1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 * The contents of this file are subject to the Mozilla Public
11 * License Version 1.1 (the "License"); you may not use this file
12 * except in compliance with the License. You may obtain a copy of
13 * the License at http://www.mozilla.org/MPL/
14 *
15 * Software distributed under the License is distributed on an "AS
16 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 * implied. See the License for the specific language governing
18 * rights and limitations under the License.
19 *
20 * Alternatively, the contents of this file may be used under the
21 * terms of the GNU Public License version 2 (the "GPL"), in which
22 * case the provisions of the GPL are applicable instead of the
23 * above. If you wish to allow the use of your version of this file
24 * only under the terms of the GPL and not to allow others to use
25 * your version of this file under the MPL, indicate your decision
26 * by deleting the provisions above and replace them with the notice
27 * and other provisions required by the GPL. If you do not delete
28 * the provisions above, a recipient may use your version of this
29 * file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction. The lowest level functions are simply C-callable wrappers
52 * around the register accesses. The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable. The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx Highest level abstractions provided by the
59 * hfa384x code. They are driver defined wrappers
60 * for common sequences. These functions generally
61 * use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
64 * functions are wrappers for the RID get/set
65 * sequence. They call copy_[to|from]_bap() and
66 * cmd_access(). These functions operate on the
67 * RIDs and buffers without validation. The caller
68 * is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
72 * The function arguments correspond to each command
73 * argument, even command arguments that get packed
74 * into single registers. These functions _just_
75 * issue the command by setting the cmd/parm regs
76 * & reading the status/resp regs. Additional
77 * activities required to fully use a command
78 * (read/write from/to bap, get/set int status etc.)
79 * are implemented separately. Think of these as
80 * C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx These functions implement the sequence required
84 * to issue any prism2 command. Primarily used by the
85 * hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx BAP read/write access functions.
88 * Note: we usually use BAP0 for non-interrupt context
89 * and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo. The four
96 * functions are create(), destroy(), start(), and stop(). create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up. The start() function gets
99 * the actual hardware running and enables the interrupts. The stop()
100 * function shuts the hardware down. The sequence should be:
101 * create()
102 * start()
103 * .
104 * . Do interesting things w/ the hardware
105 * .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f) usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144 DOWAIT = 0,
145 DOASYNC
146 };
147
148 #define THROTTLE_JIFFIES (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151
152 #define ROUNDUP64(a) (((a)+63)&~63)
153
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161 static void hfa384x_usb_defer(struct work_struct *data);
162
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184 int urb_status);
185
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194
195 static void hfa384x_usb_throttlefn(unsigned long data);
196
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204
205 struct usbctlx_completor {
206 int (*complete)(struct usbctlx_completor *);
207 };
208
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211 hfa384x_usbctlx_t *ctlx,
212 struct usbctlx_completor *completor);
213
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223 hfa384x_cmdresult_t *result);
224
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227 hfa384x_rridresult_t *result);
228
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233 enum cmd_mode mode,
234 hfa384x_metacmd_t *cmd,
235 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239 enum cmd_mode mode,
240 u16 rid,
241 void *riddata,
242 unsigned int riddatalen,
243 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247 enum cmd_mode mode,
248 u16 rid,
249 void *riddata,
250 unsigned int riddatalen,
251 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255 enum cmd_mode mode,
256 u16 page,
257 u16 offset,
258 void *data,
259 unsigned int len,
260 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264 enum cmd_mode mode,
265 u16 page,
266 u16 offset,
267 void *data,
268 unsigned int len,
269 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272
ctlxstr(CTLX_STATE s)273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275 static const char * const ctlx_str[] = {
276 "Initial state",
277 "Complete",
278 "Request failed",
279 "Request pending",
280 "Request packet submitted",
281 "Request packet completed",
282 "Response packet completed"
283 };
284
285 return ctlx_str[s];
286 };
287
get_active_ctlx(hfa384x_t * hw)288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289 {
290 return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292
293 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)294 void dbprint_urb(struct urb *urb)
295 {
296 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297 pr_debug("urb->status=0x%08x\n", urb->status);
298 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299 pr_debug("urb->transfer_buffer=0x%08x\n",
300 (unsigned int)urb->transfer_buffer);
301 pr_debug("urb->transfer_buffer_length=0x%08x\n",
302 urb->transfer_buffer_length);
303 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306 (unsigned int)urb->setup_packet);
307 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 * hw device struct
324 * memflags memory allocation flags
325 *
326 * Returns:
327 * error code from submission
328 *
329 * Call context:
330 * Any
331 ----------------------------------------------------------------*/
submit_rx_urb(hfa384x_t * hw,gfp_t memflags)332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334 struct sk_buff *skb;
335 int result;
336
337 skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338 if (skb == NULL) {
339 result = -ENOMEM;
340 goto done;
341 }
342
343 /* Post the IN urb */
344 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345 hw->endp_in,
346 skb->data, sizeof(hfa384x_usbin_t),
347 hfa384x_usbin_callback, hw->wlandev);
348
349 hw->rx_urb_skb = skb;
350
351 result = -ENOLINK;
352 if (!hw->wlandev->hwremoved &&
353 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354 result = SUBMIT_URB(&hw->rx_urb, memflags);
355
356 /* Check whether we need to reset the RX pipe */
357 if (result == -EPIPE) {
358 netdev_warn(hw->wlandev->netdev,
359 "%s rx pipe stalled: requesting reset\n",
360 hw->wlandev->netdev->name);
361 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362 schedule_work(&hw->usb_work);
363 }
364 }
365
366 /* Don't leak memory if anything should go wrong */
367 if (result != 0) {
368 dev_kfree_skb(skb);
369 hw->rx_urb_skb = NULL;
370 }
371
372 done:
373 return result;
374 }
375
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 * hw device struct
385 * tx_urb URB of data for transmission
386 * memflags memory allocation flags
387 *
388 * Returns:
389 * error code from submission
390 *
391 * Call context:
392 * Any
393 ----------------------------------------------------------------*/
submit_tx_urb(hfa384x_t * hw,struct urb * tx_urb,gfp_t memflags)394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 struct net_device *netdev = hw->wlandev->netdev;
397 int result;
398
399 result = -ENOLINK;
400 if (netif_running(netdev)) {
401 if (!hw->wlandev->hwremoved &&
402 !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
403 result = SUBMIT_URB(tx_urb, memflags);
404
405 /* Test whether we need to reset the TX pipe */
406 if (result == -EPIPE) {
407 netdev_warn(hw->wlandev->netdev,
408 "%s tx pipe stalled: requesting reset\n",
409 netdev->name);
410 set_bit(WORK_TX_HALT, &hw->usb_flags);
411 schedule_work(&hw->usb_work);
412 } else if (result == 0) {
413 netif_stop_queue(netdev);
414 }
415 }
416 }
417
418 return result;
419 }
420
421 /*----------------------------------------------------------------
422 * hfa394x_usb_defer
423 *
424 * There are some things that the USB stack cannot do while
425 * in interrupt context, so we arrange this function to run
426 * in process context.
427 *
428 * Arguments:
429 * hw device structure
430 *
431 * Returns:
432 * nothing
433 *
434 * Call context:
435 * process (by design)
436 ----------------------------------------------------------------*/
hfa384x_usb_defer(struct work_struct * data)437 static void hfa384x_usb_defer(struct work_struct *data)
438 {
439 hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
440 struct net_device *netdev = hw->wlandev->netdev;
441
442 /* Don't bother trying to reset anything if the plug
443 * has been pulled ...
444 */
445 if (hw->wlandev->hwremoved)
446 return;
447
448 /* Reception has stopped: try to reset the input pipe */
449 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
450 int ret;
451
452 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
453
454 ret = usb_clear_halt(hw->usb, hw->endp_in);
455 if (ret != 0) {
456 netdev_err(hw->wlandev->netdev,
457 "Failed to clear rx pipe for %s: err=%d\n",
458 netdev->name, ret);
459 } else {
460 netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
461 netdev->name);
462 clear_bit(WORK_RX_HALT, &hw->usb_flags);
463 set_bit(WORK_RX_RESUME, &hw->usb_flags);
464 }
465 }
466
467 /* Resume receiving data back from the device. */
468 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
469 int ret;
470
471 ret = submit_rx_urb(hw, GFP_KERNEL);
472 if (ret != 0) {
473 netdev_err(hw->wlandev->netdev,
474 "Failed to resume %s rx pipe.\n",
475 netdev->name);
476 } else {
477 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478 }
479 }
480
481 /* Transmission has stopped: try to reset the output pipe */
482 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483 int ret;
484
485 usb_kill_urb(&hw->tx_urb);
486 ret = usb_clear_halt(hw->usb, hw->endp_out);
487 if (ret != 0) {
488 netdev_err(hw->wlandev->netdev,
489 "Failed to clear tx pipe for %s: err=%d\n",
490 netdev->name, ret);
491 } else {
492 netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
493 netdev->name);
494 clear_bit(WORK_TX_HALT, &hw->usb_flags);
495 set_bit(WORK_TX_RESUME, &hw->usb_flags);
496
497 /* Stopping the BULK-OUT pipe also blocked
498 * us from sending any more CTLX URBs, so
499 * we need to re-run our queue ...
500 */
501 hfa384x_usbctlxq_run(hw);
502 }
503 }
504
505 /* Resume transmitting. */
506 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507 netif_wake_queue(hw->wlandev->netdev);
508 }
509
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use. Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 * hw device structure
519 * irq device irq number
520 * iobase i/o base address for register access
521 * membase memory base address for register access
522 *
523 * Returns:
524 * nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 * process
530 ----------------------------------------------------------------*/
hfa384x_create(hfa384x_t * hw,struct usb_device * usb)531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533 hw->usb = usb;
534
535 /* Set up the waitq */
536 init_waitqueue_head(&hw->cmdq);
537
538 /* Initialize the command queue */
539 spin_lock_init(&hw->ctlxq.lock);
540 INIT_LIST_HEAD(&hw->ctlxq.pending);
541 INIT_LIST_HEAD(&hw->ctlxq.active);
542 INIT_LIST_HEAD(&hw->ctlxq.completing);
543 INIT_LIST_HEAD(&hw->ctlxq.reapable);
544
545 /* Initialize the authentication queue */
546 skb_queue_head_init(&hw->authq);
547
548 tasklet_init(&hw->reaper_bh,
549 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
550 tasklet_init(&hw->completion_bh,
551 hfa384x_usbctlx_completion_task, (unsigned long)hw);
552 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
553 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
554
555 setup_timer(&hw->throttle, hfa384x_usb_throttlefn, (unsigned long)hw);
556
557 setup_timer(&hw->resptimer, hfa384x_usbctlx_resptimerfn,
558 (unsigned long)hw);
559
560 setup_timer(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn,
561 (unsigned long)hw);
562
563 usb_init_urb(&hw->rx_urb);
564 usb_init_urb(&hw->tx_urb);
565 usb_init_urb(&hw->ctlx_urb);
566
567 hw->link_status = HFA384x_LINK_NOTCONNECTED;
568 hw->state = HFA384x_STATE_INIT;
569
570 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
571 setup_timer(&hw->commsqual_timer, prism2sta_commsqual_timer,
572 (unsigned long)hw);
573 }
574
575 /*----------------------------------------------------------------
576 * hfa384x_destroy
577 *
578 * Partner to hfa384x_create(). This function cleans up the hw
579 * structure so that it can be freed by the caller using a simple
580 * kfree. Currently, this function is just a placeholder. If, at some
581 * point in the future, an hw in the 'shutdown' state requires a 'deep'
582 * kfree, this is where it should be done. Note that if this function
583 * is called on a _running_ hw structure, the drvr_stop() function is
584 * called.
585 *
586 * Arguments:
587 * hw device structure
588 *
589 * Returns:
590 * nothing, this function is not allowed to fail.
591 *
592 * Side effects:
593 *
594 * Call context:
595 * process
596 ----------------------------------------------------------------*/
hfa384x_destroy(hfa384x_t * hw)597 void hfa384x_destroy(hfa384x_t *hw)
598 {
599 struct sk_buff *skb;
600
601 if (hw->state == HFA384x_STATE_RUNNING)
602 hfa384x_drvr_stop(hw);
603 hw->state = HFA384x_STATE_PREINIT;
604
605 kfree(hw->scanresults);
606 hw->scanresults = NULL;
607
608 /* Now to clean out the auth queue */
609 while ((skb = skb_dequeue(&hw->authq)))
610 dev_kfree_skb(skb);
611 }
612
usbctlx_alloc(void)613 static hfa384x_usbctlx_t *usbctlx_alloc(void)
614 {
615 hfa384x_usbctlx_t *ctlx;
616
617 ctlx = kzalloc(sizeof(*ctlx),
618 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
619 if (ctlx != NULL)
620 init_completion(&ctlx->done);
621
622 return ctlx;
623 }
624
625 static int
usbctlx_get_status(const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)626 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
627 hfa384x_cmdresult_t *result)
628 {
629 result->status = le16_to_cpu(cmdresp->status);
630 result->resp0 = le16_to_cpu(cmdresp->resp0);
631 result->resp1 = le16_to_cpu(cmdresp->resp1);
632 result->resp2 = le16_to_cpu(cmdresp->resp2);
633
634 pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
635 result->status, result->resp0, result->resp1, result->resp2);
636
637 return result->status & HFA384x_STATUS_RESULT;
638 }
639
640 static void
usbctlx_get_rridresult(const hfa384x_usb_rridresp_t * rridresp,hfa384x_rridresult_t * result)641 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
642 hfa384x_rridresult_t *result)
643 {
644 result->rid = le16_to_cpu(rridresp->rid);
645 result->riddata = rridresp->data;
646 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
647 }
648
649 /*----------------------------------------------------------------
650 * Completor object:
651 * This completor must be passed to hfa384x_usbctlx_complete_sync()
652 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
653 ----------------------------------------------------------------*/
654 struct usbctlx_cmd_completor {
655 struct usbctlx_completor head;
656
657 const hfa384x_usb_cmdresp_t *cmdresp;
658 hfa384x_cmdresult_t *result;
659 };
660
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)661 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
662 {
663 struct usbctlx_cmd_completor *complete;
664
665 complete = (struct usbctlx_cmd_completor *)head;
666 return usbctlx_get_status(complete->cmdresp, complete->result);
667 }
668
init_cmd_completor(struct usbctlx_cmd_completor * completor,const hfa384x_usb_cmdresp_t * cmdresp,hfa384x_cmdresult_t * result)669 static inline struct usbctlx_completor *init_cmd_completor(
670 struct usbctlx_cmd_completor
671 *completor,
672 const hfa384x_usb_cmdresp_t
673 *cmdresp,
674 hfa384x_cmdresult_t *result)
675 {
676 completor->head.complete = usbctlx_cmd_completor_fn;
677 completor->cmdresp = cmdresp;
678 completor->result = result;
679 return &(completor->head);
680 }
681
682 /*----------------------------------------------------------------
683 * Completor object:
684 * This completor must be passed to hfa384x_usbctlx_complete_sync()
685 * when processing a CTLX that reads a RID.
686 ----------------------------------------------------------------*/
687 struct usbctlx_rrid_completor {
688 struct usbctlx_completor head;
689
690 const hfa384x_usb_rridresp_t *rridresp;
691 void *riddata;
692 unsigned int riddatalen;
693 };
694
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)695 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
696 {
697 struct usbctlx_rrid_completor *complete;
698 hfa384x_rridresult_t rridresult;
699
700 complete = (struct usbctlx_rrid_completor *)head;
701 usbctlx_get_rridresult(complete->rridresp, &rridresult);
702
703 /* Validate the length, note body len calculation in bytes */
704 if (rridresult.riddata_len != complete->riddatalen) {
705 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
706 rridresult.rid,
707 complete->riddatalen, rridresult.riddata_len);
708 return -ENODATA;
709 }
710
711 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
712 return 0;
713 }
714
init_rrid_completor(struct usbctlx_rrid_completor * completor,const hfa384x_usb_rridresp_t * rridresp,void * riddata,unsigned int riddatalen)715 static inline struct usbctlx_completor *init_rrid_completor(
716 struct usbctlx_rrid_completor
717 *completor,
718 const hfa384x_usb_rridresp_t
719 *rridresp,
720 void *riddata,
721 unsigned int riddatalen)
722 {
723 completor->head.complete = usbctlx_rrid_completor_fn;
724 completor->rridresp = rridresp;
725 completor->riddata = riddata;
726 completor->riddatalen = riddatalen;
727 return &(completor->head);
728 }
729
730 /*----------------------------------------------------------------
731 * Completor object:
732 * Interprets the results of a synchronous RID-write
733 ----------------------------------------------------------------*/
734 #define init_wrid_completor init_cmd_completor
735
736 /*----------------------------------------------------------------
737 * Completor object:
738 * Interprets the results of a synchronous memory-write
739 ----------------------------------------------------------------*/
740 #define init_wmem_completor init_cmd_completor
741
742 /*----------------------------------------------------------------
743 * Completor object:
744 * Interprets the results of a synchronous memory-read
745 ----------------------------------------------------------------*/
746 struct usbctlx_rmem_completor {
747 struct usbctlx_completor head;
748
749 const hfa384x_usb_rmemresp_t *rmemresp;
750 void *data;
751 unsigned int len;
752 };
753
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)754 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
755 {
756 struct usbctlx_rmem_completor *complete =
757 (struct usbctlx_rmem_completor *)head;
758
759 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
760 memcpy(complete->data, complete->rmemresp->data, complete->len);
761 return 0;
762 }
763
init_rmem_completor(struct usbctlx_rmem_completor * completor,hfa384x_usb_rmemresp_t * rmemresp,void * data,unsigned int len)764 static inline struct usbctlx_completor *init_rmem_completor(
765 struct usbctlx_rmem_completor
766 *completor,
767 hfa384x_usb_rmemresp_t
768 *rmemresp,
769 void *data,
770 unsigned int len)
771 {
772 completor->head.complete = usbctlx_rmem_completor_fn;
773 completor->rmemresp = rmemresp;
774 completor->data = data;
775 completor->len = len;
776 return &(completor->head);
777 }
778
779 /*----------------------------------------------------------------
780 * hfa384x_cb_status
781 *
782 * Ctlx_complete handler for async CMD type control exchanges.
783 * mark the hw struct as such.
784 *
785 * Note: If the handling is changed here, it should probably be
786 * changed in docmd as well.
787 *
788 * Arguments:
789 * hw hw struct
790 * ctlx completed CTLX
791 *
792 * Returns:
793 * nothing
794 *
795 * Side effects:
796 *
797 * Call context:
798 * interrupt
799 ----------------------------------------------------------------*/
hfa384x_cb_status(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)800 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
801 {
802 if (ctlx->usercb != NULL) {
803 hfa384x_cmdresult_t cmdresult;
804
805 if (ctlx->state != CTLX_COMPLETE) {
806 memset(&cmdresult, 0, sizeof(cmdresult));
807 cmdresult.status =
808 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
809 } else {
810 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
811 }
812
813 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
814 }
815 }
816
817 /*----------------------------------------------------------------
818 * hfa384x_cb_rrid
819 *
820 * CTLX completion handler for async RRID type control exchanges.
821 *
822 * Note: If the handling is changed here, it should probably be
823 * changed in dorrid as well.
824 *
825 * Arguments:
826 * hw hw struct
827 * ctlx completed CTLX
828 *
829 * Returns:
830 * nothing
831 *
832 * Side effects:
833 *
834 * Call context:
835 * interrupt
836 ----------------------------------------------------------------*/
hfa384x_cb_rrid(hfa384x_t * hw,const hfa384x_usbctlx_t * ctlx)837 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
838 {
839 if (ctlx->usercb != NULL) {
840 hfa384x_rridresult_t rridresult;
841
842 if (ctlx->state != CTLX_COMPLETE) {
843 memset(&rridresult, 0, sizeof(rridresult));
844 rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
845 } else {
846 usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
847 &rridresult);
848 }
849
850 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
851 }
852 }
853
hfa384x_docmd_wait(hfa384x_t * hw,hfa384x_metacmd_t * cmd)854 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
855 {
856 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
857 }
858
859 static inline int
hfa384x_docmd_async(hfa384x_t * hw,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)860 hfa384x_docmd_async(hfa384x_t *hw,
861 hfa384x_metacmd_t *cmd,
862 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
863 {
864 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
865 }
866
867 static inline int
hfa384x_dorrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)868 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
869 unsigned int riddatalen)
870 {
871 return hfa384x_dorrid(hw, DOWAIT,
872 rid, riddata, riddatalen, NULL, NULL, NULL);
873 }
874
875 static inline int
hfa384x_dorrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)876 hfa384x_dorrid_async(hfa384x_t *hw,
877 u16 rid, void *riddata, unsigned int riddatalen,
878 ctlx_cmdcb_t cmdcb,
879 ctlx_usercb_t usercb, void *usercb_data)
880 {
881 return hfa384x_dorrid(hw, DOASYNC,
882 rid, riddata, riddatalen,
883 cmdcb, usercb, usercb_data);
884 }
885
886 static inline int
hfa384x_dowrid_wait(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen)887 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
888 unsigned int riddatalen)
889 {
890 return hfa384x_dowrid(hw, DOWAIT,
891 rid, riddata, riddatalen, NULL, NULL, NULL);
892 }
893
894 static inline int
hfa384x_dowrid_async(hfa384x_t * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)895 hfa384x_dowrid_async(hfa384x_t *hw,
896 u16 rid, void *riddata, unsigned int riddatalen,
897 ctlx_cmdcb_t cmdcb,
898 ctlx_usercb_t usercb, void *usercb_data)
899 {
900 return hfa384x_dowrid(hw, DOASYNC,
901 rid, riddata, riddatalen,
902 cmdcb, usercb, usercb_data);
903 }
904
905 static inline int
hfa384x_dormem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)906 hfa384x_dormem_wait(hfa384x_t *hw,
907 u16 page, u16 offset, void *data, unsigned int len)
908 {
909 return hfa384x_dormem(hw, DOWAIT,
910 page, offset, data, len, NULL, NULL, NULL);
911 }
912
913 static inline int
hfa384x_dormem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)914 hfa384x_dormem_async(hfa384x_t *hw,
915 u16 page, u16 offset, void *data, unsigned int len,
916 ctlx_cmdcb_t cmdcb,
917 ctlx_usercb_t usercb, void *usercb_data)
918 {
919 return hfa384x_dormem(hw, DOASYNC,
920 page, offset, data, len,
921 cmdcb, usercb, usercb_data);
922 }
923
924 static inline int
hfa384x_dowmem_wait(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len)925 hfa384x_dowmem_wait(hfa384x_t *hw,
926 u16 page, u16 offset, void *data, unsigned int len)
927 {
928 return hfa384x_dowmem(hw, DOWAIT,
929 page, offset, data, len, NULL, NULL, NULL);
930 }
931
932 static inline int
hfa384x_dowmem_async(hfa384x_t * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)933 hfa384x_dowmem_async(hfa384x_t *hw,
934 u16 page,
935 u16 offset,
936 void *data,
937 unsigned int len,
938 ctlx_cmdcb_t cmdcb,
939 ctlx_usercb_t usercb, void *usercb_data)
940 {
941 return hfa384x_dowmem(hw, DOASYNC,
942 page, offset, data, len,
943 cmdcb, usercb, usercb_data);
944 }
945
946 /*----------------------------------------------------------------
947 * hfa384x_cmd_initialize
948 *
949 * Issues the initialize command and sets the hw->state based
950 * on the result.
951 *
952 * Arguments:
953 * hw device structure
954 *
955 * Returns:
956 * 0 success
957 * >0 f/w reported error - f/w status code
958 * <0 driver reported error
959 *
960 * Side effects:
961 *
962 * Call context:
963 * process
964 ----------------------------------------------------------------*/
hfa384x_cmd_initialize(hfa384x_t * hw)965 int hfa384x_cmd_initialize(hfa384x_t *hw)
966 {
967 int result = 0;
968 int i;
969 hfa384x_metacmd_t cmd;
970
971 cmd.cmd = HFA384x_CMDCODE_INIT;
972 cmd.parm0 = 0;
973 cmd.parm1 = 0;
974 cmd.parm2 = 0;
975
976 result = hfa384x_docmd_wait(hw, &cmd);
977
978 pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
979 cmd.result.status,
980 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
981 if (result == 0) {
982 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
983 hw->port_enabled[i] = 0;
984 }
985
986 hw->link_status = HFA384x_LINK_NOTCONNECTED;
987
988 return result;
989 }
990
991 /*----------------------------------------------------------------
992 * hfa384x_cmd_disable
993 *
994 * Issues the disable command to stop communications on one of
995 * the MACs 'ports'.
996 *
997 * Arguments:
998 * hw device structure
999 * macport MAC port number (host order)
1000 *
1001 * Returns:
1002 * 0 success
1003 * >0 f/w reported failure - f/w status code
1004 * <0 driver reported error (timeout|bad arg)
1005 *
1006 * Side effects:
1007 *
1008 * Call context:
1009 * process
1010 ----------------------------------------------------------------*/
hfa384x_cmd_disable(hfa384x_t * hw,u16 macport)1011 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1012 {
1013 int result = 0;
1014 hfa384x_metacmd_t cmd;
1015
1016 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1017 HFA384x_CMD_MACPORT_SET(macport);
1018 cmd.parm0 = 0;
1019 cmd.parm1 = 0;
1020 cmd.parm2 = 0;
1021
1022 result = hfa384x_docmd_wait(hw, &cmd);
1023
1024 return result;
1025 }
1026
1027 /*----------------------------------------------------------------
1028 * hfa384x_cmd_enable
1029 *
1030 * Issues the enable command to enable communications on one of
1031 * the MACs 'ports'.
1032 *
1033 * Arguments:
1034 * hw device structure
1035 * macport MAC port number
1036 *
1037 * Returns:
1038 * 0 success
1039 * >0 f/w reported failure - f/w status code
1040 * <0 driver reported error (timeout|bad arg)
1041 *
1042 * Side effects:
1043 *
1044 * Call context:
1045 * process
1046 ----------------------------------------------------------------*/
hfa384x_cmd_enable(hfa384x_t * hw,u16 macport)1047 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1048 {
1049 int result = 0;
1050 hfa384x_metacmd_t cmd;
1051
1052 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1053 HFA384x_CMD_MACPORT_SET(macport);
1054 cmd.parm0 = 0;
1055 cmd.parm1 = 0;
1056 cmd.parm2 = 0;
1057
1058 result = hfa384x_docmd_wait(hw, &cmd);
1059
1060 return result;
1061 }
1062
1063 /*----------------------------------------------------------------
1064 * hfa384x_cmd_monitor
1065 *
1066 * Enables the 'monitor mode' of the MAC. Here's the description of
1067 * monitor mode that I've received thus far:
1068 *
1069 * "The "monitor mode" of operation is that the MAC passes all
1070 * frames for which the PLCP checks are correct. All received
1071 * MPDUs are passed to the host with MAC Port = 7, with a
1072 * receive status of good, FCS error, or undecryptable. Passing
1073 * certain MPDUs is a violation of the 802.11 standard, but useful
1074 * for a debugging tool." Normal communication is not possible
1075 * while monitor mode is enabled.
1076 *
1077 * Arguments:
1078 * hw device structure
1079 * enable a code (0x0b|0x0f) that enables/disables
1080 * monitor mode. (host order)
1081 *
1082 * Returns:
1083 * 0 success
1084 * >0 f/w reported failure - f/w status code
1085 * <0 driver reported error (timeout|bad arg)
1086 *
1087 * Side effects:
1088 *
1089 * Call context:
1090 * process
1091 ----------------------------------------------------------------*/
hfa384x_cmd_monitor(hfa384x_t * hw,u16 enable)1092 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1093 {
1094 int result = 0;
1095 hfa384x_metacmd_t cmd;
1096
1097 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1098 HFA384x_CMD_AINFO_SET(enable);
1099 cmd.parm0 = 0;
1100 cmd.parm1 = 0;
1101 cmd.parm2 = 0;
1102
1103 result = hfa384x_docmd_wait(hw, &cmd);
1104
1105 return result;
1106 }
1107
1108 /*----------------------------------------------------------------
1109 * hfa384x_cmd_download
1110 *
1111 * Sets the controls for the MAC controller code/data download
1112 * process. The arguments set the mode and address associated
1113 * with a download. Note that the aux registers should be enabled
1114 * prior to setting one of the download enable modes.
1115 *
1116 * Arguments:
1117 * hw device structure
1118 * mode 0 - Disable programming and begin code exec
1119 * 1 - Enable volatile mem programming
1120 * 2 - Enable non-volatile mem programming
1121 * 3 - Program non-volatile section from NV download
1122 * buffer.
1123 * (host order)
1124 * lowaddr
1125 * highaddr For mode 1, sets the high & low order bits of
1126 * the "destination address". This address will be
1127 * the execution start address when download is
1128 * subsequently disabled.
1129 * For mode 2, sets the high & low order bits of
1130 * the destination in NV ram.
1131 * For modes 0 & 3, should be zero. (host order)
1132 * NOTE: these are CMD format.
1133 * codelen Length of the data to write in mode 2,
1134 * zero otherwise. (host order)
1135 *
1136 * Returns:
1137 * 0 success
1138 * >0 f/w reported failure - f/w status code
1139 * <0 driver reported error (timeout|bad arg)
1140 *
1141 * Side effects:
1142 *
1143 * Call context:
1144 * process
1145 ----------------------------------------------------------------*/
hfa384x_cmd_download(hfa384x_t * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1146 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1147 u16 highaddr, u16 codelen)
1148 {
1149 int result = 0;
1150 hfa384x_metacmd_t cmd;
1151
1152 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1153 mode, lowaddr, highaddr, codelen);
1154
1155 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1156 HFA384x_CMD_PROGMODE_SET(mode));
1157
1158 cmd.parm0 = lowaddr;
1159 cmd.parm1 = highaddr;
1160 cmd.parm2 = codelen;
1161
1162 result = hfa384x_docmd_wait(hw, &cmd);
1163
1164 return result;
1165 }
1166
1167 /*----------------------------------------------------------------
1168 * hfa384x_corereset
1169 *
1170 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1171 * structure is in its "created" state. That is, it is initialized
1172 * with proper values. Note that if a reset is done after the
1173 * device has been active for awhile, the caller might have to clean
1174 * up some leftover cruft in the hw structure.
1175 *
1176 * Arguments:
1177 * hw device structure
1178 * holdtime how long (in ms) to hold the reset
1179 * settletime how long (in ms) to wait after releasing
1180 * the reset
1181 *
1182 * Returns:
1183 * nothing
1184 *
1185 * Side effects:
1186 *
1187 * Call context:
1188 * process
1189 ----------------------------------------------------------------*/
hfa384x_corereset(hfa384x_t * hw,int holdtime,int settletime,int genesis)1190 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1191 {
1192 int result;
1193
1194 result = usb_reset_device(hw->usb);
1195 if (result < 0) {
1196 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1197 result);
1198 }
1199
1200 return result;
1201 }
1202
1203 /*----------------------------------------------------------------
1204 * hfa384x_usbctlx_complete_sync
1205 *
1206 * Waits for a synchronous CTLX object to complete,
1207 * and then handles the response.
1208 *
1209 * Arguments:
1210 * hw device structure
1211 * ctlx CTLX ptr
1212 * completor functor object to decide what to
1213 * do with the CTLX's result.
1214 *
1215 * Returns:
1216 * 0 Success
1217 * -ERESTARTSYS Interrupted by a signal
1218 * -EIO CTLX failed
1219 * -ENODEV Adapter was unplugged
1220 * ??? Result from completor
1221 *
1222 * Side effects:
1223 *
1224 * Call context:
1225 * process
1226 ----------------------------------------------------------------*/
hfa384x_usbctlx_complete_sync(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx,struct usbctlx_completor * completor)1227 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1228 hfa384x_usbctlx_t *ctlx,
1229 struct usbctlx_completor *completor)
1230 {
1231 unsigned long flags;
1232 int result;
1233
1234 result = wait_for_completion_interruptible(&ctlx->done);
1235
1236 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1237
1238 /*
1239 * We can only handle the CTLX if the USB disconnect
1240 * function has not run yet ...
1241 */
1242 cleanup:
1243 if (hw->wlandev->hwremoved) {
1244 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1245 result = -ENODEV;
1246 } else if (result != 0) {
1247 int runqueue = 0;
1248
1249 /*
1250 * We were probably interrupted, so delete
1251 * this CTLX asynchronously, kill the timers
1252 * and the URB, and then start the next
1253 * pending CTLX.
1254 *
1255 * NOTE: We can only delete the timers and
1256 * the URB if this CTLX is active.
1257 */
1258 if (ctlx == get_active_ctlx(hw)) {
1259 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1260
1261 del_singleshot_timer_sync(&hw->reqtimer);
1262 del_singleshot_timer_sync(&hw->resptimer);
1263 hw->req_timer_done = 1;
1264 hw->resp_timer_done = 1;
1265 usb_kill_urb(&hw->ctlx_urb);
1266
1267 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1268
1269 runqueue = 1;
1270
1271 /*
1272 * This scenario is so unlikely that I'm
1273 * happy with a grubby "goto" solution ...
1274 */
1275 if (hw->wlandev->hwremoved)
1276 goto cleanup;
1277 }
1278
1279 /*
1280 * The completion task will send this CTLX
1281 * to the reaper the next time it runs. We
1282 * are no longer in a hurry.
1283 */
1284 ctlx->reapable = 1;
1285 ctlx->state = CTLX_REQ_FAILED;
1286 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1287
1288 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1289
1290 if (runqueue)
1291 hfa384x_usbctlxq_run(hw);
1292 } else {
1293 if (ctlx->state == CTLX_COMPLETE) {
1294 result = completor->complete(completor);
1295 } else {
1296 netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1297 le16_to_cpu(ctlx->outbuf.type),
1298 ctlxstr(ctlx->state));
1299 result = -EIO;
1300 }
1301
1302 list_del(&ctlx->list);
1303 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1304 kfree(ctlx);
1305 }
1306
1307 return result;
1308 }
1309
1310 /*----------------------------------------------------------------
1311 * hfa384x_docmd
1312 *
1313 * Constructs a command CTLX and submits it.
1314 *
1315 * NOTE: Any changes to the 'post-submit' code in this function
1316 * need to be carried over to hfa384x_cbcmd() since the handling
1317 * is virtually identical.
1318 *
1319 * Arguments:
1320 * hw device structure
1321 * mode DOWAIT or DOASYNC
1322 * cmd cmd structure. Includes all arguments and result
1323 * data points. All in host order. in host order
1324 * cmdcb command-specific callback
1325 * usercb user callback for async calls, NULL for DOWAIT calls
1326 * usercb_data user supplied data pointer for async calls, NULL
1327 * for DOASYNC calls
1328 *
1329 * Returns:
1330 * 0 success
1331 * -EIO CTLX failure
1332 * -ERESTARTSYS Awakened on signal
1333 * >0 command indicated error, Status and Resp0-2 are
1334 * in hw structure.
1335 *
1336 * Side effects:
1337 *
1338 *
1339 * Call context:
1340 * process
1341 ----------------------------------------------------------------*/
1342 static int
hfa384x_docmd(hfa384x_t * hw,enum cmd_mode mode,hfa384x_metacmd_t * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1343 hfa384x_docmd(hfa384x_t *hw,
1344 enum cmd_mode mode,
1345 hfa384x_metacmd_t *cmd,
1346 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1347 {
1348 int result;
1349 hfa384x_usbctlx_t *ctlx;
1350
1351 ctlx = usbctlx_alloc();
1352 if (ctlx == NULL) {
1353 result = -ENOMEM;
1354 goto done;
1355 }
1356
1357 /* Initialize the command */
1358 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1359 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1360 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1361 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1362 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1363
1364 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1365
1366 pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1367 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1368
1369 ctlx->reapable = mode;
1370 ctlx->cmdcb = cmdcb;
1371 ctlx->usercb = usercb;
1372 ctlx->usercb_data = usercb_data;
1373
1374 result = hfa384x_usbctlx_submit(hw, ctlx);
1375 if (result != 0) {
1376 kfree(ctlx);
1377 } else if (mode == DOWAIT) {
1378 struct usbctlx_cmd_completor completor;
1379
1380 result =
1381 hfa384x_usbctlx_complete_sync(hw, ctlx,
1382 init_cmd_completor(&completor,
1383 &ctlx->
1384 inbuf.
1385 cmdresp,
1386 &cmd->
1387 result));
1388 }
1389
1390 done:
1391 return result;
1392 }
1393
1394 /*----------------------------------------------------------------
1395 * hfa384x_dorrid
1396 *
1397 * Constructs a read rid CTLX and issues it.
1398 *
1399 * NOTE: Any changes to the 'post-submit' code in this function
1400 * need to be carried over to hfa384x_cbrrid() since the handling
1401 * is virtually identical.
1402 *
1403 * Arguments:
1404 * hw device structure
1405 * mode DOWAIT or DOASYNC
1406 * rid Read RID number (host order)
1407 * riddata Caller supplied buffer that MAC formatted RID.data
1408 * record will be written to for DOWAIT calls. Should
1409 * be NULL for DOASYNC calls.
1410 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1411 * cmdcb command callback for async calls, NULL for DOWAIT calls
1412 * usercb user callback for async calls, NULL for DOWAIT calls
1413 * usercb_data user supplied data pointer for async calls, NULL
1414 * for DOWAIT calls
1415 *
1416 * Returns:
1417 * 0 success
1418 * -EIO CTLX failure
1419 * -ERESTARTSYS Awakened on signal
1420 * -ENODATA riddatalen != macdatalen
1421 * >0 command indicated error, Status and Resp0-2 are
1422 * in hw structure.
1423 *
1424 * Side effects:
1425 *
1426 * Call context:
1427 * interrupt (DOASYNC)
1428 * process (DOWAIT or DOASYNC)
1429 ----------------------------------------------------------------*/
1430 static int
hfa384x_dorrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1431 hfa384x_dorrid(hfa384x_t *hw,
1432 enum cmd_mode mode,
1433 u16 rid,
1434 void *riddata,
1435 unsigned int riddatalen,
1436 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1437 {
1438 int result;
1439 hfa384x_usbctlx_t *ctlx;
1440
1441 ctlx = usbctlx_alloc();
1442 if (ctlx == NULL) {
1443 result = -ENOMEM;
1444 goto done;
1445 }
1446
1447 /* Initialize the command */
1448 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1449 ctlx->outbuf.rridreq.frmlen =
1450 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1451 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1452
1453 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1454
1455 ctlx->reapable = mode;
1456 ctlx->cmdcb = cmdcb;
1457 ctlx->usercb = usercb;
1458 ctlx->usercb_data = usercb_data;
1459
1460 /* Submit the CTLX */
1461 result = hfa384x_usbctlx_submit(hw, ctlx);
1462 if (result != 0) {
1463 kfree(ctlx);
1464 } else if (mode == DOWAIT) {
1465 struct usbctlx_rrid_completor completor;
1466
1467 result =
1468 hfa384x_usbctlx_complete_sync(hw, ctlx,
1469 init_rrid_completor
1470 (&completor,
1471 &ctlx->inbuf.rridresp,
1472 riddata, riddatalen));
1473 }
1474
1475 done:
1476 return result;
1477 }
1478
1479 /*----------------------------------------------------------------
1480 * hfa384x_dowrid
1481 *
1482 * Constructs a write rid CTLX and issues it.
1483 *
1484 * NOTE: Any changes to the 'post-submit' code in this function
1485 * need to be carried over to hfa384x_cbwrid() since the handling
1486 * is virtually identical.
1487 *
1488 * Arguments:
1489 * hw device structure
1490 * enum cmd_mode DOWAIT or DOASYNC
1491 * rid RID code
1492 * riddata Data portion of RID formatted for MAC
1493 * riddatalen Length of the data portion in bytes
1494 * cmdcb command callback for async calls, NULL for DOWAIT calls
1495 * usercb user callback for async calls, NULL for DOWAIT calls
1496 * usercb_data user supplied data pointer for async calls
1497 *
1498 * Returns:
1499 * 0 success
1500 * -ETIMEDOUT timed out waiting for register ready or
1501 * command completion
1502 * >0 command indicated error, Status and Resp0-2 are
1503 * in hw structure.
1504 *
1505 * Side effects:
1506 *
1507 * Call context:
1508 * interrupt (DOASYNC)
1509 * process (DOWAIT or DOASYNC)
1510 ----------------------------------------------------------------*/
1511 static int
hfa384x_dowrid(hfa384x_t * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1512 hfa384x_dowrid(hfa384x_t *hw,
1513 enum cmd_mode mode,
1514 u16 rid,
1515 void *riddata,
1516 unsigned int riddatalen,
1517 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1518 {
1519 int result;
1520 hfa384x_usbctlx_t *ctlx;
1521
1522 ctlx = usbctlx_alloc();
1523 if (ctlx == NULL) {
1524 result = -ENOMEM;
1525 goto done;
1526 }
1527
1528 /* Initialize the command */
1529 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1530 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1531 (ctlx->outbuf.wridreq.rid) +
1532 riddatalen + 1) / 2);
1533 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1534 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1535
1536 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1537 sizeof(ctlx->outbuf.wridreq.frmlen) +
1538 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1539
1540 ctlx->reapable = mode;
1541 ctlx->cmdcb = cmdcb;
1542 ctlx->usercb = usercb;
1543 ctlx->usercb_data = usercb_data;
1544
1545 /* Submit the CTLX */
1546 result = hfa384x_usbctlx_submit(hw, ctlx);
1547 if (result != 0) {
1548 kfree(ctlx);
1549 } else if (mode == DOWAIT) {
1550 struct usbctlx_cmd_completor completor;
1551 hfa384x_cmdresult_t wridresult;
1552
1553 result = hfa384x_usbctlx_complete_sync(hw,
1554 ctlx,
1555 init_wrid_completor
1556 (&completor,
1557 &ctlx->inbuf.wridresp,
1558 &wridresult));
1559 }
1560
1561 done:
1562 return result;
1563 }
1564
1565 /*----------------------------------------------------------------
1566 * hfa384x_dormem
1567 *
1568 * Constructs a readmem CTLX and issues it.
1569 *
1570 * NOTE: Any changes to the 'post-submit' code in this function
1571 * need to be carried over to hfa384x_cbrmem() since the handling
1572 * is virtually identical.
1573 *
1574 * Arguments:
1575 * hw device structure
1576 * mode DOWAIT or DOASYNC
1577 * page MAC address space page (CMD format)
1578 * offset MAC address space offset
1579 * data Ptr to data buffer to receive read
1580 * len Length of the data to read (max == 2048)
1581 * cmdcb command callback for async calls, NULL for DOWAIT calls
1582 * usercb user callback for async calls, NULL for DOWAIT calls
1583 * usercb_data user supplied data pointer for async calls
1584 *
1585 * Returns:
1586 * 0 success
1587 * -ETIMEDOUT timed out waiting for register ready or
1588 * command completion
1589 * >0 command indicated error, Status and Resp0-2 are
1590 * in hw structure.
1591 *
1592 * Side effects:
1593 *
1594 * Call context:
1595 * interrupt (DOASYNC)
1596 * process (DOWAIT or DOASYNC)
1597 ----------------------------------------------------------------*/
1598 static int
hfa384x_dormem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1599 hfa384x_dormem(hfa384x_t *hw,
1600 enum cmd_mode mode,
1601 u16 page,
1602 u16 offset,
1603 void *data,
1604 unsigned int len,
1605 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1606 {
1607 int result;
1608 hfa384x_usbctlx_t *ctlx;
1609
1610 ctlx = usbctlx_alloc();
1611 if (ctlx == NULL) {
1612 result = -ENOMEM;
1613 goto done;
1614 }
1615
1616 /* Initialize the command */
1617 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1618 ctlx->outbuf.rmemreq.frmlen =
1619 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1620 sizeof(ctlx->outbuf.rmemreq.page) + len);
1621 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1622 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1623
1624 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1625
1626 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1627 ctlx->outbuf.rmemreq.type,
1628 ctlx->outbuf.rmemreq.frmlen,
1629 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1630
1631 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1632
1633 ctlx->reapable = mode;
1634 ctlx->cmdcb = cmdcb;
1635 ctlx->usercb = usercb;
1636 ctlx->usercb_data = usercb_data;
1637
1638 result = hfa384x_usbctlx_submit(hw, ctlx);
1639 if (result != 0) {
1640 kfree(ctlx);
1641 } else if (mode == DOWAIT) {
1642 struct usbctlx_rmem_completor completor;
1643
1644 result =
1645 hfa384x_usbctlx_complete_sync(hw, ctlx,
1646 init_rmem_completor
1647 (&completor,
1648 &ctlx->inbuf.rmemresp, data,
1649 len));
1650 }
1651
1652 done:
1653 return result;
1654 }
1655
1656 /*----------------------------------------------------------------
1657 * hfa384x_dowmem
1658 *
1659 * Constructs a writemem CTLX and issues it.
1660 *
1661 * NOTE: Any changes to the 'post-submit' code in this function
1662 * need to be carried over to hfa384x_cbwmem() since the handling
1663 * is virtually identical.
1664 *
1665 * Arguments:
1666 * hw device structure
1667 * mode DOWAIT or DOASYNC
1668 * page MAC address space page (CMD format)
1669 * offset MAC address space offset
1670 * data Ptr to data buffer containing write data
1671 * len Length of the data to read (max == 2048)
1672 * cmdcb command callback for async calls, NULL for DOWAIT calls
1673 * usercb user callback for async calls, NULL for DOWAIT calls
1674 * usercb_data user supplied data pointer for async calls.
1675 *
1676 * Returns:
1677 * 0 success
1678 * -ETIMEDOUT timed out waiting for register ready or
1679 * command completion
1680 * >0 command indicated error, Status and Resp0-2 are
1681 * in hw structure.
1682 *
1683 * Side effects:
1684 *
1685 * Call context:
1686 * interrupt (DOWAIT)
1687 * process (DOWAIT or DOASYNC)
1688 ----------------------------------------------------------------*/
1689 static int
hfa384x_dowmem(hfa384x_t * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1690 hfa384x_dowmem(hfa384x_t *hw,
1691 enum cmd_mode mode,
1692 u16 page,
1693 u16 offset,
1694 void *data,
1695 unsigned int len,
1696 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1697 {
1698 int result;
1699 hfa384x_usbctlx_t *ctlx;
1700
1701 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1702
1703 ctlx = usbctlx_alloc();
1704 if (ctlx == NULL) {
1705 result = -ENOMEM;
1706 goto done;
1707 }
1708
1709 /* Initialize the command */
1710 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1711 ctlx->outbuf.wmemreq.frmlen =
1712 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1713 sizeof(ctlx->outbuf.wmemreq.page) + len);
1714 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1715 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1716 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1717
1718 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1719 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1720 sizeof(ctlx->outbuf.wmemreq.offset) +
1721 sizeof(ctlx->outbuf.wmemreq.page) + len;
1722
1723 ctlx->reapable = mode;
1724 ctlx->cmdcb = cmdcb;
1725 ctlx->usercb = usercb;
1726 ctlx->usercb_data = usercb_data;
1727
1728 result = hfa384x_usbctlx_submit(hw, ctlx);
1729 if (result != 0) {
1730 kfree(ctlx);
1731 } else if (mode == DOWAIT) {
1732 struct usbctlx_cmd_completor completor;
1733 hfa384x_cmdresult_t wmemresult;
1734
1735 result = hfa384x_usbctlx_complete_sync(hw,
1736 ctlx,
1737 init_wmem_completor
1738 (&completor,
1739 &ctlx->inbuf.wmemresp,
1740 &wmemresult));
1741 }
1742
1743 done:
1744 return result;
1745 }
1746
1747 /*----------------------------------------------------------------
1748 * hfa384x_drvr_commtallies
1749 *
1750 * Send a commtallies inquiry to the MAC. Note that this is an async
1751 * call that will result in an info frame arriving sometime later.
1752 *
1753 * Arguments:
1754 * hw device structure
1755 *
1756 * Returns:
1757 * zero success.
1758 *
1759 * Side effects:
1760 *
1761 * Call context:
1762 * process
1763 ----------------------------------------------------------------*/
hfa384x_drvr_commtallies(hfa384x_t * hw)1764 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1765 {
1766 hfa384x_metacmd_t cmd;
1767
1768 cmd.cmd = HFA384x_CMDCODE_INQ;
1769 cmd.parm0 = HFA384x_IT_COMMTALLIES;
1770 cmd.parm1 = 0;
1771 cmd.parm2 = 0;
1772
1773 hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1774
1775 return 0;
1776 }
1777
1778 /*----------------------------------------------------------------
1779 * hfa384x_drvr_disable
1780 *
1781 * Issues the disable command to stop communications on one of
1782 * the MACs 'ports'. Only macport 0 is valid for stations.
1783 * APs may also disable macports 1-6. Only ports that have been
1784 * previously enabled may be disabled.
1785 *
1786 * Arguments:
1787 * hw device structure
1788 * macport MAC port number (host order)
1789 *
1790 * Returns:
1791 * 0 success
1792 * >0 f/w reported failure - f/w status code
1793 * <0 driver reported error (timeout|bad arg)
1794 *
1795 * Side effects:
1796 *
1797 * Call context:
1798 * process
1799 ----------------------------------------------------------------*/
hfa384x_drvr_disable(hfa384x_t * hw,u16 macport)1800 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1801 {
1802 int result = 0;
1803
1804 if ((!hw->isap && macport != 0) ||
1805 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1806 !(hw->port_enabled[macport])) {
1807 result = -EINVAL;
1808 } else {
1809 result = hfa384x_cmd_disable(hw, macport);
1810 if (result == 0)
1811 hw->port_enabled[macport] = 0;
1812 }
1813 return result;
1814 }
1815
1816 /*----------------------------------------------------------------
1817 * hfa384x_drvr_enable
1818 *
1819 * Issues the enable command to enable communications on one of
1820 * the MACs 'ports'. Only macport 0 is valid for stations.
1821 * APs may also enable macports 1-6. Only ports that are currently
1822 * disabled may be enabled.
1823 *
1824 * Arguments:
1825 * hw device structure
1826 * macport MAC port number
1827 *
1828 * Returns:
1829 * 0 success
1830 * >0 f/w reported failure - f/w status code
1831 * <0 driver reported error (timeout|bad arg)
1832 *
1833 * Side effects:
1834 *
1835 * Call context:
1836 * process
1837 ----------------------------------------------------------------*/
hfa384x_drvr_enable(hfa384x_t * hw,u16 macport)1838 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1839 {
1840 int result = 0;
1841
1842 if ((!hw->isap && macport != 0) ||
1843 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1844 (hw->port_enabled[macport])) {
1845 result = -EINVAL;
1846 } else {
1847 result = hfa384x_cmd_enable(hw, macport);
1848 if (result == 0)
1849 hw->port_enabled[macport] = 1;
1850 }
1851 return result;
1852 }
1853
1854 /*----------------------------------------------------------------
1855 * hfa384x_drvr_flashdl_enable
1856 *
1857 * Begins the flash download state. Checks to see that we're not
1858 * already in a download state and that a port isn't enabled.
1859 * Sets the download state and retrieves the flash download
1860 * buffer location, buffer size, and timeout length.
1861 *
1862 * Arguments:
1863 * hw device structure
1864 *
1865 * Returns:
1866 * 0 success
1867 * >0 f/w reported error - f/w status code
1868 * <0 driver reported error
1869 *
1870 * Side effects:
1871 *
1872 * Call context:
1873 * process
1874 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_enable(hfa384x_t * hw)1875 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1876 {
1877 int result = 0;
1878 int i;
1879
1880 /* Check that a port isn't active */
1881 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1882 if (hw->port_enabled[i]) {
1883 pr_debug("called when port enabled.\n");
1884 return -EINVAL;
1885 }
1886 }
1887
1888 /* Check that we're not already in a download state */
1889 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1890 return -EINVAL;
1891
1892 /* Retrieve the buffer loc&size and timeout */
1893 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1894 &(hw->bufinfo), sizeof(hw->bufinfo));
1895 if (result)
1896 return result;
1897
1898 hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1899 hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1900 hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1901 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1902 &(hw->dltimeout));
1903 if (result)
1904 return result;
1905
1906 hw->dltimeout = le16_to_cpu(hw->dltimeout);
1907
1908 pr_debug("flashdl_enable\n");
1909
1910 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1911
1912 return result;
1913 }
1914
1915 /*----------------------------------------------------------------
1916 * hfa384x_drvr_flashdl_disable
1917 *
1918 * Ends the flash download state. Note that this will cause the MAC
1919 * firmware to restart.
1920 *
1921 * Arguments:
1922 * hw device structure
1923 *
1924 * Returns:
1925 * 0 success
1926 * >0 f/w reported error - f/w status code
1927 * <0 driver reported error
1928 *
1929 * Side effects:
1930 *
1931 * Call context:
1932 * process
1933 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_disable(hfa384x_t * hw)1934 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1935 {
1936 /* Check that we're already in the download state */
1937 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1938 return -EINVAL;
1939
1940 pr_debug("flashdl_enable\n");
1941
1942 /* There isn't much we can do at this point, so I don't */
1943 /* bother w/ the return value */
1944 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1945 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1946
1947 return 0;
1948 }
1949
1950 /*----------------------------------------------------------------
1951 * hfa384x_drvr_flashdl_write
1952 *
1953 * Performs a FLASH download of a chunk of data. First checks to see
1954 * that we're in the FLASH download state, then sets the download
1955 * mode, uses the aux functions to 1) copy the data to the flash
1956 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1957 * compare. Lather rinse, repeat as many times an necessary to get
1958 * all the given data into flash.
1959 * When all data has been written using this function (possibly
1960 * repeatedly), call drvr_flashdl_disable() to end the download state
1961 * and restart the MAC.
1962 *
1963 * Arguments:
1964 * hw device structure
1965 * daddr Card address to write to. (host order)
1966 * buf Ptr to data to write.
1967 * len Length of data (host order).
1968 *
1969 * Returns:
1970 * 0 success
1971 * >0 f/w reported error - f/w status code
1972 * <0 driver reported error
1973 *
1974 * Side effects:
1975 *
1976 * Call context:
1977 * process
1978 ----------------------------------------------------------------*/
hfa384x_drvr_flashdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)1979 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1980 {
1981 int result = 0;
1982 u32 dlbufaddr;
1983 int nburns;
1984 u32 burnlen;
1985 u32 burndaddr;
1986 u16 burnlo;
1987 u16 burnhi;
1988 int nwrites;
1989 u8 *writebuf;
1990 u16 writepage;
1991 u16 writeoffset;
1992 u32 writelen;
1993 int i;
1994 int j;
1995
1996 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1997
1998 /* Check that we're in the flash download state */
1999 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2000 return -EINVAL;
2001
2002 netdev_info(hw->wlandev->netdev,
2003 "Download %d bytes to flash @0x%06x\n", len, daddr);
2004
2005 /* Convert to flat address for arithmetic */
2006 /* NOTE: dlbuffer RID stores the address in AUX format */
2007 dlbufaddr =
2008 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2009 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2010 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2011 /* Calculations to determine how many fills of the dlbuffer to do
2012 * and how many USB wmemreq's to do for each fill. At this point
2013 * in time, the dlbuffer size and the wmemreq size are the same.
2014 * Therefore, nwrites should always be 1. The extra complexity
2015 * here is a hedge against future changes.
2016 */
2017
2018 /* Figure out how many times to do the flash programming */
2019 nburns = len / hw->bufinfo.len;
2020 nburns += (len % hw->bufinfo.len) ? 1 : 0;
2021
2022 /* For each flash program cycle, how many USB wmemreq's are needed? */
2023 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2024 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2025
2026 /* For each burn */
2027 for (i = 0; i < nburns; i++) {
2028 /* Get the dest address and len */
2029 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2030 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2031 burndaddr = daddr + (hw->bufinfo.len * i);
2032 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2033 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2034
2035 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2036 burnlen, burndaddr);
2037
2038 /* Set the download mode */
2039 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2040 burnlo, burnhi, burnlen);
2041 if (result) {
2042 netdev_err(hw->wlandev->netdev,
2043 "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2044 burnlo, burnhi, burnlen, result);
2045 goto exit_proc;
2046 }
2047
2048 /* copy the data to the flash download buffer */
2049 for (j = 0; j < nwrites; j++) {
2050 writebuf = buf +
2051 (i * hw->bufinfo.len) +
2052 (j * HFA384x_USB_RWMEM_MAXLEN);
2053
2054 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2055 (j * HFA384x_USB_RWMEM_MAXLEN));
2056 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2057 (j * HFA384x_USB_RWMEM_MAXLEN));
2058
2059 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2060 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2061 HFA384x_USB_RWMEM_MAXLEN : writelen;
2062
2063 result = hfa384x_dowmem_wait(hw,
2064 writepage,
2065 writeoffset,
2066 writebuf, writelen);
2067 }
2068
2069 /* set the download 'write flash' mode */
2070 result = hfa384x_cmd_download(hw,
2071 HFA384x_PROGMODE_NVWRITE,
2072 0, 0, 0);
2073 if (result) {
2074 netdev_err(hw->wlandev->netdev,
2075 "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2076 burnlo, burnhi, burnlen, result);
2077 goto exit_proc;
2078 }
2079
2080 /* TODO: We really should do a readback and compare. */
2081 }
2082
2083 exit_proc:
2084
2085 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2086 /* actually disable programming mode. Remember, that will cause the */
2087 /* the firmware to effectively reset itself. */
2088
2089 return result;
2090 }
2091
2092 /*----------------------------------------------------------------
2093 * hfa384x_drvr_getconfig
2094 *
2095 * Performs the sequence necessary to read a config/info item.
2096 *
2097 * Arguments:
2098 * hw device structure
2099 * rid config/info record id (host order)
2100 * buf host side record buffer. Upon return it will
2101 * contain the body portion of the record (minus the
2102 * RID and len).
2103 * len buffer length (in bytes, should match record length)
2104 *
2105 * Returns:
2106 * 0 success
2107 * >0 f/w reported error - f/w status code
2108 * <0 driver reported error
2109 * -ENODATA length mismatch between argument and retrieved
2110 * record.
2111 *
2112 * Side effects:
2113 *
2114 * Call context:
2115 * process
2116 ----------------------------------------------------------------*/
hfa384x_drvr_getconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2117 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2118 {
2119 return hfa384x_dorrid_wait(hw, rid, buf, len);
2120 }
2121
2122 /*----------------------------------------------------------------
2123 * hfa384x_drvr_getconfig_async
2124 *
2125 * Performs the sequence necessary to perform an async read of
2126 * of a config/info item.
2127 *
2128 * Arguments:
2129 * hw device structure
2130 * rid config/info record id (host order)
2131 * buf host side record buffer. Upon return it will
2132 * contain the body portion of the record (minus the
2133 * RID and len).
2134 * len buffer length (in bytes, should match record length)
2135 * cbfn caller supplied callback, called when the command
2136 * is done (successful or not).
2137 * cbfndata pointer to some caller supplied data that will be
2138 * passed in as an argument to the cbfn.
2139 *
2140 * Returns:
2141 * nothing the cbfn gets a status argument identifying if
2142 * any errors occur.
2143 * Side effects:
2144 * Queues an hfa384x_usbcmd_t for subsequent execution.
2145 *
2146 * Call context:
2147 * Any
2148 ----------------------------------------------------------------*/
2149 int
hfa384x_drvr_getconfig_async(hfa384x_t * hw,u16 rid,ctlx_usercb_t usercb,void * usercb_data)2150 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2151 u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2152 {
2153 return hfa384x_dorrid_async(hw, rid, NULL, 0,
2154 hfa384x_cb_rrid, usercb, usercb_data);
2155 }
2156
2157 /*----------------------------------------------------------------
2158 * hfa384x_drvr_setconfig_async
2159 *
2160 * Performs the sequence necessary to write a config/info item.
2161 *
2162 * Arguments:
2163 * hw device structure
2164 * rid config/info record id (in host order)
2165 * buf host side record buffer
2166 * len buffer length (in bytes)
2167 * usercb completion callback
2168 * usercb_data completion callback argument
2169 *
2170 * Returns:
2171 * 0 success
2172 * >0 f/w reported error - f/w status code
2173 * <0 driver reported error
2174 *
2175 * Side effects:
2176 *
2177 * Call context:
2178 * process
2179 ----------------------------------------------------------------*/
2180 int
hfa384x_drvr_setconfig_async(hfa384x_t * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)2181 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2182 u16 rid,
2183 void *buf,
2184 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2185 {
2186 return hfa384x_dowrid_async(hw, rid, buf, len,
2187 hfa384x_cb_status, usercb, usercb_data);
2188 }
2189
2190 /*----------------------------------------------------------------
2191 * hfa384x_drvr_ramdl_disable
2192 *
2193 * Ends the ram download state.
2194 *
2195 * Arguments:
2196 * hw device structure
2197 *
2198 * Returns:
2199 * 0 success
2200 * >0 f/w reported error - f/w status code
2201 * <0 driver reported error
2202 *
2203 * Side effects:
2204 *
2205 * Call context:
2206 * process
2207 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_disable(hfa384x_t * hw)2208 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2209 {
2210 /* Check that we're already in the download state */
2211 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2212 return -EINVAL;
2213
2214 pr_debug("ramdl_disable()\n");
2215
2216 /* There isn't much we can do at this point, so I don't */
2217 /* bother w/ the return value */
2218 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2219 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2220
2221 return 0;
2222 }
2223
2224 /*----------------------------------------------------------------
2225 * hfa384x_drvr_ramdl_enable
2226 *
2227 * Begins the ram download state. Checks to see that we're not
2228 * already in a download state and that a port isn't enabled.
2229 * Sets the download state and calls cmd_download with the
2230 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2231 *
2232 * Arguments:
2233 * hw device structure
2234 * exeaddr the card execution address that will be
2235 * jumped to when ramdl_disable() is called
2236 * (host order).
2237 *
2238 * Returns:
2239 * 0 success
2240 * >0 f/w reported error - f/w status code
2241 * <0 driver reported error
2242 *
2243 * Side effects:
2244 *
2245 * Call context:
2246 * process
2247 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_enable(hfa384x_t * hw,u32 exeaddr)2248 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2249 {
2250 int result = 0;
2251 u16 lowaddr;
2252 u16 hiaddr;
2253 int i;
2254
2255 /* Check that a port isn't active */
2256 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2257 if (hw->port_enabled[i]) {
2258 netdev_err(hw->wlandev->netdev,
2259 "Can't download with a macport enabled.\n");
2260 return -EINVAL;
2261 }
2262 }
2263
2264 /* Check that we're not already in a download state */
2265 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2266 netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2267 return -EINVAL;
2268 }
2269
2270 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2271
2272 /* Call the download(1,addr) function */
2273 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2274 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2275
2276 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2277 lowaddr, hiaddr, 0);
2278
2279 if (result == 0) {
2280 /* Set the download state */
2281 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2282 } else {
2283 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2284 lowaddr, hiaddr, result);
2285 }
2286
2287 return result;
2288 }
2289
2290 /*----------------------------------------------------------------
2291 * hfa384x_drvr_ramdl_write
2292 *
2293 * Performs a RAM download of a chunk of data. First checks to see
2294 * that we're in the RAM download state, then uses the [read|write]mem USB
2295 * commands to 1) copy the data, 2) readback and compare. The download
2296 * state is unaffected. When all data has been written using
2297 * this function, call drvr_ramdl_disable() to end the download state
2298 * and restart the MAC.
2299 *
2300 * Arguments:
2301 * hw device structure
2302 * daddr Card address to write to. (host order)
2303 * buf Ptr to data to write.
2304 * len Length of data (host order).
2305 *
2306 * Returns:
2307 * 0 success
2308 * >0 f/w reported error - f/w status code
2309 * <0 driver reported error
2310 *
2311 * Side effects:
2312 *
2313 * Call context:
2314 * process
2315 ----------------------------------------------------------------*/
hfa384x_drvr_ramdl_write(hfa384x_t * hw,u32 daddr,void * buf,u32 len)2316 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2317 {
2318 int result = 0;
2319 int nwrites;
2320 u8 *data = buf;
2321 int i;
2322 u32 curraddr;
2323 u16 currpage;
2324 u16 curroffset;
2325 u16 currlen;
2326
2327 /* Check that we're in the ram download state */
2328 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2329 return -EINVAL;
2330
2331 netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2332 len, daddr);
2333
2334 /* How many dowmem calls? */
2335 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2336 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2337
2338 /* Do blocking wmem's */
2339 for (i = 0; i < nwrites; i++) {
2340 /* make address args */
2341 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2342 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2343 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2344 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2345 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2346 currlen = HFA384x_USB_RWMEM_MAXLEN;
2347
2348 /* Do blocking ctlx */
2349 result = hfa384x_dowmem_wait(hw,
2350 currpage,
2351 curroffset,
2352 data +
2353 (i * HFA384x_USB_RWMEM_MAXLEN),
2354 currlen);
2355
2356 if (result)
2357 break;
2358
2359 /* TODO: We really should have a readback. */
2360 }
2361
2362 return result;
2363 }
2364
2365 /*----------------------------------------------------------------
2366 * hfa384x_drvr_readpda
2367 *
2368 * Performs the sequence to read the PDA space. Note there is no
2369 * drvr_writepda() function. Writing a PDA is
2370 * generally implemented by a calling component via calls to
2371 * cmd_download and writing to the flash download buffer via the
2372 * aux regs.
2373 *
2374 * Arguments:
2375 * hw device structure
2376 * buf buffer to store PDA in
2377 * len buffer length
2378 *
2379 * Returns:
2380 * 0 success
2381 * >0 f/w reported error - f/w status code
2382 * <0 driver reported error
2383 * -ETIMEDOUT timeout waiting for the cmd regs to become
2384 * available, or waiting for the control reg
2385 * to indicate the Aux port is enabled.
2386 * -ENODATA the buffer does NOT contain a valid PDA.
2387 * Either the card PDA is bad, or the auxdata
2388 * reads are giving us garbage.
2389
2390 *
2391 * Side effects:
2392 *
2393 * Call context:
2394 * process or non-card interrupt.
2395 ----------------------------------------------------------------*/
hfa384x_drvr_readpda(hfa384x_t * hw,void * buf,unsigned int len)2396 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2397 {
2398 int result = 0;
2399 u16 *pda = buf;
2400 int pdaok = 0;
2401 int morepdrs = 1;
2402 int currpdr = 0; /* word offset of the current pdr */
2403 size_t i;
2404 u16 pdrlen; /* pdr length in bytes, host order */
2405 u16 pdrcode; /* pdr code, host order */
2406 u16 currpage;
2407 u16 curroffset;
2408 struct pdaloc {
2409 u32 cardaddr;
2410 u16 auxctl;
2411 } pdaloc[] = {
2412 {
2413 HFA3842_PDA_BASE, 0}, {
2414 HFA3841_PDA_BASE, 0}, {
2415 HFA3841_PDA_BOGUS_BASE, 0}
2416 };
2417
2418 /* Read the pda from each known address. */
2419 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2420 /* Make address */
2421 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2422 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2423
2424 /* units of bytes */
2425 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2426 len);
2427
2428 if (result) {
2429 netdev_warn(hw->wlandev->netdev,
2430 "Read from index %zd failed, continuing\n",
2431 i);
2432 continue;
2433 }
2434
2435 /* Test for garbage */
2436 pdaok = 1; /* initially assume good */
2437 morepdrs = 1;
2438 while (pdaok && morepdrs) {
2439 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2440 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2441 /* Test the record length */
2442 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2443 netdev_err(hw->wlandev->netdev,
2444 "pdrlen invalid=%d\n", pdrlen);
2445 pdaok = 0;
2446 break;
2447 }
2448 /* Test the code */
2449 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2450 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2451 pdrcode);
2452 pdaok = 0;
2453 break;
2454 }
2455 /* Test for completion */
2456 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2457 morepdrs = 0;
2458
2459 /* Move to the next pdr (if necessary) */
2460 if (morepdrs) {
2461 /* note the access to pda[], need words here */
2462 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2463 }
2464 }
2465 if (pdaok) {
2466 netdev_info(hw->wlandev->netdev,
2467 "PDA Read from 0x%08x in %s space.\n",
2468 pdaloc[i].cardaddr,
2469 pdaloc[i].auxctl == 0 ? "EXTDS" :
2470 pdaloc[i].auxctl == 1 ? "NV" :
2471 pdaloc[i].auxctl == 2 ? "PHY" :
2472 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2473 "<bogus auxctl>");
2474 break;
2475 }
2476 }
2477 result = pdaok ? 0 : -ENODATA;
2478
2479 if (result)
2480 pr_debug("Failure: pda is not okay\n");
2481
2482 return result;
2483 }
2484
2485 /*----------------------------------------------------------------
2486 * hfa384x_drvr_setconfig
2487 *
2488 * Performs the sequence necessary to write a config/info item.
2489 *
2490 * Arguments:
2491 * hw device structure
2492 * rid config/info record id (in host order)
2493 * buf host side record buffer
2494 * len buffer length (in bytes)
2495 *
2496 * Returns:
2497 * 0 success
2498 * >0 f/w reported error - f/w status code
2499 * <0 driver reported error
2500 *
2501 * Side effects:
2502 *
2503 * Call context:
2504 * process
2505 ----------------------------------------------------------------*/
hfa384x_drvr_setconfig(hfa384x_t * hw,u16 rid,void * buf,u16 len)2506 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2507 {
2508 return hfa384x_dowrid_wait(hw, rid, buf, len);
2509 }
2510
2511 /*----------------------------------------------------------------
2512 * hfa384x_drvr_start
2513 *
2514 * Issues the MAC initialize command, sets up some data structures,
2515 * and enables the interrupts. After this function completes, the
2516 * low-level stuff should be ready for any/all commands.
2517 *
2518 * Arguments:
2519 * hw device structure
2520 * Returns:
2521 * 0 success
2522 * >0 f/w reported error - f/w status code
2523 * <0 driver reported error
2524 *
2525 * Side effects:
2526 *
2527 * Call context:
2528 * process
2529 ----------------------------------------------------------------*/
2530
hfa384x_drvr_start(hfa384x_t * hw)2531 int hfa384x_drvr_start(hfa384x_t *hw)
2532 {
2533 int result, result1, result2;
2534 u16 status;
2535
2536 might_sleep();
2537
2538 /* Clear endpoint stalls - but only do this if the endpoint
2539 * is showing a stall status. Some prism2 cards seem to behave
2540 * badly if a clear_halt is called when the endpoint is already
2541 * ok
2542 */
2543 result =
2544 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2545 if (result < 0) {
2546 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2547 goto done;
2548 }
2549 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2550 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2551
2552 result =
2553 usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2554 if (result < 0) {
2555 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2556 goto done;
2557 }
2558 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2559 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2560
2561 /* Synchronous unlink, in case we're trying to restart the driver */
2562 usb_kill_urb(&hw->rx_urb);
2563
2564 /* Post the IN urb */
2565 result = submit_rx_urb(hw, GFP_KERNEL);
2566 if (result != 0) {
2567 netdev_err(hw->wlandev->netdev,
2568 "Fatal, failed to submit RX URB, result=%d\n",
2569 result);
2570 goto done;
2571 }
2572
2573 /* Call initialize twice, with a 1 second sleep in between.
2574 * This is a nasty work-around since many prism2 cards seem to
2575 * need time to settle after an init from cold. The second
2576 * call to initialize in theory is not necessary - but we call
2577 * it anyway as a double insurance policy:
2578 * 1) If the first init should fail, the second may well succeed
2579 * and the card can still be used
2580 * 2) It helps ensures all is well with the card after the first
2581 * init and settle time.
2582 */
2583 result1 = hfa384x_cmd_initialize(hw);
2584 msleep(1000);
2585 result = hfa384x_cmd_initialize(hw);
2586 result2 = result;
2587 if (result1 != 0) {
2588 if (result2 != 0) {
2589 netdev_err(hw->wlandev->netdev,
2590 "cmd_initialize() failed on two attempts, results %d and %d\n",
2591 result1, result2);
2592 usb_kill_urb(&hw->rx_urb);
2593 goto done;
2594 } else {
2595 pr_debug("First cmd_initialize() failed (result %d),\n",
2596 result1);
2597 pr_debug("but second attempt succeeded. All should be ok\n");
2598 }
2599 } else if (result2 != 0) {
2600 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2601 result2);
2602 netdev_warn(hw->wlandev->netdev,
2603 "Most likely the card will be functional\n");
2604 goto done;
2605 }
2606
2607 hw->state = HFA384x_STATE_RUNNING;
2608
2609 done:
2610 return result;
2611 }
2612
2613 /*----------------------------------------------------------------
2614 * hfa384x_drvr_stop
2615 *
2616 * Shuts down the MAC to the point where it is safe to unload the
2617 * driver. Any subsystem that may be holding a data or function
2618 * ptr into the driver must be cleared/deinitialized.
2619 *
2620 * Arguments:
2621 * hw device structure
2622 * Returns:
2623 * 0 success
2624 * >0 f/w reported error - f/w status code
2625 * <0 driver reported error
2626 *
2627 * Side effects:
2628 *
2629 * Call context:
2630 * process
2631 ----------------------------------------------------------------*/
hfa384x_drvr_stop(hfa384x_t * hw)2632 int hfa384x_drvr_stop(hfa384x_t *hw)
2633 {
2634 int i;
2635
2636 might_sleep();
2637
2638 /* There's no need for spinlocks here. The USB "disconnect"
2639 * function sets this "removed" flag and then calls us.
2640 */
2641 if (!hw->wlandev->hwremoved) {
2642 /* Call initialize to leave the MAC in its 'reset' state */
2643 hfa384x_cmd_initialize(hw);
2644
2645 /* Cancel the rxurb */
2646 usb_kill_urb(&hw->rx_urb);
2647 }
2648
2649 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2650 hw->state = HFA384x_STATE_INIT;
2651
2652 del_timer_sync(&hw->commsqual_timer);
2653
2654 /* Clear all the port status */
2655 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2656 hw->port_enabled[i] = 0;
2657
2658 return 0;
2659 }
2660
2661 /*----------------------------------------------------------------
2662 * hfa384x_drvr_txframe
2663 *
2664 * Takes a frame from prism2sta and queues it for transmission.
2665 *
2666 * Arguments:
2667 * hw device structure
2668 * skb packet buffer struct. Contains an 802.11
2669 * data frame.
2670 * p80211_hdr points to the 802.11 header for the packet.
2671 * Returns:
2672 * 0 Success and more buffs available
2673 * 1 Success but no more buffs
2674 * 2 Allocation failure
2675 * 4 Buffer full or queue busy
2676 *
2677 * Side effects:
2678 *
2679 * Call context:
2680 * interrupt
2681 ----------------------------------------------------------------*/
hfa384x_drvr_txframe(hfa384x_t * hw,struct sk_buff * skb,union p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2682 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2683 union p80211_hdr *p80211_hdr,
2684 struct p80211_metawep *p80211_wep)
2685 {
2686 int usbpktlen = sizeof(hfa384x_tx_frame_t);
2687 int result;
2688 int ret;
2689 char *ptr;
2690
2691 if (hw->tx_urb.status == -EINPROGRESS) {
2692 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2693 result = 3;
2694 goto exit;
2695 }
2696
2697 /* Build Tx frame structure */
2698 /* Set up the control field */
2699 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2700
2701 /* Setup the usb type field */
2702 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2703
2704 /* Set up the sw_support field to identify this frame */
2705 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2706
2707 /* Tx complete and Tx exception disable per dleach. Might be causing
2708 * buf depletion
2709 */
2710 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2711 #if defined(DOBOTH)
2712 hw->txbuff.txfrm.desc.tx_control =
2713 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2714 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2715 #elif defined(DOEXC)
2716 hw->txbuff.txfrm.desc.tx_control =
2717 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2718 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2719 #else
2720 hw->txbuff.txfrm.desc.tx_control =
2721 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2722 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2723 #endif
2724 hw->txbuff.txfrm.desc.tx_control =
2725 cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2726
2727 /* copy the header over to the txdesc */
2728 memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2729 sizeof(union p80211_hdr));
2730
2731 /* if we're using host WEP, increase size by IV+ICV */
2732 if (p80211_wep->data) {
2733 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2734 usbpktlen += 8;
2735 } else {
2736 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2737 }
2738
2739 usbpktlen += skb->len;
2740
2741 /* copy over the WEP IV if we are using host WEP */
2742 ptr = hw->txbuff.txfrm.data;
2743 if (p80211_wep->data) {
2744 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2745 ptr += sizeof(p80211_wep->iv);
2746 memcpy(ptr, p80211_wep->data, skb->len);
2747 } else {
2748 memcpy(ptr, skb->data, skb->len);
2749 }
2750 /* copy over the packet data */
2751 ptr += skb->len;
2752
2753 /* copy over the WEP ICV if we are using host WEP */
2754 if (p80211_wep->data)
2755 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2756
2757 /* Send the USB packet */
2758 usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2759 hw->endp_out,
2760 &(hw->txbuff), ROUNDUP64(usbpktlen),
2761 hfa384x_usbout_callback, hw->wlandev);
2762 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2763
2764 result = 1;
2765 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2766 if (ret != 0) {
2767 netdev_err(hw->wlandev->netdev,
2768 "submit_tx_urb() failed, error=%d\n", ret);
2769 result = 3;
2770 }
2771
2772 exit:
2773 return result;
2774 }
2775
hfa384x_tx_timeout(wlandevice_t * wlandev)2776 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2777 {
2778 hfa384x_t *hw = wlandev->priv;
2779 unsigned long flags;
2780
2781 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2782
2783 if (!hw->wlandev->hwremoved) {
2784 int sched;
2785
2786 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2787 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2788 if (sched)
2789 schedule_work(&hw->usb_work);
2790 }
2791
2792 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2793 }
2794
2795 /*----------------------------------------------------------------
2796 * hfa384x_usbctlx_reaper_task
2797 *
2798 * Tasklet to delete dead CTLX objects
2799 *
2800 * Arguments:
2801 * data ptr to a hfa384x_t
2802 *
2803 * Returns:
2804 *
2805 * Call context:
2806 * Interrupt
2807 ----------------------------------------------------------------*/
hfa384x_usbctlx_reaper_task(unsigned long data)2808 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2809 {
2810 hfa384x_t *hw = (hfa384x_t *)data;
2811 struct list_head *entry;
2812 struct list_head *temp;
2813 unsigned long flags;
2814
2815 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2816
2817 /* This list is guaranteed to be empty if someone
2818 * has unplugged the adapter.
2819 */
2820 list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2821 hfa384x_usbctlx_t *ctlx;
2822
2823 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2824 list_del(&ctlx->list);
2825 kfree(ctlx);
2826 }
2827
2828 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2829 }
2830
2831 /*----------------------------------------------------------------
2832 * hfa384x_usbctlx_completion_task
2833 *
2834 * Tasklet to call completion handlers for returned CTLXs
2835 *
2836 * Arguments:
2837 * data ptr to hfa384x_t
2838 *
2839 * Returns:
2840 * Nothing
2841 *
2842 * Call context:
2843 * Interrupt
2844 ----------------------------------------------------------------*/
hfa384x_usbctlx_completion_task(unsigned long data)2845 static void hfa384x_usbctlx_completion_task(unsigned long data)
2846 {
2847 hfa384x_t *hw = (hfa384x_t *)data;
2848 struct list_head *entry;
2849 struct list_head *temp;
2850 unsigned long flags;
2851
2852 int reap = 0;
2853
2854 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2855
2856 /* This list is guaranteed to be empty if someone
2857 * has unplugged the adapter ...
2858 */
2859 list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2860 hfa384x_usbctlx_t *ctlx;
2861
2862 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2863
2864 /* Call the completion function that this
2865 * command was assigned, assuming it has one.
2866 */
2867 if (ctlx->cmdcb != NULL) {
2868 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2869 ctlx->cmdcb(hw, ctlx);
2870 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2871
2872 /* Make sure we don't try and complete
2873 * this CTLX more than once!
2874 */
2875 ctlx->cmdcb = NULL;
2876
2877 /* Did someone yank the adapter out
2878 * while our list was (briefly) unlocked?
2879 */
2880 if (hw->wlandev->hwremoved) {
2881 reap = 0;
2882 break;
2883 }
2884 }
2885
2886 /*
2887 * "Reapable" CTLXs are ones which don't have any
2888 * threads waiting for them to die. Hence they must
2889 * be delivered to The Reaper!
2890 */
2891 if (ctlx->reapable) {
2892 /* Move the CTLX off the "completing" list (hopefully)
2893 * on to the "reapable" list where the reaper task
2894 * can find it. And "reapable" means that this CTLX
2895 * isn't sitting on a wait-queue somewhere.
2896 */
2897 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2898 reap = 1;
2899 }
2900
2901 complete(&ctlx->done);
2902 }
2903 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2904
2905 if (reap)
2906 tasklet_schedule(&hw->reaper_bh);
2907 }
2908
2909 /*----------------------------------------------------------------
2910 * unlocked_usbctlx_cancel_async
2911 *
2912 * Mark the CTLX dead asynchronously, and ensure that the
2913 * next command on the queue is run afterwards.
2914 *
2915 * Arguments:
2916 * hw ptr to the hfa384x_t structure
2917 * ctlx ptr to a CTLX structure
2918 *
2919 * Returns:
2920 * 0 the CTLX's URB is inactive
2921 * -EINPROGRESS the URB is currently being unlinked
2922 *
2923 * Call context:
2924 * Either process or interrupt, but presumably interrupt
2925 ----------------------------------------------------------------*/
unlocked_usbctlx_cancel_async(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)2926 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2927 hfa384x_usbctlx_t *ctlx)
2928 {
2929 int ret;
2930
2931 /*
2932 * Try to delete the URB containing our request packet.
2933 * If we succeed, then its completion handler will be
2934 * called with a status of -ECONNRESET.
2935 */
2936 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2937 ret = usb_unlink_urb(&hw->ctlx_urb);
2938
2939 if (ret != -EINPROGRESS) {
2940 /*
2941 * The OUT URB had either already completed
2942 * or was still in the pending queue, so the
2943 * URB's completion function will not be called.
2944 * We will have to complete the CTLX ourselves.
2945 */
2946 ctlx->state = CTLX_REQ_FAILED;
2947 unlocked_usbctlx_complete(hw, ctlx);
2948 ret = 0;
2949 }
2950
2951 return ret;
2952 }
2953
2954 /*----------------------------------------------------------------
2955 * unlocked_usbctlx_complete
2956 *
2957 * A CTLX has completed. It may have been successful, it may not
2958 * have been. At this point, the CTLX should be quiescent. The URBs
2959 * aren't active and the timers should have been stopped.
2960 *
2961 * The CTLX is migrated to the "completing" queue, and the completing
2962 * tasklet is scheduled.
2963 *
2964 * Arguments:
2965 * hw ptr to a hfa384x_t structure
2966 * ctlx ptr to a ctlx structure
2967 *
2968 * Returns:
2969 * nothing
2970 *
2971 * Side effects:
2972 *
2973 * Call context:
2974 * Either, assume interrupt
2975 ----------------------------------------------------------------*/
unlocked_usbctlx_complete(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)2976 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2977 {
2978 /* Timers have been stopped, and ctlx should be in
2979 * a terminal state. Retire it from the "active"
2980 * queue.
2981 */
2982 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2983 tasklet_schedule(&hw->completion_bh);
2984
2985 switch (ctlx->state) {
2986 case CTLX_COMPLETE:
2987 case CTLX_REQ_FAILED:
2988 /* This are the correct terminating states. */
2989 break;
2990
2991 default:
2992 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2993 le16_to_cpu(ctlx->outbuf.type),
2994 ctlxstr(ctlx->state));
2995 break;
2996 } /* switch */
2997 }
2998
2999 /*----------------------------------------------------------------
3000 * hfa384x_usbctlxq_run
3001 *
3002 * Checks to see if the head item is running. If not, starts it.
3003 *
3004 * Arguments:
3005 * hw ptr to hfa384x_t
3006 *
3007 * Returns:
3008 * nothing
3009 *
3010 * Side effects:
3011 *
3012 * Call context:
3013 * any
3014 ----------------------------------------------------------------*/
hfa384x_usbctlxq_run(hfa384x_t * hw)3015 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3016 {
3017 unsigned long flags;
3018
3019 /* acquire lock */
3020 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3021
3022 /* Only one active CTLX at any one time, because there's no
3023 * other (reliable) way to match the response URB to the
3024 * correct CTLX.
3025 *
3026 * Don't touch any of these CTLXs if the hardware
3027 * has been removed or the USB subsystem is stalled.
3028 */
3029 if (!list_empty(&hw->ctlxq.active) ||
3030 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3031 goto unlock;
3032
3033 while (!list_empty(&hw->ctlxq.pending)) {
3034 hfa384x_usbctlx_t *head;
3035 int result;
3036
3037 /* This is the first pending command */
3038 head = list_entry(hw->ctlxq.pending.next,
3039 hfa384x_usbctlx_t, list);
3040
3041 /* We need to split this off to avoid a race condition */
3042 list_move_tail(&head->list, &hw->ctlxq.active);
3043
3044 /* Fill the out packet */
3045 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3046 hw->endp_out,
3047 &(head->outbuf), ROUNDUP64(head->outbufsize),
3048 hfa384x_ctlxout_callback, hw);
3049 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3050
3051 /* Now submit the URB and update the CTLX's state */
3052 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3053 if (result == 0) {
3054 /* This CTLX is now running on the active queue */
3055 head->state = CTLX_REQ_SUBMITTED;
3056
3057 /* Start the OUT wait timer */
3058 hw->req_timer_done = 0;
3059 hw->reqtimer.expires = jiffies + HZ;
3060 add_timer(&hw->reqtimer);
3061
3062 /* Start the IN wait timer */
3063 hw->resp_timer_done = 0;
3064 hw->resptimer.expires = jiffies + 2 * HZ;
3065 add_timer(&hw->resptimer);
3066
3067 break;
3068 }
3069
3070 if (result == -EPIPE) {
3071 /* The OUT pipe needs resetting, so put
3072 * this CTLX back in the "pending" queue
3073 * and schedule a reset ...
3074 */
3075 netdev_warn(hw->wlandev->netdev,
3076 "%s tx pipe stalled: requesting reset\n",
3077 hw->wlandev->netdev->name);
3078 list_move(&head->list, &hw->ctlxq.pending);
3079 set_bit(WORK_TX_HALT, &hw->usb_flags);
3080 schedule_work(&hw->usb_work);
3081 break;
3082 }
3083
3084 if (result == -ESHUTDOWN) {
3085 netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3086 hw->wlandev->netdev->name);
3087 break;
3088 }
3089
3090 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3091 le16_to_cpu(head->outbuf.type), result);
3092 unlocked_usbctlx_complete(hw, head);
3093 } /* while */
3094
3095 unlock:
3096 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3097 }
3098
3099 /*----------------------------------------------------------------
3100 * hfa384x_usbin_callback
3101 *
3102 * Callback for URBs on the BULKIN endpoint.
3103 *
3104 * Arguments:
3105 * urb ptr to the completed urb
3106 *
3107 * Returns:
3108 * nothing
3109 *
3110 * Side effects:
3111 *
3112 * Call context:
3113 * interrupt
3114 ----------------------------------------------------------------*/
hfa384x_usbin_callback(struct urb * urb)3115 static void hfa384x_usbin_callback(struct urb *urb)
3116 {
3117 wlandevice_t *wlandev = urb->context;
3118 hfa384x_t *hw;
3119 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)urb->transfer_buffer;
3120 struct sk_buff *skb = NULL;
3121 int result;
3122 int urb_status;
3123 u16 type;
3124
3125 enum USBIN_ACTION {
3126 HANDLE,
3127 RESUBMIT,
3128 ABORT
3129 } action;
3130
3131 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3132 goto exit;
3133
3134 hw = wlandev->priv;
3135 if (!hw)
3136 goto exit;
3137
3138 skb = hw->rx_urb_skb;
3139 BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3140
3141 hw->rx_urb_skb = NULL;
3142
3143 /* Check for error conditions within the URB */
3144 switch (urb->status) {
3145 case 0:
3146 action = HANDLE;
3147
3148 /* Check for short packet */
3149 if (urb->actual_length == 0) {
3150 wlandev->netdev->stats.rx_errors++;
3151 wlandev->netdev->stats.rx_length_errors++;
3152 action = RESUBMIT;
3153 }
3154 break;
3155
3156 case -EPIPE:
3157 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3158 wlandev->netdev->name);
3159 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3160 schedule_work(&hw->usb_work);
3161 wlandev->netdev->stats.rx_errors++;
3162 action = ABORT;
3163 break;
3164
3165 case -EILSEQ:
3166 case -ETIMEDOUT:
3167 case -EPROTO:
3168 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3169 !timer_pending(&hw->throttle)) {
3170 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3171 }
3172 wlandev->netdev->stats.rx_errors++;
3173 action = ABORT;
3174 break;
3175
3176 case -EOVERFLOW:
3177 wlandev->netdev->stats.rx_over_errors++;
3178 action = RESUBMIT;
3179 break;
3180
3181 case -ENODEV:
3182 case -ESHUTDOWN:
3183 pr_debug("status=%d, device removed.\n", urb->status);
3184 action = ABORT;
3185 break;
3186
3187 case -ENOENT:
3188 case -ECONNRESET:
3189 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3190 action = ABORT;
3191 break;
3192
3193 default:
3194 pr_debug("urb status=%d, transfer flags=0x%x\n",
3195 urb->status, urb->transfer_flags);
3196 wlandev->netdev->stats.rx_errors++;
3197 action = RESUBMIT;
3198 break;
3199 }
3200
3201 urb_status = urb->status;
3202
3203 if (action != ABORT) {
3204 /* Repost the RX URB */
3205 result = submit_rx_urb(hw, GFP_ATOMIC);
3206
3207 if (result != 0) {
3208 netdev_err(hw->wlandev->netdev,
3209 "Fatal, failed to resubmit rx_urb. error=%d\n",
3210 result);
3211 }
3212 }
3213
3214 /* Handle any USB-IN packet */
3215 /* Note: the check of the sw_support field, the type field doesn't
3216 * have bit 12 set like the docs suggest.
3217 */
3218 type = le16_to_cpu(usbin->type);
3219 if (HFA384x_USB_ISRXFRM(type)) {
3220 if (action == HANDLE) {
3221 if (usbin->txfrm.desc.sw_support == 0x0123) {
3222 hfa384x_usbin_txcompl(wlandev, usbin);
3223 } else {
3224 skb_put(skb, sizeof(*usbin));
3225 hfa384x_usbin_rx(wlandev, skb);
3226 skb = NULL;
3227 }
3228 }
3229 goto exit;
3230 }
3231 if (HFA384x_USB_ISTXFRM(type)) {
3232 if (action == HANDLE)
3233 hfa384x_usbin_txcompl(wlandev, usbin);
3234 goto exit;
3235 }
3236 switch (type) {
3237 case HFA384x_USB_INFOFRM:
3238 if (action == ABORT)
3239 goto exit;
3240 if (action == HANDLE)
3241 hfa384x_usbin_info(wlandev, usbin);
3242 break;
3243
3244 case HFA384x_USB_CMDRESP:
3245 case HFA384x_USB_WRIDRESP:
3246 case HFA384x_USB_RRIDRESP:
3247 case HFA384x_USB_WMEMRESP:
3248 case HFA384x_USB_RMEMRESP:
3249 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3250 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3251 break;
3252
3253 case HFA384x_USB_BUFAVAIL:
3254 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3255 usbin->bufavail.frmlen);
3256 break;
3257
3258 case HFA384x_USB_ERROR:
3259 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3260 usbin->usberror.errortype);
3261 break;
3262
3263 default:
3264 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3265 usbin->type, urb_status);
3266 break;
3267 } /* switch */
3268
3269 exit:
3270
3271 if (skb)
3272 dev_kfree_skb(skb);
3273 }
3274
3275 /*----------------------------------------------------------------
3276 * hfa384x_usbin_ctlx
3277 *
3278 * We've received a URB containing a Prism2 "response" message.
3279 * This message needs to be matched up with a CTLX on the active
3280 * queue and our state updated accordingly.
3281 *
3282 * Arguments:
3283 * hw ptr to hfa384x_t
3284 * usbin ptr to USB IN packet
3285 * urb_status status of this Bulk-In URB
3286 *
3287 * Returns:
3288 * nothing
3289 *
3290 * Side effects:
3291 *
3292 * Call context:
3293 * interrupt
3294 ----------------------------------------------------------------*/
hfa384x_usbin_ctlx(hfa384x_t * hw,hfa384x_usbin_t * usbin,int urb_status)3295 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3296 int urb_status)
3297 {
3298 hfa384x_usbctlx_t *ctlx;
3299 int run_queue = 0;
3300 unsigned long flags;
3301
3302 retry:
3303 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3304
3305 /* There can be only one CTLX on the active queue
3306 * at any one time, and this is the CTLX that the
3307 * timers are waiting for.
3308 */
3309 if (list_empty(&hw->ctlxq.active))
3310 goto unlock;
3311
3312 /* Remove the "response timeout". It's possible that
3313 * we are already too late, and that the timeout is
3314 * already running. And that's just too bad for us,
3315 * because we could lose our CTLX from the active
3316 * queue here ...
3317 */
3318 if (del_timer(&hw->resptimer) == 0) {
3319 if (hw->resp_timer_done == 0) {
3320 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3321 goto retry;
3322 }
3323 } else {
3324 hw->resp_timer_done = 1;
3325 }
3326
3327 ctlx = get_active_ctlx(hw);
3328
3329 if (urb_status != 0) {
3330 /*
3331 * Bad CTLX, so get rid of it. But we only
3332 * remove it from the active queue if we're no
3333 * longer expecting the OUT URB to complete.
3334 */
3335 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3336 run_queue = 1;
3337 } else {
3338 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3339
3340 /*
3341 * Check that our message is what we're expecting ...
3342 */
3343 if (ctlx->outbuf.type != intype) {
3344 netdev_warn(hw->wlandev->netdev,
3345 "Expected IN[%d], received IN[%d] - ignored.\n",
3346 le16_to_cpu(ctlx->outbuf.type),
3347 le16_to_cpu(intype));
3348 goto unlock;
3349 }
3350
3351 /* This URB has succeeded, so grab the data ... */
3352 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3353
3354 switch (ctlx->state) {
3355 case CTLX_REQ_SUBMITTED:
3356 /*
3357 * We have received our response URB before
3358 * our request has been acknowledged. Odd,
3359 * but our OUT URB is still alive...
3360 */
3361 pr_debug("Causality violation: please reboot Universe\n");
3362 ctlx->state = CTLX_RESP_COMPLETE;
3363 break;
3364
3365 case CTLX_REQ_COMPLETE:
3366 /*
3367 * This is the usual path: our request
3368 * has already been acknowledged, and
3369 * now we have received the reply too.
3370 */
3371 ctlx->state = CTLX_COMPLETE;
3372 unlocked_usbctlx_complete(hw, ctlx);
3373 run_queue = 1;
3374 break;
3375
3376 default:
3377 /*
3378 * Throw this CTLX away ...
3379 */
3380 netdev_err(hw->wlandev->netdev,
3381 "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3382 le16_to_cpu(ctlx->outbuf.type),
3383 ctlxstr(ctlx->state));
3384 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3385 run_queue = 1;
3386 break;
3387 } /* switch */
3388 }
3389
3390 unlock:
3391 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3392
3393 if (run_queue)
3394 hfa384x_usbctlxq_run(hw);
3395 }
3396
3397 /*----------------------------------------------------------------
3398 * hfa384x_usbin_txcompl
3399 *
3400 * At this point we have the results of a previous transmit.
3401 *
3402 * Arguments:
3403 * wlandev wlan device
3404 * usbin ptr to the usb transfer buffer
3405 *
3406 * Returns:
3407 * nothing
3408 *
3409 * Side effects:
3410 *
3411 * Call context:
3412 * interrupt
3413 ----------------------------------------------------------------*/
hfa384x_usbin_txcompl(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3414 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3415 hfa384x_usbin_t *usbin)
3416 {
3417 u16 status;
3418
3419 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3420
3421 /* Was there an error? */
3422 if (HFA384x_TXSTATUS_ISERROR(status))
3423 prism2sta_ev_txexc(wlandev, status);
3424 else
3425 prism2sta_ev_tx(wlandev, status);
3426 }
3427
3428 /*----------------------------------------------------------------
3429 * hfa384x_usbin_rx
3430 *
3431 * At this point we have a successful received a rx frame packet.
3432 *
3433 * Arguments:
3434 * wlandev wlan device
3435 * usbin ptr to the usb transfer buffer
3436 *
3437 * Returns:
3438 * nothing
3439 *
3440 * Side effects:
3441 *
3442 * Call context:
3443 * interrupt
3444 ----------------------------------------------------------------*/
hfa384x_usbin_rx(wlandevice_t * wlandev,struct sk_buff * skb)3445 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3446 {
3447 hfa384x_usbin_t *usbin = (hfa384x_usbin_t *)skb->data;
3448 hfa384x_t *hw = wlandev->priv;
3449 int hdrlen;
3450 struct p80211_rxmeta *rxmeta;
3451 u16 data_len;
3452 u16 fc;
3453
3454 /* Byte order convert once up front. */
3455 usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3456 usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3457
3458 /* Now handle frame based on port# */
3459 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3460 case 0:
3461 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3462
3463 /* If exclude and we receive an unencrypted, drop it */
3464 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3465 !WLAN_GET_FC_ISWEP(fc)) {
3466 break;
3467 }
3468
3469 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3470
3471 /* How much header data do we have? */
3472 hdrlen = p80211_headerlen(fc);
3473
3474 /* Pull off the descriptor */
3475 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3476
3477 /* Now shunt the header block up against the data block
3478 * with an "overlapping" copy
3479 */
3480 memmove(skb_push(skb, hdrlen),
3481 &usbin->rxfrm.desc.frame_control, hdrlen);
3482
3483 skb->dev = wlandev->netdev;
3484 skb->dev->last_rx = jiffies;
3485
3486 /* And set the frame length properly */
3487 skb_trim(skb, data_len + hdrlen);
3488
3489 /* The prism2 series does not return the CRC */
3490 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3491
3492 skb_reset_mac_header(skb);
3493
3494 /* Attach the rxmeta, set some stuff */
3495 p80211skb_rxmeta_attach(wlandev, skb);
3496 rxmeta = P80211SKB_RXMETA(skb);
3497 rxmeta->mactime = usbin->rxfrm.desc.time;
3498 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3499 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3500 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3501
3502 prism2sta_ev_rx(wlandev, skb);
3503
3504 break;
3505
3506 case 7:
3507 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3508 /* Copy to wlansnif skb */
3509 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3510 dev_kfree_skb(skb);
3511 } else {
3512 pr_debug("Received monitor frame: FCSerr set\n");
3513 }
3514 break;
3515
3516 default:
3517 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3518 HFA384x_RXSTATUS_MACPORT_GET(
3519 usbin->rxfrm.desc.status));
3520 break;
3521 }
3522 }
3523
3524 /*----------------------------------------------------------------
3525 * hfa384x_int_rxmonitor
3526 *
3527 * Helper function for int_rx. Handles monitor frames.
3528 * Note that this function allocates space for the FCS and sets it
3529 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3530 * higher layers expect it. 0xffffffff is used as a flag to indicate
3531 * the FCS is bogus.
3532 *
3533 * Arguments:
3534 * wlandev wlan device structure
3535 * rxfrm rx descriptor read from card in int_rx
3536 *
3537 * Returns:
3538 * nothing
3539 *
3540 * Side effects:
3541 * Allocates an skb and passes it up via the PF_PACKET interface.
3542 * Call context:
3543 * interrupt
3544 ----------------------------------------------------------------*/
hfa384x_int_rxmonitor(wlandevice_t * wlandev,hfa384x_usb_rxfrm_t * rxfrm)3545 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3546 hfa384x_usb_rxfrm_t *rxfrm)
3547 {
3548 hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3549 unsigned int hdrlen = 0;
3550 unsigned int datalen = 0;
3551 unsigned int skblen = 0;
3552 u8 *datap;
3553 u16 fc;
3554 struct sk_buff *skb;
3555 hfa384x_t *hw = wlandev->priv;
3556
3557 /* Remember the status, time, and data_len fields are in host order */
3558 /* Figure out how big the frame is */
3559 fc = le16_to_cpu(rxdesc->frame_control);
3560 hdrlen = p80211_headerlen(fc);
3561 datalen = le16_to_cpu(rxdesc->data_len);
3562
3563 /* Allocate an ind message+framesize skb */
3564 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3565
3566 /* sanity check the length */
3567 if (skblen >
3568 (sizeof(struct p80211_caphdr) +
3569 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3570 pr_debug("overlen frm: len=%zd\n",
3571 skblen - sizeof(struct p80211_caphdr));
3572
3573 return;
3574 }
3575
3576 skb = dev_alloc_skb(skblen);
3577 if (skb == NULL)
3578 return;
3579
3580 /* only prepend the prism header if in the right mode */
3581 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3582 (hw->sniffhdr != 0)) {
3583 struct p80211_caphdr *caphdr;
3584 /* The NEW header format! */
3585 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3586 caphdr = (struct p80211_caphdr *)datap;
3587
3588 caphdr->version = htonl(P80211CAPTURE_VERSION);
3589 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3590 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3591 caphdr->hosttime = __cpu_to_be64(jiffies);
3592 caphdr->phytype = htonl(4); /* dss_dot11_b */
3593 caphdr->channel = htonl(hw->sniff_channel);
3594 caphdr->datarate = htonl(rxdesc->rate);
3595 caphdr->antenna = htonl(0); /* unknown */
3596 caphdr->priority = htonl(0); /* unknown */
3597 caphdr->ssi_type = htonl(3); /* rssi_raw */
3598 caphdr->ssi_signal = htonl(rxdesc->signal);
3599 caphdr->ssi_noise = htonl(rxdesc->silence);
3600 caphdr->preamble = htonl(0); /* unknown */
3601 caphdr->encoding = htonl(1); /* cck */
3602 }
3603
3604 /* Copy the 802.11 header to the skb
3605 (ctl frames may be less than a full header) */
3606 datap = skb_put(skb, hdrlen);
3607 memcpy(datap, &(rxdesc->frame_control), hdrlen);
3608
3609 /* If any, copy the data from the card to the skb */
3610 if (datalen > 0) {
3611 datap = skb_put(skb, datalen);
3612 memcpy(datap, rxfrm->data, datalen);
3613
3614 /* check for unencrypted stuff if WEP bit set. */
3615 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3616 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3617 /* clear wep; it's the 802.2 header! */
3618 *(datap - hdrlen + 1) &= 0xbf;
3619 }
3620
3621 if (hw->sniff_fcs) {
3622 /* Set the FCS */
3623 datap = skb_put(skb, WLAN_CRC_LEN);
3624 memset(datap, 0xff, WLAN_CRC_LEN);
3625 }
3626
3627 /* pass it back up */
3628 prism2sta_ev_rx(wlandev, skb);
3629 }
3630
3631 /*----------------------------------------------------------------
3632 * hfa384x_usbin_info
3633 *
3634 * At this point we have a successful received a Prism2 info frame.
3635 *
3636 * Arguments:
3637 * wlandev wlan device
3638 * usbin ptr to the usb transfer buffer
3639 *
3640 * Returns:
3641 * nothing
3642 *
3643 * Side effects:
3644 *
3645 * Call context:
3646 * interrupt
3647 ----------------------------------------------------------------*/
hfa384x_usbin_info(wlandevice_t * wlandev,hfa384x_usbin_t * usbin)3648 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3649 {
3650 usbin->infofrm.info.framelen =
3651 le16_to_cpu(usbin->infofrm.info.framelen);
3652 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3653 }
3654
3655 /*----------------------------------------------------------------
3656 * hfa384x_usbout_callback
3657 *
3658 * Callback for URBs on the BULKOUT endpoint.
3659 *
3660 * Arguments:
3661 * urb ptr to the completed urb
3662 *
3663 * Returns:
3664 * nothing
3665 *
3666 * Side effects:
3667 *
3668 * Call context:
3669 * interrupt
3670 ----------------------------------------------------------------*/
hfa384x_usbout_callback(struct urb * urb)3671 static void hfa384x_usbout_callback(struct urb *urb)
3672 {
3673 wlandevice_t *wlandev = urb->context;
3674 hfa384x_usbout_t *usbout = urb->transfer_buffer;
3675
3676 #ifdef DEBUG_USB
3677 dbprint_urb(urb);
3678 #endif
3679
3680 if (wlandev && wlandev->netdev) {
3681 switch (urb->status) {
3682 case 0:
3683 hfa384x_usbout_tx(wlandev, usbout);
3684 break;
3685
3686 case -EPIPE:
3687 {
3688 hfa384x_t *hw = wlandev->priv;
3689
3690 netdev_warn(hw->wlandev->netdev,
3691 "%s tx pipe stalled: requesting reset\n",
3692 wlandev->netdev->name);
3693 if (!test_and_set_bit
3694 (WORK_TX_HALT, &hw->usb_flags))
3695 schedule_work(&hw->usb_work);
3696 wlandev->netdev->stats.tx_errors++;
3697 break;
3698 }
3699
3700 case -EPROTO:
3701 case -ETIMEDOUT:
3702 case -EILSEQ:
3703 {
3704 hfa384x_t *hw = wlandev->priv;
3705
3706 if (!test_and_set_bit
3707 (THROTTLE_TX, &hw->usb_flags) &&
3708 !timer_pending(&hw->throttle)) {
3709 mod_timer(&hw->throttle,
3710 jiffies + THROTTLE_JIFFIES);
3711 }
3712 wlandev->netdev->stats.tx_errors++;
3713 netif_stop_queue(wlandev->netdev);
3714 break;
3715 }
3716
3717 case -ENOENT:
3718 case -ESHUTDOWN:
3719 /* Ignorable errors */
3720 break;
3721
3722 default:
3723 netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3724 urb->status);
3725 wlandev->netdev->stats.tx_errors++;
3726 break;
3727 } /* switch */
3728 }
3729 }
3730
3731 /*----------------------------------------------------------------
3732 * hfa384x_ctlxout_callback
3733 *
3734 * Callback for control data on the BULKOUT endpoint.
3735 *
3736 * Arguments:
3737 * urb ptr to the completed urb
3738 *
3739 * Returns:
3740 * nothing
3741 *
3742 * Side effects:
3743 *
3744 * Call context:
3745 * interrupt
3746 ----------------------------------------------------------------*/
hfa384x_ctlxout_callback(struct urb * urb)3747 static void hfa384x_ctlxout_callback(struct urb *urb)
3748 {
3749 hfa384x_t *hw = urb->context;
3750 int delete_resptimer = 0;
3751 int timer_ok = 1;
3752 int run_queue = 0;
3753 hfa384x_usbctlx_t *ctlx;
3754 unsigned long flags;
3755
3756 pr_debug("urb->status=%d\n", urb->status);
3757 #ifdef DEBUG_USB
3758 dbprint_urb(urb);
3759 #endif
3760 if ((urb->status == -ESHUTDOWN) ||
3761 (urb->status == -ENODEV) || (hw == NULL))
3762 return;
3763
3764 retry:
3765 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3766
3767 /*
3768 * Only one CTLX at a time on the "active" list, and
3769 * none at all if we are unplugged. However, we can
3770 * rely on the disconnect function to clean everything
3771 * up if someone unplugged the adapter.
3772 */
3773 if (list_empty(&hw->ctlxq.active)) {
3774 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3775 return;
3776 }
3777
3778 /*
3779 * Having something on the "active" queue means
3780 * that we have timers to worry about ...
3781 */
3782 if (del_timer(&hw->reqtimer) == 0) {
3783 if (hw->req_timer_done == 0) {
3784 /*
3785 * This timer was actually running while we
3786 * were trying to delete it. Let it terminate
3787 * gracefully instead.
3788 */
3789 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3790 goto retry;
3791 }
3792 } else {
3793 hw->req_timer_done = 1;
3794 }
3795
3796 ctlx = get_active_ctlx(hw);
3797
3798 if (urb->status == 0) {
3799 /* Request portion of a CTLX is successful */
3800 switch (ctlx->state) {
3801 case CTLX_REQ_SUBMITTED:
3802 /* This OUT-ACK received before IN */
3803 ctlx->state = CTLX_REQ_COMPLETE;
3804 break;
3805
3806 case CTLX_RESP_COMPLETE:
3807 /* IN already received before this OUT-ACK,
3808 * so this command must now be complete.
3809 */
3810 ctlx->state = CTLX_COMPLETE;
3811 unlocked_usbctlx_complete(hw, ctlx);
3812 run_queue = 1;
3813 break;
3814
3815 default:
3816 /* This is NOT a valid CTLX "success" state! */
3817 netdev_err(hw->wlandev->netdev,
3818 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3819 le16_to_cpu(ctlx->outbuf.type),
3820 ctlxstr(ctlx->state), urb->status);
3821 break;
3822 } /* switch */
3823 } else {
3824 /* If the pipe has stalled then we need to reset it */
3825 if ((urb->status == -EPIPE) &&
3826 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3827 netdev_warn(hw->wlandev->netdev,
3828 "%s tx pipe stalled: requesting reset\n",
3829 hw->wlandev->netdev->name);
3830 schedule_work(&hw->usb_work);
3831 }
3832
3833 /* If someone cancels the OUT URB then its status
3834 * should be either -ECONNRESET or -ENOENT.
3835 */
3836 ctlx->state = CTLX_REQ_FAILED;
3837 unlocked_usbctlx_complete(hw, ctlx);
3838 delete_resptimer = 1;
3839 run_queue = 1;
3840 }
3841
3842 delresp:
3843 if (delete_resptimer) {
3844 timer_ok = del_timer(&hw->resptimer);
3845 if (timer_ok != 0)
3846 hw->resp_timer_done = 1;
3847 }
3848
3849 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3850
3851 if (!timer_ok && (hw->resp_timer_done == 0)) {
3852 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3853 goto delresp;
3854 }
3855
3856 if (run_queue)
3857 hfa384x_usbctlxq_run(hw);
3858 }
3859
3860 /*----------------------------------------------------------------
3861 * hfa384x_usbctlx_reqtimerfn
3862 *
3863 * Timer response function for CTLX request timeouts. If this
3864 * function is called, it means that the callback for the OUT
3865 * URB containing a Prism2.x XXX_Request was never called.
3866 *
3867 * Arguments:
3868 * data a ptr to the hfa384x_t
3869 *
3870 * Returns:
3871 * nothing
3872 *
3873 * Side effects:
3874 *
3875 * Call context:
3876 * interrupt
3877 ----------------------------------------------------------------*/
hfa384x_usbctlx_reqtimerfn(unsigned long data)3878 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3879 {
3880 hfa384x_t *hw = (hfa384x_t *)data;
3881 unsigned long flags;
3882
3883 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3884
3885 hw->req_timer_done = 1;
3886
3887 /* Removing the hardware automatically empties
3888 * the active list ...
3889 */
3890 if (!list_empty(&hw->ctlxq.active)) {
3891 /*
3892 * We must ensure that our URB is removed from
3893 * the system, if it hasn't already expired.
3894 */
3895 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3896 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3897 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3898
3899 ctlx->state = CTLX_REQ_FAILED;
3900
3901 /* This URB was active, but has now been
3902 * cancelled. It will now have a status of
3903 * -ECONNRESET in the callback function.
3904 *
3905 * We are cancelling this CTLX, so we're
3906 * not going to need to wait for a response.
3907 * The URB's callback function will check
3908 * that this timer is truly dead.
3909 */
3910 if (del_timer(&hw->resptimer) != 0)
3911 hw->resp_timer_done = 1;
3912 }
3913 }
3914
3915 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3916 }
3917
3918 /*----------------------------------------------------------------
3919 * hfa384x_usbctlx_resptimerfn
3920 *
3921 * Timer response function for CTLX response timeouts. If this
3922 * function is called, it means that the callback for the IN
3923 * URB containing a Prism2.x XXX_Response was never called.
3924 *
3925 * Arguments:
3926 * data a ptr to the hfa384x_t
3927 *
3928 * Returns:
3929 * nothing
3930 *
3931 * Side effects:
3932 *
3933 * Call context:
3934 * interrupt
3935 ----------------------------------------------------------------*/
hfa384x_usbctlx_resptimerfn(unsigned long data)3936 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3937 {
3938 hfa384x_t *hw = (hfa384x_t *)data;
3939 unsigned long flags;
3940
3941 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3942
3943 hw->resp_timer_done = 1;
3944
3945 /* The active list will be empty if the
3946 * adapter has been unplugged ...
3947 */
3948 if (!list_empty(&hw->ctlxq.active)) {
3949 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3950
3951 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3952 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3953 hfa384x_usbctlxq_run(hw);
3954 return;
3955 }
3956 }
3957 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3958 }
3959
3960 /*----------------------------------------------------------------
3961 * hfa384x_usb_throttlefn
3962 *
3963 *
3964 * Arguments:
3965 * data ptr to hw
3966 *
3967 * Returns:
3968 * Nothing
3969 *
3970 * Side effects:
3971 *
3972 * Call context:
3973 * Interrupt
3974 ----------------------------------------------------------------*/
hfa384x_usb_throttlefn(unsigned long data)3975 static void hfa384x_usb_throttlefn(unsigned long data)
3976 {
3977 hfa384x_t *hw = (hfa384x_t *)data;
3978 unsigned long flags;
3979
3980 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3981
3982 /*
3983 * We need to check BOTH the RX and the TX throttle controls,
3984 * so we use the bitwise OR instead of the logical OR.
3985 */
3986 pr_debug("flags=0x%lx\n", hw->usb_flags);
3987 if (!hw->wlandev->hwremoved &&
3988 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3989 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
3990 |
3991 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3992 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3993 )) {
3994 schedule_work(&hw->usb_work);
3995 }
3996
3997 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3998 }
3999
4000 /*----------------------------------------------------------------
4001 * hfa384x_usbctlx_submit
4002 *
4003 * Called from the doxxx functions to submit a CTLX to the queue
4004 *
4005 * Arguments:
4006 * hw ptr to the hw struct
4007 * ctlx ctlx structure to enqueue
4008 *
4009 * Returns:
4010 * -ENODEV if the adapter is unplugged
4011 * 0
4012 *
4013 * Side effects:
4014 *
4015 * Call context:
4016 * process or interrupt
4017 ----------------------------------------------------------------*/
hfa384x_usbctlx_submit(hfa384x_t * hw,hfa384x_usbctlx_t * ctlx)4018 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4019 {
4020 unsigned long flags;
4021
4022 spin_lock_irqsave(&hw->ctlxq.lock, flags);
4023
4024 if (hw->wlandev->hwremoved) {
4025 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4026 return -ENODEV;
4027 }
4028
4029 ctlx->state = CTLX_PENDING;
4030 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4031 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4032 hfa384x_usbctlxq_run(hw);
4033
4034 return 0;
4035 }
4036
4037 /*----------------------------------------------------------------
4038 * hfa384x_usbout_tx
4039 *
4040 * At this point we have finished a send of a frame. Mark the URB
4041 * as available and call ev_alloc to notify higher layers we're
4042 * ready for more.
4043 *
4044 * Arguments:
4045 * wlandev wlan device
4046 * usbout ptr to the usb transfer buffer
4047 *
4048 * Returns:
4049 * nothing
4050 *
4051 * Side effects:
4052 *
4053 * Call context:
4054 * interrupt
4055 ----------------------------------------------------------------*/
hfa384x_usbout_tx(wlandevice_t * wlandev,hfa384x_usbout_t * usbout)4056 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4057 {
4058 prism2sta_ev_alloc(wlandev);
4059 }
4060
4061 /*----------------------------------------------------------------
4062 * hfa384x_isgood_pdrcore
4063 *
4064 * Quick check of PDR codes.
4065 *
4066 * Arguments:
4067 * pdrcode PDR code number (host order)
4068 *
4069 * Returns:
4070 * zero not good.
4071 * one is good.
4072 *
4073 * Side effects:
4074 *
4075 * Call context:
4076 ----------------------------------------------------------------*/
hfa384x_isgood_pdrcode(u16 pdrcode)4077 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4078 {
4079 switch (pdrcode) {
4080 case HFA384x_PDR_END_OF_PDA:
4081 case HFA384x_PDR_PCB_PARTNUM:
4082 case HFA384x_PDR_PDAVER:
4083 case HFA384x_PDR_NIC_SERIAL:
4084 case HFA384x_PDR_MKK_MEASUREMENTS:
4085 case HFA384x_PDR_NIC_RAMSIZE:
4086 case HFA384x_PDR_MFISUPRANGE:
4087 case HFA384x_PDR_CFISUPRANGE:
4088 case HFA384x_PDR_NICID:
4089 case HFA384x_PDR_MAC_ADDRESS:
4090 case HFA384x_PDR_REGDOMAIN:
4091 case HFA384x_PDR_ALLOWED_CHANNEL:
4092 case HFA384x_PDR_DEFAULT_CHANNEL:
4093 case HFA384x_PDR_TEMPTYPE:
4094 case HFA384x_PDR_IFR_SETTING:
4095 case HFA384x_PDR_RFR_SETTING:
4096 case HFA384x_PDR_HFA3861_BASELINE:
4097 case HFA384x_PDR_HFA3861_SHADOW:
4098 case HFA384x_PDR_HFA3861_IFRF:
4099 case HFA384x_PDR_HFA3861_CHCALSP:
4100 case HFA384x_PDR_HFA3861_CHCALI:
4101 case HFA384x_PDR_3842_NIC_CONFIG:
4102 case HFA384x_PDR_USB_ID:
4103 case HFA384x_PDR_PCI_ID:
4104 case HFA384x_PDR_PCI_IFCONF:
4105 case HFA384x_PDR_PCI_PMCONF:
4106 case HFA384x_PDR_RFENRGY:
4107 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4108 case HFA384x_PDR_HFA3861_MANF_TESTI:
4109 /* code is OK */
4110 return 1;
4111 default:
4112 if (pdrcode < 0x1000) {
4113 /* code is OK, but we don't know exactly what it is */
4114 pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4115 pdrcode);
4116 return 1;
4117 }
4118 break;
4119 }
4120 /* bad code */
4121 pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4122 pdrcode);
4123 return 0;
4124 }
4125