1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
cpu_cache_is_coherent(struct drm_device * dev,enum i915_cache_level level)50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
i915_mutex_lock_interruptible(struct drm_device * dev)112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj)207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
drop_pages(struct drm_i915_gem_object * obj)269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = u64_to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
i915_gem_object_alloc(struct drm_device * dev)362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
i915_gem_object_free(struct drm_i915_gem_object * obj)368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,int * needs_clflush)485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = u64_to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 u64_to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = u64_to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = u64_to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 u64_to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
fake_irq(unsigned long data)1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
missed_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
local_clock_us(unsigned * cpu)1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169 }
1170
busywait_stop(unsigned long timeout,unsigned cpu)1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179 }
1180
__i915_spin_request(struct drm_i915_gem_request * req,int state)1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221 }
1222
1223 /**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
__i915_wait_request(struct drm_i915_gem_request * req,unsigned reset_counter,bool interruptible,s64 * timeout,struct intel_rps_client * rps)1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245 {
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before, now;
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 }
1275
1276 if (INTEL_INFO(dev_priv)->gen >= 6)
1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278
1279 /* Record current time in case interrupted by signal, or wedged */
1280 trace_i915_gem_request_wait_begin(req);
1281 before = ktime_get_raw_ns();
1282
1283 /* Optimistic spin for the next jiffie before touching IRQs */
1284 ret = __i915_spin_request(req, state);
1285 if (ret == 0)
1286 goto out;
1287
1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 ret = -ENODEV;
1290 goto out;
1291 }
1292
1293 for (;;) {
1294 struct timer_list timer;
1295
1296 prepare_to_wait(&ring->irq_queue, &wait, state);
1297
1298 /* We need to check whether any gpu reset happened in between
1299 * the caller grabbing the seqno and now ... */
1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 * is truely gone. */
1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 if (ret == 0)
1305 ret = -EAGAIN;
1306 break;
1307 }
1308
1309 if (i915_gem_request_completed(req, false)) {
1310 ret = 0;
1311 break;
1312 }
1313
1314 if (signal_pending_state(state, current)) {
1315 ret = -ERESTARTSYS;
1316 break;
1317 }
1318
1319 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 ret = -ETIME;
1321 break;
1322 }
1323
1324 timer.function = NULL;
1325 if (timeout || missed_irq(dev_priv, ring)) {
1326 unsigned long expire;
1327
1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 mod_timer(&timer, expire);
1331 }
1332
1333 io_schedule();
1334
1335 if (timer.function) {
1336 del_singleshot_timer_sync(&timer);
1337 destroy_timer_on_stack(&timer);
1338 }
1339 }
1340 if (!irq_test_in_progress)
1341 ring->irq_put(ring);
1342
1343 finish_wait(&ring->irq_queue, &wait);
1344
1345 out:
1346 now = ktime_get_raw_ns();
1347 trace_i915_gem_request_wait_end(req);
1348
1349 if (timeout) {
1350 s64 tres = *timeout - (now - before);
1351
1352 *timeout = tres < 0 ? 0 : tres;
1353
1354 /*
1355 * Apparently ktime isn't accurate enough and occasionally has a
1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 * things up to make the test happy. We allow up to 1 jiffy.
1358 *
1359 * This is a regrssion from the timespec->ktime conversion.
1360 */
1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 *timeout = 0;
1363 }
1364
1365 return ret;
1366 }
1367
i915_gem_request_add_to_client(struct drm_i915_gem_request * req,struct drm_file * file)1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 struct drm_file *file)
1370 {
1371 struct drm_i915_private *dev_private;
1372 struct drm_i915_file_private *file_priv;
1373
1374 WARN_ON(!req || !file || req->file_priv);
1375
1376 if (!req || !file)
1377 return -EINVAL;
1378
1379 if (req->file_priv)
1380 return -EINVAL;
1381
1382 dev_private = req->ring->dev->dev_private;
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393 }
1394
1395 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
1410 }
1411
i915_gem_request_retire(struct drm_i915_gem_request * request)1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
1429 i915_gem_request_unreference(request);
1430 }
1431
1432 static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request * req)1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 struct intel_engine_cs *engine = req->ring;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454 * Waits for a request to be signaled, and cleans up the
1455 * request and object lists appropriately for that event.
1456 */
1457 int
i915_wait_request(struct drm_i915_gem_request * req)1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
1463 int ret;
1464
1465 BUG_ON(req == NULL);
1466
1467 dev = req->ring->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 if (ret)
1475 return ret;
1476
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
1479 interruptible, NULL, NULL);
1480 if (ret)
1481 return ret;
1482
1483 __i915_gem_request_retire__upto(req);
1484 return 0;
1485 }
1486
1487 /**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
1491 int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494 {
1495 int ret, i;
1496
1497 if (!obj->active)
1498 return 0;
1499
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
1505
1506 i = obj->last_write_req->ring->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_RINGS; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
i915_gem_object_retire_request(struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req)1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532 {
1533 int ring = req->ring->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,struct intel_rps_client * rps,bool readonly)1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 struct intel_rps_client *rps,
1549 bool readonly)
1550 {
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 unsigned reset_counter;
1555 int ret, i, n = 0;
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
1560 if (!obj->active)
1561 return 0;
1562
1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 if (ret)
1565 return ret;
1566
1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_RINGS; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
1589 mutex_unlock(&dev->struct_mutex);
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
1592 NULL, rps);
1593 mutex_lock(&dev->struct_mutex);
1594
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
1602 }
1603
to_rps_client(struct drm_file * file)1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608 }
1609
1610 /**
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
1613 */
1614 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 struct drm_file *file)
1617 {
1618 struct drm_i915_gem_set_domain *args = data;
1619 struct drm_i915_gem_object *obj;
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
1622 int ret;
1623
1624 /* Only handle setting domains to types used by the CPU. */
1625 if (write_domain & I915_GEM_GPU_DOMAINS)
1626 return -EINVAL;
1627
1628 if (read_domains & I915_GEM_GPU_DOMAINS)
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 to_rps_client(file),
1653 !write_domain);
1654 if (ret)
1655 goto unref;
1656
1657 if (read_domains & I915_GEM_DOMAIN_GTT)
1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 else
1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668 drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672 }
1673
1674 /**
1675 * Called when user space has done writes to this buffer
1676 */
1677 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 struct drm_file *file)
1680 {
1681 struct drm_i915_gem_sw_finish *args = data;
1682 struct drm_i915_gem_object *obj;
1683 int ret = 0;
1684
1685 ret = i915_mutex_lock_interruptible(dev);
1686 if (ret)
1687 return ret;
1688
1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 if (&obj->base == NULL) {
1691 ret = -ENOENT;
1692 goto unlock;
1693 }
1694
1695 /* Pinned buffers may be scanout, so flush the cache */
1696 if (obj->pin_display)
1697 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699 drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703 }
1704
1705 /**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
1721 */
1722 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 struct drm_file *file)
1725 {
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
1728 unsigned long addr;
1729
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
1736 obj = drm_gem_object_lookup(dev, file, args->handle);
1737 if (obj == NULL)
1738 return -ENOENT;
1739
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
1748 addr = vm_mmap(obj->filp, 0, args->size,
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
1764 drm_gem_object_unreference_unlocked(obj);
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @vma: VMA in question
1776 * @vmf: fault info
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800 intel_runtime_pm_get(dev_priv);
1801
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
1809
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 ret = -EFAULT;
1824 goto unlock;
1825 }
1826
1827 /* Use a partial view if the object is bigger than the aperture. */
1828 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
1830 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 if (ret)
1845 goto unlock;
1846
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
1850
1851 ret = i915_gem_object_get_fence(obj);
1852 if (ret)
1853 goto unpin;
1854
1855 /* Finally, remap it using the new GTT offset */
1856 pfn = dev_priv->gtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
1858 pfn >>= PAGE_SHIFT;
1859
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
1869
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
1898 unpin:
1899 i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 out:
1903 switch (ret) {
1904 case -EIO:
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
1915 case -EAGAIN:
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
1920 */
1921 case 0:
1922 case -ERESTARTSYS:
1923 case -EINTR:
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
1929 ret = VM_FAULT_NOPAGE;
1930 break;
1931 case -ENOMEM:
1932 ret = VM_FAULT_OOM;
1933 break;
1934 case -ENOSPC:
1935 case -EFAULT:
1936 ret = VM_FAULT_SIGBUS;
1937 break;
1938 default:
1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 ret = VM_FAULT_SIGBUS;
1941 break;
1942 }
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
1946 }
1947
1948 /**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
1952 * Preserve the reservation of the mmapping with the DRM core code, but
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
1962 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 if (!obj->fault_mappable)
1966 return;
1967
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
1970 obj->fault_mappable = false;
1971 }
1972
1973 void
i915_gem_release_all_mmaps(struct drm_i915_private * dev_priv)1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 uint32_t gtt_size;
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
1993 gtt_size = 1024*1024;
1994 else
1995 gtt_size = 512*1024;
1996
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
1999
2000 return gtt_size;
2001 }
2002
2003 /**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
2008 * potential fence register mapping.
2009 */
2010 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
2013 {
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 tiling_mode == I915_TILING_NONE)
2020 return 4096;
2021
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 return 0;
2036
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
2041 goto out;
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
2057 goto out;
2058
2059 i915_gem_shrink_all(dev_priv);
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
2065 }
2066
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
2075 uint32_t handle,
2076 uint64_t *offset)
2077 {
2078 struct drm_i915_gem_object *obj;
2079 int ret;
2080
2081 ret = i915_mutex_lock_interruptible(dev);
2082 if (ret)
2083 return ret;
2084
2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 if (&obj->base == NULL) {
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
2090
2091 if (obj->madv != I915_MADV_WILLNEED) {
2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 ret = -EFAULT;
2094 goto out;
2095 }
2096
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
2100
2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104 drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 mutex_unlock(&dev->struct_mutex);
2107 return ret;
2108 }
2109
2110 /**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128 {
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 i915_gem_object_free_mmap_offset(obj);
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 struct sg_page_iter sg_iter;
2176 int ret;
2177
2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2186 i915_gem_clflush_object(obj, true);
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
2190 i915_gem_gtt_finish_object(obj);
2191
2192 if (i915_gem_object_needs_bit17_swizzle(obj))
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
2197
2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201 if (obj->dirty)
2202 set_page_dirty(page);
2203
2204 if (obj->madv == I915_MADV_WILLNEED)
2205 mark_page_accessed(page);
2206
2207 page_cache_release(page);
2208 }
2209 obj->dirty = 0;
2210
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
2213 }
2214
2215 #define _wait_for_us(COND, US, W) ({ \
2216 unsigned long timeout__ = jiffies + usecs_to_jiffies(US) + 1; \
2217 int ret__; \
2218 for (;;) { \
2219 bool expired__ = time_after(jiffies, timeout__); \
2220 if (COND) { \
2221 ret__ = 0; \
2222 break; \
2223 } \
2224 if (expired__) { \
2225 ret__ = -ETIMEDOUT; \
2226 break; \
2227 } \
2228 usleep_range((W), (W)*2); \
2229 } \
2230 ret__; \
2231 })
2232
2233 static int
__intel_wait_for_register_fw(struct drm_i915_private * dev_priv,u32 reg,const u32 mask,const u32 value,const unsigned int timeout_us,const unsigned int timeout_ms)2234 __intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2235 u32 reg,
2236 const u32 mask,
2237 const u32 value,
2238 const unsigned int timeout_us,
2239 const unsigned int timeout_ms)
2240 {
2241 #define done ((I915_READ_FW(reg) & mask) == value)
2242 int ret = _wait_for_us(done, timeout_us, 2);
2243 if (ret)
2244 ret = wait_for(done, timeout_ms);
2245 return ret;
2246 #undef done
2247 }
2248
invalidate_tlbs(struct drm_i915_private * dev_priv)2249 static void invalidate_tlbs(struct drm_i915_private *dev_priv)
2250 {
2251 static const u32 gen8_regs[] = {
2252 [RCS] = GEN8_RTCR,
2253 [VCS] = GEN8_M1TCR,
2254 [VCS2] = GEN8_M2TCR,
2255 [VECS] = GEN8_VTCR,
2256 [BCS] = GEN8_BTCR,
2257 };
2258 enum intel_ring_id id;
2259
2260 if (INTEL_INFO(dev_priv)->gen < 8)
2261 return;
2262
2263 mutex_lock(&dev_priv->tlb_invalidate_lock);
2264 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2265
2266 for (id = 0; id < I915_NUM_RINGS; id++) {
2267 struct intel_engine_cs *engine = &dev_priv->ring[id];
2268 /*
2269 * HW architecture suggest typical invalidation time at 40us,
2270 * with pessimistic cases up to 100us and a recommendation to
2271 * cap at 1ms. We go a bit higher just in case.
2272 */
2273 const unsigned int timeout_us = 100;
2274 const unsigned int timeout_ms = 4;
2275
2276 if (!intel_ring_initialized(engine))
2277 continue;
2278
2279 if (WARN_ON_ONCE(id >= ARRAY_SIZE(gen8_regs) || !gen8_regs[id]))
2280 continue;
2281
2282 I915_WRITE_FW(gen8_regs[id], 1);
2283 if (__intel_wait_for_register_fw(dev_priv,
2284 gen8_regs[id], 1, 0,
2285 timeout_us, timeout_ms))
2286 DRM_ERROR_RATELIMITED("%s TLB invalidation did not complete in %ums!\n",
2287 engine->name, timeout_ms);
2288 }
2289
2290 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2291 mutex_unlock(&dev_priv->tlb_invalidate_lock);
2292 }
2293
2294 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)2295 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2296 {
2297 const struct drm_i915_gem_object_ops *ops = obj->ops;
2298
2299 if (obj->pages == NULL)
2300 return 0;
2301
2302 if (obj->pages_pin_count)
2303 return -EBUSY;
2304
2305 BUG_ON(i915_gem_obj_bound_any(obj));
2306
2307 /* ->put_pages might need to allocate memory for the bit17 swizzle
2308 * array, hence protect them from being reaped by removing them from gtt
2309 * lists early. */
2310 list_del(&obj->global_list);
2311
2312 if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
2313 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2314
2315 intel_runtime_pm_get(i915);
2316 invalidate_tlbs(i915);
2317 intel_runtime_pm_put(i915);
2318 }
2319
2320 ops->put_pages(obj);
2321 obj->pages = NULL;
2322
2323 i915_gem_object_invalidate(obj);
2324
2325 return 0;
2326 }
2327
2328 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2329 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2330 {
2331 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 int page_count, i;
2333 struct address_space *mapping;
2334 struct sg_table *st;
2335 struct scatterlist *sg;
2336 struct sg_page_iter sg_iter;
2337 struct page *page;
2338 unsigned long last_pfn = 0; /* suppress gcc warning */
2339 int ret;
2340 gfp_t gfp;
2341
2342 /* Assert that the object is not currently in any GPU domain. As it
2343 * wasn't in the GTT, there shouldn't be any way it could have been in
2344 * a GPU cache
2345 */
2346 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2347 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2348
2349 st = kmalloc(sizeof(*st), GFP_KERNEL);
2350 if (st == NULL)
2351 return -ENOMEM;
2352
2353 page_count = obj->base.size / PAGE_SIZE;
2354 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2355 kfree(st);
2356 return -ENOMEM;
2357 }
2358
2359 /* Get the list of pages out of our struct file. They'll be pinned
2360 * at this point until we release them.
2361 *
2362 * Fail silently without starting the shrinker
2363 */
2364 mapping = file_inode(obj->base.filp)->i_mapping;
2365 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2366 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2367 sg = st->sgl;
2368 st->nents = 0;
2369 for (i = 0; i < page_count; i++) {
2370 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2371 if (IS_ERR(page)) {
2372 i915_gem_shrink(dev_priv,
2373 page_count,
2374 I915_SHRINK_BOUND |
2375 I915_SHRINK_UNBOUND |
2376 I915_SHRINK_PURGEABLE);
2377 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2378 }
2379 if (IS_ERR(page)) {
2380 /* We've tried hard to allocate the memory by reaping
2381 * our own buffer, now let the real VM do its job and
2382 * go down in flames if truly OOM.
2383 */
2384 i915_gem_shrink_all(dev_priv);
2385 page = shmem_read_mapping_page(mapping, i);
2386 if (IS_ERR(page)) {
2387 ret = PTR_ERR(page);
2388 goto err_pages;
2389 }
2390 }
2391 #ifdef CONFIG_SWIOTLB
2392 if (swiotlb_nr_tbl()) {
2393 st->nents++;
2394 sg_set_page(sg, page, PAGE_SIZE, 0);
2395 sg = sg_next(sg);
2396 continue;
2397 }
2398 #endif
2399 if (!i || page_to_pfn(page) != last_pfn + 1) {
2400 if (i)
2401 sg = sg_next(sg);
2402 st->nents++;
2403 sg_set_page(sg, page, PAGE_SIZE, 0);
2404 } else {
2405 sg->length += PAGE_SIZE;
2406 }
2407 last_pfn = page_to_pfn(page);
2408
2409 /* Check that the i965g/gm workaround works. */
2410 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2411 }
2412 #ifdef CONFIG_SWIOTLB
2413 if (!swiotlb_nr_tbl())
2414 #endif
2415 sg_mark_end(sg);
2416 obj->pages = st;
2417
2418 ret = i915_gem_gtt_prepare_object(obj);
2419 if (ret)
2420 goto err_pages;
2421
2422 if (i915_gem_object_needs_bit17_swizzle(obj))
2423 i915_gem_object_do_bit_17_swizzle(obj);
2424
2425 if (obj->tiling_mode != I915_TILING_NONE &&
2426 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2427 i915_gem_object_pin_pages(obj);
2428
2429 return 0;
2430
2431 err_pages:
2432 sg_mark_end(sg);
2433 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2434 page_cache_release(sg_page_iter_page(&sg_iter));
2435 sg_free_table(st);
2436 kfree(st);
2437
2438 /* shmemfs first checks if there is enough memory to allocate the page
2439 * and reports ENOSPC should there be insufficient, along with the usual
2440 * ENOMEM for a genuine allocation failure.
2441 *
2442 * We use ENOSPC in our driver to mean that we have run out of aperture
2443 * space and so want to translate the error from shmemfs back to our
2444 * usual understanding of ENOMEM.
2445 */
2446 if (ret == -ENOSPC)
2447 ret = -ENOMEM;
2448
2449 return ret;
2450 }
2451
2452 /* Ensure that the associated pages are gathered from the backing storage
2453 * and pinned into our object. i915_gem_object_get_pages() may be called
2454 * multiple times before they are released by a single call to
2455 * i915_gem_object_put_pages() - once the pages are no longer referenced
2456 * either as a result of memory pressure (reaping pages under the shrinker)
2457 * or as the object is itself released.
2458 */
2459 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2460 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2461 {
2462 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2463 const struct drm_i915_gem_object_ops *ops = obj->ops;
2464 int ret;
2465
2466 if (obj->pages)
2467 return 0;
2468
2469 if (obj->madv != I915_MADV_WILLNEED) {
2470 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2471 return -EFAULT;
2472 }
2473
2474 BUG_ON(obj->pages_pin_count);
2475
2476 ret = ops->get_pages(obj);
2477 if (ret)
2478 return ret;
2479
2480 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2481
2482 obj->get_page.sg = obj->pages->sgl;
2483 obj->get_page.last = 0;
2484
2485 return 0;
2486 }
2487
i915_vma_move_to_active(struct i915_vma * vma,struct drm_i915_gem_request * req)2488 void i915_vma_move_to_active(struct i915_vma *vma,
2489 struct drm_i915_gem_request *req)
2490 {
2491 struct drm_i915_gem_object *obj = vma->obj;
2492 struct intel_engine_cs *ring;
2493
2494 ring = i915_gem_request_get_ring(req);
2495
2496 /* Add a reference if we're newly entering the active list. */
2497 if (obj->active == 0)
2498 drm_gem_object_reference(&obj->base);
2499 obj->active |= intel_ring_flag(ring);
2500
2501 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2502 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2503
2504 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2505 }
2506
2507 static void
i915_gem_object_retire__write(struct drm_i915_gem_object * obj)2508 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2509 {
2510 RQ_BUG_ON(obj->last_write_req == NULL);
2511 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2512
2513 i915_gem_request_assign(&obj->last_write_req, NULL);
2514 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2515 }
2516
2517 static void
i915_gem_object_retire__read(struct drm_i915_gem_object * obj,int ring)2518 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2519 {
2520 struct i915_vma *vma;
2521
2522 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2523 RQ_BUG_ON(!(obj->active & (1 << ring)));
2524
2525 list_del_init(&obj->ring_list[ring]);
2526 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2527
2528 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2529 i915_gem_object_retire__write(obj);
2530
2531 obj->active &= ~(1 << ring);
2532 if (obj->active)
2533 return;
2534
2535 /* Bump our place on the bound list to keep it roughly in LRU order
2536 * so that we don't steal from recently used but inactive objects
2537 * (unless we are forced to ofc!)
2538 */
2539 list_move_tail(&obj->global_list,
2540 &to_i915(obj->base.dev)->mm.bound_list);
2541
2542 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2543 if (!list_empty(&vma->mm_list))
2544 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2545 }
2546
2547 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2548 drm_gem_object_unreference(&obj->base);
2549 }
2550
2551 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)2552 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2553 {
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555 struct intel_engine_cs *ring;
2556 int ret, i, j;
2557
2558 /* Carefully retire all requests without writing to the rings */
2559 for_each_ring(ring, dev_priv, i) {
2560 ret = intel_ring_idle(ring);
2561 if (ret)
2562 return ret;
2563 }
2564 i915_gem_retire_requests(dev);
2565
2566 /* Finally reset hw state */
2567 for_each_ring(ring, dev_priv, i) {
2568 intel_ring_init_seqno(ring, seqno);
2569
2570 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2571 ring->semaphore.sync_seqno[j] = 0;
2572 }
2573
2574 return 0;
2575 }
2576
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)2577 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2578 {
2579 struct drm_i915_private *dev_priv = dev->dev_private;
2580 int ret;
2581
2582 if (seqno == 0)
2583 return -EINVAL;
2584
2585 /* HWS page needs to be set less than what we
2586 * will inject to ring
2587 */
2588 ret = i915_gem_init_seqno(dev, seqno - 1);
2589 if (ret)
2590 return ret;
2591
2592 /* Carefully set the last_seqno value so that wrap
2593 * detection still works
2594 */
2595 dev_priv->next_seqno = seqno;
2596 dev_priv->last_seqno = seqno - 1;
2597 if (dev_priv->last_seqno == 0)
2598 dev_priv->last_seqno--;
2599
2600 return 0;
2601 }
2602
2603 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)2604 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2605 {
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607
2608 /* reserve 0 for non-seqno */
2609 if (dev_priv->next_seqno == 0) {
2610 int ret = i915_gem_init_seqno(dev, 0);
2611 if (ret)
2612 return ret;
2613
2614 dev_priv->next_seqno = 1;
2615 }
2616
2617 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2618 return 0;
2619 }
2620
2621 /*
2622 * NB: This function is not allowed to fail. Doing so would mean the the
2623 * request is not being tracked for completion but the work itself is
2624 * going to happen on the hardware. This would be a Bad Thing(tm).
2625 */
__i915_add_request(struct drm_i915_gem_request * request,struct drm_i915_gem_object * obj,bool flush_caches)2626 void __i915_add_request(struct drm_i915_gem_request *request,
2627 struct drm_i915_gem_object *obj,
2628 bool flush_caches)
2629 {
2630 struct intel_engine_cs *ring;
2631 struct drm_i915_private *dev_priv;
2632 struct intel_ringbuffer *ringbuf;
2633 u32 request_start;
2634 int ret;
2635
2636 if (WARN_ON(request == NULL))
2637 return;
2638
2639 ring = request->ring;
2640 dev_priv = ring->dev->dev_private;
2641 ringbuf = request->ringbuf;
2642
2643 /*
2644 * To ensure that this call will not fail, space for its emissions
2645 * should already have been reserved in the ring buffer. Let the ring
2646 * know that it is time to use that space up.
2647 */
2648 intel_ring_reserved_space_use(ringbuf);
2649
2650 request_start = intel_ring_get_tail(ringbuf);
2651 /*
2652 * Emit any outstanding flushes - execbuf can fail to emit the flush
2653 * after having emitted the batchbuffer command. Hence we need to fix
2654 * things up similar to emitting the lazy request. The difference here
2655 * is that the flush _must_ happen before the next request, no matter
2656 * what.
2657 */
2658 if (flush_caches) {
2659 if (i915.enable_execlists)
2660 ret = logical_ring_flush_all_caches(request);
2661 else
2662 ret = intel_ring_flush_all_caches(request);
2663 /* Not allowed to fail! */
2664 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2665 }
2666
2667 /* Record the position of the start of the request so that
2668 * should we detect the updated seqno part-way through the
2669 * GPU processing the request, we never over-estimate the
2670 * position of the head.
2671 */
2672 request->postfix = intel_ring_get_tail(ringbuf);
2673
2674 if (i915.enable_execlists)
2675 ret = ring->emit_request(request);
2676 else {
2677 ret = ring->add_request(request);
2678
2679 request->tail = intel_ring_get_tail(ringbuf);
2680 }
2681 /* Not allowed to fail! */
2682 WARN(ret, "emit|add_request failed: %d!\n", ret);
2683
2684 request->head = request_start;
2685
2686 /* Whilst this request exists, batch_obj will be on the
2687 * active_list, and so will hold the active reference. Only when this
2688 * request is retired will the the batch_obj be moved onto the
2689 * inactive_list and lose its active reference. Hence we do not need
2690 * to explicitly hold another reference here.
2691 */
2692 request->batch_obj = obj;
2693
2694 request->emitted_jiffies = jiffies;
2695 request->previous_seqno = ring->last_submitted_seqno;
2696 ring->last_submitted_seqno = request->seqno;
2697 list_add_tail(&request->list, &ring->request_list);
2698
2699 trace_i915_gem_request_add(request);
2700
2701 i915_queue_hangcheck(ring->dev);
2702
2703 queue_delayed_work(dev_priv->wq,
2704 &dev_priv->mm.retire_work,
2705 round_jiffies_up_relative(HZ));
2706 intel_mark_busy(dev_priv->dev);
2707
2708 /* Sanity check that the reserved size was large enough. */
2709 intel_ring_reserved_space_end(ringbuf);
2710 }
2711
i915_context_is_banned(struct drm_i915_private * dev_priv,const struct intel_context * ctx)2712 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2713 const struct intel_context *ctx)
2714 {
2715 unsigned long elapsed;
2716
2717 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2718
2719 if (ctx->hang_stats.banned)
2720 return true;
2721
2722 if (ctx->hang_stats.ban_period_seconds &&
2723 elapsed <= ctx->hang_stats.ban_period_seconds) {
2724 if (!i915_gem_context_is_default(ctx)) {
2725 DRM_DEBUG("context hanging too fast, banning!\n");
2726 return true;
2727 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2728 if (i915_stop_ring_allow_warn(dev_priv))
2729 DRM_ERROR("gpu hanging too fast, banning!\n");
2730 return true;
2731 }
2732 }
2733
2734 return false;
2735 }
2736
i915_set_reset_status(struct drm_i915_private * dev_priv,struct intel_context * ctx,const bool guilty)2737 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2738 struct intel_context *ctx,
2739 const bool guilty)
2740 {
2741 struct i915_ctx_hang_stats *hs;
2742
2743 if (WARN_ON(!ctx))
2744 return;
2745
2746 hs = &ctx->hang_stats;
2747
2748 if (guilty) {
2749 hs->banned = i915_context_is_banned(dev_priv, ctx);
2750 hs->batch_active++;
2751 hs->guilty_ts = get_seconds();
2752 } else {
2753 hs->batch_pending++;
2754 }
2755 }
2756
i915_gem_request_free(struct kref * req_ref)2757 void i915_gem_request_free(struct kref *req_ref)
2758 {
2759 struct drm_i915_gem_request *req = container_of(req_ref,
2760 typeof(*req), ref);
2761 struct intel_context *ctx = req->ctx;
2762
2763 if (req->file_priv)
2764 i915_gem_request_remove_from_client(req);
2765
2766 if (ctx) {
2767 if (i915.enable_execlists) {
2768 if (ctx != req->ring->default_context)
2769 intel_lr_context_unpin(req);
2770 }
2771
2772 i915_gem_context_unreference(ctx);
2773 }
2774
2775 kmem_cache_free(req->i915->requests, req);
2776 }
2777
i915_gem_request_alloc(struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_request ** req_out)2778 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2779 struct intel_context *ctx,
2780 struct drm_i915_gem_request **req_out)
2781 {
2782 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2783 struct drm_i915_gem_request *req;
2784 int ret;
2785
2786 if (!req_out)
2787 return -EINVAL;
2788
2789 *req_out = NULL;
2790
2791 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2792 if (req == NULL)
2793 return -ENOMEM;
2794
2795 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2796 if (ret)
2797 goto err;
2798
2799 kref_init(&req->ref);
2800 req->i915 = dev_priv;
2801 req->ring = ring;
2802 req->ctx = ctx;
2803 i915_gem_context_reference(req->ctx);
2804
2805 if (i915.enable_execlists)
2806 ret = intel_logical_ring_alloc_request_extras(req);
2807 else
2808 ret = intel_ring_alloc_request_extras(req);
2809 if (ret) {
2810 i915_gem_context_unreference(req->ctx);
2811 goto err;
2812 }
2813
2814 /*
2815 * Reserve space in the ring buffer for all the commands required to
2816 * eventually emit this request. This is to guarantee that the
2817 * i915_add_request() call can't fail. Note that the reserve may need
2818 * to be redone if the request is not actually submitted straight
2819 * away, e.g. because a GPU scheduler has deferred it.
2820 */
2821 if (i915.enable_execlists)
2822 ret = intel_logical_ring_reserve_space(req);
2823 else
2824 ret = intel_ring_reserve_space(req);
2825 if (ret) {
2826 /*
2827 * At this point, the request is fully allocated even if not
2828 * fully prepared. Thus it can be cleaned up using the proper
2829 * free code.
2830 */
2831 i915_gem_request_cancel(req);
2832 return ret;
2833 }
2834
2835 *req_out = req;
2836 return 0;
2837
2838 err:
2839 kmem_cache_free(dev_priv->requests, req);
2840 return ret;
2841 }
2842
i915_gem_request_cancel(struct drm_i915_gem_request * req)2843 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2844 {
2845 intel_ring_reserved_space_cancel(req->ringbuf);
2846
2847 i915_gem_request_unreference(req);
2848 }
2849
2850 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * ring)2851 i915_gem_find_active_request(struct intel_engine_cs *ring)
2852 {
2853 struct drm_i915_gem_request *request;
2854
2855 list_for_each_entry(request, &ring->request_list, list) {
2856 if (i915_gem_request_completed(request, false))
2857 continue;
2858
2859 return request;
2860 }
2861
2862 return NULL;
2863 }
2864
i915_gem_reset_ring_status(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2865 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2866 struct intel_engine_cs *ring)
2867 {
2868 struct drm_i915_gem_request *request;
2869 bool ring_hung;
2870
2871 request = i915_gem_find_active_request(ring);
2872
2873 if (request == NULL)
2874 return;
2875
2876 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2877
2878 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2879
2880 list_for_each_entry_continue(request, &ring->request_list, list)
2881 i915_set_reset_status(dev_priv, request->ctx, false);
2882 }
2883
i915_gem_reset_ring_cleanup(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2884 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2885 struct intel_engine_cs *ring)
2886 {
2887 while (!list_empty(&ring->active_list)) {
2888 struct drm_i915_gem_object *obj;
2889
2890 obj = list_first_entry(&ring->active_list,
2891 struct drm_i915_gem_object,
2892 ring_list[ring->id]);
2893
2894 i915_gem_object_retire__read(obj, ring->id);
2895 }
2896
2897 /*
2898 * Clear the execlists queue up before freeing the requests, as those
2899 * are the ones that keep the context and ringbuffer backing objects
2900 * pinned in place.
2901 */
2902 while (!list_empty(&ring->execlist_queue)) {
2903 struct drm_i915_gem_request *submit_req;
2904
2905 submit_req = list_first_entry(&ring->execlist_queue,
2906 struct drm_i915_gem_request,
2907 execlist_link);
2908 list_del(&submit_req->execlist_link);
2909
2910 if (submit_req->ctx != ring->default_context)
2911 intel_lr_context_unpin(submit_req);
2912
2913 i915_gem_request_unreference(submit_req);
2914 }
2915
2916 /*
2917 * We must free the requests after all the corresponding objects have
2918 * been moved off active lists. Which is the same order as the normal
2919 * retire_requests function does. This is important if object hold
2920 * implicit references on things like e.g. ppgtt address spaces through
2921 * the request.
2922 */
2923 while (!list_empty(&ring->request_list)) {
2924 struct drm_i915_gem_request *request;
2925
2926 request = list_first_entry(&ring->request_list,
2927 struct drm_i915_gem_request,
2928 list);
2929
2930 i915_gem_request_retire(request);
2931 }
2932 }
2933
i915_gem_reset(struct drm_device * dev)2934 void i915_gem_reset(struct drm_device *dev)
2935 {
2936 struct drm_i915_private *dev_priv = dev->dev_private;
2937 struct intel_engine_cs *ring;
2938 int i;
2939
2940 /*
2941 * Before we free the objects from the requests, we need to inspect
2942 * them for finding the guilty party. As the requests only borrow
2943 * their reference to the objects, the inspection must be done first.
2944 */
2945 for_each_ring(ring, dev_priv, i)
2946 i915_gem_reset_ring_status(dev_priv, ring);
2947
2948 for_each_ring(ring, dev_priv, i)
2949 i915_gem_reset_ring_cleanup(dev_priv, ring);
2950
2951 i915_gem_context_reset(dev);
2952
2953 i915_gem_restore_fences(dev);
2954
2955 WARN_ON(i915_verify_lists(dev));
2956 }
2957
2958 /**
2959 * This function clears the request list as sequence numbers are passed.
2960 */
2961 void
i915_gem_retire_requests_ring(struct intel_engine_cs * ring)2962 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2963 {
2964 WARN_ON(i915_verify_lists(ring->dev));
2965
2966 /* Retire requests first as we use it above for the early return.
2967 * If we retire requests last, we may use a later seqno and so clear
2968 * the requests lists without clearing the active list, leading to
2969 * confusion.
2970 */
2971 while (!list_empty(&ring->request_list)) {
2972 struct drm_i915_gem_request *request;
2973
2974 request = list_first_entry(&ring->request_list,
2975 struct drm_i915_gem_request,
2976 list);
2977
2978 if (!i915_gem_request_completed(request, true))
2979 break;
2980
2981 i915_gem_request_retire(request);
2982 }
2983
2984 /* Move any buffers on the active list that are no longer referenced
2985 * by the ringbuffer to the flushing/inactive lists as appropriate,
2986 * before we free the context associated with the requests.
2987 */
2988 while (!list_empty(&ring->active_list)) {
2989 struct drm_i915_gem_object *obj;
2990
2991 obj = list_first_entry(&ring->active_list,
2992 struct drm_i915_gem_object,
2993 ring_list[ring->id]);
2994
2995 if (!list_empty(&obj->last_read_req[ring->id]->list))
2996 break;
2997
2998 i915_gem_object_retire__read(obj, ring->id);
2999 }
3000
3001 if (unlikely(ring->trace_irq_req &&
3002 i915_gem_request_completed(ring->trace_irq_req, true))) {
3003 ring->irq_put(ring);
3004 i915_gem_request_assign(&ring->trace_irq_req, NULL);
3005 }
3006
3007 WARN_ON(i915_verify_lists(ring->dev));
3008 }
3009
3010 bool
i915_gem_retire_requests(struct drm_device * dev)3011 i915_gem_retire_requests(struct drm_device *dev)
3012 {
3013 struct drm_i915_private *dev_priv = dev->dev_private;
3014 struct intel_engine_cs *ring;
3015 bool idle = true;
3016 int i;
3017
3018 for_each_ring(ring, dev_priv, i) {
3019 i915_gem_retire_requests_ring(ring);
3020 idle &= list_empty(&ring->request_list);
3021 if (i915.enable_execlists) {
3022 unsigned long flags;
3023
3024 spin_lock_irqsave(&ring->execlist_lock, flags);
3025 idle &= list_empty(&ring->execlist_queue);
3026 spin_unlock_irqrestore(&ring->execlist_lock, flags);
3027
3028 intel_execlists_retire_requests(ring);
3029 }
3030 }
3031
3032 if (idle)
3033 mod_delayed_work(dev_priv->wq,
3034 &dev_priv->mm.idle_work,
3035 msecs_to_jiffies(100));
3036
3037 return idle;
3038 }
3039
3040 static void
i915_gem_retire_work_handler(struct work_struct * work)3041 i915_gem_retire_work_handler(struct work_struct *work)
3042 {
3043 struct drm_i915_private *dev_priv =
3044 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3045 struct drm_device *dev = dev_priv->dev;
3046 bool idle;
3047
3048 /* Come back later if the device is busy... */
3049 idle = false;
3050 if (mutex_trylock(&dev->struct_mutex)) {
3051 idle = i915_gem_retire_requests(dev);
3052 mutex_unlock(&dev->struct_mutex);
3053 }
3054 if (!idle)
3055 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3056 round_jiffies_up_relative(HZ));
3057 }
3058
3059 static void
i915_gem_idle_work_handler(struct work_struct * work)3060 i915_gem_idle_work_handler(struct work_struct *work)
3061 {
3062 struct drm_i915_private *dev_priv =
3063 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3064 struct drm_device *dev = dev_priv->dev;
3065 struct intel_engine_cs *ring;
3066 int i;
3067
3068 for_each_ring(ring, dev_priv, i)
3069 if (!list_empty(&ring->request_list))
3070 return;
3071
3072 intel_mark_idle(dev);
3073
3074 if (mutex_trylock(&dev->struct_mutex)) {
3075 struct intel_engine_cs *ring;
3076 int i;
3077
3078 for_each_ring(ring, dev_priv, i)
3079 i915_gem_batch_pool_fini(&ring->batch_pool);
3080
3081 mutex_unlock(&dev->struct_mutex);
3082 }
3083 }
3084
3085 /**
3086 * Ensures that an object will eventually get non-busy by flushing any required
3087 * write domains, emitting any outstanding lazy request and retiring and
3088 * completed requests.
3089 */
3090 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)3091 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3092 {
3093 int i;
3094
3095 if (!obj->active)
3096 return 0;
3097
3098 for (i = 0; i < I915_NUM_RINGS; i++) {
3099 struct drm_i915_gem_request *req;
3100
3101 req = obj->last_read_req[i];
3102 if (req == NULL)
3103 continue;
3104
3105 if (list_empty(&req->list))
3106 goto retire;
3107
3108 if (i915_gem_request_completed(req, true)) {
3109 __i915_gem_request_retire__upto(req);
3110 retire:
3111 i915_gem_object_retire__read(obj, i);
3112 }
3113 }
3114
3115 return 0;
3116 }
3117
3118 /**
3119 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3120 * @DRM_IOCTL_ARGS: standard ioctl arguments
3121 *
3122 * Returns 0 if successful, else an error is returned with the remaining time in
3123 * the timeout parameter.
3124 * -ETIME: object is still busy after timeout
3125 * -ERESTARTSYS: signal interrupted the wait
3126 * -ENONENT: object doesn't exist
3127 * Also possible, but rare:
3128 * -EAGAIN: GPU wedged
3129 * -ENOMEM: damn
3130 * -ENODEV: Internal IRQ fail
3131 * -E?: The add request failed
3132 *
3133 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3134 * non-zero timeout parameter the wait ioctl will wait for the given number of
3135 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3136 * without holding struct_mutex the object may become re-busied before this
3137 * function completes. A similar but shorter * race condition exists in the busy
3138 * ioctl
3139 */
3140 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3141 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3142 {
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 struct drm_i915_gem_wait *args = data;
3145 struct drm_i915_gem_object *obj;
3146 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3147 unsigned reset_counter;
3148 int i, n = 0;
3149 int ret;
3150
3151 if (args->flags != 0)
3152 return -EINVAL;
3153
3154 ret = i915_mutex_lock_interruptible(dev);
3155 if (ret)
3156 return ret;
3157
3158 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3159 if (&obj->base == NULL) {
3160 mutex_unlock(&dev->struct_mutex);
3161 return -ENOENT;
3162 }
3163
3164 /* Need to make sure the object gets inactive eventually. */
3165 ret = i915_gem_object_flush_active(obj);
3166 if (ret)
3167 goto out;
3168
3169 if (!obj->active)
3170 goto out;
3171
3172 /* Do this after OLR check to make sure we make forward progress polling
3173 * on this IOCTL with a timeout == 0 (like busy ioctl)
3174 */
3175 if (args->timeout_ns == 0) {
3176 ret = -ETIME;
3177 goto out;
3178 }
3179
3180 drm_gem_object_unreference(&obj->base);
3181 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3182
3183 for (i = 0; i < I915_NUM_RINGS; i++) {
3184 if (obj->last_read_req[i] == NULL)
3185 continue;
3186
3187 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3188 }
3189
3190 mutex_unlock(&dev->struct_mutex);
3191
3192 for (i = 0; i < n; i++) {
3193 if (ret == 0)
3194 ret = __i915_wait_request(req[i], reset_counter, true,
3195 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3196 file->driver_priv);
3197 i915_gem_request_unreference__unlocked(req[i]);
3198 }
3199 return ret;
3200
3201 out:
3202 drm_gem_object_unreference(&obj->base);
3203 mutex_unlock(&dev->struct_mutex);
3204 return ret;
3205 }
3206
3207 static int
__i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request * from_req,struct drm_i915_gem_request ** to_req)3208 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3209 struct intel_engine_cs *to,
3210 struct drm_i915_gem_request *from_req,
3211 struct drm_i915_gem_request **to_req)
3212 {
3213 struct intel_engine_cs *from;
3214 int ret;
3215
3216 from = i915_gem_request_get_ring(from_req);
3217 if (to == from)
3218 return 0;
3219
3220 if (i915_gem_request_completed(from_req, true))
3221 return 0;
3222
3223 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3224 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3225 ret = __i915_wait_request(from_req,
3226 atomic_read(&i915->gpu_error.reset_counter),
3227 i915->mm.interruptible,
3228 NULL,
3229 &i915->rps.semaphores);
3230 if (ret)
3231 return ret;
3232
3233 i915_gem_object_retire_request(obj, from_req);
3234 } else {
3235 int idx = intel_ring_sync_index(from, to);
3236 u32 seqno = i915_gem_request_get_seqno(from_req);
3237
3238 WARN_ON(!to_req);
3239
3240 if (seqno <= from->semaphore.sync_seqno[idx])
3241 return 0;
3242
3243 if (*to_req == NULL) {
3244 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3245 if (ret)
3246 return ret;
3247 }
3248
3249 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3250 ret = to->semaphore.sync_to(*to_req, from, seqno);
3251 if (ret)
3252 return ret;
3253
3254 /* We use last_read_req because sync_to()
3255 * might have just caused seqno wrap under
3256 * the radar.
3257 */
3258 from->semaphore.sync_seqno[idx] =
3259 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3260 }
3261
3262 return 0;
3263 }
3264
3265 /**
3266 * i915_gem_object_sync - sync an object to a ring.
3267 *
3268 * @obj: object which may be in use on another ring.
3269 * @to: ring we wish to use the object on. May be NULL.
3270 * @to_req: request we wish to use the object for. See below.
3271 * This will be allocated and returned if a request is
3272 * required but not passed in.
3273 *
3274 * This code is meant to abstract object synchronization with the GPU.
3275 * Calling with NULL implies synchronizing the object with the CPU
3276 * rather than a particular GPU ring. Conceptually we serialise writes
3277 * between engines inside the GPU. We only allow one engine to write
3278 * into a buffer at any time, but multiple readers. To ensure each has
3279 * a coherent view of memory, we must:
3280 *
3281 * - If there is an outstanding write request to the object, the new
3282 * request must wait for it to complete (either CPU or in hw, requests
3283 * on the same ring will be naturally ordered).
3284 *
3285 * - If we are a write request (pending_write_domain is set), the new
3286 * request must wait for outstanding read requests to complete.
3287 *
3288 * For CPU synchronisation (NULL to) no request is required. For syncing with
3289 * rings to_req must be non-NULL. However, a request does not have to be
3290 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3291 * request will be allocated automatically and returned through *to_req. Note
3292 * that it is not guaranteed that commands will be emitted (because the system
3293 * might already be idle). Hence there is no need to create a request that
3294 * might never have any work submitted. Note further that if a request is
3295 * returned in *to_req, it is the responsibility of the caller to submit
3296 * that request (after potentially adding more work to it).
3297 *
3298 * Returns 0 if successful, else propagates up the lower layer error.
3299 */
3300 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request ** to_req)3301 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3302 struct intel_engine_cs *to,
3303 struct drm_i915_gem_request **to_req)
3304 {
3305 const bool readonly = obj->base.pending_write_domain == 0;
3306 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3307 int ret, i, n;
3308
3309 if (!obj->active)
3310 return 0;
3311
3312 if (to == NULL)
3313 return i915_gem_object_wait_rendering(obj, readonly);
3314
3315 n = 0;
3316 if (readonly) {
3317 if (obj->last_write_req)
3318 req[n++] = obj->last_write_req;
3319 } else {
3320 for (i = 0; i < I915_NUM_RINGS; i++)
3321 if (obj->last_read_req[i])
3322 req[n++] = obj->last_read_req[i];
3323 }
3324 for (i = 0; i < n; i++) {
3325 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3326 if (ret)
3327 return ret;
3328 }
3329
3330 return 0;
3331 }
3332
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)3333 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3334 {
3335 u32 old_write_domain, old_read_domains;
3336
3337 /* Force a pagefault for domain tracking on next user access */
3338 i915_gem_release_mmap(obj);
3339
3340 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3341 return;
3342
3343 /* Wait for any direct GTT access to complete */
3344 mb();
3345
3346 old_read_domains = obj->base.read_domains;
3347 old_write_domain = obj->base.write_domain;
3348
3349 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3350 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3351
3352 trace_i915_gem_object_change_domain(obj,
3353 old_read_domains,
3354 old_write_domain);
3355 }
3356
__i915_vma_unbind(struct i915_vma * vma,bool wait)3357 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3358 {
3359 struct drm_i915_gem_object *obj = vma->obj;
3360 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3361 int ret;
3362
3363 if (list_empty(&vma->vma_link))
3364 return 0;
3365
3366 if (!drm_mm_node_allocated(&vma->node)) {
3367 i915_gem_vma_destroy(vma);
3368 return 0;
3369 }
3370
3371 if (vma->pin_count)
3372 return -EBUSY;
3373
3374 BUG_ON(obj->pages == NULL);
3375
3376 if (wait) {
3377 ret = i915_gem_object_wait_rendering(obj, false);
3378 if (ret)
3379 return ret;
3380 }
3381
3382 if (i915_is_ggtt(vma->vm) &&
3383 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3384 i915_gem_object_finish_gtt(obj);
3385
3386 /* release the fence reg _after_ flushing */
3387 ret = i915_gem_object_put_fence(obj);
3388 if (ret)
3389 return ret;
3390 }
3391
3392 trace_i915_vma_unbind(vma);
3393
3394 vma->vm->unbind_vma(vma);
3395 vma->bound = 0;
3396
3397 list_del_init(&vma->mm_list);
3398 if (i915_is_ggtt(vma->vm)) {
3399 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3400 obj->map_and_fenceable = false;
3401 } else if (vma->ggtt_view.pages) {
3402 sg_free_table(vma->ggtt_view.pages);
3403 kfree(vma->ggtt_view.pages);
3404 }
3405 vma->ggtt_view.pages = NULL;
3406 }
3407
3408 drm_mm_remove_node(&vma->node);
3409 i915_gem_vma_destroy(vma);
3410
3411 /* Since the unbound list is global, only move to that list if
3412 * no more VMAs exist. */
3413 if (list_empty(&obj->vma_list))
3414 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3415
3416 /* And finally now the object is completely decoupled from this vma,
3417 * we can drop its hold on the backing storage and allow it to be
3418 * reaped by the shrinker.
3419 */
3420 i915_gem_object_unpin_pages(obj);
3421
3422 return 0;
3423 }
3424
i915_vma_unbind(struct i915_vma * vma)3425 int i915_vma_unbind(struct i915_vma *vma)
3426 {
3427 return __i915_vma_unbind(vma, true);
3428 }
3429
__i915_vma_unbind_no_wait(struct i915_vma * vma)3430 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3431 {
3432 return __i915_vma_unbind(vma, false);
3433 }
3434
i915_gpu_idle(struct drm_device * dev)3435 int i915_gpu_idle(struct drm_device *dev)
3436 {
3437 struct drm_i915_private *dev_priv = dev->dev_private;
3438 struct intel_engine_cs *ring;
3439 int ret, i;
3440
3441 /* Flush everything onto the inactive list. */
3442 for_each_ring(ring, dev_priv, i) {
3443 if (!i915.enable_execlists) {
3444 struct drm_i915_gem_request *req;
3445
3446 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3447 if (ret)
3448 return ret;
3449
3450 ret = i915_switch_context(req);
3451 if (ret) {
3452 i915_gem_request_cancel(req);
3453 return ret;
3454 }
3455
3456 i915_add_request_no_flush(req);
3457 }
3458
3459 ret = intel_ring_idle(ring);
3460 if (ret)
3461 return ret;
3462 }
3463
3464 WARN_ON(i915_verify_lists(dev));
3465 return 0;
3466 }
3467
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long cache_level)3468 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3469 unsigned long cache_level)
3470 {
3471 struct drm_mm_node *gtt_space = &vma->node;
3472 struct drm_mm_node *other;
3473
3474 /*
3475 * On some machines we have to be careful when putting differing types
3476 * of snoopable memory together to avoid the prefetcher crossing memory
3477 * domains and dying. During vm initialisation, we decide whether or not
3478 * these constraints apply and set the drm_mm.color_adjust
3479 * appropriately.
3480 */
3481 if (vma->vm->mm.color_adjust == NULL)
3482 return true;
3483
3484 if (!drm_mm_node_allocated(gtt_space))
3485 return true;
3486
3487 if (list_empty(>t_space->node_list))
3488 return true;
3489
3490 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3491 if (other->allocated && !other->hole_follows && other->color != cache_level)
3492 return false;
3493
3494 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3495 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3496 return false;
3497
3498 return true;
3499 }
3500
3501 /**
3502 * Finds free space in the GTT aperture and binds the object or a view of it
3503 * there.
3504 */
3505 static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,unsigned alignment,uint64_t flags)3506 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3507 struct i915_address_space *vm,
3508 const struct i915_ggtt_view *ggtt_view,
3509 unsigned alignment,
3510 uint64_t flags)
3511 {
3512 struct drm_device *dev = obj->base.dev;
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 u32 fence_alignment, unfenced_alignment;
3515 u32 search_flag, alloc_flag;
3516 u64 start, end;
3517 u64 size, fence_size;
3518 struct i915_vma *vma;
3519 int ret;
3520
3521 if (i915_is_ggtt(vm)) {
3522 u32 view_size;
3523
3524 if (WARN_ON(!ggtt_view))
3525 return ERR_PTR(-EINVAL);
3526
3527 view_size = i915_ggtt_view_size(obj, ggtt_view);
3528
3529 fence_size = i915_gem_get_gtt_size(dev,
3530 view_size,
3531 obj->tiling_mode);
3532 fence_alignment = i915_gem_get_gtt_alignment(dev,
3533 view_size,
3534 obj->tiling_mode,
3535 true);
3536 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3537 view_size,
3538 obj->tiling_mode,
3539 false);
3540 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3541 } else {
3542 fence_size = i915_gem_get_gtt_size(dev,
3543 obj->base.size,
3544 obj->tiling_mode);
3545 fence_alignment = i915_gem_get_gtt_alignment(dev,
3546 obj->base.size,
3547 obj->tiling_mode,
3548 true);
3549 unfenced_alignment =
3550 i915_gem_get_gtt_alignment(dev,
3551 obj->base.size,
3552 obj->tiling_mode,
3553 false);
3554 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3555 }
3556
3557 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3558 end = vm->total;
3559 if (flags & PIN_MAPPABLE)
3560 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3561 if (flags & PIN_ZONE_4G)
3562 end = min_t(u64, end, (1ULL << 32));
3563
3564 if (alignment == 0)
3565 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3566 unfenced_alignment;
3567 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3568 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3569 ggtt_view ? ggtt_view->type : 0,
3570 alignment);
3571 return ERR_PTR(-EINVAL);
3572 }
3573
3574 /* If binding the object/GGTT view requires more space than the entire
3575 * aperture has, reject it early before evicting everything in a vain
3576 * attempt to find space.
3577 */
3578 if (size > end) {
3579 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3580 ggtt_view ? ggtt_view->type : 0,
3581 size,
3582 flags & PIN_MAPPABLE ? "mappable" : "total",
3583 end);
3584 return ERR_PTR(-E2BIG);
3585 }
3586
3587 ret = i915_gem_object_get_pages(obj);
3588 if (ret)
3589 return ERR_PTR(ret);
3590
3591 i915_gem_object_pin_pages(obj);
3592
3593 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3594 i915_gem_obj_lookup_or_create_vma(obj, vm);
3595
3596 if (IS_ERR(vma))
3597 goto err_unpin;
3598
3599 if (flags & PIN_HIGH) {
3600 search_flag = DRM_MM_SEARCH_BELOW;
3601 alloc_flag = DRM_MM_CREATE_TOP;
3602 } else {
3603 search_flag = DRM_MM_SEARCH_DEFAULT;
3604 alloc_flag = DRM_MM_CREATE_DEFAULT;
3605 }
3606
3607 search_free:
3608 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3609 size, alignment,
3610 obj->cache_level,
3611 start, end,
3612 search_flag,
3613 alloc_flag);
3614 if (ret) {
3615 ret = i915_gem_evict_something(dev, vm, size, alignment,
3616 obj->cache_level,
3617 start, end,
3618 flags);
3619 if (ret == 0)
3620 goto search_free;
3621
3622 goto err_free_vma;
3623 }
3624 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3625 ret = -EINVAL;
3626 goto err_remove_node;
3627 }
3628
3629 trace_i915_vma_bind(vma, flags);
3630 ret = i915_vma_bind(vma, obj->cache_level, flags);
3631 if (ret)
3632 goto err_remove_node;
3633
3634 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3635 list_add_tail(&vma->mm_list, &vm->inactive_list);
3636
3637 return vma;
3638
3639 err_remove_node:
3640 drm_mm_remove_node(&vma->node);
3641 err_free_vma:
3642 i915_gem_vma_destroy(vma);
3643 vma = ERR_PTR(ret);
3644 err_unpin:
3645 i915_gem_object_unpin_pages(obj);
3646 return vma;
3647 }
3648
3649 bool
i915_gem_clflush_object(struct drm_i915_gem_object * obj,bool force)3650 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3651 bool force)
3652 {
3653 /* If we don't have a page list set up, then we're not pinned
3654 * to GPU, and we can ignore the cache flush because it'll happen
3655 * again at bind time.
3656 */
3657 if (obj->pages == NULL)
3658 return false;
3659
3660 /*
3661 * Stolen memory is always coherent with the GPU as it is explicitly
3662 * marked as wc by the system, or the system is cache-coherent.
3663 */
3664 if (obj->stolen || obj->phys_handle)
3665 return false;
3666
3667 /* If the GPU is snooping the contents of the CPU cache,
3668 * we do not need to manually clear the CPU cache lines. However,
3669 * the caches are only snooped when the render cache is
3670 * flushed/invalidated. As we always have to emit invalidations
3671 * and flushes when moving into and out of the RENDER domain, correct
3672 * snooping behaviour occurs naturally as the result of our domain
3673 * tracking.
3674 */
3675 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3676 obj->cache_dirty = true;
3677 return false;
3678 }
3679
3680 trace_i915_gem_object_clflush(obj);
3681 drm_clflush_sg(obj->pages);
3682 obj->cache_dirty = false;
3683
3684 return true;
3685 }
3686
3687 /** Flushes the GTT write domain for the object if it's dirty. */
3688 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3689 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3690 {
3691 uint32_t old_write_domain;
3692
3693 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3694 return;
3695
3696 /* No actual flushing is required for the GTT write domain. Writes
3697 * to it immediately go to main memory as far as we know, so there's
3698 * no chipset flush. It also doesn't land in render cache.
3699 *
3700 * However, we do have to enforce the order so that all writes through
3701 * the GTT land before any writes to the device, such as updates to
3702 * the GATT itself.
3703 */
3704 wmb();
3705
3706 old_write_domain = obj->base.write_domain;
3707 obj->base.write_domain = 0;
3708
3709 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3710
3711 trace_i915_gem_object_change_domain(obj,
3712 obj->base.read_domains,
3713 old_write_domain);
3714 }
3715
3716 /** Flushes the CPU write domain for the object if it's dirty. */
3717 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)3718 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3719 {
3720 uint32_t old_write_domain;
3721
3722 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3723 return;
3724
3725 if (i915_gem_clflush_object(obj, obj->pin_display))
3726 i915_gem_chipset_flush(obj->base.dev);
3727
3728 old_write_domain = obj->base.write_domain;
3729 obj->base.write_domain = 0;
3730
3731 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3732
3733 trace_i915_gem_object_change_domain(obj,
3734 obj->base.read_domains,
3735 old_write_domain);
3736 }
3737
3738 /**
3739 * Moves a single object to the GTT read, and possibly write domain.
3740 *
3741 * This function returns when the move is complete, including waiting on
3742 * flushes to occur.
3743 */
3744 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3745 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3746 {
3747 uint32_t old_write_domain, old_read_domains;
3748 struct i915_vma *vma;
3749 int ret;
3750
3751 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3752 return 0;
3753
3754 ret = i915_gem_object_wait_rendering(obj, !write);
3755 if (ret)
3756 return ret;
3757
3758 /* Flush and acquire obj->pages so that we are coherent through
3759 * direct access in memory with previous cached writes through
3760 * shmemfs and that our cache domain tracking remains valid.
3761 * For example, if the obj->filp was moved to swap without us
3762 * being notified and releasing the pages, we would mistakenly
3763 * continue to assume that the obj remained out of the CPU cached
3764 * domain.
3765 */
3766 ret = i915_gem_object_get_pages(obj);
3767 if (ret)
3768 return ret;
3769
3770 i915_gem_object_flush_cpu_write_domain(obj);
3771
3772 /* Serialise direct access to this object with the barriers for
3773 * coherent writes from the GPU, by effectively invalidating the
3774 * GTT domain upon first access.
3775 */
3776 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3777 mb();
3778
3779 old_write_domain = obj->base.write_domain;
3780 old_read_domains = obj->base.read_domains;
3781
3782 /* It should now be out of any other write domains, and we can update
3783 * the domain values for our changes.
3784 */
3785 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3786 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3787 if (write) {
3788 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3789 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3790 obj->dirty = 1;
3791 }
3792
3793 trace_i915_gem_object_change_domain(obj,
3794 old_read_domains,
3795 old_write_domain);
3796
3797 /* And bump the LRU for this access */
3798 vma = i915_gem_obj_to_ggtt(obj);
3799 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3800 list_move_tail(&vma->mm_list,
3801 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3802
3803 return 0;
3804 }
3805
3806 /**
3807 * Changes the cache-level of an object across all VMA.
3808 *
3809 * After this function returns, the object will be in the new cache-level
3810 * across all GTT and the contents of the backing storage will be coherent,
3811 * with respect to the new cache-level. In order to keep the backing storage
3812 * coherent for all users, we only allow a single cache level to be set
3813 * globally on the object and prevent it from being changed whilst the
3814 * hardware is reading from the object. That is if the object is currently
3815 * on the scanout it will be set to uncached (or equivalent display
3816 * cache coherency) and all non-MOCS GPU access will also be uncached so
3817 * that all direct access to the scanout remains coherent.
3818 */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3819 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3820 enum i915_cache_level cache_level)
3821 {
3822 struct drm_device *dev = obj->base.dev;
3823 struct i915_vma *vma, *next;
3824 bool bound = false;
3825 int ret = 0;
3826
3827 if (obj->cache_level == cache_level)
3828 goto out;
3829
3830 /* Inspect the list of currently bound VMA and unbind any that would
3831 * be invalid given the new cache-level. This is principally to
3832 * catch the issue of the CS prefetch crossing page boundaries and
3833 * reading an invalid PTE on older architectures.
3834 */
3835 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3836 if (!drm_mm_node_allocated(&vma->node))
3837 continue;
3838
3839 if (vma->pin_count) {
3840 DRM_DEBUG("can not change the cache level of pinned objects\n");
3841 return -EBUSY;
3842 }
3843
3844 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3845 ret = i915_vma_unbind(vma);
3846 if (ret)
3847 return ret;
3848 } else
3849 bound = true;
3850 }
3851
3852 /* We can reuse the existing drm_mm nodes but need to change the
3853 * cache-level on the PTE. We could simply unbind them all and
3854 * rebind with the correct cache-level on next use. However since
3855 * we already have a valid slot, dma mapping, pages etc, we may as
3856 * rewrite the PTE in the belief that doing so tramples upon less
3857 * state and so involves less work.
3858 */
3859 if (bound) {
3860 /* Before we change the PTE, the GPU must not be accessing it.
3861 * If we wait upon the object, we know that all the bound
3862 * VMA are no longer active.
3863 */
3864 ret = i915_gem_object_wait_rendering(obj, false);
3865 if (ret)
3866 return ret;
3867
3868 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3869 /* Access to snoopable pages through the GTT is
3870 * incoherent and on some machines causes a hard
3871 * lockup. Relinquish the CPU mmaping to force
3872 * userspace to refault in the pages and we can
3873 * then double check if the GTT mapping is still
3874 * valid for that pointer access.
3875 */
3876 i915_gem_release_mmap(obj);
3877
3878 /* As we no longer need a fence for GTT access,
3879 * we can relinquish it now (and so prevent having
3880 * to steal a fence from someone else on the next
3881 * fence request). Note GPU activity would have
3882 * dropped the fence as all snoopable access is
3883 * supposed to be linear.
3884 */
3885 ret = i915_gem_object_put_fence(obj);
3886 if (ret)
3887 return ret;
3888 } else {
3889 /* We either have incoherent backing store and
3890 * so no GTT access or the architecture is fully
3891 * coherent. In such cases, existing GTT mmaps
3892 * ignore the cache bit in the PTE and we can
3893 * rewrite it without confusing the GPU or having
3894 * to force userspace to fault back in its mmaps.
3895 */
3896 }
3897
3898 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3899 if (!drm_mm_node_allocated(&vma->node))
3900 continue;
3901
3902 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3903 if (ret)
3904 return ret;
3905 }
3906 }
3907
3908 list_for_each_entry(vma, &obj->vma_list, vma_link)
3909 vma->node.color = cache_level;
3910 obj->cache_level = cache_level;
3911
3912 out:
3913 /* Flush the dirty CPU caches to the backing storage so that the
3914 * object is now coherent at its new cache level (with respect
3915 * to the access domain).
3916 */
3917 if (obj->cache_dirty &&
3918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3919 cpu_write_needs_clflush(obj)) {
3920 if (i915_gem_clflush_object(obj, true))
3921 i915_gem_chipset_flush(obj->base.dev);
3922 }
3923
3924 return 0;
3925 }
3926
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3927 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3928 struct drm_file *file)
3929 {
3930 struct drm_i915_gem_caching *args = data;
3931 struct drm_i915_gem_object *obj;
3932
3933 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3934 if (&obj->base == NULL)
3935 return -ENOENT;
3936
3937 switch (obj->cache_level) {
3938 case I915_CACHE_LLC:
3939 case I915_CACHE_L3_LLC:
3940 args->caching = I915_CACHING_CACHED;
3941 break;
3942
3943 case I915_CACHE_WT:
3944 args->caching = I915_CACHING_DISPLAY;
3945 break;
3946
3947 default:
3948 args->caching = I915_CACHING_NONE;
3949 break;
3950 }
3951
3952 drm_gem_object_unreference_unlocked(&obj->base);
3953 return 0;
3954 }
3955
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3956 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3957 struct drm_file *file)
3958 {
3959 struct drm_i915_private *dev_priv = dev->dev_private;
3960 struct drm_i915_gem_caching *args = data;
3961 struct drm_i915_gem_object *obj;
3962 enum i915_cache_level level;
3963 int ret;
3964
3965 switch (args->caching) {
3966 case I915_CACHING_NONE:
3967 level = I915_CACHE_NONE;
3968 break;
3969 case I915_CACHING_CACHED:
3970 /*
3971 * Due to a HW issue on BXT A stepping, GPU stores via a
3972 * snooped mapping may leave stale data in a corresponding CPU
3973 * cacheline, whereas normally such cachelines would get
3974 * invalidated.
3975 */
3976 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3977 return -ENODEV;
3978
3979 level = I915_CACHE_LLC;
3980 break;
3981 case I915_CACHING_DISPLAY:
3982 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3983 break;
3984 default:
3985 return -EINVAL;
3986 }
3987
3988 intel_runtime_pm_get(dev_priv);
3989
3990 ret = i915_mutex_lock_interruptible(dev);
3991 if (ret)
3992 goto rpm_put;
3993
3994 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3995 if (&obj->base == NULL) {
3996 ret = -ENOENT;
3997 goto unlock;
3998 }
3999
4000 ret = i915_gem_object_set_cache_level(obj, level);
4001
4002 drm_gem_object_unreference(&obj->base);
4003 unlock:
4004 mutex_unlock(&dev->struct_mutex);
4005 rpm_put:
4006 intel_runtime_pm_put(dev_priv);
4007
4008 return ret;
4009 }
4010
4011 /*
4012 * Prepare buffer for display plane (scanout, cursors, etc).
4013 * Can be called from an uninterruptible phase (modesetting) and allows
4014 * any flushes to be pipelined (for pageflips).
4015 */
4016 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request,const struct i915_ggtt_view * view)4017 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4018 u32 alignment,
4019 struct intel_engine_cs *pipelined,
4020 struct drm_i915_gem_request **pipelined_request,
4021 const struct i915_ggtt_view *view)
4022 {
4023 u32 old_read_domains, old_write_domain;
4024 int ret;
4025
4026 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4027 if (ret)
4028 return ret;
4029
4030 /* Mark the pin_display early so that we account for the
4031 * display coherency whilst setting up the cache domains.
4032 */
4033 obj->pin_display++;
4034
4035 /* The display engine is not coherent with the LLC cache on gen6. As
4036 * a result, we make sure that the pinning that is about to occur is
4037 * done with uncached PTEs. This is lowest common denominator for all
4038 * chipsets.
4039 *
4040 * However for gen6+, we could do better by using the GFDT bit instead
4041 * of uncaching, which would allow us to flush all the LLC-cached data
4042 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4043 */
4044 ret = i915_gem_object_set_cache_level(obj,
4045 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4046 if (ret)
4047 goto err_unpin_display;
4048
4049 /* As the user may map the buffer once pinned in the display plane
4050 * (e.g. libkms for the bootup splash), we have to ensure that we
4051 * always use map_and_fenceable for all scanout buffers.
4052 */
4053 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4054 view->type == I915_GGTT_VIEW_NORMAL ?
4055 PIN_MAPPABLE : 0);
4056 if (ret)
4057 goto err_unpin_display;
4058
4059 i915_gem_object_flush_cpu_write_domain(obj);
4060
4061 old_write_domain = obj->base.write_domain;
4062 old_read_domains = obj->base.read_domains;
4063
4064 /* It should now be out of any other write domains, and we can update
4065 * the domain values for our changes.
4066 */
4067 obj->base.write_domain = 0;
4068 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4069
4070 trace_i915_gem_object_change_domain(obj,
4071 old_read_domains,
4072 old_write_domain);
4073
4074 return 0;
4075
4076 err_unpin_display:
4077 obj->pin_display--;
4078 return ret;
4079 }
4080
4081 void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4082 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4083 const struct i915_ggtt_view *view)
4084 {
4085 if (WARN_ON(obj->pin_display == 0))
4086 return;
4087
4088 i915_gem_object_ggtt_unpin_view(obj, view);
4089
4090 obj->pin_display--;
4091 }
4092
4093 /**
4094 * Moves a single object to the CPU read, and possibly write domain.
4095 *
4096 * This function returns when the move is complete, including waiting on
4097 * flushes to occur.
4098 */
4099 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4100 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4101 {
4102 uint32_t old_write_domain, old_read_domains;
4103 int ret;
4104
4105 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4106 return 0;
4107
4108 ret = i915_gem_object_wait_rendering(obj, !write);
4109 if (ret)
4110 return ret;
4111
4112 i915_gem_object_flush_gtt_write_domain(obj);
4113
4114 old_write_domain = obj->base.write_domain;
4115 old_read_domains = obj->base.read_domains;
4116
4117 /* Flush the CPU cache if it's still invalid. */
4118 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4119 i915_gem_clflush_object(obj, false);
4120
4121 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4122 }
4123
4124 /* It should now be out of any other write domains, and we can update
4125 * the domain values for our changes.
4126 */
4127 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4128
4129 /* If we're writing through the CPU, then the GPU read domains will
4130 * need to be invalidated at next use.
4131 */
4132 if (write) {
4133 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4134 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4135 }
4136
4137 trace_i915_gem_object_change_domain(obj,
4138 old_read_domains,
4139 old_write_domain);
4140
4141 return 0;
4142 }
4143
4144 /* Throttle our rendering by waiting until the ring has completed our requests
4145 * emitted over 20 msec ago.
4146 *
4147 * Note that if we were to use the current jiffies each time around the loop,
4148 * we wouldn't escape the function with any frames outstanding if the time to
4149 * render a frame was over 20ms.
4150 *
4151 * This should get us reasonable parallelism between CPU and GPU but also
4152 * relatively low latency when blocking on a particular request to finish.
4153 */
4154 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4155 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4156 {
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct drm_i915_file_private *file_priv = file->driver_priv;
4159 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4160 struct drm_i915_gem_request *request, *target = NULL;
4161 unsigned reset_counter;
4162 int ret;
4163
4164 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4165 if (ret)
4166 return ret;
4167
4168 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4169 if (ret)
4170 return ret;
4171
4172 spin_lock(&file_priv->mm.lock);
4173 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174 if (time_after_eq(request->emitted_jiffies, recent_enough))
4175 break;
4176
4177 /*
4178 * Note that the request might not have been submitted yet.
4179 * In which case emitted_jiffies will be zero.
4180 */
4181 if (!request->emitted_jiffies)
4182 continue;
4183
4184 target = request;
4185 }
4186 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4187 if (target)
4188 i915_gem_request_reference(target);
4189 spin_unlock(&file_priv->mm.lock);
4190
4191 if (target == NULL)
4192 return 0;
4193
4194 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4195 if (ret == 0)
4196 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4197
4198 i915_gem_request_unreference__unlocked(target);
4199
4200 return ret;
4201 }
4202
4203 static bool
i915_vma_misplaced(struct i915_vma * vma,uint32_t alignment,uint64_t flags)4204 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4205 {
4206 struct drm_i915_gem_object *obj = vma->obj;
4207
4208 if (alignment &&
4209 vma->node.start & (alignment - 1))
4210 return true;
4211
4212 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4213 return true;
4214
4215 if (flags & PIN_OFFSET_BIAS &&
4216 vma->node.start < (flags & PIN_OFFSET_MASK))
4217 return true;
4218
4219 return false;
4220 }
4221
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)4222 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4223 {
4224 struct drm_i915_gem_object *obj = vma->obj;
4225 bool mappable, fenceable;
4226 u32 fence_size, fence_alignment;
4227
4228 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4229 obj->base.size,
4230 obj->tiling_mode);
4231 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4232 obj->base.size,
4233 obj->tiling_mode,
4234 true);
4235
4236 fenceable = (vma->node.size == fence_size &&
4237 (vma->node.start & (fence_alignment - 1)) == 0);
4238
4239 mappable = (vma->node.start + fence_size <=
4240 to_i915(obj->base.dev)->gtt.mappable_end);
4241
4242 obj->map_and_fenceable = mappable && fenceable;
4243 }
4244
4245 static int
i915_gem_object_do_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,uint32_t alignment,uint64_t flags)4246 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4247 struct i915_address_space *vm,
4248 const struct i915_ggtt_view *ggtt_view,
4249 uint32_t alignment,
4250 uint64_t flags)
4251 {
4252 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253 struct i915_vma *vma;
4254 unsigned bound;
4255 int ret;
4256
4257 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4258 return -ENODEV;
4259
4260 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4261 return -EINVAL;
4262
4263 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4264 return -EINVAL;
4265
4266 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4267 return -EINVAL;
4268
4269 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4270 i915_gem_obj_to_vma(obj, vm);
4271
4272 if (IS_ERR(vma))
4273 return PTR_ERR(vma);
4274
4275 if (vma) {
4276 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4277 return -EBUSY;
4278
4279 if (i915_vma_misplaced(vma, alignment, flags)) {
4280 WARN(vma->pin_count,
4281 "bo is already pinned in %s with incorrect alignment:"
4282 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283 " obj->map_and_fenceable=%d\n",
4284 ggtt_view ? "ggtt" : "ppgtt",
4285 upper_32_bits(vma->node.start),
4286 lower_32_bits(vma->node.start),
4287 alignment,
4288 !!(flags & PIN_MAPPABLE),
4289 obj->map_and_fenceable);
4290 ret = i915_vma_unbind(vma);
4291 if (ret)
4292 return ret;
4293
4294 vma = NULL;
4295 }
4296 }
4297
4298 bound = vma ? vma->bound : 0;
4299 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4301 flags);
4302 if (IS_ERR(vma))
4303 return PTR_ERR(vma);
4304 } else {
4305 ret = i915_vma_bind(vma, obj->cache_level, flags);
4306 if (ret)
4307 return ret;
4308 }
4309
4310 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4311 (bound ^ vma->bound) & GLOBAL_BIND) {
4312 __i915_vma_set_map_and_fenceable(vma);
4313 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4314 }
4315
4316 vma->pin_count++;
4317 return 0;
4318 }
4319
4320 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,uint32_t alignment,uint64_t flags)4321 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4322 struct i915_address_space *vm,
4323 uint32_t alignment,
4324 uint64_t flags)
4325 {
4326 return i915_gem_object_do_pin(obj, vm,
4327 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4328 alignment, flags);
4329 }
4330
4331 int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,uint32_t alignment,uint64_t flags)4332 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4333 const struct i915_ggtt_view *view,
4334 uint32_t alignment,
4335 uint64_t flags)
4336 {
4337 if (WARN_ONCE(!view, "no view specified"))
4338 return -EINVAL;
4339
4340 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4341 alignment, flags | PIN_GLOBAL);
4342 }
4343
4344 void
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4345 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4346 const struct i915_ggtt_view *view)
4347 {
4348 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4349
4350 BUG_ON(!vma);
4351 WARN_ON(vma->pin_count == 0);
4352 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4353
4354 --vma->pin_count;
4355 }
4356
4357 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4358 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file)
4360 {
4361 struct drm_i915_gem_busy *args = data;
4362 struct drm_i915_gem_object *obj;
4363 int ret;
4364
4365 ret = i915_mutex_lock_interruptible(dev);
4366 if (ret)
4367 return ret;
4368
4369 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4370 if (&obj->base == NULL) {
4371 ret = -ENOENT;
4372 goto unlock;
4373 }
4374
4375 /* Count all active objects as busy, even if they are currently not used
4376 * by the gpu. Users of this interface expect objects to eventually
4377 * become non-busy without any further actions, therefore emit any
4378 * necessary flushes here.
4379 */
4380 ret = i915_gem_object_flush_active(obj);
4381 if (ret)
4382 goto unref;
4383
4384 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4385 args->busy = obj->active << 16;
4386 if (obj->last_write_req)
4387 args->busy |= obj->last_write_req->ring->id;
4388
4389 unref:
4390 drm_gem_object_unreference(&obj->base);
4391 unlock:
4392 mutex_unlock(&dev->struct_mutex);
4393 return ret;
4394 }
4395
4396 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4397 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4398 struct drm_file *file_priv)
4399 {
4400 return i915_gem_ring_throttle(dev, file_priv);
4401 }
4402
4403 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4404 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4405 struct drm_file *file_priv)
4406 {
4407 struct drm_i915_private *dev_priv = dev->dev_private;
4408 struct drm_i915_gem_madvise *args = data;
4409 struct drm_i915_gem_object *obj;
4410 int ret;
4411
4412 switch (args->madv) {
4413 case I915_MADV_DONTNEED:
4414 case I915_MADV_WILLNEED:
4415 break;
4416 default:
4417 return -EINVAL;
4418 }
4419
4420 ret = i915_mutex_lock_interruptible(dev);
4421 if (ret)
4422 return ret;
4423
4424 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4425 if (&obj->base == NULL) {
4426 ret = -ENOENT;
4427 goto unlock;
4428 }
4429
4430 if (i915_gem_obj_is_pinned(obj)) {
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434
4435 if (obj->pages &&
4436 obj->tiling_mode != I915_TILING_NONE &&
4437 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4438 if (obj->madv == I915_MADV_WILLNEED)
4439 i915_gem_object_unpin_pages(obj);
4440 if (args->madv == I915_MADV_WILLNEED)
4441 i915_gem_object_pin_pages(obj);
4442 }
4443
4444 if (obj->madv != __I915_MADV_PURGED)
4445 obj->madv = args->madv;
4446
4447 /* if the object is no longer attached, discard its backing storage */
4448 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4449 i915_gem_object_truncate(obj);
4450
4451 args->retained = obj->madv != __I915_MADV_PURGED;
4452
4453 out:
4454 drm_gem_object_unreference(&obj->base);
4455 unlock:
4456 mutex_unlock(&dev->struct_mutex);
4457 return ret;
4458 }
4459
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4460 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4461 const struct drm_i915_gem_object_ops *ops)
4462 {
4463 int i;
4464
4465 INIT_LIST_HEAD(&obj->global_list);
4466 for (i = 0; i < I915_NUM_RINGS; i++)
4467 INIT_LIST_HEAD(&obj->ring_list[i]);
4468 INIT_LIST_HEAD(&obj->obj_exec_link);
4469 INIT_LIST_HEAD(&obj->vma_list);
4470 INIT_LIST_HEAD(&obj->batch_pool_link);
4471
4472 obj->ops = ops;
4473
4474 obj->fence_reg = I915_FENCE_REG_NONE;
4475 obj->madv = I915_MADV_WILLNEED;
4476
4477 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4478 }
4479
4480 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4481 .get_pages = i915_gem_object_get_pages_gtt,
4482 .put_pages = i915_gem_object_put_pages_gtt,
4483 };
4484
i915_gem_alloc_object(struct drm_device * dev,size_t size)4485 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4486 size_t size)
4487 {
4488 struct drm_i915_gem_object *obj;
4489 struct address_space *mapping;
4490 gfp_t mask;
4491
4492 obj = i915_gem_object_alloc(dev);
4493 if (obj == NULL)
4494 return NULL;
4495
4496 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4497 i915_gem_object_free(obj);
4498 return NULL;
4499 }
4500
4501 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4502 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4503 /* 965gm cannot relocate objects above 4GiB. */
4504 mask &= ~__GFP_HIGHMEM;
4505 mask |= __GFP_DMA32;
4506 }
4507
4508 mapping = file_inode(obj->base.filp)->i_mapping;
4509 mapping_set_gfp_mask(mapping, mask);
4510
4511 i915_gem_object_init(obj, &i915_gem_object_ops);
4512
4513 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4514 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4515
4516 if (HAS_LLC(dev)) {
4517 /* On some devices, we can have the GPU use the LLC (the CPU
4518 * cache) for about a 10% performance improvement
4519 * compared to uncached. Graphics requests other than
4520 * display scanout are coherent with the CPU in
4521 * accessing this cache. This means in this mode we
4522 * don't need to clflush on the CPU side, and on the
4523 * GPU side we only need to flush internal caches to
4524 * get data visible to the CPU.
4525 *
4526 * However, we maintain the display planes as UC, and so
4527 * need to rebind when first used as such.
4528 */
4529 obj->cache_level = I915_CACHE_LLC;
4530 } else
4531 obj->cache_level = I915_CACHE_NONE;
4532
4533 trace_i915_gem_object_create(obj);
4534
4535 return obj;
4536 }
4537
discard_backing_storage(struct drm_i915_gem_object * obj)4538 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4539 {
4540 /* If we are the last user of the backing storage (be it shmemfs
4541 * pages or stolen etc), we know that the pages are going to be
4542 * immediately released. In this case, we can then skip copying
4543 * back the contents from the GPU.
4544 */
4545
4546 if (obj->madv != I915_MADV_WILLNEED)
4547 return false;
4548
4549 if (obj->base.filp == NULL)
4550 return true;
4551
4552 /* At first glance, this looks racy, but then again so would be
4553 * userspace racing mmap against close. However, the first external
4554 * reference to the filp can only be obtained through the
4555 * i915_gem_mmap_ioctl() which safeguards us against the user
4556 * acquiring such a reference whilst we are in the middle of
4557 * freeing the object.
4558 */
4559 return atomic_long_read(&obj->base.filp->f_count) == 1;
4560 }
4561
i915_gem_free_object(struct drm_gem_object * gem_obj)4562 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4563 {
4564 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4565 struct drm_device *dev = obj->base.dev;
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 struct i915_vma *vma, *next;
4568
4569 intel_runtime_pm_get(dev_priv);
4570
4571 trace_i915_gem_object_destroy(obj);
4572
4573 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4574 int ret;
4575
4576 vma->pin_count = 0;
4577 ret = i915_vma_unbind(vma);
4578 if (WARN_ON(ret == -ERESTARTSYS)) {
4579 bool was_interruptible;
4580
4581 was_interruptible = dev_priv->mm.interruptible;
4582 dev_priv->mm.interruptible = false;
4583
4584 WARN_ON(i915_vma_unbind(vma));
4585
4586 dev_priv->mm.interruptible = was_interruptible;
4587 }
4588 }
4589
4590 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4591 * before progressing. */
4592 if (obj->stolen)
4593 i915_gem_object_unpin_pages(obj);
4594
4595 WARN_ON(obj->frontbuffer_bits);
4596
4597 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4598 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4599 obj->tiling_mode != I915_TILING_NONE)
4600 i915_gem_object_unpin_pages(obj);
4601
4602 if (WARN_ON(obj->pages_pin_count))
4603 obj->pages_pin_count = 0;
4604 if (discard_backing_storage(obj))
4605 obj->madv = I915_MADV_DONTNEED;
4606 i915_gem_object_put_pages(obj);
4607 i915_gem_object_free_mmap_offset(obj);
4608
4609 BUG_ON(obj->pages);
4610
4611 if (obj->base.import_attach)
4612 drm_prime_gem_destroy(&obj->base, NULL);
4613
4614 if (obj->ops->release)
4615 obj->ops->release(obj);
4616
4617 drm_gem_object_release(&obj->base);
4618 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4619
4620 kfree(obj->bit_17);
4621 i915_gem_object_free(obj);
4622
4623 intel_runtime_pm_put(dev_priv);
4624 }
4625
i915_gem_obj_to_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)4626 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4627 struct i915_address_space *vm)
4628 {
4629 struct i915_vma *vma;
4630 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4631 if (i915_is_ggtt(vma->vm) &&
4632 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4633 continue;
4634 if (vma->vm == vm)
4635 return vma;
4636 }
4637 return NULL;
4638 }
4639
i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4640 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4641 const struct i915_ggtt_view *view)
4642 {
4643 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4644 struct i915_vma *vma;
4645
4646 if (WARN_ONCE(!view, "no view specified"))
4647 return ERR_PTR(-EINVAL);
4648
4649 list_for_each_entry(vma, &obj->vma_list, vma_link)
4650 if (vma->vm == ggtt &&
4651 i915_ggtt_view_equal(&vma->ggtt_view, view))
4652 return vma;
4653 return NULL;
4654 }
4655
i915_gem_vma_destroy(struct i915_vma * vma)4656 void i915_gem_vma_destroy(struct i915_vma *vma)
4657 {
4658 struct i915_address_space *vm = NULL;
4659 WARN_ON(vma->node.allocated);
4660
4661 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4662 if (!list_empty(&vma->exec_list))
4663 return;
4664
4665 vm = vma->vm;
4666
4667 if (!i915_is_ggtt(vm))
4668 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4669
4670 list_del(&vma->vma_link);
4671
4672 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4673 }
4674
4675 static void
i915_gem_stop_ringbuffers(struct drm_device * dev)4676 i915_gem_stop_ringbuffers(struct drm_device *dev)
4677 {
4678 struct drm_i915_private *dev_priv = dev->dev_private;
4679 struct intel_engine_cs *ring;
4680 int i;
4681
4682 for_each_ring(ring, dev_priv, i)
4683 dev_priv->gt.stop_ring(ring);
4684 }
4685
4686 int
i915_gem_suspend(struct drm_device * dev)4687 i915_gem_suspend(struct drm_device *dev)
4688 {
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690 int ret = 0;
4691
4692 mutex_lock(&dev->struct_mutex);
4693 ret = i915_gpu_idle(dev);
4694 if (ret)
4695 goto err;
4696
4697 i915_gem_retire_requests(dev);
4698
4699 i915_gem_stop_ringbuffers(dev);
4700 mutex_unlock(&dev->struct_mutex);
4701
4702 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4703 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4704 flush_delayed_work(&dev_priv->mm.idle_work);
4705
4706 /* Assert that we sucessfully flushed all the work and
4707 * reset the GPU back to its idle, low power state.
4708 */
4709 WARN_ON(dev_priv->mm.busy);
4710
4711 return 0;
4712
4713 err:
4714 mutex_unlock(&dev->struct_mutex);
4715 return ret;
4716 }
4717
i915_gem_l3_remap(struct drm_i915_gem_request * req,int slice)4718 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4719 {
4720 struct intel_engine_cs *ring = req->ring;
4721 struct drm_device *dev = ring->dev;
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4724 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4725 int i, ret;
4726
4727 if (!HAS_L3_DPF(dev) || !remap_info)
4728 return 0;
4729
4730 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4731 if (ret)
4732 return ret;
4733
4734 /*
4735 * Note: We do not worry about the concurrent register cacheline hang
4736 * here because no other code should access these registers other than
4737 * at initialization time.
4738 */
4739 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4740 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4741 intel_ring_emit(ring, reg_base + i);
4742 intel_ring_emit(ring, remap_info[i/4]);
4743 }
4744
4745 intel_ring_advance(ring);
4746
4747 return ret;
4748 }
4749
i915_gem_init_swizzling(struct drm_device * dev)4750 void i915_gem_init_swizzling(struct drm_device *dev)
4751 {
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753
4754 if (INTEL_INFO(dev)->gen < 5 ||
4755 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4756 return;
4757
4758 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4759 DISP_TILE_SURFACE_SWIZZLING);
4760
4761 if (IS_GEN5(dev))
4762 return;
4763
4764 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4765 if (IS_GEN6(dev))
4766 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4767 else if (IS_GEN7(dev))
4768 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4769 else if (IS_GEN8(dev))
4770 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4771 else
4772 BUG();
4773 }
4774
init_unused_ring(struct drm_device * dev,u32 base)4775 static void init_unused_ring(struct drm_device *dev, u32 base)
4776 {
4777 struct drm_i915_private *dev_priv = dev->dev_private;
4778
4779 I915_WRITE(RING_CTL(base), 0);
4780 I915_WRITE(RING_HEAD(base), 0);
4781 I915_WRITE(RING_TAIL(base), 0);
4782 I915_WRITE(RING_START(base), 0);
4783 }
4784
init_unused_rings(struct drm_device * dev)4785 static void init_unused_rings(struct drm_device *dev)
4786 {
4787 if (IS_I830(dev)) {
4788 init_unused_ring(dev, PRB1_BASE);
4789 init_unused_ring(dev, SRB0_BASE);
4790 init_unused_ring(dev, SRB1_BASE);
4791 init_unused_ring(dev, SRB2_BASE);
4792 init_unused_ring(dev, SRB3_BASE);
4793 } else if (IS_GEN2(dev)) {
4794 init_unused_ring(dev, SRB0_BASE);
4795 init_unused_ring(dev, SRB1_BASE);
4796 } else if (IS_GEN3(dev)) {
4797 init_unused_ring(dev, PRB1_BASE);
4798 init_unused_ring(dev, PRB2_BASE);
4799 }
4800 }
4801
i915_gem_init_rings(struct drm_device * dev)4802 int i915_gem_init_rings(struct drm_device *dev)
4803 {
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805 int ret;
4806
4807 ret = intel_init_render_ring_buffer(dev);
4808 if (ret)
4809 return ret;
4810
4811 if (HAS_BSD(dev)) {
4812 ret = intel_init_bsd_ring_buffer(dev);
4813 if (ret)
4814 goto cleanup_render_ring;
4815 }
4816
4817 if (HAS_BLT(dev)) {
4818 ret = intel_init_blt_ring_buffer(dev);
4819 if (ret)
4820 goto cleanup_bsd_ring;
4821 }
4822
4823 if (HAS_VEBOX(dev)) {
4824 ret = intel_init_vebox_ring_buffer(dev);
4825 if (ret)
4826 goto cleanup_blt_ring;
4827 }
4828
4829 if (HAS_BSD2(dev)) {
4830 ret = intel_init_bsd2_ring_buffer(dev);
4831 if (ret)
4832 goto cleanup_vebox_ring;
4833 }
4834
4835 return 0;
4836
4837 cleanup_vebox_ring:
4838 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4839 cleanup_blt_ring:
4840 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4841 cleanup_bsd_ring:
4842 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4843 cleanup_render_ring:
4844 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4845
4846 return ret;
4847 }
4848
4849 int
i915_gem_init_hw(struct drm_device * dev)4850 i915_gem_init_hw(struct drm_device *dev)
4851 {
4852 struct drm_i915_private *dev_priv = dev->dev_private;
4853 struct intel_engine_cs *ring;
4854 int ret, i, j;
4855
4856 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4857 return -EIO;
4858
4859 /* Double layer security blanket, see i915_gem_init() */
4860 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4861
4862 if (dev_priv->ellc_size)
4863 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4864
4865 if (IS_HASWELL(dev))
4866 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4867 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4868
4869 if (HAS_PCH_NOP(dev)) {
4870 if (IS_IVYBRIDGE(dev)) {
4871 u32 temp = I915_READ(GEN7_MSG_CTL);
4872 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4873 I915_WRITE(GEN7_MSG_CTL, temp);
4874 } else if (INTEL_INFO(dev)->gen >= 7) {
4875 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4876 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4877 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4878 }
4879 }
4880
4881 i915_gem_init_swizzling(dev);
4882
4883 /*
4884 * At least 830 can leave some of the unused rings
4885 * "active" (ie. head != tail) after resume which
4886 * will prevent c3 entry. Makes sure all unused rings
4887 * are totally idle.
4888 */
4889 init_unused_rings(dev);
4890
4891 BUG_ON(!dev_priv->ring[RCS].default_context);
4892
4893 ret = i915_ppgtt_init_hw(dev);
4894 if (ret) {
4895 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4896 goto out;
4897 }
4898
4899 /* Need to do basic initialisation of all rings first: */
4900 for_each_ring(ring, dev_priv, i) {
4901 ret = ring->init_hw(ring);
4902 if (ret)
4903 goto out;
4904 }
4905
4906 /* We can't enable contexts until all firmware is loaded */
4907 if (HAS_GUC_UCODE(dev)) {
4908 ret = intel_guc_ucode_load(dev);
4909 if (ret) {
4910 /*
4911 * If we got an error and GuC submission is enabled, map
4912 * the error to -EIO so the GPU will be declared wedged.
4913 * OTOH, if we didn't intend to use the GuC anyway, just
4914 * discard the error and carry on.
4915 */
4916 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4917 i915.enable_guc_submission ? "" :
4918 " (ignored)");
4919 ret = i915.enable_guc_submission ? -EIO : 0;
4920 if (ret)
4921 goto out;
4922 }
4923 }
4924
4925 /*
4926 * Increment the next seqno by 0x100 so we have a visible break
4927 * on re-initialisation
4928 */
4929 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4930 if (ret)
4931 goto out;
4932
4933 /* Now it is safe to go back round and do everything else: */
4934 for_each_ring(ring, dev_priv, i) {
4935 struct drm_i915_gem_request *req;
4936
4937 WARN_ON(!ring->default_context);
4938
4939 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4940 if (ret) {
4941 i915_gem_cleanup_ringbuffer(dev);
4942 goto out;
4943 }
4944
4945 if (ring->id == RCS) {
4946 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4947 i915_gem_l3_remap(req, j);
4948 }
4949
4950 ret = i915_ppgtt_init_ring(req);
4951 if (ret && ret != -EIO) {
4952 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4953 i915_gem_request_cancel(req);
4954 i915_gem_cleanup_ringbuffer(dev);
4955 goto out;
4956 }
4957
4958 ret = i915_gem_context_enable(req);
4959 if (ret && ret != -EIO) {
4960 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4961 i915_gem_request_cancel(req);
4962 i915_gem_cleanup_ringbuffer(dev);
4963 goto out;
4964 }
4965
4966 i915_add_request_no_flush(req);
4967 }
4968
4969 out:
4970 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971 return ret;
4972 }
4973
i915_gem_init(struct drm_device * dev)4974 int i915_gem_init(struct drm_device *dev)
4975 {
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 int ret;
4978
4979 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4980 i915.enable_execlists);
4981
4982 mutex_lock(&dev->struct_mutex);
4983
4984 if (IS_VALLEYVIEW(dev)) {
4985 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4986 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4987 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4988 VLV_GTLC_ALLOWWAKEACK), 10))
4989 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4990 }
4991
4992 if (!i915.enable_execlists) {
4993 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4994 dev_priv->gt.init_rings = i915_gem_init_rings;
4995 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4996 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4997 } else {
4998 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4999 dev_priv->gt.init_rings = intel_logical_rings_init;
5000 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5001 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5002 }
5003
5004 /* This is just a security blanket to placate dragons.
5005 * On some systems, we very sporadically observe that the first TLBs
5006 * used by the CS may be stale, despite us poking the TLB reset. If
5007 * we hold the forcewake during initialisation these problems
5008 * just magically go away.
5009 */
5010 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5011
5012 ret = i915_gem_init_userptr(dev);
5013 if (ret)
5014 goto out_unlock;
5015
5016 i915_gem_init_global_gtt(dev);
5017
5018 ret = i915_gem_context_init(dev);
5019 if (ret)
5020 goto out_unlock;
5021
5022 ret = dev_priv->gt.init_rings(dev);
5023 if (ret)
5024 goto out_unlock;
5025
5026 ret = i915_gem_init_hw(dev);
5027 if (ret == -EIO) {
5028 /* Allow ring initialisation to fail by marking the GPU as
5029 * wedged. But we only want to do this where the GPU is angry,
5030 * for all other failure, such as an allocation failure, bail.
5031 */
5032 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5033 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5034 ret = 0;
5035 }
5036
5037 out_unlock:
5038 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5039 mutex_unlock(&dev->struct_mutex);
5040
5041 return ret;
5042 }
5043
5044 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)5045 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5046 {
5047 struct drm_i915_private *dev_priv = dev->dev_private;
5048 struct intel_engine_cs *ring;
5049 int i;
5050
5051 for_each_ring(ring, dev_priv, i)
5052 dev_priv->gt.cleanup_ring(ring);
5053
5054 if (i915.enable_execlists)
5055 /*
5056 * Neither the BIOS, ourselves or any other kernel
5057 * expects the system to be in execlists mode on startup,
5058 * so we need to reset the GPU back to legacy mode.
5059 */
5060 intel_gpu_reset(dev);
5061 }
5062
5063 static void
init_ring_lists(struct intel_engine_cs * ring)5064 init_ring_lists(struct intel_engine_cs *ring)
5065 {
5066 INIT_LIST_HEAD(&ring->active_list);
5067 INIT_LIST_HEAD(&ring->request_list);
5068 }
5069
5070 void
i915_gem_load(struct drm_device * dev)5071 i915_gem_load(struct drm_device *dev)
5072 {
5073 struct drm_i915_private *dev_priv = dev->dev_private;
5074 int i;
5075
5076 dev_priv->objects =
5077 kmem_cache_create("i915_gem_object",
5078 sizeof(struct drm_i915_gem_object), 0,
5079 SLAB_HWCACHE_ALIGN,
5080 NULL);
5081 dev_priv->vmas =
5082 kmem_cache_create("i915_gem_vma",
5083 sizeof(struct i915_vma), 0,
5084 SLAB_HWCACHE_ALIGN,
5085 NULL);
5086 dev_priv->requests =
5087 kmem_cache_create("i915_gem_request",
5088 sizeof(struct drm_i915_gem_request), 0,
5089 SLAB_HWCACHE_ALIGN,
5090 NULL);
5091
5092 INIT_LIST_HEAD(&dev_priv->vm_list);
5093 INIT_LIST_HEAD(&dev_priv->context_list);
5094 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5095 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5096 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5097 for (i = 0; i < I915_NUM_RINGS; i++)
5098 init_ring_lists(&dev_priv->ring[i]);
5099 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5100 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5101 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5102 i915_gem_retire_work_handler);
5103 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5104 i915_gem_idle_work_handler);
5105 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5106
5107 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5108
5109 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5110 dev_priv->num_fence_regs = 32;
5111 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5112 dev_priv->num_fence_regs = 16;
5113 else
5114 dev_priv->num_fence_regs = 8;
5115
5116 if (intel_vgpu_active(dev))
5117 dev_priv->num_fence_regs =
5118 I915_READ(vgtif_reg(avail_rs.fence_num));
5119
5120 /*
5121 * Set initial sequence number for requests.
5122 * Using this number allows the wraparound to happen early,
5123 * catching any obvious problems.
5124 */
5125 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5126 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5127
5128 /* Initialize fence registers to zero */
5129 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5130 i915_gem_restore_fences(dev);
5131
5132 i915_gem_detect_bit_6_swizzle(dev);
5133 init_waitqueue_head(&dev_priv->pending_flip_queue);
5134
5135 dev_priv->mm.interruptible = true;
5136
5137 i915_gem_shrinker_init(dev_priv);
5138
5139 mutex_init(&dev_priv->fb_tracking.lock);
5140
5141 mutex_init(&dev_priv->tlb_invalidate_lock);
5142 }
5143
i915_gem_release(struct drm_device * dev,struct drm_file * file)5144 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5145 {
5146 struct drm_i915_file_private *file_priv = file->driver_priv;
5147
5148 /* Clean up our request list when the client is going away, so that
5149 * later retire_requests won't dereference our soon-to-be-gone
5150 * file_priv.
5151 */
5152 spin_lock(&file_priv->mm.lock);
5153 while (!list_empty(&file_priv->mm.request_list)) {
5154 struct drm_i915_gem_request *request;
5155
5156 request = list_first_entry(&file_priv->mm.request_list,
5157 struct drm_i915_gem_request,
5158 client_list);
5159 list_del(&request->client_list);
5160 request->file_priv = NULL;
5161 }
5162 spin_unlock(&file_priv->mm.lock);
5163
5164 if (!list_empty(&file_priv->rps.link)) {
5165 spin_lock(&to_i915(dev)->rps.client_lock);
5166 list_del(&file_priv->rps.link);
5167 spin_unlock(&to_i915(dev)->rps.client_lock);
5168 }
5169 }
5170
i915_gem_open(struct drm_device * dev,struct drm_file * file)5171 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5172 {
5173 struct drm_i915_file_private *file_priv;
5174 int ret;
5175
5176 DRM_DEBUG_DRIVER("\n");
5177
5178 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5179 if (!file_priv)
5180 return -ENOMEM;
5181
5182 file->driver_priv = file_priv;
5183 file_priv->dev_priv = dev->dev_private;
5184 file_priv->file = file;
5185 INIT_LIST_HEAD(&file_priv->rps.link);
5186
5187 spin_lock_init(&file_priv->mm.lock);
5188 INIT_LIST_HEAD(&file_priv->mm.request_list);
5189
5190 ret = i915_gem_context_open(dev, file);
5191 if (ret)
5192 kfree(file_priv);
5193
5194 return ret;
5195 }
5196
5197 /**
5198 * i915_gem_track_fb - update frontbuffer tracking
5199 * @old: current GEM buffer for the frontbuffer slots
5200 * @new: new GEM buffer for the frontbuffer slots
5201 * @frontbuffer_bits: bitmask of frontbuffer slots
5202 *
5203 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5204 * from @old and setting them in @new. Both @old and @new can be NULL.
5205 */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5206 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5207 struct drm_i915_gem_object *new,
5208 unsigned frontbuffer_bits)
5209 {
5210 if (old) {
5211 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5212 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5213 old->frontbuffer_bits &= ~frontbuffer_bits;
5214 }
5215
5216 if (new) {
5217 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5218 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5219 new->frontbuffer_bits |= frontbuffer_bits;
5220 }
5221 }
5222
5223 /* All the new VM stuff */
i915_gem_obj_offset(struct drm_i915_gem_object * o,struct i915_address_space * vm)5224 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5225 struct i915_address_space *vm)
5226 {
5227 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5228 struct i915_vma *vma;
5229
5230 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5231
5232 list_for_each_entry(vma, &o->vma_list, vma_link) {
5233 if (i915_is_ggtt(vma->vm) &&
5234 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5235 continue;
5236 if (vma->vm == vm)
5237 return vma->node.start;
5238 }
5239
5240 WARN(1, "%s vma for this object not found.\n",
5241 i915_is_ggtt(vm) ? "global" : "ppgtt");
5242 return -1;
5243 }
5244
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5245 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5246 const struct i915_ggtt_view *view)
5247 {
5248 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5249 struct i915_vma *vma;
5250
5251 list_for_each_entry(vma, &o->vma_list, vma_link)
5252 if (vma->vm == ggtt &&
5253 i915_ggtt_view_equal(&vma->ggtt_view, view))
5254 return vma->node.start;
5255
5256 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5257 return -1;
5258 }
5259
i915_gem_obj_bound(struct drm_i915_gem_object * o,struct i915_address_space * vm)5260 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5261 struct i915_address_space *vm)
5262 {
5263 struct i915_vma *vma;
5264
5265 list_for_each_entry(vma, &o->vma_list, vma_link) {
5266 if (i915_is_ggtt(vma->vm) &&
5267 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5268 continue;
5269 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5270 return true;
5271 }
5272
5273 return false;
5274 }
5275
i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5276 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5277 const struct i915_ggtt_view *view)
5278 {
5279 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5280 struct i915_vma *vma;
5281
5282 list_for_each_entry(vma, &o->vma_list, vma_link)
5283 if (vma->vm == ggtt &&
5284 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5285 drm_mm_node_allocated(&vma->node))
5286 return true;
5287
5288 return false;
5289 }
5290
i915_gem_obj_bound_any(struct drm_i915_gem_object * o)5291 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5292 {
5293 struct i915_vma *vma;
5294
5295 list_for_each_entry(vma, &o->vma_list, vma_link)
5296 if (drm_mm_node_allocated(&vma->node))
5297 return true;
5298
5299 return false;
5300 }
5301
i915_gem_obj_size(struct drm_i915_gem_object * o,struct i915_address_space * vm)5302 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5303 struct i915_address_space *vm)
5304 {
5305 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5306 struct i915_vma *vma;
5307
5308 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5309
5310 BUG_ON(list_empty(&o->vma_list));
5311
5312 list_for_each_entry(vma, &o->vma_list, vma_link) {
5313 if (i915_is_ggtt(vma->vm) &&
5314 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5315 continue;
5316 if (vma->vm == vm)
5317 return vma->node.size;
5318 }
5319 return 0;
5320 }
5321
i915_gem_obj_is_pinned(struct drm_i915_gem_object * obj)5322 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5323 {
5324 struct i915_vma *vma;
5325 list_for_each_entry(vma, &obj->vma_list, vma_link)
5326 if (vma->pin_count > 0)
5327 return true;
5328
5329 return false;
5330 }
5331
5332 /* Allocate a new GEM object and fill it with the supplied data */
5333 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device * dev,const void * data,size_t size)5334 i915_gem_object_create_from_data(struct drm_device *dev,
5335 const void *data, size_t size)
5336 {
5337 struct drm_i915_gem_object *obj;
5338 struct sg_table *sg;
5339 size_t bytes;
5340 int ret;
5341
5342 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5343 if (IS_ERR_OR_NULL(obj))
5344 return obj;
5345
5346 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5347 if (ret)
5348 goto fail;
5349
5350 ret = i915_gem_object_get_pages(obj);
5351 if (ret)
5352 goto fail;
5353
5354 i915_gem_object_pin_pages(obj);
5355 sg = obj->pages;
5356 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5357 i915_gem_object_unpin_pages(obj);
5358
5359 if (WARN_ON(bytes != size)) {
5360 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5361 ret = -EFAULT;
5362 goto fail;
5363 }
5364
5365 return obj;
5366
5367 fail:
5368 drm_gem_object_unreference(&obj->base);
5369 return ERR_PTR(ret);
5370 }
5371