• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #include <linux/spinlock.h>
52 #include <linux/pci.h>
53 #include <linux/io.h>
54 #include <linux/delay.h>
55 #include <linux/netdevice.h>
56 #include <linux/vmalloc.h>
57 #include <linux/module.h>
58 #include <linux/prefetch.h>
59 
60 #include "hfi.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "sdma.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73 
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
77 
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is 8192");
81 
82 unsigned int hfi1_cu = 1;
83 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
84 MODULE_PARM_DESC(cu, "Credit return units");
85 
86 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
87 static int hfi1_caps_set(const char *, const struct kernel_param *);
88 static int hfi1_caps_get(char *, const struct kernel_param *);
89 static const struct kernel_param_ops cap_ops = {
90 	.set = hfi1_caps_set,
91 	.get = hfi1_caps_get
92 };
93 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
94 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
95 
96 MODULE_LICENSE("Dual BSD/GPL");
97 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
98 MODULE_VERSION(HFI1_DRIVER_VERSION);
99 
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 #define EGR_HEAD_UPDATE_THRESHOLD 16
105 
106 struct hfi1_ib_stats hfi1_stats;
107 
hfi1_caps_set(const char * val,const struct kernel_param * kp)108 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
109 {
110 	int ret = 0;
111 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
112 		cap_mask = *cap_mask_ptr, value, diff,
113 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
114 			      HFI1_CAP_WRITABLE_MASK);
115 
116 	ret = kstrtoul(val, 0, &value);
117 	if (ret) {
118 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
119 		goto done;
120 	}
121 	/* Get the changed bits (except the locked bit) */
122 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
123 
124 	/* Remove any bits that are not allowed to change after driver load */
125 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
126 		pr_warn("Ignoring non-writable capability bits %#lx\n",
127 			diff & ~write_mask);
128 		diff &= write_mask;
129 	}
130 
131 	/* Mask off any reserved bits */
132 	diff &= ~HFI1_CAP_RESERVED_MASK;
133 	/* Clear any previously set and changing bits */
134 	cap_mask &= ~diff;
135 	/* Update the bits with the new capability */
136 	cap_mask |= (value & diff);
137 	/* Check for any kernel/user restrictions */
138 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
139 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
140 	cap_mask &= ~diff;
141 	/* Set the bitmask to the final set */
142 	*cap_mask_ptr = cap_mask;
143 done:
144 	return ret;
145 }
146 
hfi1_caps_get(char * buffer,const struct kernel_param * kp)147 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
148 {
149 	unsigned long cap_mask = *(unsigned long *)kp->arg;
150 
151 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
152 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
153 
154 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
155 }
156 
get_unit_name(int unit)157 const char *get_unit_name(int unit)
158 {
159 	static char iname[16];
160 
161 	snprintf(iname, sizeof(iname), DRIVER_NAME"_%u", unit);
162 	return iname;
163 }
164 
165 /*
166  * Return count of units with at least one port ACTIVE.
167  */
hfi1_count_active_units(void)168 int hfi1_count_active_units(void)
169 {
170 	struct hfi1_devdata *dd;
171 	struct hfi1_pportdata *ppd;
172 	unsigned long flags;
173 	int pidx, nunits_active = 0;
174 
175 	spin_lock_irqsave(&hfi1_devs_lock, flags);
176 	list_for_each_entry(dd, &hfi1_dev_list, list) {
177 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase)
178 			continue;
179 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
180 			ppd = dd->pport + pidx;
181 			if (ppd->lid && ppd->linkup) {
182 				nunits_active++;
183 				break;
184 			}
185 		}
186 	}
187 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
188 	return nunits_active;
189 }
190 
191 /*
192  * Return count of all units, optionally return in arguments
193  * the number of usable (present) units, and the number of
194  * ports that are up.
195  */
hfi1_count_units(int * npresentp,int * nupp)196 int hfi1_count_units(int *npresentp, int *nupp)
197 {
198 	int nunits = 0, npresent = 0, nup = 0;
199 	struct hfi1_devdata *dd;
200 	unsigned long flags;
201 	int pidx;
202 	struct hfi1_pportdata *ppd;
203 
204 	spin_lock_irqsave(&hfi1_devs_lock, flags);
205 
206 	list_for_each_entry(dd, &hfi1_dev_list, list) {
207 		nunits++;
208 		if ((dd->flags & HFI1_PRESENT) && dd->kregbase)
209 			npresent++;
210 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
211 			ppd = dd->pport + pidx;
212 			if (ppd->lid && ppd->linkup)
213 				nup++;
214 		}
215 	}
216 
217 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
218 
219 	if (npresentp)
220 		*npresentp = npresent;
221 	if (nupp)
222 		*nupp = nup;
223 
224 	return nunits;
225 }
226 
227 /*
228  * Get address of eager buffer from it's index (allocated in chunks, not
229  * contiguous).
230  */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)231 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
232 			       u8 *update)
233 {
234 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
235 
236 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
237 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
238 			(offset * RCV_BUF_BLOCK_SIZE));
239 }
240 
241 /*
242  * Validate and encode the a given RcvArray Buffer size.
243  * The function will check whether the given size falls within
244  * allowed size ranges for the respective type and, optionally,
245  * return the proper encoding.
246  */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)247 inline int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
248 {
249 	if (unlikely(!IS_ALIGNED(size, PAGE_SIZE)))
250 		return 0;
251 	if (unlikely(size < MIN_EAGER_BUFFER))
252 		return 0;
253 	if (size >
254 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
255 		return 0;
256 	if (encoded)
257 		*encoded = ilog2(size / PAGE_SIZE) + 1;
258 	return 1;
259 }
260 
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)261 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
262 		       struct hfi1_packet *packet)
263 {
264 	struct hfi1_message_header *rhdr = packet->hdr;
265 	u32 rte = rhf_rcv_type_err(packet->rhf);
266 	int lnh = be16_to_cpu(rhdr->lrh[0]) & 3;
267 	struct hfi1_ibport *ibp = &ppd->ibport_data;
268 
269 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
270 		return;
271 
272 	if (packet->rhf & RHF_TID_ERR) {
273 		/* For TIDERR and RC QPs preemptively schedule a NAK */
274 		struct hfi1_ib_header *hdr = (struct hfi1_ib_header *)rhdr;
275 		struct hfi1_other_headers *ohdr = NULL;
276 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
277 		u16 lid  = be16_to_cpu(hdr->lrh[1]);
278 		u32 qp_num;
279 		u32 rcv_flags = 0;
280 
281 		/* Sanity check packet */
282 		if (tlen < 24)
283 			goto drop;
284 
285 		/* Check for GRH */
286 		if (lnh == HFI1_LRH_BTH)
287 			ohdr = &hdr->u.oth;
288 		else if (lnh == HFI1_LRH_GRH) {
289 			u32 vtf;
290 
291 			ohdr = &hdr->u.l.oth;
292 			if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
293 				goto drop;
294 			vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
295 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
296 				goto drop;
297 			rcv_flags |= HFI1_HAS_GRH;
298 		} else
299 			goto drop;
300 
301 		/* Get the destination QP number. */
302 		qp_num = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
303 		if (lid < HFI1_MULTICAST_LID_BASE) {
304 			struct hfi1_qp *qp;
305 			unsigned long flags;
306 
307 			rcu_read_lock();
308 			qp = hfi1_lookup_qpn(ibp, qp_num);
309 			if (!qp) {
310 				rcu_read_unlock();
311 				goto drop;
312 			}
313 
314 			/*
315 			 * Handle only RC QPs - for other QP types drop error
316 			 * packet.
317 			 */
318 			spin_lock_irqsave(&qp->r_lock, flags);
319 
320 			/* Check for valid receive state. */
321 			if (!(ib_hfi1_state_ops[qp->state] &
322 			      HFI1_PROCESS_RECV_OK)) {
323 				ibp->n_pkt_drops++;
324 			}
325 
326 			switch (qp->ibqp.qp_type) {
327 			case IB_QPT_RC:
328 				hfi1_rc_hdrerr(
329 					rcd,
330 					hdr,
331 					rcv_flags,
332 					qp);
333 				break;
334 			default:
335 				/* For now don't handle any other QP types */
336 				break;
337 			}
338 
339 			spin_unlock_irqrestore(&qp->r_lock, flags);
340 			rcu_read_unlock();
341 		} /* Unicast QP */
342 	} /* Valid packet with TIDErr */
343 
344 	/* handle "RcvTypeErr" flags */
345 	switch (rte) {
346 	case RHF_RTE_ERROR_OP_CODE_ERR:
347 	{
348 		u32 opcode;
349 		void *ebuf = NULL;
350 		__be32 *bth = NULL;
351 
352 		if (rhf_use_egr_bfr(packet->rhf))
353 			ebuf = packet->ebuf;
354 
355 		if (ebuf == NULL)
356 			goto drop; /* this should never happen */
357 
358 		if (lnh == HFI1_LRH_BTH)
359 			bth = (__be32 *)ebuf;
360 		else if (lnh == HFI1_LRH_GRH)
361 			bth = (__be32 *)((char *)ebuf + sizeof(struct ib_grh));
362 		else
363 			goto drop;
364 
365 		opcode = be32_to_cpu(bth[0]) >> 24;
366 		opcode &= 0xff;
367 
368 		if (opcode == IB_OPCODE_CNP) {
369 			/*
370 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
371 			 * via this code path (errata 291394).
372 			 */
373 			struct hfi1_qp *qp = NULL;
374 			u32 lqpn, rqpn;
375 			u16 rlid;
376 			u8 svc_type, sl, sc5;
377 
378 			sc5  = (be16_to_cpu(rhdr->lrh[0]) >> 12) & 0xf;
379 			if (rhf_dc_info(packet->rhf))
380 				sc5 |= 0x10;
381 			sl = ibp->sc_to_sl[sc5];
382 
383 			lqpn = be32_to_cpu(bth[1]) & HFI1_QPN_MASK;
384 			rcu_read_lock();
385 			qp = hfi1_lookup_qpn(ibp, lqpn);
386 			if (qp == NULL) {
387 				rcu_read_unlock();
388 				goto drop;
389 			}
390 
391 			switch (qp->ibqp.qp_type) {
392 			case IB_QPT_UD:
393 				rlid = 0;
394 				rqpn = 0;
395 				svc_type = IB_CC_SVCTYPE_UD;
396 				break;
397 			case IB_QPT_UC:
398 				rlid = be16_to_cpu(rhdr->lrh[3]);
399 				rqpn = qp->remote_qpn;
400 				svc_type = IB_CC_SVCTYPE_UC;
401 				break;
402 			default:
403 				goto drop;
404 			}
405 
406 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
407 			rcu_read_unlock();
408 		}
409 
410 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
411 		break;
412 	}
413 	default:
414 		break;
415 	}
416 
417 drop:
418 	return;
419 }
420 
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)421 static inline void init_packet(struct hfi1_ctxtdata *rcd,
422 			      struct hfi1_packet *packet)
423 {
424 
425 	packet->rsize = rcd->rcvhdrqentsize; /* words */
426 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427 	packet->rcd = rcd;
428 	packet->updegr = 0;
429 	packet->etail = -1;
430 	packet->rhf_addr = get_rhf_addr(rcd);
431 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
432 	packet->rhqoff = rcd->head;
433 	packet->numpkt = 0;
434 	packet->rcv_flags = 0;
435 }
436 
437 #ifndef CONFIG_PRESCAN_RXQ
prescan_rxq(struct hfi1_packet * packet)438 static void prescan_rxq(struct hfi1_packet *packet) {}
439 #else /* CONFIG_PRESCAN_RXQ */
440 static int prescan_receive_queue;
441 
process_ecn(struct hfi1_qp * qp,struct hfi1_ib_header * hdr,struct hfi1_other_headers * ohdr,u64 rhf,struct ib_grh * grh)442 static void process_ecn(struct hfi1_qp *qp, struct hfi1_ib_header *hdr,
443 			struct hfi1_other_headers *ohdr,
444 			u64 rhf, struct ib_grh *grh)
445 {
446 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
447 	u32 bth1;
448 	u8 sc5, svc_type;
449 	int is_fecn, is_becn;
450 
451 	switch (qp->ibqp.qp_type) {
452 	case IB_QPT_UD:
453 		svc_type = IB_CC_SVCTYPE_UD;
454 		break;
455 	case IB_QPT_UC:	/* LATER */
456 	case IB_QPT_RC:	/* LATER */
457 	default:
458 		return;
459 	}
460 
461 	is_fecn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_FECN_SHIFT) &
462 			HFI1_FECN_MASK;
463 	is_becn = (be32_to_cpu(ohdr->bth[1]) >> HFI1_BECN_SHIFT) &
464 			HFI1_BECN_MASK;
465 
466 	sc5 = (be16_to_cpu(hdr->lrh[0]) >> 12) & 0xf;
467 	if (rhf_dc_info(rhf))
468 		sc5 |= 0x10;
469 
470 	if (is_fecn) {
471 		u32 src_qpn = be32_to_cpu(ohdr->u.ud.deth[1]) & HFI1_QPN_MASK;
472 		u16 pkey = (u16)be32_to_cpu(ohdr->bth[0]);
473 		u16 dlid = be16_to_cpu(hdr->lrh[1]);
474 		u16 slid = be16_to_cpu(hdr->lrh[3]);
475 
476 		return_cnp(ibp, qp, src_qpn, pkey, dlid, slid, sc5, grh);
477 	}
478 
479 	if (is_becn) {
480 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
481 		u32 lqpn =  be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
482 		u8 sl = ibp->sc_to_sl[sc5];
483 
484 		process_becn(ppd, sl, 0, lqpn, 0, svc_type);
485 	}
486 
487 	/* turn off BECN, or FECN */
488 	bth1 = be32_to_cpu(ohdr->bth[1]);
489 	bth1 &= ~(HFI1_FECN_MASK << HFI1_FECN_SHIFT);
490 	bth1 &= ~(HFI1_BECN_MASK << HFI1_BECN_SHIFT);
491 	ohdr->bth[1] = cpu_to_be32(bth1);
492 }
493 
494 struct ps_mdata {
495 	struct hfi1_ctxtdata *rcd;
496 	u32 rsize;
497 	u32 maxcnt;
498 	u32 ps_head;
499 	u32 ps_tail;
500 	u32 ps_seq;
501 };
502 
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)503 static inline void init_ps_mdata(struct ps_mdata *mdata,
504 				 struct hfi1_packet *packet)
505 {
506 	struct hfi1_ctxtdata *rcd = packet->rcd;
507 
508 	mdata->rcd = rcd;
509 	mdata->rsize = packet->rsize;
510 	mdata->maxcnt = packet->maxcnt;
511 
512 	if (rcd->ps_state.initialized == 0) {
513 		mdata->ps_head = packet->rhqoff;
514 		rcd->ps_state.initialized++;
515 	} else
516 		mdata->ps_head = rcd->ps_state.ps_head;
517 
518 	if (HFI1_CAP_IS_KSET(DMA_RTAIL)) {
519 		mdata->ps_tail = packet->hdrqtail;
520 		mdata->ps_seq = 0; /* not used with DMA_RTAIL */
521 	} else {
522 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
523 		mdata->ps_seq = rcd->seq_cnt;
524 	}
525 }
526 
ps_done(struct ps_mdata * mdata,u64 rhf)527 static inline int ps_done(struct ps_mdata *mdata, u64 rhf)
528 {
529 	if (HFI1_CAP_IS_KSET(DMA_RTAIL))
530 		return mdata->ps_head == mdata->ps_tail;
531 	return mdata->ps_seq != rhf_rcv_seq(rhf);
532 }
533 
update_ps_mdata(struct ps_mdata * mdata)534 static inline void update_ps_mdata(struct ps_mdata *mdata)
535 {
536 	struct hfi1_ctxtdata *rcd = mdata->rcd;
537 
538 	mdata->ps_head += mdata->rsize;
539 	if (mdata->ps_head > mdata->maxcnt)
540 		mdata->ps_head = 0;
541 	rcd->ps_state.ps_head = mdata->ps_head;
542 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
543 		if (++mdata->ps_seq > 13)
544 			mdata->ps_seq = 1;
545 	}
546 }
547 
548 /*
549  * prescan_rxq - search through the receive queue looking for packets
550  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
551  * When an ECN is found, process the Congestion Notification, and toggle
552  * it off.
553  */
prescan_rxq(struct hfi1_packet * packet)554 static void prescan_rxq(struct hfi1_packet *packet)
555 {
556 	struct hfi1_ctxtdata *rcd = packet->rcd;
557 	struct ps_mdata mdata;
558 
559 	if (!prescan_receive_queue)
560 		return;
561 
562 	init_ps_mdata(&mdata, packet);
563 
564 	while (1) {
565 		struct hfi1_devdata *dd = rcd->dd;
566 		struct hfi1_ibport *ibp = &rcd->ppd->ibport_data;
567 		__le32 *rhf_addr = (__le32 *) rcd->rcvhdrq + mdata.ps_head +
568 					 dd->rhf_offset;
569 		struct hfi1_qp *qp;
570 		struct hfi1_ib_header *hdr;
571 		struct hfi1_other_headers *ohdr;
572 		struct ib_grh *grh = NULL;
573 		u64 rhf = rhf_to_cpu(rhf_addr);
574 		u32 etype = rhf_rcv_type(rhf), qpn;
575 		int is_ecn = 0;
576 		u8 lnh;
577 
578 		if (ps_done(&mdata, rhf))
579 			break;
580 
581 		if (etype != RHF_RCV_TYPE_IB)
582 			goto next;
583 
584 		hdr = (struct hfi1_ib_header *)
585 			hfi1_get_msgheader(dd, rhf_addr);
586 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
587 
588 		if (lnh == HFI1_LRH_BTH)
589 			ohdr = &hdr->u.oth;
590 		else if (lnh == HFI1_LRH_GRH) {
591 			ohdr = &hdr->u.l.oth;
592 			grh = &hdr->u.l.grh;
593 		} else
594 			goto next; /* just in case */
595 
596 		is_ecn |= be32_to_cpu(ohdr->bth[1]) &
597 			(HFI1_FECN_MASK << HFI1_FECN_SHIFT);
598 		is_ecn |= be32_to_cpu(ohdr->bth[1]) &
599 			(HFI1_BECN_MASK << HFI1_BECN_SHIFT);
600 
601 		if (!is_ecn)
602 			goto next;
603 
604 		qpn = be32_to_cpu(ohdr->bth[1]) & HFI1_QPN_MASK;
605 		rcu_read_lock();
606 		qp = hfi1_lookup_qpn(ibp, qpn);
607 
608 		if (qp == NULL) {
609 			rcu_read_unlock();
610 			goto next;
611 		}
612 
613 		process_ecn(qp, hdr, ohdr, rhf, grh);
614 		rcu_read_unlock();
615 next:
616 		update_ps_mdata(&mdata);
617 	}
618 }
619 #endif /* CONFIG_PRESCAN_RXQ */
620 
process_rcv_packet(struct hfi1_packet * packet,int thread)621 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
622 {
623 	int ret = RCV_PKT_OK;
624 
625 	packet->hdr = hfi1_get_msgheader(packet->rcd->dd,
626 					 packet->rhf_addr);
627 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
628 	packet->etype = rhf_rcv_type(packet->rhf);
629 	/* total length */
630 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
631 	/* retrieve eager buffer details */
632 	packet->ebuf = NULL;
633 	if (rhf_use_egr_bfr(packet->rhf)) {
634 		packet->etail = rhf_egr_index(packet->rhf);
635 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
636 				 &packet->updegr);
637 		/*
638 		 * Prefetch the contents of the eager buffer.  It is
639 		 * OK to send a negative length to prefetch_range().
640 		 * The +2 is the size of the RHF.
641 		 */
642 		prefetch_range(packet->ebuf,
643 			packet->tlen - ((packet->rcd->rcvhdrqentsize -
644 				  (rhf_hdrq_offset(packet->rhf)+2)) * 4));
645 	}
646 
647 	/*
648 	 * Call a type specific handler for the packet. We
649 	 * should be able to trust that etype won't be beyond
650 	 * the range of valid indexes. If so something is really
651 	 * wrong and we can probably just let things come
652 	 * crashing down. There is no need to eat another
653 	 * comparison in this performance critical code.
654 	 */
655 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
656 	packet->numpkt++;
657 
658 	/* Set up for the next packet */
659 	packet->rhqoff += packet->rsize;
660 	if (packet->rhqoff >= packet->maxcnt)
661 		packet->rhqoff = 0;
662 
663 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) {
664 		if (thread) {
665 			cond_resched();
666 		} else {
667 			ret = RCV_PKT_LIMIT;
668 			this_cpu_inc(*packet->rcd->dd->rcv_limit);
669 		}
670 	}
671 
672 	packet->rhf_addr = (__le32 *) packet->rcd->rcvhdrq + packet->rhqoff +
673 				      packet->rcd->dd->rhf_offset;
674 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
675 
676 	return ret;
677 }
678 
process_rcv_update(int last,struct hfi1_packet * packet)679 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
680 {
681 	/*
682 	 * Update head regs etc., every 16 packets, if not last pkt,
683 	 * to help prevent rcvhdrq overflows, when many packets
684 	 * are processed and queue is nearly full.
685 	 * Don't request an interrupt for intermediate updates.
686 	 */
687 	if (!last && !(packet->numpkt & 0xf)) {
688 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
689 			       packet->etail, 0, 0);
690 		packet->updegr = 0;
691 	}
692 	packet->rcv_flags = 0;
693 }
694 
finish_packet(struct hfi1_packet * packet)695 static inline void finish_packet(struct hfi1_packet *packet)
696 {
697 
698 	/*
699 	 * Nothing we need to free for the packet.
700 	 *
701 	 * The only thing we need to do is a final update and call for an
702 	 * interrupt
703 	 */
704 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
705 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
706 
707 }
708 
process_rcv_qp_work(struct hfi1_packet * packet)709 static inline void process_rcv_qp_work(struct hfi1_packet *packet)
710 {
711 
712 	struct hfi1_ctxtdata *rcd;
713 	struct hfi1_qp *qp, *nqp;
714 
715 	rcd = packet->rcd;
716 	rcd->head = packet->rhqoff;
717 
718 	/*
719 	 * Iterate over all QPs waiting to respond.
720 	 * The list won't change since the IRQ is only run on one CPU.
721 	 */
722 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
723 		list_del_init(&qp->rspwait);
724 		if (qp->r_flags & HFI1_R_RSP_NAK) {
725 			qp->r_flags &= ~HFI1_R_RSP_NAK;
726 			hfi1_send_rc_ack(rcd, qp, 0);
727 		}
728 		if (qp->r_flags & HFI1_R_RSP_SEND) {
729 			unsigned long flags;
730 
731 			qp->r_flags &= ~HFI1_R_RSP_SEND;
732 			spin_lock_irqsave(&qp->s_lock, flags);
733 			if (ib_hfi1_state_ops[qp->state] &
734 					HFI1_PROCESS_OR_FLUSH_SEND)
735 				hfi1_schedule_send(qp);
736 			spin_unlock_irqrestore(&qp->s_lock, flags);
737 		}
738 		if (atomic_dec_and_test(&qp->refcount))
739 			wake_up(&qp->wait);
740 	}
741 }
742 
743 /*
744  * Handle receive interrupts when using the no dma rtail option.
745  */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)746 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
747 {
748 	u32 seq;
749 	int last = RCV_PKT_OK;
750 	struct hfi1_packet packet;
751 
752 	init_packet(rcd, &packet);
753 	seq = rhf_rcv_seq(packet.rhf);
754 	if (seq != rcd->seq_cnt) {
755 		last = RCV_PKT_DONE;
756 		goto bail;
757 	}
758 
759 	prescan_rxq(&packet);
760 
761 	while (last == RCV_PKT_OK) {
762 		last = process_rcv_packet(&packet, thread);
763 		seq = rhf_rcv_seq(packet.rhf);
764 		if (++rcd->seq_cnt > 13)
765 			rcd->seq_cnt = 1;
766 		if (seq != rcd->seq_cnt)
767 			last = RCV_PKT_DONE;
768 		process_rcv_update(last, &packet);
769 	}
770 	process_rcv_qp_work(&packet);
771 bail:
772 	finish_packet(&packet);
773 	return last;
774 }
775 
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)776 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
777 {
778 	u32 hdrqtail;
779 	int last = RCV_PKT_OK;
780 	struct hfi1_packet packet;
781 
782 	init_packet(rcd, &packet);
783 	hdrqtail = get_rcvhdrtail(rcd);
784 	if (packet.rhqoff == hdrqtail) {
785 		last = RCV_PKT_DONE;
786 		goto bail;
787 	}
788 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
789 
790 	prescan_rxq(&packet);
791 
792 	while (last == RCV_PKT_OK) {
793 		last = process_rcv_packet(&packet, thread);
794 		hdrqtail = get_rcvhdrtail(rcd);
795 		if (packet.rhqoff == hdrqtail)
796 			last = RCV_PKT_DONE;
797 		process_rcv_update(last, &packet);
798 	}
799 	process_rcv_qp_work(&packet);
800 bail:
801 	finish_packet(&packet);
802 	return last;
803 }
804 
set_all_nodma_rtail(struct hfi1_devdata * dd)805 static inline void set_all_nodma_rtail(struct hfi1_devdata *dd)
806 {
807 	int i;
808 
809 	for (i = 0; i < dd->first_user_ctxt; i++)
810 		dd->rcd[i]->do_interrupt =
811 			&handle_receive_interrupt_nodma_rtail;
812 }
813 
set_all_dma_rtail(struct hfi1_devdata * dd)814 static inline void set_all_dma_rtail(struct hfi1_devdata *dd)
815 {
816 	int i;
817 
818 	for (i = 0; i < dd->first_user_ctxt; i++)
819 		dd->rcd[i]->do_interrupt =
820 			&handle_receive_interrupt_dma_rtail;
821 }
822 
823 /*
824  * handle_receive_interrupt - receive a packet
825  * @rcd: the context
826  *
827  * Called from interrupt handler for errors or receive interrupt.
828  * This is the slow path interrupt handler.
829  */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)830 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
831 {
832 	struct hfi1_devdata *dd = rcd->dd;
833 	u32 hdrqtail;
834 	int last = RCV_PKT_OK, needset = 1;
835 	struct hfi1_packet packet;
836 
837 	init_packet(rcd, &packet);
838 
839 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
840 		u32 seq = rhf_rcv_seq(packet.rhf);
841 
842 		if (seq != rcd->seq_cnt) {
843 			last = RCV_PKT_DONE;
844 			goto bail;
845 		}
846 		hdrqtail = 0;
847 	} else {
848 		hdrqtail = get_rcvhdrtail(rcd);
849 		if (packet.rhqoff == hdrqtail) {
850 			last = RCV_PKT_DONE;
851 			goto bail;
852 		}
853 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
854 	}
855 
856 	prescan_rxq(&packet);
857 
858 	while (last == RCV_PKT_OK) {
859 
860 		if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet,
861 			DROP_PACKET_OFF) == DROP_PACKET_ON)) {
862 			dd->do_drop = 0;
863 
864 			/* On to the next packet */
865 			packet.rhqoff += packet.rsize;
866 			packet.rhf_addr = (__le32 *) rcd->rcvhdrq +
867 					  packet.rhqoff +
868 					  dd->rhf_offset;
869 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
870 
871 		} else {
872 			last = process_rcv_packet(&packet, thread);
873 		}
874 
875 		if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) {
876 			u32 seq = rhf_rcv_seq(packet.rhf);
877 
878 			if (++rcd->seq_cnt > 13)
879 				rcd->seq_cnt = 1;
880 			if (seq != rcd->seq_cnt)
881 				last = RCV_PKT_DONE;
882 			if (needset) {
883 				dd_dev_info(dd,
884 					"Switching to NO_DMA_RTAIL\n");
885 				set_all_nodma_rtail(dd);
886 				needset = 0;
887 			}
888 		} else {
889 			if (packet.rhqoff == hdrqtail)
890 				last = RCV_PKT_DONE;
891 			if (needset) {
892 				dd_dev_info(dd,
893 					    "Switching to DMA_RTAIL\n");
894 				set_all_dma_rtail(dd);
895 				needset = 0;
896 			}
897 		}
898 
899 		process_rcv_update(last, &packet);
900 	}
901 
902 	process_rcv_qp_work(&packet);
903 
904 bail:
905 	/*
906 	 * Always write head at end, and setup rcv interrupt, even
907 	 * if no packets were processed.
908 	 */
909 	finish_packet(&packet);
910 	return last;
911 }
912 
913 /*
914  * Convert a given MTU size to the on-wire MAD packet enumeration.
915  * Return -1 if the size is invalid.
916  */
mtu_to_enum(u32 mtu,int default_if_bad)917 int mtu_to_enum(u32 mtu, int default_if_bad)
918 {
919 	switch (mtu) {
920 	case     0: return OPA_MTU_0;
921 	case   256: return OPA_MTU_256;
922 	case   512: return OPA_MTU_512;
923 	case  1024: return OPA_MTU_1024;
924 	case  2048: return OPA_MTU_2048;
925 	case  4096: return OPA_MTU_4096;
926 	case  8192: return OPA_MTU_8192;
927 	case 10240: return OPA_MTU_10240;
928 	}
929 	return default_if_bad;
930 }
931 
enum_to_mtu(int mtu)932 u16 enum_to_mtu(int mtu)
933 {
934 	switch (mtu) {
935 	case OPA_MTU_0:     return 0;
936 	case OPA_MTU_256:   return 256;
937 	case OPA_MTU_512:   return 512;
938 	case OPA_MTU_1024:  return 1024;
939 	case OPA_MTU_2048:  return 2048;
940 	case OPA_MTU_4096:  return 4096;
941 	case OPA_MTU_8192:  return 8192;
942 	case OPA_MTU_10240: return 10240;
943 	default: return 0xffff;
944 	}
945 }
946 
947 /*
948  * set_mtu - set the MTU
949  * @ppd: the per port data
950  *
951  * We can handle "any" incoming size, the issue here is whether we
952  * need to restrict our outgoing size.  We do not deal with what happens
953  * to programs that are already running when the size changes.
954  */
set_mtu(struct hfi1_pportdata * ppd)955 int set_mtu(struct hfi1_pportdata *ppd)
956 {
957 	struct hfi1_devdata *dd = ppd->dd;
958 	int i, drain, ret = 0, is_up = 0;
959 
960 	ppd->ibmtu = 0;
961 	for (i = 0; i < ppd->vls_supported; i++)
962 		if (ppd->ibmtu < dd->vld[i].mtu)
963 			ppd->ibmtu = dd->vld[i].mtu;
964 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
965 
966 	mutex_lock(&ppd->hls_lock);
967 	if (ppd->host_link_state == HLS_UP_INIT
968 			|| ppd->host_link_state == HLS_UP_ARMED
969 			|| ppd->host_link_state == HLS_UP_ACTIVE)
970 		is_up = 1;
971 
972 	drain = !is_ax(dd) && is_up;
973 
974 	if (drain)
975 		/*
976 		 * MTU is specified per-VL. To ensure that no packet gets
977 		 * stuck (due, e.g., to the MTU for the packet's VL being
978 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
979 		 */
980 		ret = stop_drain_data_vls(dd);
981 
982 	if (ret) {
983 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
984 			   __func__);
985 		goto err;
986 	}
987 
988 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
989 
990 	if (drain)
991 		open_fill_data_vls(dd); /* reopen all VLs */
992 
993 err:
994 	mutex_unlock(&ppd->hls_lock);
995 
996 	return ret;
997 }
998 
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)999 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1000 {
1001 	struct hfi1_devdata *dd = ppd->dd;
1002 
1003 	ppd->lid = lid;
1004 	ppd->lmc = lmc;
1005 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1006 
1007 	dd_dev_info(dd, "IB%u:%u got a lid: 0x%x\n", dd->unit, ppd->port, lid);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * Following deal with the "obviously simple" task of overriding the state
1014  * of the LEDs, which normally indicate link physical and logical status.
1015  * The complications arise in dealing with different hardware mappings
1016  * and the board-dependent routine being called from interrupts.
1017  * and then there's the requirement to _flash_ them.
1018  */
1019 #define LED_OVER_FREQ_SHIFT 8
1020 #define LED_OVER_FREQ_MASK (0xFF<<LED_OVER_FREQ_SHIFT)
1021 /* Below is "non-zero" to force override, but both actual LEDs are off */
1022 #define LED_OVER_BOTH_OFF (8)
1023 
run_led_override(unsigned long opaque)1024 static void run_led_override(unsigned long opaque)
1025 {
1026 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1027 	struct hfi1_devdata *dd = ppd->dd;
1028 	int timeoff;
1029 	int ph_idx;
1030 
1031 	if (!(dd->flags & HFI1_INITTED))
1032 		return;
1033 
1034 	ph_idx = ppd->led_override_phase++ & 1;
1035 	ppd->led_override = ppd->led_override_vals[ph_idx];
1036 	timeoff = ppd->led_override_timeoff;
1037 
1038 	/*
1039 	 * don't re-fire the timer if user asked for it to be off; we let
1040 	 * it fire one more time after they turn it off to simplify
1041 	 */
1042 	if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1043 		mod_timer(&ppd->led_override_timer, jiffies + timeoff);
1044 }
1045 
hfi1_set_led_override(struct hfi1_pportdata * ppd,unsigned int val)1046 void hfi1_set_led_override(struct hfi1_pportdata *ppd, unsigned int val)
1047 {
1048 	struct hfi1_devdata *dd = ppd->dd;
1049 	int timeoff, freq;
1050 
1051 	if (!(dd->flags & HFI1_INITTED))
1052 		return;
1053 
1054 	/* First check if we are blinking. If not, use 1HZ polling */
1055 	timeoff = HZ;
1056 	freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT;
1057 
1058 	if (freq) {
1059 		/* For blink, set each phase from one nybble of val */
1060 		ppd->led_override_vals[0] = val & 0xF;
1061 		ppd->led_override_vals[1] = (val >> 4) & 0xF;
1062 		timeoff = (HZ << 4)/freq;
1063 	} else {
1064 		/* Non-blink set both phases the same. */
1065 		ppd->led_override_vals[0] = val & 0xF;
1066 		ppd->led_override_vals[1] = val & 0xF;
1067 	}
1068 	ppd->led_override_timeoff = timeoff;
1069 
1070 	/*
1071 	 * If the timer has not already been started, do so. Use a "quick"
1072 	 * timeout so the function will be called soon, to look at our request.
1073 	 */
1074 	if (atomic_inc_return(&ppd->led_override_timer_active) == 1) {
1075 		/* Need to start timer */
1076 		setup_timer(&ppd->led_override_timer, run_led_override,
1077 				(unsigned long)ppd);
1078 
1079 		ppd->led_override_timer.expires = jiffies + 1;
1080 		add_timer(&ppd->led_override_timer);
1081 	} else {
1082 		if (ppd->led_override_vals[0] || ppd->led_override_vals[1])
1083 			mod_timer(&ppd->led_override_timer, jiffies + 1);
1084 		atomic_dec(&ppd->led_override_timer_active);
1085 	}
1086 }
1087 
1088 /**
1089  * hfi1_reset_device - reset the chip if possible
1090  * @unit: the device to reset
1091  *
1092  * Whether or not reset is successful, we attempt to re-initialize the chip
1093  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1094  * so that the various entry points will fail until we reinitialize.  For
1095  * now, we only allow this if no user contexts are open that use chip resources
1096  */
hfi1_reset_device(int unit)1097 int hfi1_reset_device(int unit)
1098 {
1099 	int ret, i;
1100 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1101 	struct hfi1_pportdata *ppd;
1102 	unsigned long flags;
1103 	int pidx;
1104 
1105 	if (!dd) {
1106 		ret = -ENODEV;
1107 		goto bail;
1108 	}
1109 
1110 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1111 
1112 	if (!dd->kregbase || !(dd->flags & HFI1_PRESENT)) {
1113 		dd_dev_info(dd,
1114 			"Invalid unit number %u or not initialized or not present\n",
1115 			unit);
1116 		ret = -ENXIO;
1117 		goto bail;
1118 	}
1119 
1120 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1121 	if (dd->rcd)
1122 		for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
1123 			if (!dd->rcd[i] || !dd->rcd[i]->cnt)
1124 				continue;
1125 			spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1126 			ret = -EBUSY;
1127 			goto bail;
1128 		}
1129 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1130 
1131 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1132 		ppd = dd->pport + pidx;
1133 		if (atomic_read(&ppd->led_override_timer_active)) {
1134 			/* Need to stop LED timer, _then_ shut off LEDs */
1135 			del_timer_sync(&ppd->led_override_timer);
1136 			atomic_set(&ppd->led_override_timer_active, 0);
1137 		}
1138 
1139 		/* Shut off LEDs after we are sure timer is not running */
1140 		ppd->led_override = LED_OVER_BOTH_OFF;
1141 	}
1142 	if (dd->flags & HFI1_HAS_SEND_DMA)
1143 		sdma_exit(dd);
1144 
1145 	hfi1_reset_cpu_counters(dd);
1146 
1147 	ret = hfi1_init(dd, 1);
1148 
1149 	if (ret)
1150 		dd_dev_err(dd,
1151 			"Reinitialize unit %u after reset failed with %d\n",
1152 			unit, ret);
1153 	else
1154 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1155 			unit);
1156 
1157 bail:
1158 	return ret;
1159 }
1160 
handle_eflags(struct hfi1_packet * packet)1161 void handle_eflags(struct hfi1_packet *packet)
1162 {
1163 	struct hfi1_ctxtdata *rcd = packet->rcd;
1164 	u32 rte = rhf_rcv_type_err(packet->rhf);
1165 
1166 	dd_dev_err(rcd->dd,
1167 		"receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1168 		rcd->ctxt, packet->rhf,
1169 		packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1170 		packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1171 		packet->rhf & RHF_DC_ERR ? "dc " : "",
1172 		packet->rhf & RHF_TID_ERR ? "tid " : "",
1173 		packet->rhf & RHF_LEN_ERR ? "len " : "",
1174 		packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1175 		packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1176 		packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1177 		rte);
1178 
1179 	rcv_hdrerr(rcd, rcd->ppd, packet);
1180 }
1181 
1182 /*
1183  * The following functions are called by the interrupt handler. They are type
1184  * specific handlers for each packet type.
1185  */
process_receive_ib(struct hfi1_packet * packet)1186 int process_receive_ib(struct hfi1_packet *packet)
1187 {
1188 	trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1189 			  packet->rcd->ctxt,
1190 			  rhf_err_flags(packet->rhf),
1191 			  RHF_RCV_TYPE_IB,
1192 			  packet->hlen,
1193 			  packet->tlen,
1194 			  packet->updegr,
1195 			  rhf_egr_index(packet->rhf));
1196 
1197 	if (unlikely(rhf_err_flags(packet->rhf))) {
1198 		handle_eflags(packet);
1199 		return RHF_RCV_CONTINUE;
1200 	}
1201 
1202 	hfi1_ib_rcv(packet);
1203 	return RHF_RCV_CONTINUE;
1204 }
1205 
process_receive_bypass(struct hfi1_packet * packet)1206 int process_receive_bypass(struct hfi1_packet *packet)
1207 {
1208 	if (unlikely(rhf_err_flags(packet->rhf)))
1209 		handle_eflags(packet);
1210 
1211 	dd_dev_err(packet->rcd->dd,
1212 	   "Bypass packets are not supported in normal operation. Dropping\n");
1213 	return RHF_RCV_CONTINUE;
1214 }
1215 
process_receive_error(struct hfi1_packet * packet)1216 int process_receive_error(struct hfi1_packet *packet)
1217 {
1218 	handle_eflags(packet);
1219 
1220 	if (unlikely(rhf_err_flags(packet->rhf)))
1221 		dd_dev_err(packet->rcd->dd,
1222 			   "Unhandled error packet received. Dropping.\n");
1223 
1224 	return RHF_RCV_CONTINUE;
1225 }
1226 
kdeth_process_expected(struct hfi1_packet * packet)1227 int kdeth_process_expected(struct hfi1_packet *packet)
1228 {
1229 	if (unlikely(rhf_err_flags(packet->rhf)))
1230 		handle_eflags(packet);
1231 
1232 	dd_dev_err(packet->rcd->dd,
1233 		   "Unhandled expected packet received. Dropping.\n");
1234 	return RHF_RCV_CONTINUE;
1235 }
1236 
kdeth_process_eager(struct hfi1_packet * packet)1237 int kdeth_process_eager(struct hfi1_packet *packet)
1238 {
1239 	if (unlikely(rhf_err_flags(packet->rhf)))
1240 		handle_eflags(packet);
1241 
1242 	dd_dev_err(packet->rcd->dd,
1243 		   "Unhandled eager packet received. Dropping.\n");
1244 	return RHF_RCV_CONTINUE;
1245 }
1246 
process_receive_invalid(struct hfi1_packet * packet)1247 int process_receive_invalid(struct hfi1_packet *packet)
1248 {
1249 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1250 		rhf_rcv_type(packet->rhf));
1251 	return RHF_RCV_CONTINUE;
1252 }
1253