• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14 
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20 
21 #define HPET_MASK			CLOCKSOURCE_MASK(32)
22 
23 /* FSEC = 10^-15
24    NSEC = 10^-9 */
25 #define FSEC_PER_NSEC			1000000L
26 
27 #define HPET_DEV_USED_BIT		2
28 #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID			0x8
30 #define HPET_DEV_FSB_CAP		0x1000
31 #define HPET_DEV_PERI_CAP		0x2000
32 
33 #define HPET_MIN_CYCLES			128
34 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35 
36 /*
37  * HPET address is set in acpi/boot.c, when an ACPI entry exists
38  */
39 unsigned long				hpet_address;
40 u8					hpet_blockid; /* OS timer block num */
41 bool					hpet_msi_disable;
42 
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int			hpet_num_timers;
45 #endif
46 static void __iomem			*hpet_virt_address;
47 
48 struct hpet_dev {
49 	struct clock_event_device	evt;
50 	unsigned int			num;
51 	int				cpu;
52 	unsigned int			irq;
53 	unsigned int			flags;
54 	char				name[10];
55 };
56 
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)57 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 	return container_of(evtdev, struct hpet_dev, evt);
60 }
61 
hpet_readl(unsigned int a)62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 	return readl(hpet_virt_address + a);
65 }
66 
hpet_writel(unsigned int d,unsigned int a)67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 	writel(d, hpet_virt_address + a);
70 }
71 
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75 
hpet_set_mapping(void)76 static inline void hpet_set_mapping(void)
77 {
78 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80 
hpet_clear_mapping(void)81 static inline void hpet_clear_mapping(void)
82 {
83 	iounmap(hpet_virt_address);
84 	hpet_virt_address = NULL;
85 }
86 
87 /*
88  * HPET command line enable / disable
89  */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93 
hpet_setup(char * str)94 static int __init hpet_setup(char *str)
95 {
96 	while (str) {
97 		char *next = strchr(str, ',');
98 
99 		if (next)
100 			*next++ = 0;
101 		if (!strncmp("disable", str, 7))
102 			boot_hpet_disable = true;
103 		if (!strncmp("force", str, 5))
104 			hpet_force_user = true;
105 		if (!strncmp("verbose", str, 7))
106 			hpet_verbose = true;
107 		str = next;
108 	}
109 	return 1;
110 }
111 __setup("hpet=", hpet_setup);
112 
disable_hpet(char * str)113 static int __init disable_hpet(char *str)
114 {
115 	boot_hpet_disable = true;
116 	return 1;
117 }
118 __setup("nohpet", disable_hpet);
119 
is_hpet_capable(void)120 static inline int is_hpet_capable(void)
121 {
122 	return !boot_hpet_disable && hpet_address;
123 }
124 
125 /*
126  * HPET timer interrupt enable / disable
127  */
128 static bool hpet_legacy_int_enabled;
129 
130 /**
131  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132  */
is_hpet_enabled(void)133 int is_hpet_enabled(void)
134 {
135 	return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138 
_hpet_print_config(const char * function,int line)139 static void _hpet_print_config(const char *function, int line)
140 {
141 	u32 i, timers, l, h;
142 	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 	l = hpet_readl(HPET_ID);
144 	h = hpet_readl(HPET_PERIOD);
145 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 	l = hpet_readl(HPET_CFG);
148 	h = hpet_readl(HPET_STATUS);
149 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 	l = hpet_readl(HPET_COUNTER);
151 	h = hpet_readl(HPET_COUNTER+4);
152 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153 
154 	for (i = 0; i < timers; i++) {
155 		l = hpet_readl(HPET_Tn_CFG(i));
156 		h = hpet_readl(HPET_Tn_CFG(i)+4);
157 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 		       i, l, h);
159 		l = hpet_readl(HPET_Tn_CMP(i));
160 		h = hpet_readl(HPET_Tn_CMP(i)+4);
161 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 		       i, l, h);
163 		l = hpet_readl(HPET_Tn_ROUTE(i));
164 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 		       i, l, h);
167 	}
168 }
169 
170 #define hpet_print_config()					\
171 do {								\
172 	if (hpet_verbose)					\
173 		_hpet_print_config(__func__, __LINE__);	\
174 } while (0)
175 
176 /*
177  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178  * timer 0 and timer 1 in case of RTC emulation.
179  */
180 #ifdef CONFIG_HPET
181 
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183 
hpet_reserve_platform_timers(unsigned int id)184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 	struct hpet __iomem *hpet = hpet_virt_address;
187 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 	unsigned int nrtimers, i;
189 	struct hpet_data hd;
190 
191 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192 
193 	memset(&hd, 0, sizeof(hd));
194 	hd.hd_phys_address	= hpet_address;
195 	hd.hd_address		= hpet;
196 	hd.hd_nirqs		= nrtimers;
197 	hpet_reserve_timer(&hd, 0);
198 
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 	hpet_reserve_timer(&hd, 1);
201 #endif
202 
203 	/*
204 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
206 	 * don't bother configuring *any* comparator interrupts.
207 	 */
208 	hd.hd_irq[0] = HPET_LEGACY_8254;
209 	hd.hd_irq[1] = HPET_LEGACY_RTC;
210 
211 	for (i = 2; i < nrtimers; timer++, i++) {
212 		hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 	}
215 
216 	hpet_reserve_msi_timers(&hd);
217 
218 	hpet_alloc(&hd);
219 
220 }
221 #else
hpet_reserve_platform_timers(unsigned int id)222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224 
225 /*
226  * Common hpet info
227  */
228 static unsigned long hpet_freq;
229 
230 static struct clock_event_device hpet_clockevent;
231 
hpet_stop_counter(void)232 static void hpet_stop_counter(void)
233 {
234 	u32 cfg = hpet_readl(HPET_CFG);
235 	cfg &= ~HPET_CFG_ENABLE;
236 	hpet_writel(cfg, HPET_CFG);
237 }
238 
hpet_reset_counter(void)239 static void hpet_reset_counter(void)
240 {
241 	hpet_writel(0, HPET_COUNTER);
242 	hpet_writel(0, HPET_COUNTER + 4);
243 }
244 
hpet_start_counter(void)245 static void hpet_start_counter(void)
246 {
247 	unsigned int cfg = hpet_readl(HPET_CFG);
248 	cfg |= HPET_CFG_ENABLE;
249 	hpet_writel(cfg, HPET_CFG);
250 }
251 
hpet_restart_counter(void)252 static void hpet_restart_counter(void)
253 {
254 	hpet_stop_counter();
255 	hpet_reset_counter();
256 	hpet_start_counter();
257 }
258 
hpet_resume_device(void)259 static void hpet_resume_device(void)
260 {
261 	force_hpet_resume();
262 }
263 
hpet_resume_counter(struct clocksource * cs)264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 	hpet_resume_device();
267 	hpet_restart_counter();
268 }
269 
hpet_enable_legacy_int(void)270 static void hpet_enable_legacy_int(void)
271 {
272 	unsigned int cfg = hpet_readl(HPET_CFG);
273 
274 	cfg |= HPET_CFG_LEGACY;
275 	hpet_writel(cfg, HPET_CFG);
276 	hpet_legacy_int_enabled = true;
277 }
278 
hpet_legacy_clockevent_register(void)279 static void hpet_legacy_clockevent_register(void)
280 {
281 	/* Start HPET legacy interrupts */
282 	hpet_enable_legacy_int();
283 
284 	/*
285 	 * Start hpet with the boot cpu mask and make it
286 	 * global after the IO_APIC has been initialized.
287 	 */
288 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 	global_clock_event = &hpet_clockevent;
292 	printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294 
hpet_set_periodic(struct clock_event_device * evt,int timer)295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 	unsigned int cfg, cmp, now;
298 	uint64_t delta;
299 
300 	hpet_stop_counter();
301 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 	delta >>= evt->shift;
303 	now = hpet_readl(HPET_COUNTER);
304 	cmp = now + (unsigned int)delta;
305 	cfg = hpet_readl(HPET_Tn_CFG(timer));
306 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 	       HPET_TN_32BIT;
308 	hpet_writel(cfg, HPET_Tn_CFG(timer));
309 	hpet_writel(cmp, HPET_Tn_CMP(timer));
310 	udelay(1);
311 	/*
312 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 	 * bit is automatically cleared after the first write.
315 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 	 * Publication # 24674)
317 	 */
318 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 	hpet_start_counter();
320 	hpet_print_config();
321 
322 	return 0;
323 }
324 
hpet_set_oneshot(struct clock_event_device * evt,int timer)325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 	unsigned int cfg;
328 
329 	cfg = hpet_readl(HPET_Tn_CFG(timer));
330 	cfg &= ~HPET_TN_PERIODIC;
331 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 	hpet_writel(cfg, HPET_Tn_CFG(timer));
333 
334 	return 0;
335 }
336 
hpet_shutdown(struct clock_event_device * evt,int timer)337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 	unsigned int cfg;
340 
341 	cfg = hpet_readl(HPET_Tn_CFG(timer));
342 	cfg &= ~HPET_TN_ENABLE;
343 	hpet_writel(cfg, HPET_Tn_CFG(timer));
344 
345 	return 0;
346 }
347 
hpet_resume(struct clock_event_device * evt,int timer)348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 	if (!timer) {
351 		hpet_enable_legacy_int();
352 	} else {
353 		struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354 
355 		irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356 		irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357 		disable_hardirq(hdev->irq);
358 		irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 		enable_irq(hdev->irq);
360 	}
361 	hpet_print_config();
362 
363 	return 0;
364 }
365 
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)366 static int hpet_next_event(unsigned long delta,
367 			   struct clock_event_device *evt, int timer)
368 {
369 	u32 cnt;
370 	s32 res;
371 
372 	cnt = hpet_readl(HPET_COUNTER);
373 	cnt += (u32) delta;
374 	hpet_writel(cnt, HPET_Tn_CMP(timer));
375 
376 	/*
377 	 * HPETs are a complete disaster. The compare register is
378 	 * based on a equal comparison and neither provides a less
379 	 * than or equal functionality (which would require to take
380 	 * the wraparound into account) nor a simple count down event
381 	 * mode. Further the write to the comparator register is
382 	 * delayed internally up to two HPET clock cycles in certain
383 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 	 * longer delays. We worked around that by reading back the
385 	 * compare register, but that required another workaround for
386 	 * ICH9,10 chips where the first readout after write can
387 	 * return the old stale value. We already had a minimum
388 	 * programming delta of 5us enforced, but a NMI or SMI hitting
389 	 * between the counter readout and the comparator write can
390 	 * move us behind that point easily. Now instead of reading
391 	 * the compare register back several times, we make the ETIME
392 	 * decision based on the following: Return ETIME if the
393 	 * counter value after the write is less than HPET_MIN_CYCLES
394 	 * away from the event or if the counter is already ahead of
395 	 * the event. The minimum programming delta for the generic
396 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 	 */
398 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399 
400 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402 
hpet_legacy_shutdown(struct clock_event_device * evt)403 static int hpet_legacy_shutdown(struct clock_event_device *evt)
404 {
405 	return hpet_shutdown(evt, 0);
406 }
407 
hpet_legacy_set_oneshot(struct clock_event_device * evt)408 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409 {
410 	return hpet_set_oneshot(evt, 0);
411 }
412 
hpet_legacy_set_periodic(struct clock_event_device * evt)413 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414 {
415 	return hpet_set_periodic(evt, 0);
416 }
417 
hpet_legacy_resume(struct clock_event_device * evt)418 static int hpet_legacy_resume(struct clock_event_device *evt)
419 {
420 	return hpet_resume(evt, 0);
421 }
422 
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)423 static int hpet_legacy_next_event(unsigned long delta,
424 			struct clock_event_device *evt)
425 {
426 	return hpet_next_event(delta, evt, 0);
427 }
428 
429 /*
430  * The hpet clock event device
431  */
432 static struct clock_event_device hpet_clockevent = {
433 	.name			= "hpet",
434 	.features		= CLOCK_EVT_FEAT_PERIODIC |
435 				  CLOCK_EVT_FEAT_ONESHOT,
436 	.set_state_periodic	= hpet_legacy_set_periodic,
437 	.set_state_oneshot	= hpet_legacy_set_oneshot,
438 	.set_state_shutdown	= hpet_legacy_shutdown,
439 	.tick_resume		= hpet_legacy_resume,
440 	.set_next_event		= hpet_legacy_next_event,
441 	.irq			= 0,
442 	.rating			= 50,
443 };
444 
445 /*
446  * HPET MSI Support
447  */
448 #ifdef CONFIG_PCI_MSI
449 
450 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451 static struct hpet_dev	*hpet_devs;
452 static struct irq_domain *hpet_domain;
453 
hpet_msi_unmask(struct irq_data * data)454 void hpet_msi_unmask(struct irq_data *data)
455 {
456 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 	unsigned int cfg;
458 
459 	/* unmask it */
460 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464 
hpet_msi_mask(struct irq_data * data)465 void hpet_msi_mask(struct irq_data *data)
466 {
467 	struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468 	unsigned int cfg;
469 
470 	/* mask it */
471 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474 }
475 
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)476 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 {
478 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480 }
481 
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)482 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 {
484 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486 	msg->address_hi = 0;
487 }
488 
hpet_msi_shutdown(struct clock_event_device * evt)489 static int hpet_msi_shutdown(struct clock_event_device *evt)
490 {
491 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492 
493 	return hpet_shutdown(evt, hdev->num);
494 }
495 
hpet_msi_set_oneshot(struct clock_event_device * evt)496 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497 {
498 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499 
500 	return hpet_set_oneshot(evt, hdev->num);
501 }
502 
hpet_msi_set_periodic(struct clock_event_device * evt)503 static int hpet_msi_set_periodic(struct clock_event_device *evt)
504 {
505 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506 
507 	return hpet_set_periodic(evt, hdev->num);
508 }
509 
hpet_msi_resume(struct clock_event_device * evt)510 static int hpet_msi_resume(struct clock_event_device *evt)
511 {
512 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513 
514 	return hpet_resume(evt, hdev->num);
515 }
516 
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)517 static int hpet_msi_next_event(unsigned long delta,
518 				struct clock_event_device *evt)
519 {
520 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521 	return hpet_next_event(delta, evt, hdev->num);
522 }
523 
hpet_interrupt_handler(int irq,void * data)524 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525 {
526 	struct hpet_dev *dev = (struct hpet_dev *)data;
527 	struct clock_event_device *hevt = &dev->evt;
528 
529 	if (!hevt->event_handler) {
530 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531 				dev->num);
532 		return IRQ_HANDLED;
533 	}
534 
535 	hevt->event_handler(hevt);
536 	return IRQ_HANDLED;
537 }
538 
hpet_setup_irq(struct hpet_dev * dev)539 static int hpet_setup_irq(struct hpet_dev *dev)
540 {
541 
542 	if (request_irq(dev->irq, hpet_interrupt_handler,
543 			IRQF_TIMER | IRQF_NOBALANCING,
544 			dev->name, dev))
545 		return -1;
546 
547 	disable_irq(dev->irq);
548 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549 	enable_irq(dev->irq);
550 
551 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552 			 dev->name, dev->irq);
553 
554 	return 0;
555 }
556 
557 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)558 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559 {
560 	struct clock_event_device *evt = &hdev->evt;
561 
562 	WARN_ON(cpu != smp_processor_id());
563 	if (!(hdev->flags & HPET_DEV_VALID))
564 		return;
565 
566 	hdev->cpu = cpu;
567 	per_cpu(cpu_hpet_dev, cpu) = hdev;
568 	evt->name = hdev->name;
569 	hpet_setup_irq(hdev);
570 	evt->irq = hdev->irq;
571 
572 	evt->rating = 110;
573 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
574 	if (hdev->flags & HPET_DEV_PERI_CAP) {
575 		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576 		evt->set_state_periodic = hpet_msi_set_periodic;
577 	}
578 
579 	evt->set_state_shutdown = hpet_msi_shutdown;
580 	evt->set_state_oneshot = hpet_msi_set_oneshot;
581 	evt->tick_resume = hpet_msi_resume;
582 	evt->set_next_event = hpet_msi_next_event;
583 	evt->cpumask = cpumask_of(hdev->cpu);
584 
585 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586 					0x7FFFFFFF);
587 }
588 
589 #ifdef CONFIG_HPET
590 /* Reserve at least one timer for userspace (/dev/hpet) */
591 #define RESERVE_TIMERS 1
592 #else
593 #define RESERVE_TIMERS 0
594 #endif
595 
hpet_msi_capability_lookup(unsigned int start_timer)596 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 {
598 	unsigned int id;
599 	unsigned int num_timers;
600 	unsigned int num_timers_used = 0;
601 	int i, irq;
602 
603 	if (hpet_msi_disable)
604 		return;
605 
606 	if (boot_cpu_has(X86_FEATURE_ARAT))
607 		return;
608 	id = hpet_readl(HPET_ID);
609 
610 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611 	num_timers++; /* Value read out starts from 0 */
612 	hpet_print_config();
613 
614 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
615 	if (!hpet_domain)
616 		return;
617 
618 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 	if (!hpet_devs)
620 		return;
621 
622 	hpet_num_timers = num_timers;
623 
624 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627 
628 		/* Only consider HPET timer with MSI support */
629 		if (!(cfg & HPET_TN_FSB_CAP))
630 			continue;
631 
632 		hdev->flags = 0;
633 		if (cfg & HPET_TN_PERIODIC_CAP)
634 			hdev->flags |= HPET_DEV_PERI_CAP;
635 		sprintf(hdev->name, "hpet%d", i);
636 		hdev->num = i;
637 
638 		irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639 		if (irq <= 0)
640 			continue;
641 
642 		hdev->irq = irq;
643 		hdev->flags |= HPET_DEV_FSB_CAP;
644 		hdev->flags |= HPET_DEV_VALID;
645 		num_timers_used++;
646 		if (num_timers_used == num_possible_cpus())
647 			break;
648 	}
649 
650 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651 		num_timers, num_timers_used);
652 }
653 
654 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)655 static void hpet_reserve_msi_timers(struct hpet_data *hd)
656 {
657 	int i;
658 
659 	if (!hpet_devs)
660 		return;
661 
662 	for (i = 0; i < hpet_num_timers; i++) {
663 		struct hpet_dev *hdev = &hpet_devs[i];
664 
665 		if (!(hdev->flags & HPET_DEV_VALID))
666 			continue;
667 
668 		hd->hd_irq[hdev->num] = hdev->irq;
669 		hpet_reserve_timer(hd, hdev->num);
670 	}
671 }
672 #endif
673 
hpet_get_unused_timer(void)674 static struct hpet_dev *hpet_get_unused_timer(void)
675 {
676 	int i;
677 
678 	if (!hpet_devs)
679 		return NULL;
680 
681 	for (i = 0; i < hpet_num_timers; i++) {
682 		struct hpet_dev *hdev = &hpet_devs[i];
683 
684 		if (!(hdev->flags & HPET_DEV_VALID))
685 			continue;
686 		if (test_and_set_bit(HPET_DEV_USED_BIT,
687 			(unsigned long *)&hdev->flags))
688 			continue;
689 		return hdev;
690 	}
691 	return NULL;
692 }
693 
694 struct hpet_work_struct {
695 	struct delayed_work work;
696 	struct completion complete;
697 };
698 
hpet_work(struct work_struct * w)699 static void hpet_work(struct work_struct *w)
700 {
701 	struct hpet_dev *hdev;
702 	int cpu = smp_processor_id();
703 	struct hpet_work_struct *hpet_work;
704 
705 	hpet_work = container_of(w, struct hpet_work_struct, work.work);
706 
707 	hdev = hpet_get_unused_timer();
708 	if (hdev)
709 		init_one_hpet_msi_clockevent(hdev, cpu);
710 
711 	complete(&hpet_work->complete);
712 }
713 
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)714 static int hpet_cpuhp_notify(struct notifier_block *n,
715 		unsigned long action, void *hcpu)
716 {
717 	unsigned long cpu = (unsigned long)hcpu;
718 	struct hpet_work_struct work;
719 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
720 
721 	switch (action & 0xf) {
722 	case CPU_ONLINE:
723 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
724 		init_completion(&work.complete);
725 		/* FIXME: add schedule_work_on() */
726 		schedule_delayed_work_on(cpu, &work.work, 0);
727 		wait_for_completion(&work.complete);
728 		destroy_delayed_work_on_stack(&work.work);
729 		break;
730 	case CPU_DEAD:
731 		if (hdev) {
732 			free_irq(hdev->irq, hdev);
733 			hdev->flags &= ~HPET_DEV_USED;
734 			per_cpu(cpu_hpet_dev, cpu) = NULL;
735 		}
736 		break;
737 	}
738 	return NOTIFY_OK;
739 }
740 #else
741 
hpet_msi_capability_lookup(unsigned int start_timer)742 static void hpet_msi_capability_lookup(unsigned int start_timer)
743 {
744 	return;
745 }
746 
747 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)748 static void hpet_reserve_msi_timers(struct hpet_data *hd)
749 {
750 	return;
751 }
752 #endif
753 
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)754 static int hpet_cpuhp_notify(struct notifier_block *n,
755 		unsigned long action, void *hcpu)
756 {
757 	return NOTIFY_OK;
758 }
759 
760 #endif
761 
762 /*
763  * Clock source related code
764  */
read_hpet(struct clocksource * cs)765 static cycle_t read_hpet(struct clocksource *cs)
766 {
767 	return (cycle_t)hpet_readl(HPET_COUNTER);
768 }
769 
770 static struct clocksource clocksource_hpet = {
771 	.name		= "hpet",
772 	.rating		= 250,
773 	.read		= read_hpet,
774 	.mask		= HPET_MASK,
775 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
776 	.resume		= hpet_resume_counter,
777 };
778 
hpet_clocksource_register(void)779 static int hpet_clocksource_register(void)
780 {
781 	u64 start, now;
782 	cycle_t t1;
783 
784 	/* Start the counter */
785 	hpet_restart_counter();
786 
787 	/* Verify whether hpet counter works */
788 	t1 = hpet_readl(HPET_COUNTER);
789 	start = rdtsc();
790 
791 	/*
792 	 * We don't know the TSC frequency yet, but waiting for
793 	 * 200000 TSC cycles is safe:
794 	 * 4 GHz == 50us
795 	 * 1 GHz == 200us
796 	 */
797 	do {
798 		rep_nop();
799 		now = rdtsc();
800 	} while ((now - start) < 200000UL);
801 
802 	if (t1 == hpet_readl(HPET_COUNTER)) {
803 		printk(KERN_WARNING
804 		       "HPET counter not counting. HPET disabled\n");
805 		return -ENODEV;
806 	}
807 
808 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
809 	return 0;
810 }
811 
812 static u32 *hpet_boot_cfg;
813 
814 /**
815  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
816  */
hpet_enable(void)817 int __init hpet_enable(void)
818 {
819 	u32 hpet_period, cfg, id;
820 	u64 freq;
821 	unsigned int i, last;
822 
823 	if (!is_hpet_capable())
824 		return 0;
825 
826 	hpet_set_mapping();
827 	if (!hpet_virt_address)
828 		return 0;
829 
830 	/*
831 	 * Read the period and check for a sane value:
832 	 */
833 	hpet_period = hpet_readl(HPET_PERIOD);
834 
835 	/*
836 	 * AMD SB700 based systems with spread spectrum enabled use a
837 	 * SMM based HPET emulation to provide proper frequency
838 	 * setting. The SMM code is initialized with the first HPET
839 	 * register access and takes some time to complete. During
840 	 * this time the config register reads 0xffffffff. We check
841 	 * for max. 1000 loops whether the config register reads a non
842 	 * 0xffffffff value to make sure that HPET is up and running
843 	 * before we go further. A counting loop is safe, as the HPET
844 	 * access takes thousands of CPU cycles. On non SB700 based
845 	 * machines this check is only done once and has no side
846 	 * effects.
847 	 */
848 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
849 		if (i == 1000) {
850 			printk(KERN_WARNING
851 			       "HPET config register value = 0xFFFFFFFF. "
852 			       "Disabling HPET\n");
853 			goto out_nohpet;
854 		}
855 	}
856 
857 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
858 		goto out_nohpet;
859 
860 	/*
861 	 * The period is a femto seconds value. Convert it to a
862 	 * frequency.
863 	 */
864 	freq = FSEC_PER_SEC;
865 	do_div(freq, hpet_period);
866 	hpet_freq = freq;
867 
868 	/*
869 	 * Read the HPET ID register to retrieve the IRQ routing
870 	 * information and the number of channels
871 	 */
872 	id = hpet_readl(HPET_ID);
873 	hpet_print_config();
874 
875 	last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
876 
877 #ifdef CONFIG_HPET_EMULATE_RTC
878 	/*
879 	 * The legacy routing mode needs at least two channels, tick timer
880 	 * and the rtc emulation channel.
881 	 */
882 	if (!last)
883 		goto out_nohpet;
884 #endif
885 
886 	cfg = hpet_readl(HPET_CFG);
887 	hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
888 				GFP_KERNEL);
889 	if (hpet_boot_cfg)
890 		*hpet_boot_cfg = cfg;
891 	else
892 		pr_warn("HPET initial state will not be saved\n");
893 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
894 	hpet_writel(cfg, HPET_CFG);
895 	if (cfg)
896 		pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
897 			cfg);
898 
899 	for (i = 0; i <= last; ++i) {
900 		cfg = hpet_readl(HPET_Tn_CFG(i));
901 		if (hpet_boot_cfg)
902 			hpet_boot_cfg[i + 1] = cfg;
903 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
904 		hpet_writel(cfg, HPET_Tn_CFG(i));
905 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
906 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
907 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
908 		if (cfg)
909 			pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
910 				cfg, i);
911 	}
912 	hpet_print_config();
913 
914 	if (hpet_clocksource_register())
915 		goto out_nohpet;
916 
917 	if (id & HPET_ID_LEGSUP) {
918 		hpet_legacy_clockevent_register();
919 		return 1;
920 	}
921 	return 0;
922 
923 out_nohpet:
924 	hpet_clear_mapping();
925 	hpet_address = 0;
926 	return 0;
927 }
928 
929 /*
930  * Needs to be late, as the reserve_timer code calls kalloc !
931  *
932  * Not a problem on i386 as hpet_enable is called from late_time_init,
933  * but on x86_64 it is necessary !
934  */
hpet_late_init(void)935 static __init int hpet_late_init(void)
936 {
937 	int cpu;
938 
939 	if (boot_hpet_disable)
940 		return -ENODEV;
941 
942 	if (!hpet_address) {
943 		if (!force_hpet_address)
944 			return -ENODEV;
945 
946 		hpet_address = force_hpet_address;
947 		hpet_enable();
948 	}
949 
950 	if (!hpet_virt_address)
951 		return -ENODEV;
952 
953 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
954 		hpet_msi_capability_lookup(2);
955 	else
956 		hpet_msi_capability_lookup(0);
957 
958 	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
959 	hpet_print_config();
960 
961 	if (hpet_msi_disable)
962 		return 0;
963 
964 	if (boot_cpu_has(X86_FEATURE_ARAT))
965 		return 0;
966 
967 	cpu_notifier_register_begin();
968 	for_each_online_cpu(cpu) {
969 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
970 	}
971 
972 	/* This notifier should be called after workqueue is ready */
973 	__hotcpu_notifier(hpet_cpuhp_notify, -20);
974 	cpu_notifier_register_done();
975 
976 	return 0;
977 }
978 fs_initcall(hpet_late_init);
979 
hpet_disable(void)980 void hpet_disable(void)
981 {
982 	if (is_hpet_capable() && hpet_virt_address) {
983 		unsigned int cfg = hpet_readl(HPET_CFG), id, last;
984 
985 		if (hpet_boot_cfg)
986 			cfg = *hpet_boot_cfg;
987 		else if (hpet_legacy_int_enabled) {
988 			cfg &= ~HPET_CFG_LEGACY;
989 			hpet_legacy_int_enabled = false;
990 		}
991 		cfg &= ~HPET_CFG_ENABLE;
992 		hpet_writel(cfg, HPET_CFG);
993 
994 		if (!hpet_boot_cfg)
995 			return;
996 
997 		id = hpet_readl(HPET_ID);
998 		last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
999 
1000 		for (id = 0; id <= last; ++id)
1001 			hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1002 
1003 		if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1004 			hpet_writel(*hpet_boot_cfg, HPET_CFG);
1005 	}
1006 }
1007 
1008 #ifdef CONFIG_HPET_EMULATE_RTC
1009 
1010 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1011  * is enabled, we support RTC interrupt functionality in software.
1012  * RTC has 3 kinds of interrupts:
1013  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1014  *    is updated
1015  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1016  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1017  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1018  * (1) and (2) above are implemented using polling at a frequency of
1019  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1020  * overhead. (DEFAULT_RTC_INT_FREQ)
1021  * For (3), we use interrupts at 64Hz or user specified periodic
1022  * frequency, whichever is higher.
1023  */
1024 #include <linux/mc146818rtc.h>
1025 #include <linux/rtc.h>
1026 #include <asm/rtc.h>
1027 
1028 #define DEFAULT_RTC_INT_FREQ	64
1029 #define DEFAULT_RTC_SHIFT	6
1030 #define RTC_NUM_INTS		1
1031 
1032 static unsigned long hpet_rtc_flags;
1033 static int hpet_prev_update_sec;
1034 static struct rtc_time hpet_alarm_time;
1035 static unsigned long hpet_pie_count;
1036 static u32 hpet_t1_cmp;
1037 static u32 hpet_default_delta;
1038 static u32 hpet_pie_delta;
1039 static unsigned long hpet_pie_limit;
1040 
1041 static rtc_irq_handler irq_handler;
1042 
1043 /*
1044  * Check that the hpet counter c1 is ahead of the c2
1045  */
hpet_cnt_ahead(u32 c1,u32 c2)1046 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1047 {
1048 	return (s32)(c2 - c1) < 0;
1049 }
1050 
1051 /*
1052  * Registers a IRQ handler.
1053  */
hpet_register_irq_handler(rtc_irq_handler handler)1054 int hpet_register_irq_handler(rtc_irq_handler handler)
1055 {
1056 	if (!is_hpet_enabled())
1057 		return -ENODEV;
1058 	if (irq_handler)
1059 		return -EBUSY;
1060 
1061 	irq_handler = handler;
1062 
1063 	return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1066 
1067 /*
1068  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1069  * and does cleanup.
1070  */
hpet_unregister_irq_handler(rtc_irq_handler handler)1071 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1072 {
1073 	if (!is_hpet_enabled())
1074 		return;
1075 
1076 	irq_handler = NULL;
1077 	hpet_rtc_flags = 0;
1078 }
1079 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1080 
1081 /*
1082  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1083  * is not supported by all HPET implementations for timer 1.
1084  *
1085  * hpet_rtc_timer_init() is called when the rtc is initialized.
1086  */
hpet_rtc_timer_init(void)1087 int hpet_rtc_timer_init(void)
1088 {
1089 	unsigned int cfg, cnt, delta;
1090 	unsigned long flags;
1091 
1092 	if (!is_hpet_enabled())
1093 		return 0;
1094 
1095 	if (!hpet_default_delta) {
1096 		uint64_t clc;
1097 
1098 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1099 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1100 		hpet_default_delta = clc;
1101 	}
1102 
1103 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1104 		delta = hpet_default_delta;
1105 	else
1106 		delta = hpet_pie_delta;
1107 
1108 	local_irq_save(flags);
1109 
1110 	cnt = delta + hpet_readl(HPET_COUNTER);
1111 	hpet_writel(cnt, HPET_T1_CMP);
1112 	hpet_t1_cmp = cnt;
1113 
1114 	cfg = hpet_readl(HPET_T1_CFG);
1115 	cfg &= ~HPET_TN_PERIODIC;
1116 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1117 	hpet_writel(cfg, HPET_T1_CFG);
1118 
1119 	local_irq_restore(flags);
1120 
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1124 
hpet_disable_rtc_channel(void)1125 static void hpet_disable_rtc_channel(void)
1126 {
1127 	u32 cfg = hpet_readl(HPET_T1_CFG);
1128 	cfg &= ~HPET_TN_ENABLE;
1129 	hpet_writel(cfg, HPET_T1_CFG);
1130 }
1131 
1132 /*
1133  * The functions below are called from rtc driver.
1134  * Return 0 if HPET is not being used.
1135  * Otherwise do the necessary changes and return 1.
1136  */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1137 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1138 {
1139 	if (!is_hpet_enabled())
1140 		return 0;
1141 
1142 	hpet_rtc_flags &= ~bit_mask;
1143 	if (unlikely(!hpet_rtc_flags))
1144 		hpet_disable_rtc_channel();
1145 
1146 	return 1;
1147 }
1148 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1149 
hpet_set_rtc_irq_bit(unsigned long bit_mask)1150 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1151 {
1152 	unsigned long oldbits = hpet_rtc_flags;
1153 
1154 	if (!is_hpet_enabled())
1155 		return 0;
1156 
1157 	hpet_rtc_flags |= bit_mask;
1158 
1159 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1160 		hpet_prev_update_sec = -1;
1161 
1162 	if (!oldbits)
1163 		hpet_rtc_timer_init();
1164 
1165 	return 1;
1166 }
1167 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1168 
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1169 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1170 			unsigned char sec)
1171 {
1172 	if (!is_hpet_enabled())
1173 		return 0;
1174 
1175 	hpet_alarm_time.tm_hour = hrs;
1176 	hpet_alarm_time.tm_min = min;
1177 	hpet_alarm_time.tm_sec = sec;
1178 
1179 	return 1;
1180 }
1181 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1182 
hpet_set_periodic_freq(unsigned long freq)1183 int hpet_set_periodic_freq(unsigned long freq)
1184 {
1185 	uint64_t clc;
1186 
1187 	if (!is_hpet_enabled())
1188 		return 0;
1189 
1190 	if (freq <= DEFAULT_RTC_INT_FREQ)
1191 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1192 	else {
1193 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1194 		do_div(clc, freq);
1195 		clc >>= hpet_clockevent.shift;
1196 		hpet_pie_delta = clc;
1197 		hpet_pie_limit = 0;
1198 	}
1199 	return 1;
1200 }
1201 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1202 
hpet_rtc_dropped_irq(void)1203 int hpet_rtc_dropped_irq(void)
1204 {
1205 	return is_hpet_enabled();
1206 }
1207 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1208 
hpet_rtc_timer_reinit(void)1209 static void hpet_rtc_timer_reinit(void)
1210 {
1211 	unsigned int delta;
1212 	int lost_ints = -1;
1213 
1214 	if (unlikely(!hpet_rtc_flags))
1215 		hpet_disable_rtc_channel();
1216 
1217 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1218 		delta = hpet_default_delta;
1219 	else
1220 		delta = hpet_pie_delta;
1221 
1222 	/*
1223 	 * Increment the comparator value until we are ahead of the
1224 	 * current count.
1225 	 */
1226 	do {
1227 		hpet_t1_cmp += delta;
1228 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1229 		lost_ints++;
1230 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1231 
1232 	if (lost_ints) {
1233 		if (hpet_rtc_flags & RTC_PIE)
1234 			hpet_pie_count += lost_ints;
1235 		if (printk_ratelimit())
1236 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1237 				lost_ints);
1238 	}
1239 }
1240 
hpet_rtc_interrupt(int irq,void * dev_id)1241 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1242 {
1243 	struct rtc_time curr_time;
1244 	unsigned long rtc_int_flag = 0;
1245 
1246 	hpet_rtc_timer_reinit();
1247 	memset(&curr_time, 0, sizeof(struct rtc_time));
1248 
1249 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1250 		get_rtc_time(&curr_time);
1251 
1252 	if (hpet_rtc_flags & RTC_UIE &&
1253 	    curr_time.tm_sec != hpet_prev_update_sec) {
1254 		if (hpet_prev_update_sec >= 0)
1255 			rtc_int_flag = RTC_UF;
1256 		hpet_prev_update_sec = curr_time.tm_sec;
1257 	}
1258 
1259 	if (hpet_rtc_flags & RTC_PIE &&
1260 	    ++hpet_pie_count >= hpet_pie_limit) {
1261 		rtc_int_flag |= RTC_PF;
1262 		hpet_pie_count = 0;
1263 	}
1264 
1265 	if (hpet_rtc_flags & RTC_AIE &&
1266 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1267 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1268 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1269 			rtc_int_flag |= RTC_AF;
1270 
1271 	if (rtc_int_flag) {
1272 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1273 		if (irq_handler)
1274 			irq_handler(rtc_int_flag, dev_id);
1275 	}
1276 	return IRQ_HANDLED;
1277 }
1278 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1279 #endif
1280