• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #include <linux/pci.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/delay.h>
55 #include <linux/idr.h>
56 #include <linux/module.h>
57 #include <linux/printk.h>
58 #include <linux/hrtimer.h>
59 
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 
68 #undef pr_fmt
69 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
70 
71 /*
72  * min buffers we want to have per context, after driver
73  */
74 #define HFI1_MIN_USER_CTXT_BUFCNT 7
75 
76 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
77 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
78 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
79 
80 /*
81  * Number of user receive contexts we are configured to use (to allow for more
82  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
83  */
84 uint num_rcv_contexts;
85 module_param_named(num_rcv_contexts, num_rcv_contexts, uint, S_IRUGO);
86 MODULE_PARM_DESC(
87 	num_rcv_contexts, "Set max number of user receive contexts to use");
88 
89 u8 krcvqs[RXE_NUM_DATA_VL];
90 int krcvqsset;
91 module_param_array(krcvqs, byte, &krcvqsset, S_IRUGO);
92 MODULE_PARM_DESC(krcvqs, "Array of the number of kernel receive queues by VL");
93 
94 /* computed based on above array */
95 unsigned n_krcvqs;
96 
97 static unsigned hfi1_rcvarr_split = 25;
98 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
99 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
100 
101 static uint eager_buffer_size = (2 << 20); /* 2MB */
102 module_param(eager_buffer_size, uint, S_IRUGO);
103 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 2MB");
104 
105 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
106 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
108 
109 static uint hfi1_hdrq_entsize = 32;
110 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO);
111 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B");
112 
113 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
114 module_param(user_credit_return_threshold, uint, S_IRUGO);
115 MODULE_PARM_DESC(user_credit_return_theshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
116 
117 static inline u64 encode_rcv_header_entry_size(u16);
118 
119 static struct idr hfi1_unit_table;
120 u32 hfi1_cpulist_count;
121 unsigned long *hfi1_cpulist;
122 
123 /*
124  * Common code for creating the receive context array.
125  */
hfi1_create_ctxts(struct hfi1_devdata * dd)126 int hfi1_create_ctxts(struct hfi1_devdata *dd)
127 {
128 	unsigned i;
129 	int ret;
130 	int local_node_id = pcibus_to_node(dd->pcidev->bus);
131 
132 	if (local_node_id < 0)
133 		local_node_id = numa_node_id();
134 	dd->assigned_node_id = local_node_id;
135 
136 	dd->rcd = kcalloc(dd->num_rcv_contexts, sizeof(*dd->rcd), GFP_KERNEL);
137 	if (!dd->rcd)
138 		goto nomem;
139 
140 	/* create one or more kernel contexts */
141 	for (i = 0; i < dd->first_user_ctxt; ++i) {
142 		struct hfi1_pportdata *ppd;
143 		struct hfi1_ctxtdata *rcd;
144 
145 		ppd = dd->pport + (i % dd->num_pports);
146 		rcd = hfi1_create_ctxtdata(ppd, i);
147 		if (!rcd) {
148 			dd_dev_err(dd,
149 				"Unable to allocate kernel receive context, failing\n");
150 			goto nomem;
151 		}
152 		/*
153 		 * Set up the kernel context flags here and now because they
154 		 * use default values for all receive side memories.  User
155 		 * contexts will be handled as they are created.
156 		 */
157 		rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
158 			HFI1_CAP_KGET(NODROP_RHQ_FULL) |
159 			HFI1_CAP_KGET(NODROP_EGR_FULL) |
160 			HFI1_CAP_KGET(DMA_RTAIL);
161 		rcd->seq_cnt = 1;
162 
163 		rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
164 		if (!rcd->sc) {
165 			dd_dev_err(dd,
166 				"Unable to allocate kernel send context, failing\n");
167 			dd->rcd[rcd->ctxt] = NULL;
168 			hfi1_free_ctxtdata(dd, rcd);
169 			goto nomem;
170 		}
171 
172 		ret = hfi1_init_ctxt(rcd->sc);
173 		if (ret < 0) {
174 			dd_dev_err(dd,
175 				   "Failed to setup kernel receive context, failing\n");
176 			sc_free(rcd->sc);
177 			dd->rcd[rcd->ctxt] = NULL;
178 			hfi1_free_ctxtdata(dd, rcd);
179 			ret = -EFAULT;
180 			goto bail;
181 		}
182 	}
183 
184 	return 0;
185 nomem:
186 	ret = -ENOMEM;
187 bail:
188 	kfree(dd->rcd);
189 	dd->rcd = NULL;
190 	return ret;
191 }
192 
193 /*
194  * Common code for user and kernel context setup.
195  */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,u32 ctxt)196 struct hfi1_ctxtdata *hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, u32 ctxt)
197 {
198 	struct hfi1_devdata *dd = ppd->dd;
199 	struct hfi1_ctxtdata *rcd;
200 	unsigned kctxt_ngroups = 0;
201 	u32 base;
202 
203 	if (dd->rcv_entries.nctxt_extra >
204 	    dd->num_rcv_contexts - dd->first_user_ctxt)
205 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
206 				 (dd->num_rcv_contexts - dd->first_user_ctxt));
207 	rcd = kzalloc(sizeof(*rcd), GFP_KERNEL);
208 	if (rcd) {
209 		u32 rcvtids, max_entries;
210 
211 		dd_dev_info(dd, "%s: setting up context %u\n", __func__, ctxt);
212 
213 		INIT_LIST_HEAD(&rcd->qp_wait_list);
214 		rcd->ppd = ppd;
215 		rcd->dd = dd;
216 		rcd->cnt = 1;
217 		rcd->ctxt = ctxt;
218 		dd->rcd[ctxt] = rcd;
219 		rcd->numa_id = numa_node_id();
220 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
221 
222 		spin_lock_init(&rcd->exp_lock);
223 
224 		/*
225 		 * Calculate the context's RcvArray entry starting point.
226 		 * We do this here because we have to take into account all
227 		 * the RcvArray entries that previous context would have
228 		 * taken and we have to account for any extra groups
229 		 * assigned to the kernel or user contexts.
230 		 */
231 		if (ctxt < dd->first_user_ctxt) {
232 			if (ctxt < kctxt_ngroups) {
233 				base = ctxt * (dd->rcv_entries.ngroups + 1);
234 				rcd->rcv_array_groups++;
235 			} else
236 				base = kctxt_ngroups +
237 					(ctxt * dd->rcv_entries.ngroups);
238 		} else {
239 			u16 ct = ctxt - dd->first_user_ctxt;
240 
241 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
242 				kctxt_ngroups);
243 			if (ct < dd->rcv_entries.nctxt_extra) {
244 				base += ct * (dd->rcv_entries.ngroups + 1);
245 				rcd->rcv_array_groups++;
246 			} else
247 				base += dd->rcv_entries.nctxt_extra +
248 					(ct * dd->rcv_entries.ngroups);
249 		}
250 		rcd->eager_base = base * dd->rcv_entries.group_size;
251 
252 		/* Validate and initialize Rcv Hdr Q variables */
253 		if (rcvhdrcnt % HDRQ_INCREMENT) {
254 			dd_dev_err(dd,
255 				   "ctxt%u: header queue count %d must be divisible by %d\n",
256 				   rcd->ctxt, rcvhdrcnt, HDRQ_INCREMENT);
257 			goto bail;
258 		}
259 		rcd->rcvhdrq_cnt = rcvhdrcnt;
260 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
261 		/*
262 		 * Simple Eager buffer allocation: we have already pre-allocated
263 		 * the number of RcvArray entry groups. Each ctxtdata structure
264 		 * holds the number of groups for that context.
265 		 *
266 		 * To follow CSR requirements and maintain cacheline alignment,
267 		 * make sure all sizes and bases are multiples of group_size.
268 		 *
269 		 * The expected entry count is what is left after assigning
270 		 * eager.
271 		 */
272 		max_entries = rcd->rcv_array_groups *
273 			dd->rcv_entries.group_size;
274 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
275 		rcd->egrbufs.count = round_down(rcvtids,
276 						dd->rcv_entries.group_size);
277 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
278 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
279 				   rcd->ctxt);
280 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
281 		}
282 		dd_dev_info(dd, "ctxt%u: max Eager buffer RcvArray entries: %u\n",
283 			    rcd->ctxt, rcd->egrbufs.count);
284 
285 		/*
286 		 * Allocate array that will hold the eager buffer accounting
287 		 * data.
288 		 * This will allocate the maximum possible buffer count based
289 		 * on the value of the RcvArray split parameter.
290 		 * The resulting value will be rounded down to the closest
291 		 * multiple of dd->rcv_entries.group_size.
292 		 */
293 		rcd->egrbufs.buffers = kcalloc(rcd->egrbufs.count,
294 					       sizeof(*rcd->egrbufs.buffers),
295 					       GFP_KERNEL);
296 		if (!rcd->egrbufs.buffers)
297 			goto bail;
298 		rcd->egrbufs.rcvtids = kcalloc(rcd->egrbufs.count,
299 					       sizeof(*rcd->egrbufs.rcvtids),
300 					       GFP_KERNEL);
301 		if (!rcd->egrbufs.rcvtids)
302 			goto bail;
303 		rcd->egrbufs.size = eager_buffer_size;
304 		/*
305 		 * The size of the buffers programmed into the RcvArray
306 		 * entries needs to be big enough to handle the highest
307 		 * MTU supported.
308 		 */
309 		if (rcd->egrbufs.size < hfi1_max_mtu) {
310 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
311 			dd_dev_info(dd,
312 				    "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
313 				    rcd->ctxt, rcd->egrbufs.size);
314 		}
315 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
316 
317 		if (ctxt < dd->first_user_ctxt) { /* N/A for PSM contexts */
318 			rcd->opstats = kzalloc(sizeof(*rcd->opstats),
319 				GFP_KERNEL);
320 			if (!rcd->opstats)
321 				goto bail;
322 		}
323 	}
324 	return rcd;
325 bail:
326 	kfree(rcd->opstats);
327 	kfree(rcd->egrbufs.rcvtids);
328 	kfree(rcd->egrbufs.buffers);
329 	kfree(rcd);
330 	return NULL;
331 }
332 
333 /*
334  * Convert a receive header entry size that to the encoding used in the CSR.
335  *
336  * Return a zero if the given size is invalid.
337  */
encode_rcv_header_entry_size(u16 size)338 static inline u64 encode_rcv_header_entry_size(u16 size)
339 {
340 	/* there are only 3 valid receive header entry sizes */
341 	if (size == 2)
342 		return 1;
343 	if (size == 16)
344 		return 2;
345 	else if (size == 32)
346 		return 4;
347 	return 0; /* invalid */
348 }
349 
350 /*
351  * Select the largest ccti value over all SLs to determine the intra-
352  * packet gap for the link.
353  *
354  * called with cca_timer_lock held (to protect access to cca_timer
355  * array), and rcu_read_lock() (to protect access to cc_state).
356  */
set_link_ipg(struct hfi1_pportdata * ppd)357 void set_link_ipg(struct hfi1_pportdata *ppd)
358 {
359 	struct hfi1_devdata *dd = ppd->dd;
360 	struct cc_state *cc_state;
361 	int i;
362 	u16 cce, ccti_limit, max_ccti = 0;
363 	u16 shift, mult;
364 	u64 src;
365 	u32 current_egress_rate; /* Mbits /sec */
366 	u32 max_pkt_time;
367 	/*
368 	 * max_pkt_time is the maximum packet egress time in units
369 	 * of the fabric clock period 1/(805 MHz).
370 	 */
371 
372 	cc_state = get_cc_state(ppd);
373 
374 	if (cc_state == NULL)
375 		/*
376 		 * This should _never_ happen - rcu_read_lock() is held,
377 		 * and set_link_ipg() should not be called if cc_state
378 		 * is NULL.
379 		 */
380 		return;
381 
382 	for (i = 0; i < OPA_MAX_SLS; i++) {
383 		u16 ccti = ppd->cca_timer[i].ccti;
384 
385 		if (ccti > max_ccti)
386 			max_ccti = ccti;
387 	}
388 
389 	ccti_limit = cc_state->cct.ccti_limit;
390 	if (max_ccti > ccti_limit)
391 		max_ccti = ccti_limit;
392 
393 	cce = cc_state->cct.entries[max_ccti].entry;
394 	shift = (cce & 0xc000) >> 14;
395 	mult = (cce & 0x3fff);
396 
397 	current_egress_rate = active_egress_rate(ppd);
398 
399 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
400 
401 	src = (max_pkt_time >> shift) * mult;
402 
403 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
404 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
405 
406 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
407 }
408 
cca_timer_fn(struct hrtimer * t)409 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
410 {
411 	struct cca_timer *cca_timer;
412 	struct hfi1_pportdata *ppd;
413 	int sl;
414 	u16 ccti, ccti_timer, ccti_min;
415 	struct cc_state *cc_state;
416 	unsigned long flags;
417 
418 	cca_timer = container_of(t, struct cca_timer, hrtimer);
419 	ppd = cca_timer->ppd;
420 	sl = cca_timer->sl;
421 
422 	rcu_read_lock();
423 
424 	cc_state = get_cc_state(ppd);
425 
426 	if (cc_state == NULL) {
427 		rcu_read_unlock();
428 		return HRTIMER_NORESTART;
429 	}
430 
431 	/*
432 	 * 1) decrement ccti for SL
433 	 * 2) calculate IPG for link (set_link_ipg())
434 	 * 3) restart timer, unless ccti is at min value
435 	 */
436 
437 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
438 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
439 
440 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
441 
442 	ccti = cca_timer->ccti;
443 
444 	if (ccti > ccti_min) {
445 		cca_timer->ccti--;
446 		set_link_ipg(ppd);
447 	}
448 
449 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
450 
451 	rcu_read_unlock();
452 
453 	if (ccti > ccti_min) {
454 		unsigned long nsec = 1024 * ccti_timer;
455 		/* ccti_timer is in units of 1.024 usec */
456 		hrtimer_forward_now(t, ns_to_ktime(nsec));
457 		return HRTIMER_RESTART;
458 	}
459 	return HRTIMER_NORESTART;
460 }
461 
462 /*
463  * Common code for initializing the physical port structure.
464  */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u8 port)465 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
466 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
467 {
468 	int i, size;
469 	uint default_pkey_idx;
470 
471 	ppd->dd = dd;
472 	ppd->hw_pidx = hw_pidx;
473 	ppd->port = port; /* IB port number, not index */
474 
475 	default_pkey_idx = 1;
476 
477 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
478 	if (loopback) {
479 		hfi1_early_err(&pdev->dev,
480 			       "Faking data partition 0x8001 in idx %u\n",
481 			       !default_pkey_idx);
482 		ppd->pkeys[!default_pkey_idx] = 0x8001;
483 	}
484 
485 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
486 	INIT_WORK(&ppd->link_up_work, handle_link_up);
487 	INIT_WORK(&ppd->link_down_work, handle_link_down);
488 	INIT_WORK(&ppd->freeze_work, handle_freeze);
489 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
490 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
491 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
492 	mutex_init(&ppd->hls_lock);
493 	spin_lock_init(&ppd->sdma_alllock);
494 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
495 
496 	ppd->sm_trap_qp = 0x0;
497 	ppd->sa_qp = 0x1;
498 
499 	ppd->hfi1_wq = NULL;
500 
501 	spin_lock_init(&ppd->cca_timer_lock);
502 
503 	for (i = 0; i < OPA_MAX_SLS; i++) {
504 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
505 			     HRTIMER_MODE_REL);
506 		ppd->cca_timer[i].ppd = ppd;
507 		ppd->cca_timer[i].sl = i;
508 		ppd->cca_timer[i].ccti = 0;
509 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
510 	}
511 
512 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
513 
514 	spin_lock_init(&ppd->cc_state_lock);
515 	spin_lock_init(&ppd->cc_log_lock);
516 	size = sizeof(struct cc_state);
517 	RCU_INIT_POINTER(ppd->cc_state, kzalloc(size, GFP_KERNEL));
518 	if (!rcu_dereference(ppd->cc_state))
519 		goto bail;
520 	return;
521 
522 bail:
523 
524 	hfi1_early_err(&pdev->dev,
525 		       "Congestion Control Agent disabled for port %d\n", port);
526 }
527 
528 /*
529  * Do initialization for device that is only needed on
530  * first detect, not on resets.
531  */
loadtime_init(struct hfi1_devdata * dd)532 static int loadtime_init(struct hfi1_devdata *dd)
533 {
534 	return 0;
535 }
536 
537 /**
538  * init_after_reset - re-initialize after a reset
539  * @dd: the hfi1_ib device
540  *
541  * sanity check at least some of the values after reset, and
542  * ensure no receive or transmit (explicitly, in case reset
543  * failed
544  */
init_after_reset(struct hfi1_devdata * dd)545 static int init_after_reset(struct hfi1_devdata *dd)
546 {
547 	int i;
548 
549 	/*
550 	 * Ensure chip does no sends or receives, tail updates, or
551 	 * pioavail updates while we re-initialize.  This is mostly
552 	 * for the driver data structures, not chip registers.
553 	 */
554 	for (i = 0; i < dd->num_rcv_contexts; i++)
555 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
556 				  HFI1_RCVCTRL_INTRAVAIL_DIS |
557 				  HFI1_RCVCTRL_TAILUPD_DIS, i);
558 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
559 	for (i = 0; i < dd->num_send_contexts; i++)
560 		sc_disable(dd->send_contexts[i].sc);
561 
562 	return 0;
563 }
564 
enable_chip(struct hfi1_devdata * dd)565 static void enable_chip(struct hfi1_devdata *dd)
566 {
567 	u32 rcvmask;
568 	u32 i;
569 
570 	/* enable PIO send */
571 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
572 
573 	/*
574 	 * Enable kernel ctxts' receive and receive interrupt.
575 	 * Other ctxts done as user opens and initializes them.
576 	 */
577 	rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
578 	for (i = 0; i < dd->first_user_ctxt; ++i) {
579 		rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
580 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
581 		if (!HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, MULTI_PKT_EGR))
582 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
583 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_RHQ_FULL))
584 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
585 		if (HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, NODROP_EGR_FULL))
586 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
587 		hfi1_rcvctrl(dd, rcvmask, i);
588 		sc_enable(dd->rcd[i]->sc);
589 	}
590 }
591 
592 /**
593  * create_workqueues - create per port workqueues
594  * @dd: the hfi1_ib device
595  */
create_workqueues(struct hfi1_devdata * dd)596 static int create_workqueues(struct hfi1_devdata *dd)
597 {
598 	int pidx;
599 	struct hfi1_pportdata *ppd;
600 
601 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
602 		ppd = dd->pport + pidx;
603 		if (!ppd->hfi1_wq) {
604 			char wq_name[8]; /* 3 + 2 + 1 + 1 + 1 */
605 
606 			snprintf(wq_name, sizeof(wq_name), "hfi%d_%d",
607 				 dd->unit, pidx);
608 			ppd->hfi1_wq =
609 				create_singlethread_workqueue(wq_name);
610 			if (!ppd->hfi1_wq)
611 				goto wq_error;
612 		}
613 	}
614 	return 0;
615 wq_error:
616 	pr_err("create_singlethread_workqueue failed for port %d\n",
617 		pidx + 1);
618 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
619 		ppd = dd->pport + pidx;
620 		if (ppd->hfi1_wq) {
621 			destroy_workqueue(ppd->hfi1_wq);
622 			ppd->hfi1_wq = NULL;
623 		}
624 	}
625 	return -ENOMEM;
626 }
627 
628 /**
629  * hfi1_init - do the actual initialization sequence on the chip
630  * @dd: the hfi1_ib device
631  * @reinit: re-initializing, so don't allocate new memory
632  *
633  * Do the actual initialization sequence on the chip.  This is done
634  * both from the init routine called from the PCI infrastructure, and
635  * when we reset the chip, or detect that it was reset internally,
636  * or it's administratively re-enabled.
637  *
638  * Memory allocation here and in called routines is only done in
639  * the first case (reinit == 0).  We have to be careful, because even
640  * without memory allocation, we need to re-write all the chip registers
641  * TIDs, etc. after the reset or enable has completed.
642  */
hfi1_init(struct hfi1_devdata * dd,int reinit)643 int hfi1_init(struct hfi1_devdata *dd, int reinit)
644 {
645 	int ret = 0, pidx, lastfail = 0;
646 	unsigned i, len;
647 	struct hfi1_ctxtdata *rcd;
648 	struct hfi1_pportdata *ppd;
649 
650 	/* Set up recv low level handlers */
651 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] =
652 						kdeth_process_expected;
653 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] =
654 						kdeth_process_eager;
655 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib;
656 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] =
657 						process_receive_error;
658 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] =
659 						process_receive_bypass;
660 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] =
661 						process_receive_invalid;
662 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] =
663 						process_receive_invalid;
664 	dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] =
665 						process_receive_invalid;
666 	dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions;
667 
668 	/* Set up send low level handlers */
669 	dd->process_pio_send = hfi1_verbs_send_pio;
670 	dd->process_dma_send = hfi1_verbs_send_dma;
671 	dd->pio_inline_send = pio_copy;
672 
673 	if (is_a0(dd)) {
674 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
675 		dd->do_drop = 1;
676 	} else {
677 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
678 		dd->do_drop = 0;
679 	}
680 
681 	/* make sure the link is not "up" */
682 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
683 		ppd = dd->pport + pidx;
684 		ppd->linkup = 0;
685 	}
686 
687 	if (reinit)
688 		ret = init_after_reset(dd);
689 	else
690 		ret = loadtime_init(dd);
691 	if (ret)
692 		goto done;
693 
694 	/* dd->rcd can be NULL if early initialization failed */
695 	for (i = 0; dd->rcd && i < dd->first_user_ctxt; ++i) {
696 		/*
697 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
698 		 * re-init, the simplest way to handle this is to free
699 		 * existing, and re-allocate.
700 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
701 		 */
702 		rcd = dd->rcd[i];
703 		if (!rcd)
704 			continue;
705 
706 		rcd->do_interrupt = &handle_receive_interrupt;
707 
708 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
709 		if (!lastfail)
710 			lastfail = hfi1_setup_eagerbufs(rcd);
711 		if (lastfail)
712 			dd_dev_err(dd,
713 				"failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
714 	}
715 	if (lastfail)
716 		ret = lastfail;
717 
718 	/* Allocate enough memory for user event notification. */
719 	len = ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS *
720 		    sizeof(*dd->events), PAGE_SIZE);
721 	dd->events = vmalloc_user(len);
722 	if (!dd->events)
723 		dd_dev_err(dd, "Failed to allocate user events page\n");
724 	/*
725 	 * Allocate a page for device and port status.
726 	 * Page will be shared amongst all user processes.
727 	 */
728 	dd->status = vmalloc_user(PAGE_SIZE);
729 	if (!dd->status)
730 		dd_dev_err(dd, "Failed to allocate dev status page\n");
731 	else
732 		dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) -
733 					     sizeof(dd->status->freezemsg));
734 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
735 		ppd = dd->pport + pidx;
736 		if (dd->status)
737 			/* Currently, we only have one port */
738 			ppd->statusp = &dd->status->port;
739 
740 		set_mtu(ppd);
741 	}
742 
743 	/* enable chip even if we have an error, so we can debug cause */
744 	enable_chip(dd);
745 
746 	ret = hfi1_cq_init(dd);
747 done:
748 	/*
749 	 * Set status even if port serdes is not initialized
750 	 * so that diags will work.
751 	 */
752 	if (dd->status)
753 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
754 			HFI1_STATUS_INITTED;
755 	if (!ret) {
756 		/* enable all interrupts from the chip */
757 		set_intr_state(dd, 1);
758 
759 		/* chip is OK for user apps; mark it as initialized */
760 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
761 			ppd = dd->pport + pidx;
762 
763 			/* initialize the qsfp if it exists
764 			 * Requires interrupts to be enabled so we are notified
765 			 * when the QSFP completes reset, and has
766 			 * to be done before bringing up the SERDES
767 			 */
768 			init_qsfp(ppd);
769 
770 			/* start the serdes - must be after interrupts are
771 			   enabled so we are notified when the link goes up */
772 			lastfail = bringup_serdes(ppd);
773 			if (lastfail)
774 				dd_dev_info(dd,
775 					"Failed to bring up port %u\n",
776 					ppd->port);
777 
778 			/*
779 			 * Set status even if port serdes is not initialized
780 			 * so that diags will work.
781 			 */
782 			if (ppd->statusp)
783 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
784 							HFI1_STATUS_INITTED;
785 			if (!ppd->link_speed_enabled)
786 				continue;
787 		}
788 	}
789 
790 	/* if ret is non-zero, we probably should do some cleanup here... */
791 	return ret;
792 }
793 
__hfi1_lookup(int unit)794 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
795 {
796 	return idr_find(&hfi1_unit_table, unit);
797 }
798 
hfi1_lookup(int unit)799 struct hfi1_devdata *hfi1_lookup(int unit)
800 {
801 	struct hfi1_devdata *dd;
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&hfi1_devs_lock, flags);
805 	dd = __hfi1_lookup(unit);
806 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
807 
808 	return dd;
809 }
810 
811 /*
812  * Stop the timers during unit shutdown, or after an error late
813  * in initialization.
814  */
stop_timers(struct hfi1_devdata * dd)815 static void stop_timers(struct hfi1_devdata *dd)
816 {
817 	struct hfi1_pportdata *ppd;
818 	int pidx;
819 
820 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
821 		ppd = dd->pport + pidx;
822 		if (ppd->led_override_timer.data) {
823 			del_timer_sync(&ppd->led_override_timer);
824 			atomic_set(&ppd->led_override_timer_active, 0);
825 		}
826 	}
827 }
828 
829 /**
830  * shutdown_device - shut down a device
831  * @dd: the hfi1_ib device
832  *
833  * This is called to make the device quiet when we are about to
834  * unload the driver, and also when the device is administratively
835  * disabled.   It does not free any data structures.
836  * Everything it does has to be setup again by hfi1_init(dd, 1)
837  */
shutdown_device(struct hfi1_devdata * dd)838 static void shutdown_device(struct hfi1_devdata *dd)
839 {
840 	struct hfi1_pportdata *ppd;
841 	unsigned pidx;
842 	int i;
843 
844 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
845 		ppd = dd->pport + pidx;
846 
847 		ppd->linkup = 0;
848 		if (ppd->statusp)
849 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
850 					   HFI1_STATUS_IB_READY);
851 	}
852 	dd->flags &= ~HFI1_INITTED;
853 
854 	/* mask interrupts, but not errors */
855 	set_intr_state(dd, 0);
856 
857 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
858 		ppd = dd->pport + pidx;
859 		for (i = 0; i < dd->num_rcv_contexts; i++)
860 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
861 					  HFI1_RCVCTRL_CTXT_DIS |
862 					  HFI1_RCVCTRL_INTRAVAIL_DIS |
863 					  HFI1_RCVCTRL_PKEY_DIS |
864 					  HFI1_RCVCTRL_ONE_PKT_EGR_DIS, i);
865 		/*
866 		 * Gracefully stop all sends allowing any in progress to
867 		 * trickle out first.
868 		 */
869 		for (i = 0; i < dd->num_send_contexts; i++)
870 			sc_flush(dd->send_contexts[i].sc);
871 	}
872 
873 	/*
874 	 * Enough for anything that's going to trickle out to have actually
875 	 * done so.
876 	 */
877 	udelay(20);
878 
879 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
880 		ppd = dd->pport + pidx;
881 
882 		/* disable all contexts */
883 		for (i = 0; i < dd->num_send_contexts; i++)
884 			sc_disable(dd->send_contexts[i].sc);
885 		/* disable the send device */
886 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
887 
888 		/*
889 		 * Clear SerdesEnable.
890 		 * We can't count on interrupts since we are stopping.
891 		 */
892 		hfi1_quiet_serdes(ppd);
893 
894 		if (ppd->hfi1_wq) {
895 			destroy_workqueue(ppd->hfi1_wq);
896 			ppd->hfi1_wq = NULL;
897 		}
898 	}
899 	sdma_exit(dd);
900 }
901 
902 /**
903  * hfi1_free_ctxtdata - free a context's allocated data
904  * @dd: the hfi1_ib device
905  * @rcd: the ctxtdata structure
906  *
907  * free up any allocated data for a context
908  * This should not touch anything that would affect a simultaneous
909  * re-allocation of context data, because it is called after hfi1_mutex
910  * is released (and can be called from reinit as well).
911  * It should never change any chip state, or global driver state.
912  */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)913 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
914 {
915 	unsigned e;
916 
917 	if (!rcd)
918 		return;
919 
920 	if (rcd->rcvhdrq) {
921 		dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size,
922 				  rcd->rcvhdrq, rcd->rcvhdrq_phys);
923 		rcd->rcvhdrq = NULL;
924 		if (rcd->rcvhdrtail_kvaddr) {
925 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
926 					  (void *)rcd->rcvhdrtail_kvaddr,
927 					  rcd->rcvhdrqtailaddr_phys);
928 			rcd->rcvhdrtail_kvaddr = NULL;
929 		}
930 	}
931 
932 	/* all the RcvArray entries should have been cleared by now */
933 	kfree(rcd->egrbufs.rcvtids);
934 
935 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
936 		if (rcd->egrbufs.buffers[e].phys)
937 			dma_free_coherent(&dd->pcidev->dev,
938 					  rcd->egrbufs.buffers[e].len,
939 					  rcd->egrbufs.buffers[e].addr,
940 					  rcd->egrbufs.buffers[e].phys);
941 	}
942 	kfree(rcd->egrbufs.buffers);
943 
944 	sc_free(rcd->sc);
945 	vfree(rcd->physshadow);
946 	vfree(rcd->tid_pg_list);
947 	vfree(rcd->user_event_mask);
948 	vfree(rcd->subctxt_uregbase);
949 	vfree(rcd->subctxt_rcvegrbuf);
950 	vfree(rcd->subctxt_rcvhdr_base);
951 	kfree(rcd->tidusemap);
952 	kfree(rcd->opstats);
953 	kfree(rcd);
954 }
955 
hfi1_free_devdata(struct hfi1_devdata * dd)956 void hfi1_free_devdata(struct hfi1_devdata *dd)
957 {
958 	unsigned long flags;
959 
960 	spin_lock_irqsave(&hfi1_devs_lock, flags);
961 	idr_remove(&hfi1_unit_table, dd->unit);
962 	list_del(&dd->list);
963 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
964 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
965 	rcu_barrier(); /* wait for rcu callbacks to complete */
966 	free_percpu(dd->int_counter);
967 	free_percpu(dd->rcv_limit);
968 	ib_dealloc_device(&dd->verbs_dev.ibdev);
969 }
970 
971 /*
972  * Allocate our primary per-unit data structure.  Must be done via verbs
973  * allocator, because the verbs cleanup process both does cleanup and
974  * free of the data structure.
975  * "extra" is for chip-specific data.
976  *
977  * Use the idr mechanism to get a unit number for this unit.
978  */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)979 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
980 {
981 	unsigned long flags;
982 	struct hfi1_devdata *dd;
983 	int ret;
984 
985 	dd = (struct hfi1_devdata *)ib_alloc_device(sizeof(*dd) + extra);
986 	if (!dd)
987 		return ERR_PTR(-ENOMEM);
988 	/* extra is * number of ports */
989 	dd->num_pports = extra / sizeof(struct hfi1_pportdata);
990 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
991 
992 	INIT_LIST_HEAD(&dd->list);
993 	dd->node = dev_to_node(&pdev->dev);
994 	if (dd->node < 0)
995 		dd->node = 0;
996 	idr_preload(GFP_KERNEL);
997 	spin_lock_irqsave(&hfi1_devs_lock, flags);
998 
999 	ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1000 	if (ret >= 0) {
1001 		dd->unit = ret;
1002 		list_add(&dd->list, &hfi1_dev_list);
1003 	}
1004 
1005 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1006 	idr_preload_end();
1007 
1008 	if (ret < 0) {
1009 		hfi1_early_err(&pdev->dev,
1010 			       "Could not allocate unit ID: error %d\n", -ret);
1011 		goto bail;
1012 	}
1013 	/*
1014 	 * Initialize all locks for the device. This needs to be as early as
1015 	 * possible so locks are usable.
1016 	 */
1017 	spin_lock_init(&dd->sc_lock);
1018 	spin_lock_init(&dd->sendctrl_lock);
1019 	spin_lock_init(&dd->rcvctrl_lock);
1020 	spin_lock_init(&dd->uctxt_lock);
1021 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1022 	spin_lock_init(&dd->sc_init_lock);
1023 	spin_lock_init(&dd->dc8051_lock);
1024 	spin_lock_init(&dd->dc8051_memlock);
1025 	mutex_init(&dd->qsfp_i2c_mutex);
1026 	seqlock_init(&dd->sc2vl_lock);
1027 	spin_lock_init(&dd->sde_map_lock);
1028 	init_waitqueue_head(&dd->event_queue);
1029 
1030 	dd->int_counter = alloc_percpu(u64);
1031 	if (!dd->int_counter) {
1032 		ret = -ENOMEM;
1033 		hfi1_early_err(&pdev->dev,
1034 			       "Could not allocate per-cpu int_counter\n");
1035 		goto bail;
1036 	}
1037 
1038 	dd->rcv_limit = alloc_percpu(u64);
1039 	if (!dd->rcv_limit) {
1040 		ret = -ENOMEM;
1041 		hfi1_early_err(&pdev->dev,
1042 			       "Could not allocate per-cpu rcv_limit\n");
1043 		goto bail;
1044 	}
1045 
1046 	if (!hfi1_cpulist_count) {
1047 		u32 count = num_online_cpus();
1048 
1049 		hfi1_cpulist = kcalloc(BITS_TO_LONGS(count), sizeof(long),
1050 				       GFP_KERNEL);
1051 		if (hfi1_cpulist)
1052 			hfi1_cpulist_count = count;
1053 		else
1054 			hfi1_early_err(
1055 			&pdev->dev,
1056 			"Could not alloc cpulist info, cpu affinity might be wrong\n");
1057 	}
1058 	hfi1_dbg_ibdev_init(&dd->verbs_dev);
1059 	return dd;
1060 
1061 bail:
1062 	if (!list_empty(&dd->list))
1063 		list_del_init(&dd->list);
1064 	ib_dealloc_device(&dd->verbs_dev.ibdev);
1065 	return ERR_PTR(ret);
1066 }
1067 
1068 /*
1069  * Called from freeze mode handlers, and from PCI error
1070  * reporting code.  Should be paranoid about state of
1071  * system and data structures.
1072  */
hfi1_disable_after_error(struct hfi1_devdata * dd)1073 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1074 {
1075 	if (dd->flags & HFI1_INITTED) {
1076 		u32 pidx;
1077 
1078 		dd->flags &= ~HFI1_INITTED;
1079 		if (dd->pport)
1080 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1081 				struct hfi1_pportdata *ppd;
1082 
1083 				ppd = dd->pport + pidx;
1084 				if (dd->flags & HFI1_PRESENT)
1085 					set_link_state(ppd, HLS_DN_DISABLE);
1086 
1087 				if (ppd->statusp)
1088 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1089 			}
1090 	}
1091 
1092 	/*
1093 	 * Mark as having had an error for driver, and also
1094 	 * for /sys and status word mapped to user programs.
1095 	 * This marks unit as not usable, until reset.
1096 	 */
1097 	if (dd->status)
1098 		dd->status->dev |= HFI1_STATUS_HWERROR;
1099 }
1100 
1101 static void remove_one(struct pci_dev *);
1102 static int init_one(struct pci_dev *, const struct pci_device_id *);
1103 
1104 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1105 #define PFX DRIVER_NAME ": "
1106 
1107 static const struct pci_device_id hfi1_pci_tbl[] = {
1108 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1109 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1110 	{ 0, }
1111 };
1112 
1113 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1114 
1115 static struct pci_driver hfi1_pci_driver = {
1116 	.name = DRIVER_NAME,
1117 	.probe = init_one,
1118 	.remove = remove_one,
1119 	.id_table = hfi1_pci_tbl,
1120 	.err_handler = &hfi1_pci_err_handler,
1121 };
1122 
compute_krcvqs(void)1123 static void __init compute_krcvqs(void)
1124 {
1125 	int i;
1126 
1127 	for (i = 0; i < krcvqsset; i++)
1128 		n_krcvqs += krcvqs[i];
1129 }
1130 
1131 /*
1132  * Do all the generic driver unit- and chip-independent memory
1133  * allocation and initialization.
1134  */
hfi1_mod_init(void)1135 static int __init hfi1_mod_init(void)
1136 {
1137 	int ret;
1138 
1139 	ret = dev_init();
1140 	if (ret)
1141 		goto bail;
1142 
1143 	/* validate max MTU before any devices start */
1144 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1145 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1146 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1147 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1148 	}
1149 	/* valid CUs run from 1-128 in powers of 2 */
1150 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1151 		hfi1_cu = 1;
1152 	/* valid credit return threshold is 0-100, variable is unsigned */
1153 	if (user_credit_return_threshold > 100)
1154 		user_credit_return_threshold = 100;
1155 
1156 	compute_krcvqs();
1157 	/* sanitize receive interrupt count, time must wait until after
1158 	   the hardware type is known */
1159 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1160 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1161 	/* reject invalid combinations */
1162 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1163 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1164 		rcv_intr_count = 1;
1165 	}
1166 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1167 		/*
1168 		 * Avoid indefinite packet delivery by requiring a timeout
1169 		 * if count is > 1.
1170 		 */
1171 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1172 		rcv_intr_timeout = 1;
1173 	}
1174 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1175 		/*
1176 		 * The dynamic algorithm expects a non-zero timeout
1177 		 * and a count > 1.
1178 		 */
1179 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1180 		rcv_intr_dynamic = 0;
1181 	}
1182 
1183 	/* sanitize link CRC options */
1184 	link_crc_mask &= SUPPORTED_CRCS;
1185 
1186 	/*
1187 	 * These must be called before the driver is registered with
1188 	 * the PCI subsystem.
1189 	 */
1190 	idr_init(&hfi1_unit_table);
1191 
1192 	hfi1_dbg_init();
1193 	ret = pci_register_driver(&hfi1_pci_driver);
1194 	if (ret < 0) {
1195 		pr_err("Unable to register driver: error %d\n", -ret);
1196 		goto bail_dev;
1197 	}
1198 	goto bail; /* all OK */
1199 
1200 bail_dev:
1201 	hfi1_dbg_exit();
1202 	idr_destroy(&hfi1_unit_table);
1203 	dev_cleanup();
1204 bail:
1205 	return ret;
1206 }
1207 
1208 module_init(hfi1_mod_init);
1209 
1210 /*
1211  * Do the non-unit driver cleanup, memory free, etc. at unload.
1212  */
hfi1_mod_cleanup(void)1213 static void __exit hfi1_mod_cleanup(void)
1214 {
1215 	pci_unregister_driver(&hfi1_pci_driver);
1216 	hfi1_dbg_exit();
1217 	hfi1_cpulist_count = 0;
1218 	kfree(hfi1_cpulist);
1219 
1220 	idr_destroy(&hfi1_unit_table);
1221 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1222 	dev_cleanup();
1223 }
1224 
1225 module_exit(hfi1_mod_cleanup);
1226 
1227 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1228 static void cleanup_device_data(struct hfi1_devdata *dd)
1229 {
1230 	int ctxt;
1231 	int pidx;
1232 	struct hfi1_ctxtdata **tmp;
1233 	unsigned long flags;
1234 
1235 	/* users can't do anything more with chip */
1236 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1237 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1238 		struct cc_state *cc_state;
1239 		int i;
1240 
1241 		if (ppd->statusp)
1242 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1243 
1244 		for (i = 0; i < OPA_MAX_SLS; i++)
1245 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1246 
1247 		spin_lock(&ppd->cc_state_lock);
1248 		cc_state = get_cc_state(ppd);
1249 		rcu_assign_pointer(ppd->cc_state, NULL);
1250 		spin_unlock(&ppd->cc_state_lock);
1251 
1252 		if (cc_state)
1253 			call_rcu(&cc_state->rcu, cc_state_reclaim);
1254 	}
1255 
1256 	free_credit_return(dd);
1257 
1258 	/*
1259 	 * Free any resources still in use (usually just kernel contexts)
1260 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1261 	 * We acquire lock to be really paranoid that rcd isn't being
1262 	 * accessed from some interrupt-related code (that should not happen,
1263 	 * but best to be sure).
1264 	 */
1265 	spin_lock_irqsave(&dd->uctxt_lock, flags);
1266 	tmp = dd->rcd;
1267 	dd->rcd = NULL;
1268 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1269 	for (ctxt = 0; tmp && ctxt < dd->num_rcv_contexts; ctxt++) {
1270 		struct hfi1_ctxtdata *rcd = tmp[ctxt];
1271 
1272 		tmp[ctxt] = NULL; /* debugging paranoia */
1273 		if (rcd) {
1274 			hfi1_clear_tids(rcd);
1275 			hfi1_free_ctxtdata(dd, rcd);
1276 		}
1277 	}
1278 	kfree(tmp);
1279 	/* must follow rcv context free - need to remove rcv's hooks */
1280 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1281 		sc_free(dd->send_contexts[ctxt].sc);
1282 	dd->num_send_contexts = 0;
1283 	kfree(dd->send_contexts);
1284 	dd->send_contexts = NULL;
1285 	kfree(dd->boardname);
1286 	vfree(dd->events);
1287 	vfree(dd->status);
1288 	hfi1_cq_exit(dd);
1289 }
1290 
1291 /*
1292  * Clean up on unit shutdown, or error during unit load after
1293  * successful initialization.
1294  */
postinit_cleanup(struct hfi1_devdata * dd)1295 static void postinit_cleanup(struct hfi1_devdata *dd)
1296 {
1297 	hfi1_start_cleanup(dd);
1298 
1299 	hfi1_pcie_ddcleanup(dd);
1300 	hfi1_pcie_cleanup(dd->pcidev);
1301 
1302 	cleanup_device_data(dd);
1303 
1304 	hfi1_free_devdata(dd);
1305 }
1306 
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1307 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1308 {
1309 	int ret = 0, j, pidx, initfail;
1310 	struct hfi1_devdata *dd = NULL;
1311 
1312 	/* First, lock the non-writable module parameters */
1313 	HFI1_CAP_LOCK();
1314 
1315 	/* Validate some global module parameters */
1316 	if (rcvhdrcnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1317 		hfi1_early_err(&pdev->dev, "Header queue  count too small\n");
1318 		ret = -EINVAL;
1319 		goto bail;
1320 	}
1321 	/* use the encoding function as a sanitization check */
1322 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1323 		hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1324 			       hfi1_hdrq_entsize);
1325 		goto bail;
1326 	}
1327 
1328 	/* The receive eager buffer size must be set before the receive
1329 	 * contexts are created.
1330 	 *
1331 	 * Set the eager buffer size.  Validate that it falls in a range
1332 	 * allowed by the hardware - all powers of 2 between the min and
1333 	 * max.  The maximum valid MTU is within the eager buffer range
1334 	 * so we do not need to cap the max_mtu by an eager buffer size
1335 	 * setting.
1336 	 */
1337 	if (eager_buffer_size) {
1338 		if (!is_power_of_2(eager_buffer_size))
1339 			eager_buffer_size =
1340 				roundup_pow_of_two(eager_buffer_size);
1341 		eager_buffer_size =
1342 			clamp_val(eager_buffer_size,
1343 				  MIN_EAGER_BUFFER * 8,
1344 				  MAX_EAGER_BUFFER_TOTAL);
1345 		hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1346 				eager_buffer_size);
1347 	} else {
1348 		hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1349 		ret = -EINVAL;
1350 		goto bail;
1351 	}
1352 
1353 	/* restrict value of hfi1_rcvarr_split */
1354 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1355 
1356 	ret = hfi1_pcie_init(pdev, ent);
1357 	if (ret)
1358 		goto bail;
1359 
1360 	/*
1361 	 * Do device-specific initialization, function table setup, dd
1362 	 * allocation, etc.
1363 	 */
1364 	switch (ent->device) {
1365 	case PCI_DEVICE_ID_INTEL0:
1366 	case PCI_DEVICE_ID_INTEL1:
1367 		dd = hfi1_init_dd(pdev, ent);
1368 		break;
1369 	default:
1370 		hfi1_early_err(&pdev->dev,
1371 			       "Failing on unknown Intel deviceid 0x%x\n",
1372 			       ent->device);
1373 		ret = -ENODEV;
1374 	}
1375 
1376 	if (IS_ERR(dd))
1377 		ret = PTR_ERR(dd);
1378 	if (ret)
1379 		goto clean_bail; /* error already printed */
1380 
1381 	ret = create_workqueues(dd);
1382 	if (ret)
1383 		goto clean_bail;
1384 
1385 	/* do the generic initialization */
1386 	initfail = hfi1_init(dd, 0);
1387 
1388 	ret = hfi1_register_ib_device(dd);
1389 
1390 	/*
1391 	 * Now ready for use.  this should be cleared whenever we
1392 	 * detect a reset, or initiate one.  If earlier failure,
1393 	 * we still create devices, so diags, etc. can be used
1394 	 * to determine cause of problem.
1395 	 */
1396 	if (!initfail && !ret)
1397 		dd->flags |= HFI1_INITTED;
1398 
1399 	j = hfi1_device_create(dd);
1400 	if (j)
1401 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1402 
1403 	if (initfail || ret) {
1404 		stop_timers(dd);
1405 		flush_workqueue(ib_wq);
1406 		for (pidx = 0; pidx < dd->num_pports; ++pidx)
1407 			hfi1_quiet_serdes(dd->pport + pidx);
1408 		if (!j)
1409 			hfi1_device_remove(dd);
1410 		if (!ret)
1411 			hfi1_unregister_ib_device(dd);
1412 		postinit_cleanup(dd);
1413 		if (initfail)
1414 			ret = initfail;
1415 		goto bail;	/* everything already cleaned */
1416 	}
1417 
1418 	sdma_start(dd);
1419 
1420 	return 0;
1421 
1422 clean_bail:
1423 	hfi1_pcie_cleanup(pdev);
1424 bail:
1425 	return ret;
1426 }
1427 
remove_one(struct pci_dev * pdev)1428 static void remove_one(struct pci_dev *pdev)
1429 {
1430 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1431 
1432 	/* unregister from IB core */
1433 	hfi1_unregister_ib_device(dd);
1434 
1435 	/*
1436 	 * Disable the IB link, disable interrupts on the device,
1437 	 * clear dma engines, etc.
1438 	 */
1439 	shutdown_device(dd);
1440 
1441 	stop_timers(dd);
1442 
1443 	/* wait until all of our (qsfp) queue_work() calls complete */
1444 	flush_workqueue(ib_wq);
1445 
1446 	hfi1_device_remove(dd);
1447 
1448 	postinit_cleanup(dd);
1449 }
1450 
1451 /**
1452  * hfi1_create_rcvhdrq - create a receive header queue
1453  * @dd: the hfi1_ib device
1454  * @rcd: the context data
1455  *
1456  * This must be contiguous memory (from an i/o perspective), and must be
1457  * DMA'able (which means for some systems, it will go through an IOMMU,
1458  * or be forced into a low address range).
1459  */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1460 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1461 {
1462 	unsigned amt;
1463 	u64 reg;
1464 
1465 	if (!rcd->rcvhdrq) {
1466 		dma_addr_t phys_hdrqtail;
1467 		gfp_t gfp_flags;
1468 
1469 		/*
1470 		 * rcvhdrqentsize is in DWs, so we have to convert to bytes
1471 		 * (* sizeof(u32)).
1472 		 */
1473 		amt = ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize *
1474 			    sizeof(u32), PAGE_SIZE);
1475 
1476 		gfp_flags = (rcd->ctxt >= dd->first_user_ctxt) ?
1477 			GFP_USER : GFP_KERNEL;
1478 		rcd->rcvhdrq = dma_zalloc_coherent(
1479 			&dd->pcidev->dev, amt, &rcd->rcvhdrq_phys,
1480 			gfp_flags | __GFP_COMP);
1481 
1482 		if (!rcd->rcvhdrq) {
1483 			dd_dev_err(dd,
1484 				"attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1485 				amt, rcd->ctxt);
1486 			goto bail;
1487 		}
1488 
1489 		/* Event mask is per device now and is in hfi1_devdata */
1490 		/*if (rcd->ctxt >= dd->first_user_ctxt) {
1491 			rcd->user_event_mask = vmalloc_user(PAGE_SIZE);
1492 			if (!rcd->user_event_mask)
1493 				goto bail_free_hdrq;
1494 				}*/
1495 
1496 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1497 			rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1498 				&dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail,
1499 				gfp_flags);
1500 			if (!rcd->rcvhdrtail_kvaddr)
1501 				goto bail_free;
1502 			rcd->rcvhdrqtailaddr_phys = phys_hdrqtail;
1503 		}
1504 
1505 		rcd->rcvhdrq_size = amt;
1506 	}
1507 	/*
1508 	 * These values are per-context:
1509 	 *	RcvHdrCnt
1510 	 *	RcvHdrEntSize
1511 	 *	RcvHdrSize
1512 	 */
1513 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1514 			& RCV_HDR_CNT_CNT_MASK)
1515 		<< RCV_HDR_CNT_CNT_SHIFT;
1516 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1517 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1518 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1519 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1520 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1521 	reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK)
1522 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1523 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1524 	return 0;
1525 
1526 bail_free:
1527 	dd_dev_err(dd,
1528 		"attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1529 		rcd->ctxt);
1530 	vfree(rcd->user_event_mask);
1531 	rcd->user_event_mask = NULL;
1532 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1533 			  rcd->rcvhdrq_phys);
1534 	rcd->rcvhdrq = NULL;
1535 bail:
1536 	return -ENOMEM;
1537 }
1538 
1539 /**
1540  * allocate eager buffers, both kernel and user contexts.
1541  * @rcd: the context we are setting up.
1542  *
1543  * Allocate the eager TID buffers and program them into hip.
1544  * They are no longer completely contiguous, we do multiple allocation
1545  * calls.  Otherwise we get the OOM code involved, by asking for too
1546  * much per call, with disastrous results on some kernels.
1547  */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1548 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1549 {
1550 	struct hfi1_devdata *dd = rcd->dd;
1551 	u32 max_entries, egrtop, alloced_bytes = 0, idx = 0;
1552 	gfp_t gfp_flags;
1553 	u16 order;
1554 	int ret = 0;
1555 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1556 
1557 	/*
1558 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1559 	 * coalesced (we hope); otherwise, even at order 4,
1560 	 * heavy filesystem activity makes these fail, and we can
1561 	 * use compound pages.
1562 	 */
1563 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1564 
1565 	/*
1566 	 * The minimum size of the eager buffers is a groups of MTU-sized
1567 	 * buffers.
1568 	 * The global eager_buffer_size parameter is checked against the
1569 	 * theoretical lower limit of the value. Here, we check against the
1570 	 * MTU.
1571 	 */
1572 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1573 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1574 	/*
1575 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1576 	 * size to the max MTU (page-aligned).
1577 	 */
1578 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1579 		rcd->egrbufs.rcvtid_size = round_mtu;
1580 
1581 	/*
1582 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1583 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1584 	 */
1585 	if (rcd->egrbufs.size <= (1 << 20))
1586 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1587 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1588 
1589 	while (alloced_bytes < rcd->egrbufs.size &&
1590 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1591 		rcd->egrbufs.buffers[idx].addr =
1592 			dma_zalloc_coherent(&dd->pcidev->dev,
1593 					    rcd->egrbufs.rcvtid_size,
1594 					    &rcd->egrbufs.buffers[idx].phys,
1595 					    gfp_flags);
1596 		if (rcd->egrbufs.buffers[idx].addr) {
1597 			rcd->egrbufs.buffers[idx].len =
1598 				rcd->egrbufs.rcvtid_size;
1599 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1600 				rcd->egrbufs.buffers[idx].addr;
1601 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].phys =
1602 				rcd->egrbufs.buffers[idx].phys;
1603 			rcd->egrbufs.alloced++;
1604 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1605 			idx++;
1606 		} else {
1607 			u32 new_size, i, j;
1608 			u64 offset = 0;
1609 
1610 			/*
1611 			 * Fail the eager buffer allocation if:
1612 			 *   - we are already using the lowest acceptable size
1613 			 *   - we are using one-pkt-per-egr-buffer (this implies
1614 			 *     that we are accepting only one size)
1615 			 */
1616 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1617 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1618 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1619 					rcd->ctxt);
1620 				goto bail_rcvegrbuf_phys;
1621 			}
1622 
1623 			new_size = rcd->egrbufs.rcvtid_size / 2;
1624 
1625 			/*
1626 			 * If the first attempt to allocate memory failed, don't
1627 			 * fail everything but continue with the next lower
1628 			 * size.
1629 			 */
1630 			if (idx == 0) {
1631 				rcd->egrbufs.rcvtid_size = new_size;
1632 				continue;
1633 			}
1634 
1635 			/*
1636 			 * Re-partition already allocated buffers to a smaller
1637 			 * size.
1638 			 */
1639 			rcd->egrbufs.alloced = 0;
1640 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
1641 				if (i >= rcd->egrbufs.count)
1642 					break;
1643 				rcd->egrbufs.rcvtids[i].phys =
1644 					rcd->egrbufs.buffers[j].phys + offset;
1645 				rcd->egrbufs.rcvtids[i].addr =
1646 					rcd->egrbufs.buffers[j].addr + offset;
1647 				rcd->egrbufs.alloced++;
1648 				if ((rcd->egrbufs.buffers[j].phys + offset +
1649 				     new_size) ==
1650 				    (rcd->egrbufs.buffers[j].phys +
1651 				     rcd->egrbufs.buffers[j].len)) {
1652 					j++;
1653 					offset = 0;
1654 				} else
1655 					offset += new_size;
1656 			}
1657 			rcd->egrbufs.rcvtid_size = new_size;
1658 		}
1659 	}
1660 	rcd->egrbufs.numbufs = idx;
1661 	rcd->egrbufs.size = alloced_bytes;
1662 
1663 	dd_dev_info(dd, "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
1664 		rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size,
1665 		rcd->egrbufs.size);
1666 
1667 	/*
1668 	 * Set the contexts rcv array head update threshold to the closest
1669 	 * power of 2 (so we can use a mask instead of modulo) below half
1670 	 * the allocated entries.
1671 	 */
1672 	rcd->egrbufs.threshold =
1673 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1674 	/*
1675 	 * Compute the expected RcvArray entry base. This is done after
1676 	 * allocating the eager buffers in order to maximize the
1677 	 * expected RcvArray entries for the context.
1678 	 */
1679 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1680 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1681 	rcd->expected_count = max_entries - egrtop;
1682 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1683 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1684 
1685 	rcd->expected_base = rcd->eager_base + egrtop;
1686 	dd_dev_info(dd, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1687 		    rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1688 		    rcd->eager_base, rcd->expected_base);
1689 
1690 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1691 		dd_dev_err(dd, "ctxt%u: current Eager buffer size is invalid %u\n",
1692 			   rcd->ctxt, rcd->egrbufs.rcvtid_size);
1693 		ret = -EINVAL;
1694 		goto bail;
1695 	}
1696 
1697 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1698 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1699 			      rcd->egrbufs.rcvtids[idx].phys, order);
1700 		cond_resched();
1701 	}
1702 	goto bail;
1703 
1704 bail_rcvegrbuf_phys:
1705 	for (idx = 0; idx < rcd->egrbufs.alloced &&
1706 		     rcd->egrbufs.buffers[idx].addr;
1707 	     idx++) {
1708 		dma_free_coherent(&dd->pcidev->dev,
1709 				  rcd->egrbufs.buffers[idx].len,
1710 				  rcd->egrbufs.buffers[idx].addr,
1711 				  rcd->egrbufs.buffers[idx].phys);
1712 		rcd->egrbufs.buffers[idx].addr = NULL;
1713 		rcd->egrbufs.buffers[idx].phys = 0;
1714 		rcd->egrbufs.buffers[idx].len = 0;
1715 	}
1716 bail:
1717 	return ret;
1718 }
1719