• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Firmware uploader
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38  *  - Initial implementation
39  *
40  *
41  * THE PROCEDURE
42  *
43  * The 2400m and derived devices work in two modes: boot-mode or
44  * normal mode. In boot mode we can execute only a handful of commands
45  * targeted at uploading the firmware and launching it.
46  *
47  * The 2400m enters boot mode when it is first connected to the
48  * system, when it crashes and when you ask it to reboot. There are
49  * two submodes of the boot mode: signed and non-signed. Signed takes
50  * firmwares signed with a certain private key, non-signed takes any
51  * firmware. Normal hardware takes only signed firmware.
52  *
53  * On boot mode, in USB, we write to the device using the bulk out
54  * endpoint and read from it in the notification endpoint.
55  *
56  * Upon entrance to boot mode, the device sends (preceded with a few
57  * zero length packets (ZLPs) on the notification endpoint in USB) a
58  * reboot barker (4 le32 words with the same value). We ack it by
59  * sending the same barker to the device. The device acks with a
60  * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61  * then is fully booted. At this point we can upload the firmware.
62  *
63  * Note that different iterations of the device and EEPROM
64  * configurations will send different [re]boot barkers; these are
65  * collected in i2400m_barker_db along with the firmware
66  * characteristics they require.
67  *
68  * This process is accomplished by the i2400m_bootrom_init()
69  * function. All the device interaction happens through the
70  * i2400m_bm_cmd() [boot mode command]. Special return values will
71  * indicate if the device did reset during the process.
72  *
73  * After this, we read the MAC address and then (if needed)
74  * reinitialize the device. We need to read it ahead of time because
75  * in the future, we might not upload the firmware until userspace
76  * 'ifconfig up's the device.
77  *
78  * We can then upload the firmware file. The file is composed of a BCF
79  * header (basic data, keys and signatures) and a list of write
80  * commands and payloads. Optionally more BCF headers might follow the
81  * main payload. We first upload the header [i2400m_dnload_init()] and
82  * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83  * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84  * the new firmware [i2400m_dnload_finalize()].
85  *
86  * Once firmware is uploaded, we are good to go :)
87  *
88  * When we don't know in which mode we are, we first try by sending a
89  * warm reset request that will take us to boot-mode. If we time out
90  * waiting for a reboot barker, that means maybe we are already in
91  * boot mode, so we send a reboot barker.
92  *
93  * COMMAND EXECUTION
94  *
95  * This code (and process) is single threaded; for executing commands,
96  * we post a URB to the notification endpoint, post the command, wait
97  * for data on the notification buffer. We don't need to worry about
98  * others as we know we are the only ones in there.
99  *
100  * BACKEND IMPLEMENTATION
101  *
102  * This code is bus-generic; the bus-specific driver provides back end
103  * implementations to send a boot mode command to the device and to
104  * read an acknolwedgement from it (or an asynchronous notification)
105  * from it.
106  *
107  * FIRMWARE LOADING
108  *
109  * Note that in some cases, we can't just load a firmware file (for
110  * example, when resuming). For that, we might cache the firmware
111  * file. Thus, when doing the bootstrap, if there is a cache firmware
112  * file, it is used; if not, loading from disk is attempted.
113  *
114  * ROADMAP
115  *
116  * i2400m_barker_db_init              Called by i2400m_driver_init()
117  *   i2400m_barker_db_add
118  *
119  * i2400m_barker_db_exit              Called by i2400m_driver_exit()
120  *
121  * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
122  *   request_firmware
123  *   i2400m_fw_bootstrap
124  *     i2400m_fw_check
125  *       i2400m_fw_hdr_check
126  *     i2400m_fw_dnload
127  *   release_firmware
128  *
129  * i2400m_fw_dnload
130  *   i2400m_bootrom_init
131  *     i2400m_bm_cmd
132  *     i2400m_reset
133  *   i2400m_dnload_init
134  *     i2400m_dnload_init_signed
135  *     i2400m_dnload_init_nonsigned
136  *       i2400m_download_chunk
137  *         i2400m_bm_cmd
138  *   i2400m_dnload_bcf
139  *     i2400m_bm_cmd
140  *   i2400m_dnload_finalize
141  *     i2400m_bm_cmd
142  *
143  * i2400m_bm_cmd
144  *   i2400m->bus_bm_cmd_send()
145  *   i2400m->bus_bm_wait_for_ack
146  *   __i2400m_bm_ack_verify
147  *     i2400m_is_boot_barker
148  *
149  * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
150  *                                    commands before sending
151  *
152  * i2400m_pm_notifier                 Called on Power Management events
153  *   i2400m_fw_cache
154  *   i2400m_fw_uncache
155  */
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
161 #include "i2400m.h"
162 
163 
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
166 
167 
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 	cpu_to_le32(I2400M_ACK_BARKER),
170 	cpu_to_le32(I2400M_ACK_BARKER),
171 	cpu_to_le32(I2400M_ACK_BARKER),
172 	cpu_to_le32(I2400M_ACK_BARKER)
173 };
174 
175 
176 /**
177  * Prepare a boot-mode command for delivery
178  *
179  * @cmd: pointer to bootrom header to prepare
180  *
181  * Computes checksum if so needed. After calling this function, DO NOT
182  * modify the command or header as the checksum won't work anymore.
183  *
184  * We do it from here because some times we cannot do it in the
185  * original context the command was sent (it is a const), so when we
186  * copy it to our staging buffer, we add the checksum there.
187  */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189 {
190 	if (i2400m_brh_get_use_checksum(cmd)) {
191 		int i;
192 		u32 checksum = 0;
193 		const u32 *checksum_ptr = (void *) cmd->payload;
194 		for (i = 0; i < cmd->data_size / 4; i++)
195 			checksum += cpu_to_le32(*checksum_ptr++);
196 		checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 		cmd->block_checksum = cpu_to_le32(checksum);
198 	}
199 }
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201 
202 
203 /*
204  * Database of known barkers.
205  *
206  * A barker is what the device sends indicating he is ready to be
207  * bootloaded. Different versions of the device will send different
208  * barkers. Depending on the barker, it might mean the device wants
209  * some kind of firmware or the other.
210  */
211 static struct i2400m_barker_db {
212 	__le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215 
216 
217 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 		       gfp_t gfp_flags)
220 {
221 	size_t old_count = *_count,
222 		new_count = old_count ? 2 * old_count : 2,
223 		old_size = el_size * old_count,
224 		new_size = el_size * new_count;
225 	void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 	if (nptr) {
227 		/* zero the other half or the whole thing if old_count
228 		 * was zero */
229 		if (old_size == 0)
230 			memset(nptr, 0, new_size);
231 		else
232 			memset(nptr + old_size, 0, old_size);
233 		*_count = new_count;
234 		*ptr = nptr;
235 		return 0;
236 	} else
237 		return -ENOMEM;
238 }
239 
240 
241 /*
242  * Add a barker to the database
243  *
244  * This cannot used outside of this module and only at at module_init
245  * time. This is to avoid the need to do locking.
246  */
247 static
i2400m_barker_db_add(u32 barker_id)248 int i2400m_barker_db_add(u32 barker_id)
249 {
250 	int result;
251 
252 	struct i2400m_barker_db *barker;
253 	if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 		result = i2400m_zrealloc_2x(
255 			(void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 			sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 		if (result < 0)
258 			return result;
259 	}
260 	barker = i2400m_barker_db + i2400m_barker_db_used++;
261 	barker->data[0] = le32_to_cpu(barker_id);
262 	barker->data[1] = le32_to_cpu(barker_id);
263 	barker->data[2] = le32_to_cpu(barker_id);
264 	barker->data[3] = le32_to_cpu(barker_id);
265 	return 0;
266 }
267 
268 
i2400m_barker_db_exit(void)269 void i2400m_barker_db_exit(void)
270 {
271 	kfree(i2400m_barker_db);
272 	i2400m_barker_db = NULL;
273 	i2400m_barker_db_size = 0;
274 	i2400m_barker_db_used = 0;
275 }
276 
277 
278 /*
279  * Helper function to add all the known stable barkers to the barker
280  * database.
281  */
282 static
i2400m_barker_db_known_barkers(void)283 int i2400m_barker_db_known_barkers(void)
284 {
285 	int result;
286 
287 	result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 	if (result < 0)
289 		goto error_add;
290 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 	if (result < 0)
292 		goto error_add;
293 	result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 	if (result < 0)
295 		goto error_add;
296 error_add:
297        return result;
298 }
299 
300 
301 /*
302  * Initialize the barker database
303  *
304  * This can only be used from the module_init function for this
305  * module; this is to avoid the need to do locking.
306  *
307  * @options: command line argument with extra barkers to
308  *     recognize. This is a comma-separated list of 32-bit hex
309  *     numbers. They are appended to the existing list. Setting 0
310  *     cleans the existing list and starts a new one.
311  */
i2400m_barker_db_init(const char * _options)312 int i2400m_barker_db_init(const char *_options)
313 {
314 	int result;
315 	char *options = NULL, *options_orig, *token;
316 
317 	i2400m_barker_db = NULL;
318 	i2400m_barker_db_size = 0;
319 	i2400m_barker_db_used = 0;
320 
321 	result = i2400m_barker_db_known_barkers();
322 	if (result < 0)
323 		goto error_add;
324 	/* parse command line options from i2400m.barkers */
325 	if (_options != NULL) {
326 		unsigned barker;
327 
328 		options_orig = kstrdup(_options, GFP_KERNEL);
329 		if (options_orig == NULL) {
330 			result = -ENOMEM;
331 			goto error_parse;
332 		}
333 		options = options_orig;
334 
335 		while ((token = strsep(&options, ",")) != NULL) {
336 			if (*token == '\0')	/* eat joint commas */
337 				continue;
338 			if (sscanf(token, "%x", &barker) != 1
339 			    || barker > 0xffffffff) {
340 				printk(KERN_ERR "%s: can't recognize "
341 				       "i2400m.barkers value '%s' as "
342 				       "a 32-bit number\n",
343 				       __func__, token);
344 				result = -EINVAL;
345 				goto error_parse;
346 			}
347 			if (barker == 0) {
348 				/* clean list and start new */
349 				i2400m_barker_db_exit();
350 				continue;
351 			}
352 			result = i2400m_barker_db_add(barker);
353 			if (result < 0)
354 				goto error_parse_add;
355 		}
356 		kfree(options_orig);
357 	}
358 	return 0;
359 
360 error_parse_add:
361 error_parse:
362 	kfree(options_orig);
363 error_add:
364 	kfree(i2400m_barker_db);
365 	return result;
366 }
367 
368 
369 /*
370  * Recognize a boot barker
371  *
372  * @buf: buffer where the boot barker.
373  * @buf_size: size of the buffer (has to be 16 bytes). It is passed
374  *     here so the function can check it for the caller.
375  *
376  * Note that as a side effect, upon identifying the obtained boot
377  * barker, this function will set i2400m->barker to point to the right
378  * barker database entry. Subsequent calls to the function will result
379  * in verifying that the same type of boot barker is returned when the
380  * device [re]boots (as long as the same device instance is used).
381  *
382  * Return: 0 if @buf matches a known boot barker. -ENOENT if the
383  *     buffer in @buf doesn't match any boot barker in the database or
384  *     -EILSEQ if the buffer doesn't have the right size.
385  */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)386 int i2400m_is_boot_barker(struct i2400m *i2400m,
387 			  const void *buf, size_t buf_size)
388 {
389 	int result;
390 	struct device *dev = i2400m_dev(i2400m);
391 	struct i2400m_barker_db *barker;
392 	int i;
393 
394 	result = -ENOENT;
395 	if (buf_size != sizeof(i2400m_barker_db[i].data))
396 		return result;
397 
398 	/* Short circuit if we have already discovered the barker
399 	 * associated with the device. */
400 	if (i2400m->barker
401 	    && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
402 		unsigned index = (i2400m->barker - i2400m_barker_db)
403 			/ sizeof(*i2400m->barker);
404 		d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
405 			 index, le32_to_cpu(i2400m->barker->data[0]));
406 		return 0;
407 	}
408 
409 	for (i = 0; i < i2400m_barker_db_used; i++) {
410 		barker = &i2400m_barker_db[i];
411 		BUILD_BUG_ON(sizeof(barker->data) != 16);
412 		if (memcmp(buf, barker->data, sizeof(barker->data)))
413 			continue;
414 
415 		if (i2400m->barker == NULL) {
416 			i2400m->barker = barker;
417 			d_printf(1, dev, "boot barker set to #%u/%08x\n",
418 				 i, le32_to_cpu(barker->data[0]));
419 			if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
420 				i2400m->sboot = 0;
421 			else
422 				i2400m->sboot = 1;
423 		} else if (i2400m->barker != barker) {
424 			dev_err(dev, "HW inconsistency: device "
425 				"reports a different boot barker "
426 				"than set (from %08x to %08x)\n",
427 				le32_to_cpu(i2400m->barker->data[0]),
428 				le32_to_cpu(barker->data[0]));
429 			result = -EIO;
430 		} else
431 			d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
432 				 i, le32_to_cpu(barker->data[0]));
433 		result = 0;
434 		break;
435 	}
436 	return result;
437 }
438 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
439 
440 
441 /*
442  * Verify the ack data received
443  *
444  * Given a reply to a boot mode command, chew it and verify everything
445  * is ok.
446  *
447  * @opcode: opcode which generated this ack. For error messages.
448  * @ack: pointer to ack data we received
449  * @ack_size: size of that data buffer
450  * @flags: I2400M_BM_CMD_* flags we called the command with.
451  *
452  * Way too long function -- maybe it should be further split
453  */
454 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)455 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
456 			       struct i2400m_bootrom_header *ack,
457 			       size_t ack_size, int flags)
458 {
459 	ssize_t result = -ENOMEM;
460 	struct device *dev = i2400m_dev(i2400m);
461 
462 	d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
463 		  i2400m, opcode, ack, ack_size);
464 	if (ack_size < sizeof(*ack)) {
465 		result = -EIO;
466 		dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
467 			"return enough data (%zu bytes vs %zu expected)\n",
468 			opcode, ack_size, sizeof(*ack));
469 		goto error_ack_short;
470 	}
471 	result = i2400m_is_boot_barker(i2400m, ack, ack_size);
472 	if (result >= 0) {
473 		result = -ERESTARTSYS;
474 		d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
475 		goto error_reboot;
476 	}
477 	if (ack_size == sizeof(i2400m_ACK_BARKER)
478 		 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
479 		result = -EISCONN;
480 		d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
481 			 opcode);
482 		goto error_reboot_ack;
483 	}
484 	result = 0;
485 	if (flags & I2400M_BM_CMD_RAW)
486 		goto out_raw;
487 	ack->data_size = le32_to_cpu(ack->data_size);
488 	ack->target_addr = le32_to_cpu(ack->target_addr);
489 	ack->block_checksum = le32_to_cpu(ack->block_checksum);
490 	d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
491 		 "response %u csum %u rr %u da %u\n",
492 		 opcode, i2400m_brh_get_opcode(ack),
493 		 i2400m_brh_get_response(ack),
494 		 i2400m_brh_get_use_checksum(ack),
495 		 i2400m_brh_get_response_required(ack),
496 		 i2400m_brh_get_direct_access(ack));
497 	result = -EIO;
498 	if (i2400m_brh_get_signature(ack) != 0xcbbc) {
499 		dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
500 			"0x%04x\n", opcode, i2400m_brh_get_signature(ack));
501 		goto error_ack_signature;
502 	}
503 	if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
504 		dev_err(dev, "boot-mode cmd %d: HW BUG? "
505 			"received response for opcode %u, expected %u\n",
506 			opcode, i2400m_brh_get_opcode(ack), opcode);
507 		goto error_ack_opcode;
508 	}
509 	if (i2400m_brh_get_response(ack) != 0) {	/* failed? */
510 		dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
511 			opcode, i2400m_brh_get_response(ack));
512 		goto error_ack_failed;
513 	}
514 	if (ack_size < ack->data_size + sizeof(*ack)) {
515 		dev_err(dev, "boot-mode cmd %d: SW BUG "
516 			"driver provided only %zu bytes for %zu bytes "
517 			"of data\n", opcode, ack_size,
518 			(size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
519 		goto error_ack_short_buffer;
520 	}
521 	result = ack_size;
522 	/* Don't you love this stack of empty targets? Well, I don't
523 	 * either, but it helps track exactly who comes in here and
524 	 * why :) */
525 error_ack_short_buffer:
526 error_ack_failed:
527 error_ack_opcode:
528 error_ack_signature:
529 out_raw:
530 error_reboot_ack:
531 error_reboot:
532 error_ack_short:
533 	d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
534 		i2400m, opcode, ack, ack_size, (int) result);
535 	return result;
536 }
537 
538 
539 /**
540  * i2400m_bm_cmd - Execute a boot mode command
541  *
542  * @cmd: buffer containing the command data (pointing at the header).
543  *     This data can be ANYWHERE (for USB, we will copy it to an
544  *     specific buffer). Make sure everything is in proper little
545  *     endian.
546  *
547  *     A raw buffer can be also sent, just cast it and set flags to
548  *     I2400M_BM_CMD_RAW.
549  *
550  *     This function will generate a checksum for you if the
551  *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
552  *     is set).
553  *
554  *     You can use the i2400m->bm_cmd_buf to stage your commands and
555  *     send them.
556  *
557  *     If NULL, no command is sent (we just wait for an ack).
558  *
559  * @cmd_size: size of the command. Will be auto padded to the
560  *     bus-specific drivers padding requirements.
561  *
562  * @ack: buffer where to place the acknowledgement. If it is a regular
563  *     command response, all fields will be returned with the right,
564  *     native endianess.
565  *
566  *     You *cannot* use i2400m->bm_ack_buf for this buffer.
567  *
568  * @ack_size: size of @ack, 16 aligned; you need to provide at least
569  *     sizeof(*ack) bytes and then enough to contain the return data
570  *     from the command
571  *
572  * @flags: see I2400M_BM_CMD_* above.
573  *
574  * @returns: bytes received by the notification; if < 0, an errno code
575  *     denoting an error or:
576  *
577  *     -ERESTARTSYS  The device has rebooted
578  *
579  * Executes a boot-mode command and waits for a response, doing basic
580  * validation on it; if a zero length response is received, it retries
581  * waiting for a response until a non-zero one is received (timing out
582  * after %I2400M_BOOT_RETRIES retries).
583  */
584 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)585 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
586 		      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
587 		      struct i2400m_bootrom_header *ack, size_t ack_size,
588 		      int flags)
589 {
590 	ssize_t result = -ENOMEM, rx_bytes;
591 	struct device *dev = i2400m_dev(i2400m);
592 	int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
593 
594 	d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
595 		  i2400m, cmd, cmd_size, ack, ack_size);
596 	BUG_ON(ack_size < sizeof(*ack));
597 	BUG_ON(i2400m->boot_mode == 0);
598 
599 	if (cmd != NULL) {		/* send the command */
600 		result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
601 		if (result < 0)
602 			goto error_cmd_send;
603 		if ((flags & I2400M_BM_CMD_RAW) == 0)
604 			d_printf(5, dev,
605 				 "boot-mode cmd %d csum %u rr %u da %u: "
606 				 "addr 0x%04x size %u block csum 0x%04x\n",
607 				 opcode, i2400m_brh_get_use_checksum(cmd),
608 				 i2400m_brh_get_response_required(cmd),
609 				 i2400m_brh_get_direct_access(cmd),
610 				 cmd->target_addr, cmd->data_size,
611 				 cmd->block_checksum);
612 	}
613 	result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
614 	if (result < 0) {
615 		dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
616 			opcode, (int) result);	/* bah, %zd doesn't work */
617 		goto error_wait_for_ack;
618 	}
619 	rx_bytes = result;
620 	/* verify the ack and read more if necessary [result is the
621 	 * final amount of bytes we get in the ack]  */
622 	result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
623 	if (result < 0)
624 		goto error_bad_ack;
625 	/* Don't you love this stack of empty targets? Well, I don't
626 	 * either, but it helps track exactly who comes in here and
627 	 * why :) */
628 	result = rx_bytes;
629 error_bad_ack:
630 error_wait_for_ack:
631 error_cmd_send:
632 	d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
633 		i2400m, cmd, cmd_size, ack, ack_size, (int) result);
634 	return result;
635 }
636 
637 
638 /**
639  * i2400m_download_chunk - write a single chunk of data to the device's memory
640  *
641  * @i2400m: device descriptor
642  * @buf: the buffer to write
643  * @buf_len: length of the buffer to write
644  * @addr: address in the device memory space
645  * @direct: bootrom write mode
646  * @do_csum: should a checksum validation be performed
647  */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)648 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
649 				 size_t __chunk_len, unsigned long addr,
650 				 unsigned int direct, unsigned int do_csum)
651 {
652 	int ret;
653 	size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
654 	struct device *dev = i2400m_dev(i2400m);
655 	struct {
656 		struct i2400m_bootrom_header cmd;
657 		u8 cmd_payload[chunk_len];
658 	} __packed *buf;
659 	struct i2400m_bootrom_header ack;
660 
661 	d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
662 		  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
663 		  addr, direct, do_csum);
664 	buf = i2400m->bm_cmd_buf;
665 	memcpy(buf->cmd_payload, chunk, __chunk_len);
666 	memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
667 
668 	buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
669 					      __chunk_len & 0x3 ? 0 : do_csum,
670 					      __chunk_len & 0xf ? 0 : direct);
671 	buf->cmd.target_addr = cpu_to_le32(addr);
672 	buf->cmd.data_size = cpu_to_le32(__chunk_len);
673 	ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
674 			    &ack, sizeof(ack), 0);
675 	if (ret >= 0)
676 		ret = 0;
677 	d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
678 		"direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
679 		addr, direct, do_csum, ret);
680 	return ret;
681 }
682 
683 
684 /*
685  * Download a BCF file's sections to the device
686  *
687  * @i2400m: device descriptor
688  * @bcf: pointer to firmware data (first header followed by the
689  *     payloads). Assumed verified and consistent.
690  * @bcf_len: length (in bytes) of the @bcf buffer.
691  *
692  * Returns: < 0 errno code on error or the offset to the jump instruction.
693  *
694  * Given a BCF file, downloads each section (a command and a payload)
695  * to the device's address space. Actually, it just executes each
696  * command i the BCF file.
697  *
698  * The section size has to be aligned to 4 bytes AND the padding has
699  * to be taken from the firmware file, as the signature takes it into
700  * account.
701  */
702 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)703 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
704 			  const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
705 {
706 	ssize_t ret;
707 	struct device *dev = i2400m_dev(i2400m);
708 	size_t offset,		/* iterator offset */
709 		data_size,	/* Size of the data payload */
710 		section_size,	/* Size of the whole section (cmd + payload) */
711 		section = 1;
712 	const struct i2400m_bootrom_header *bh;
713 	struct i2400m_bootrom_header ack;
714 
715 	d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
716 		  i2400m, bcf, bcf_len);
717 	/* Iterate over the command blocks in the BCF file that start
718 	 * after the header */
719 	offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
720 	while (1) {	/* start sending the file */
721 		bh = (void *) bcf + offset;
722 		data_size = le32_to_cpu(bh->data_size);
723 		section_size = ALIGN(sizeof(*bh) + data_size, 4);
724 		d_printf(7, dev,
725 			 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
726 			 section, offset, sizeof(*bh) + data_size,
727 			 le32_to_cpu(bh->target_addr));
728 		/*
729 		 * We look for JUMP cmd from the bootmode header,
730 		 * either I2400M_BRH_SIGNED_JUMP for secure boot
731 		 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
732 		 * should be the bootmode header with JUMP cmd.
733 		 */
734 		if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
735 			i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
736 			d_printf(5, dev,  "jump found @%zu\n", offset);
737 			break;
738 		}
739 		if (offset + section_size > bcf_len) {
740 			dev_err(dev, "fw %s: bad section #%zu, "
741 				"end (@%zu) beyond EOF (@%zu)\n",
742 				i2400m->fw_name, section,
743 				offset + section_size,  bcf_len);
744 			ret = -EINVAL;
745 			goto error_section_beyond_eof;
746 		}
747 		__i2400m_msleep(20);
748 		ret = i2400m_bm_cmd(i2400m, bh, section_size,
749 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
750 		if (ret < 0) {
751 			dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
752 				"failed %d\n", i2400m->fw_name, section,
753 				offset, sizeof(*bh) + data_size, (int) ret);
754 			goto error_send;
755 		}
756 		offset += section_size;
757 		section++;
758 	}
759 	ret = offset;
760 error_section_beyond_eof:
761 error_send:
762 	d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
763 		i2400m, bcf, bcf_len, (int) ret);
764 	return ret;
765 }
766 
767 
768 /*
769  * Indicate if the device emitted a reboot barker that indicates
770  * "signed boot"
771  */
772 static
i2400m_boot_is_signed(struct i2400m * i2400m)773 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
774 {
775 	return likely(i2400m->sboot);
776 }
777 
778 
779 /*
780  * Do the final steps of uploading firmware
781  *
782  * @bcf_hdr: BCF header we are actually using
783  * @bcf: pointer to the firmware image (which matches the first header
784  *     that is followed by the actual payloads).
785  * @offset: [byte] offset into @bcf for the command we need to send.
786  *
787  * Depending on the boot mode (signed vs non-signed), different
788  * actions need to be taken.
789  */
790 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)791 int i2400m_dnload_finalize(struct i2400m *i2400m,
792 			   const struct i2400m_bcf_hdr *bcf_hdr,
793 			   const struct i2400m_bcf_hdr *bcf, size_t offset)
794 {
795 	int ret = 0;
796 	struct device *dev = i2400m_dev(i2400m);
797 	struct i2400m_bootrom_header *cmd, ack;
798 	struct {
799 		struct i2400m_bootrom_header cmd;
800 		u8 cmd_pl[0];
801 	} __packed *cmd_buf;
802 	size_t signature_block_offset, signature_block_size;
803 
804 	d_fnstart(3, dev, "offset %zu\n", offset);
805 	cmd = (void *) bcf + offset;
806 	if (i2400m_boot_is_signed(i2400m) == 0) {
807 		struct i2400m_bootrom_header jump_ack;
808 		d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
809 			le32_to_cpu(cmd->target_addr));
810 		cmd_buf = i2400m->bm_cmd_buf;
811 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
812 		cmd = &cmd_buf->cmd;
813 		/* now cmd points to the actual bootrom_header in cmd_buf */
814 		i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
815 		cmd->data_size = 0;
816 		ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
817 				    &jump_ack, sizeof(jump_ack), 0);
818 	} else {
819 		d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
820 			 le32_to_cpu(cmd->target_addr));
821 		cmd_buf = i2400m->bm_cmd_buf;
822 		memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
823 		signature_block_offset =
824 			sizeof(*bcf_hdr)
825 			+ le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
826 			+ le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
827 		signature_block_size =
828 			le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
829 		memcpy(cmd_buf->cmd_pl,
830 		       (void *) bcf_hdr + signature_block_offset,
831 		       signature_block_size);
832 		ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
833 				    sizeof(cmd_buf->cmd) + signature_block_size,
834 				    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
835 	}
836 	d_fnend(3, dev, "returning %d\n", ret);
837 	return ret;
838 }
839 
840 
841 /**
842  * i2400m_bootrom_init - Reboots a powered device into boot mode
843  *
844  * @i2400m: device descriptor
845  * @flags:
846  *      I2400M_BRI_SOFT: a reboot barker has been seen
847  *          already, so don't wait for it.
848  *
849  *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
850  *          for a reboot barker notification. This is a one shot; if
851  *          the state machine needs to send a reboot command it will.
852  *
853  * Returns:
854  *
855  *     < 0 errno code on error, 0 if ok.
856  *
857  * Description:
858  *
859  * Tries hard enough to put the device in boot-mode. There are two
860  * main phases to this:
861  *
862  * a. (1) send a reboot command and (2) get a reboot barker
863  *
864  * b. (1) echo/ack the reboot sending the reboot barker back and (2)
865  *        getting an ack barker in return
866  *
867  * We want to skip (a) in some cases [soft]. The state machine is
868  * horrible, but it is basically: on each phase, send what has to be
869  * sent (if any), wait for the answer and act on the answer. We might
870  * have to backtrack and retry, so we keep a max tries counter for
871  * that.
872  *
873  * It sucks because we don't know ahead of time which is going to be
874  * the reboot barker (the device might send different ones depending
875  * on its EEPROM config) and once the device reboots and waits for the
876  * echo/ack reboot barker being sent back, it doesn't understand
877  * anything else. So we can be left at the point where we don't know
878  * what to send to it -- cold reset and bus reset seem to have little
879  * effect. So the function iterates (in this case) through all the
880  * known barkers and tries them all until an ACK is
881  * received. Otherwise, it gives up.
882  *
883  * If we get a timeout after sending a warm reset, we do it again.
884  */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)885 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
886 {
887 	int result;
888 	struct device *dev = i2400m_dev(i2400m);
889 	struct i2400m_bootrom_header *cmd;
890 	struct i2400m_bootrom_header ack;
891 	int count = i2400m->bus_bm_retries;
892 	int ack_timeout_cnt = 1;
893 	unsigned i;
894 
895 	BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
896 	BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
897 
898 	d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
899 	result = -ENOMEM;
900 	cmd = i2400m->bm_cmd_buf;
901 	if (flags & I2400M_BRI_SOFT)
902 		goto do_reboot_ack;
903 do_reboot:
904 	ack_timeout_cnt = 1;
905 	if (--count < 0)
906 		goto error_timeout;
907 	d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
908 		 count);
909 	if ((flags & I2400M_BRI_NO_REBOOT) == 0)
910 		i2400m_reset(i2400m, I2400M_RT_WARM);
911 	result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
912 			       I2400M_BM_CMD_RAW);
913 	flags &= ~I2400M_BRI_NO_REBOOT;
914 	switch (result) {
915 	case -ERESTARTSYS:
916 		/*
917 		 * at this point, i2400m_bm_cmd(), through
918 		 * __i2400m_bm_ack_process(), has updated
919 		 * i2400m->barker and we are good to go.
920 		 */
921 		d_printf(4, dev, "device reboot: got reboot barker\n");
922 		break;
923 	case -EISCONN:	/* we don't know how it got here...but we follow it */
924 		d_printf(4, dev, "device reboot: got ack barker - whatever\n");
925 		goto do_reboot;
926 	case -ETIMEDOUT:
927 		/*
928 		 * Device has timed out, we might be in boot mode
929 		 * already and expecting an ack; if we don't know what
930 		 * the barker is, we just send them all. Cold reset
931 		 * and bus reset don't work. Beats me.
932 		 */
933 		if (i2400m->barker != NULL) {
934 			dev_err(dev, "device boot: reboot barker timed out, "
935 				"trying (set) %08x echo/ack\n",
936 				le32_to_cpu(i2400m->barker->data[0]));
937 			goto do_reboot_ack;
938 		}
939 		for (i = 0; i < i2400m_barker_db_used; i++) {
940 			struct i2400m_barker_db *barker = &i2400m_barker_db[i];
941 			memcpy(cmd, barker->data, sizeof(barker->data));
942 			result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
943 					       &ack, sizeof(ack),
944 					       I2400M_BM_CMD_RAW);
945 			if (result == -EISCONN) {
946 				dev_warn(dev, "device boot: got ack barker "
947 					 "after sending echo/ack barker "
948 					 "#%d/%08x; rebooting j.i.c.\n",
949 					 i, le32_to_cpu(barker->data[0]));
950 				flags &= ~I2400M_BRI_NO_REBOOT;
951 				goto do_reboot;
952 			}
953 		}
954 		dev_err(dev, "device boot: tried all the echo/acks, could "
955 			"not get device to respond; giving up");
956 		result = -ESHUTDOWN;
957 	case -EPROTO:
958 	case -ESHUTDOWN:	/* dev is gone */
959 	case -EINTR:		/* user cancelled */
960 		goto error_dev_gone;
961 	default:
962 		dev_err(dev, "device reboot: error %d while waiting "
963 			"for reboot barker - rebooting\n", result);
964 		d_dump(1, dev, &ack, result);
965 		goto do_reboot;
966 	}
967 	/* At this point we ack back with 4 REBOOT barkers and expect
968 	 * 4 ACK barkers. This is ugly, as we send a raw command --
969 	 * hence the cast. _bm_cmd() will catch the reboot ack
970 	 * notification and report it as -EISCONN. */
971 do_reboot_ack:
972 	d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
973 	memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
974 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
975 			       &ack, sizeof(ack), I2400M_BM_CMD_RAW);
976 	switch (result) {
977 	case -ERESTARTSYS:
978 		d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
979 		if (--count < 0)
980 			goto error_timeout;
981 		goto do_reboot_ack;
982 	case -EISCONN:
983 		d_printf(4, dev, "reboot ack: got ack barker - good\n");
984 		break;
985 	case -ETIMEDOUT:	/* no response, maybe it is the other type? */
986 		if (ack_timeout_cnt-- < 0) {
987 			d_printf(4, dev, "reboot ack timedout: retrying\n");
988 			goto do_reboot_ack;
989 		} else {
990 			dev_err(dev, "reboot ack timedout too long: "
991 				"trying reboot\n");
992 			goto do_reboot;
993 		}
994 		break;
995 	case -EPROTO:
996 	case -ESHUTDOWN:	/* dev is gone */
997 		goto error_dev_gone;
998 	default:
999 		dev_err(dev, "device reboot ack: error %d while waiting for "
1000 			"reboot ack barker - rebooting\n", result);
1001 		goto do_reboot;
1002 	}
1003 	d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1004 	result = 0;
1005 exit_timeout:
1006 error_dev_gone:
1007 	d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1008 		i2400m, flags, result);
1009 	return result;
1010 
1011 error_timeout:
1012 	dev_err(dev, "Timed out waiting for reboot ack\n");
1013 	result = -ETIMEDOUT;
1014 	goto exit_timeout;
1015 }
1016 
1017 
1018 /*
1019  * Read the MAC addr
1020  *
1021  * The position this function reads is fixed in device memory and
1022  * always available, even without firmware.
1023  *
1024  * Note we specify we want to read only six bytes, but provide space
1025  * for 16, as we always get it rounded up.
1026  */
i2400m_read_mac_addr(struct i2400m * i2400m)1027 int i2400m_read_mac_addr(struct i2400m *i2400m)
1028 {
1029 	int result;
1030 	struct device *dev = i2400m_dev(i2400m);
1031 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1032 	struct i2400m_bootrom_header *cmd;
1033 	struct {
1034 		struct i2400m_bootrom_header ack;
1035 		u8 ack_pl[16];
1036 	} __packed ack_buf;
1037 
1038 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1039 	cmd = i2400m->bm_cmd_buf;
1040 	cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1041 	cmd->target_addr = cpu_to_le32(0x00203fe8);
1042 	cmd->data_size = cpu_to_le32(6);
1043 	result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1044 			       &ack_buf.ack, sizeof(ack_buf), 0);
1045 	if (result < 0) {
1046 		dev_err(dev, "BM: read mac addr failed: %d\n", result);
1047 		goto error_read_mac;
1048 	}
1049 	d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1050 	if (i2400m->bus_bm_mac_addr_impaired == 1) {
1051 		ack_buf.ack_pl[0] = 0x00;
1052 		ack_buf.ack_pl[1] = 0x16;
1053 		ack_buf.ack_pl[2] = 0xd3;
1054 		get_random_bytes(&ack_buf.ack_pl[3], 3);
1055 		dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1056 			"mac addr is %pM\n", ack_buf.ack_pl);
1057 		result = 0;
1058 	}
1059 	net_dev->addr_len = ETH_ALEN;
1060 	memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1061 error_read_mac:
1062 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1063 	return result;
1064 }
1065 
1066 
1067 /*
1068  * Initialize a non signed boot
1069  *
1070  * This implies sending some magic values to the device's memory. Note
1071  * we convert the values to little endian in the same array
1072  * declaration.
1073  */
1074 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1075 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1076 {
1077 	unsigned i = 0;
1078 	int ret = 0;
1079 	struct device *dev = i2400m_dev(i2400m);
1080 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1081 	if (i2400m->bus_bm_pokes_table) {
1082 		while (i2400m->bus_bm_pokes_table[i].address) {
1083 			ret = i2400m_download_chunk(
1084 				i2400m,
1085 				&i2400m->bus_bm_pokes_table[i].data,
1086 				sizeof(i2400m->bus_bm_pokes_table[i].data),
1087 				i2400m->bus_bm_pokes_table[i].address, 1, 1);
1088 			if (ret < 0)
1089 				break;
1090 			i++;
1091 		}
1092 	}
1093 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1094 	return ret;
1095 }
1096 
1097 
1098 /*
1099  * Initialize the signed boot process
1100  *
1101  * @i2400m: device descriptor
1102  *
1103  * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1104  *     memory (it has gone through basic validation).
1105  *
1106  * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1107  *     rebooted.
1108  *
1109  * This writes the firmware BCF header to the device using the
1110  * HASH_PAYLOAD_ONLY command.
1111  */
1112 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1113 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1114 			      const struct i2400m_bcf_hdr *bcf_hdr)
1115 {
1116 	int ret;
1117 	struct device *dev = i2400m_dev(i2400m);
1118 	struct {
1119 		struct i2400m_bootrom_header cmd;
1120 		struct i2400m_bcf_hdr cmd_pl;
1121 	} __packed *cmd_buf;
1122 	struct i2400m_bootrom_header ack;
1123 
1124 	d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1125 	cmd_buf = i2400m->bm_cmd_buf;
1126 	cmd_buf->cmd.command =
1127 		i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1128 	cmd_buf->cmd.target_addr = 0;
1129 	cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1130 	memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1131 	ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1132 			    &ack, sizeof(ack), 0);
1133 	if (ret >= 0)
1134 		ret = 0;
1135 	d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1136 	return ret;
1137 }
1138 
1139 
1140 /*
1141  * Initialize the firmware download at the device size
1142  *
1143  * Multiplex to the one that matters based on the device's mode
1144  * (signed or non-signed).
1145  */
1146 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1147 int i2400m_dnload_init(struct i2400m *i2400m,
1148 		       const struct i2400m_bcf_hdr *bcf_hdr)
1149 {
1150 	int result;
1151 	struct device *dev = i2400m_dev(i2400m);
1152 
1153 	if (i2400m_boot_is_signed(i2400m)) {
1154 		d_printf(1, dev, "signed boot\n");
1155 		result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1156 		if (result == -ERESTARTSYS)
1157 			return result;
1158 		if (result < 0)
1159 			dev_err(dev, "firmware %s: signed boot download "
1160 				"initialization failed: %d\n",
1161 				i2400m->fw_name, result);
1162 	} else {
1163 		/* non-signed boot process without pokes */
1164 		d_printf(1, dev, "non-signed boot\n");
1165 		result = i2400m_dnload_init_nonsigned(i2400m);
1166 		if (result == -ERESTARTSYS)
1167 			return result;
1168 		if (result < 0)
1169 			dev_err(dev, "firmware %s: non-signed download "
1170 				"initialization failed: %d\n",
1171 				i2400m->fw_name, result);
1172 	}
1173 	return result;
1174 }
1175 
1176 
1177 /*
1178  * Run consistency tests on the firmware file and load up headers
1179  *
1180  * Check for the firmware being made for the i2400m device,
1181  * etc...These checks are mostly informative, as the device will make
1182  * them too; but the driver's response is more informative on what
1183  * went wrong.
1184  *
1185  * This will also look at all the headers present on the firmware
1186  * file, and update i2400m->fw_bcf_hdr to point to them.
1187  */
1188 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1189 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1190 			const struct i2400m_bcf_hdr *bcf_hdr,
1191 			size_t index, size_t offset)
1192 {
1193 	struct device *dev = i2400m_dev(i2400m);
1194 
1195 	unsigned module_type, header_len, major_version, minor_version,
1196 		module_id, module_vendor, date, size;
1197 
1198 	module_type = le32_to_cpu(bcf_hdr->module_type);
1199 	header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1200 	major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1201 		>> 16;
1202 	minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1203 	module_id = le32_to_cpu(bcf_hdr->module_id);
1204 	module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1205 	date = le32_to_cpu(bcf_hdr->date);
1206 	size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1207 
1208 	d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1209 		 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1210 		 i2400m->fw_name, index, offset,
1211 		 module_type, module_vendor, module_id,
1212 		 major_version, minor_version, header_len, size, date);
1213 
1214 	/* Hard errors */
1215 	if (major_version != 1) {
1216 		dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1217 			"v%u.%u not supported\n",
1218 			i2400m->fw_name, index, offset,
1219 			major_version, minor_version);
1220 		return -EBADF;
1221 	}
1222 
1223 	if (module_type != 6) {		/* built for the right hardware? */
1224 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1225 			"type 0x%x; aborting\n",
1226 			i2400m->fw_name, index, offset,
1227 			module_type);
1228 		return -EBADF;
1229 	}
1230 
1231 	if (module_vendor != 0x8086) {
1232 		dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1233 			"vendor 0x%x; aborting\n",
1234 			i2400m->fw_name, index, offset, module_vendor);
1235 		return -EBADF;
1236 	}
1237 
1238 	if (date < 0x20080300)
1239 		dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1240 			 "too old; unsupported\n",
1241 			 i2400m->fw_name, index, offset, date);
1242 	return 0;
1243 }
1244 
1245 
1246 /*
1247  * Run consistency tests on the firmware file and load up headers
1248  *
1249  * Check for the firmware being made for the i2400m device,
1250  * etc...These checks are mostly informative, as the device will make
1251  * them too; but the driver's response is more informative on what
1252  * went wrong.
1253  *
1254  * This will also look at all the headers present on the firmware
1255  * file, and update i2400m->fw_hdrs to point to them.
1256  */
1257 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1258 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1259 {
1260 	int result;
1261 	struct device *dev = i2400m_dev(i2400m);
1262 	size_t headers = 0;
1263 	const struct i2400m_bcf_hdr *bcf_hdr;
1264 	const void *itr, *next, *top;
1265 	size_t slots = 0, used_slots = 0;
1266 
1267 	for (itr = bcf, top = itr + bcf_size;
1268 	     itr < top;
1269 	     headers++, itr = next) {
1270 		size_t leftover, offset, header_len, size;
1271 
1272 		leftover = top - itr;
1273 		offset = itr - bcf;
1274 		if (leftover <= sizeof(*bcf_hdr)) {
1275 			dev_err(dev, "firmware %s: %zu B left at @%zx, "
1276 				"not enough for BCF header\n",
1277 				i2400m->fw_name, leftover, offset);
1278 			break;
1279 		}
1280 		bcf_hdr = itr;
1281 		/* Only the first header is supposed to be followed by
1282 		 * payload */
1283 		header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1284 		size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1285 		if (headers == 0)
1286 			next = itr + size;
1287 		else
1288 			next = itr + header_len;
1289 
1290 		result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1291 		if (result < 0)
1292 			continue;
1293 		if (used_slots + 1 >= slots) {
1294 			/* +1 -> we need to account for the one we'll
1295 			 * occupy and at least an extra one for
1296 			 * always being NULL */
1297 			result = i2400m_zrealloc_2x(
1298 				(void **) &i2400m->fw_hdrs, &slots,
1299 				sizeof(i2400m->fw_hdrs[0]),
1300 				GFP_KERNEL);
1301 			if (result < 0)
1302 				goto error_zrealloc;
1303 		}
1304 		i2400m->fw_hdrs[used_slots] = bcf_hdr;
1305 		used_slots++;
1306 	}
1307 	if (headers == 0) {
1308 		dev_err(dev, "firmware %s: no usable headers found\n",
1309 			i2400m->fw_name);
1310 		result = -EBADF;
1311 	} else
1312 		result = 0;
1313 error_zrealloc:
1314 	return result;
1315 }
1316 
1317 
1318 /*
1319  * Match a barker to a BCF header module ID
1320  *
1321  * The device sends a barker which tells the firmware loader which
1322  * header in the BCF file has to be used. This does the matching.
1323  */
1324 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1325 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1326 			      const struct i2400m_bcf_hdr *bcf_hdr)
1327 {
1328 	u32 barker = le32_to_cpu(i2400m->barker->data[0])
1329 		& 0x7fffffff;
1330 	u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1331 		& 0x7fffffff;	/* high bit used for something else */
1332 
1333 	/* special case for 5x50 */
1334 	if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1335 		return 1;
1336 	if (module_id == barker)
1337 		return 1;
1338 	return 0;
1339 }
1340 
1341 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1342 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1343 {
1344 	struct device *dev = i2400m_dev(i2400m);
1345 	const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1346 	unsigned i = 0;
1347 	u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1348 
1349 	d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1350 	if (barker == I2400M_NBOOT_BARKER) {
1351 		bcf_hdr = i2400m->fw_hdrs[0];
1352 		d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1353 			 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1354 		return bcf_hdr;
1355 	}
1356 	for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1357 		bcf_hdr = *bcf_itr;
1358 		if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1359 			d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1360 				 i, le32_to_cpu(bcf_hdr->module_id));
1361 			return bcf_hdr;
1362 		} else
1363 			d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1364 				 i, le32_to_cpu(bcf_hdr->module_id));
1365 	}
1366 	dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1367 		barker);
1368 	return NULL;
1369 }
1370 
1371 
1372 /*
1373  * Download the firmware to the device
1374  *
1375  * @i2400m: device descriptor
1376  * @bcf: pointer to loaded (and minimally verified for consistency)
1377  *    firmware
1378  * @bcf_size: size of the @bcf buffer (header plus payloads)
1379  *
1380  * The process for doing this is described in this file's header.
1381  *
1382  * Note we only reinitialize boot-mode if the flags say so. Some hw
1383  * iterations need it, some don't. In any case, if we loop, we always
1384  * need to reinitialize the boot room, hence the flags modification.
1385  */
1386 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1387 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1388 		     size_t fw_size, enum i2400m_bri flags)
1389 {
1390 	int ret = 0;
1391 	struct device *dev = i2400m_dev(i2400m);
1392 	int count = i2400m->bus_bm_retries;
1393 	const struct i2400m_bcf_hdr *bcf_hdr;
1394 	size_t bcf_size;
1395 
1396 	d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1397 		  i2400m, bcf, fw_size);
1398 	i2400m->boot_mode = 1;
1399 	wmb();		/* Make sure other readers see it */
1400 hw_reboot:
1401 	if (count-- == 0) {
1402 		ret = -ERESTARTSYS;
1403 		dev_err(dev, "device rebooted too many times, aborting\n");
1404 		goto error_too_many_reboots;
1405 	}
1406 	if (flags & I2400M_BRI_MAC_REINIT) {
1407 		ret = i2400m_bootrom_init(i2400m, flags);
1408 		if (ret < 0) {
1409 			dev_err(dev, "bootrom init failed: %d\n", ret);
1410 			goto error_bootrom_init;
1411 		}
1412 	}
1413 	flags |= I2400M_BRI_MAC_REINIT;
1414 
1415 	/*
1416 	 * Initialize the download, push the bytes to the device and
1417 	 * then jump to the new firmware. Note @ret is passed with the
1418 	 * offset of the jump instruction to _dnload_finalize()
1419 	 *
1420 	 * Note we need to use the BCF header in the firmware image
1421 	 * that matches the barker that the device sent when it
1422 	 * rebooted, so it has to be passed along.
1423 	 */
1424 	ret = -EBADF;
1425 	bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1426 	if (bcf_hdr == NULL)
1427 		goto error_bcf_hdr_find;
1428 
1429 	ret = i2400m_dnload_init(i2400m, bcf_hdr);
1430 	if (ret == -ERESTARTSYS)
1431 		goto error_dev_rebooted;
1432 	if (ret < 0)
1433 		goto error_dnload_init;
1434 
1435 	/*
1436 	 * bcf_size refers to one header size plus the fw sections size
1437 	 * indicated by the header,ie. if there are other extended headers
1438 	 * at the tail, they are not counted
1439 	 */
1440 	bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1441 	ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1442 	if (ret == -ERESTARTSYS)
1443 		goto error_dev_rebooted;
1444 	if (ret < 0) {
1445 		dev_err(dev, "fw %s: download failed: %d\n",
1446 			i2400m->fw_name, ret);
1447 		goto error_dnload_bcf;
1448 	}
1449 
1450 	ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1451 	if (ret == -ERESTARTSYS)
1452 		goto error_dev_rebooted;
1453 	if (ret < 0) {
1454 		dev_err(dev, "fw %s: "
1455 			"download finalization failed: %d\n",
1456 			i2400m->fw_name, ret);
1457 		goto error_dnload_finalize;
1458 	}
1459 
1460 	d_printf(2, dev, "fw %s successfully uploaded\n",
1461 		 i2400m->fw_name);
1462 	i2400m->boot_mode = 0;
1463 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
1464 error_dnload_finalize:
1465 error_dnload_bcf:
1466 error_dnload_init:
1467 error_bcf_hdr_find:
1468 error_bootrom_init:
1469 error_too_many_reboots:
1470 	d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1471 		i2400m, bcf, fw_size, ret);
1472 	return ret;
1473 
1474 error_dev_rebooted:
1475 	dev_err(dev, "device rebooted, %d tries left\n", count);
1476 	/* we got the notification already, no need to wait for it again */
1477 	flags |= I2400M_BRI_SOFT;
1478 	goto hw_reboot;
1479 }
1480 
1481 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1482 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1483 			enum i2400m_bri flags)
1484 {
1485 	int ret;
1486 	struct device *dev = i2400m_dev(i2400m);
1487 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1488 
1489 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1490 	bcf = (void *) fw->data;
1491 	ret = i2400m_fw_check(i2400m, bcf, fw->size);
1492 	if (ret >= 0)
1493 		ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1494 	if (ret < 0)
1495 		dev_err(dev, "%s: cannot use: %d, skipping\n",
1496 			i2400m->fw_name, ret);
1497 	kfree(i2400m->fw_hdrs);
1498 	i2400m->fw_hdrs = NULL;
1499 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1500 	return ret;
1501 }
1502 
1503 
1504 /* Refcounted container for firmware data */
1505 struct i2400m_fw {
1506 	struct kref kref;
1507 	const struct firmware *fw;
1508 };
1509 
1510 
1511 static
i2400m_fw_destroy(struct kref * kref)1512 void i2400m_fw_destroy(struct kref *kref)
1513 {
1514 	struct i2400m_fw *i2400m_fw =
1515 		container_of(kref, struct i2400m_fw, kref);
1516 	release_firmware(i2400m_fw->fw);
1517 	kfree(i2400m_fw);
1518 }
1519 
1520 
1521 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1522 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1523 {
1524 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1525 		kref_get(&i2400m_fw->kref);
1526 	return i2400m_fw;
1527 }
1528 
1529 
1530 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1531 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1532 {
1533 	kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1534 }
1535 
1536 
1537 /**
1538  * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1539  *
1540  * @i2400m: device descriptor
1541  *
1542  * Returns: >= 0 if ok, < 0 errno code on error.
1543  *
1544  * This sets up the firmware upload environment, loads the firmware
1545  * file from disk, verifies and then calls the firmware upload process
1546  * per se.
1547  *
1548  * Can be called either from probe, or after a warm reset.  Can not be
1549  * called from within an interrupt.  All the flow in this code is
1550  * single-threade; all I/Os are synchronous.
1551  */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1552 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1553 {
1554 	int ret, itr;
1555 	struct device *dev = i2400m_dev(i2400m);
1556 	struct i2400m_fw *i2400m_fw;
1557 	const struct i2400m_bcf_hdr *bcf;	/* Firmware data */
1558 	const struct firmware *fw;
1559 	const char *fw_name;
1560 
1561 	d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1562 
1563 	ret = -ENODEV;
1564 	spin_lock(&i2400m->rx_lock);
1565 	i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1566 	spin_unlock(&i2400m->rx_lock);
1567 	if (i2400m_fw == (void *) ~0) {
1568 		dev_err(dev, "can't load firmware now!");
1569 		goto out;
1570 	} else if (i2400m_fw != NULL) {
1571 		dev_info(dev, "firmware %s: loading from cache\n",
1572 			 i2400m->fw_name);
1573 		ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1574 		i2400m_fw_put(i2400m_fw);
1575 		goto out;
1576 	}
1577 
1578 	/* Load firmware files to memory. */
1579 	for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1580 		fw_name = i2400m->bus_fw_names[itr];
1581 		if (fw_name == NULL) {
1582 			dev_err(dev, "Could not find a usable firmware image\n");
1583 			break;
1584 		}
1585 		d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1586 		ret = request_firmware(&fw, fw_name, dev);
1587 		if (ret < 0) {
1588 			dev_err(dev, "fw %s: cannot load file: %d\n",
1589 				fw_name, ret);
1590 			continue;
1591 		}
1592 		i2400m->fw_name = fw_name;
1593 		ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1594 		release_firmware(fw);
1595 		if (ret >= 0)	/* firmware loaded successfully */
1596 			break;
1597 		i2400m->fw_name = NULL;
1598 	}
1599 out:
1600 	d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1601 	return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1604 
1605 
i2400m_fw_cache(struct i2400m * i2400m)1606 void i2400m_fw_cache(struct i2400m *i2400m)
1607 {
1608 	int result;
1609 	struct i2400m_fw *i2400m_fw;
1610 	struct device *dev = i2400m_dev(i2400m);
1611 
1612 	/* if there is anything there, free it -- now, this'd be weird */
1613 	spin_lock(&i2400m->rx_lock);
1614 	i2400m_fw = i2400m->fw_cached;
1615 	spin_unlock(&i2400m->rx_lock);
1616 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1617 		i2400m_fw_put(i2400m_fw);
1618 		WARN(1, "%s:%u: still cached fw still present?\n",
1619 		     __func__, __LINE__);
1620 	}
1621 
1622 	if (i2400m->fw_name == NULL) {
1623 		dev_err(dev, "firmware n/a: can't cache\n");
1624 		i2400m_fw = (void *) ~0;
1625 		goto out;
1626 	}
1627 
1628 	i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1629 	if (i2400m_fw == NULL)
1630 		goto out;
1631 	kref_init(&i2400m_fw->kref);
1632 	result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1633 	if (result < 0) {
1634 		dev_err(dev, "firmware %s: failed to cache: %d\n",
1635 			i2400m->fw_name, result);
1636 		kfree(i2400m_fw);
1637 		i2400m_fw = (void *) ~0;
1638 	} else
1639 		dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1640 out:
1641 	spin_lock(&i2400m->rx_lock);
1642 	i2400m->fw_cached = i2400m_fw;
1643 	spin_unlock(&i2400m->rx_lock);
1644 }
1645 
1646 
i2400m_fw_uncache(struct i2400m * i2400m)1647 void i2400m_fw_uncache(struct i2400m *i2400m)
1648 {
1649 	struct i2400m_fw *i2400m_fw;
1650 
1651 	spin_lock(&i2400m->rx_lock);
1652 	i2400m_fw = i2400m->fw_cached;
1653 	i2400m->fw_cached = NULL;
1654 	spin_unlock(&i2400m->rx_lock);
1655 
1656 	if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1657 		i2400m_fw_put(i2400m_fw);
1658 }
1659 
1660