1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
20
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
22
23 /* FSEC = 10^-15
24 NSEC = 10^-9 */
25 #define FSEC_PER_NSEC 1000000L
26
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
32
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
36 /*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 bool hpet_msi_disable;
42
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
47
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
55 };
56
EVT_TO_HPET_DEV(struct clock_event_device * evtdev)57 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
58 {
59 return container_of(evtdev, struct hpet_dev, evt);
60 }
61
hpet_readl(unsigned int a)62 inline unsigned int hpet_readl(unsigned int a)
63 {
64 return readl(hpet_virt_address + a);
65 }
66
hpet_writel(unsigned int d,unsigned int a)67 static inline void hpet_writel(unsigned int d, unsigned int a)
68 {
69 writel(d, hpet_virt_address + a);
70 }
71
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
75
hpet_set_mapping(void)76 static inline void hpet_set_mapping(void)
77 {
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79 }
80
hpet_clear_mapping(void)81 static inline void hpet_clear_mapping(void)
82 {
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85 }
86
87 /*
88 * HPET command line enable / disable
89 */
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
93
hpet_setup(char * str)94 static int __init hpet_setup(char *str)
95 {
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
101 if (!strncmp("disable", str, 7))
102 boot_hpet_disable = true;
103 if (!strncmp("force", str, 5))
104 hpet_force_user = true;
105 if (!strncmp("verbose", str, 7))
106 hpet_verbose = true;
107 str = next;
108 }
109 return 1;
110 }
111 __setup("hpet=", hpet_setup);
112
disable_hpet(char * str)113 static int __init disable_hpet(char *str)
114 {
115 boot_hpet_disable = true;
116 return 1;
117 }
118 __setup("nohpet", disable_hpet);
119
is_hpet_capable(void)120 static inline int is_hpet_capable(void)
121 {
122 return !boot_hpet_disable && hpet_address;
123 }
124
125 /*
126 * HPET timer interrupt enable / disable
127 */
128 static bool hpet_legacy_int_enabled;
129
130 /**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
is_hpet_enabled(void)133 int is_hpet_enabled(void)
134 {
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
_hpet_print_config(const char * function,int line)139 static void _hpet_print_config(const char *function, int line)
140 {
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168 }
169
170 #define hpet_print_config() \
171 do { \
172 if (hpet_verbose) \
173 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
175
176 /*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180 #ifdef CONFIG_HPET
181
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
183
hpet_reserve_platform_timers(unsigned int id)184 static void hpet_reserve_platform_timers(unsigned int id)
185 {
186 struct hpet __iomem *hpet = hpet_virt_address;
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
197 hpet_reserve_timer(&hd, 0);
198
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201 #endif
202
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
211 for (i = 2; i < nrtimers; timer++, i++) {
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
214 }
215
216 hpet_reserve_msi_timers(&hd);
217
218 hpet_alloc(&hd);
219
220 }
221 #else
hpet_reserve_platform_timers(unsigned int id)222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
224
225 /*
226 * Common hpet info
227 */
228 static unsigned long hpet_freq;
229
230 static struct clock_event_device hpet_clockevent;
231
hpet_stop_counter(void)232 static void hpet_stop_counter(void)
233 {
234 u32 cfg = hpet_readl(HPET_CFG);
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
237 }
238
hpet_reset_counter(void)239 static void hpet_reset_counter(void)
240 {
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
243 }
244
hpet_start_counter(void)245 static void hpet_start_counter(void)
246 {
247 unsigned int cfg = hpet_readl(HPET_CFG);
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250 }
251
hpet_restart_counter(void)252 static void hpet_restart_counter(void)
253 {
254 hpet_stop_counter();
255 hpet_reset_counter();
256 hpet_start_counter();
257 }
258
hpet_resume_device(void)259 static void hpet_resume_device(void)
260 {
261 force_hpet_resume();
262 }
263
hpet_resume_counter(struct clocksource * cs)264 static void hpet_resume_counter(struct clocksource *cs)
265 {
266 hpet_resume_device();
267 hpet_restart_counter();
268 }
269
hpet_enable_legacy_int(void)270 static void hpet_enable_legacy_int(void)
271 {
272 unsigned int cfg = hpet_readl(HPET_CFG);
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
276 hpet_legacy_int_enabled = true;
277 }
278
hpet_legacy_clockevent_register(void)279 static void hpet_legacy_clockevent_register(void)
280 {
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293 }
294
hpet_set_periodic(struct clock_event_device * evt,int timer)295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
296 {
297 unsigned int cfg, cmp, now;
298 uint64_t delta;
299
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323 }
324
hpet_set_oneshot(struct clock_event_device * evt,int timer)325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326 {
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335 }
336
hpet_shutdown(struct clock_event_device * evt,int timer)337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
338 {
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346 }
347
hpet_resume(struct clock_event_device * evt,int timer)348 static int hpet_resume(struct clock_event_device *evt, int timer)
349 {
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_deactivate_irq(irq_get_irq_data(hdev->irq));
356 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
357 disable_hardirq(hdev->irq);
358 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
359 enable_irq(hdev->irq);
360 }
361 hpet_print_config();
362
363 return 0;
364 }
365
hpet_next_event(unsigned long delta,struct clock_event_device * evt,int timer)366 static int hpet_next_event(unsigned long delta,
367 struct clock_event_device *evt, int timer)
368 {
369 u32 cnt;
370 s32 res;
371
372 cnt = hpet_readl(HPET_COUNTER);
373 cnt += (u32) delta;
374 hpet_writel(cnt, HPET_Tn_CMP(timer));
375
376 /*
377 * HPETs are a complete disaster. The compare register is
378 * based on a equal comparison and neither provides a less
379 * than or equal functionality (which would require to take
380 * the wraparound into account) nor a simple count down event
381 * mode. Further the write to the comparator register is
382 * delayed internally up to two HPET clock cycles in certain
383 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
384 * longer delays. We worked around that by reading back the
385 * compare register, but that required another workaround for
386 * ICH9,10 chips where the first readout after write can
387 * return the old stale value. We already had a minimum
388 * programming delta of 5us enforced, but a NMI or SMI hitting
389 * between the counter readout and the comparator write can
390 * move us behind that point easily. Now instead of reading
391 * the compare register back several times, we make the ETIME
392 * decision based on the following: Return ETIME if the
393 * counter value after the write is less than HPET_MIN_CYCLES
394 * away from the event or if the counter is already ahead of
395 * the event. The minimum programming delta for the generic
396 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
397 */
398 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
399
400 return res < HPET_MIN_CYCLES ? -ETIME : 0;
401 }
402
hpet_legacy_shutdown(struct clock_event_device * evt)403 static int hpet_legacy_shutdown(struct clock_event_device *evt)
404 {
405 return hpet_shutdown(evt, 0);
406 }
407
hpet_legacy_set_oneshot(struct clock_event_device * evt)408 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
409 {
410 return hpet_set_oneshot(evt, 0);
411 }
412
hpet_legacy_set_periodic(struct clock_event_device * evt)413 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
414 {
415 return hpet_set_periodic(evt, 0);
416 }
417
hpet_legacy_resume(struct clock_event_device * evt)418 static int hpet_legacy_resume(struct clock_event_device *evt)
419 {
420 return hpet_resume(evt, 0);
421 }
422
hpet_legacy_next_event(unsigned long delta,struct clock_event_device * evt)423 static int hpet_legacy_next_event(unsigned long delta,
424 struct clock_event_device *evt)
425 {
426 return hpet_next_event(delta, evt, 0);
427 }
428
429 /*
430 * The hpet clock event device
431 */
432 static struct clock_event_device hpet_clockevent = {
433 .name = "hpet",
434 .features = CLOCK_EVT_FEAT_PERIODIC |
435 CLOCK_EVT_FEAT_ONESHOT,
436 .set_state_periodic = hpet_legacy_set_periodic,
437 .set_state_oneshot = hpet_legacy_set_oneshot,
438 .set_state_shutdown = hpet_legacy_shutdown,
439 .tick_resume = hpet_legacy_resume,
440 .set_next_event = hpet_legacy_next_event,
441 .irq = 0,
442 .rating = 50,
443 };
444
445 /*
446 * HPET MSI Support
447 */
448 #ifdef CONFIG_PCI_MSI
449
450 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
451 static struct hpet_dev *hpet_devs;
452 static struct irq_domain *hpet_domain;
453
hpet_msi_unmask(struct irq_data * data)454 void hpet_msi_unmask(struct irq_data *data)
455 {
456 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 unsigned int cfg;
458
459 /* unmask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
463 }
464
hpet_msi_mask(struct irq_data * data)465 void hpet_msi_mask(struct irq_data *data)
466 {
467 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
468 unsigned int cfg;
469
470 /* mask it */
471 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
472 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
473 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
474 }
475
hpet_msi_write(struct hpet_dev * hdev,struct msi_msg * msg)476 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
477 {
478 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
479 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
480 }
481
hpet_msi_read(struct hpet_dev * hdev,struct msi_msg * msg)482 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
483 {
484 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
485 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
486 msg->address_hi = 0;
487 }
488
hpet_msi_shutdown(struct clock_event_device * evt)489 static int hpet_msi_shutdown(struct clock_event_device *evt)
490 {
491 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
492
493 return hpet_shutdown(evt, hdev->num);
494 }
495
hpet_msi_set_oneshot(struct clock_event_device * evt)496 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
497 {
498 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
499
500 return hpet_set_oneshot(evt, hdev->num);
501 }
502
hpet_msi_set_periodic(struct clock_event_device * evt)503 static int hpet_msi_set_periodic(struct clock_event_device *evt)
504 {
505 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
506
507 return hpet_set_periodic(evt, hdev->num);
508 }
509
hpet_msi_resume(struct clock_event_device * evt)510 static int hpet_msi_resume(struct clock_event_device *evt)
511 {
512 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
513
514 return hpet_resume(evt, hdev->num);
515 }
516
hpet_msi_next_event(unsigned long delta,struct clock_event_device * evt)517 static int hpet_msi_next_event(unsigned long delta,
518 struct clock_event_device *evt)
519 {
520 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
521 return hpet_next_event(delta, evt, hdev->num);
522 }
523
hpet_interrupt_handler(int irq,void * data)524 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
525 {
526 struct hpet_dev *dev = (struct hpet_dev *)data;
527 struct clock_event_device *hevt = &dev->evt;
528
529 if (!hevt->event_handler) {
530 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
531 dev->num);
532 return IRQ_HANDLED;
533 }
534
535 hevt->event_handler(hevt);
536 return IRQ_HANDLED;
537 }
538
hpet_setup_irq(struct hpet_dev * dev)539 static int hpet_setup_irq(struct hpet_dev *dev)
540 {
541
542 if (request_irq(dev->irq, hpet_interrupt_handler,
543 IRQF_TIMER | IRQF_NOBALANCING,
544 dev->name, dev))
545 return -1;
546
547 disable_irq(dev->irq);
548 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
549 enable_irq(dev->irq);
550
551 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
552 dev->name, dev->irq);
553
554 return 0;
555 }
556
557 /* This should be called in specific @cpu */
init_one_hpet_msi_clockevent(struct hpet_dev * hdev,int cpu)558 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
559 {
560 struct clock_event_device *evt = &hdev->evt;
561
562 WARN_ON(cpu != smp_processor_id());
563 if (!(hdev->flags & HPET_DEV_VALID))
564 return;
565
566 hdev->cpu = cpu;
567 per_cpu(cpu_hpet_dev, cpu) = hdev;
568 evt->name = hdev->name;
569 hpet_setup_irq(hdev);
570 evt->irq = hdev->irq;
571
572 evt->rating = 110;
573 evt->features = CLOCK_EVT_FEAT_ONESHOT;
574 if (hdev->flags & HPET_DEV_PERI_CAP) {
575 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
576 evt->set_state_periodic = hpet_msi_set_periodic;
577 }
578
579 evt->set_state_shutdown = hpet_msi_shutdown;
580 evt->set_state_oneshot = hpet_msi_set_oneshot;
581 evt->tick_resume = hpet_msi_resume;
582 evt->set_next_event = hpet_msi_next_event;
583 evt->cpumask = cpumask_of(hdev->cpu);
584
585 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
586 0x7FFFFFFF);
587 }
588
589 #ifdef CONFIG_HPET
590 /* Reserve at least one timer for userspace (/dev/hpet) */
591 #define RESERVE_TIMERS 1
592 #else
593 #define RESERVE_TIMERS 0
594 #endif
595
hpet_msi_capability_lookup(unsigned int start_timer)596 static void hpet_msi_capability_lookup(unsigned int start_timer)
597 {
598 unsigned int id;
599 unsigned int num_timers;
600 unsigned int num_timers_used = 0;
601 int i, irq;
602
603 if (hpet_msi_disable)
604 return;
605
606 if (boot_cpu_has(X86_FEATURE_ARAT))
607 return;
608 id = hpet_readl(HPET_ID);
609
610 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
611 num_timers++; /* Value read out starts from 0 */
612 hpet_print_config();
613
614 hpet_domain = hpet_create_irq_domain(hpet_blockid);
615 if (!hpet_domain)
616 return;
617
618 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
619 if (!hpet_devs)
620 return;
621
622 hpet_num_timers = num_timers;
623
624 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
625 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
626 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
627
628 /* Only consider HPET timer with MSI support */
629 if (!(cfg & HPET_TN_FSB_CAP))
630 continue;
631
632 hdev->flags = 0;
633 if (cfg & HPET_TN_PERIODIC_CAP)
634 hdev->flags |= HPET_DEV_PERI_CAP;
635 sprintf(hdev->name, "hpet%d", i);
636 hdev->num = i;
637
638 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
639 if (irq <= 0)
640 continue;
641
642 hdev->irq = irq;
643 hdev->flags |= HPET_DEV_FSB_CAP;
644 hdev->flags |= HPET_DEV_VALID;
645 num_timers_used++;
646 if (num_timers_used == num_possible_cpus())
647 break;
648 }
649
650 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
651 num_timers, num_timers_used);
652 }
653
654 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)655 static void hpet_reserve_msi_timers(struct hpet_data *hd)
656 {
657 int i;
658
659 if (!hpet_devs)
660 return;
661
662 for (i = 0; i < hpet_num_timers; i++) {
663 struct hpet_dev *hdev = &hpet_devs[i];
664
665 if (!(hdev->flags & HPET_DEV_VALID))
666 continue;
667
668 hd->hd_irq[hdev->num] = hdev->irq;
669 hpet_reserve_timer(hd, hdev->num);
670 }
671 }
672 #endif
673
hpet_get_unused_timer(void)674 static struct hpet_dev *hpet_get_unused_timer(void)
675 {
676 int i;
677
678 if (!hpet_devs)
679 return NULL;
680
681 for (i = 0; i < hpet_num_timers; i++) {
682 struct hpet_dev *hdev = &hpet_devs[i];
683
684 if (!(hdev->flags & HPET_DEV_VALID))
685 continue;
686 if (test_and_set_bit(HPET_DEV_USED_BIT,
687 (unsigned long *)&hdev->flags))
688 continue;
689 return hdev;
690 }
691 return NULL;
692 }
693
694 struct hpet_work_struct {
695 struct delayed_work work;
696 struct completion complete;
697 };
698
hpet_work(struct work_struct * w)699 static void hpet_work(struct work_struct *w)
700 {
701 struct hpet_dev *hdev;
702 int cpu = smp_processor_id();
703 struct hpet_work_struct *hpet_work;
704
705 hpet_work = container_of(w, struct hpet_work_struct, work.work);
706
707 hdev = hpet_get_unused_timer();
708 if (hdev)
709 init_one_hpet_msi_clockevent(hdev, cpu);
710
711 complete(&hpet_work->complete);
712 }
713
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)714 static int hpet_cpuhp_notify(struct notifier_block *n,
715 unsigned long action, void *hcpu)
716 {
717 unsigned long cpu = (unsigned long)hcpu;
718 struct hpet_work_struct work;
719 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
720
721 switch (action & 0xf) {
722 case CPU_ONLINE:
723 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
724 init_completion(&work.complete);
725 /* FIXME: add schedule_work_on() */
726 schedule_delayed_work_on(cpu, &work.work, 0);
727 wait_for_completion(&work.complete);
728 destroy_delayed_work_on_stack(&work.work);
729 break;
730 case CPU_DEAD:
731 if (hdev) {
732 free_irq(hdev->irq, hdev);
733 hdev->flags &= ~HPET_DEV_USED;
734 per_cpu(cpu_hpet_dev, cpu) = NULL;
735 }
736 break;
737 }
738 return NOTIFY_OK;
739 }
740 #else
741
hpet_msi_capability_lookup(unsigned int start_timer)742 static void hpet_msi_capability_lookup(unsigned int start_timer)
743 {
744 return;
745 }
746
747 #ifdef CONFIG_HPET
hpet_reserve_msi_timers(struct hpet_data * hd)748 static void hpet_reserve_msi_timers(struct hpet_data *hd)
749 {
750 return;
751 }
752 #endif
753
hpet_cpuhp_notify(struct notifier_block * n,unsigned long action,void * hcpu)754 static int hpet_cpuhp_notify(struct notifier_block *n,
755 unsigned long action, void *hcpu)
756 {
757 return NOTIFY_OK;
758 }
759
760 #endif
761
762 /*
763 * Clock source related code
764 */
read_hpet(struct clocksource * cs)765 static cycle_t read_hpet(struct clocksource *cs)
766 {
767 return (cycle_t)hpet_readl(HPET_COUNTER);
768 }
769
770 static struct clocksource clocksource_hpet = {
771 .name = "hpet",
772 .rating = 250,
773 .read = read_hpet,
774 .mask = HPET_MASK,
775 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
776 .resume = hpet_resume_counter,
777 };
778
hpet_clocksource_register(void)779 static int hpet_clocksource_register(void)
780 {
781 u64 start, now;
782 cycle_t t1;
783
784 /* Start the counter */
785 hpet_restart_counter();
786
787 /* Verify whether hpet counter works */
788 t1 = hpet_readl(HPET_COUNTER);
789 start = rdtsc();
790
791 /*
792 * We don't know the TSC frequency yet, but waiting for
793 * 200000 TSC cycles is safe:
794 * 4 GHz == 50us
795 * 1 GHz == 200us
796 */
797 do {
798 rep_nop();
799 now = rdtsc();
800 } while ((now - start) < 200000UL);
801
802 if (t1 == hpet_readl(HPET_COUNTER)) {
803 printk(KERN_WARNING
804 "HPET counter not counting. HPET disabled\n");
805 return -ENODEV;
806 }
807
808 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
809 return 0;
810 }
811
812 static u32 *hpet_boot_cfg;
813
814 /**
815 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
816 */
hpet_enable(void)817 int __init hpet_enable(void)
818 {
819 u32 hpet_period, cfg, id;
820 u64 freq;
821 unsigned int i, last;
822
823 if (!is_hpet_capable())
824 return 0;
825
826 hpet_set_mapping();
827 if (!hpet_virt_address)
828 return 0;
829
830 /*
831 * Read the period and check for a sane value:
832 */
833 hpet_period = hpet_readl(HPET_PERIOD);
834
835 /*
836 * AMD SB700 based systems with spread spectrum enabled use a
837 * SMM based HPET emulation to provide proper frequency
838 * setting. The SMM code is initialized with the first HPET
839 * register access and takes some time to complete. During
840 * this time the config register reads 0xffffffff. We check
841 * for max. 1000 loops whether the config register reads a non
842 * 0xffffffff value to make sure that HPET is up and running
843 * before we go further. A counting loop is safe, as the HPET
844 * access takes thousands of CPU cycles. On non SB700 based
845 * machines this check is only done once and has no side
846 * effects.
847 */
848 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
849 if (i == 1000) {
850 printk(KERN_WARNING
851 "HPET config register value = 0xFFFFFFFF. "
852 "Disabling HPET\n");
853 goto out_nohpet;
854 }
855 }
856
857 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
858 goto out_nohpet;
859
860 /*
861 * The period is a femto seconds value. Convert it to a
862 * frequency.
863 */
864 freq = FSEC_PER_SEC;
865 do_div(freq, hpet_period);
866 hpet_freq = freq;
867
868 /*
869 * Read the HPET ID register to retrieve the IRQ routing
870 * information and the number of channels
871 */
872 id = hpet_readl(HPET_ID);
873 hpet_print_config();
874
875 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
876
877 #ifdef CONFIG_HPET_EMULATE_RTC
878 /*
879 * The legacy routing mode needs at least two channels, tick timer
880 * and the rtc emulation channel.
881 */
882 if (!last)
883 goto out_nohpet;
884 #endif
885
886 cfg = hpet_readl(HPET_CFG);
887 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
888 GFP_KERNEL);
889 if (hpet_boot_cfg)
890 *hpet_boot_cfg = cfg;
891 else
892 pr_warn("HPET initial state will not be saved\n");
893 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
894 hpet_writel(cfg, HPET_CFG);
895 if (cfg)
896 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
897 cfg);
898
899 for (i = 0; i <= last; ++i) {
900 cfg = hpet_readl(HPET_Tn_CFG(i));
901 if (hpet_boot_cfg)
902 hpet_boot_cfg[i + 1] = cfg;
903 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
904 hpet_writel(cfg, HPET_Tn_CFG(i));
905 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
906 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
907 | HPET_TN_FSB | HPET_TN_FSB_CAP);
908 if (cfg)
909 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
910 cfg, i);
911 }
912 hpet_print_config();
913
914 if (hpet_clocksource_register())
915 goto out_nohpet;
916
917 if (id & HPET_ID_LEGSUP) {
918 hpet_legacy_clockevent_register();
919 return 1;
920 }
921 return 0;
922
923 out_nohpet:
924 hpet_clear_mapping();
925 hpet_address = 0;
926 return 0;
927 }
928
929 /*
930 * Needs to be late, as the reserve_timer code calls kalloc !
931 *
932 * Not a problem on i386 as hpet_enable is called from late_time_init,
933 * but on x86_64 it is necessary !
934 */
hpet_late_init(void)935 static __init int hpet_late_init(void)
936 {
937 int cpu;
938
939 if (boot_hpet_disable)
940 return -ENODEV;
941
942 if (!hpet_address) {
943 if (!force_hpet_address)
944 return -ENODEV;
945
946 hpet_address = force_hpet_address;
947 hpet_enable();
948 }
949
950 if (!hpet_virt_address)
951 return -ENODEV;
952
953 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
954 hpet_msi_capability_lookup(2);
955 else
956 hpet_msi_capability_lookup(0);
957
958 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
959 hpet_print_config();
960
961 if (hpet_msi_disable)
962 return 0;
963
964 if (boot_cpu_has(X86_FEATURE_ARAT))
965 return 0;
966
967 cpu_notifier_register_begin();
968 for_each_online_cpu(cpu) {
969 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
970 }
971
972 /* This notifier should be called after workqueue is ready */
973 __hotcpu_notifier(hpet_cpuhp_notify, -20);
974 cpu_notifier_register_done();
975
976 return 0;
977 }
978 fs_initcall(hpet_late_init);
979
hpet_disable(void)980 void hpet_disable(void)
981 {
982 if (is_hpet_capable() && hpet_virt_address) {
983 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
984
985 if (hpet_boot_cfg)
986 cfg = *hpet_boot_cfg;
987 else if (hpet_legacy_int_enabled) {
988 cfg &= ~HPET_CFG_LEGACY;
989 hpet_legacy_int_enabled = false;
990 }
991 cfg &= ~HPET_CFG_ENABLE;
992 hpet_writel(cfg, HPET_CFG);
993
994 if (!hpet_boot_cfg)
995 return;
996
997 id = hpet_readl(HPET_ID);
998 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
999
1000 for (id = 0; id <= last; ++id)
1001 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1002
1003 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1004 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1005 }
1006 }
1007
1008 #ifdef CONFIG_HPET_EMULATE_RTC
1009
1010 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1011 * is enabled, we support RTC interrupt functionality in software.
1012 * RTC has 3 kinds of interrupts:
1013 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1014 * is updated
1015 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1016 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1017 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1018 * (1) and (2) above are implemented using polling at a frequency of
1019 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1020 * overhead. (DEFAULT_RTC_INT_FREQ)
1021 * For (3), we use interrupts at 64Hz or user specified periodic
1022 * frequency, whichever is higher.
1023 */
1024 #include <linux/mc146818rtc.h>
1025 #include <linux/rtc.h>
1026 #include <asm/rtc.h>
1027
1028 #define DEFAULT_RTC_INT_FREQ 64
1029 #define DEFAULT_RTC_SHIFT 6
1030 #define RTC_NUM_INTS 1
1031
1032 static unsigned long hpet_rtc_flags;
1033 static int hpet_prev_update_sec;
1034 static struct rtc_time hpet_alarm_time;
1035 static unsigned long hpet_pie_count;
1036 static u32 hpet_t1_cmp;
1037 static u32 hpet_default_delta;
1038 static u32 hpet_pie_delta;
1039 static unsigned long hpet_pie_limit;
1040
1041 static rtc_irq_handler irq_handler;
1042
1043 /*
1044 * Check that the hpet counter c1 is ahead of the c2
1045 */
hpet_cnt_ahead(u32 c1,u32 c2)1046 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1047 {
1048 return (s32)(c2 - c1) < 0;
1049 }
1050
1051 /*
1052 * Registers a IRQ handler.
1053 */
hpet_register_irq_handler(rtc_irq_handler handler)1054 int hpet_register_irq_handler(rtc_irq_handler handler)
1055 {
1056 if (!is_hpet_enabled())
1057 return -ENODEV;
1058 if (irq_handler)
1059 return -EBUSY;
1060
1061 irq_handler = handler;
1062
1063 return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1066
1067 /*
1068 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1069 * and does cleanup.
1070 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1071 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1072 {
1073 if (!is_hpet_enabled())
1074 return;
1075
1076 irq_handler = NULL;
1077 hpet_rtc_flags = 0;
1078 }
1079 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1080
1081 /*
1082 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1083 * is not supported by all HPET implementations for timer 1.
1084 *
1085 * hpet_rtc_timer_init() is called when the rtc is initialized.
1086 */
hpet_rtc_timer_init(void)1087 int hpet_rtc_timer_init(void)
1088 {
1089 unsigned int cfg, cnt, delta;
1090 unsigned long flags;
1091
1092 if (!is_hpet_enabled())
1093 return 0;
1094
1095 if (!hpet_default_delta) {
1096 uint64_t clc;
1097
1098 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1099 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1100 hpet_default_delta = clc;
1101 }
1102
1103 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1104 delta = hpet_default_delta;
1105 else
1106 delta = hpet_pie_delta;
1107
1108 local_irq_save(flags);
1109
1110 cnt = delta + hpet_readl(HPET_COUNTER);
1111 hpet_writel(cnt, HPET_T1_CMP);
1112 hpet_t1_cmp = cnt;
1113
1114 cfg = hpet_readl(HPET_T1_CFG);
1115 cfg &= ~HPET_TN_PERIODIC;
1116 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1117 hpet_writel(cfg, HPET_T1_CFG);
1118
1119 local_irq_restore(flags);
1120
1121 return 1;
1122 }
1123 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1124
hpet_disable_rtc_channel(void)1125 static void hpet_disable_rtc_channel(void)
1126 {
1127 u32 cfg = hpet_readl(HPET_T1_CFG);
1128 cfg &= ~HPET_TN_ENABLE;
1129 hpet_writel(cfg, HPET_T1_CFG);
1130 }
1131
1132 /*
1133 * The functions below are called from rtc driver.
1134 * Return 0 if HPET is not being used.
1135 * Otherwise do the necessary changes and return 1.
1136 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1137 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1138 {
1139 if (!is_hpet_enabled())
1140 return 0;
1141
1142 hpet_rtc_flags &= ~bit_mask;
1143 if (unlikely(!hpet_rtc_flags))
1144 hpet_disable_rtc_channel();
1145
1146 return 1;
1147 }
1148 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1149
hpet_set_rtc_irq_bit(unsigned long bit_mask)1150 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1151 {
1152 unsigned long oldbits = hpet_rtc_flags;
1153
1154 if (!is_hpet_enabled())
1155 return 0;
1156
1157 hpet_rtc_flags |= bit_mask;
1158
1159 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1160 hpet_prev_update_sec = -1;
1161
1162 if (!oldbits)
1163 hpet_rtc_timer_init();
1164
1165 return 1;
1166 }
1167 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1168
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1169 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1170 unsigned char sec)
1171 {
1172 if (!is_hpet_enabled())
1173 return 0;
1174
1175 hpet_alarm_time.tm_hour = hrs;
1176 hpet_alarm_time.tm_min = min;
1177 hpet_alarm_time.tm_sec = sec;
1178
1179 return 1;
1180 }
1181 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1182
hpet_set_periodic_freq(unsigned long freq)1183 int hpet_set_periodic_freq(unsigned long freq)
1184 {
1185 uint64_t clc;
1186
1187 if (!is_hpet_enabled())
1188 return 0;
1189
1190 if (freq <= DEFAULT_RTC_INT_FREQ)
1191 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1192 else {
1193 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1194 do_div(clc, freq);
1195 clc >>= hpet_clockevent.shift;
1196 hpet_pie_delta = clc;
1197 hpet_pie_limit = 0;
1198 }
1199 return 1;
1200 }
1201 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1202
hpet_rtc_dropped_irq(void)1203 int hpet_rtc_dropped_irq(void)
1204 {
1205 return is_hpet_enabled();
1206 }
1207 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1208
hpet_rtc_timer_reinit(void)1209 static void hpet_rtc_timer_reinit(void)
1210 {
1211 unsigned int delta;
1212 int lost_ints = -1;
1213
1214 if (unlikely(!hpet_rtc_flags))
1215 hpet_disable_rtc_channel();
1216
1217 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1218 delta = hpet_default_delta;
1219 else
1220 delta = hpet_pie_delta;
1221
1222 /*
1223 * Increment the comparator value until we are ahead of the
1224 * current count.
1225 */
1226 do {
1227 hpet_t1_cmp += delta;
1228 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1229 lost_ints++;
1230 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1231
1232 if (lost_ints) {
1233 if (hpet_rtc_flags & RTC_PIE)
1234 hpet_pie_count += lost_ints;
1235 if (printk_ratelimit())
1236 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1237 lost_ints);
1238 }
1239 }
1240
hpet_rtc_interrupt(int irq,void * dev_id)1241 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1242 {
1243 struct rtc_time curr_time;
1244 unsigned long rtc_int_flag = 0;
1245
1246 hpet_rtc_timer_reinit();
1247 memset(&curr_time, 0, sizeof(struct rtc_time));
1248
1249 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1250 get_rtc_time(&curr_time);
1251
1252 if (hpet_rtc_flags & RTC_UIE &&
1253 curr_time.tm_sec != hpet_prev_update_sec) {
1254 if (hpet_prev_update_sec >= 0)
1255 rtc_int_flag = RTC_UF;
1256 hpet_prev_update_sec = curr_time.tm_sec;
1257 }
1258
1259 if (hpet_rtc_flags & RTC_PIE &&
1260 ++hpet_pie_count >= hpet_pie_limit) {
1261 rtc_int_flag |= RTC_PF;
1262 hpet_pie_count = 0;
1263 }
1264
1265 if (hpet_rtc_flags & RTC_AIE &&
1266 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1267 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1268 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1269 rtc_int_flag |= RTC_AF;
1270
1271 if (rtc_int_flag) {
1272 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1273 if (irq_handler)
1274 irq_handler(rtc_int_flag, dev_id);
1275 }
1276 return IRQ_HANDLED;
1277 }
1278 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1279 #endif
1280