struct *next)
412 {
413 #if CHIP_HAS_TILE_DMA()
414 struct tile_dma_state *dma = ¤t->thread.tile_dma_state;
415 if (dma->enabled)
416 save_tile_dma_state(dma);
417 #endif
418 }
419
420
_switch_to(struct task_struct * prev,struct task_struct * next)421 struct task_struct *__sched _switch_to(struct task_struct *prev,
422 struct task_struct *next)
423 {
424 /* DMA state is already saved; save off other arch state. */
425 save_arch_state(&prev->thread);
426
427 #if CHIP_HAS_TILE_DMA()
428 /*
429 * Restore DMA in new task if desired.
430 * Note that it is only safe to restart here since interrupts
431 * are disabled, so we can't take any DMATLB miss or access
432 * interrupts before we have finished switching stacks.
433 */
434 if (next->thread.tile_dma_state.enabled) {
435 restore_tile_dma_state(&next->thread);
436 grant_dma_mpls();
437 } else {
438 restrict_dma_mpls();
439 }
440 #endif
441
442 /* Restore other arch state. */
443 restore_arch_state(&next->thread);
444
445 #ifdef CONFIG_HARDWALL
446 /* Enable or disable access to the network registers appropriately. */
447 hardwall_switch_tasks(prev, next);
448 #endif
449
450 /* Notify the simulator of task exit. */
451 if (unlikely(prev->state == TASK_DEAD))
452 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
453 (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
454
455 /*
456 * Switch kernel SP, PC, and callee-saved registers.
457 * In the context of the new task, return the old task pointer
458 * (i.e. the task that actually called __switch_to).
459 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
460 */
461 return __switch_to(prev, next, next_current_ksp0(next));
462 }
463
464 /*
465 * This routine is called on return from interrupt if any of the
466 * TIF_WORK_MASK flags are set in thread_info->flags. It is
467 * entered with interrupts disabled so we don't miss an event
468 * that modified the thread_info flags. If any flag is set, we
469 * handle it and return, and the calling assembly code will
470 * re-disable interrupts, reload the thread flags, and call back
471 * if more flags need to be handled.
472 *
473 * We return whether we need to check the thread_info flags again
474 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
475 * important that it be tested last, and then claim that we don't
476 * need to recheck the flags.
477 */
do_work_pending(struct pt_regs * regs,u32 thread_info_flags)478 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
479 {
480 /* If we enter in kernel mode, do nothing and exit the caller loop. */
481 if (!user_mode(regs))
482 return 0;
483
484 user_exit();
485
486 /* Enable interrupts; they are disabled again on return to caller. */
487 local_irq_enable();
488
489 if (thread_info_flags & _TIF_NEED_RESCHED) {
490 schedule();
491 return 1;
492 }
493 #if CHIP_HAS_TILE_DMA()
494 if (thread_info_flags & _TIF_ASYNC_TLB) {
495 do_async_page_fault(regs);
496 return 1;
497 }
498 #endif
499 if (thread_info_flags & _TIF_SIGPENDING) {
500 do_signal(regs);
501 return 1;
502 }
503 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
504 clear_thread_flag(TIF_NOTIFY_RESUME);
505 tracehook_notify_resume(regs);
506 return 1;
507 }
508 if (thread_info_flags & _TIF_SINGLESTEP)
509 single_step_once(regs);
510
511 user_enter();
512
513 return 0;
514 }
515
get_wchan(struct task_struct * p)516 unsigned long get_wchan(struct task_struct *p)
517 {
518 struct KBacktraceIterator kbt;
519
520 if (!p || p == current || p->state == TASK_RUNNING)
521 return 0;
522
523 for (KBacktraceIterator_init(&kbt, p, NULL);
524 !KBacktraceIterator_end(&kbt);
525 KBacktraceIterator_next(&kbt)) {
526 if (!in_sched_functions(kbt.it.pc))
527 return kbt.it.pc;
528 }
529
530 return 0;
531 }
532
533 /* Flush thread state. */
flush_thread(void)534 void flush_thread(void)
535 {
536 /* Nothing */
537 }
538
539 /*
540 * Free current thread data structures etc..
541 */
exit_thread(struct task_struct * tsk)542 void exit_thread(struct task_struct *tsk)
543 {
544 #ifdef CONFIG_HARDWALL
545 /*
546 * Remove the task from the list of tasks that are associated
547 * with any live hardwalls. (If the task that is exiting held
548 * the last reference to a hardwall fd, it would already have
549 * been released and deactivated at this point.)
550 */
551 hardwall_deactivate_all(tsk);
552 #endif
553 }
554
tile_show_regs(struct pt_regs * regs)555 void tile_show_regs(struct pt_regs *regs)
556 {
557 int i;
558 #ifdef __tilegx__
559 for (i = 0; i < 17; i++)
560 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
561 i, regs->regs[i], i+18, regs->regs[i+18],
562 i+36, regs->regs[i+36]);
563 pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
564 regs->regs[17], regs->regs[35], regs->tp);
565 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
566 #else
567 for (i = 0; i < 13; i++)
568 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
569 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
570 i, regs->regs[i], i+14, regs->regs[i+14],
571 i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
572 pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
573 regs->regs[13], regs->tp, regs->sp, regs->lr);
574 #endif
575 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld flags:%s%s%s%s\n",
576 regs->pc, regs->ex1, regs->faultnum,
577 is_compat_task() ? " compat" : "",
578 (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
579 !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
580 (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
581 }
582
show_regs(struct pt_regs * regs)583 void show_regs(struct pt_regs *regs)
584 {
585 struct KBacktraceIterator kbt;
586
587 show_regs_print_info(KERN_DEFAULT);
588 tile_show_regs(regs);
589
590 KBacktraceIterator_init(&kbt, NULL, regs);
591 tile_show_stack(&kbt);
592 }
593
594 /* To ensure stack dump on tiles occurs one by one. */
595 static DEFINE_SPINLOCK(backtrace_lock);
596 /* To ensure no backtrace occurs before all of the stack dump are done. */
597 static atomic_t backtrace_cpus;
598 /* The cpu mask to avoid reentrance. */
599 static struct cpumask backtrace_mask;
600
do_nmi_dump_stack(struct pt_regs * regs)601 void do_nmi_dump_stack(struct pt_regs *regs)
602 {
603 int is_idle = is_idle_task(current) && !in_interrupt();
604 int cpu;
605
606 nmi_enter();
607 cpu = smp_processor_id();
608 if (WARN_ON_ONCE(!cpumask_test_and_clear_cpu(cpu, &backtrace_mask)))
609 goto done;
610
611 spin_lock(&backtrace_lock);
612 if (is_idle)
613 pr_info("CPU: %d idle\n", cpu);
614 else
615 show_regs(regs);
616 spin_unlock(&backtrace_lock);
617 atomic_dec(&backtrace_cpus);
618 done:
619 nmi_exit();
620 }
621
622 #ifdef __tilegx__
arch_trigger_all_cpu_backtrace(bool self)623 void arch_trigger_all_cpu_backtrace(bool self)
624 {
625 struct cpumask mask;
626 HV_Coord tile;
627 unsigned int timeout;
628 int cpu;
629 int ongoing;
630 HV_NMI_Info info[NR_CPUS];
631
632 ongoing = atomic_cmpxchg(&backtrace_cpus, 0, num_online_cpus() - 1);
633 if (ongoing != 0) {
634 pr_err("Trying to do all-cpu backtrace.\n");
635 pr_err("But another all-cpu backtrace is ongoing (%d cpus left)\n",
636 ongoing);
637 if (self) {
638 pr_err("Reporting the stack on this cpu only.\n");
639 dump_stack();
640 }
641 return;
642 }
643
644 cpumask_copy(&mask, cpu_online_mask);
645 cpumask_clear_cpu(smp_processor_id(), &mask);
646 cpumask_copy(&backtrace_mask, &mask);
647
648 /* Backtrace for myself first. */
649 if (self)
650 dump_stack();
651
652 /* Tentatively dump stack on remote tiles via NMI. */
653 timeout = 100;
654 while (!cpumask_empty(&mask) && timeout) {
655 for_each_cpu(cpu, &mask) {
656 tile.x = cpu_x(cpu);
657 tile.y = cpu_y(cpu);
658 info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
659 if (info[cpu].result == HV_NMI_RESULT_OK)
660 cpumask_clear_cpu(cpu, &mask);
661 }
662
663 mdelay(10);
664 timeout--;
665 }
666
667 /* Warn about cpus stuck in ICS and decrement their counts here. */
668 if (!cpumask_empty(&mask)) {
669 for_each_cpu(cpu, &mask) {
670 switch (info[cpu].result) {
671 case HV_NMI_RESULT_FAIL_ICS:
672 pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
673 cpu, info[cpu].pc);
674 break;
675 case HV_NMI_RESULT_FAIL_HV:
676 pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
677 cpu);
678 break;
679 case HV_ENOSYS:
680 pr_warn("Hypervisor too old to allow remote stack dumps.\n");
681 goto skip_for_each;
682 default: /* should not happen */
683 pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
684 cpu, info[cpu].result, info[cpu].pc);
685 break;
686 }
687 }
688 skip_for_each:
689 atomic_sub(cpumask_weight(&mask), &backtrace_cpus);
690 }
691 }
692 #endif /* __tilegx_ */
693