1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 /* Make sure we catch unsupported clockids */
98 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
99
100 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
101 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
102 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
103 [CLOCK_TAI] = HRTIMER_BASE_TAI,
104 };
105
hrtimer_clockid_to_base(clockid_t clock_id)106 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
107 {
108 int base = hrtimer_clock_to_base_table[clock_id];
109 BUG_ON(base == HRTIMER_MAX_CLOCK_BASES);
110 return base;
111 }
112
113 /*
114 * Functions and macros which are different for UP/SMP systems are kept in a
115 * single place
116 */
117 #ifdef CONFIG_SMP
118
119 /*
120 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
121 * such that hrtimer_callback_running() can unconditionally dereference
122 * timer->base->cpu_base
123 */
124 static struct hrtimer_cpu_base migration_cpu_base = {
125 .seq = SEQCNT_ZERO(migration_cpu_base),
126 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
127 };
128
129 #define migration_base migration_cpu_base.clock_base[0]
130
131 /*
132 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
133 * means that all timers which are tied to this base via timer->base are
134 * locked, and the base itself is locked too.
135 *
136 * So __run_timers/migrate_timers can safely modify all timers which could
137 * be found on the lists/queues.
138 *
139 * When the timer's base is locked, and the timer removed from list, it is
140 * possible to set timer->base = &migration_base and drop the lock: the timer
141 * remains locked.
142 */
143 static
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)144 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
145 unsigned long *flags)
146 {
147 struct hrtimer_clock_base *base;
148
149 for (;;) {
150 base = timer->base;
151 if (likely(base != &migration_base)) {
152 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
153 if (likely(base == timer->base))
154 return base;
155 /* The timer has migrated to another CPU: */
156 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
157 }
158 cpu_relax();
159 }
160 }
161
162 /*
163 * With HIGHRES=y we do not migrate the timer when it is expiring
164 * before the next event on the target cpu because we cannot reprogram
165 * the target cpu hardware and we would cause it to fire late.
166 *
167 * Called with cpu_base->lock of target cpu held.
168 */
169 static int
hrtimer_check_target(struct hrtimer * timer,struct hrtimer_clock_base * new_base)170 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
171 {
172 #ifdef CONFIG_HIGH_RES_TIMERS
173 ktime_t expires;
174
175 if (!new_base->cpu_base->hres_active)
176 return 0;
177
178 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
179 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
180 #else
181 return 0;
182 #endif
183 }
184
185 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
186 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)187 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
188 int pinned)
189 {
190 if (pinned || !base->migration_enabled)
191 return base;
192 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
193 }
194 #else
195 static inline
get_target_base(struct hrtimer_cpu_base * base,int pinned)196 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
197 int pinned)
198 {
199 return base;
200 }
201 #endif
202
203 /*
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
214 */
215 static inline struct hrtimer_clock_base *
switch_hrtimer_base(struct hrtimer * timer,struct hrtimer_clock_base * base,int pinned)216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
218 {
219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 struct hrtimer_clock_base *new_base;
221 int basenum = base->index;
222
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 new_base = &new_cpu_base->clock_base[basenum];
227
228 if (base != new_base) {
229 /*
230 * We are trying to move timer to new_base.
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
238 if (unlikely(hrtimer_callback_running(timer)))
239 return base;
240
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
245
246 if (new_cpu_base != this_cpu_base &&
247 hrtimer_check_target(timer, new_base)) {
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
250 new_cpu_base = this_cpu_base;
251 timer->base = base;
252 goto again;
253 }
254 timer->base = new_base;
255 } else {
256 if (new_cpu_base != this_cpu_base &&
257 hrtimer_check_target(timer, new_base)) {
258 new_cpu_base = this_cpu_base;
259 goto again;
260 }
261 }
262 return new_base;
263 }
264
265 #else /* CONFIG_SMP */
266
267 static inline struct hrtimer_clock_base *
lock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 struct hrtimer_clock_base *base = timer->base;
271
272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273
274 return base;
275 }
276
277 # define switch_hrtimer_base(t, b, p) (b)
278
279 #endif /* !CONFIG_SMP */
280
281 /*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285 #if BITS_PER_LONG < 64
286 /*
287 * Divide a ktime value by a nanosecond value
288 */
__ktime_divns(const ktime_t kt,s64 div)289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 int sft = 0;
292 s64 dclc;
293 u64 tmp;
294
295 dclc = ktime_to_ns(kt);
296 tmp = dclc < 0 ? -dclc : dclc;
297
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309
310 /*
311 * Add two ktime values and do a safety check for overflow:
312 */
ktime_add_safe(const ktime_t lhs,const ktime_t rhs)313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 ktime_t res = ktime_add_unsafe(lhs, rhs);
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
321 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325 }
326
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331 static struct debug_obj_descr hrtimer_debug_descr;
332
hrtimer_debug_hint(void * addr)333 static void *hrtimer_debug_hint(void *addr)
334 {
335 return ((struct hrtimer *) addr)->function;
336 }
337
338 /*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
hrtimer_fixup_init(void * addr,enum debug_obj_state state)342 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
350 return 1;
351 default:
352 return 0;
353 }
354 }
355
356 /*
357 * fixup_activate is called when:
358 * - an active object is activated
359 * - an unknown object is activated (might be a statically initialized object)
360 */
hrtimer_fixup_activate(void * addr,enum debug_obj_state state)361 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 switch (state) {
364
365 case ODEBUG_STATE_NOTAVAILABLE:
366 WARN_ON_ONCE(1);
367 return 0;
368
369 case ODEBUG_STATE_ACTIVE:
370 WARN_ON(1);
371
372 default:
373 return 0;
374 }
375 }
376
377 /*
378 * fixup_free is called when:
379 * - an active object is freed
380 */
hrtimer_fixup_free(void * addr,enum debug_obj_state state)381 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
382 {
383 struct hrtimer *timer = addr;
384
385 switch (state) {
386 case ODEBUG_STATE_ACTIVE:
387 hrtimer_cancel(timer);
388 debug_object_free(timer, &hrtimer_debug_descr);
389 return 1;
390 default:
391 return 0;
392 }
393 }
394
395 static struct debug_obj_descr hrtimer_debug_descr = {
396 .name = "hrtimer",
397 .debug_hint = hrtimer_debug_hint,
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
401 };
402
debug_hrtimer_init(struct hrtimer * timer)403 static inline void debug_hrtimer_init(struct hrtimer *timer)
404 {
405 debug_object_init(timer, &hrtimer_debug_descr);
406 }
407
debug_hrtimer_activate(struct hrtimer * timer)408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
409 {
410 debug_object_activate(timer, &hrtimer_debug_descr);
411 }
412
debug_hrtimer_deactivate(struct hrtimer * timer)413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414 {
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 }
417
debug_hrtimer_free(struct hrtimer * timer)418 static inline void debug_hrtimer_free(struct hrtimer *timer)
419 {
420 debug_object_free(timer, &hrtimer_debug_descr);
421 }
422
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
425
hrtimer_init_on_stack(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
428 {
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
431 }
432 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
433
destroy_hrtimer_on_stack(struct hrtimer * timer)434 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 {
436 debug_object_free(timer, &hrtimer_debug_descr);
437 }
438 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
439
440 #else
debug_hrtimer_init(struct hrtimer * timer)441 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
debug_hrtimer_activate(struct hrtimer * timer)442 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
debug_hrtimer_deactivate(struct hrtimer * timer)443 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
444 #endif
445
446 static inline void
debug_init(struct hrtimer * timer,clockid_t clockid,enum hrtimer_mode mode)447 debug_init(struct hrtimer *timer, clockid_t clockid,
448 enum hrtimer_mode mode)
449 {
450 debug_hrtimer_init(timer);
451 trace_hrtimer_init(timer, clockid, mode);
452 }
453
debug_activate(struct hrtimer * timer)454 static inline void debug_activate(struct hrtimer *timer)
455 {
456 debug_hrtimer_activate(timer);
457 trace_hrtimer_start(timer);
458 }
459
debug_deactivate(struct hrtimer * timer)460 static inline void debug_deactivate(struct hrtimer *timer)
461 {
462 debug_hrtimer_deactivate(timer);
463 trace_hrtimer_cancel(timer);
464 }
465
466 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
hrtimer_update_next_timer(struct hrtimer_cpu_base * cpu_base,struct hrtimer * timer)467 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
468 struct hrtimer *timer)
469 {
470 #ifdef CONFIG_HIGH_RES_TIMERS
471 cpu_base->next_timer = timer;
472 #endif
473 }
474
__hrtimer_get_next_event(struct hrtimer_cpu_base * cpu_base)475 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
476 {
477 struct hrtimer_clock_base *base = cpu_base->clock_base;
478 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
479 unsigned int active = cpu_base->active_bases;
480
481 hrtimer_update_next_timer(cpu_base, NULL);
482 for (; active; base++, active >>= 1) {
483 struct timerqueue_node *next;
484 struct hrtimer *timer;
485
486 if (!(active & 0x01))
487 continue;
488
489 next = timerqueue_getnext(&base->active);
490 timer = container_of(next, struct hrtimer, node);
491 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
492 if (expires.tv64 < expires_next.tv64) {
493 expires_next = expires;
494 hrtimer_update_next_timer(cpu_base, timer);
495 }
496 }
497 /*
498 * clock_was_set() might have changed base->offset of any of
499 * the clock bases so the result might be negative. Fix it up
500 * to prevent a false positive in clockevents_program_event().
501 */
502 if (expires_next.tv64 < 0)
503 expires_next.tv64 = 0;
504 return expires_next;
505 }
506 #endif
507
hrtimer_update_base(struct hrtimer_cpu_base * base)508 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
509 {
510 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
511 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
512 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
513
514 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
515 offs_real, offs_boot, offs_tai);
516 }
517
518 /* High resolution timer related functions */
519 #ifdef CONFIG_HIGH_RES_TIMERS
520
521 /*
522 * High resolution timer enabled ?
523 */
524 static int hrtimer_hres_enabled __read_mostly = 1;
525 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
526 EXPORT_SYMBOL_GPL(hrtimer_resolution);
527
528 /*
529 * Enable / Disable high resolution mode
530 */
setup_hrtimer_hres(char * str)531 static int __init setup_hrtimer_hres(char *str)
532 {
533 if (!strcmp(str, "off"))
534 hrtimer_hres_enabled = 0;
535 else if (!strcmp(str, "on"))
536 hrtimer_hres_enabled = 1;
537 else
538 return 0;
539 return 1;
540 }
541
542 __setup("highres=", setup_hrtimer_hres);
543
544 /*
545 * hrtimer_high_res_enabled - query, if the highres mode is enabled
546 */
hrtimer_is_hres_enabled(void)547 static inline int hrtimer_is_hres_enabled(void)
548 {
549 return hrtimer_hres_enabled;
550 }
551
552 /*
553 * Is the high resolution mode active ?
554 */
__hrtimer_hres_active(struct hrtimer_cpu_base * cpu_base)555 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
556 {
557 return cpu_base->hres_active;
558 }
559
hrtimer_hres_active(void)560 static inline int hrtimer_hres_active(void)
561 {
562 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
563 }
564
565 /*
566 * Reprogram the event source with checking both queues for the
567 * next event
568 * Called with interrupts disabled and base->lock held
569 */
570 static void
hrtimer_force_reprogram(struct hrtimer_cpu_base * cpu_base,int skip_equal)571 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
572 {
573 ktime_t expires_next;
574
575 if (!cpu_base->hres_active)
576 return;
577
578 expires_next = __hrtimer_get_next_event(cpu_base);
579
580 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
581 return;
582
583 cpu_base->expires_next.tv64 = expires_next.tv64;
584
585 /*
586 * If a hang was detected in the last timer interrupt then we
587 * leave the hang delay active in the hardware. We want the
588 * system to make progress. That also prevents the following
589 * scenario:
590 * T1 expires 50ms from now
591 * T2 expires 5s from now
592 *
593 * T1 is removed, so this code is called and would reprogram
594 * the hardware to 5s from now. Any hrtimer_start after that
595 * will not reprogram the hardware due to hang_detected being
596 * set. So we'd effectivly block all timers until the T2 event
597 * fires.
598 */
599 if (cpu_base->hang_detected)
600 return;
601
602 tick_program_event(cpu_base->expires_next, 1);
603 }
604
605 /*
606 * When a timer is enqueued and expires earlier than the already enqueued
607 * timers, we have to check, whether it expires earlier than the timer for
608 * which the clock event device was armed.
609 *
610 * Called with interrupts disabled and base->cpu_base.lock held
611 */
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)612 static void hrtimer_reprogram(struct hrtimer *timer,
613 struct hrtimer_clock_base *base)
614 {
615 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
616 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
617
618 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
619
620 /*
621 * If the timer is not on the current cpu, we cannot reprogram
622 * the other cpus clock event device.
623 */
624 if (base->cpu_base != cpu_base)
625 return;
626
627 /*
628 * If the hrtimer interrupt is running, then it will
629 * reevaluate the clock bases and reprogram the clock event
630 * device. The callbacks are always executed in hard interrupt
631 * context so we don't need an extra check for a running
632 * callback.
633 */
634 if (cpu_base->in_hrtirq)
635 return;
636
637 /*
638 * CLOCK_REALTIME timer might be requested with an absolute
639 * expiry time which is less than base->offset. Set it to 0.
640 */
641 if (expires.tv64 < 0)
642 expires.tv64 = 0;
643
644 if (expires.tv64 >= cpu_base->expires_next.tv64)
645 return;
646
647 /* Update the pointer to the next expiring timer */
648 cpu_base->next_timer = timer;
649
650 /*
651 * If a hang was detected in the last timer interrupt then we
652 * do not schedule a timer which is earlier than the expiry
653 * which we enforced in the hang detection. We want the system
654 * to make progress.
655 */
656 if (cpu_base->hang_detected)
657 return;
658
659 /*
660 * Program the timer hardware. We enforce the expiry for
661 * events which are already in the past.
662 */
663 cpu_base->expires_next = expires;
664 tick_program_event(expires, 1);
665 }
666
667 /*
668 * Initialize the high resolution related parts of cpu_base
669 */
hrtimer_init_hres(struct hrtimer_cpu_base * base)670 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
671 {
672 base->expires_next.tv64 = KTIME_MAX;
673 base->hang_detected = 0;
674 base->hres_active = 0;
675 base->next_timer = NULL;
676 }
677
678 /*
679 * Retrigger next event is called after clock was set
680 *
681 * Called with interrupts disabled via on_each_cpu()
682 */
retrigger_next_event(void * arg)683 static void retrigger_next_event(void *arg)
684 {
685 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
686
687 if (!base->hres_active)
688 return;
689
690 raw_spin_lock(&base->lock);
691 hrtimer_update_base(base);
692 hrtimer_force_reprogram(base, 0);
693 raw_spin_unlock(&base->lock);
694 }
695
696 /*
697 * Switch to high resolution mode
698 */
hrtimer_switch_to_hres(void)699 static void hrtimer_switch_to_hres(void)
700 {
701 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
702
703 if (tick_init_highres()) {
704 printk(KERN_WARNING "Could not switch to high resolution "
705 "mode on CPU %d\n", base->cpu);
706 return;
707 }
708 base->hres_active = 1;
709 hrtimer_resolution = HIGH_RES_NSEC;
710
711 tick_setup_sched_timer();
712 /* "Retrigger" the interrupt to get things going */
713 retrigger_next_event(NULL);
714 }
715
clock_was_set_work(struct work_struct * work)716 static void clock_was_set_work(struct work_struct *work)
717 {
718 clock_was_set();
719 }
720
721 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
722
723 /*
724 * Called from timekeeping and resume code to reprogramm the hrtimer
725 * interrupt device on all cpus.
726 */
clock_was_set_delayed(void)727 void clock_was_set_delayed(void)
728 {
729 schedule_work(&hrtimer_work);
730 }
731
732 #else
733
__hrtimer_hres_active(struct hrtimer_cpu_base * b)734 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
hrtimer_hres_active(void)735 static inline int hrtimer_hres_active(void) { return 0; }
hrtimer_is_hres_enabled(void)736 static inline int hrtimer_is_hres_enabled(void) { return 0; }
hrtimer_switch_to_hres(void)737 static inline void hrtimer_switch_to_hres(void) { }
738 static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base * base,int skip_equal)739 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
hrtimer_reprogram(struct hrtimer * timer,struct hrtimer_clock_base * base)740 static inline int hrtimer_reprogram(struct hrtimer *timer,
741 struct hrtimer_clock_base *base)
742 {
743 return 0;
744 }
hrtimer_init_hres(struct hrtimer_cpu_base * base)745 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
retrigger_next_event(void * arg)746 static inline void retrigger_next_event(void *arg) { }
747
748 #endif /* CONFIG_HIGH_RES_TIMERS */
749
750 /*
751 * Clock realtime was set
752 *
753 * Change the offset of the realtime clock vs. the monotonic
754 * clock.
755 *
756 * We might have to reprogram the high resolution timer interrupt. On
757 * SMP we call the architecture specific code to retrigger _all_ high
758 * resolution timer interrupts. On UP we just disable interrupts and
759 * call the high resolution interrupt code.
760 */
clock_was_set(void)761 void clock_was_set(void)
762 {
763 #ifdef CONFIG_HIGH_RES_TIMERS
764 /* Retrigger the CPU local events everywhere */
765 on_each_cpu(retrigger_next_event, NULL, 1);
766 #endif
767 timerfd_clock_was_set();
768 }
769
770 /*
771 * During resume we might have to reprogram the high resolution timer
772 * interrupt on all online CPUs. However, all other CPUs will be
773 * stopped with IRQs interrupts disabled so the clock_was_set() call
774 * must be deferred.
775 */
hrtimers_resume(void)776 void hrtimers_resume(void)
777 {
778 WARN_ONCE(!irqs_disabled(),
779 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
780
781 /* Retrigger on the local CPU */
782 retrigger_next_event(NULL);
783 /* And schedule a retrigger for all others */
784 clock_was_set_delayed();
785 }
786
timer_stats_hrtimer_set_start_info(struct hrtimer * timer)787 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 if (timer->start_site)
791 return;
792 timer->start_site = __builtin_return_address(0);
793 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
794 timer->start_pid = current->pid;
795 #endif
796 }
797
timer_stats_hrtimer_clear_start_info(struct hrtimer * timer)798 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
799 {
800 #ifdef CONFIG_TIMER_STATS
801 timer->start_site = NULL;
802 #endif
803 }
804
timer_stats_account_hrtimer(struct hrtimer * timer)805 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
806 {
807 #ifdef CONFIG_TIMER_STATS
808 if (likely(!timer_stats_active))
809 return;
810 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
811 timer->function, timer->start_comm, 0);
812 #endif
813 }
814
815 /*
816 * Counterpart to lock_hrtimer_base above:
817 */
818 static inline
unlock_hrtimer_base(const struct hrtimer * timer,unsigned long * flags)819 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
820 {
821 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
822 }
823
824 /**
825 * hrtimer_forward - forward the timer expiry
826 * @timer: hrtimer to forward
827 * @now: forward past this time
828 * @interval: the interval to forward
829 *
830 * Forward the timer expiry so it will expire in the future.
831 * Returns the number of overruns.
832 *
833 * Can be safely called from the callback function of @timer. If
834 * called from other contexts @timer must neither be enqueued nor
835 * running the callback and the caller needs to take care of
836 * serialization.
837 *
838 * Note: This only updates the timer expiry value and does not requeue
839 * the timer.
840 */
hrtimer_forward(struct hrtimer * timer,ktime_t now,ktime_t interval)841 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
842 {
843 u64 orun = 1;
844 ktime_t delta;
845
846 delta = ktime_sub(now, hrtimer_get_expires(timer));
847
848 if (delta.tv64 < 0)
849 return 0;
850
851 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
852 return 0;
853
854 if (interval.tv64 < hrtimer_resolution)
855 interval.tv64 = hrtimer_resolution;
856
857 if (unlikely(delta.tv64 >= interval.tv64)) {
858 s64 incr = ktime_to_ns(interval);
859
860 orun = ktime_divns(delta, incr);
861 hrtimer_add_expires_ns(timer, incr * orun);
862 if (hrtimer_get_expires_tv64(timer) > now.tv64)
863 return orun;
864 /*
865 * This (and the ktime_add() below) is the
866 * correction for exact:
867 */
868 orun++;
869 }
870 hrtimer_add_expires(timer, interval);
871
872 return orun;
873 }
874 EXPORT_SYMBOL_GPL(hrtimer_forward);
875
876 /*
877 * enqueue_hrtimer - internal function to (re)start a timer
878 *
879 * The timer is inserted in expiry order. Insertion into the
880 * red black tree is O(log(n)). Must hold the base lock.
881 *
882 * Returns 1 when the new timer is the leftmost timer in the tree.
883 */
enqueue_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base)884 static int enqueue_hrtimer(struct hrtimer *timer,
885 struct hrtimer_clock_base *base)
886 {
887 debug_activate(timer);
888
889 base->cpu_base->active_bases |= 1 << base->index;
890
891 /* Pairs with the lockless read in hrtimer_is_queued() */
892 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
893
894 return timerqueue_add(&base->active, &timer->node);
895 }
896
897 /*
898 * __remove_hrtimer - internal function to remove a timer
899 *
900 * Caller must hold the base lock.
901 *
902 * High resolution timer mode reprograms the clock event device when the
903 * timer is the one which expires next. The caller can disable this by setting
904 * reprogram to zero. This is useful, when the context does a reprogramming
905 * anyway (e.g. timer interrupt)
906 */
__remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,u8 newstate,int reprogram)907 static void __remove_hrtimer(struct hrtimer *timer,
908 struct hrtimer_clock_base *base,
909 u8 newstate, int reprogram)
910 {
911 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
912 u8 state = timer->state;
913
914 /* Pairs with the lockless read in hrtimer_is_queued() */
915 WRITE_ONCE(timer->state, newstate);
916 if (!(state & HRTIMER_STATE_ENQUEUED))
917 return;
918
919 if (!timerqueue_del(&base->active, &timer->node))
920 cpu_base->active_bases &= ~(1 << base->index);
921
922 #ifdef CONFIG_HIGH_RES_TIMERS
923 /*
924 * Note: If reprogram is false we do not update
925 * cpu_base->next_timer. This happens when we remove the first
926 * timer on a remote cpu. No harm as we never dereference
927 * cpu_base->next_timer. So the worst thing what can happen is
928 * an superflous call to hrtimer_force_reprogram() on the
929 * remote cpu later on if the same timer gets enqueued again.
930 */
931 if (reprogram && timer == cpu_base->next_timer)
932 hrtimer_force_reprogram(cpu_base, 1);
933 #endif
934 }
935
936 /*
937 * remove hrtimer, called with base lock held
938 */
939 static inline int
remove_hrtimer(struct hrtimer * timer,struct hrtimer_clock_base * base,bool restart)940 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
941 {
942 u8 state = timer->state;
943
944 if (state & HRTIMER_STATE_ENQUEUED) {
945 int reprogram;
946
947 /*
948 * Remove the timer and force reprogramming when high
949 * resolution mode is active and the timer is on the current
950 * CPU. If we remove a timer on another CPU, reprogramming is
951 * skipped. The interrupt event on this CPU is fired and
952 * reprogramming happens in the interrupt handler. This is a
953 * rare case and less expensive than a smp call.
954 */
955 debug_deactivate(timer);
956 timer_stats_hrtimer_clear_start_info(timer);
957 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
958
959 if (!restart)
960 state = HRTIMER_STATE_INACTIVE;
961
962 __remove_hrtimer(timer, base, state, reprogram);
963 return 1;
964 }
965 return 0;
966 }
967
hrtimer_update_lowres(struct hrtimer * timer,ktime_t tim,const enum hrtimer_mode mode)968 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
969 const enum hrtimer_mode mode)
970 {
971 #ifdef CONFIG_TIME_LOW_RES
972 /*
973 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
974 * granular time values. For relative timers we add hrtimer_resolution
975 * (i.e. one jiffie) to prevent short timeouts.
976 */
977 timer->is_rel = mode & HRTIMER_MODE_REL;
978 if (timer->is_rel)
979 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
980 #endif
981 return tim;
982 }
983
984 /**
985 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
986 * @timer: the timer to be added
987 * @tim: expiry time
988 * @delta_ns: "slack" range for the timer
989 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
990 * relative (HRTIMER_MODE_REL)
991 */
hrtimer_start_range_ns(struct hrtimer * timer,ktime_t tim,u64 delta_ns,const enum hrtimer_mode mode)992 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
993 u64 delta_ns, const enum hrtimer_mode mode)
994 {
995 struct hrtimer_clock_base *base, *new_base;
996 unsigned long flags;
997 int leftmost;
998
999 base = lock_hrtimer_base(timer, &flags);
1000
1001 /* Remove an active timer from the queue: */
1002 remove_hrtimer(timer, base, true);
1003
1004 if (mode & HRTIMER_MODE_REL)
1005 tim = ktime_add_safe(tim, base->get_time());
1006
1007 tim = hrtimer_update_lowres(timer, tim, mode);
1008
1009 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1010
1011 /* Switch the timer base, if necessary: */
1012 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1013
1014 timer_stats_hrtimer_set_start_info(timer);
1015
1016 leftmost = enqueue_hrtimer(timer, new_base);
1017 if (!leftmost)
1018 goto unlock;
1019
1020 if (!hrtimer_is_hres_active(timer)) {
1021 /*
1022 * Kick to reschedule the next tick to handle the new timer
1023 * on dynticks target.
1024 */
1025 if (new_base->cpu_base->nohz_active)
1026 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1027 } else {
1028 hrtimer_reprogram(timer, new_base);
1029 }
1030 unlock:
1031 unlock_hrtimer_base(timer, &flags);
1032 }
1033 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1034
1035 /**
1036 * hrtimer_try_to_cancel - try to deactivate a timer
1037 * @timer: hrtimer to stop
1038 *
1039 * Returns:
1040 * 0 when the timer was not active
1041 * 1 when the timer was active
1042 * -1 when the timer is currently excuting the callback function and
1043 * cannot be stopped
1044 */
hrtimer_try_to_cancel(struct hrtimer * timer)1045 int hrtimer_try_to_cancel(struct hrtimer *timer)
1046 {
1047 struct hrtimer_clock_base *base;
1048 unsigned long flags;
1049 int ret = -1;
1050
1051 /*
1052 * Check lockless first. If the timer is not active (neither
1053 * enqueued nor running the callback, nothing to do here. The
1054 * base lock does not serialize against a concurrent enqueue,
1055 * so we can avoid taking it.
1056 */
1057 if (!hrtimer_active(timer))
1058 return 0;
1059
1060 base = lock_hrtimer_base(timer, &flags);
1061
1062 if (!hrtimer_callback_running(timer))
1063 ret = remove_hrtimer(timer, base, false);
1064
1065 unlock_hrtimer_base(timer, &flags);
1066
1067 return ret;
1068
1069 }
1070 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1071
1072 /**
1073 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1074 * @timer: the timer to be cancelled
1075 *
1076 * Returns:
1077 * 0 when the timer was not active
1078 * 1 when the timer was active
1079 */
hrtimer_cancel(struct hrtimer * timer)1080 int hrtimer_cancel(struct hrtimer *timer)
1081 {
1082 for (;;) {
1083 int ret = hrtimer_try_to_cancel(timer);
1084
1085 if (ret >= 0)
1086 return ret;
1087 cpu_relax();
1088 }
1089 }
1090 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1091
1092 /**
1093 * hrtimer_get_remaining - get remaining time for the timer
1094 * @timer: the timer to read
1095 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1096 */
__hrtimer_get_remaining(const struct hrtimer * timer,bool adjust)1097 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1098 {
1099 unsigned long flags;
1100 ktime_t rem;
1101
1102 lock_hrtimer_base(timer, &flags);
1103 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1104 rem = hrtimer_expires_remaining_adjusted(timer);
1105 else
1106 rem = hrtimer_expires_remaining(timer);
1107 unlock_hrtimer_base(timer, &flags);
1108
1109 return rem;
1110 }
1111 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1112
1113 #ifdef CONFIG_NO_HZ_COMMON
1114 /**
1115 * hrtimer_get_next_event - get the time until next expiry event
1116 *
1117 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1118 */
hrtimer_get_next_event(void)1119 u64 hrtimer_get_next_event(void)
1120 {
1121 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1122 u64 expires = KTIME_MAX;
1123 unsigned long flags;
1124
1125 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1126
1127 if (!__hrtimer_hres_active(cpu_base))
1128 expires = __hrtimer_get_next_event(cpu_base).tv64;
1129
1130 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1131
1132 return expires;
1133 }
1134 #endif
1135
__hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1136 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1137 enum hrtimer_mode mode)
1138 {
1139 struct hrtimer_cpu_base *cpu_base;
1140 int base;
1141
1142 memset(timer, 0, sizeof(struct hrtimer));
1143
1144 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1145
1146 /*
1147 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1148 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1149 * ensure POSIX compliance.
1150 */
1151 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1152 clock_id = CLOCK_MONOTONIC;
1153
1154 base = hrtimer_clockid_to_base(clock_id);
1155 timer->base = &cpu_base->clock_base[base];
1156 timerqueue_init(&timer->node);
1157
1158 #ifdef CONFIG_TIMER_STATS
1159 timer->start_site = NULL;
1160 timer->start_pid = -1;
1161 memset(timer->start_comm, 0, TASK_COMM_LEN);
1162 #endif
1163 }
1164
1165 /**
1166 * hrtimer_init - initialize a timer to the given clock
1167 * @timer: the timer to be initialized
1168 * @clock_id: the clock to be used
1169 * @mode: timer mode abs/rel
1170 */
hrtimer_init(struct hrtimer * timer,clockid_t clock_id,enum hrtimer_mode mode)1171 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1172 enum hrtimer_mode mode)
1173 {
1174 debug_init(timer, clock_id, mode);
1175 __hrtimer_init(timer, clock_id, mode);
1176 }
1177 EXPORT_SYMBOL_GPL(hrtimer_init);
1178
1179 /*
1180 * A timer is active, when it is enqueued into the rbtree or the
1181 * callback function is running or it's in the state of being migrated
1182 * to another cpu.
1183 *
1184 * It is important for this function to not return a false negative.
1185 */
hrtimer_active(const struct hrtimer * timer)1186 bool hrtimer_active(const struct hrtimer *timer)
1187 {
1188 struct hrtimer_cpu_base *cpu_base;
1189 unsigned int seq;
1190
1191 do {
1192 cpu_base = READ_ONCE(timer->base->cpu_base);
1193 seq = raw_read_seqcount_begin(&cpu_base->seq);
1194
1195 if (timer->state != HRTIMER_STATE_INACTIVE ||
1196 cpu_base->running == timer)
1197 return true;
1198
1199 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1200 cpu_base != READ_ONCE(timer->base->cpu_base));
1201
1202 return false;
1203 }
1204 EXPORT_SYMBOL_GPL(hrtimer_active);
1205
1206 /*
1207 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1208 * distinct sections:
1209 *
1210 * - queued: the timer is queued
1211 * - callback: the timer is being ran
1212 * - post: the timer is inactive or (re)queued
1213 *
1214 * On the read side we ensure we observe timer->state and cpu_base->running
1215 * from the same section, if anything changed while we looked at it, we retry.
1216 * This includes timer->base changing because sequence numbers alone are
1217 * insufficient for that.
1218 *
1219 * The sequence numbers are required because otherwise we could still observe
1220 * a false negative if the read side got smeared over multiple consequtive
1221 * __run_hrtimer() invocations.
1222 */
1223
__run_hrtimer(struct hrtimer_cpu_base * cpu_base,struct hrtimer_clock_base * base,struct hrtimer * timer,ktime_t * now)1224 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1225 struct hrtimer_clock_base *base,
1226 struct hrtimer *timer, ktime_t *now)
1227 {
1228 enum hrtimer_restart (*fn)(struct hrtimer *);
1229 int restart;
1230
1231 lockdep_assert_held(&cpu_base->lock);
1232
1233 debug_deactivate(timer);
1234 cpu_base->running = timer;
1235
1236 /*
1237 * Separate the ->running assignment from the ->state assignment.
1238 *
1239 * As with a regular write barrier, this ensures the read side in
1240 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1241 * timer->state == INACTIVE.
1242 */
1243 raw_write_seqcount_barrier(&cpu_base->seq);
1244
1245 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1246 timer_stats_account_hrtimer(timer);
1247 fn = timer->function;
1248
1249 /*
1250 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1251 * timer is restarted with a period then it becomes an absolute
1252 * timer. If its not restarted it does not matter.
1253 */
1254 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1255 timer->is_rel = false;
1256
1257 /*
1258 * Because we run timers from hardirq context, there is no chance
1259 * they get migrated to another cpu, therefore its safe to unlock
1260 * the timer base.
1261 */
1262 raw_spin_unlock(&cpu_base->lock);
1263 trace_hrtimer_expire_entry(timer, now);
1264 restart = fn(timer);
1265 trace_hrtimer_expire_exit(timer);
1266 raw_spin_lock(&cpu_base->lock);
1267
1268 /*
1269 * Note: We clear the running state after enqueue_hrtimer and
1270 * we do not reprogramm the event hardware. Happens either in
1271 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1272 *
1273 * Note: Because we dropped the cpu_base->lock above,
1274 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1275 * for us already.
1276 */
1277 if (restart != HRTIMER_NORESTART &&
1278 !(timer->state & HRTIMER_STATE_ENQUEUED))
1279 enqueue_hrtimer(timer, base);
1280
1281 /*
1282 * Separate the ->running assignment from the ->state assignment.
1283 *
1284 * As with a regular write barrier, this ensures the read side in
1285 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1286 * timer->state == INACTIVE.
1287 */
1288 raw_write_seqcount_barrier(&cpu_base->seq);
1289
1290 WARN_ON_ONCE(cpu_base->running != timer);
1291 cpu_base->running = NULL;
1292 }
1293
__hrtimer_run_queues(struct hrtimer_cpu_base * cpu_base,ktime_t now)1294 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1295 {
1296 struct hrtimer_clock_base *base = cpu_base->clock_base;
1297 unsigned int active = cpu_base->active_bases;
1298
1299 for (; active; base++, active >>= 1) {
1300 struct timerqueue_node *node;
1301 ktime_t basenow;
1302
1303 if (!(active & 0x01))
1304 continue;
1305
1306 basenow = ktime_add(now, base->offset);
1307
1308 while ((node = timerqueue_getnext(&base->active))) {
1309 struct hrtimer *timer;
1310
1311 timer = container_of(node, struct hrtimer, node);
1312
1313 /*
1314 * The immediate goal for using the softexpires is
1315 * minimizing wakeups, not running timers at the
1316 * earliest interrupt after their soft expiration.
1317 * This allows us to avoid using a Priority Search
1318 * Tree, which can answer a stabbing querry for
1319 * overlapping intervals and instead use the simple
1320 * BST we already have.
1321 * We don't add extra wakeups by delaying timers that
1322 * are right-of a not yet expired timer, because that
1323 * timer will have to trigger a wakeup anyway.
1324 */
1325 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1326 break;
1327
1328 __run_hrtimer(cpu_base, base, timer, &basenow);
1329 }
1330 }
1331 }
1332
1333 #ifdef CONFIG_HIGH_RES_TIMERS
1334
1335 /*
1336 * High resolution timer interrupt
1337 * Called with interrupts disabled
1338 */
hrtimer_interrupt(struct clock_event_device * dev)1339 void hrtimer_interrupt(struct clock_event_device *dev)
1340 {
1341 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1342 ktime_t expires_next, now, entry_time, delta;
1343 int retries = 0;
1344
1345 BUG_ON(!cpu_base->hres_active);
1346 cpu_base->nr_events++;
1347 dev->next_event.tv64 = KTIME_MAX;
1348
1349 raw_spin_lock(&cpu_base->lock);
1350 entry_time = now = hrtimer_update_base(cpu_base);
1351 retry:
1352 cpu_base->in_hrtirq = 1;
1353 /*
1354 * We set expires_next to KTIME_MAX here with cpu_base->lock
1355 * held to prevent that a timer is enqueued in our queue via
1356 * the migration code. This does not affect enqueueing of
1357 * timers which run their callback and need to be requeued on
1358 * this CPU.
1359 */
1360 cpu_base->expires_next.tv64 = KTIME_MAX;
1361
1362 __hrtimer_run_queues(cpu_base, now);
1363
1364 /* Reevaluate the clock bases for the next expiry */
1365 expires_next = __hrtimer_get_next_event(cpu_base);
1366 /*
1367 * Store the new expiry value so the migration code can verify
1368 * against it.
1369 */
1370 cpu_base->expires_next = expires_next;
1371 cpu_base->in_hrtirq = 0;
1372 raw_spin_unlock(&cpu_base->lock);
1373
1374 /* Reprogramming necessary ? */
1375 if (!tick_program_event(expires_next, 0)) {
1376 cpu_base->hang_detected = 0;
1377 return;
1378 }
1379
1380 /*
1381 * The next timer was already expired due to:
1382 * - tracing
1383 * - long lasting callbacks
1384 * - being scheduled away when running in a VM
1385 *
1386 * We need to prevent that we loop forever in the hrtimer
1387 * interrupt routine. We give it 3 attempts to avoid
1388 * overreacting on some spurious event.
1389 *
1390 * Acquire base lock for updating the offsets and retrieving
1391 * the current time.
1392 */
1393 raw_spin_lock(&cpu_base->lock);
1394 now = hrtimer_update_base(cpu_base);
1395 cpu_base->nr_retries++;
1396 if (++retries < 3)
1397 goto retry;
1398 /*
1399 * Give the system a chance to do something else than looping
1400 * here. We stored the entry time, so we know exactly how long
1401 * we spent here. We schedule the next event this amount of
1402 * time away.
1403 */
1404 cpu_base->nr_hangs++;
1405 cpu_base->hang_detected = 1;
1406 raw_spin_unlock(&cpu_base->lock);
1407 delta = ktime_sub(now, entry_time);
1408 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1409 cpu_base->max_hang_time = (unsigned int) delta.tv64;
1410 /*
1411 * Limit it to a sensible value as we enforce a longer
1412 * delay. Give the CPU at least 100ms to catch up.
1413 */
1414 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1415 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1416 else
1417 expires_next = ktime_add(now, delta);
1418 tick_program_event(expires_next, 1);
1419 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1420 ktime_to_ns(delta));
1421 }
1422
1423 /*
1424 * local version of hrtimer_peek_ahead_timers() called with interrupts
1425 * disabled.
1426 */
__hrtimer_peek_ahead_timers(void)1427 static inline void __hrtimer_peek_ahead_timers(void)
1428 {
1429 struct tick_device *td;
1430
1431 if (!hrtimer_hres_active())
1432 return;
1433
1434 td = this_cpu_ptr(&tick_cpu_device);
1435 if (td && td->evtdev)
1436 hrtimer_interrupt(td->evtdev);
1437 }
1438
1439 #else /* CONFIG_HIGH_RES_TIMERS */
1440
__hrtimer_peek_ahead_timers(void)1441 static inline void __hrtimer_peek_ahead_timers(void) { }
1442
1443 #endif /* !CONFIG_HIGH_RES_TIMERS */
1444
1445 /*
1446 * Called from run_local_timers in hardirq context every jiffy
1447 */
hrtimer_run_queues(void)1448 void hrtimer_run_queues(void)
1449 {
1450 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1451 ktime_t now;
1452
1453 if (__hrtimer_hres_active(cpu_base))
1454 return;
1455
1456 /*
1457 * This _is_ ugly: We have to check periodically, whether we
1458 * can switch to highres and / or nohz mode. The clocksource
1459 * switch happens with xtime_lock held. Notification from
1460 * there only sets the check bit in the tick_oneshot code,
1461 * otherwise we might deadlock vs. xtime_lock.
1462 */
1463 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1464 hrtimer_switch_to_hres();
1465 return;
1466 }
1467
1468 raw_spin_lock(&cpu_base->lock);
1469 now = hrtimer_update_base(cpu_base);
1470 __hrtimer_run_queues(cpu_base, now);
1471 raw_spin_unlock(&cpu_base->lock);
1472 }
1473
1474 /*
1475 * Sleep related functions:
1476 */
hrtimer_wakeup(struct hrtimer * timer)1477 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1478 {
1479 struct hrtimer_sleeper *t =
1480 container_of(timer, struct hrtimer_sleeper, timer);
1481 struct task_struct *task = t->task;
1482
1483 t->task = NULL;
1484 if (task)
1485 wake_up_process(task);
1486
1487 return HRTIMER_NORESTART;
1488 }
1489
hrtimer_init_sleeper(struct hrtimer_sleeper * sl,struct task_struct * task)1490 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1491 {
1492 sl->timer.function = hrtimer_wakeup;
1493 sl->task = task;
1494 }
1495 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1496
do_nanosleep(struct hrtimer_sleeper * t,enum hrtimer_mode mode)1497 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1498 {
1499 hrtimer_init_sleeper(t, current);
1500
1501 do {
1502 set_current_state(TASK_INTERRUPTIBLE);
1503 hrtimer_start_expires(&t->timer, mode);
1504
1505 if (likely(t->task))
1506 freezable_schedule();
1507
1508 hrtimer_cancel(&t->timer);
1509 mode = HRTIMER_MODE_ABS;
1510
1511 } while (t->task && !signal_pending(current));
1512
1513 __set_current_state(TASK_RUNNING);
1514
1515 return t->task == NULL;
1516 }
1517
update_rmtp(struct hrtimer * timer,struct timespec __user * rmtp)1518 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1519 {
1520 struct timespec rmt;
1521 ktime_t rem;
1522
1523 rem = hrtimer_expires_remaining(timer);
1524 if (rem.tv64 <= 0)
1525 return 0;
1526 rmt = ktime_to_timespec(rem);
1527
1528 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1529 return -EFAULT;
1530
1531 return 1;
1532 }
1533
hrtimer_nanosleep_restart(struct restart_block * restart)1534 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1535 {
1536 struct hrtimer_sleeper t;
1537 struct timespec __user *rmtp;
1538 int ret = 0;
1539
1540 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1541 HRTIMER_MODE_ABS);
1542 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1543
1544 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1545 goto out;
1546
1547 rmtp = restart->nanosleep.rmtp;
1548 if (rmtp) {
1549 ret = update_rmtp(&t.timer, rmtp);
1550 if (ret <= 0)
1551 goto out;
1552 }
1553
1554 /* The other values in restart are already filled in */
1555 ret = -ERESTART_RESTARTBLOCK;
1556 out:
1557 destroy_hrtimer_on_stack(&t.timer);
1558 return ret;
1559 }
1560
hrtimer_nanosleep(struct timespec * rqtp,struct timespec __user * rmtp,const enum hrtimer_mode mode,const clockid_t clockid)1561 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1562 const enum hrtimer_mode mode, const clockid_t clockid)
1563 {
1564 struct restart_block *restart;
1565 struct hrtimer_sleeper t;
1566 int ret = 0;
1567 u64 slack;
1568
1569 slack = current->timer_slack_ns;
1570 if (dl_task(current) || rt_task(current))
1571 slack = 0;
1572
1573 hrtimer_init_on_stack(&t.timer, clockid, mode);
1574 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1575 if (do_nanosleep(&t, mode))
1576 goto out;
1577
1578 /* Absolute timers do not update the rmtp value and restart: */
1579 if (mode == HRTIMER_MODE_ABS) {
1580 ret = -ERESTARTNOHAND;
1581 goto out;
1582 }
1583
1584 if (rmtp) {
1585 ret = update_rmtp(&t.timer, rmtp);
1586 if (ret <= 0)
1587 goto out;
1588 }
1589
1590 restart = ¤t->restart_block;
1591 restart->fn = hrtimer_nanosleep_restart;
1592 restart->nanosleep.clockid = t.timer.base->clockid;
1593 restart->nanosleep.rmtp = rmtp;
1594 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1595
1596 ret = -ERESTART_RESTARTBLOCK;
1597 out:
1598 destroy_hrtimer_on_stack(&t.timer);
1599 return ret;
1600 }
1601
SYSCALL_DEFINE2(nanosleep,struct timespec __user *,rqtp,struct timespec __user *,rmtp)1602 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1603 struct timespec __user *, rmtp)
1604 {
1605 struct timespec tu;
1606
1607 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1608 return -EFAULT;
1609
1610 if (!timespec_valid(&tu))
1611 return -EINVAL;
1612
1613 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1614 }
1615
1616 /*
1617 * Functions related to boot-time initialization:
1618 */
init_hrtimers_cpu(int cpu)1619 static void init_hrtimers_cpu(int cpu)
1620 {
1621 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1622 int i;
1623
1624 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1625 cpu_base->clock_base[i].cpu_base = cpu_base;
1626 timerqueue_init_head(&cpu_base->clock_base[i].active);
1627 }
1628
1629 cpu_base->active_bases = 0;
1630 cpu_base->cpu = cpu;
1631 hrtimer_init_hres(cpu_base);
1632 }
1633
1634 #ifdef CONFIG_HOTPLUG_CPU
1635
migrate_hrtimer_list(struct hrtimer_clock_base * old_base,struct hrtimer_clock_base * new_base)1636 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1637 struct hrtimer_clock_base *new_base)
1638 {
1639 struct hrtimer *timer;
1640 struct timerqueue_node *node;
1641
1642 while ((node = timerqueue_getnext(&old_base->active))) {
1643 timer = container_of(node, struct hrtimer, node);
1644 BUG_ON(hrtimer_callback_running(timer));
1645 debug_deactivate(timer);
1646
1647 /*
1648 * Mark it as ENQUEUED not INACTIVE otherwise the
1649 * timer could be seen as !active and just vanish away
1650 * under us on another CPU
1651 */
1652 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1653 timer->base = new_base;
1654 /*
1655 * Enqueue the timers on the new cpu. This does not
1656 * reprogram the event device in case the timer
1657 * expires before the earliest on this CPU, but we run
1658 * hrtimer_interrupt after we migrated everything to
1659 * sort out already expired timers and reprogram the
1660 * event device.
1661 */
1662 enqueue_hrtimer(timer, new_base);
1663 }
1664 }
1665
migrate_hrtimers(int scpu)1666 static void migrate_hrtimers(int scpu)
1667 {
1668 struct hrtimer_cpu_base *old_base, *new_base;
1669 int i;
1670
1671 BUG_ON(cpu_online(scpu));
1672 tick_cancel_sched_timer(scpu);
1673
1674 local_irq_disable();
1675 old_base = &per_cpu(hrtimer_bases, scpu);
1676 new_base = this_cpu_ptr(&hrtimer_bases);
1677 /*
1678 * The caller is globally serialized and nobody else
1679 * takes two locks at once, deadlock is not possible.
1680 */
1681 raw_spin_lock(&new_base->lock);
1682 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1683
1684 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1685 migrate_hrtimer_list(&old_base->clock_base[i],
1686 &new_base->clock_base[i]);
1687 }
1688
1689 raw_spin_unlock(&old_base->lock);
1690 raw_spin_unlock(&new_base->lock);
1691
1692 /* Check, if we got expired work to do */
1693 __hrtimer_peek_ahead_timers();
1694 local_irq_enable();
1695 }
1696
1697 #endif /* CONFIG_HOTPLUG_CPU */
1698
hrtimer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1699 static int hrtimer_cpu_notify(struct notifier_block *self,
1700 unsigned long action, void *hcpu)
1701 {
1702 int scpu = (long)hcpu;
1703
1704 switch (action) {
1705
1706 case CPU_UP_PREPARE:
1707 case CPU_UP_PREPARE_FROZEN:
1708 init_hrtimers_cpu(scpu);
1709 break;
1710
1711 #ifdef CONFIG_HOTPLUG_CPU
1712 case CPU_DEAD:
1713 case CPU_DEAD_FROZEN:
1714 migrate_hrtimers(scpu);
1715 break;
1716 #endif
1717
1718 default:
1719 break;
1720 }
1721
1722 return NOTIFY_OK;
1723 }
1724
1725 static struct notifier_block hrtimers_nb = {
1726 .notifier_call = hrtimer_cpu_notify,
1727 };
1728
hrtimers_init(void)1729 void __init hrtimers_init(void)
1730 {
1731 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1732 (void *)(long)smp_processor_id());
1733 register_cpu_notifier(&hrtimers_nb);
1734 }
1735
1736 /**
1737 * schedule_hrtimeout_range_clock - sleep until timeout
1738 * @expires: timeout value (ktime_t)
1739 * @delta: slack in expires timeout (ktime_t)
1740 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1741 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1742 */
1743 int __sched
schedule_hrtimeout_range_clock(ktime_t * expires,u64 delta,const enum hrtimer_mode mode,int clock)1744 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1745 const enum hrtimer_mode mode, int clock)
1746 {
1747 struct hrtimer_sleeper t;
1748
1749 /*
1750 * Optimize when a zero timeout value is given. It does not
1751 * matter whether this is an absolute or a relative time.
1752 */
1753 if (expires && !expires->tv64) {
1754 __set_current_state(TASK_RUNNING);
1755 return 0;
1756 }
1757
1758 /*
1759 * A NULL parameter means "infinite"
1760 */
1761 if (!expires) {
1762 schedule();
1763 return -EINTR;
1764 }
1765
1766 hrtimer_init_on_stack(&t.timer, clock, mode);
1767 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1768
1769 hrtimer_init_sleeper(&t, current);
1770
1771 hrtimer_start_expires(&t.timer, mode);
1772
1773 if (likely(t.task))
1774 schedule();
1775
1776 hrtimer_cancel(&t.timer);
1777 destroy_hrtimer_on_stack(&t.timer);
1778
1779 __set_current_state(TASK_RUNNING);
1780
1781 return !t.task ? 0 : -EINTR;
1782 }
1783
1784 /**
1785 * schedule_hrtimeout_range - sleep until timeout
1786 * @expires: timeout value (ktime_t)
1787 * @delta: slack in expires timeout (ktime_t)
1788 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1789 *
1790 * Make the current task sleep until the given expiry time has
1791 * elapsed. The routine will return immediately unless
1792 * the current task state has been set (see set_current_state()).
1793 *
1794 * The @delta argument gives the kernel the freedom to schedule the
1795 * actual wakeup to a time that is both power and performance friendly.
1796 * The kernel give the normal best effort behavior for "@expires+@delta",
1797 * but may decide to fire the timer earlier, but no earlier than @expires.
1798 *
1799 * You can set the task state as follows -
1800 *
1801 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1802 * pass before the routine returns.
1803 *
1804 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1805 * delivered to the current task.
1806 *
1807 * The current task state is guaranteed to be TASK_RUNNING when this
1808 * routine returns.
1809 *
1810 * Returns 0 when the timer has expired otherwise -EINTR
1811 */
schedule_hrtimeout_range(ktime_t * expires,u64 delta,const enum hrtimer_mode mode)1812 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1813 const enum hrtimer_mode mode)
1814 {
1815 return schedule_hrtimeout_range_clock(expires, delta, mode,
1816 CLOCK_MONOTONIC);
1817 }
1818 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1819
1820 /**
1821 * schedule_hrtimeout - sleep until timeout
1822 * @expires: timeout value (ktime_t)
1823 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1824 *
1825 * Make the current task sleep until the given expiry time has
1826 * elapsed. The routine will return immediately unless
1827 * the current task state has been set (see set_current_state()).
1828 *
1829 * You can set the task state as follows -
1830 *
1831 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1832 * pass before the routine returns.
1833 *
1834 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1835 * delivered to the current task.
1836 *
1837 * The current task state is guaranteed to be TASK_RUNNING when this
1838 * routine returns.
1839 *
1840 * Returns 0 when the timer has expired otherwise -EINTR
1841 */
schedule_hrtimeout(ktime_t * expires,const enum hrtimer_mode mode)1842 int __sched schedule_hrtimeout(ktime_t *expires,
1843 const enum hrtimer_mode mode)
1844 {
1845 return schedule_hrtimeout_range(expires, 0, mode);
1846 }
1847 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1848