• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #include <rdma/ib_mad.h>
52 #include <rdma/ib_user_verbs.h>
53 #include <linux/io.h>
54 #include <linux/module.h>
55 #include <linux/utsname.h>
56 #include <linux/rculist.h>
57 #include <linux/mm.h>
58 #include <linux/random.h>
59 #include <linux/vmalloc.h>
60 
61 #include "hfi.h"
62 #include "common.h"
63 #include "device.h"
64 #include "trace.h"
65 #include "qp.h"
66 #include "sdma.h"
67 
68 unsigned int hfi1_lkey_table_size = 16;
69 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
70 		   S_IRUGO);
71 MODULE_PARM_DESC(lkey_table_size,
72 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
73 
74 static unsigned int hfi1_max_pds = 0xFFFF;
75 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
76 MODULE_PARM_DESC(max_pds,
77 		 "Maximum number of protection domains to support");
78 
79 static unsigned int hfi1_max_ahs = 0xFFFF;
80 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
82 
83 unsigned int hfi1_max_cqes = 0x2FFFF;
84 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
85 MODULE_PARM_DESC(max_cqes,
86 		 "Maximum number of completion queue entries to support");
87 
88 unsigned int hfi1_max_cqs = 0x1FFFF;
89 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
91 
92 unsigned int hfi1_max_qp_wrs = 0x3FFF;
93 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
95 
96 unsigned int hfi1_max_qps = 16384;
97 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
99 
100 unsigned int hfi1_max_sges = 0x60;
101 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
103 
104 unsigned int hfi1_max_mcast_grps = 16384;
105 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
106 MODULE_PARM_DESC(max_mcast_grps,
107 		 "Maximum number of multicast groups to support");
108 
109 unsigned int hfi1_max_mcast_qp_attached = 16;
110 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
111 		   uint, S_IRUGO);
112 MODULE_PARM_DESC(max_mcast_qp_attached,
113 		 "Maximum number of attached QPs to support");
114 
115 unsigned int hfi1_max_srqs = 1024;
116 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
118 
119 unsigned int hfi1_max_srq_sges = 128;
120 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
122 
123 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
124 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
125 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
126 
127 static void verbs_sdma_complete(
128 	struct sdma_txreq *cookie,
129 	int status,
130 	int drained);
131 
132 /* Length of buffer to create verbs txreq cache name */
133 #define TXREQ_NAME_LEN 24
134 
135 /*
136  * Note that it is OK to post send work requests in the SQE and ERR
137  * states; hfi1_do_send() will process them and generate error
138  * completions as per IB 1.2 C10-96.
139  */
140 const int ib_hfi1_state_ops[IB_QPS_ERR + 1] = {
141 	[IB_QPS_RESET] = 0,
142 	[IB_QPS_INIT] = HFI1_POST_RECV_OK,
143 	[IB_QPS_RTR] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK,
144 	[IB_QPS_RTS] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
145 	    HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK |
146 	    HFI1_PROCESS_NEXT_SEND_OK,
147 	[IB_QPS_SQD] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
148 	    HFI1_POST_SEND_OK | HFI1_PROCESS_SEND_OK,
149 	[IB_QPS_SQE] = HFI1_POST_RECV_OK | HFI1_PROCESS_RECV_OK |
150 	    HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
151 	[IB_QPS_ERR] = HFI1_POST_RECV_OK | HFI1_FLUSH_RECV |
152 	    HFI1_POST_SEND_OK | HFI1_FLUSH_SEND,
153 };
154 
155 struct hfi1_ucontext {
156 	struct ib_ucontext ibucontext;
157 };
158 
to_iucontext(struct ib_ucontext * ibucontext)159 static inline struct hfi1_ucontext *to_iucontext(struct ib_ucontext
160 						  *ibucontext)
161 {
162 	return container_of(ibucontext, struct hfi1_ucontext, ibucontext);
163 }
164 
165 /*
166  * Translate ib_wr_opcode into ib_wc_opcode.
167  */
168 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
169 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
170 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
171 	[IB_WR_SEND] = IB_WC_SEND,
172 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
173 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
174 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
175 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD
176 };
177 
178 /*
179  * Length of header by opcode, 0 --> not supported
180  */
181 const u8 hdr_len_by_opcode[256] = {
182 	/* RC */
183 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
184 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
185 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
186 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
187 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
188 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
189 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
190 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
191 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
192 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
193 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
194 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
195 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
196 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
197 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
198 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
199 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
200 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
201 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4,
202 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
203 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
204 	/* UC */
205 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
206 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
207 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
208 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
209 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
210 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
211 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
212 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
213 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
214 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
215 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
216 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
217 	/* UD */
218 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
219 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
220 };
221 
222 static const opcode_handler opcode_handler_tbl[256] = {
223 	/* RC */
224 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
225 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
226 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
227 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
228 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
229 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
230 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
231 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
232 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
233 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
234 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
235 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
236 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
237 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
238 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
239 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
240 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
241 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
242 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
243 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
244 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
245 	/* UC */
246 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
247 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
248 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
249 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
250 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
251 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
252 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
253 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
254 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
255 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
256 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
257 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
258 	/* UD */
259 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
260 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
261 	/* CNP */
262 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
263 };
264 
265 /*
266  * System image GUID.
267  */
268 __be64 ib_hfi1_sys_image_guid;
269 
270 /**
271  * hfi1_copy_sge - copy data to SGE memory
272  * @ss: the SGE state
273  * @data: the data to copy
274  * @length: the length of the data
275  */
hfi1_copy_sge(struct hfi1_sge_state * ss,void * data,u32 length,int release)276 void hfi1_copy_sge(
277 	struct hfi1_sge_state *ss,
278 	void *data, u32 length,
279 	int release)
280 {
281 	struct hfi1_sge *sge = &ss->sge;
282 
283 	while (length) {
284 		u32 len = sge->length;
285 
286 		if (len > length)
287 			len = length;
288 		if (len > sge->sge_length)
289 			len = sge->sge_length;
290 		WARN_ON_ONCE(len == 0);
291 		memcpy(sge->vaddr, data, len);
292 		sge->vaddr += len;
293 		sge->length -= len;
294 		sge->sge_length -= len;
295 		if (sge->sge_length == 0) {
296 			if (release)
297 				hfi1_put_mr(sge->mr);
298 			if (--ss->num_sge)
299 				*sge = *ss->sg_list++;
300 		} else if (sge->length == 0 && sge->mr->lkey) {
301 			if (++sge->n >= HFI1_SEGSZ) {
302 				if (++sge->m >= sge->mr->mapsz)
303 					break;
304 				sge->n = 0;
305 			}
306 			sge->vaddr =
307 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
308 			sge->length =
309 				sge->mr->map[sge->m]->segs[sge->n].length;
310 		}
311 		data += len;
312 		length -= len;
313 	}
314 }
315 
316 /**
317  * hfi1_skip_sge - skip over SGE memory
318  * @ss: the SGE state
319  * @length: the number of bytes to skip
320  */
hfi1_skip_sge(struct hfi1_sge_state * ss,u32 length,int release)321 void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release)
322 {
323 	struct hfi1_sge *sge = &ss->sge;
324 
325 	while (length) {
326 		u32 len = sge->length;
327 
328 		if (len > length)
329 			len = length;
330 		if (len > sge->sge_length)
331 			len = sge->sge_length;
332 		WARN_ON_ONCE(len == 0);
333 		sge->vaddr += len;
334 		sge->length -= len;
335 		sge->sge_length -= len;
336 		if (sge->sge_length == 0) {
337 			if (release)
338 				hfi1_put_mr(sge->mr);
339 			if (--ss->num_sge)
340 				*sge = *ss->sg_list++;
341 		} else if (sge->length == 0 && sge->mr->lkey) {
342 			if (++sge->n >= HFI1_SEGSZ) {
343 				if (++sge->m >= sge->mr->mapsz)
344 					break;
345 				sge->n = 0;
346 			}
347 			sge->vaddr =
348 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
349 			sge->length =
350 				sge->mr->map[sge->m]->segs[sge->n].length;
351 		}
352 		length -= len;
353 	}
354 }
355 
356 /**
357  * post_one_send - post one RC, UC, or UD send work request
358  * @qp: the QP to post on
359  * @wr: the work request to send
360  */
post_one_send(struct hfi1_qp * qp,struct ib_send_wr * wr)361 static int post_one_send(struct hfi1_qp *qp, struct ib_send_wr *wr)
362 {
363 	struct hfi1_swqe *wqe;
364 	u32 next;
365 	int i;
366 	int j;
367 	int acc;
368 	struct hfi1_lkey_table *rkt;
369 	struct hfi1_pd *pd;
370 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
371 	struct hfi1_pportdata *ppd;
372 	struct hfi1_ibport *ibp;
373 
374 	/* IB spec says that num_sge == 0 is OK. */
375 	if (unlikely(wr->num_sge > qp->s_max_sge))
376 		return -EINVAL;
377 
378 	ppd = &dd->pport[qp->port_num - 1];
379 	ibp = &ppd->ibport_data;
380 
381 	/*
382 	 * Don't allow RDMA reads or atomic operations on UC or
383 	 * undefined operations.
384 	 * Make sure buffer is large enough to hold the result for atomics.
385 	 */
386 	if (qp->ibqp.qp_type == IB_QPT_UC) {
387 		if ((unsigned) wr->opcode >= IB_WR_RDMA_READ)
388 			return -EINVAL;
389 	} else if (qp->ibqp.qp_type != IB_QPT_RC) {
390 		/* Check IB_QPT_SMI, IB_QPT_GSI, IB_QPT_UD opcode */
391 		if (wr->opcode != IB_WR_SEND &&
392 		    wr->opcode != IB_WR_SEND_WITH_IMM)
393 			return -EINVAL;
394 		/* Check UD destination address PD */
395 		if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
396 			return -EINVAL;
397 	} else if ((unsigned) wr->opcode > IB_WR_ATOMIC_FETCH_AND_ADD)
398 		return -EINVAL;
399 	else if (wr->opcode >= IB_WR_ATOMIC_CMP_AND_SWP &&
400 		   (wr->num_sge == 0 ||
401 		    wr->sg_list[0].length < sizeof(u64) ||
402 		    wr->sg_list[0].addr & (sizeof(u64) - 1)))
403 		return -EINVAL;
404 	else if (wr->opcode >= IB_WR_RDMA_READ && !qp->s_max_rd_atomic)
405 		return -EINVAL;
406 
407 	next = qp->s_head + 1;
408 	if (next >= qp->s_size)
409 		next = 0;
410 	if (next == qp->s_last)
411 		return -ENOMEM;
412 
413 	rkt = &to_idev(qp->ibqp.device)->lk_table;
414 	pd = to_ipd(qp->ibqp.pd);
415 	wqe = get_swqe_ptr(qp, qp->s_head);
416 
417 
418 	if (qp->ibqp.qp_type != IB_QPT_UC &&
419 	    qp->ibqp.qp_type != IB_QPT_RC)
420 		memcpy(&wqe->ud_wr, ud_wr(wr), sizeof(wqe->ud_wr));
421 	else if (wr->opcode == IB_WR_RDMA_WRITE_WITH_IMM ||
422 		 wr->opcode == IB_WR_RDMA_WRITE ||
423 		 wr->opcode == IB_WR_RDMA_READ)
424 		memcpy(&wqe->rdma_wr, rdma_wr(wr), sizeof(wqe->rdma_wr));
425 	else if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
426 		 wr->opcode == IB_WR_ATOMIC_FETCH_AND_ADD)
427 		memcpy(&wqe->atomic_wr, atomic_wr(wr), sizeof(wqe->atomic_wr));
428 	else
429 		memcpy(&wqe->wr, wr, sizeof(wqe->wr));
430 
431 	wqe->length = 0;
432 	j = 0;
433 	if (wr->num_sge) {
434 		acc = wr->opcode >= IB_WR_RDMA_READ ?
435 			IB_ACCESS_LOCAL_WRITE : 0;
436 		for (i = 0; i < wr->num_sge; i++) {
437 			u32 length = wr->sg_list[i].length;
438 			int ok;
439 
440 			if (length == 0)
441 				continue;
442 			ok = hfi1_lkey_ok(rkt, pd, &wqe->sg_list[j],
443 					  &wr->sg_list[i], acc);
444 			if (!ok)
445 				goto bail_inval_free;
446 			wqe->length += length;
447 			j++;
448 		}
449 		wqe->wr.num_sge = j;
450 	}
451 	if (qp->ibqp.qp_type == IB_QPT_UC ||
452 	    qp->ibqp.qp_type == IB_QPT_RC) {
453 		if (wqe->length > 0x80000000U)
454 			goto bail_inval_free;
455 	} else {
456 		struct hfi1_ah *ah = to_iah(ud_wr(wr)->ah);
457 
458 		atomic_inc(&ah->refcount);
459 	}
460 	wqe->ssn = qp->s_ssn++;
461 	qp->s_head = next;
462 
463 	return 0;
464 
465 bail_inval_free:
466 	/* release mr holds */
467 	while (j) {
468 		struct hfi1_sge *sge = &wqe->sg_list[--j];
469 
470 		hfi1_put_mr(sge->mr);
471 	}
472 	return -EINVAL;
473 }
474 
475 /**
476  * post_send - post a send on a QP
477  * @ibqp: the QP to post the send on
478  * @wr: the list of work requests to post
479  * @bad_wr: the first bad WR is put here
480  *
481  * This may be called from interrupt context.
482  */
post_send(struct ib_qp * ibqp,struct ib_send_wr * wr,struct ib_send_wr ** bad_wr)483 static int post_send(struct ib_qp *ibqp, struct ib_send_wr *wr,
484 		     struct ib_send_wr **bad_wr)
485 {
486 	struct hfi1_qp *qp = to_iqp(ibqp);
487 	int err = 0;
488 	int call_send;
489 	unsigned long flags;
490 	unsigned nreq = 0;
491 
492 	spin_lock_irqsave(&qp->s_lock, flags);
493 
494 	/* Check that state is OK to post send. */
495 	if (unlikely(!(ib_hfi1_state_ops[qp->state] & HFI1_POST_SEND_OK))) {
496 		spin_unlock_irqrestore(&qp->s_lock, flags);
497 		return -EINVAL;
498 	}
499 
500 	/* sq empty and not list -> call send */
501 	call_send = qp->s_head == qp->s_last && !wr->next;
502 
503 	for (; wr; wr = wr->next) {
504 		err = post_one_send(qp, wr);
505 		if (unlikely(err)) {
506 			*bad_wr = wr;
507 			goto bail;
508 		}
509 		nreq++;
510 	}
511 bail:
512 	if (nreq && !call_send)
513 		hfi1_schedule_send(qp);
514 	spin_unlock_irqrestore(&qp->s_lock, flags);
515 	if (nreq && call_send)
516 		hfi1_do_send(&qp->s_iowait.iowork);
517 	return err;
518 }
519 
520 /**
521  * post_receive - post a receive on a QP
522  * @ibqp: the QP to post the receive on
523  * @wr: the WR to post
524  * @bad_wr: the first bad WR is put here
525  *
526  * This may be called from interrupt context.
527  */
post_receive(struct ib_qp * ibqp,struct ib_recv_wr * wr,struct ib_recv_wr ** bad_wr)528 static int post_receive(struct ib_qp *ibqp, struct ib_recv_wr *wr,
529 			struct ib_recv_wr **bad_wr)
530 {
531 	struct hfi1_qp *qp = to_iqp(ibqp);
532 	struct hfi1_rwq *wq = qp->r_rq.wq;
533 	unsigned long flags;
534 	int ret;
535 
536 	/* Check that state is OK to post receive. */
537 	if (!(ib_hfi1_state_ops[qp->state] & HFI1_POST_RECV_OK) || !wq) {
538 		*bad_wr = wr;
539 		ret = -EINVAL;
540 		goto bail;
541 	}
542 
543 	for (; wr; wr = wr->next) {
544 		struct hfi1_rwqe *wqe;
545 		u32 next;
546 		int i;
547 
548 		if ((unsigned) wr->num_sge > qp->r_rq.max_sge) {
549 			*bad_wr = wr;
550 			ret = -EINVAL;
551 			goto bail;
552 		}
553 
554 		spin_lock_irqsave(&qp->r_rq.lock, flags);
555 		next = wq->head + 1;
556 		if (next >= qp->r_rq.size)
557 			next = 0;
558 		if (next == wq->tail) {
559 			spin_unlock_irqrestore(&qp->r_rq.lock, flags);
560 			*bad_wr = wr;
561 			ret = -ENOMEM;
562 			goto bail;
563 		}
564 
565 		wqe = get_rwqe_ptr(&qp->r_rq, wq->head);
566 		wqe->wr_id = wr->wr_id;
567 		wqe->num_sge = wr->num_sge;
568 		for (i = 0; i < wr->num_sge; i++)
569 			wqe->sg_list[i] = wr->sg_list[i];
570 		/* Make sure queue entry is written before the head index. */
571 		smp_wmb();
572 		wq->head = next;
573 		spin_unlock_irqrestore(&qp->r_rq.lock, flags);
574 	}
575 	ret = 0;
576 
577 bail:
578 	return ret;
579 }
580 
581 /*
582  * Make sure the QP is ready and able to accept the given opcode.
583  */
qp_ok(int opcode,struct hfi1_packet * packet)584 static inline int qp_ok(int opcode, struct hfi1_packet *packet)
585 {
586 	struct hfi1_ibport *ibp;
587 
588 	if (!(ib_hfi1_state_ops[packet->qp->state] & HFI1_PROCESS_RECV_OK))
589 		goto dropit;
590 	if (((opcode & OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
591 	    (opcode == IB_OPCODE_CNP))
592 		return 1;
593 dropit:
594 	ibp = &packet->rcd->ppd->ibport_data;
595 	ibp->n_pkt_drops++;
596 	return 0;
597 }
598 
599 
600 /**
601  * hfi1_ib_rcv - process an incoming packet
602  * @packet: data packet information
603  *
604  * This is called to process an incoming packet at interrupt level.
605  *
606  * Tlen is the length of the header + data + CRC in bytes.
607  */
hfi1_ib_rcv(struct hfi1_packet * packet)608 void hfi1_ib_rcv(struct hfi1_packet *packet)
609 {
610 	struct hfi1_ctxtdata *rcd = packet->rcd;
611 	struct hfi1_ib_header *hdr = packet->hdr;
612 	u32 tlen = packet->tlen;
613 	struct hfi1_pportdata *ppd = rcd->ppd;
614 	struct hfi1_ibport *ibp = &ppd->ibport_data;
615 	unsigned long flags;
616 	u32 qp_num;
617 	int lnh;
618 	u8 opcode;
619 	u16 lid;
620 
621 	/* Check for GRH */
622 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
623 	if (lnh == HFI1_LRH_BTH)
624 		packet->ohdr = &hdr->u.oth;
625 	else if (lnh == HFI1_LRH_GRH) {
626 		u32 vtf;
627 
628 		packet->ohdr = &hdr->u.l.oth;
629 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
630 			goto drop;
631 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
632 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
633 			goto drop;
634 		packet->rcv_flags |= HFI1_HAS_GRH;
635 	} else
636 		goto drop;
637 
638 	trace_input_ibhdr(rcd->dd, hdr);
639 
640 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
641 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
642 
643 	/* Get the destination QP number. */
644 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & HFI1_QPN_MASK;
645 	lid = be16_to_cpu(hdr->lrh[1]);
646 	if (unlikely((lid >= HFI1_MULTICAST_LID_BASE) &&
647 	    (lid != HFI1_PERMISSIVE_LID))) {
648 		struct hfi1_mcast *mcast;
649 		struct hfi1_mcast_qp *p;
650 
651 		if (lnh != HFI1_LRH_GRH)
652 			goto drop;
653 		mcast = hfi1_mcast_find(ibp, &hdr->u.l.grh.dgid);
654 		if (mcast == NULL)
655 			goto drop;
656 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
657 			packet->qp = p->qp;
658 			spin_lock_irqsave(&packet->qp->r_lock, flags);
659 			if (likely((qp_ok(opcode, packet))))
660 				opcode_handler_tbl[opcode](packet);
661 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
662 		}
663 		/*
664 		 * Notify hfi1_multicast_detach() if it is waiting for us
665 		 * to finish.
666 		 */
667 		if (atomic_dec_return(&mcast->refcount) <= 1)
668 			wake_up(&mcast->wait);
669 	} else {
670 		rcu_read_lock();
671 		packet->qp = hfi1_lookup_qpn(ibp, qp_num);
672 		if (!packet->qp) {
673 			rcu_read_unlock();
674 			goto drop;
675 		}
676 		spin_lock_irqsave(&packet->qp->r_lock, flags);
677 		if (likely((qp_ok(opcode, packet))))
678 			opcode_handler_tbl[opcode](packet);
679 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
680 		rcu_read_unlock();
681 	}
682 	return;
683 
684 drop:
685 	ibp->n_pkt_drops++;
686 }
687 
688 /*
689  * This is called from a timer to check for QPs
690  * which need kernel memory in order to send a packet.
691  */
mem_timer(unsigned long data)692 static void mem_timer(unsigned long data)
693 {
694 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
695 	struct list_head *list = &dev->memwait;
696 	struct hfi1_qp *qp = NULL;
697 	struct iowait *wait;
698 	unsigned long flags;
699 
700 	write_seqlock_irqsave(&dev->iowait_lock, flags);
701 	if (!list_empty(list)) {
702 		wait = list_first_entry(list, struct iowait, list);
703 		qp = container_of(wait, struct hfi1_qp, s_iowait);
704 		list_del_init(&qp->s_iowait.list);
705 		/* refcount held until actual wake up */
706 		if (!list_empty(list))
707 			mod_timer(&dev->mem_timer, jiffies + 1);
708 	}
709 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
710 
711 	if (qp)
712 		hfi1_qp_wakeup(qp, HFI1_S_WAIT_KMEM);
713 }
714 
update_sge(struct hfi1_sge_state * ss,u32 length)715 void update_sge(struct hfi1_sge_state *ss, u32 length)
716 {
717 	struct hfi1_sge *sge = &ss->sge;
718 
719 	sge->vaddr += length;
720 	sge->length -= length;
721 	sge->sge_length -= length;
722 	if (sge->sge_length == 0) {
723 		if (--ss->num_sge)
724 			*sge = *ss->sg_list++;
725 	} else if (sge->length == 0 && sge->mr->lkey) {
726 		if (++sge->n >= HFI1_SEGSZ) {
727 			if (++sge->m >= sge->mr->mapsz)
728 				return;
729 			sge->n = 0;
730 		}
731 		sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
732 		sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
733 	}
734 }
735 
__get_txreq(struct hfi1_ibdev * dev,struct hfi1_qp * qp)736 static noinline struct verbs_txreq *__get_txreq(struct hfi1_ibdev *dev,
737 						struct hfi1_qp *qp)
738 {
739 	struct verbs_txreq *tx;
740 	unsigned long flags;
741 
742 	tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
743 	if (!tx) {
744 		spin_lock_irqsave(&qp->s_lock, flags);
745 		write_seqlock(&dev->iowait_lock);
746 		if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK &&
747 		    list_empty(&qp->s_iowait.list)) {
748 			dev->n_txwait++;
749 			qp->s_flags |= HFI1_S_WAIT_TX;
750 			list_add_tail(&qp->s_iowait.list, &dev->txwait);
751 			trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TX);
752 			atomic_inc(&qp->refcount);
753 		}
754 		qp->s_flags &= ~HFI1_S_BUSY;
755 		write_sequnlock(&dev->iowait_lock);
756 		spin_unlock_irqrestore(&qp->s_lock, flags);
757 		tx = ERR_PTR(-EBUSY);
758 	}
759 	return tx;
760 }
761 
get_txreq(struct hfi1_ibdev * dev,struct hfi1_qp * qp)762 static inline struct verbs_txreq *get_txreq(struct hfi1_ibdev *dev,
763 					    struct hfi1_qp *qp)
764 {
765 	struct verbs_txreq *tx;
766 
767 	tx = kmem_cache_alloc(dev->verbs_txreq_cache, GFP_ATOMIC);
768 	if (!tx) {
769 		/* call slow path to get the lock */
770 		tx =  __get_txreq(dev, qp);
771 		if (IS_ERR(tx))
772 			return tx;
773 	}
774 	tx->qp = qp;
775 	return tx;
776 }
777 
hfi1_put_txreq(struct verbs_txreq * tx)778 void hfi1_put_txreq(struct verbs_txreq *tx)
779 {
780 	struct hfi1_ibdev *dev;
781 	struct hfi1_qp *qp;
782 	unsigned long flags;
783 	unsigned int seq;
784 
785 	qp = tx->qp;
786 	dev = to_idev(qp->ibqp.device);
787 
788 	if (tx->mr) {
789 		hfi1_put_mr(tx->mr);
790 		tx->mr = NULL;
791 	}
792 	sdma_txclean(dd_from_dev(dev), &tx->txreq);
793 
794 	/* Free verbs_txreq and return to slab cache */
795 	kmem_cache_free(dev->verbs_txreq_cache, tx);
796 
797 	do {
798 		seq = read_seqbegin(&dev->iowait_lock);
799 		if (!list_empty(&dev->txwait)) {
800 			struct iowait *wait;
801 
802 			write_seqlock_irqsave(&dev->iowait_lock, flags);
803 			/* Wake up first QP wanting a free struct */
804 			wait = list_first_entry(&dev->txwait, struct iowait,
805 						list);
806 			qp = container_of(wait, struct hfi1_qp, s_iowait);
807 			list_del_init(&qp->s_iowait.list);
808 			/* refcount held until actual wake up */
809 			write_sequnlock_irqrestore(&dev->iowait_lock, flags);
810 			hfi1_qp_wakeup(qp, HFI1_S_WAIT_TX);
811 			break;
812 		}
813 	} while (read_seqretry(&dev->iowait_lock, seq));
814 }
815 
816 /*
817  * This is called with progress side lock held.
818  */
819 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status,int drained)820 static void verbs_sdma_complete(
821 	struct sdma_txreq *cookie,
822 	int status,
823 	int drained)
824 {
825 	struct verbs_txreq *tx =
826 		container_of(cookie, struct verbs_txreq, txreq);
827 	struct hfi1_qp *qp = tx->qp;
828 
829 	spin_lock(&qp->s_lock);
830 	if (tx->wqe)
831 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
832 	else if (qp->ibqp.qp_type == IB_QPT_RC) {
833 		struct hfi1_ib_header *hdr;
834 
835 		hdr = &tx->phdr.hdr;
836 		hfi1_rc_send_complete(qp, hdr);
837 	}
838 	if (drained) {
839 		/*
840 		 * This happens when the send engine notes
841 		 * a QP in the error state and cannot
842 		 * do the flush work until that QP's
843 		 * sdma work has finished.
844 		 */
845 		if (qp->s_flags & HFI1_S_WAIT_DMA) {
846 			qp->s_flags &= ~HFI1_S_WAIT_DMA;
847 			hfi1_schedule_send(qp);
848 		}
849 	}
850 	spin_unlock(&qp->s_lock);
851 
852 	hfi1_put_txreq(tx);
853 }
854 
wait_kmem(struct hfi1_ibdev * dev,struct hfi1_qp * qp)855 static int wait_kmem(struct hfi1_ibdev *dev, struct hfi1_qp *qp)
856 {
857 	unsigned long flags;
858 	int ret = 0;
859 
860 	spin_lock_irqsave(&qp->s_lock, flags);
861 	if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
862 		write_seqlock(&dev->iowait_lock);
863 		if (list_empty(&qp->s_iowait.list)) {
864 			if (list_empty(&dev->memwait))
865 				mod_timer(&dev->mem_timer, jiffies + 1);
866 			qp->s_flags |= HFI1_S_WAIT_KMEM;
867 			list_add_tail(&qp->s_iowait.list, &dev->memwait);
868 			trace_hfi1_qpsleep(qp, HFI1_S_WAIT_KMEM);
869 			atomic_inc(&qp->refcount);
870 		}
871 		write_sequnlock(&dev->iowait_lock);
872 		qp->s_flags &= ~HFI1_S_BUSY;
873 		ret = -EBUSY;
874 	}
875 	spin_unlock_irqrestore(&qp->s_lock, flags);
876 
877 	return ret;
878 }
879 
880 /*
881  * This routine calls txadds for each sg entry.
882  *
883  * Add failures will revert the sge cursor
884  */
build_verbs_ulp_payload(struct sdma_engine * sde,struct hfi1_sge_state * ss,u32 length,struct verbs_txreq * tx)885 static int build_verbs_ulp_payload(
886 	struct sdma_engine *sde,
887 	struct hfi1_sge_state *ss,
888 	u32 length,
889 	struct verbs_txreq *tx)
890 {
891 	struct hfi1_sge *sg_list = ss->sg_list;
892 	struct hfi1_sge sge = ss->sge;
893 	u8 num_sge = ss->num_sge;
894 	u32 len;
895 	int ret = 0;
896 
897 	while (length) {
898 		len = ss->sge.length;
899 		if (len > length)
900 			len = length;
901 		if (len > ss->sge.sge_length)
902 			len = ss->sge.sge_length;
903 		WARN_ON_ONCE(len == 0);
904 		ret = sdma_txadd_kvaddr(
905 			sde->dd,
906 			&tx->txreq,
907 			ss->sge.vaddr,
908 			len);
909 		if (ret)
910 			goto bail_txadd;
911 		update_sge(ss, len);
912 		length -= len;
913 	}
914 	return ret;
915 bail_txadd:
916 	/* unwind cursor */
917 	ss->sge = sge;
918 	ss->num_sge = num_sge;
919 	ss->sg_list = sg_list;
920 	return ret;
921 }
922 
923 /*
924  * Build the number of DMA descriptors needed to send length bytes of data.
925  *
926  * NOTE: DMA mapping is held in the tx until completed in the ring or
927  *       the tx desc is freed without having been submitted to the ring
928  *
929  * This routine insures the following all the helper routine
930  * calls succeed.
931  */
932 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,struct hfi1_sge_state * ss,u32 length,struct verbs_txreq * tx,struct ahg_ib_header * ahdr,u64 pbc)933 static int build_verbs_tx_desc(
934 	struct sdma_engine *sde,
935 	struct hfi1_sge_state *ss,
936 	u32 length,
937 	struct verbs_txreq *tx,
938 	struct ahg_ib_header *ahdr,
939 	u64 pbc)
940 {
941 	int ret = 0;
942 	struct hfi1_pio_header *phdr;
943 	u16 hdrbytes = tx->hdr_dwords << 2;
944 
945 	phdr = &tx->phdr;
946 	if (!ahdr->ahgcount) {
947 		ret = sdma_txinit_ahg(
948 			&tx->txreq,
949 			ahdr->tx_flags,
950 			hdrbytes + length,
951 			ahdr->ahgidx,
952 			0,
953 			NULL,
954 			0,
955 			verbs_sdma_complete);
956 		if (ret)
957 			goto bail_txadd;
958 		phdr->pbc = cpu_to_le64(pbc);
959 		memcpy(&phdr->hdr, &ahdr->ibh, hdrbytes - sizeof(phdr->pbc));
960 		/* add the header */
961 		ret = sdma_txadd_kvaddr(
962 			sde->dd,
963 			&tx->txreq,
964 			&tx->phdr,
965 			tx->hdr_dwords << 2);
966 		if (ret)
967 			goto bail_txadd;
968 	} else {
969 		struct hfi1_other_headers *sohdr = &ahdr->ibh.u.oth;
970 		struct hfi1_other_headers *dohdr = &phdr->hdr.u.oth;
971 
972 		/* needed in rc_send_complete() */
973 		phdr->hdr.lrh[0] = ahdr->ibh.lrh[0];
974 		if ((be16_to_cpu(phdr->hdr.lrh[0]) & 3) == HFI1_LRH_GRH) {
975 			sohdr = &ahdr->ibh.u.l.oth;
976 			dohdr = &phdr->hdr.u.l.oth;
977 		}
978 		/* opcode */
979 		dohdr->bth[0] = sohdr->bth[0];
980 		/* PSN/ACK  */
981 		dohdr->bth[2] = sohdr->bth[2];
982 		ret = sdma_txinit_ahg(
983 			&tx->txreq,
984 			ahdr->tx_flags,
985 			length,
986 			ahdr->ahgidx,
987 			ahdr->ahgcount,
988 			ahdr->ahgdesc,
989 			hdrbytes,
990 			verbs_sdma_complete);
991 		if (ret)
992 			goto bail_txadd;
993 	}
994 
995 	/* add the ulp payload - if any.  ss can be NULL for acks */
996 	if (ss)
997 		ret = build_verbs_ulp_payload(sde, ss, length, tx);
998 bail_txadd:
999 	return ret;
1000 }
1001 
hfi1_verbs_send_dma(struct hfi1_qp * qp,struct ahg_ib_header * ahdr,u32 hdrwords,struct hfi1_sge_state * ss,u32 len,u32 plen,u32 dwords,u64 pbc)1002 int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1003 			u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1004 			u32 plen, u32 dwords, u64 pbc)
1005 {
1006 	struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
1007 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1008 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1009 	struct verbs_txreq *tx;
1010 	struct sdma_txreq *stx;
1011 	u64 pbc_flags = 0;
1012 	struct sdma_engine *sde;
1013 	u8 sc5 = qp->s_sc;
1014 	int ret;
1015 
1016 	if (!list_empty(&qp->s_iowait.tx_head)) {
1017 		stx = list_first_entry(
1018 			&qp->s_iowait.tx_head,
1019 			struct sdma_txreq,
1020 			list);
1021 		list_del_init(&stx->list);
1022 		tx = container_of(stx, struct verbs_txreq, txreq);
1023 		ret = sdma_send_txreq(tx->sde, &qp->s_iowait, stx);
1024 		if (unlikely(ret == -ECOMM))
1025 			goto bail_ecomm;
1026 		return ret;
1027 	}
1028 
1029 	tx = get_txreq(dev, qp);
1030 	if (IS_ERR(tx))
1031 		goto bail_tx;
1032 
1033 	if (!qp->s_hdr->sde) {
1034 		tx->sde = sde = qp_to_sdma_engine(qp, sc5);
1035 		if (!sde)
1036 			goto bail_no_sde;
1037 	} else
1038 		tx->sde = sde = qp->s_hdr->sde;
1039 
1040 	if (likely(pbc == 0)) {
1041 		u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1042 		/* No vl15 here */
1043 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1044 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1045 
1046 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1047 	}
1048 	tx->wqe = qp->s_wqe;
1049 	tx->mr = qp->s_rdma_mr;
1050 	if (qp->s_rdma_mr)
1051 		qp->s_rdma_mr = NULL;
1052 	tx->hdr_dwords = hdrwords + 2;
1053 	ret = build_verbs_tx_desc(sde, ss, len, tx, ahdr, pbc);
1054 	if (unlikely(ret))
1055 		goto bail_build;
1056 	trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1057 	ret =  sdma_send_txreq(sde, &qp->s_iowait, &tx->txreq);
1058 	if (unlikely(ret == -ECOMM))
1059 		goto bail_ecomm;
1060 	return ret;
1061 
1062 bail_no_sde:
1063 	hfi1_put_txreq(tx);
1064 bail_ecomm:
1065 	/* The current one got "sent" */
1066 	return 0;
1067 bail_build:
1068 	/* kmalloc or mapping fail */
1069 	hfi1_put_txreq(tx);
1070 	return wait_kmem(dev, qp);
1071 bail_tx:
1072 	return PTR_ERR(tx);
1073 }
1074 
1075 /*
1076  * If we are now in the error state, return zero to flush the
1077  * send work request.
1078  */
no_bufs_available(struct hfi1_qp * qp,struct send_context * sc)1079 static int no_bufs_available(struct hfi1_qp *qp, struct send_context *sc)
1080 {
1081 	struct hfi1_devdata *dd = sc->dd;
1082 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1083 	unsigned long flags;
1084 	int ret = 0;
1085 
1086 	/*
1087 	 * Note that as soon as want_buffer() is called and
1088 	 * possibly before it returns, sc_piobufavail()
1089 	 * could be called. Therefore, put QP on the I/O wait list before
1090 	 * enabling the PIO avail interrupt.
1091 	 */
1092 	spin_lock_irqsave(&qp->s_lock, flags);
1093 	if (ib_hfi1_state_ops[qp->state] & HFI1_PROCESS_RECV_OK) {
1094 		write_seqlock(&dev->iowait_lock);
1095 		if (list_empty(&qp->s_iowait.list)) {
1096 			struct hfi1_ibdev *dev = &dd->verbs_dev;
1097 			int was_empty;
1098 
1099 			dev->n_piowait++;
1100 			qp->s_flags |= HFI1_S_WAIT_PIO;
1101 			was_empty = list_empty(&sc->piowait);
1102 			list_add_tail(&qp->s_iowait.list, &sc->piowait);
1103 			trace_hfi1_qpsleep(qp, HFI1_S_WAIT_PIO);
1104 			atomic_inc(&qp->refcount);
1105 			/* counting: only call wantpiobuf_intr if first user */
1106 			if (was_empty)
1107 				hfi1_sc_wantpiobuf_intr(sc, 1);
1108 		}
1109 		write_sequnlock(&dev->iowait_lock);
1110 		qp->s_flags &= ~HFI1_S_BUSY;
1111 		ret = -EBUSY;
1112 	}
1113 	spin_unlock_irqrestore(&qp->s_lock, flags);
1114 	return ret;
1115 }
1116 
qp_to_send_context(struct hfi1_qp * qp,u8 sc5)1117 struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5)
1118 {
1119 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1120 	struct hfi1_pportdata *ppd = dd->pport + (qp->port_num - 1);
1121 	u8 vl;
1122 
1123 	vl = sc_to_vlt(dd, sc5);
1124 	if (vl >= ppd->vls_supported && vl != 15)
1125 		return NULL;
1126 	return dd->vld[vl].sc;
1127 }
1128 
hfi1_verbs_send_pio(struct hfi1_qp * qp,struct ahg_ib_header * ahdr,u32 hdrwords,struct hfi1_sge_state * ss,u32 len,u32 plen,u32 dwords,u64 pbc)1129 int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1130 			u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1131 			u32 plen, u32 dwords, u64 pbc)
1132 {
1133 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
1134 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1135 	u32 *hdr = (u32 *)&ahdr->ibh;
1136 	u64 pbc_flags = 0;
1137 	u32 sc5;
1138 	unsigned long flags = 0;
1139 	struct send_context *sc;
1140 	struct pio_buf *pbuf;
1141 	int wc_status = IB_WC_SUCCESS;
1142 
1143 	/* vl15 special case taken care of in ud.c */
1144 	sc5 = qp->s_sc;
1145 	sc = qp_to_send_context(qp, sc5);
1146 
1147 	if (!sc)
1148 		return -EINVAL;
1149 	if (likely(pbc == 0)) {
1150 		u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1151 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1152 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1153 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1154 	}
1155 	pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
1156 	if (unlikely(pbuf == NULL)) {
1157 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1158 			/*
1159 			 * If we have filled the PIO buffers to capacity and are
1160 			 * not in an active state this request is not going to
1161 			 * go out to so just complete it with an error or else a
1162 			 * ULP or the core may be stuck waiting.
1163 			 */
1164 			hfi1_cdbg(
1165 				PIO,
1166 				"alloc failed. state not active, completing");
1167 			wc_status = IB_WC_GENERAL_ERR;
1168 			goto pio_bail;
1169 		} else {
1170 			/*
1171 			 * This is a normal occurrence. The PIO buffs are full
1172 			 * up but we are still happily sending, well we could be
1173 			 * so lets continue to queue the request.
1174 			 */
1175 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1176 			return no_bufs_available(qp, sc);
1177 		}
1178 	}
1179 
1180 	if (len == 0) {
1181 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1182 	} else {
1183 		if (ss) {
1184 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords*4);
1185 			while (len) {
1186 				void *addr = ss->sge.vaddr;
1187 				u32 slen = ss->sge.length;
1188 
1189 				if (slen > len)
1190 					slen = len;
1191 				update_sge(ss, slen);
1192 				seg_pio_copy_mid(pbuf, addr, slen);
1193 				len -= slen;
1194 			}
1195 			seg_pio_copy_end(pbuf);
1196 		}
1197 	}
1198 
1199 	trace_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &ahdr->ibh);
1200 
1201 	if (qp->s_rdma_mr) {
1202 		hfi1_put_mr(qp->s_rdma_mr);
1203 		qp->s_rdma_mr = NULL;
1204 	}
1205 
1206 pio_bail:
1207 	if (qp->s_wqe) {
1208 		spin_lock_irqsave(&qp->s_lock, flags);
1209 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1210 		spin_unlock_irqrestore(&qp->s_lock, flags);
1211 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1212 		spin_lock_irqsave(&qp->s_lock, flags);
1213 		hfi1_rc_send_complete(qp, &ahdr->ibh);
1214 		spin_unlock_irqrestore(&qp->s_lock, flags);
1215 	}
1216 	return 0;
1217 }
1218 
1219 /*
1220  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1221  * being an entry from the ingress partition key table), return 0
1222  * otherwise. Use the matching criteria for egress partition keys
1223  * specified in the OPAv1 spec., section 9.1l.7.
1224  */
egress_pkey_matches_entry(u16 pkey,u16 ent)1225 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1226 {
1227 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1228 	u16 ment = ent & PKEY_LOW_15_MASK;
1229 
1230 	if (mkey == ment) {
1231 		/*
1232 		 * If pkey[15] is set (full partition member),
1233 		 * is bit 15 in the corresponding table element
1234 		 * clear (limited member)?
1235 		 */
1236 		if (pkey & PKEY_MEMBER_MASK)
1237 			return !!(ent & PKEY_MEMBER_MASK);
1238 		return 1;
1239 	}
1240 	return 0;
1241 }
1242 
1243 /*
1244  * egress_pkey_check - return 0 if hdr's pkey matches according to the
1245  * criteria in the OPAv1 spec., section 9.11.7.
1246  */
egress_pkey_check(struct hfi1_pportdata * ppd,struct hfi1_ib_header * hdr,struct hfi1_qp * qp)1247 static inline int egress_pkey_check(struct hfi1_pportdata *ppd,
1248 				    struct hfi1_ib_header *hdr,
1249 				    struct hfi1_qp *qp)
1250 {
1251 	struct hfi1_other_headers *ohdr;
1252 	struct hfi1_devdata *dd;
1253 	int i = 0;
1254 	u16 pkey;
1255 	u8 lnh, sc5 = qp->s_sc;
1256 
1257 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1258 		return 0;
1259 
1260 	/* locate the pkey within the headers */
1261 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1262 	if (lnh == HFI1_LRH_GRH)
1263 		ohdr = &hdr->u.l.oth;
1264 	else
1265 		ohdr = &hdr->u.oth;
1266 
1267 	pkey = (u16)be32_to_cpu(ohdr->bth[0]);
1268 
1269 	/* If SC15, pkey[0:14] must be 0x7fff */
1270 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1271 		goto bad;
1272 
1273 
1274 	/* Is the pkey = 0x0, or 0x8000? */
1275 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1276 		goto bad;
1277 
1278 	/* The most likely matching pkey has index qp->s_pkey_index */
1279 	if (unlikely(!egress_pkey_matches_entry(pkey,
1280 					ppd->pkeys[qp->s_pkey_index]))) {
1281 		/* no match - try the entire table */
1282 		for (; i < MAX_PKEY_VALUES; i++) {
1283 			if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1284 				break;
1285 		}
1286 	}
1287 
1288 	if (i < MAX_PKEY_VALUES)
1289 		return 0;
1290 bad:
1291 	incr_cntr64(&ppd->port_xmit_constraint_errors);
1292 	dd = ppd->dd;
1293 	if (!(dd->err_info_xmit_constraint.status & OPA_EI_STATUS_SMASK)) {
1294 		u16 slid = be16_to_cpu(hdr->lrh[3]);
1295 
1296 		dd->err_info_xmit_constraint.status |= OPA_EI_STATUS_SMASK;
1297 		dd->err_info_xmit_constraint.slid = slid;
1298 		dd->err_info_xmit_constraint.pkey = pkey;
1299 	}
1300 	return 1;
1301 }
1302 
1303 /**
1304  * hfi1_verbs_send - send a packet
1305  * @qp: the QP to send on
1306  * @ahdr: the packet header
1307  * @hdrwords: the number of 32-bit words in the header
1308  * @ss: the SGE to send
1309  * @len: the length of the packet in bytes
1310  *
1311  * Return zero if packet is sent or queued OK.
1312  * Return non-zero and clear qp->s_flags HFI1_S_BUSY otherwise.
1313  */
hfi1_verbs_send(struct hfi1_qp * qp,struct ahg_ib_header * ahdr,u32 hdrwords,struct hfi1_sge_state * ss,u32 len)1314 int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
1315 		    u32 hdrwords, struct hfi1_sge_state *ss, u32 len)
1316 {
1317 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1318 	u32 plen;
1319 	int ret;
1320 	int pio = 0;
1321 	unsigned long flags = 0;
1322 	u32 dwords = (len + 3) >> 2;
1323 
1324 	/*
1325 	 * VL15 packets (IB_QPT_SMI) will always use PIO, so we
1326 	 * can defer SDMA restart until link goes ACTIVE without
1327 	 * worrying about just how we got there.
1328 	 */
1329 	if ((qp->ibqp.qp_type == IB_QPT_SMI) ||
1330 	    !(dd->flags & HFI1_HAS_SEND_DMA))
1331 		pio = 1;
1332 
1333 	ret = egress_pkey_check(dd->pport, &ahdr->ibh, qp);
1334 	if (unlikely(ret)) {
1335 		/*
1336 		 * The value we are returning here does not get propagated to
1337 		 * the verbs caller. Thus we need to complete the request with
1338 		 * error otherwise the caller could be sitting waiting on the
1339 		 * completion event. Only do this for PIO. SDMA has its own
1340 		 * mechanism for handling the errors. So for SDMA we can just
1341 		 * return.
1342 		 */
1343 		if (pio) {
1344 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1345 				  __func__);
1346 			spin_lock_irqsave(&qp->s_lock, flags);
1347 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1348 			spin_unlock_irqrestore(&qp->s_lock, flags);
1349 		}
1350 		return -EINVAL;
1351 	}
1352 
1353 	/*
1354 	 * Calculate the send buffer trigger address.
1355 	 * The +2 counts for the pbc control qword
1356 	 */
1357 	plen = hdrwords + dwords + 2;
1358 
1359 	if (pio) {
1360 		ret = dd->process_pio_send(
1361 			qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1362 	} else {
1363 #ifdef CONFIG_SDMA_VERBOSITY
1364 		dd_dev_err(dd, "CONFIG SDMA %s:%d %s()\n",
1365 			   slashstrip(__FILE__), __LINE__, __func__);
1366 		dd_dev_err(dd, "SDMA hdrwords = %u, len = %u\n", hdrwords, len);
1367 #endif
1368 		ret = dd->process_dma_send(
1369 			qp, ahdr, hdrwords, ss, len, plen, dwords, 0);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
query_device(struct ib_device * ibdev,struct ib_device_attr * props,struct ib_udata * uhw)1375 static int query_device(struct ib_device *ibdev,
1376 			struct ib_device_attr *props,
1377 			struct ib_udata *uhw)
1378 {
1379 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1380 	struct hfi1_ibdev *dev = to_idev(ibdev);
1381 
1382 	if (uhw->inlen || uhw->outlen)
1383 		return -EINVAL;
1384 	memset(props, 0, sizeof(*props));
1385 
1386 	props->device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1387 		IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1388 		IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1389 		IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE;
1390 
1391 	props->page_size_cap = PAGE_SIZE;
1392 	props->vendor_id =
1393 		dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1394 	props->vendor_part_id = dd->pcidev->device;
1395 	props->hw_ver = dd->minrev;
1396 	props->sys_image_guid = ib_hfi1_sys_image_guid;
1397 	props->max_mr_size = ~0ULL;
1398 	props->max_qp = hfi1_max_qps;
1399 	props->max_qp_wr = hfi1_max_qp_wrs;
1400 	props->max_sge = hfi1_max_sges;
1401 	props->max_sge_rd = hfi1_max_sges;
1402 	props->max_cq = hfi1_max_cqs;
1403 	props->max_ah = hfi1_max_ahs;
1404 	props->max_cqe = hfi1_max_cqes;
1405 	props->max_mr = dev->lk_table.max;
1406 	props->max_fmr = dev->lk_table.max;
1407 	props->max_map_per_fmr = 32767;
1408 	props->max_pd = hfi1_max_pds;
1409 	props->max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1410 	props->max_qp_init_rd_atom = 255;
1411 	/* props->max_res_rd_atom */
1412 	props->max_srq = hfi1_max_srqs;
1413 	props->max_srq_wr = hfi1_max_srq_wrs;
1414 	props->max_srq_sge = hfi1_max_srq_sges;
1415 	/* props->local_ca_ack_delay */
1416 	props->atomic_cap = IB_ATOMIC_GLOB;
1417 	props->max_pkeys = hfi1_get_npkeys(dd);
1418 	props->max_mcast_grp = hfi1_max_mcast_grps;
1419 	props->max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1420 	props->max_total_mcast_qp_attach = props->max_mcast_qp_attach *
1421 		props->max_mcast_grp;
1422 
1423 	return 0;
1424 }
1425 
opa_speed_to_ib(u16 in)1426 static inline u16 opa_speed_to_ib(u16 in)
1427 {
1428 	u16 out = 0;
1429 
1430 	if (in & OPA_LINK_SPEED_25G)
1431 		out |= IB_SPEED_EDR;
1432 	if (in & OPA_LINK_SPEED_12_5G)
1433 		out |= IB_SPEED_FDR;
1434 
1435 	return out;
1436 }
1437 
1438 /*
1439  * Convert a single OPA link width (no multiple flags) to an IB value.
1440  * A zero OPA link width means link down, which means the IB width value
1441  * is a don't care.
1442  */
opa_width_to_ib(u16 in)1443 static inline u16 opa_width_to_ib(u16 in)
1444 {
1445 	switch (in) {
1446 	case OPA_LINK_WIDTH_1X:
1447 	/* map 2x and 3x to 1x as they don't exist in IB */
1448 	case OPA_LINK_WIDTH_2X:
1449 	case OPA_LINK_WIDTH_3X:
1450 		return IB_WIDTH_1X;
1451 	default: /* link down or unknown, return our largest width */
1452 	case OPA_LINK_WIDTH_4X:
1453 		return IB_WIDTH_4X;
1454 	}
1455 }
1456 
query_port(struct ib_device * ibdev,u8 port,struct ib_port_attr * props)1457 static int query_port(struct ib_device *ibdev, u8 port,
1458 		      struct ib_port_attr *props)
1459 {
1460 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1461 	struct hfi1_ibport *ibp = to_iport(ibdev, port);
1462 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1463 	u16 lid = ppd->lid;
1464 
1465 	memset(props, 0, sizeof(*props));
1466 	props->lid = lid ? lid : 0;
1467 	props->lmc = ppd->lmc;
1468 	props->sm_lid = ibp->sm_lid;
1469 	props->sm_sl = ibp->sm_sl;
1470 	/* OPA logical states match IB logical states */
1471 	props->state = driver_lstate(ppd);
1472 	props->phys_state = hfi1_ibphys_portstate(ppd);
1473 	props->port_cap_flags = ibp->port_cap_flags;
1474 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1475 	props->max_msg_sz = 0x80000000;
1476 	props->pkey_tbl_len = hfi1_get_npkeys(dd);
1477 	props->bad_pkey_cntr = ibp->pkey_violations;
1478 	props->qkey_viol_cntr = ibp->qkey_violations;
1479 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1480 	/* see rate_show() in ib core/sysfs.c */
1481 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1482 	props->max_vl_num = ppd->vls_supported;
1483 	props->init_type_reply = 0;
1484 
1485 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1486 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1487 	 * advertise only 4K.
1488 	 *
1489 	 * Those applications which are either OPA aware or pass the MTU enum
1490 	 * from the Path Records to us will get the new 8k MTU.  Those that
1491 	 * attempt to process the MTU enum may fail in various ways.
1492 	 */
1493 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1494 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1495 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1496 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1497 	props->subnet_timeout = ibp->subnet_timeout;
1498 
1499 	return 0;
1500 }
1501 
port_immutable(struct ib_device * ibdev,u8 port_num,struct ib_port_immutable * immutable)1502 static int port_immutable(struct ib_device *ibdev, u8 port_num,
1503 			  struct ib_port_immutable *immutable)
1504 {
1505 	struct ib_port_attr attr;
1506 	int err;
1507 
1508 	err = query_port(ibdev, port_num, &attr);
1509 	if (err)
1510 		return err;
1511 
1512 	memset(immutable, 0, sizeof(*immutable));
1513 
1514 	immutable->pkey_tbl_len = attr.pkey_tbl_len;
1515 	immutable->gid_tbl_len = attr.gid_tbl_len;
1516 	immutable->core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1517 	immutable->max_mad_size = OPA_MGMT_MAD_SIZE;
1518 
1519 	return 0;
1520 }
1521 
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1522 static int modify_device(struct ib_device *device,
1523 			 int device_modify_mask,
1524 			 struct ib_device_modify *device_modify)
1525 {
1526 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1527 	unsigned i;
1528 	int ret;
1529 
1530 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1531 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1532 		ret = -EOPNOTSUPP;
1533 		goto bail;
1534 	}
1535 
1536 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1537 		memcpy(device->node_desc, device_modify->node_desc, 64);
1538 		for (i = 0; i < dd->num_pports; i++) {
1539 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1540 
1541 			hfi1_node_desc_chg(ibp);
1542 		}
1543 	}
1544 
1545 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1546 		ib_hfi1_sys_image_guid =
1547 			cpu_to_be64(device_modify->sys_image_guid);
1548 		for (i = 0; i < dd->num_pports; i++) {
1549 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1550 
1551 			hfi1_sys_guid_chg(ibp);
1552 		}
1553 	}
1554 
1555 	ret = 0;
1556 
1557 bail:
1558 	return ret;
1559 }
1560 
modify_port(struct ib_device * ibdev,u8 port,int port_modify_mask,struct ib_port_modify * props)1561 static int modify_port(struct ib_device *ibdev, u8 port,
1562 		       int port_modify_mask, struct ib_port_modify *props)
1563 {
1564 	struct hfi1_ibport *ibp = to_iport(ibdev, port);
1565 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1566 	int ret = 0;
1567 
1568 	ibp->port_cap_flags |= props->set_port_cap_mask;
1569 	ibp->port_cap_flags &= ~props->clr_port_cap_mask;
1570 	if (props->set_port_cap_mask || props->clr_port_cap_mask)
1571 		hfi1_cap_mask_chg(ibp);
1572 	if (port_modify_mask & IB_PORT_SHUTDOWN) {
1573 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1574 		  OPA_LINKDOWN_REASON_UNKNOWN);
1575 		ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1576 	}
1577 	if (port_modify_mask & IB_PORT_RESET_QKEY_CNTR)
1578 		ibp->qkey_violations = 0;
1579 	return ret;
1580 }
1581 
query_gid(struct ib_device * ibdev,u8 port,int index,union ib_gid * gid)1582 static int query_gid(struct ib_device *ibdev, u8 port,
1583 		     int index, union ib_gid *gid)
1584 {
1585 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1586 	int ret = 0;
1587 
1588 	if (!port || port > dd->num_pports)
1589 		ret = -EINVAL;
1590 	else {
1591 		struct hfi1_ibport *ibp = to_iport(ibdev, port);
1592 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1593 
1594 		gid->global.subnet_prefix = ibp->gid_prefix;
1595 		if (index == 0)
1596 			gid->global.interface_id = cpu_to_be64(ppd->guid);
1597 		else if (index < HFI1_GUIDS_PER_PORT)
1598 			gid->global.interface_id = ibp->guids[index - 1];
1599 		else
1600 			ret = -EINVAL;
1601 	}
1602 
1603 	return ret;
1604 }
1605 
alloc_pd(struct ib_device * ibdev,struct ib_ucontext * context,struct ib_udata * udata)1606 static struct ib_pd *alloc_pd(struct ib_device *ibdev,
1607 			      struct ib_ucontext *context,
1608 			      struct ib_udata *udata)
1609 {
1610 	struct hfi1_ibdev *dev = to_idev(ibdev);
1611 	struct hfi1_pd *pd;
1612 	struct ib_pd *ret;
1613 
1614 	/*
1615 	 * This is actually totally arbitrary.  Some correctness tests
1616 	 * assume there's a maximum number of PDs that can be allocated.
1617 	 * We don't actually have this limit, but we fail the test if
1618 	 * we allow allocations of more than we report for this value.
1619 	 */
1620 
1621 	pd = kmalloc(sizeof(*pd), GFP_KERNEL);
1622 	if (!pd) {
1623 		ret = ERR_PTR(-ENOMEM);
1624 		goto bail;
1625 	}
1626 
1627 	spin_lock(&dev->n_pds_lock);
1628 	if (dev->n_pds_allocated == hfi1_max_pds) {
1629 		spin_unlock(&dev->n_pds_lock);
1630 		kfree(pd);
1631 		ret = ERR_PTR(-ENOMEM);
1632 		goto bail;
1633 	}
1634 
1635 	dev->n_pds_allocated++;
1636 	spin_unlock(&dev->n_pds_lock);
1637 
1638 	/* ib_alloc_pd() will initialize pd->ibpd. */
1639 	pd->user = udata != NULL;
1640 
1641 	ret = &pd->ibpd;
1642 
1643 bail:
1644 	return ret;
1645 }
1646 
dealloc_pd(struct ib_pd * ibpd)1647 static int dealloc_pd(struct ib_pd *ibpd)
1648 {
1649 	struct hfi1_pd *pd = to_ipd(ibpd);
1650 	struct hfi1_ibdev *dev = to_idev(ibpd->device);
1651 
1652 	spin_lock(&dev->n_pds_lock);
1653 	dev->n_pds_allocated--;
1654 	spin_unlock(&dev->n_pds_lock);
1655 
1656 	kfree(pd);
1657 
1658 	return 0;
1659 }
1660 
1661 /*
1662  * convert ah port,sl to sc
1663  */
ah_to_sc(struct ib_device * ibdev,struct ib_ah_attr * ah)1664 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1665 {
1666 	struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1667 
1668 	return ibp->sl_to_sc[ah->sl];
1669 }
1670 
hfi1_check_ah(struct ib_device * ibdev,struct ib_ah_attr * ah_attr)1671 int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1672 {
1673 	struct hfi1_ibport *ibp;
1674 	struct hfi1_pportdata *ppd;
1675 	struct hfi1_devdata *dd;
1676 	u8 sc5;
1677 
1678 	/* A multicast address requires a GRH (see ch. 8.4.1). */
1679 	if (ah_attr->dlid >= HFI1_MULTICAST_LID_BASE &&
1680 	    ah_attr->dlid != HFI1_PERMISSIVE_LID &&
1681 	    !(ah_attr->ah_flags & IB_AH_GRH))
1682 		goto bail;
1683 	if ((ah_attr->ah_flags & IB_AH_GRH) &&
1684 	    ah_attr->grh.sgid_index >= HFI1_GUIDS_PER_PORT)
1685 		goto bail;
1686 	if (ah_attr->dlid == 0)
1687 		goto bail;
1688 	if (ah_attr->port_num < 1 ||
1689 	    ah_attr->port_num > ibdev->phys_port_cnt)
1690 		goto bail;
1691 	if (ah_attr->static_rate != IB_RATE_PORT_CURRENT &&
1692 	    ib_rate_to_mbps(ah_attr->static_rate) < 0)
1693 		goto bail;
1694 	if (ah_attr->sl >= OPA_MAX_SLS)
1695 		goto bail;
1696 	/* test the mapping for validity */
1697 	ibp = to_iport(ibdev, ah_attr->port_num);
1698 	ppd = ppd_from_ibp(ibp);
1699 	sc5 = ibp->sl_to_sc[ah_attr->sl];
1700 	dd = dd_from_ppd(ppd);
1701 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1702 		goto bail;
1703 	return 0;
1704 bail:
1705 	return -EINVAL;
1706 }
1707 
1708 /**
1709  * create_ah - create an address handle
1710  * @pd: the protection domain
1711  * @ah_attr: the attributes of the AH
1712  *
1713  * This may be called from interrupt context.
1714  */
create_ah(struct ib_pd * pd,struct ib_ah_attr * ah_attr)1715 static struct ib_ah *create_ah(struct ib_pd *pd,
1716 			       struct ib_ah_attr *ah_attr)
1717 {
1718 	struct hfi1_ah *ah;
1719 	struct ib_ah *ret;
1720 	struct hfi1_ibdev *dev = to_idev(pd->device);
1721 	unsigned long flags;
1722 
1723 	if (hfi1_check_ah(pd->device, ah_attr)) {
1724 		ret = ERR_PTR(-EINVAL);
1725 		goto bail;
1726 	}
1727 
1728 	ah = kmalloc(sizeof(*ah), GFP_ATOMIC);
1729 	if (!ah) {
1730 		ret = ERR_PTR(-ENOMEM);
1731 		goto bail;
1732 	}
1733 
1734 	spin_lock_irqsave(&dev->n_ahs_lock, flags);
1735 	if (dev->n_ahs_allocated == hfi1_max_ahs) {
1736 		spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1737 		kfree(ah);
1738 		ret = ERR_PTR(-ENOMEM);
1739 		goto bail;
1740 	}
1741 
1742 	dev->n_ahs_allocated++;
1743 	spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1744 
1745 	/* ib_create_ah() will initialize ah->ibah. */
1746 	ah->attr = *ah_attr;
1747 	atomic_set(&ah->refcount, 0);
1748 
1749 	ret = &ah->ibah;
1750 
1751 bail:
1752 	return ret;
1753 }
1754 
hfi1_create_qp0_ah(struct hfi1_ibport * ibp,u16 dlid)1755 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1756 {
1757 	struct ib_ah_attr attr;
1758 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1759 	struct hfi1_qp *qp0;
1760 
1761 	memset(&attr, 0, sizeof(attr));
1762 	attr.dlid = dlid;
1763 	attr.port_num = ppd_from_ibp(ibp)->port;
1764 	rcu_read_lock();
1765 	qp0 = rcu_dereference(ibp->qp[0]);
1766 	if (qp0)
1767 		ah = ib_create_ah(qp0->ibqp.pd, &attr);
1768 	rcu_read_unlock();
1769 	return ah;
1770 }
1771 
1772 /**
1773  * destroy_ah - destroy an address handle
1774  * @ibah: the AH to destroy
1775  *
1776  * This may be called from interrupt context.
1777  */
destroy_ah(struct ib_ah * ibah)1778 static int destroy_ah(struct ib_ah *ibah)
1779 {
1780 	struct hfi1_ibdev *dev = to_idev(ibah->device);
1781 	struct hfi1_ah *ah = to_iah(ibah);
1782 	unsigned long flags;
1783 
1784 	if (atomic_read(&ah->refcount) != 0)
1785 		return -EBUSY;
1786 
1787 	spin_lock_irqsave(&dev->n_ahs_lock, flags);
1788 	dev->n_ahs_allocated--;
1789 	spin_unlock_irqrestore(&dev->n_ahs_lock, flags);
1790 
1791 	kfree(ah);
1792 
1793 	return 0;
1794 }
1795 
modify_ah(struct ib_ah * ibah,struct ib_ah_attr * ah_attr)1796 static int modify_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1797 {
1798 	struct hfi1_ah *ah = to_iah(ibah);
1799 
1800 	if (hfi1_check_ah(ibah->device, ah_attr))
1801 		return -EINVAL;
1802 
1803 	ah->attr = *ah_attr;
1804 
1805 	return 0;
1806 }
1807 
query_ah(struct ib_ah * ibah,struct ib_ah_attr * ah_attr)1808 static int query_ah(struct ib_ah *ibah, struct ib_ah_attr *ah_attr)
1809 {
1810 	struct hfi1_ah *ah = to_iah(ibah);
1811 
1812 	*ah_attr = ah->attr;
1813 
1814 	return 0;
1815 }
1816 
1817 /**
1818  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1819  * @dd: the hfi1_ib device
1820  */
hfi1_get_npkeys(struct hfi1_devdata * dd)1821 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1822 {
1823 	return ARRAY_SIZE(dd->pport[0].pkeys);
1824 }
1825 
query_pkey(struct ib_device * ibdev,u8 port,u16 index,u16 * pkey)1826 static int query_pkey(struct ib_device *ibdev, u8 port, u16 index,
1827 		      u16 *pkey)
1828 {
1829 	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1830 	int ret;
1831 
1832 	if (index >= hfi1_get_npkeys(dd)) {
1833 		ret = -EINVAL;
1834 		goto bail;
1835 	}
1836 
1837 	*pkey = hfi1_get_pkey(to_iport(ibdev, port), index);
1838 	ret = 0;
1839 
1840 bail:
1841 	return ret;
1842 }
1843 
1844 /**
1845  * alloc_ucontext - allocate a ucontest
1846  * @ibdev: the infiniband device
1847  * @udata: not used by the driver
1848  */
1849 
alloc_ucontext(struct ib_device * ibdev,struct ib_udata * udata)1850 static struct ib_ucontext *alloc_ucontext(struct ib_device *ibdev,
1851 					  struct ib_udata *udata)
1852 {
1853 	struct hfi1_ucontext *context;
1854 	struct ib_ucontext *ret;
1855 
1856 	context = kmalloc(sizeof(*context), GFP_KERNEL);
1857 	if (!context) {
1858 		ret = ERR_PTR(-ENOMEM);
1859 		goto bail;
1860 	}
1861 
1862 	ret = &context->ibucontext;
1863 
1864 bail:
1865 	return ret;
1866 }
1867 
dealloc_ucontext(struct ib_ucontext * context)1868 static int dealloc_ucontext(struct ib_ucontext *context)
1869 {
1870 	kfree(to_iucontext(context));
1871 	return 0;
1872 }
1873 
init_ibport(struct hfi1_pportdata * ppd)1874 static void init_ibport(struct hfi1_pportdata *ppd)
1875 {
1876 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1877 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1878 	int i;
1879 
1880 	for (i = 0; i < sz; i++) {
1881 		ibp->sl_to_sc[i] = i;
1882 		ibp->sc_to_sl[i] = i;
1883 	}
1884 
1885 	spin_lock_init(&ibp->lock);
1886 	/* Set the prefix to the default value (see ch. 4.1.1) */
1887 	ibp->gid_prefix = IB_DEFAULT_GID_PREFIX;
1888 	ibp->sm_lid = 0;
1889 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1890 	ibp->port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1891 		IB_PORT_CAP_MASK_NOTICE_SUP;
1892 	ibp->pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1893 	ibp->pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1894 	ibp->pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1895 	ibp->pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1896 	ibp->pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1897 
1898 	RCU_INIT_POINTER(ibp->qp[0], NULL);
1899 	RCU_INIT_POINTER(ibp->qp[1], NULL);
1900 }
1901 
verbs_txreq_kmem_cache_ctor(void * obj)1902 static void verbs_txreq_kmem_cache_ctor(void *obj)
1903 {
1904 	struct verbs_txreq *tx = obj;
1905 
1906 	memset(tx, 0, sizeof(*tx));
1907 }
1908 
1909 /**
1910  * hfi1_register_ib_device - register our device with the infiniband core
1911  * @dd: the device data structure
1912  * Return 0 if successful, errno if unsuccessful.
1913  */
hfi1_register_ib_device(struct hfi1_devdata * dd)1914 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1915 {
1916 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1917 	struct ib_device *ibdev = &dev->ibdev;
1918 	struct hfi1_pportdata *ppd = dd->pport;
1919 	unsigned i, lk_tab_size;
1920 	int ret;
1921 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1922 	u16 descq_cnt;
1923 	char buf[TXREQ_NAME_LEN];
1924 
1925 	ret = hfi1_qp_init(dev);
1926 	if (ret)
1927 		goto err_qp_init;
1928 
1929 
1930 	for (i = 0; i < dd->num_pports; i++)
1931 		init_ibport(ppd + i);
1932 
1933 	/* Only need to initialize non-zero fields. */
1934 	spin_lock_init(&dev->n_pds_lock);
1935 	spin_lock_init(&dev->n_ahs_lock);
1936 	spin_lock_init(&dev->n_cqs_lock);
1937 	spin_lock_init(&dev->n_qps_lock);
1938 	spin_lock_init(&dev->n_srqs_lock);
1939 	spin_lock_init(&dev->n_mcast_grps_lock);
1940 	init_timer(&dev->mem_timer);
1941 	dev->mem_timer.function = mem_timer;
1942 	dev->mem_timer.data = (unsigned long) dev;
1943 
1944 	/*
1945 	 * The top hfi1_lkey_table_size bits are used to index the
1946 	 * table.  The lower 8 bits can be owned by the user (copied from
1947 	 * the LKEY).  The remaining bits act as a generation number or tag.
1948 	 */
1949 	spin_lock_init(&dev->lk_table.lock);
1950 	dev->lk_table.max = 1 << hfi1_lkey_table_size;
1951 	/* ensure generation is at least 4 bits (keys.c) */
1952 	if (hfi1_lkey_table_size > MAX_LKEY_TABLE_BITS) {
1953 		dd_dev_warn(dd, "lkey bits %u too large, reduced to %u\n",
1954 			      hfi1_lkey_table_size, MAX_LKEY_TABLE_BITS);
1955 		hfi1_lkey_table_size = MAX_LKEY_TABLE_BITS;
1956 	}
1957 	lk_tab_size = dev->lk_table.max * sizeof(*dev->lk_table.table);
1958 	dev->lk_table.table = (struct hfi1_mregion __rcu **)
1959 		vmalloc(lk_tab_size);
1960 	if (dev->lk_table.table == NULL) {
1961 		ret = -ENOMEM;
1962 		goto err_lk;
1963 	}
1964 	RCU_INIT_POINTER(dev->dma_mr, NULL);
1965 	for (i = 0; i < dev->lk_table.max; i++)
1966 		RCU_INIT_POINTER(dev->lk_table.table[i], NULL);
1967 	INIT_LIST_HEAD(&dev->pending_mmaps);
1968 	spin_lock_init(&dev->pending_lock);
1969 	seqlock_init(&dev->iowait_lock);
1970 	dev->mmap_offset = PAGE_SIZE;
1971 	spin_lock_init(&dev->mmap_offset_lock);
1972 	INIT_LIST_HEAD(&dev->txwait);
1973 	INIT_LIST_HEAD(&dev->memwait);
1974 
1975 	descq_cnt = sdma_get_descq_cnt();
1976 
1977 	snprintf(buf, sizeof(buf), "hfi1_%u_vtxreq_cache", dd->unit);
1978 	/* SLAB_HWCACHE_ALIGN for AHG */
1979 	dev->verbs_txreq_cache = kmem_cache_create(buf,
1980 						   sizeof(struct verbs_txreq),
1981 						   0, SLAB_HWCACHE_ALIGN,
1982 						   verbs_txreq_kmem_cache_ctor);
1983 	if (!dev->verbs_txreq_cache) {
1984 		ret = -ENOMEM;
1985 		goto err_verbs_txreq;
1986 	}
1987 
1988 	/*
1989 	 * The system image GUID is supposed to be the same for all
1990 	 * HFIs in a single system but since there can be other
1991 	 * device types in the system, we can't be sure this is unique.
1992 	 */
1993 	if (!ib_hfi1_sys_image_guid)
1994 		ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1995 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1996 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1997 	ibdev->owner = THIS_MODULE;
1998 	ibdev->node_guid = cpu_to_be64(ppd->guid);
1999 	ibdev->uverbs_abi_ver = HFI1_UVERBS_ABI_VERSION;
2000 	ibdev->uverbs_cmd_mask =
2001 		(1ull << IB_USER_VERBS_CMD_GET_CONTEXT)         |
2002 		(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE)        |
2003 		(1ull << IB_USER_VERBS_CMD_QUERY_PORT)          |
2004 		(1ull << IB_USER_VERBS_CMD_ALLOC_PD)            |
2005 		(1ull << IB_USER_VERBS_CMD_DEALLOC_PD)          |
2006 		(1ull << IB_USER_VERBS_CMD_CREATE_AH)           |
2007 		(1ull << IB_USER_VERBS_CMD_MODIFY_AH)           |
2008 		(1ull << IB_USER_VERBS_CMD_QUERY_AH)            |
2009 		(1ull << IB_USER_VERBS_CMD_DESTROY_AH)          |
2010 		(1ull << IB_USER_VERBS_CMD_REG_MR)              |
2011 		(1ull << IB_USER_VERBS_CMD_DEREG_MR)            |
2012 		(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
2013 		(1ull << IB_USER_VERBS_CMD_CREATE_CQ)           |
2014 		(1ull << IB_USER_VERBS_CMD_RESIZE_CQ)           |
2015 		(1ull << IB_USER_VERBS_CMD_DESTROY_CQ)          |
2016 		(1ull << IB_USER_VERBS_CMD_POLL_CQ)             |
2017 		(1ull << IB_USER_VERBS_CMD_REQ_NOTIFY_CQ)       |
2018 		(1ull << IB_USER_VERBS_CMD_CREATE_QP)           |
2019 		(1ull << IB_USER_VERBS_CMD_QUERY_QP)            |
2020 		(1ull << IB_USER_VERBS_CMD_MODIFY_QP)           |
2021 		(1ull << IB_USER_VERBS_CMD_DESTROY_QP)          |
2022 		(1ull << IB_USER_VERBS_CMD_POST_SEND)           |
2023 		(1ull << IB_USER_VERBS_CMD_POST_RECV)           |
2024 		(1ull << IB_USER_VERBS_CMD_ATTACH_MCAST)        |
2025 		(1ull << IB_USER_VERBS_CMD_DETACH_MCAST)        |
2026 		(1ull << IB_USER_VERBS_CMD_CREATE_SRQ)          |
2027 		(1ull << IB_USER_VERBS_CMD_MODIFY_SRQ)          |
2028 		(1ull << IB_USER_VERBS_CMD_QUERY_SRQ)           |
2029 		(1ull << IB_USER_VERBS_CMD_DESTROY_SRQ)         |
2030 		(1ull << IB_USER_VERBS_CMD_POST_SRQ_RECV);
2031 	ibdev->node_type = RDMA_NODE_IB_CA;
2032 	ibdev->phys_port_cnt = dd->num_pports;
2033 	ibdev->num_comp_vectors = 1;
2034 	ibdev->dma_device = &dd->pcidev->dev;
2035 	ibdev->query_device = query_device;
2036 	ibdev->modify_device = modify_device;
2037 	ibdev->query_port = query_port;
2038 	ibdev->modify_port = modify_port;
2039 	ibdev->query_pkey = query_pkey;
2040 	ibdev->query_gid = query_gid;
2041 	ibdev->alloc_ucontext = alloc_ucontext;
2042 	ibdev->dealloc_ucontext = dealloc_ucontext;
2043 	ibdev->alloc_pd = alloc_pd;
2044 	ibdev->dealloc_pd = dealloc_pd;
2045 	ibdev->create_ah = create_ah;
2046 	ibdev->destroy_ah = destroy_ah;
2047 	ibdev->modify_ah = modify_ah;
2048 	ibdev->query_ah = query_ah;
2049 	ibdev->create_srq = hfi1_create_srq;
2050 	ibdev->modify_srq = hfi1_modify_srq;
2051 	ibdev->query_srq = hfi1_query_srq;
2052 	ibdev->destroy_srq = hfi1_destroy_srq;
2053 	ibdev->create_qp = hfi1_create_qp;
2054 	ibdev->modify_qp = hfi1_modify_qp;
2055 	ibdev->query_qp = hfi1_query_qp;
2056 	ibdev->destroy_qp = hfi1_destroy_qp;
2057 	ibdev->post_send = post_send;
2058 	ibdev->post_recv = post_receive;
2059 	ibdev->post_srq_recv = hfi1_post_srq_receive;
2060 	ibdev->create_cq = hfi1_create_cq;
2061 	ibdev->destroy_cq = hfi1_destroy_cq;
2062 	ibdev->resize_cq = hfi1_resize_cq;
2063 	ibdev->poll_cq = hfi1_poll_cq;
2064 	ibdev->req_notify_cq = hfi1_req_notify_cq;
2065 	ibdev->get_dma_mr = hfi1_get_dma_mr;
2066 	ibdev->reg_phys_mr = hfi1_reg_phys_mr;
2067 	ibdev->reg_user_mr = hfi1_reg_user_mr;
2068 	ibdev->dereg_mr = hfi1_dereg_mr;
2069 	ibdev->alloc_mr = hfi1_alloc_mr;
2070 	ibdev->alloc_fmr = hfi1_alloc_fmr;
2071 	ibdev->map_phys_fmr = hfi1_map_phys_fmr;
2072 	ibdev->unmap_fmr = hfi1_unmap_fmr;
2073 	ibdev->dealloc_fmr = hfi1_dealloc_fmr;
2074 	ibdev->attach_mcast = hfi1_multicast_attach;
2075 	ibdev->detach_mcast = hfi1_multicast_detach;
2076 	ibdev->process_mad = hfi1_process_mad;
2077 	ibdev->mmap = hfi1_mmap;
2078 	ibdev->dma_ops = &hfi1_dma_mapping_ops;
2079 	ibdev->get_port_immutable = port_immutable;
2080 
2081 	strncpy(ibdev->node_desc, init_utsname()->nodename,
2082 		sizeof(ibdev->node_desc));
2083 
2084 	ret = ib_register_device(ibdev, hfi1_create_port_files);
2085 	if (ret)
2086 		goto err_reg;
2087 
2088 	ret = hfi1_create_agents(dev);
2089 	if (ret)
2090 		goto err_agents;
2091 
2092 	ret = hfi1_verbs_register_sysfs(dd);
2093 	if (ret)
2094 		goto err_class;
2095 
2096 	goto bail;
2097 
2098 err_class:
2099 	hfi1_free_agents(dev);
2100 err_agents:
2101 	ib_unregister_device(ibdev);
2102 err_reg:
2103 err_verbs_txreq:
2104 	kmem_cache_destroy(dev->verbs_txreq_cache);
2105 	vfree(dev->lk_table.table);
2106 err_lk:
2107 	hfi1_qp_exit(dev);
2108 err_qp_init:
2109 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
2110 bail:
2111 	return ret;
2112 }
2113 
hfi1_unregister_ib_device(struct hfi1_devdata * dd)2114 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
2115 {
2116 	struct hfi1_ibdev *dev = &dd->verbs_dev;
2117 	struct ib_device *ibdev = &dev->ibdev;
2118 
2119 	hfi1_verbs_unregister_sysfs(dd);
2120 
2121 	hfi1_free_agents(dev);
2122 
2123 	ib_unregister_device(ibdev);
2124 
2125 	if (!list_empty(&dev->txwait))
2126 		dd_dev_err(dd, "txwait list not empty!\n");
2127 	if (!list_empty(&dev->memwait))
2128 		dd_dev_err(dd, "memwait list not empty!\n");
2129 	if (dev->dma_mr)
2130 		dd_dev_err(dd, "DMA MR not NULL!\n");
2131 
2132 	hfi1_qp_exit(dev);
2133 	del_timer_sync(&dev->mem_timer);
2134 	kmem_cache_destroy(dev->verbs_txreq_cache);
2135 	vfree(dev->lk_table.table);
2136 }
2137 
2138 /*
2139  * This must be called with s_lock held.
2140  */
hfi1_schedule_send(struct hfi1_qp * qp)2141 void hfi1_schedule_send(struct hfi1_qp *qp)
2142 {
2143 	if (hfi1_send_ok(qp)) {
2144 		struct hfi1_ibport *ibp =
2145 			to_iport(qp->ibqp.device, qp->port_num);
2146 		struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2147 
2148 		iowait_schedule(&qp->s_iowait, ppd->hfi1_wq);
2149 	}
2150 }
2151 
hfi1_cnp_rcv(struct hfi1_packet * packet)2152 void hfi1_cnp_rcv(struct hfi1_packet *packet)
2153 {
2154 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2155 
2156 	if (packet->qp->ibqp.qp_type == IB_QPT_UC)
2157 		hfi1_uc_rcv(packet);
2158 	else if (packet->qp->ibqp.qp_type == IB_QPT_UD)
2159 		hfi1_ud_rcv(packet);
2160 	else
2161 		ibp->n_pkt_drops++;
2162 }
2163