• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40 
41 #define RQ_BUG_ON(expr)
42 
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 
cpu_cache_is_coherent(struct drm_device * dev,enum i915_cache_level level)50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 				  enum i915_cache_level level)
52 {
53 	return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55 
cpu_write_needs_clflush(struct drm_i915_gem_object * obj)56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 		return true;
60 
61 	return obj->pin_display;
62 }
63 
64 /* some bookkeeping */
i915_gem_info_add_obj(struct drm_i915_private * dev_priv,size_t size)65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 				  size_t size)
67 {
68 	spin_lock(&dev_priv->mm.object_stat_lock);
69 	dev_priv->mm.object_count++;
70 	dev_priv->mm.object_memory += size;
71 	spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73 
i915_gem_info_remove_obj(struct drm_i915_private * dev_priv,size_t size)74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 				     size_t size)
76 {
77 	spin_lock(&dev_priv->mm.object_stat_lock);
78 	dev_priv->mm.object_count--;
79 	dev_priv->mm.object_memory -= size;
80 	spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82 
83 static int
i915_gem_wait_for_error(struct i915_gpu_error * error)84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 	int ret;
87 
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 		   i915_terminally_wedged(error))
90 	if (EXIT_COND)
91 		return 0;
92 
93 	/*
94 	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 	 * userspace. If it takes that long something really bad is going on and
96 	 * we should simply try to bail out and fail as gracefully as possible.
97 	 */
98 	ret = wait_event_interruptible_timeout(error->reset_queue,
99 					       EXIT_COND,
100 					       10*HZ);
101 	if (ret == 0) {
102 		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 		return -EIO;
104 	} else if (ret < 0) {
105 		return ret;
106 	}
107 #undef EXIT_COND
108 
109 	return 0;
110 }
111 
i915_mutex_lock_interruptible(struct drm_device * dev)112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 	struct drm_i915_private *dev_priv = dev->dev_private;
115 	int ret;
116 
117 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 	if (ret)
119 		return ret;
120 
121 	ret = mutex_lock_interruptible(&dev->struct_mutex);
122 	if (ret)
123 		return ret;
124 
125 	WARN_ON(i915_verify_lists(dev));
126 	return 0;
127 }
128 
129 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 			    struct drm_file *file)
132 {
133 	struct drm_i915_private *dev_priv = dev->dev_private;
134 	struct drm_i915_gem_get_aperture *args = data;
135 	struct i915_gtt *ggtt = &dev_priv->gtt;
136 	struct i915_vma *vma;
137 	size_t pinned;
138 
139 	pinned = 0;
140 	mutex_lock(&dev->struct_mutex);
141 	list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 		if (vma->pin_count)
143 			pinned += vma->node.size;
144 	list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 		if (vma->pin_count)
146 			pinned += vma->node.size;
147 	mutex_unlock(&dev->struct_mutex);
148 
149 	args->aper_size = dev_priv->gtt.base.total;
150 	args->aper_available_size = args->aper_size - pinned;
151 
152 	return 0;
153 }
154 
155 static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object * obj)156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 	char *vaddr = obj->phys_handle->vaddr;
160 	struct sg_table *st;
161 	struct scatterlist *sg;
162 	int i;
163 
164 	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 		return -EINVAL;
166 
167 	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 		struct page *page;
169 		char *src;
170 
171 		page = shmem_read_mapping_page(mapping, i);
172 		if (IS_ERR(page))
173 			return PTR_ERR(page);
174 
175 		src = kmap_atomic(page);
176 		memcpy(vaddr, src, PAGE_SIZE);
177 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 		kunmap_atomic(src);
179 
180 		page_cache_release(page);
181 		vaddr += PAGE_SIZE;
182 	}
183 
184 	i915_gem_chipset_flush(obj->base.dev);
185 
186 	st = kmalloc(sizeof(*st), GFP_KERNEL);
187 	if (st == NULL)
188 		return -ENOMEM;
189 
190 	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 		kfree(st);
192 		return -ENOMEM;
193 	}
194 
195 	sg = st->sgl;
196 	sg->offset = 0;
197 	sg->length = obj->base.size;
198 
199 	sg_dma_address(sg) = obj->phys_handle->busaddr;
200 	sg_dma_len(sg) = obj->base.size;
201 
202 	obj->pages = st;
203 	return 0;
204 }
205 
206 static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object * obj)207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 	int ret;
210 
211 	BUG_ON(obj->madv == __I915_MADV_PURGED);
212 
213 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 	if (ret) {
215 		/* In the event of a disaster, abandon all caches and
216 		 * hope for the best.
217 		 */
218 		WARN_ON(ret != -EIO);
219 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 	}
221 
222 	if (obj->madv == I915_MADV_DONTNEED)
223 		obj->dirty = 0;
224 
225 	if (obj->dirty) {
226 		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 		char *vaddr = obj->phys_handle->vaddr;
228 		int i;
229 
230 		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 			struct page *page;
232 			char *dst;
233 
234 			page = shmem_read_mapping_page(mapping, i);
235 			if (IS_ERR(page))
236 				continue;
237 
238 			dst = kmap_atomic(page);
239 			drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 			memcpy(dst, vaddr, PAGE_SIZE);
241 			kunmap_atomic(dst);
242 
243 			set_page_dirty(page);
244 			if (obj->madv == I915_MADV_WILLNEED)
245 				mark_page_accessed(page);
246 			page_cache_release(page);
247 			vaddr += PAGE_SIZE;
248 		}
249 		obj->dirty = 0;
250 	}
251 
252 	sg_free_table(obj->pages);
253 	kfree(obj->pages);
254 }
255 
256 static void
i915_gem_object_release_phys(struct drm_i915_gem_object * obj)257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 	drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261 
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 	.get_pages = i915_gem_object_get_pages_phys,
264 	.put_pages = i915_gem_object_put_pages_phys,
265 	.release = i915_gem_object_release_phys,
266 };
267 
268 static int
drop_pages(struct drm_i915_gem_object * obj)269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 	struct i915_vma *vma, *next;
272 	int ret;
273 
274 	drm_gem_object_reference(&obj->base);
275 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 		if (i915_vma_unbind(vma))
277 			break;
278 
279 	ret = i915_gem_object_put_pages(obj);
280 	drm_gem_object_unreference(&obj->base);
281 
282 	return ret;
283 }
284 
285 int
i915_gem_object_attach_phys(struct drm_i915_gem_object * obj,int align)286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 			    int align)
288 {
289 	drm_dma_handle_t *phys;
290 	int ret;
291 
292 	if (obj->phys_handle) {
293 		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 			return -EBUSY;
295 
296 		return 0;
297 	}
298 
299 	if (obj->madv != I915_MADV_WILLNEED)
300 		return -EFAULT;
301 
302 	if (obj->base.filp == NULL)
303 		return -EINVAL;
304 
305 	ret = drop_pages(obj);
306 	if (ret)
307 		return ret;
308 
309 	/* create a new object */
310 	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 	if (!phys)
312 		return -ENOMEM;
313 
314 	obj->phys_handle = phys;
315 	obj->ops = &i915_gem_phys_ops;
316 
317 	return i915_gem_object_get_pages(obj);
318 }
319 
320 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file_priv)321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 		     struct drm_i915_gem_pwrite *args,
323 		     struct drm_file *file_priv)
324 {
325 	struct drm_device *dev = obj->base.dev;
326 	void *vaddr = obj->phys_handle->vaddr + args->offset;
327 	char __user *user_data = u64_to_user_ptr(args->data_ptr);
328 	int ret = 0;
329 
330 	/* We manually control the domain here and pretend that it
331 	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 	 */
333 	ret = i915_gem_object_wait_rendering(obj, false);
334 	if (ret)
335 		return ret;
336 
337 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 		unsigned long unwritten;
340 
341 		/* The physical object once assigned is fixed for the lifetime
342 		 * of the obj, so we can safely drop the lock and continue
343 		 * to access vaddr.
344 		 */
345 		mutex_unlock(&dev->struct_mutex);
346 		unwritten = copy_from_user(vaddr, user_data, args->size);
347 		mutex_lock(&dev->struct_mutex);
348 		if (unwritten) {
349 			ret = -EFAULT;
350 			goto out;
351 		}
352 	}
353 
354 	drm_clflush_virt_range(vaddr, args->size);
355 	i915_gem_chipset_flush(dev);
356 
357 out:
358 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 	return ret;
360 }
361 
i915_gem_object_alloc(struct drm_device * dev)362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 	struct drm_i915_private *dev_priv = dev->dev_private;
365 	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367 
i915_gem_object_free(struct drm_i915_gem_object * obj)368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 	kmem_cache_free(dev_priv->objects, obj);
372 }
373 
374 static int
i915_gem_create(struct drm_file * file,struct drm_device * dev,uint64_t size,uint32_t * handle_p)375 i915_gem_create(struct drm_file *file,
376 		struct drm_device *dev,
377 		uint64_t size,
378 		uint32_t *handle_p)
379 {
380 	struct drm_i915_gem_object *obj;
381 	int ret;
382 	u32 handle;
383 
384 	size = roundup(size, PAGE_SIZE);
385 	if (size == 0)
386 		return -EINVAL;
387 
388 	/* Allocate the new object */
389 	obj = i915_gem_alloc_object(dev, size);
390 	if (obj == NULL)
391 		return -ENOMEM;
392 
393 	ret = drm_gem_handle_create(file, &obj->base, &handle);
394 	/* drop reference from allocate - handle holds it now */
395 	drm_gem_object_unreference_unlocked(&obj->base);
396 	if (ret)
397 		return ret;
398 
399 	*handle_p = handle;
400 	return 0;
401 }
402 
403 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)404 i915_gem_dumb_create(struct drm_file *file,
405 		     struct drm_device *dev,
406 		     struct drm_mode_create_dumb *args)
407 {
408 	/* have to work out size/pitch and return them */
409 	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 	args->size = args->pitch * args->height;
411 	return i915_gem_create(file, dev,
412 			       args->size, &args->handle);
413 }
414 
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 		      struct drm_file *file)
421 {
422 	struct drm_i915_gem_create *args = data;
423 
424 	return i915_gem_create(file, dev,
425 			       args->size, &args->handle);
426 }
427 
428 static inline int
__copy_to_user_swizzled(char __user * cpu_vaddr,const char * gpu_vaddr,int gpu_offset,int length)429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 			const char *gpu_vaddr, int gpu_offset,
431 			int length)
432 {
433 	int ret, cpu_offset = 0;
434 
435 	while (length > 0) {
436 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 		int this_length = min(cacheline_end - gpu_offset, length);
438 		int swizzled_gpu_offset = gpu_offset ^ 64;
439 
440 		ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 				     gpu_vaddr + swizzled_gpu_offset,
442 				     this_length);
443 		if (ret)
444 			return ret + length;
445 
446 		cpu_offset += this_length;
447 		gpu_offset += this_length;
448 		length -= this_length;
449 	}
450 
451 	return 0;
452 }
453 
454 static inline int
__copy_from_user_swizzled(char * gpu_vaddr,int gpu_offset,const char __user * cpu_vaddr,int length)455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 			  const char __user *cpu_vaddr,
457 			  int length)
458 {
459 	int ret, cpu_offset = 0;
460 
461 	while (length > 0) {
462 		int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 		int this_length = min(cacheline_end - gpu_offset, length);
464 		int swizzled_gpu_offset = gpu_offset ^ 64;
465 
466 		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 				       cpu_vaddr + cpu_offset,
468 				       this_length);
469 		if (ret)
470 			return ret + length;
471 
472 		cpu_offset += this_length;
473 		gpu_offset += this_length;
474 		length -= this_length;
475 	}
476 
477 	return 0;
478 }
479 
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object * obj,int * needs_clflush)485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 				    int *needs_clflush)
487 {
488 	int ret;
489 
490 	*needs_clflush = 0;
491 
492 	if (!obj->base.filp)
493 		return -EINVAL;
494 
495 	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 		/* If we're not in the cpu read domain, set ourself into the gtt
497 		 * read domain and manually flush cachelines (if required). This
498 		 * optimizes for the case when the gpu will dirty the data
499 		 * anyway again before the next pread happens. */
500 		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 							obj->cache_level);
502 		ret = i915_gem_object_wait_rendering(obj, true);
503 		if (ret)
504 			return ret;
505 	}
506 
507 	ret = i915_gem_object_get_pages(obj);
508 	if (ret)
509 		return ret;
510 
511 	i915_gem_object_pin_pages(obj);
512 
513 	return ret;
514 }
515 
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
shmem_pread_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 		 char __user *user_data,
522 		 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 	char *vaddr;
525 	int ret;
526 
527 	if (unlikely(page_do_bit17_swizzling))
528 		return -EINVAL;
529 
530 	vaddr = kmap_atomic(page);
531 	if (needs_clflush)
532 		drm_clflush_virt_range(vaddr + shmem_page_offset,
533 				       page_length);
534 	ret = __copy_to_user_inatomic(user_data,
535 				      vaddr + shmem_page_offset,
536 				      page_length);
537 	kunmap_atomic(vaddr);
538 
539 	return ret ? -EFAULT : 0;
540 }
541 
542 static void
shmem_clflush_swizzled_range(char * addr,unsigned long length,bool swizzled)543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 			     bool swizzled)
545 {
546 	if (unlikely(swizzled)) {
547 		unsigned long start = (unsigned long) addr;
548 		unsigned long end = (unsigned long) addr + length;
549 
550 		/* For swizzling simply ensure that we always flush both
551 		 * channels. Lame, but simple and it works. Swizzled
552 		 * pwrite/pread is far from a hotpath - current userspace
553 		 * doesn't use it at all. */
554 		start = round_down(start, 128);
555 		end = round_up(end, 128);
556 
557 		drm_clflush_virt_range((void *)start, end - start);
558 	} else {
559 		drm_clflush_virt_range(addr, length);
560 	}
561 
562 }
563 
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
shmem_pread_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush)567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 		 char __user *user_data,
569 		 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 	char *vaddr;
572 	int ret;
573 
574 	vaddr = kmap(page);
575 	if (needs_clflush)
576 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 					     page_length,
578 					     page_do_bit17_swizzling);
579 
580 	if (page_do_bit17_swizzling)
581 		ret = __copy_to_user_swizzled(user_data,
582 					      vaddr, shmem_page_offset,
583 					      page_length);
584 	else
585 		ret = __copy_to_user(user_data,
586 				     vaddr + shmem_page_offset,
587 				     page_length);
588 	kunmap(page);
589 
590 	return ret ? - EFAULT : 0;
591 }
592 
593 static int
i915_gem_shmem_pread(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args,struct drm_file * file)594 i915_gem_shmem_pread(struct drm_device *dev,
595 		     struct drm_i915_gem_object *obj,
596 		     struct drm_i915_gem_pread *args,
597 		     struct drm_file *file)
598 {
599 	char __user *user_data;
600 	ssize_t remain;
601 	loff_t offset;
602 	int shmem_page_offset, page_length, ret = 0;
603 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 	int prefaulted = 0;
605 	int needs_clflush = 0;
606 	struct sg_page_iter sg_iter;
607 
608 	user_data = u64_to_user_ptr(args->data_ptr);
609 	remain = args->size;
610 
611 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612 
613 	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 	if (ret)
615 		return ret;
616 
617 	offset = args->offset;
618 
619 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 			 offset >> PAGE_SHIFT) {
621 		struct page *page = sg_page_iter_page(&sg_iter);
622 
623 		if (remain <= 0)
624 			break;
625 
626 		/* Operation in this page
627 		 *
628 		 * shmem_page_offset = offset within page in shmem file
629 		 * page_length = bytes to copy for this page
630 		 */
631 		shmem_page_offset = offset_in_page(offset);
632 		page_length = remain;
633 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 			page_length = PAGE_SIZE - shmem_page_offset;
635 
636 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 			(page_to_phys(page) & (1 << 17)) != 0;
638 
639 		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 				       user_data, page_do_bit17_swizzling,
641 				       needs_clflush);
642 		if (ret == 0)
643 			goto next_page;
644 
645 		mutex_unlock(&dev->struct_mutex);
646 
647 		if (likely(!i915.prefault_disable) && !prefaulted) {
648 			ret = fault_in_multipages_writeable(user_data, remain);
649 			/* Userspace is tricking us, but we've already clobbered
650 			 * its pages with the prefault and promised to write the
651 			 * data up to the first fault. Hence ignore any errors
652 			 * and just continue. */
653 			(void)ret;
654 			prefaulted = 1;
655 		}
656 
657 		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 				       user_data, page_do_bit17_swizzling,
659 				       needs_clflush);
660 
661 		mutex_lock(&dev->struct_mutex);
662 
663 		if (ret)
664 			goto out;
665 
666 next_page:
667 		remain -= page_length;
668 		user_data += page_length;
669 		offset += page_length;
670 	}
671 
672 out:
673 	i915_gem_object_unpin_pages(obj);
674 
675 	return ret;
676 }
677 
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 		     struct drm_file *file)
686 {
687 	struct drm_i915_gem_pread *args = data;
688 	struct drm_i915_gem_object *obj;
689 	int ret = 0;
690 
691 	if (args->size == 0)
692 		return 0;
693 
694 	if (!access_ok(VERIFY_WRITE,
695 		       u64_to_user_ptr(args->data_ptr),
696 		       args->size))
697 		return -EFAULT;
698 
699 	ret = i915_mutex_lock_interruptible(dev);
700 	if (ret)
701 		return ret;
702 
703 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 	if (&obj->base == NULL) {
705 		ret = -ENOENT;
706 		goto unlock;
707 	}
708 
709 	/* Bounds check source.  */
710 	if (args->offset > obj->base.size ||
711 	    args->size > obj->base.size - args->offset) {
712 		ret = -EINVAL;
713 		goto out;
714 	}
715 
716 	/* prime objects have no backing filp to GEM pread/pwrite
717 	 * pages from.
718 	 */
719 	if (!obj->base.filp) {
720 		ret = -EINVAL;
721 		goto out;
722 	}
723 
724 	trace_i915_gem_object_pread(obj, args->offset, args->size);
725 
726 	ret = i915_gem_shmem_pread(dev, obj, args, file);
727 
728 out:
729 	drm_gem_object_unreference(&obj->base);
730 unlock:
731 	mutex_unlock(&dev->struct_mutex);
732 	return ret;
733 }
734 
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738 
739 static inline int
fast_user_write(struct io_mapping * mapping,loff_t page_base,int page_offset,char __user * user_data,int length)740 fast_user_write(struct io_mapping *mapping,
741 		loff_t page_base, int page_offset,
742 		char __user *user_data,
743 		int length)
744 {
745 	void __iomem *vaddr_atomic;
746 	void *vaddr;
747 	unsigned long unwritten;
748 
749 	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 	/* We can use the cpu mem copy function because this is X86. */
751 	vaddr = (void __force*)vaddr_atomic + page_offset;
752 	unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 						      user_data, length);
754 	io_mapping_unmap_atomic(vaddr_atomic);
755 	return unwritten;
756 }
757 
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
i915_gem_gtt_pwrite_fast(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 			 struct drm_i915_gem_object *obj,
765 			 struct drm_i915_gem_pwrite *args,
766 			 struct drm_file *file)
767 {
768 	struct drm_i915_private *dev_priv = dev->dev_private;
769 	ssize_t remain;
770 	loff_t offset, page_base;
771 	char __user *user_data;
772 	int page_offset, page_length, ret;
773 
774 	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 	if (ret)
776 		goto out;
777 
778 	ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 	if (ret)
780 		goto out_unpin;
781 
782 	ret = i915_gem_object_put_fence(obj);
783 	if (ret)
784 		goto out_unpin;
785 
786 	user_data = u64_to_user_ptr(args->data_ptr);
787 	remain = args->size;
788 
789 	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790 
791 	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792 
793 	while (remain > 0) {
794 		/* Operation in this page
795 		 *
796 		 * page_base = page offset within aperture
797 		 * page_offset = offset within page
798 		 * page_length = bytes to copy for this page
799 		 */
800 		page_base = offset & PAGE_MASK;
801 		page_offset = offset_in_page(offset);
802 		page_length = remain;
803 		if ((page_offset + remain) > PAGE_SIZE)
804 			page_length = PAGE_SIZE - page_offset;
805 
806 		/* If we get a fault while copying data, then (presumably) our
807 		 * source page isn't available.  Return the error and we'll
808 		 * retry in the slow path.
809 		 */
810 		if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 				    page_offset, user_data, page_length)) {
812 			ret = -EFAULT;
813 			goto out_flush;
814 		}
815 
816 		remain -= page_length;
817 		user_data += page_length;
818 		offset += page_length;
819 	}
820 
821 out_flush:
822 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 	i915_gem_object_ggtt_unpin(obj);
825 out:
826 	return ret;
827 }
828 
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
shmem_pwrite_fast(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 		  char __user *user_data,
836 		  bool page_do_bit17_swizzling,
837 		  bool needs_clflush_before,
838 		  bool needs_clflush_after)
839 {
840 	char *vaddr;
841 	int ret;
842 
843 	if (unlikely(page_do_bit17_swizzling))
844 		return -EINVAL;
845 
846 	vaddr = kmap_atomic(page);
847 	if (needs_clflush_before)
848 		drm_clflush_virt_range(vaddr + shmem_page_offset,
849 				       page_length);
850 	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 					user_data, page_length);
852 	if (needs_clflush_after)
853 		drm_clflush_virt_range(vaddr + shmem_page_offset,
854 				       page_length);
855 	kunmap_atomic(vaddr);
856 
857 	return ret ? -EFAULT : 0;
858 }
859 
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
shmem_pwrite_slow(struct page * page,int shmem_page_offset,int page_length,char __user * user_data,bool page_do_bit17_swizzling,bool needs_clflush_before,bool needs_clflush_after)863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 		  char __user *user_data,
865 		  bool page_do_bit17_swizzling,
866 		  bool needs_clflush_before,
867 		  bool needs_clflush_after)
868 {
869 	char *vaddr;
870 	int ret;
871 
872 	vaddr = kmap(page);
873 	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 					     page_length,
876 					     page_do_bit17_swizzling);
877 	if (page_do_bit17_swizzling)
878 		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 						user_data,
880 						page_length);
881 	else
882 		ret = __copy_from_user(vaddr + shmem_page_offset,
883 				       user_data,
884 				       page_length);
885 	if (needs_clflush_after)
886 		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 					     page_length,
888 					     page_do_bit17_swizzling);
889 	kunmap(page);
890 
891 	return ret ? -EFAULT : 0;
892 }
893 
894 static int
i915_gem_shmem_pwrite(struct drm_device * dev,struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 		      struct drm_i915_gem_object *obj,
897 		      struct drm_i915_gem_pwrite *args,
898 		      struct drm_file *file)
899 {
900 	ssize_t remain;
901 	loff_t offset;
902 	char __user *user_data;
903 	int shmem_page_offset, page_length, ret = 0;
904 	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 	int hit_slowpath = 0;
906 	int needs_clflush_after = 0;
907 	int needs_clflush_before = 0;
908 	struct sg_page_iter sg_iter;
909 
910 	user_data = u64_to_user_ptr(args->data_ptr);
911 	remain = args->size;
912 
913 	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914 
915 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 		/* If we're not in the cpu write domain, set ourself into the gtt
917 		 * write domain and manually flush cachelines (if required). This
918 		 * optimizes for the case when the gpu will use the data
919 		 * right away and we therefore have to clflush anyway. */
920 		needs_clflush_after = cpu_write_needs_clflush(obj);
921 		ret = i915_gem_object_wait_rendering(obj, false);
922 		if (ret)
923 			return ret;
924 	}
925 	/* Same trick applies to invalidate partially written cachelines read
926 	 * before writing. */
927 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 		needs_clflush_before =
929 			!cpu_cache_is_coherent(dev, obj->cache_level);
930 
931 	ret = i915_gem_object_get_pages(obj);
932 	if (ret)
933 		return ret;
934 
935 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936 
937 	i915_gem_object_pin_pages(obj);
938 
939 	offset = args->offset;
940 	obj->dirty = 1;
941 
942 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 			 offset >> PAGE_SHIFT) {
944 		struct page *page = sg_page_iter_page(&sg_iter);
945 		int partial_cacheline_write;
946 
947 		if (remain <= 0)
948 			break;
949 
950 		/* Operation in this page
951 		 *
952 		 * shmem_page_offset = offset within page in shmem file
953 		 * page_length = bytes to copy for this page
954 		 */
955 		shmem_page_offset = offset_in_page(offset);
956 
957 		page_length = remain;
958 		if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 			page_length = PAGE_SIZE - shmem_page_offset;
960 
961 		/* If we don't overwrite a cacheline completely we need to be
962 		 * careful to have up-to-date data by first clflushing. Don't
963 		 * overcomplicate things and flush the entire patch. */
964 		partial_cacheline_write = needs_clflush_before &&
965 			((shmem_page_offset | page_length)
966 				& (boot_cpu_data.x86_clflush_size - 1));
967 
968 		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 			(page_to_phys(page) & (1 << 17)) != 0;
970 
971 		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 					user_data, page_do_bit17_swizzling,
973 					partial_cacheline_write,
974 					needs_clflush_after);
975 		if (ret == 0)
976 			goto next_page;
977 
978 		hit_slowpath = 1;
979 		mutex_unlock(&dev->struct_mutex);
980 		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 					user_data, page_do_bit17_swizzling,
982 					partial_cacheline_write,
983 					needs_clflush_after);
984 
985 		mutex_lock(&dev->struct_mutex);
986 
987 		if (ret)
988 			goto out;
989 
990 next_page:
991 		remain -= page_length;
992 		user_data += page_length;
993 		offset += page_length;
994 	}
995 
996 out:
997 	i915_gem_object_unpin_pages(obj);
998 
999 	if (hit_slowpath) {
1000 		/*
1001 		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 		 * cachelines in-line while writing and the object moved
1003 		 * out of the cpu write domain while we've dropped the lock.
1004 		 */
1005 		if (!needs_clflush_after &&
1006 		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 			if (i915_gem_clflush_object(obj, obj->pin_display))
1008 				needs_clflush_after = true;
1009 		}
1010 	}
1011 
1012 	if (needs_clflush_after)
1013 		i915_gem_chipset_flush(dev);
1014 	else
1015 		obj->cache_dirty = true;
1016 
1017 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 	return ret;
1019 }
1020 
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 		      struct drm_file *file)
1029 {
1030 	struct drm_i915_private *dev_priv = dev->dev_private;
1031 	struct drm_i915_gem_pwrite *args = data;
1032 	struct drm_i915_gem_object *obj;
1033 	int ret;
1034 
1035 	if (args->size == 0)
1036 		return 0;
1037 
1038 	if (!access_ok(VERIFY_READ,
1039 		       u64_to_user_ptr(args->data_ptr),
1040 		       args->size))
1041 		return -EFAULT;
1042 
1043 	if (likely(!i915.prefault_disable)) {
1044 		ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1045 						   args->size);
1046 		if (ret)
1047 			return -EFAULT;
1048 	}
1049 
1050 	intel_runtime_pm_get(dev_priv);
1051 
1052 	ret = i915_mutex_lock_interruptible(dev);
1053 	if (ret)
1054 		goto put_rpm;
1055 
1056 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 	if (&obj->base == NULL) {
1058 		ret = -ENOENT;
1059 		goto unlock;
1060 	}
1061 
1062 	/* Bounds check destination. */
1063 	if (args->offset > obj->base.size ||
1064 	    args->size > obj->base.size - args->offset) {
1065 		ret = -EINVAL;
1066 		goto out;
1067 	}
1068 
1069 	/* prime objects have no backing filp to GEM pread/pwrite
1070 	 * pages from.
1071 	 */
1072 	if (!obj->base.filp) {
1073 		ret = -EINVAL;
1074 		goto out;
1075 	}
1076 
1077 	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078 
1079 	ret = -EFAULT;
1080 	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 	 * it would end up going through the fenced access, and we'll get
1082 	 * different detiling behavior between reading and writing.
1083 	 * pread/pwrite currently are reading and writing from the CPU
1084 	 * perspective, requiring manual detiling by the client.
1085 	 */
1086 	if (obj->tiling_mode == I915_TILING_NONE &&
1087 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 	    cpu_write_needs_clflush(obj)) {
1089 		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 		/* Note that the gtt paths might fail with non-page-backed user
1091 		 * pointers (e.g. gtt mappings when moving data between
1092 		 * textures). Fallback to the shmem path in that case. */
1093 	}
1094 
1095 	if (ret == -EFAULT || ret == -ENOSPC) {
1096 		if (obj->phys_handle)
1097 			ret = i915_gem_phys_pwrite(obj, args, file);
1098 		else
1099 			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 	}
1101 
1102 out:
1103 	drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 	mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 	intel_runtime_pm_put(dev_priv);
1108 
1109 	return ret;
1110 }
1111 
1112 int
i915_gem_check_wedge(struct i915_gpu_error * error,bool interruptible)1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 		     bool interruptible)
1115 {
1116 	if (i915_reset_in_progress(error)) {
1117 		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118 		 * -EIO unconditionally for these. */
1119 		if (!interruptible)
1120 			return -EIO;
1121 
1122 		/* Recovery complete, but the reset failed ... */
1123 		if (i915_terminally_wedged(error))
1124 			return -EIO;
1125 
1126 		/*
1127 		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 		 * to work properly to reinit the hw state while the gpu is
1129 		 * still marked as reset-in-progress. Handle this with a flag.
1130 		 */
1131 		if (!error->reload_in_reset)
1132 			return -EAGAIN;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
fake_irq(unsigned long data)1138 static void fake_irq(unsigned long data)
1139 {
1140 	wake_up_process((struct task_struct *)data);
1141 }
1142 
missed_irq(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 		       struct intel_engine_cs *ring)
1145 {
1146 	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148 
local_clock_us(unsigned * cpu)1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 	unsigned long t;
1152 
1153 	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154 	 * The result and subsequent calculations are also defined in the same
1155 	 * approximate microseconds units. The principal source of timing
1156 	 * error here is from the simple truncation.
1157 	 *
1158 	 * Note that local_clock() is only defined wrt to the current CPU;
1159 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 	 * blocking preemption for the entire busywait, we can detect the CPU
1161 	 * switch and use that as indicator of system load and a reason to
1162 	 * stop busywaiting, see busywait_stop().
1163 	 */
1164 	*cpu = get_cpu();
1165 	t = local_clock() >> 10;
1166 	put_cpu();
1167 
1168 	return t;
1169 }
1170 
busywait_stop(unsigned long timeout,unsigned cpu)1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 	unsigned this_cpu;
1174 
1175 	if (time_after(local_clock_us(&this_cpu), timeout))
1176 		return true;
1177 
1178 	return this_cpu != cpu;
1179 }
1180 
__i915_spin_request(struct drm_i915_gem_request * req,int state)1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 	unsigned long timeout;
1184 	unsigned cpu;
1185 
1186 	/* When waiting for high frequency requests, e.g. during synchronous
1187 	 * rendering split between the CPU and GPU, the finite amount of time
1188 	 * required to set up the irq and wait upon it limits the response
1189 	 * rate. By busywaiting on the request completion for a short while we
1190 	 * can service the high frequency waits as quick as possible. However,
1191 	 * if it is a slow request, we want to sleep as quickly as possible.
1192 	 * The tradeoff between waiting and sleeping is roughly the time it
1193 	 * takes to sleep on a request, on the order of a microsecond.
1194 	 */
1195 
1196 	if (req->ring->irq_refcount)
1197 		return -EBUSY;
1198 
1199 	/* Only spin if we know the GPU is processing this request */
1200 	if (!i915_gem_request_started(req, true))
1201 		return -EAGAIN;
1202 
1203 	timeout = local_clock_us(&cpu) + 5;
1204 	while (!need_resched()) {
1205 		if (i915_gem_request_completed(req, true))
1206 			return 0;
1207 
1208 		if (signal_pending_state(state, current))
1209 			break;
1210 
1211 		if (busywait_stop(timeout, cpu))
1212 			break;
1213 
1214 		cpu_relax_lowlatency();
1215 	}
1216 
1217 	if (i915_gem_request_completed(req, false))
1218 		return 0;
1219 
1220 	return -EAGAIN;
1221 }
1222 
1223 /**
1224  * __i915_wait_request - wait until execution of request has finished
1225  * @req: duh!
1226  * @reset_counter: reset sequence associated with the given request
1227  * @interruptible: do an interruptible wait (normally yes)
1228  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229  *
1230  * Note: It is of utmost importance that the passed in seqno and reset_counter
1231  * values have been read by the caller in an smp safe manner. Where read-side
1232  * locks are involved, it is sufficient to read the reset_counter before
1233  * unlocking the lock that protects the seqno. For lockless tricks, the
1234  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235  * inserted.
1236  *
1237  * Returns 0 if the request was found within the alloted time. Else returns the
1238  * errno with remaining time filled in timeout argument.
1239  */
__i915_wait_request(struct drm_i915_gem_request * req,unsigned reset_counter,bool interruptible,s64 * timeout,struct intel_rps_client * rps)1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 			unsigned reset_counter,
1242 			bool interruptible,
1243 			s64 *timeout,
1244 			struct intel_rps_client *rps)
1245 {
1246 	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 	struct drm_device *dev = ring->dev;
1248 	struct drm_i915_private *dev_priv = dev->dev_private;
1249 	const bool irq_test_in_progress =
1250 		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 	DEFINE_WAIT(wait);
1253 	unsigned long timeout_expire;
1254 	s64 before, now;
1255 	int ret;
1256 
1257 	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258 
1259 	if (list_empty(&req->list))
1260 		return 0;
1261 
1262 	if (i915_gem_request_completed(req, true))
1263 		return 0;
1264 
1265 	timeout_expire = 0;
1266 	if (timeout) {
1267 		if (WARN_ON(*timeout < 0))
1268 			return -EINVAL;
1269 
1270 		if (*timeout == 0)
1271 			return -ETIME;
1272 
1273 		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 	}
1275 
1276 	if (INTEL_INFO(dev_priv)->gen >= 6)
1277 		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278 
1279 	/* Record current time in case interrupted by signal, or wedged */
1280 	trace_i915_gem_request_wait_begin(req);
1281 	before = ktime_get_raw_ns();
1282 
1283 	/* Optimistic spin for the next jiffie before touching IRQs */
1284 	ret = __i915_spin_request(req, state);
1285 	if (ret == 0)
1286 		goto out;
1287 
1288 	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 		ret = -ENODEV;
1290 		goto out;
1291 	}
1292 
1293 	for (;;) {
1294 		struct timer_list timer;
1295 
1296 		prepare_to_wait(&ring->irq_queue, &wait, state);
1297 
1298 		/* We need to check whether any gpu reset happened in between
1299 		 * the caller grabbing the seqno and now ... */
1300 		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 			 * is truely gone. */
1303 			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 			if (ret == 0)
1305 				ret = -EAGAIN;
1306 			break;
1307 		}
1308 
1309 		if (i915_gem_request_completed(req, false)) {
1310 			ret = 0;
1311 			break;
1312 		}
1313 
1314 		if (signal_pending_state(state, current)) {
1315 			ret = -ERESTARTSYS;
1316 			break;
1317 		}
1318 
1319 		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 			ret = -ETIME;
1321 			break;
1322 		}
1323 
1324 		timer.function = NULL;
1325 		if (timeout || missed_irq(dev_priv, ring)) {
1326 			unsigned long expire;
1327 
1328 			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 			mod_timer(&timer, expire);
1331 		}
1332 
1333 		io_schedule();
1334 
1335 		if (timer.function) {
1336 			del_singleshot_timer_sync(&timer);
1337 			destroy_timer_on_stack(&timer);
1338 		}
1339 	}
1340 	if (!irq_test_in_progress)
1341 		ring->irq_put(ring);
1342 
1343 	finish_wait(&ring->irq_queue, &wait);
1344 
1345 out:
1346 	now = ktime_get_raw_ns();
1347 	trace_i915_gem_request_wait_end(req);
1348 
1349 	if (timeout) {
1350 		s64 tres = *timeout - (now - before);
1351 
1352 		*timeout = tres < 0 ? 0 : tres;
1353 
1354 		/*
1355 		 * Apparently ktime isn't accurate enough and occasionally has a
1356 		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 		 * things up to make the test happy. We allow up to 1 jiffy.
1358 		 *
1359 		 * This is a regrssion from the timespec->ktime conversion.
1360 		 */
1361 		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 			*timeout = 0;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
i915_gem_request_add_to_client(struct drm_i915_gem_request * req,struct drm_file * file)1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 				   struct drm_file *file)
1370 {
1371 	struct drm_i915_private *dev_private;
1372 	struct drm_i915_file_private *file_priv;
1373 
1374 	WARN_ON(!req || !file || req->file_priv);
1375 
1376 	if (!req || !file)
1377 		return -EINVAL;
1378 
1379 	if (req->file_priv)
1380 		return -EINVAL;
1381 
1382 	dev_private = req->ring->dev->dev_private;
1383 	file_priv = file->driver_priv;
1384 
1385 	spin_lock(&file_priv->mm.lock);
1386 	req->file_priv = file_priv;
1387 	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 	spin_unlock(&file_priv->mm.lock);
1389 
1390 	req->pid = get_pid(task_pid(current));
1391 
1392 	return 0;
1393 }
1394 
1395 static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request * request)1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 	struct drm_i915_file_private *file_priv = request->file_priv;
1399 
1400 	if (!file_priv)
1401 		return;
1402 
1403 	spin_lock(&file_priv->mm.lock);
1404 	list_del(&request->client_list);
1405 	request->file_priv = NULL;
1406 	spin_unlock(&file_priv->mm.lock);
1407 
1408 	put_pid(request->pid);
1409 	request->pid = NULL;
1410 }
1411 
i915_gem_request_retire(struct drm_i915_gem_request * request)1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 	trace_i915_gem_request_retire(request);
1415 
1416 	/* We know the GPU must have read the request to have
1417 	 * sent us the seqno + interrupt, so use the position
1418 	 * of tail of the request to update the last known position
1419 	 * of the GPU head.
1420 	 *
1421 	 * Note this requires that we are always called in request
1422 	 * completion order.
1423 	 */
1424 	request->ringbuf->last_retired_head = request->postfix;
1425 
1426 	list_del_init(&request->list);
1427 	i915_gem_request_remove_from_client(request);
1428 
1429 	i915_gem_request_unreference(request);
1430 }
1431 
1432 static void
__i915_gem_request_retire__upto(struct drm_i915_gem_request * req)1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 	struct intel_engine_cs *engine = req->ring;
1436 	struct drm_i915_gem_request *tmp;
1437 
1438 	lockdep_assert_held(&engine->dev->struct_mutex);
1439 
1440 	if (list_empty(&req->list))
1441 		return;
1442 
1443 	do {
1444 		tmp = list_first_entry(&engine->request_list,
1445 				       typeof(*tmp), list);
1446 
1447 		i915_gem_request_retire(tmp);
1448 	} while (tmp != req);
1449 
1450 	WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452 
1453 /**
1454  * Waits for a request to be signaled, and cleans up the
1455  * request and object lists appropriately for that event.
1456  */
1457 int
i915_wait_request(struct drm_i915_gem_request * req)1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 	struct drm_device *dev;
1461 	struct drm_i915_private *dev_priv;
1462 	bool interruptible;
1463 	int ret;
1464 
1465 	BUG_ON(req == NULL);
1466 
1467 	dev = req->ring->dev;
1468 	dev_priv = dev->dev_private;
1469 	interruptible = dev_priv->mm.interruptible;
1470 
1471 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472 
1473 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 	if (ret)
1475 		return ret;
1476 
1477 	ret = __i915_wait_request(req,
1478 				  atomic_read(&dev_priv->gpu_error.reset_counter),
1479 				  interruptible, NULL, NULL);
1480 	if (ret)
1481 		return ret;
1482 
1483 	__i915_gem_request_retire__upto(req);
1484 	return 0;
1485 }
1486 
1487 /**
1488  * Ensures that all rendering to the object has completed and the object is
1489  * safe to unbind from the GTT or access from the CPU.
1490  */
1491 int
i915_gem_object_wait_rendering(struct drm_i915_gem_object * obj,bool readonly)1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 			       bool readonly)
1494 {
1495 	int ret, i;
1496 
1497 	if (!obj->active)
1498 		return 0;
1499 
1500 	if (readonly) {
1501 		if (obj->last_write_req != NULL) {
1502 			ret = i915_wait_request(obj->last_write_req);
1503 			if (ret)
1504 				return ret;
1505 
1506 			i = obj->last_write_req->ring->id;
1507 			if (obj->last_read_req[i] == obj->last_write_req)
1508 				i915_gem_object_retire__read(obj, i);
1509 			else
1510 				i915_gem_object_retire__write(obj);
1511 		}
1512 	} else {
1513 		for (i = 0; i < I915_NUM_RINGS; i++) {
1514 			if (obj->last_read_req[i] == NULL)
1515 				continue;
1516 
1517 			ret = i915_wait_request(obj->last_read_req[i]);
1518 			if (ret)
1519 				return ret;
1520 
1521 			i915_gem_object_retire__read(obj, i);
1522 		}
1523 		RQ_BUG_ON(obj->active);
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static void
i915_gem_object_retire_request(struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req)1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 			       struct drm_i915_gem_request *req)
1532 {
1533 	int ring = req->ring->id;
1534 
1535 	if (obj->last_read_req[ring] == req)
1536 		i915_gem_object_retire__read(obj, ring);
1537 	else if (obj->last_write_req == req)
1538 		i915_gem_object_retire__write(obj);
1539 
1540 	__i915_gem_request_retire__upto(req);
1541 }
1542 
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544  * as the object state may change during this call.
1545  */
1546 static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object * obj,struct intel_rps_client * rps,bool readonly)1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 					    struct intel_rps_client *rps,
1549 					    bool readonly)
1550 {
1551 	struct drm_device *dev = obj->base.dev;
1552 	struct drm_i915_private *dev_priv = dev->dev_private;
1553 	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 	unsigned reset_counter;
1555 	int ret, i, n = 0;
1556 
1557 	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 	BUG_ON(!dev_priv->mm.interruptible);
1559 
1560 	if (!obj->active)
1561 		return 0;
1562 
1563 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 	if (ret)
1565 		return ret;
1566 
1567 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568 
1569 	if (readonly) {
1570 		struct drm_i915_gem_request *req;
1571 
1572 		req = obj->last_write_req;
1573 		if (req == NULL)
1574 			return 0;
1575 
1576 		requests[n++] = i915_gem_request_reference(req);
1577 	} else {
1578 		for (i = 0; i < I915_NUM_RINGS; i++) {
1579 			struct drm_i915_gem_request *req;
1580 
1581 			req = obj->last_read_req[i];
1582 			if (req == NULL)
1583 				continue;
1584 
1585 			requests[n++] = i915_gem_request_reference(req);
1586 		}
1587 	}
1588 
1589 	mutex_unlock(&dev->struct_mutex);
1590 	for (i = 0; ret == 0 && i < n; i++)
1591 		ret = __i915_wait_request(requests[i], reset_counter, true,
1592 					  NULL, rps);
1593 	mutex_lock(&dev->struct_mutex);
1594 
1595 	for (i = 0; i < n; i++) {
1596 		if (ret == 0)
1597 			i915_gem_object_retire_request(obj, requests[i]);
1598 		i915_gem_request_unreference(requests[i]);
1599 	}
1600 
1601 	return ret;
1602 }
1603 
to_rps_client(struct drm_file * file)1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 	struct drm_i915_file_private *fpriv = file->driver_priv;
1607 	return &fpriv->rps;
1608 }
1609 
1610 /**
1611  * Called when user space prepares to use an object with the CPU, either
1612  * through the mmap ioctl's mapping or a GTT mapping.
1613  */
1614 int
i915_gem_set_domain_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 			  struct drm_file *file)
1617 {
1618 	struct drm_i915_gem_set_domain *args = data;
1619 	struct drm_i915_gem_object *obj;
1620 	uint32_t read_domains = args->read_domains;
1621 	uint32_t write_domain = args->write_domain;
1622 	int ret;
1623 
1624 	/* Only handle setting domains to types used by the CPU. */
1625 	if (write_domain & I915_GEM_GPU_DOMAINS)
1626 		return -EINVAL;
1627 
1628 	if (read_domains & I915_GEM_GPU_DOMAINS)
1629 		return -EINVAL;
1630 
1631 	/* Having something in the write domain implies it's in the read
1632 	 * domain, and only that read domain.  Enforce that in the request.
1633 	 */
1634 	if (write_domain != 0 && read_domains != write_domain)
1635 		return -EINVAL;
1636 
1637 	ret = i915_mutex_lock_interruptible(dev);
1638 	if (ret)
1639 		return ret;
1640 
1641 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 	if (&obj->base == NULL) {
1643 		ret = -ENOENT;
1644 		goto unlock;
1645 	}
1646 
1647 	/* Try to flush the object off the GPU without holding the lock.
1648 	 * We will repeat the flush holding the lock in the normal manner
1649 	 * to catch cases where we are gazumped.
1650 	 */
1651 	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 							  to_rps_client(file),
1653 							  !write_domain);
1654 	if (ret)
1655 		goto unref;
1656 
1657 	if (read_domains & I915_GEM_DOMAIN_GTT)
1658 		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 	else
1660 		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661 
1662 	if (write_domain != 0)
1663 		intel_fb_obj_invalidate(obj,
1664 					write_domain == I915_GEM_DOMAIN_GTT ?
1665 					ORIGIN_GTT : ORIGIN_CPU);
1666 
1667 unref:
1668 	drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 	mutex_unlock(&dev->struct_mutex);
1671 	return ret;
1672 }
1673 
1674 /**
1675  * Called when user space has done writes to this buffer
1676  */
1677 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 			 struct drm_file *file)
1680 {
1681 	struct drm_i915_gem_sw_finish *args = data;
1682 	struct drm_i915_gem_object *obj;
1683 	int ret = 0;
1684 
1685 	ret = i915_mutex_lock_interruptible(dev);
1686 	if (ret)
1687 		return ret;
1688 
1689 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 	if (&obj->base == NULL) {
1691 		ret = -ENOENT;
1692 		goto unlock;
1693 	}
1694 
1695 	/* Pinned buffers may be scanout, so flush the cache */
1696 	if (obj->pin_display)
1697 		i915_gem_object_flush_cpu_write_domain(obj);
1698 
1699 	drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 	mutex_unlock(&dev->struct_mutex);
1702 	return ret;
1703 }
1704 
1705 /**
1706  * Maps the contents of an object, returning the address it is mapped
1707  * into.
1708  *
1709  * While the mapping holds a reference on the contents of the object, it doesn't
1710  * imply a ref on the object itself.
1711  *
1712  * IMPORTANT:
1713  *
1714  * DRM driver writers who look a this function as an example for how to do GEM
1715  * mmap support, please don't implement mmap support like here. The modern way
1716  * to implement DRM mmap support is with an mmap offset ioctl (like
1717  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718  * That way debug tooling like valgrind will understand what's going on, hiding
1719  * the mmap call in a driver private ioctl will break that. The i915 driver only
1720  * does cpu mmaps this way because we didn't know better.
1721  */
1722 int
i915_gem_mmap_ioctl(struct drm_device * dev,void * data,struct drm_file * file)1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 		    struct drm_file *file)
1725 {
1726 	struct drm_i915_gem_mmap *args = data;
1727 	struct drm_gem_object *obj;
1728 	unsigned long addr;
1729 
1730 	if (args->flags & ~(I915_MMAP_WC))
1731 		return -EINVAL;
1732 
1733 	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 		return -ENODEV;
1735 
1736 	obj = drm_gem_object_lookup(dev, file, args->handle);
1737 	if (obj == NULL)
1738 		return -ENOENT;
1739 
1740 	/* prime objects have no backing filp to GEM mmap
1741 	 * pages from.
1742 	 */
1743 	if (!obj->filp) {
1744 		drm_gem_object_unreference_unlocked(obj);
1745 		return -EINVAL;
1746 	}
1747 
1748 	addr = vm_mmap(obj->filp, 0, args->size,
1749 		       PROT_READ | PROT_WRITE, MAP_SHARED,
1750 		       args->offset);
1751 	if (args->flags & I915_MMAP_WC) {
1752 		struct mm_struct *mm = current->mm;
1753 		struct vm_area_struct *vma;
1754 
1755 		down_write(&mm->mmap_sem);
1756 		vma = find_vma(mm, addr);
1757 		if (vma)
1758 			vma->vm_page_prot =
1759 				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 		else
1761 			addr = -ENOMEM;
1762 		up_write(&mm->mmap_sem);
1763 	}
1764 	drm_gem_object_unreference_unlocked(obj);
1765 	if (IS_ERR((void *)addr))
1766 		return addr;
1767 
1768 	args->addr_ptr = (uint64_t) addr;
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vma: VMA in question
1776  * @vmf: fault info
1777  *
1778  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779  * from userspace.  The fault handler takes care of binding the object to
1780  * the GTT (if needed), allocating and programming a fence register (again,
1781  * only if needed based on whether the old reg is still valid or the object
1782  * is tiled) and inserting a new PTE into the faulting process.
1783  *
1784  * Note that the faulting process may involve evicting existing objects
1785  * from the GTT and/or fence registers to make room.  So performance may
1786  * suffer if the GTT working set is large or there are few fence registers
1787  * left.
1788  */
i915_gem_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 	struct drm_device *dev = obj->base.dev;
1793 	struct drm_i915_private *dev_priv = dev->dev_private;
1794 	struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 	pgoff_t page_offset;
1796 	unsigned long pfn;
1797 	int ret = 0;
1798 	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799 
1800 	intel_runtime_pm_get(dev_priv);
1801 
1802 	/* We don't use vmf->pgoff since that has the fake offset */
1803 	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 		PAGE_SHIFT;
1805 
1806 	ret = i915_mutex_lock_interruptible(dev);
1807 	if (ret)
1808 		goto out;
1809 
1810 	trace_i915_gem_object_fault(obj, page_offset, true, write);
1811 
1812 	/* Try to flush the object off the GPU first without holding the lock.
1813 	 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 	 * repeat the flush holding the lock in the normal manner to catch cases
1815 	 * where we are gazumped.
1816 	 */
1817 	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 	if (ret)
1819 		goto unlock;
1820 
1821 	/* Access to snoopable pages through the GTT is incoherent. */
1822 	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 		ret = -EFAULT;
1824 		goto unlock;
1825 	}
1826 
1827 	/* Use a partial view if the object is bigger than the aperture. */
1828 	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 	    obj->tiling_mode == I915_TILING_NONE) {
1830 		static const unsigned int chunk_size = 256; // 1 MiB
1831 
1832 		memset(&view, 0, sizeof(view));
1833 		view.type = I915_GGTT_VIEW_PARTIAL;
1834 		view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 		view.params.partial.size =
1836 			min_t(unsigned int,
1837 			      chunk_size,
1838 			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 			      view.params.partial.offset);
1840 	}
1841 
1842 	/* Now pin it into the GTT if needed */
1843 	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 	if (ret)
1845 		goto unlock;
1846 
1847 	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 	if (ret)
1849 		goto unpin;
1850 
1851 	ret = i915_gem_object_get_fence(obj);
1852 	if (ret)
1853 		goto unpin;
1854 
1855 	/* Finally, remap it using the new GTT offset */
1856 	pfn = dev_priv->gtt.mappable_base +
1857 		i915_gem_obj_ggtt_offset_view(obj, &view);
1858 	pfn >>= PAGE_SHIFT;
1859 
1860 	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 		/* Overriding existing pages in partial view does not cause
1862 		 * us any trouble as TLBs are still valid because the fault
1863 		 * is due to userspace losing part of the mapping or never
1864 		 * having accessed it before (at this partials' range).
1865 		 */
1866 		unsigned long base = vma->vm_start +
1867 				     (view.params.partial.offset << PAGE_SHIFT);
1868 		unsigned int i;
1869 
1870 		for (i = 0; i < view.params.partial.size; i++) {
1871 			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 			if (ret)
1873 				break;
1874 		}
1875 
1876 		obj->fault_mappable = true;
1877 	} else {
1878 		if (!obj->fault_mappable) {
1879 			unsigned long size = min_t(unsigned long,
1880 						   vma->vm_end - vma->vm_start,
1881 						   obj->base.size);
1882 			int i;
1883 
1884 			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 				ret = vm_insert_pfn(vma,
1886 						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 						    pfn + i);
1888 				if (ret)
1889 					break;
1890 			}
1891 
1892 			obj->fault_mappable = true;
1893 		} else
1894 			ret = vm_insert_pfn(vma,
1895 					    (unsigned long)vmf->virtual_address,
1896 					    pfn + page_offset);
1897 	}
1898 unpin:
1899 	i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 	mutex_unlock(&dev->struct_mutex);
1902 out:
1903 	switch (ret) {
1904 	case -EIO:
1905 		/*
1906 		 * We eat errors when the gpu is terminally wedged to avoid
1907 		 * userspace unduly crashing (gl has no provisions for mmaps to
1908 		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 		 * and so needs to be reported.
1910 		 */
1911 		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 			ret = VM_FAULT_SIGBUS;
1913 			break;
1914 		}
1915 	case -EAGAIN:
1916 		/*
1917 		 * EAGAIN means the gpu is hung and we'll wait for the error
1918 		 * handler to reset everything when re-faulting in
1919 		 * i915_mutex_lock_interruptible.
1920 		 */
1921 	case 0:
1922 	case -ERESTARTSYS:
1923 	case -EINTR:
1924 	case -EBUSY:
1925 		/*
1926 		 * EBUSY is ok: this just means that another thread
1927 		 * already did the job.
1928 		 */
1929 		ret = VM_FAULT_NOPAGE;
1930 		break;
1931 	case -ENOMEM:
1932 		ret = VM_FAULT_OOM;
1933 		break;
1934 	case -ENOSPC:
1935 	case -EFAULT:
1936 		ret = VM_FAULT_SIGBUS;
1937 		break;
1938 	default:
1939 		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 		ret = VM_FAULT_SIGBUS;
1941 		break;
1942 	}
1943 
1944 	intel_runtime_pm_put(dev_priv);
1945 	return ret;
1946 }
1947 
1948 /**
1949  * i915_gem_release_mmap - remove physical page mappings
1950  * @obj: obj in question
1951  *
1952  * Preserve the reservation of the mmapping with the DRM core code, but
1953  * relinquish ownership of the pages back to the system.
1954  *
1955  * It is vital that we remove the page mapping if we have mapped a tiled
1956  * object through the GTT and then lose the fence register due to
1957  * resource pressure. Similarly if the object has been moved out of the
1958  * aperture, than pages mapped into userspace must be revoked. Removing the
1959  * mapping will then trigger a page fault on the next user access, allowing
1960  * fixup by i915_gem_fault().
1961  */
1962 void
i915_gem_release_mmap(struct drm_i915_gem_object * obj)1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 	if (!obj->fault_mappable)
1966 		return;
1967 
1968 	drm_vma_node_unmap(&obj->base.vma_node,
1969 			   obj->base.dev->anon_inode->i_mapping);
1970 	obj->fault_mappable = false;
1971 }
1972 
1973 void
i915_gem_release_all_mmaps(struct drm_i915_private * dev_priv)1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 	struct drm_i915_gem_object *obj;
1977 
1978 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 		i915_gem_release_mmap(obj);
1980 }
1981 
1982 uint32_t
i915_gem_get_gtt_size(struct drm_device * dev,uint32_t size,int tiling_mode)1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 	uint32_t gtt_size;
1986 
1987 	if (INTEL_INFO(dev)->gen >= 4 ||
1988 	    tiling_mode == I915_TILING_NONE)
1989 		return size;
1990 
1991 	/* Previous chips need a power-of-two fence region when tiling */
1992 	if (INTEL_INFO(dev)->gen == 3)
1993 		gtt_size = 1024*1024;
1994 	else
1995 		gtt_size = 512*1024;
1996 
1997 	while (gtt_size < size)
1998 		gtt_size <<= 1;
1999 
2000 	return gtt_size;
2001 }
2002 
2003 /**
2004  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005  * @obj: object to check
2006  *
2007  * Return the required GTT alignment for an object, taking into account
2008  * potential fence register mapping.
2009  */
2010 uint32_t
i915_gem_get_gtt_alignment(struct drm_device * dev,uint32_t size,int tiling_mode,bool fenced)2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 			   int tiling_mode, bool fenced)
2013 {
2014 	/*
2015 	 * Minimum alignment is 4k (GTT page size), but might be greater
2016 	 * if a fence register is needed for the object.
2017 	 */
2018 	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 	    tiling_mode == I915_TILING_NONE)
2020 		return 4096;
2021 
2022 	/*
2023 	 * Previous chips need to be aligned to the size of the smallest
2024 	 * fence register that can contain the object.
2025 	 */
2026 	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028 
i915_gem_object_create_mmap_offset(struct drm_i915_gem_object * obj)2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 	int ret;
2033 
2034 	if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 		return 0;
2036 
2037 	dev_priv->mm.shrinker_no_lock_stealing = true;
2038 
2039 	ret = drm_gem_create_mmap_offset(&obj->base);
2040 	if (ret != -ENOSPC)
2041 		goto out;
2042 
2043 	/* Badly fragmented mmap space? The only way we can recover
2044 	 * space is by destroying unwanted objects. We can't randomly release
2045 	 * mmap_offsets as userspace expects them to be persistent for the
2046 	 * lifetime of the objects. The closest we can is to release the
2047 	 * offsets on purgeable objects by truncating it and marking it purged,
2048 	 * which prevents userspace from ever using that object again.
2049 	 */
2050 	i915_gem_shrink(dev_priv,
2051 			obj->base.size >> PAGE_SHIFT,
2052 			I915_SHRINK_BOUND |
2053 			I915_SHRINK_UNBOUND |
2054 			I915_SHRINK_PURGEABLE);
2055 	ret = drm_gem_create_mmap_offset(&obj->base);
2056 	if (ret != -ENOSPC)
2057 		goto out;
2058 
2059 	i915_gem_shrink_all(dev_priv);
2060 	ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 	dev_priv->mm.shrinker_no_lock_stealing = false;
2063 
2064 	return ret;
2065 }
2066 
i915_gem_object_free_mmap_offset(struct drm_i915_gem_object * obj)2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 	drm_gem_free_mmap_offset(&obj->base);
2070 }
2071 
2072 int
i915_gem_mmap_gtt(struct drm_file * file,struct drm_device * dev,uint32_t handle,uint64_t * offset)2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 		  struct drm_device *dev,
2075 		  uint32_t handle,
2076 		  uint64_t *offset)
2077 {
2078 	struct drm_i915_gem_object *obj;
2079 	int ret;
2080 
2081 	ret = i915_mutex_lock_interruptible(dev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 	if (&obj->base == NULL) {
2087 		ret = -ENOENT;
2088 		goto unlock;
2089 	}
2090 
2091 	if (obj->madv != I915_MADV_WILLNEED) {
2092 		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 		ret = -EFAULT;
2094 		goto out;
2095 	}
2096 
2097 	ret = i915_gem_object_create_mmap_offset(obj);
2098 	if (ret)
2099 		goto out;
2100 
2101 	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102 
2103 out:
2104 	drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 	mutex_unlock(&dev->struct_mutex);
2107 	return ret;
2108 }
2109 
2110 /**
2111  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112  * @dev: DRM device
2113  * @data: GTT mapping ioctl data
2114  * @file: GEM object info
2115  *
2116  * Simply returns the fake offset to userspace so it can mmap it.
2117  * The mmap call will end up in drm_gem_mmap(), which will set things
2118  * up so we can get faults in the handler above.
2119  *
2120  * The fault handler will take care of binding the object into the GTT
2121  * (since it may have been evicted to make room for something), allocating
2122  * a fence register, and mapping the appropriate aperture address into
2123  * userspace.
2124  */
2125 int
i915_gem_mmap_gtt_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 			struct drm_file *file)
2128 {
2129 	struct drm_i915_gem_mmap_gtt *args = data;
2130 
2131 	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133 
2134 /* Immediately discard the backing storage */
2135 static void
i915_gem_object_truncate(struct drm_i915_gem_object * obj)2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 	i915_gem_object_free_mmap_offset(obj);
2139 
2140 	if (obj->base.filp == NULL)
2141 		return;
2142 
2143 	/* Our goal here is to return as much of the memory as
2144 	 * is possible back to the system as we are called from OOM.
2145 	 * To do this we must instruct the shmfs to drop all of its
2146 	 * backing pages, *now*.
2147 	 */
2148 	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 	obj->madv = __I915_MADV_PURGED;
2150 }
2151 
2152 /* Try to discard unwanted pages */
2153 static void
i915_gem_object_invalidate(struct drm_i915_gem_object * obj)2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 	struct address_space *mapping;
2157 
2158 	switch (obj->madv) {
2159 	case I915_MADV_DONTNEED:
2160 		i915_gem_object_truncate(obj);
2161 	case __I915_MADV_PURGED:
2162 		return;
2163 	}
2164 
2165 	if (obj->base.filp == NULL)
2166 		return;
2167 
2168 	mapping = file_inode(obj->base.filp)->i_mapping,
2169 	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171 
2172 static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object * obj)2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 	struct sg_page_iter sg_iter;
2176 	int ret;
2177 
2178 	BUG_ON(obj->madv == __I915_MADV_PURGED);
2179 
2180 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 	if (ret) {
2182 		/* In the event of a disaster, abandon all caches and
2183 		 * hope for the best.
2184 		 */
2185 		WARN_ON(ret != -EIO);
2186 		i915_gem_clflush_object(obj, true);
2187 		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 	}
2189 
2190 	i915_gem_gtt_finish_object(obj);
2191 
2192 	if (i915_gem_object_needs_bit17_swizzle(obj))
2193 		i915_gem_object_save_bit_17_swizzle(obj);
2194 
2195 	if (obj->madv == I915_MADV_DONTNEED)
2196 		obj->dirty = 0;
2197 
2198 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 		struct page *page = sg_page_iter_page(&sg_iter);
2200 
2201 		if (obj->dirty)
2202 			set_page_dirty(page);
2203 
2204 		if (obj->madv == I915_MADV_WILLNEED)
2205 			mark_page_accessed(page);
2206 
2207 		page_cache_release(page);
2208 	}
2209 	obj->dirty = 0;
2210 
2211 	sg_free_table(obj->pages);
2212 	kfree(obj->pages);
2213 }
2214 
2215 #define _wait_for_us(COND, US, W) ({ \
2216 	unsigned long timeout__ = jiffies + usecs_to_jiffies(US) + 1;   \
2217 	int ret__;                                                      \
2218 	for (;;) {                                                      \
2219 		bool expired__ = time_after(jiffies, timeout__);        \
2220 		if (COND) {                                             \
2221 			ret__ = 0;                                      \
2222 			break;                                          \
2223 		}                                                       \
2224 		if (expired__) {                                        \
2225 			ret__ = -ETIMEDOUT;                             \
2226 			break;                                          \
2227 		}                                                       \
2228 		usleep_range((W), (W)*2);                               \
2229 	}                                                               \
2230 	ret__;                                                          \
2231 })
2232 
2233 static int
__intel_wait_for_register_fw(struct drm_i915_private * dev_priv,u32 reg,const u32 mask,const u32 value,const unsigned int timeout_us,const unsigned int timeout_ms)2234 __intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2235 			     u32 reg,
2236 			     const u32 mask,
2237 			     const u32 value,
2238 			     const unsigned int timeout_us,
2239 			     const unsigned int timeout_ms)
2240 {
2241 #define done ((I915_READ_FW(reg) & mask) == value)
2242 	int ret = _wait_for_us(done, timeout_us, 2);
2243 	if (ret)
2244 		ret = wait_for(done, timeout_ms);
2245 	return ret;
2246 #undef done
2247 }
2248 
invalidate_tlbs(struct drm_i915_private * dev_priv)2249 static void invalidate_tlbs(struct drm_i915_private *dev_priv)
2250 {
2251 	static const u32 gen8_regs[] = {
2252 		[RCS]  = GEN8_RTCR,
2253 		[VCS]  = GEN8_M1TCR,
2254 		[VCS2] = GEN8_M2TCR,
2255 		[VECS] = GEN8_VTCR,
2256 		[BCS]  = GEN8_BTCR,
2257 	};
2258 	enum intel_ring_id id;
2259 
2260 	if (INTEL_INFO(dev_priv)->gen < 8)
2261 		return;
2262 
2263 	mutex_lock(&dev_priv->tlb_invalidate_lock);
2264 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2265 
2266 	for (id = 0; id < I915_NUM_RINGS; id++) {
2267 		struct intel_engine_cs *engine = &dev_priv->ring[id];
2268 		/*
2269 		 * HW architecture suggest typical invalidation time at 40us,
2270 		 * with pessimistic cases up to 100us and a recommendation to
2271 		 * cap at 1ms. We go a bit higher just in case.
2272 		 */
2273 		const unsigned int timeout_us = 100;
2274 		const unsigned int timeout_ms = 4;
2275 
2276 		if (!intel_ring_initialized(engine))
2277 			continue;
2278 
2279 		if (WARN_ON_ONCE(id >= ARRAY_SIZE(gen8_regs) || !gen8_regs[id]))
2280 			continue;
2281 
2282 		I915_WRITE_FW(gen8_regs[id], 1);
2283 		if (__intel_wait_for_register_fw(dev_priv,
2284 						 gen8_regs[id], 1, 0,
2285 						 timeout_us, timeout_ms))
2286 			DRM_ERROR_RATELIMITED("%s TLB invalidation did not complete in %ums!\n",
2287 					      engine->name, timeout_ms);
2288 	}
2289 
2290 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2291 	mutex_unlock(&dev_priv->tlb_invalidate_lock);
2292 }
2293 
2294 int
i915_gem_object_put_pages(struct drm_i915_gem_object * obj)2295 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2296 {
2297 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2298 
2299 	if (obj->pages == NULL)
2300 		return 0;
2301 
2302 	if (obj->pages_pin_count)
2303 		return -EBUSY;
2304 
2305 	BUG_ON(i915_gem_obj_bound_any(obj));
2306 
2307 	/* ->put_pages might need to allocate memory for the bit17 swizzle
2308 	 * array, hence protect them from being reaped by removing them from gtt
2309 	 * lists early. */
2310 	list_del(&obj->global_list);
2311 
2312 	if (test_and_clear_bit(I915_BO_WAS_BOUND_BIT, &obj->flags)) {
2313 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
2314 
2315 		intel_runtime_pm_get(i915);
2316 		invalidate_tlbs(i915);
2317 		intel_runtime_pm_put(i915);
2318 	}
2319 
2320 	ops->put_pages(obj);
2321 	obj->pages = NULL;
2322 
2323 	i915_gem_object_invalidate(obj);
2324 
2325 	return 0;
2326 }
2327 
2328 static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object * obj)2329 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2330 {
2331 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2332 	int page_count, i;
2333 	struct address_space *mapping;
2334 	struct sg_table *st;
2335 	struct scatterlist *sg;
2336 	struct sg_page_iter sg_iter;
2337 	struct page *page;
2338 	unsigned long last_pfn = 0;	/* suppress gcc warning */
2339 	int ret;
2340 	gfp_t gfp;
2341 
2342 	/* Assert that the object is not currently in any GPU domain. As it
2343 	 * wasn't in the GTT, there shouldn't be any way it could have been in
2344 	 * a GPU cache
2345 	 */
2346 	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2347 	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2348 
2349 	st = kmalloc(sizeof(*st), GFP_KERNEL);
2350 	if (st == NULL)
2351 		return -ENOMEM;
2352 
2353 	page_count = obj->base.size / PAGE_SIZE;
2354 	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2355 		kfree(st);
2356 		return -ENOMEM;
2357 	}
2358 
2359 	/* Get the list of pages out of our struct file.  They'll be pinned
2360 	 * at this point until we release them.
2361 	 *
2362 	 * Fail silently without starting the shrinker
2363 	 */
2364 	mapping = file_inode(obj->base.filp)->i_mapping;
2365 	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2366 	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2367 	sg = st->sgl;
2368 	st->nents = 0;
2369 	for (i = 0; i < page_count; i++) {
2370 		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2371 		if (IS_ERR(page)) {
2372 			i915_gem_shrink(dev_priv,
2373 					page_count,
2374 					I915_SHRINK_BOUND |
2375 					I915_SHRINK_UNBOUND |
2376 					I915_SHRINK_PURGEABLE);
2377 			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2378 		}
2379 		if (IS_ERR(page)) {
2380 			/* We've tried hard to allocate the memory by reaping
2381 			 * our own buffer, now let the real VM do its job and
2382 			 * go down in flames if truly OOM.
2383 			 */
2384 			i915_gem_shrink_all(dev_priv);
2385 			page = shmem_read_mapping_page(mapping, i);
2386 			if (IS_ERR(page)) {
2387 				ret = PTR_ERR(page);
2388 				goto err_pages;
2389 			}
2390 		}
2391 #ifdef CONFIG_SWIOTLB
2392 		if (swiotlb_nr_tbl()) {
2393 			st->nents++;
2394 			sg_set_page(sg, page, PAGE_SIZE, 0);
2395 			sg = sg_next(sg);
2396 			continue;
2397 		}
2398 #endif
2399 		if (!i || page_to_pfn(page) != last_pfn + 1) {
2400 			if (i)
2401 				sg = sg_next(sg);
2402 			st->nents++;
2403 			sg_set_page(sg, page, PAGE_SIZE, 0);
2404 		} else {
2405 			sg->length += PAGE_SIZE;
2406 		}
2407 		last_pfn = page_to_pfn(page);
2408 
2409 		/* Check that the i965g/gm workaround works. */
2410 		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2411 	}
2412 #ifdef CONFIG_SWIOTLB
2413 	if (!swiotlb_nr_tbl())
2414 #endif
2415 		sg_mark_end(sg);
2416 	obj->pages = st;
2417 
2418 	ret = i915_gem_gtt_prepare_object(obj);
2419 	if (ret)
2420 		goto err_pages;
2421 
2422 	if (i915_gem_object_needs_bit17_swizzle(obj))
2423 		i915_gem_object_do_bit_17_swizzle(obj);
2424 
2425 	if (obj->tiling_mode != I915_TILING_NONE &&
2426 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2427 		i915_gem_object_pin_pages(obj);
2428 
2429 	return 0;
2430 
2431 err_pages:
2432 	sg_mark_end(sg);
2433 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2434 		page_cache_release(sg_page_iter_page(&sg_iter));
2435 	sg_free_table(st);
2436 	kfree(st);
2437 
2438 	/* shmemfs first checks if there is enough memory to allocate the page
2439 	 * and reports ENOSPC should there be insufficient, along with the usual
2440 	 * ENOMEM for a genuine allocation failure.
2441 	 *
2442 	 * We use ENOSPC in our driver to mean that we have run out of aperture
2443 	 * space and so want to translate the error from shmemfs back to our
2444 	 * usual understanding of ENOMEM.
2445 	 */
2446 	if (ret == -ENOSPC)
2447 		ret = -ENOMEM;
2448 
2449 	return ret;
2450 }
2451 
2452 /* Ensure that the associated pages are gathered from the backing storage
2453  * and pinned into our object. i915_gem_object_get_pages() may be called
2454  * multiple times before they are released by a single call to
2455  * i915_gem_object_put_pages() - once the pages are no longer referenced
2456  * either as a result of memory pressure (reaping pages under the shrinker)
2457  * or as the object is itself released.
2458  */
2459 int
i915_gem_object_get_pages(struct drm_i915_gem_object * obj)2460 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2461 {
2462 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2463 	const struct drm_i915_gem_object_ops *ops = obj->ops;
2464 	int ret;
2465 
2466 	if (obj->pages)
2467 		return 0;
2468 
2469 	if (obj->madv != I915_MADV_WILLNEED) {
2470 		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2471 		return -EFAULT;
2472 	}
2473 
2474 	BUG_ON(obj->pages_pin_count);
2475 
2476 	ret = ops->get_pages(obj);
2477 	if (ret)
2478 		return ret;
2479 
2480 	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2481 
2482 	obj->get_page.sg = obj->pages->sgl;
2483 	obj->get_page.last = 0;
2484 
2485 	return 0;
2486 }
2487 
i915_vma_move_to_active(struct i915_vma * vma,struct drm_i915_gem_request * req)2488 void i915_vma_move_to_active(struct i915_vma *vma,
2489 			     struct drm_i915_gem_request *req)
2490 {
2491 	struct drm_i915_gem_object *obj = vma->obj;
2492 	struct intel_engine_cs *ring;
2493 
2494 	ring = i915_gem_request_get_ring(req);
2495 
2496 	/* Add a reference if we're newly entering the active list. */
2497 	if (obj->active == 0)
2498 		drm_gem_object_reference(&obj->base);
2499 	obj->active |= intel_ring_flag(ring);
2500 
2501 	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2502 	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2503 
2504 	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2505 }
2506 
2507 static void
i915_gem_object_retire__write(struct drm_i915_gem_object * obj)2508 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2509 {
2510 	RQ_BUG_ON(obj->last_write_req == NULL);
2511 	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2512 
2513 	i915_gem_request_assign(&obj->last_write_req, NULL);
2514 	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2515 }
2516 
2517 static void
i915_gem_object_retire__read(struct drm_i915_gem_object * obj,int ring)2518 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2519 {
2520 	struct i915_vma *vma;
2521 
2522 	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2523 	RQ_BUG_ON(!(obj->active & (1 << ring)));
2524 
2525 	list_del_init(&obj->ring_list[ring]);
2526 	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2527 
2528 	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2529 		i915_gem_object_retire__write(obj);
2530 
2531 	obj->active &= ~(1 << ring);
2532 	if (obj->active)
2533 		return;
2534 
2535 	/* Bump our place on the bound list to keep it roughly in LRU order
2536 	 * so that we don't steal from recently used but inactive objects
2537 	 * (unless we are forced to ofc!)
2538 	 */
2539 	list_move_tail(&obj->global_list,
2540 		       &to_i915(obj->base.dev)->mm.bound_list);
2541 
2542 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
2543 		if (!list_empty(&vma->mm_list))
2544 			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2545 	}
2546 
2547 	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2548 	drm_gem_object_unreference(&obj->base);
2549 }
2550 
2551 static int
i915_gem_init_seqno(struct drm_device * dev,u32 seqno)2552 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2553 {
2554 	struct drm_i915_private *dev_priv = dev->dev_private;
2555 	struct intel_engine_cs *ring;
2556 	int ret, i, j;
2557 
2558 	/* Carefully retire all requests without writing to the rings */
2559 	for_each_ring(ring, dev_priv, i) {
2560 		ret = intel_ring_idle(ring);
2561 		if (ret)
2562 			return ret;
2563 	}
2564 	i915_gem_retire_requests(dev);
2565 
2566 	/* Finally reset hw state */
2567 	for_each_ring(ring, dev_priv, i) {
2568 		intel_ring_init_seqno(ring, seqno);
2569 
2570 		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2571 			ring->semaphore.sync_seqno[j] = 0;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
i915_gem_set_seqno(struct drm_device * dev,u32 seqno)2577 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2578 {
2579 	struct drm_i915_private *dev_priv = dev->dev_private;
2580 	int ret;
2581 
2582 	if (seqno == 0)
2583 		return -EINVAL;
2584 
2585 	/* HWS page needs to be set less than what we
2586 	 * will inject to ring
2587 	 */
2588 	ret = i915_gem_init_seqno(dev, seqno - 1);
2589 	if (ret)
2590 		return ret;
2591 
2592 	/* Carefully set the last_seqno value so that wrap
2593 	 * detection still works
2594 	 */
2595 	dev_priv->next_seqno = seqno;
2596 	dev_priv->last_seqno = seqno - 1;
2597 	if (dev_priv->last_seqno == 0)
2598 		dev_priv->last_seqno--;
2599 
2600 	return 0;
2601 }
2602 
2603 int
i915_gem_get_seqno(struct drm_device * dev,u32 * seqno)2604 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2605 {
2606 	struct drm_i915_private *dev_priv = dev->dev_private;
2607 
2608 	/* reserve 0 for non-seqno */
2609 	if (dev_priv->next_seqno == 0) {
2610 		int ret = i915_gem_init_seqno(dev, 0);
2611 		if (ret)
2612 			return ret;
2613 
2614 		dev_priv->next_seqno = 1;
2615 	}
2616 
2617 	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2618 	return 0;
2619 }
2620 
2621 /*
2622  * NB: This function is not allowed to fail. Doing so would mean the the
2623  * request is not being tracked for completion but the work itself is
2624  * going to happen on the hardware. This would be a Bad Thing(tm).
2625  */
__i915_add_request(struct drm_i915_gem_request * request,struct drm_i915_gem_object * obj,bool flush_caches)2626 void __i915_add_request(struct drm_i915_gem_request *request,
2627 			struct drm_i915_gem_object *obj,
2628 			bool flush_caches)
2629 {
2630 	struct intel_engine_cs *ring;
2631 	struct drm_i915_private *dev_priv;
2632 	struct intel_ringbuffer *ringbuf;
2633 	u32 request_start;
2634 	int ret;
2635 
2636 	if (WARN_ON(request == NULL))
2637 		return;
2638 
2639 	ring = request->ring;
2640 	dev_priv = ring->dev->dev_private;
2641 	ringbuf = request->ringbuf;
2642 
2643 	/*
2644 	 * To ensure that this call will not fail, space for its emissions
2645 	 * should already have been reserved in the ring buffer. Let the ring
2646 	 * know that it is time to use that space up.
2647 	 */
2648 	intel_ring_reserved_space_use(ringbuf);
2649 
2650 	request_start = intel_ring_get_tail(ringbuf);
2651 	/*
2652 	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2653 	 * after having emitted the batchbuffer command. Hence we need to fix
2654 	 * things up similar to emitting the lazy request. The difference here
2655 	 * is that the flush _must_ happen before the next request, no matter
2656 	 * what.
2657 	 */
2658 	if (flush_caches) {
2659 		if (i915.enable_execlists)
2660 			ret = logical_ring_flush_all_caches(request);
2661 		else
2662 			ret = intel_ring_flush_all_caches(request);
2663 		/* Not allowed to fail! */
2664 		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2665 	}
2666 
2667 	/* Record the position of the start of the request so that
2668 	 * should we detect the updated seqno part-way through the
2669 	 * GPU processing the request, we never over-estimate the
2670 	 * position of the head.
2671 	 */
2672 	request->postfix = intel_ring_get_tail(ringbuf);
2673 
2674 	if (i915.enable_execlists)
2675 		ret = ring->emit_request(request);
2676 	else {
2677 		ret = ring->add_request(request);
2678 
2679 		request->tail = intel_ring_get_tail(ringbuf);
2680 	}
2681 	/* Not allowed to fail! */
2682 	WARN(ret, "emit|add_request failed: %d!\n", ret);
2683 
2684 	request->head = request_start;
2685 
2686 	/* Whilst this request exists, batch_obj will be on the
2687 	 * active_list, and so will hold the active reference. Only when this
2688 	 * request is retired will the the batch_obj be moved onto the
2689 	 * inactive_list and lose its active reference. Hence we do not need
2690 	 * to explicitly hold another reference here.
2691 	 */
2692 	request->batch_obj = obj;
2693 
2694 	request->emitted_jiffies = jiffies;
2695 	request->previous_seqno = ring->last_submitted_seqno;
2696 	ring->last_submitted_seqno = request->seqno;
2697 	list_add_tail(&request->list, &ring->request_list);
2698 
2699 	trace_i915_gem_request_add(request);
2700 
2701 	i915_queue_hangcheck(ring->dev);
2702 
2703 	queue_delayed_work(dev_priv->wq,
2704 			   &dev_priv->mm.retire_work,
2705 			   round_jiffies_up_relative(HZ));
2706 	intel_mark_busy(dev_priv->dev);
2707 
2708 	/* Sanity check that the reserved size was large enough. */
2709 	intel_ring_reserved_space_end(ringbuf);
2710 }
2711 
i915_context_is_banned(struct drm_i915_private * dev_priv,const struct intel_context * ctx)2712 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2713 				   const struct intel_context *ctx)
2714 {
2715 	unsigned long elapsed;
2716 
2717 	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2718 
2719 	if (ctx->hang_stats.banned)
2720 		return true;
2721 
2722 	if (ctx->hang_stats.ban_period_seconds &&
2723 	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2724 		if (!i915_gem_context_is_default(ctx)) {
2725 			DRM_DEBUG("context hanging too fast, banning!\n");
2726 			return true;
2727 		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2728 			if (i915_stop_ring_allow_warn(dev_priv))
2729 				DRM_ERROR("gpu hanging too fast, banning!\n");
2730 			return true;
2731 		}
2732 	}
2733 
2734 	return false;
2735 }
2736 
i915_set_reset_status(struct drm_i915_private * dev_priv,struct intel_context * ctx,const bool guilty)2737 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2738 				  struct intel_context *ctx,
2739 				  const bool guilty)
2740 {
2741 	struct i915_ctx_hang_stats *hs;
2742 
2743 	if (WARN_ON(!ctx))
2744 		return;
2745 
2746 	hs = &ctx->hang_stats;
2747 
2748 	if (guilty) {
2749 		hs->banned = i915_context_is_banned(dev_priv, ctx);
2750 		hs->batch_active++;
2751 		hs->guilty_ts = get_seconds();
2752 	} else {
2753 		hs->batch_pending++;
2754 	}
2755 }
2756 
i915_gem_request_free(struct kref * req_ref)2757 void i915_gem_request_free(struct kref *req_ref)
2758 {
2759 	struct drm_i915_gem_request *req = container_of(req_ref,
2760 						 typeof(*req), ref);
2761 	struct intel_context *ctx = req->ctx;
2762 
2763 	if (req->file_priv)
2764 		i915_gem_request_remove_from_client(req);
2765 
2766 	if (ctx) {
2767 		if (i915.enable_execlists) {
2768 			if (ctx != req->ring->default_context)
2769 				intel_lr_context_unpin(req);
2770 		}
2771 
2772 		i915_gem_context_unreference(ctx);
2773 	}
2774 
2775 	kmem_cache_free(req->i915->requests, req);
2776 }
2777 
i915_gem_request_alloc(struct intel_engine_cs * ring,struct intel_context * ctx,struct drm_i915_gem_request ** req_out)2778 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2779 			   struct intel_context *ctx,
2780 			   struct drm_i915_gem_request **req_out)
2781 {
2782 	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2783 	struct drm_i915_gem_request *req;
2784 	int ret;
2785 
2786 	if (!req_out)
2787 		return -EINVAL;
2788 
2789 	*req_out = NULL;
2790 
2791 	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2792 	if (req == NULL)
2793 		return -ENOMEM;
2794 
2795 	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2796 	if (ret)
2797 		goto err;
2798 
2799 	kref_init(&req->ref);
2800 	req->i915 = dev_priv;
2801 	req->ring = ring;
2802 	req->ctx  = ctx;
2803 	i915_gem_context_reference(req->ctx);
2804 
2805 	if (i915.enable_execlists)
2806 		ret = intel_logical_ring_alloc_request_extras(req);
2807 	else
2808 		ret = intel_ring_alloc_request_extras(req);
2809 	if (ret) {
2810 		i915_gem_context_unreference(req->ctx);
2811 		goto err;
2812 	}
2813 
2814 	/*
2815 	 * Reserve space in the ring buffer for all the commands required to
2816 	 * eventually emit this request. This is to guarantee that the
2817 	 * i915_add_request() call can't fail. Note that the reserve may need
2818 	 * to be redone if the request is not actually submitted straight
2819 	 * away, e.g. because a GPU scheduler has deferred it.
2820 	 */
2821 	if (i915.enable_execlists)
2822 		ret = intel_logical_ring_reserve_space(req);
2823 	else
2824 		ret = intel_ring_reserve_space(req);
2825 	if (ret) {
2826 		/*
2827 		 * At this point, the request is fully allocated even if not
2828 		 * fully prepared. Thus it can be cleaned up using the proper
2829 		 * free code.
2830 		 */
2831 		i915_gem_request_cancel(req);
2832 		return ret;
2833 	}
2834 
2835 	*req_out = req;
2836 	return 0;
2837 
2838 err:
2839 	kmem_cache_free(dev_priv->requests, req);
2840 	return ret;
2841 }
2842 
i915_gem_request_cancel(struct drm_i915_gem_request * req)2843 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2844 {
2845 	intel_ring_reserved_space_cancel(req->ringbuf);
2846 
2847 	i915_gem_request_unreference(req);
2848 }
2849 
2850 struct drm_i915_gem_request *
i915_gem_find_active_request(struct intel_engine_cs * ring)2851 i915_gem_find_active_request(struct intel_engine_cs *ring)
2852 {
2853 	struct drm_i915_gem_request *request;
2854 
2855 	list_for_each_entry(request, &ring->request_list, list) {
2856 		if (i915_gem_request_completed(request, false))
2857 			continue;
2858 
2859 		return request;
2860 	}
2861 
2862 	return NULL;
2863 }
2864 
i915_gem_reset_ring_status(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2865 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2866 				       struct intel_engine_cs *ring)
2867 {
2868 	struct drm_i915_gem_request *request;
2869 	bool ring_hung;
2870 
2871 	request = i915_gem_find_active_request(ring);
2872 
2873 	if (request == NULL)
2874 		return;
2875 
2876 	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2877 
2878 	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2879 
2880 	list_for_each_entry_continue(request, &ring->request_list, list)
2881 		i915_set_reset_status(dev_priv, request->ctx, false);
2882 }
2883 
i915_gem_reset_ring_cleanup(struct drm_i915_private * dev_priv,struct intel_engine_cs * ring)2884 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2885 					struct intel_engine_cs *ring)
2886 {
2887 	while (!list_empty(&ring->active_list)) {
2888 		struct drm_i915_gem_object *obj;
2889 
2890 		obj = list_first_entry(&ring->active_list,
2891 				       struct drm_i915_gem_object,
2892 				       ring_list[ring->id]);
2893 
2894 		i915_gem_object_retire__read(obj, ring->id);
2895 	}
2896 
2897 	/*
2898 	 * Clear the execlists queue up before freeing the requests, as those
2899 	 * are the ones that keep the context and ringbuffer backing objects
2900 	 * pinned in place.
2901 	 */
2902 	while (!list_empty(&ring->execlist_queue)) {
2903 		struct drm_i915_gem_request *submit_req;
2904 
2905 		submit_req = list_first_entry(&ring->execlist_queue,
2906 				struct drm_i915_gem_request,
2907 				execlist_link);
2908 		list_del(&submit_req->execlist_link);
2909 
2910 		if (submit_req->ctx != ring->default_context)
2911 			intel_lr_context_unpin(submit_req);
2912 
2913 		i915_gem_request_unreference(submit_req);
2914 	}
2915 
2916 	/*
2917 	 * We must free the requests after all the corresponding objects have
2918 	 * been moved off active lists. Which is the same order as the normal
2919 	 * retire_requests function does. This is important if object hold
2920 	 * implicit references on things like e.g. ppgtt address spaces through
2921 	 * the request.
2922 	 */
2923 	while (!list_empty(&ring->request_list)) {
2924 		struct drm_i915_gem_request *request;
2925 
2926 		request = list_first_entry(&ring->request_list,
2927 					   struct drm_i915_gem_request,
2928 					   list);
2929 
2930 		i915_gem_request_retire(request);
2931 	}
2932 }
2933 
i915_gem_reset(struct drm_device * dev)2934 void i915_gem_reset(struct drm_device *dev)
2935 {
2936 	struct drm_i915_private *dev_priv = dev->dev_private;
2937 	struct intel_engine_cs *ring;
2938 	int i;
2939 
2940 	/*
2941 	 * Before we free the objects from the requests, we need to inspect
2942 	 * them for finding the guilty party. As the requests only borrow
2943 	 * their reference to the objects, the inspection must be done first.
2944 	 */
2945 	for_each_ring(ring, dev_priv, i)
2946 		i915_gem_reset_ring_status(dev_priv, ring);
2947 
2948 	for_each_ring(ring, dev_priv, i)
2949 		i915_gem_reset_ring_cleanup(dev_priv, ring);
2950 
2951 	i915_gem_context_reset(dev);
2952 
2953 	i915_gem_restore_fences(dev);
2954 
2955 	WARN_ON(i915_verify_lists(dev));
2956 }
2957 
2958 /**
2959  * This function clears the request list as sequence numbers are passed.
2960  */
2961 void
i915_gem_retire_requests_ring(struct intel_engine_cs * ring)2962 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2963 {
2964 	WARN_ON(i915_verify_lists(ring->dev));
2965 
2966 	/* Retire requests first as we use it above for the early return.
2967 	 * If we retire requests last, we may use a later seqno and so clear
2968 	 * the requests lists without clearing the active list, leading to
2969 	 * confusion.
2970 	 */
2971 	while (!list_empty(&ring->request_list)) {
2972 		struct drm_i915_gem_request *request;
2973 
2974 		request = list_first_entry(&ring->request_list,
2975 					   struct drm_i915_gem_request,
2976 					   list);
2977 
2978 		if (!i915_gem_request_completed(request, true))
2979 			break;
2980 
2981 		i915_gem_request_retire(request);
2982 	}
2983 
2984 	/* Move any buffers on the active list that are no longer referenced
2985 	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2986 	 * before we free the context associated with the requests.
2987 	 */
2988 	while (!list_empty(&ring->active_list)) {
2989 		struct drm_i915_gem_object *obj;
2990 
2991 		obj = list_first_entry(&ring->active_list,
2992 				      struct drm_i915_gem_object,
2993 				      ring_list[ring->id]);
2994 
2995 		if (!list_empty(&obj->last_read_req[ring->id]->list))
2996 			break;
2997 
2998 		i915_gem_object_retire__read(obj, ring->id);
2999 	}
3000 
3001 	if (unlikely(ring->trace_irq_req &&
3002 		     i915_gem_request_completed(ring->trace_irq_req, true))) {
3003 		ring->irq_put(ring);
3004 		i915_gem_request_assign(&ring->trace_irq_req, NULL);
3005 	}
3006 
3007 	WARN_ON(i915_verify_lists(ring->dev));
3008 }
3009 
3010 bool
i915_gem_retire_requests(struct drm_device * dev)3011 i915_gem_retire_requests(struct drm_device *dev)
3012 {
3013 	struct drm_i915_private *dev_priv = dev->dev_private;
3014 	struct intel_engine_cs *ring;
3015 	bool idle = true;
3016 	int i;
3017 
3018 	for_each_ring(ring, dev_priv, i) {
3019 		i915_gem_retire_requests_ring(ring);
3020 		idle &= list_empty(&ring->request_list);
3021 		if (i915.enable_execlists) {
3022 			unsigned long flags;
3023 
3024 			spin_lock_irqsave(&ring->execlist_lock, flags);
3025 			idle &= list_empty(&ring->execlist_queue);
3026 			spin_unlock_irqrestore(&ring->execlist_lock, flags);
3027 
3028 			intel_execlists_retire_requests(ring);
3029 		}
3030 	}
3031 
3032 	if (idle)
3033 		mod_delayed_work(dev_priv->wq,
3034 				   &dev_priv->mm.idle_work,
3035 				   msecs_to_jiffies(100));
3036 
3037 	return idle;
3038 }
3039 
3040 static void
i915_gem_retire_work_handler(struct work_struct * work)3041 i915_gem_retire_work_handler(struct work_struct *work)
3042 {
3043 	struct drm_i915_private *dev_priv =
3044 		container_of(work, typeof(*dev_priv), mm.retire_work.work);
3045 	struct drm_device *dev = dev_priv->dev;
3046 	bool idle;
3047 
3048 	/* Come back later if the device is busy... */
3049 	idle = false;
3050 	if (mutex_trylock(&dev->struct_mutex)) {
3051 		idle = i915_gem_retire_requests(dev);
3052 		mutex_unlock(&dev->struct_mutex);
3053 	}
3054 	if (!idle)
3055 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3056 				   round_jiffies_up_relative(HZ));
3057 }
3058 
3059 static void
i915_gem_idle_work_handler(struct work_struct * work)3060 i915_gem_idle_work_handler(struct work_struct *work)
3061 {
3062 	struct drm_i915_private *dev_priv =
3063 		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3064 	struct drm_device *dev = dev_priv->dev;
3065 	struct intel_engine_cs *ring;
3066 	int i;
3067 
3068 	for_each_ring(ring, dev_priv, i)
3069 		if (!list_empty(&ring->request_list))
3070 			return;
3071 
3072 	intel_mark_idle(dev);
3073 
3074 	if (mutex_trylock(&dev->struct_mutex)) {
3075 		struct intel_engine_cs *ring;
3076 		int i;
3077 
3078 		for_each_ring(ring, dev_priv, i)
3079 			i915_gem_batch_pool_fini(&ring->batch_pool);
3080 
3081 		mutex_unlock(&dev->struct_mutex);
3082 	}
3083 }
3084 
3085 /**
3086  * Ensures that an object will eventually get non-busy by flushing any required
3087  * write domains, emitting any outstanding lazy request and retiring and
3088  * completed requests.
3089  */
3090 static int
i915_gem_object_flush_active(struct drm_i915_gem_object * obj)3091 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3092 {
3093 	int i;
3094 
3095 	if (!obj->active)
3096 		return 0;
3097 
3098 	for (i = 0; i < I915_NUM_RINGS; i++) {
3099 		struct drm_i915_gem_request *req;
3100 
3101 		req = obj->last_read_req[i];
3102 		if (req == NULL)
3103 			continue;
3104 
3105 		if (list_empty(&req->list))
3106 			goto retire;
3107 
3108 		if (i915_gem_request_completed(req, true)) {
3109 			__i915_gem_request_retire__upto(req);
3110 retire:
3111 			i915_gem_object_retire__read(obj, i);
3112 		}
3113 	}
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3120  * @DRM_IOCTL_ARGS: standard ioctl arguments
3121  *
3122  * Returns 0 if successful, else an error is returned with the remaining time in
3123  * the timeout parameter.
3124  *  -ETIME: object is still busy after timeout
3125  *  -ERESTARTSYS: signal interrupted the wait
3126  *  -ENONENT: object doesn't exist
3127  * Also possible, but rare:
3128  *  -EAGAIN: GPU wedged
3129  *  -ENOMEM: damn
3130  *  -ENODEV: Internal IRQ fail
3131  *  -E?: The add request failed
3132  *
3133  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3134  * non-zero timeout parameter the wait ioctl will wait for the given number of
3135  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3136  * without holding struct_mutex the object may become re-busied before this
3137  * function completes. A similar but shorter * race condition exists in the busy
3138  * ioctl
3139  */
3140 int
i915_gem_wait_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3141 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3142 {
3143 	struct drm_i915_private *dev_priv = dev->dev_private;
3144 	struct drm_i915_gem_wait *args = data;
3145 	struct drm_i915_gem_object *obj;
3146 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3147 	unsigned reset_counter;
3148 	int i, n = 0;
3149 	int ret;
3150 
3151 	if (args->flags != 0)
3152 		return -EINVAL;
3153 
3154 	ret = i915_mutex_lock_interruptible(dev);
3155 	if (ret)
3156 		return ret;
3157 
3158 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3159 	if (&obj->base == NULL) {
3160 		mutex_unlock(&dev->struct_mutex);
3161 		return -ENOENT;
3162 	}
3163 
3164 	/* Need to make sure the object gets inactive eventually. */
3165 	ret = i915_gem_object_flush_active(obj);
3166 	if (ret)
3167 		goto out;
3168 
3169 	if (!obj->active)
3170 		goto out;
3171 
3172 	/* Do this after OLR check to make sure we make forward progress polling
3173 	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3174 	 */
3175 	if (args->timeout_ns == 0) {
3176 		ret = -ETIME;
3177 		goto out;
3178 	}
3179 
3180 	drm_gem_object_unreference(&obj->base);
3181 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3182 
3183 	for (i = 0; i < I915_NUM_RINGS; i++) {
3184 		if (obj->last_read_req[i] == NULL)
3185 			continue;
3186 
3187 		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3188 	}
3189 
3190 	mutex_unlock(&dev->struct_mutex);
3191 
3192 	for (i = 0; i < n; i++) {
3193 		if (ret == 0)
3194 			ret = __i915_wait_request(req[i], reset_counter, true,
3195 						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3196 						  file->driver_priv);
3197 		i915_gem_request_unreference__unlocked(req[i]);
3198 	}
3199 	return ret;
3200 
3201 out:
3202 	drm_gem_object_unreference(&obj->base);
3203 	mutex_unlock(&dev->struct_mutex);
3204 	return ret;
3205 }
3206 
3207 static int
__i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request * from_req,struct drm_i915_gem_request ** to_req)3208 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3209 		       struct intel_engine_cs *to,
3210 		       struct drm_i915_gem_request *from_req,
3211 		       struct drm_i915_gem_request **to_req)
3212 {
3213 	struct intel_engine_cs *from;
3214 	int ret;
3215 
3216 	from = i915_gem_request_get_ring(from_req);
3217 	if (to == from)
3218 		return 0;
3219 
3220 	if (i915_gem_request_completed(from_req, true))
3221 		return 0;
3222 
3223 	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3224 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3225 		ret = __i915_wait_request(from_req,
3226 					  atomic_read(&i915->gpu_error.reset_counter),
3227 					  i915->mm.interruptible,
3228 					  NULL,
3229 					  &i915->rps.semaphores);
3230 		if (ret)
3231 			return ret;
3232 
3233 		i915_gem_object_retire_request(obj, from_req);
3234 	} else {
3235 		int idx = intel_ring_sync_index(from, to);
3236 		u32 seqno = i915_gem_request_get_seqno(from_req);
3237 
3238 		WARN_ON(!to_req);
3239 
3240 		if (seqno <= from->semaphore.sync_seqno[idx])
3241 			return 0;
3242 
3243 		if (*to_req == NULL) {
3244 			ret = i915_gem_request_alloc(to, to->default_context, to_req);
3245 			if (ret)
3246 				return ret;
3247 		}
3248 
3249 		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3250 		ret = to->semaphore.sync_to(*to_req, from, seqno);
3251 		if (ret)
3252 			return ret;
3253 
3254 		/* We use last_read_req because sync_to()
3255 		 * might have just caused seqno wrap under
3256 		 * the radar.
3257 		 */
3258 		from->semaphore.sync_seqno[idx] =
3259 			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3260 	}
3261 
3262 	return 0;
3263 }
3264 
3265 /**
3266  * i915_gem_object_sync - sync an object to a ring.
3267  *
3268  * @obj: object which may be in use on another ring.
3269  * @to: ring we wish to use the object on. May be NULL.
3270  * @to_req: request we wish to use the object for. See below.
3271  *          This will be allocated and returned if a request is
3272  *          required but not passed in.
3273  *
3274  * This code is meant to abstract object synchronization with the GPU.
3275  * Calling with NULL implies synchronizing the object with the CPU
3276  * rather than a particular GPU ring. Conceptually we serialise writes
3277  * between engines inside the GPU. We only allow one engine to write
3278  * into a buffer at any time, but multiple readers. To ensure each has
3279  * a coherent view of memory, we must:
3280  *
3281  * - If there is an outstanding write request to the object, the new
3282  *   request must wait for it to complete (either CPU or in hw, requests
3283  *   on the same ring will be naturally ordered).
3284  *
3285  * - If we are a write request (pending_write_domain is set), the new
3286  *   request must wait for outstanding read requests to complete.
3287  *
3288  * For CPU synchronisation (NULL to) no request is required. For syncing with
3289  * rings to_req must be non-NULL. However, a request does not have to be
3290  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3291  * request will be allocated automatically and returned through *to_req. Note
3292  * that it is not guaranteed that commands will be emitted (because the system
3293  * might already be idle). Hence there is no need to create a request that
3294  * might never have any work submitted. Note further that if a request is
3295  * returned in *to_req, it is the responsibility of the caller to submit
3296  * that request (after potentially adding more work to it).
3297  *
3298  * Returns 0 if successful, else propagates up the lower layer error.
3299  */
3300 int
i915_gem_object_sync(struct drm_i915_gem_object * obj,struct intel_engine_cs * to,struct drm_i915_gem_request ** to_req)3301 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3302 		     struct intel_engine_cs *to,
3303 		     struct drm_i915_gem_request **to_req)
3304 {
3305 	const bool readonly = obj->base.pending_write_domain == 0;
3306 	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3307 	int ret, i, n;
3308 
3309 	if (!obj->active)
3310 		return 0;
3311 
3312 	if (to == NULL)
3313 		return i915_gem_object_wait_rendering(obj, readonly);
3314 
3315 	n = 0;
3316 	if (readonly) {
3317 		if (obj->last_write_req)
3318 			req[n++] = obj->last_write_req;
3319 	} else {
3320 		for (i = 0; i < I915_NUM_RINGS; i++)
3321 			if (obj->last_read_req[i])
3322 				req[n++] = obj->last_read_req[i];
3323 	}
3324 	for (i = 0; i < n; i++) {
3325 		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3326 		if (ret)
3327 			return ret;
3328 	}
3329 
3330 	return 0;
3331 }
3332 
i915_gem_object_finish_gtt(struct drm_i915_gem_object * obj)3333 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3334 {
3335 	u32 old_write_domain, old_read_domains;
3336 
3337 	/* Force a pagefault for domain tracking on next user access */
3338 	i915_gem_release_mmap(obj);
3339 
3340 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3341 		return;
3342 
3343 	/* Wait for any direct GTT access to complete */
3344 	mb();
3345 
3346 	old_read_domains = obj->base.read_domains;
3347 	old_write_domain = obj->base.write_domain;
3348 
3349 	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3350 	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3351 
3352 	trace_i915_gem_object_change_domain(obj,
3353 					    old_read_domains,
3354 					    old_write_domain);
3355 }
3356 
__i915_vma_unbind(struct i915_vma * vma,bool wait)3357 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3358 {
3359 	struct drm_i915_gem_object *obj = vma->obj;
3360 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3361 	int ret;
3362 
3363 	if (list_empty(&vma->vma_link))
3364 		return 0;
3365 
3366 	if (!drm_mm_node_allocated(&vma->node)) {
3367 		i915_gem_vma_destroy(vma);
3368 		return 0;
3369 	}
3370 
3371 	if (vma->pin_count)
3372 		return -EBUSY;
3373 
3374 	BUG_ON(obj->pages == NULL);
3375 
3376 	if (wait) {
3377 		ret = i915_gem_object_wait_rendering(obj, false);
3378 		if (ret)
3379 			return ret;
3380 	}
3381 
3382 	if (i915_is_ggtt(vma->vm) &&
3383 	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3384 		i915_gem_object_finish_gtt(obj);
3385 
3386 		/* release the fence reg _after_ flushing */
3387 		ret = i915_gem_object_put_fence(obj);
3388 		if (ret)
3389 			return ret;
3390 	}
3391 
3392 	trace_i915_vma_unbind(vma);
3393 
3394 	vma->vm->unbind_vma(vma);
3395 	vma->bound = 0;
3396 
3397 	list_del_init(&vma->mm_list);
3398 	if (i915_is_ggtt(vma->vm)) {
3399 		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3400 			obj->map_and_fenceable = false;
3401 		} else if (vma->ggtt_view.pages) {
3402 			sg_free_table(vma->ggtt_view.pages);
3403 			kfree(vma->ggtt_view.pages);
3404 		}
3405 		vma->ggtt_view.pages = NULL;
3406 	}
3407 
3408 	drm_mm_remove_node(&vma->node);
3409 	i915_gem_vma_destroy(vma);
3410 
3411 	/* Since the unbound list is global, only move to that list if
3412 	 * no more VMAs exist. */
3413 	if (list_empty(&obj->vma_list))
3414 		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3415 
3416 	/* And finally now the object is completely decoupled from this vma,
3417 	 * we can drop its hold on the backing storage and allow it to be
3418 	 * reaped by the shrinker.
3419 	 */
3420 	i915_gem_object_unpin_pages(obj);
3421 
3422 	return 0;
3423 }
3424 
i915_vma_unbind(struct i915_vma * vma)3425 int i915_vma_unbind(struct i915_vma *vma)
3426 {
3427 	return __i915_vma_unbind(vma, true);
3428 }
3429 
__i915_vma_unbind_no_wait(struct i915_vma * vma)3430 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3431 {
3432 	return __i915_vma_unbind(vma, false);
3433 }
3434 
i915_gpu_idle(struct drm_device * dev)3435 int i915_gpu_idle(struct drm_device *dev)
3436 {
3437 	struct drm_i915_private *dev_priv = dev->dev_private;
3438 	struct intel_engine_cs *ring;
3439 	int ret, i;
3440 
3441 	/* Flush everything onto the inactive list. */
3442 	for_each_ring(ring, dev_priv, i) {
3443 		if (!i915.enable_execlists) {
3444 			struct drm_i915_gem_request *req;
3445 
3446 			ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3447 			if (ret)
3448 				return ret;
3449 
3450 			ret = i915_switch_context(req);
3451 			if (ret) {
3452 				i915_gem_request_cancel(req);
3453 				return ret;
3454 			}
3455 
3456 			i915_add_request_no_flush(req);
3457 		}
3458 
3459 		ret = intel_ring_idle(ring);
3460 		if (ret)
3461 			return ret;
3462 	}
3463 
3464 	WARN_ON(i915_verify_lists(dev));
3465 	return 0;
3466 }
3467 
i915_gem_valid_gtt_space(struct i915_vma * vma,unsigned long cache_level)3468 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3469 				     unsigned long cache_level)
3470 {
3471 	struct drm_mm_node *gtt_space = &vma->node;
3472 	struct drm_mm_node *other;
3473 
3474 	/*
3475 	 * On some machines we have to be careful when putting differing types
3476 	 * of snoopable memory together to avoid the prefetcher crossing memory
3477 	 * domains and dying. During vm initialisation, we decide whether or not
3478 	 * these constraints apply and set the drm_mm.color_adjust
3479 	 * appropriately.
3480 	 */
3481 	if (vma->vm->mm.color_adjust == NULL)
3482 		return true;
3483 
3484 	if (!drm_mm_node_allocated(gtt_space))
3485 		return true;
3486 
3487 	if (list_empty(&gtt_space->node_list))
3488 		return true;
3489 
3490 	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3491 	if (other->allocated && !other->hole_follows && other->color != cache_level)
3492 		return false;
3493 
3494 	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3495 	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3496 		return false;
3497 
3498 	return true;
3499 }
3500 
3501 /**
3502  * Finds free space in the GTT aperture and binds the object or a view of it
3503  * there.
3504  */
3505 static struct i915_vma *
i915_gem_object_bind_to_vm(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,unsigned alignment,uint64_t flags)3506 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3507 			   struct i915_address_space *vm,
3508 			   const struct i915_ggtt_view *ggtt_view,
3509 			   unsigned alignment,
3510 			   uint64_t flags)
3511 {
3512 	struct drm_device *dev = obj->base.dev;
3513 	struct drm_i915_private *dev_priv = dev->dev_private;
3514 	u32 fence_alignment, unfenced_alignment;
3515 	u32 search_flag, alloc_flag;
3516 	u64 start, end;
3517 	u64 size, fence_size;
3518 	struct i915_vma *vma;
3519 	int ret;
3520 
3521 	if (i915_is_ggtt(vm)) {
3522 		u32 view_size;
3523 
3524 		if (WARN_ON(!ggtt_view))
3525 			return ERR_PTR(-EINVAL);
3526 
3527 		view_size = i915_ggtt_view_size(obj, ggtt_view);
3528 
3529 		fence_size = i915_gem_get_gtt_size(dev,
3530 						   view_size,
3531 						   obj->tiling_mode);
3532 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3533 							     view_size,
3534 							     obj->tiling_mode,
3535 							     true);
3536 		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3537 								view_size,
3538 								obj->tiling_mode,
3539 								false);
3540 		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3541 	} else {
3542 		fence_size = i915_gem_get_gtt_size(dev,
3543 						   obj->base.size,
3544 						   obj->tiling_mode);
3545 		fence_alignment = i915_gem_get_gtt_alignment(dev,
3546 							     obj->base.size,
3547 							     obj->tiling_mode,
3548 							     true);
3549 		unfenced_alignment =
3550 			i915_gem_get_gtt_alignment(dev,
3551 						   obj->base.size,
3552 						   obj->tiling_mode,
3553 						   false);
3554 		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3555 	}
3556 
3557 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3558 	end = vm->total;
3559 	if (flags & PIN_MAPPABLE)
3560 		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3561 	if (flags & PIN_ZONE_4G)
3562 		end = min_t(u64, end, (1ULL << 32));
3563 
3564 	if (alignment == 0)
3565 		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3566 						unfenced_alignment;
3567 	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3568 		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3569 			  ggtt_view ? ggtt_view->type : 0,
3570 			  alignment);
3571 		return ERR_PTR(-EINVAL);
3572 	}
3573 
3574 	/* If binding the object/GGTT view requires more space than the entire
3575 	 * aperture has, reject it early before evicting everything in a vain
3576 	 * attempt to find space.
3577 	 */
3578 	if (size > end) {
3579 		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3580 			  ggtt_view ? ggtt_view->type : 0,
3581 			  size,
3582 			  flags & PIN_MAPPABLE ? "mappable" : "total",
3583 			  end);
3584 		return ERR_PTR(-E2BIG);
3585 	}
3586 
3587 	ret = i915_gem_object_get_pages(obj);
3588 	if (ret)
3589 		return ERR_PTR(ret);
3590 
3591 	i915_gem_object_pin_pages(obj);
3592 
3593 	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3594 			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3595 
3596 	if (IS_ERR(vma))
3597 		goto err_unpin;
3598 
3599 	if (flags & PIN_HIGH) {
3600 		search_flag = DRM_MM_SEARCH_BELOW;
3601 		alloc_flag = DRM_MM_CREATE_TOP;
3602 	} else {
3603 		search_flag = DRM_MM_SEARCH_DEFAULT;
3604 		alloc_flag = DRM_MM_CREATE_DEFAULT;
3605 	}
3606 
3607 search_free:
3608 	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3609 						  size, alignment,
3610 						  obj->cache_level,
3611 						  start, end,
3612 						  search_flag,
3613 						  alloc_flag);
3614 	if (ret) {
3615 		ret = i915_gem_evict_something(dev, vm, size, alignment,
3616 					       obj->cache_level,
3617 					       start, end,
3618 					       flags);
3619 		if (ret == 0)
3620 			goto search_free;
3621 
3622 		goto err_free_vma;
3623 	}
3624 	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3625 		ret = -EINVAL;
3626 		goto err_remove_node;
3627 	}
3628 
3629 	trace_i915_vma_bind(vma, flags);
3630 	ret = i915_vma_bind(vma, obj->cache_level, flags);
3631 	if (ret)
3632 		goto err_remove_node;
3633 
3634 	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3635 	list_add_tail(&vma->mm_list, &vm->inactive_list);
3636 
3637 	return vma;
3638 
3639 err_remove_node:
3640 	drm_mm_remove_node(&vma->node);
3641 err_free_vma:
3642 	i915_gem_vma_destroy(vma);
3643 	vma = ERR_PTR(ret);
3644 err_unpin:
3645 	i915_gem_object_unpin_pages(obj);
3646 	return vma;
3647 }
3648 
3649 bool
i915_gem_clflush_object(struct drm_i915_gem_object * obj,bool force)3650 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3651 			bool force)
3652 {
3653 	/* If we don't have a page list set up, then we're not pinned
3654 	 * to GPU, and we can ignore the cache flush because it'll happen
3655 	 * again at bind time.
3656 	 */
3657 	if (obj->pages == NULL)
3658 		return false;
3659 
3660 	/*
3661 	 * Stolen memory is always coherent with the GPU as it is explicitly
3662 	 * marked as wc by the system, or the system is cache-coherent.
3663 	 */
3664 	if (obj->stolen || obj->phys_handle)
3665 		return false;
3666 
3667 	/* If the GPU is snooping the contents of the CPU cache,
3668 	 * we do not need to manually clear the CPU cache lines.  However,
3669 	 * the caches are only snooped when the render cache is
3670 	 * flushed/invalidated.  As we always have to emit invalidations
3671 	 * and flushes when moving into and out of the RENDER domain, correct
3672 	 * snooping behaviour occurs naturally as the result of our domain
3673 	 * tracking.
3674 	 */
3675 	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3676 		obj->cache_dirty = true;
3677 		return false;
3678 	}
3679 
3680 	trace_i915_gem_object_clflush(obj);
3681 	drm_clflush_sg(obj->pages);
3682 	obj->cache_dirty = false;
3683 
3684 	return true;
3685 }
3686 
3687 /** Flushes the GTT write domain for the object if it's dirty. */
3688 static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object * obj)3689 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3690 {
3691 	uint32_t old_write_domain;
3692 
3693 	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3694 		return;
3695 
3696 	/* No actual flushing is required for the GTT write domain.  Writes
3697 	 * to it immediately go to main memory as far as we know, so there's
3698 	 * no chipset flush.  It also doesn't land in render cache.
3699 	 *
3700 	 * However, we do have to enforce the order so that all writes through
3701 	 * the GTT land before any writes to the device, such as updates to
3702 	 * the GATT itself.
3703 	 */
3704 	wmb();
3705 
3706 	old_write_domain = obj->base.write_domain;
3707 	obj->base.write_domain = 0;
3708 
3709 	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3710 
3711 	trace_i915_gem_object_change_domain(obj,
3712 					    obj->base.read_domains,
3713 					    old_write_domain);
3714 }
3715 
3716 /** Flushes the CPU write domain for the object if it's dirty. */
3717 static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object * obj)3718 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3719 {
3720 	uint32_t old_write_domain;
3721 
3722 	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3723 		return;
3724 
3725 	if (i915_gem_clflush_object(obj, obj->pin_display))
3726 		i915_gem_chipset_flush(obj->base.dev);
3727 
3728 	old_write_domain = obj->base.write_domain;
3729 	obj->base.write_domain = 0;
3730 
3731 	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3732 
3733 	trace_i915_gem_object_change_domain(obj,
3734 					    obj->base.read_domains,
3735 					    old_write_domain);
3736 }
3737 
3738 /**
3739  * Moves a single object to the GTT read, and possibly write domain.
3740  *
3741  * This function returns when the move is complete, including waiting on
3742  * flushes to occur.
3743  */
3744 int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object * obj,bool write)3745 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3746 {
3747 	uint32_t old_write_domain, old_read_domains;
3748 	struct i915_vma *vma;
3749 	int ret;
3750 
3751 	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3752 		return 0;
3753 
3754 	ret = i915_gem_object_wait_rendering(obj, !write);
3755 	if (ret)
3756 		return ret;
3757 
3758 	/* Flush and acquire obj->pages so that we are coherent through
3759 	 * direct access in memory with previous cached writes through
3760 	 * shmemfs and that our cache domain tracking remains valid.
3761 	 * For example, if the obj->filp was moved to swap without us
3762 	 * being notified and releasing the pages, we would mistakenly
3763 	 * continue to assume that the obj remained out of the CPU cached
3764 	 * domain.
3765 	 */
3766 	ret = i915_gem_object_get_pages(obj);
3767 	if (ret)
3768 		return ret;
3769 
3770 	i915_gem_object_flush_cpu_write_domain(obj);
3771 
3772 	/* Serialise direct access to this object with the barriers for
3773 	 * coherent writes from the GPU, by effectively invalidating the
3774 	 * GTT domain upon first access.
3775 	 */
3776 	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3777 		mb();
3778 
3779 	old_write_domain = obj->base.write_domain;
3780 	old_read_domains = obj->base.read_domains;
3781 
3782 	/* It should now be out of any other write domains, and we can update
3783 	 * the domain values for our changes.
3784 	 */
3785 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3786 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3787 	if (write) {
3788 		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3789 		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3790 		obj->dirty = 1;
3791 	}
3792 
3793 	trace_i915_gem_object_change_domain(obj,
3794 					    old_read_domains,
3795 					    old_write_domain);
3796 
3797 	/* And bump the LRU for this access */
3798 	vma = i915_gem_obj_to_ggtt(obj);
3799 	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3800 		list_move_tail(&vma->mm_list,
3801 			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3802 
3803 	return 0;
3804 }
3805 
3806 /**
3807  * Changes the cache-level of an object across all VMA.
3808  *
3809  * After this function returns, the object will be in the new cache-level
3810  * across all GTT and the contents of the backing storage will be coherent,
3811  * with respect to the new cache-level. In order to keep the backing storage
3812  * coherent for all users, we only allow a single cache level to be set
3813  * globally on the object and prevent it from being changed whilst the
3814  * hardware is reading from the object. That is if the object is currently
3815  * on the scanout it will be set to uncached (or equivalent display
3816  * cache coherency) and all non-MOCS GPU access will also be uncached so
3817  * that all direct access to the scanout remains coherent.
3818  */
i915_gem_object_set_cache_level(struct drm_i915_gem_object * obj,enum i915_cache_level cache_level)3819 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3820 				    enum i915_cache_level cache_level)
3821 {
3822 	struct drm_device *dev = obj->base.dev;
3823 	struct i915_vma *vma, *next;
3824 	bool bound = false;
3825 	int ret = 0;
3826 
3827 	if (obj->cache_level == cache_level)
3828 		goto out;
3829 
3830 	/* Inspect the list of currently bound VMA and unbind any that would
3831 	 * be invalid given the new cache-level. This is principally to
3832 	 * catch the issue of the CS prefetch crossing page boundaries and
3833 	 * reading an invalid PTE on older architectures.
3834 	 */
3835 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3836 		if (!drm_mm_node_allocated(&vma->node))
3837 			continue;
3838 
3839 		if (vma->pin_count) {
3840 			DRM_DEBUG("can not change the cache level of pinned objects\n");
3841 			return -EBUSY;
3842 		}
3843 
3844 		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3845 			ret = i915_vma_unbind(vma);
3846 			if (ret)
3847 				return ret;
3848 		} else
3849 			bound = true;
3850 	}
3851 
3852 	/* We can reuse the existing drm_mm nodes but need to change the
3853 	 * cache-level on the PTE. We could simply unbind them all and
3854 	 * rebind with the correct cache-level on next use. However since
3855 	 * we already have a valid slot, dma mapping, pages etc, we may as
3856 	 * rewrite the PTE in the belief that doing so tramples upon less
3857 	 * state and so involves less work.
3858 	 */
3859 	if (bound) {
3860 		/* Before we change the PTE, the GPU must not be accessing it.
3861 		 * If we wait upon the object, we know that all the bound
3862 		 * VMA are no longer active.
3863 		 */
3864 		ret = i915_gem_object_wait_rendering(obj, false);
3865 		if (ret)
3866 			return ret;
3867 
3868 		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3869 			/* Access to snoopable pages through the GTT is
3870 			 * incoherent and on some machines causes a hard
3871 			 * lockup. Relinquish the CPU mmaping to force
3872 			 * userspace to refault in the pages and we can
3873 			 * then double check if the GTT mapping is still
3874 			 * valid for that pointer access.
3875 			 */
3876 			i915_gem_release_mmap(obj);
3877 
3878 			/* As we no longer need a fence for GTT access,
3879 			 * we can relinquish it now (and so prevent having
3880 			 * to steal a fence from someone else on the next
3881 			 * fence request). Note GPU activity would have
3882 			 * dropped the fence as all snoopable access is
3883 			 * supposed to be linear.
3884 			 */
3885 			ret = i915_gem_object_put_fence(obj);
3886 			if (ret)
3887 				return ret;
3888 		} else {
3889 			/* We either have incoherent backing store and
3890 			 * so no GTT access or the architecture is fully
3891 			 * coherent. In such cases, existing GTT mmaps
3892 			 * ignore the cache bit in the PTE and we can
3893 			 * rewrite it without confusing the GPU or having
3894 			 * to force userspace to fault back in its mmaps.
3895 			 */
3896 		}
3897 
3898 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3899 			if (!drm_mm_node_allocated(&vma->node))
3900 				continue;
3901 
3902 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3903 			if (ret)
3904 				return ret;
3905 		}
3906 	}
3907 
3908 	list_for_each_entry(vma, &obj->vma_list, vma_link)
3909 		vma->node.color = cache_level;
3910 	obj->cache_level = cache_level;
3911 
3912 out:
3913 	/* Flush the dirty CPU caches to the backing storage so that the
3914 	 * object is now coherent at its new cache level (with respect
3915 	 * to the access domain).
3916 	 */
3917 	if (obj->cache_dirty &&
3918 	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3919 	    cpu_write_needs_clflush(obj)) {
3920 		if (i915_gem_clflush_object(obj, true))
3921 			i915_gem_chipset_flush(obj->base.dev);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
i915_gem_get_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3927 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3928 			       struct drm_file *file)
3929 {
3930 	struct drm_i915_gem_caching *args = data;
3931 	struct drm_i915_gem_object *obj;
3932 
3933 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3934 	if (&obj->base == NULL)
3935 		return -ENOENT;
3936 
3937 	switch (obj->cache_level) {
3938 	case I915_CACHE_LLC:
3939 	case I915_CACHE_L3_LLC:
3940 		args->caching = I915_CACHING_CACHED;
3941 		break;
3942 
3943 	case I915_CACHE_WT:
3944 		args->caching = I915_CACHING_DISPLAY;
3945 		break;
3946 
3947 	default:
3948 		args->caching = I915_CACHING_NONE;
3949 		break;
3950 	}
3951 
3952 	drm_gem_object_unreference_unlocked(&obj->base);
3953 	return 0;
3954 }
3955 
i915_gem_set_caching_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3956 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3957 			       struct drm_file *file)
3958 {
3959 	struct drm_i915_private *dev_priv = dev->dev_private;
3960 	struct drm_i915_gem_caching *args = data;
3961 	struct drm_i915_gem_object *obj;
3962 	enum i915_cache_level level;
3963 	int ret;
3964 
3965 	switch (args->caching) {
3966 	case I915_CACHING_NONE:
3967 		level = I915_CACHE_NONE;
3968 		break;
3969 	case I915_CACHING_CACHED:
3970 		/*
3971 		 * Due to a HW issue on BXT A stepping, GPU stores via a
3972 		 * snooped mapping may leave stale data in a corresponding CPU
3973 		 * cacheline, whereas normally such cachelines would get
3974 		 * invalidated.
3975 		 */
3976 		if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3977 			return -ENODEV;
3978 
3979 		level = I915_CACHE_LLC;
3980 		break;
3981 	case I915_CACHING_DISPLAY:
3982 		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3983 		break;
3984 	default:
3985 		return -EINVAL;
3986 	}
3987 
3988 	intel_runtime_pm_get(dev_priv);
3989 
3990 	ret = i915_mutex_lock_interruptible(dev);
3991 	if (ret)
3992 		goto rpm_put;
3993 
3994 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3995 	if (&obj->base == NULL) {
3996 		ret = -ENOENT;
3997 		goto unlock;
3998 	}
3999 
4000 	ret = i915_gem_object_set_cache_level(obj, level);
4001 
4002 	drm_gem_object_unreference(&obj->base);
4003 unlock:
4004 	mutex_unlock(&dev->struct_mutex);
4005 rpm_put:
4006 	intel_runtime_pm_put(dev_priv);
4007 
4008 	return ret;
4009 }
4010 
4011 /*
4012  * Prepare buffer for display plane (scanout, cursors, etc).
4013  * Can be called from an uninterruptible phase (modesetting) and allows
4014  * any flushes to be pipelined (for pageflips).
4015  */
4016 int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object * obj,u32 alignment,struct intel_engine_cs * pipelined,struct drm_i915_gem_request ** pipelined_request,const struct i915_ggtt_view * view)4017 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4018 				     u32 alignment,
4019 				     struct intel_engine_cs *pipelined,
4020 				     struct drm_i915_gem_request **pipelined_request,
4021 				     const struct i915_ggtt_view *view)
4022 {
4023 	u32 old_read_domains, old_write_domain;
4024 	int ret;
4025 
4026 	ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4027 	if (ret)
4028 		return ret;
4029 
4030 	/* Mark the pin_display early so that we account for the
4031 	 * display coherency whilst setting up the cache domains.
4032 	 */
4033 	obj->pin_display++;
4034 
4035 	/* The display engine is not coherent with the LLC cache on gen6.  As
4036 	 * a result, we make sure that the pinning that is about to occur is
4037 	 * done with uncached PTEs. This is lowest common denominator for all
4038 	 * chipsets.
4039 	 *
4040 	 * However for gen6+, we could do better by using the GFDT bit instead
4041 	 * of uncaching, which would allow us to flush all the LLC-cached data
4042 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4043 	 */
4044 	ret = i915_gem_object_set_cache_level(obj,
4045 					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4046 	if (ret)
4047 		goto err_unpin_display;
4048 
4049 	/* As the user may map the buffer once pinned in the display plane
4050 	 * (e.g. libkms for the bootup splash), we have to ensure that we
4051 	 * always use map_and_fenceable for all scanout buffers.
4052 	 */
4053 	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4054 				       view->type == I915_GGTT_VIEW_NORMAL ?
4055 				       PIN_MAPPABLE : 0);
4056 	if (ret)
4057 		goto err_unpin_display;
4058 
4059 	i915_gem_object_flush_cpu_write_domain(obj);
4060 
4061 	old_write_domain = obj->base.write_domain;
4062 	old_read_domains = obj->base.read_domains;
4063 
4064 	/* It should now be out of any other write domains, and we can update
4065 	 * the domain values for our changes.
4066 	 */
4067 	obj->base.write_domain = 0;
4068 	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4069 
4070 	trace_i915_gem_object_change_domain(obj,
4071 					    old_read_domains,
4072 					    old_write_domain);
4073 
4074 	return 0;
4075 
4076 err_unpin_display:
4077 	obj->pin_display--;
4078 	return ret;
4079 }
4080 
4081 void
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4082 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4083 					 const struct i915_ggtt_view *view)
4084 {
4085 	if (WARN_ON(obj->pin_display == 0))
4086 		return;
4087 
4088 	i915_gem_object_ggtt_unpin_view(obj, view);
4089 
4090 	obj->pin_display--;
4091 }
4092 
4093 /**
4094  * Moves a single object to the CPU read, and possibly write domain.
4095  *
4096  * This function returns when the move is complete, including waiting on
4097  * flushes to occur.
4098  */
4099 int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object * obj,bool write)4100 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4101 {
4102 	uint32_t old_write_domain, old_read_domains;
4103 	int ret;
4104 
4105 	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4106 		return 0;
4107 
4108 	ret = i915_gem_object_wait_rendering(obj, !write);
4109 	if (ret)
4110 		return ret;
4111 
4112 	i915_gem_object_flush_gtt_write_domain(obj);
4113 
4114 	old_write_domain = obj->base.write_domain;
4115 	old_read_domains = obj->base.read_domains;
4116 
4117 	/* Flush the CPU cache if it's still invalid. */
4118 	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4119 		i915_gem_clflush_object(obj, false);
4120 
4121 		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4122 	}
4123 
4124 	/* It should now be out of any other write domains, and we can update
4125 	 * the domain values for our changes.
4126 	 */
4127 	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4128 
4129 	/* If we're writing through the CPU, then the GPU read domains will
4130 	 * need to be invalidated at next use.
4131 	 */
4132 	if (write) {
4133 		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4134 		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4135 	}
4136 
4137 	trace_i915_gem_object_change_domain(obj,
4138 					    old_read_domains,
4139 					    old_write_domain);
4140 
4141 	return 0;
4142 }
4143 
4144 /* Throttle our rendering by waiting until the ring has completed our requests
4145  * emitted over 20 msec ago.
4146  *
4147  * Note that if we were to use the current jiffies each time around the loop,
4148  * we wouldn't escape the function with any frames outstanding if the time to
4149  * render a frame was over 20ms.
4150  *
4151  * This should get us reasonable parallelism between CPU and GPU but also
4152  * relatively low latency when blocking on a particular request to finish.
4153  */
4154 static int
i915_gem_ring_throttle(struct drm_device * dev,struct drm_file * file)4155 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4156 {
4157 	struct drm_i915_private *dev_priv = dev->dev_private;
4158 	struct drm_i915_file_private *file_priv = file->driver_priv;
4159 	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4160 	struct drm_i915_gem_request *request, *target = NULL;
4161 	unsigned reset_counter;
4162 	int ret;
4163 
4164 	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4165 	if (ret)
4166 		return ret;
4167 
4168 	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4169 	if (ret)
4170 		return ret;
4171 
4172 	spin_lock(&file_priv->mm.lock);
4173 	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4174 		if (time_after_eq(request->emitted_jiffies, recent_enough))
4175 			break;
4176 
4177 		/*
4178 		 * Note that the request might not have been submitted yet.
4179 		 * In which case emitted_jiffies will be zero.
4180 		 */
4181 		if (!request->emitted_jiffies)
4182 			continue;
4183 
4184 		target = request;
4185 	}
4186 	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4187 	if (target)
4188 		i915_gem_request_reference(target);
4189 	spin_unlock(&file_priv->mm.lock);
4190 
4191 	if (target == NULL)
4192 		return 0;
4193 
4194 	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4195 	if (ret == 0)
4196 		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4197 
4198 	i915_gem_request_unreference__unlocked(target);
4199 
4200 	return ret;
4201 }
4202 
4203 static bool
i915_vma_misplaced(struct i915_vma * vma,uint32_t alignment,uint64_t flags)4204 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4205 {
4206 	struct drm_i915_gem_object *obj = vma->obj;
4207 
4208 	if (alignment &&
4209 	    vma->node.start & (alignment - 1))
4210 		return true;
4211 
4212 	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4213 		return true;
4214 
4215 	if (flags & PIN_OFFSET_BIAS &&
4216 	    vma->node.start < (flags & PIN_OFFSET_MASK))
4217 		return true;
4218 
4219 	return false;
4220 }
4221 
__i915_vma_set_map_and_fenceable(struct i915_vma * vma)4222 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4223 {
4224 	struct drm_i915_gem_object *obj = vma->obj;
4225 	bool mappable, fenceable;
4226 	u32 fence_size, fence_alignment;
4227 
4228 	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4229 					   obj->base.size,
4230 					   obj->tiling_mode);
4231 	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4232 						     obj->base.size,
4233 						     obj->tiling_mode,
4234 						     true);
4235 
4236 	fenceable = (vma->node.size == fence_size &&
4237 		     (vma->node.start & (fence_alignment - 1)) == 0);
4238 
4239 	mappable = (vma->node.start + fence_size <=
4240 		    to_i915(obj->base.dev)->gtt.mappable_end);
4241 
4242 	obj->map_and_fenceable = mappable && fenceable;
4243 }
4244 
4245 static int
i915_gem_object_do_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view,uint32_t alignment,uint64_t flags)4246 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4247 		       struct i915_address_space *vm,
4248 		       const struct i915_ggtt_view *ggtt_view,
4249 		       uint32_t alignment,
4250 		       uint64_t flags)
4251 {
4252 	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4253 	struct i915_vma *vma;
4254 	unsigned bound;
4255 	int ret;
4256 
4257 	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4258 		return -ENODEV;
4259 
4260 	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4261 		return -EINVAL;
4262 
4263 	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4264 		return -EINVAL;
4265 
4266 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4267 		return -EINVAL;
4268 
4269 	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4270 			  i915_gem_obj_to_vma(obj, vm);
4271 
4272 	if (IS_ERR(vma))
4273 		return PTR_ERR(vma);
4274 
4275 	if (vma) {
4276 		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4277 			return -EBUSY;
4278 
4279 		if (i915_vma_misplaced(vma, alignment, flags)) {
4280 			WARN(vma->pin_count,
4281 			     "bo is already pinned in %s with incorrect alignment:"
4282 			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4283 			     " obj->map_and_fenceable=%d\n",
4284 			     ggtt_view ? "ggtt" : "ppgtt",
4285 			     upper_32_bits(vma->node.start),
4286 			     lower_32_bits(vma->node.start),
4287 			     alignment,
4288 			     !!(flags & PIN_MAPPABLE),
4289 			     obj->map_and_fenceable);
4290 			ret = i915_vma_unbind(vma);
4291 			if (ret)
4292 				return ret;
4293 
4294 			vma = NULL;
4295 		}
4296 	}
4297 
4298 	bound = vma ? vma->bound : 0;
4299 	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4300 		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4301 						 flags);
4302 		if (IS_ERR(vma))
4303 			return PTR_ERR(vma);
4304 	} else {
4305 		ret = i915_vma_bind(vma, obj->cache_level, flags);
4306 		if (ret)
4307 			return ret;
4308 	}
4309 
4310 	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4311 	    (bound ^ vma->bound) & GLOBAL_BIND) {
4312 		__i915_vma_set_map_and_fenceable(vma);
4313 		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4314 	}
4315 
4316 	vma->pin_count++;
4317 	return 0;
4318 }
4319 
4320 int
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,uint32_t alignment,uint64_t flags)4321 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4322 		    struct i915_address_space *vm,
4323 		    uint32_t alignment,
4324 		    uint64_t flags)
4325 {
4326 	return i915_gem_object_do_pin(obj, vm,
4327 				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4328 				      alignment, flags);
4329 }
4330 
4331 int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,uint32_t alignment,uint64_t flags)4332 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4333 			 const struct i915_ggtt_view *view,
4334 			 uint32_t alignment,
4335 			 uint64_t flags)
4336 {
4337 	if (WARN_ONCE(!view, "no view specified"))
4338 		return -EINVAL;
4339 
4340 	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4341 				      alignment, flags | PIN_GLOBAL);
4342 }
4343 
4344 void
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4345 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4346 				const struct i915_ggtt_view *view)
4347 {
4348 	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4349 
4350 	BUG_ON(!vma);
4351 	WARN_ON(vma->pin_count == 0);
4352 	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4353 
4354 	--vma->pin_count;
4355 }
4356 
4357 int
i915_gem_busy_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4358 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4359 		    struct drm_file *file)
4360 {
4361 	struct drm_i915_gem_busy *args = data;
4362 	struct drm_i915_gem_object *obj;
4363 	int ret;
4364 
4365 	ret = i915_mutex_lock_interruptible(dev);
4366 	if (ret)
4367 		return ret;
4368 
4369 	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4370 	if (&obj->base == NULL) {
4371 		ret = -ENOENT;
4372 		goto unlock;
4373 	}
4374 
4375 	/* Count all active objects as busy, even if they are currently not used
4376 	 * by the gpu. Users of this interface expect objects to eventually
4377 	 * become non-busy without any further actions, therefore emit any
4378 	 * necessary flushes here.
4379 	 */
4380 	ret = i915_gem_object_flush_active(obj);
4381 	if (ret)
4382 		goto unref;
4383 
4384 	BUILD_BUG_ON(I915_NUM_RINGS > 16);
4385 	args->busy = obj->active << 16;
4386 	if (obj->last_write_req)
4387 		args->busy |= obj->last_write_req->ring->id;
4388 
4389 unref:
4390 	drm_gem_object_unreference(&obj->base);
4391 unlock:
4392 	mutex_unlock(&dev->struct_mutex);
4393 	return ret;
4394 }
4395 
4396 int
i915_gem_throttle_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4397 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4398 			struct drm_file *file_priv)
4399 {
4400 	return i915_gem_ring_throttle(dev, file_priv);
4401 }
4402 
4403 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)4404 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4405 		       struct drm_file *file_priv)
4406 {
4407 	struct drm_i915_private *dev_priv = dev->dev_private;
4408 	struct drm_i915_gem_madvise *args = data;
4409 	struct drm_i915_gem_object *obj;
4410 	int ret;
4411 
4412 	switch (args->madv) {
4413 	case I915_MADV_DONTNEED:
4414 	case I915_MADV_WILLNEED:
4415 	    break;
4416 	default:
4417 	    return -EINVAL;
4418 	}
4419 
4420 	ret = i915_mutex_lock_interruptible(dev);
4421 	if (ret)
4422 		return ret;
4423 
4424 	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4425 	if (&obj->base == NULL) {
4426 		ret = -ENOENT;
4427 		goto unlock;
4428 	}
4429 
4430 	if (i915_gem_obj_is_pinned(obj)) {
4431 		ret = -EINVAL;
4432 		goto out;
4433 	}
4434 
4435 	if (obj->pages &&
4436 	    obj->tiling_mode != I915_TILING_NONE &&
4437 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4438 		if (obj->madv == I915_MADV_WILLNEED)
4439 			i915_gem_object_unpin_pages(obj);
4440 		if (args->madv == I915_MADV_WILLNEED)
4441 			i915_gem_object_pin_pages(obj);
4442 	}
4443 
4444 	if (obj->madv != __I915_MADV_PURGED)
4445 		obj->madv = args->madv;
4446 
4447 	/* if the object is no longer attached, discard its backing storage */
4448 	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4449 		i915_gem_object_truncate(obj);
4450 
4451 	args->retained = obj->madv != __I915_MADV_PURGED;
4452 
4453 out:
4454 	drm_gem_object_unreference(&obj->base);
4455 unlock:
4456 	mutex_unlock(&dev->struct_mutex);
4457 	return ret;
4458 }
4459 
i915_gem_object_init(struct drm_i915_gem_object * obj,const struct drm_i915_gem_object_ops * ops)4460 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4461 			  const struct drm_i915_gem_object_ops *ops)
4462 {
4463 	int i;
4464 
4465 	INIT_LIST_HEAD(&obj->global_list);
4466 	for (i = 0; i < I915_NUM_RINGS; i++)
4467 		INIT_LIST_HEAD(&obj->ring_list[i]);
4468 	INIT_LIST_HEAD(&obj->obj_exec_link);
4469 	INIT_LIST_HEAD(&obj->vma_list);
4470 	INIT_LIST_HEAD(&obj->batch_pool_link);
4471 
4472 	obj->ops = ops;
4473 
4474 	obj->fence_reg = I915_FENCE_REG_NONE;
4475 	obj->madv = I915_MADV_WILLNEED;
4476 
4477 	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4478 }
4479 
4480 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4481 	.get_pages = i915_gem_object_get_pages_gtt,
4482 	.put_pages = i915_gem_object_put_pages_gtt,
4483 };
4484 
i915_gem_alloc_object(struct drm_device * dev,size_t size)4485 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4486 						  size_t size)
4487 {
4488 	struct drm_i915_gem_object *obj;
4489 	struct address_space *mapping;
4490 	gfp_t mask;
4491 
4492 	obj = i915_gem_object_alloc(dev);
4493 	if (obj == NULL)
4494 		return NULL;
4495 
4496 	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4497 		i915_gem_object_free(obj);
4498 		return NULL;
4499 	}
4500 
4501 	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4502 	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4503 		/* 965gm cannot relocate objects above 4GiB. */
4504 		mask &= ~__GFP_HIGHMEM;
4505 		mask |= __GFP_DMA32;
4506 	}
4507 
4508 	mapping = file_inode(obj->base.filp)->i_mapping;
4509 	mapping_set_gfp_mask(mapping, mask);
4510 
4511 	i915_gem_object_init(obj, &i915_gem_object_ops);
4512 
4513 	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4514 	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4515 
4516 	if (HAS_LLC(dev)) {
4517 		/* On some devices, we can have the GPU use the LLC (the CPU
4518 		 * cache) for about a 10% performance improvement
4519 		 * compared to uncached.  Graphics requests other than
4520 		 * display scanout are coherent with the CPU in
4521 		 * accessing this cache.  This means in this mode we
4522 		 * don't need to clflush on the CPU side, and on the
4523 		 * GPU side we only need to flush internal caches to
4524 		 * get data visible to the CPU.
4525 		 *
4526 		 * However, we maintain the display planes as UC, and so
4527 		 * need to rebind when first used as such.
4528 		 */
4529 		obj->cache_level = I915_CACHE_LLC;
4530 	} else
4531 		obj->cache_level = I915_CACHE_NONE;
4532 
4533 	trace_i915_gem_object_create(obj);
4534 
4535 	return obj;
4536 }
4537 
discard_backing_storage(struct drm_i915_gem_object * obj)4538 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4539 {
4540 	/* If we are the last user of the backing storage (be it shmemfs
4541 	 * pages or stolen etc), we know that the pages are going to be
4542 	 * immediately released. In this case, we can then skip copying
4543 	 * back the contents from the GPU.
4544 	 */
4545 
4546 	if (obj->madv != I915_MADV_WILLNEED)
4547 		return false;
4548 
4549 	if (obj->base.filp == NULL)
4550 		return true;
4551 
4552 	/* At first glance, this looks racy, but then again so would be
4553 	 * userspace racing mmap against close. However, the first external
4554 	 * reference to the filp can only be obtained through the
4555 	 * i915_gem_mmap_ioctl() which safeguards us against the user
4556 	 * acquiring such a reference whilst we are in the middle of
4557 	 * freeing the object.
4558 	 */
4559 	return atomic_long_read(&obj->base.filp->f_count) == 1;
4560 }
4561 
i915_gem_free_object(struct drm_gem_object * gem_obj)4562 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4563 {
4564 	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4565 	struct drm_device *dev = obj->base.dev;
4566 	struct drm_i915_private *dev_priv = dev->dev_private;
4567 	struct i915_vma *vma, *next;
4568 
4569 	intel_runtime_pm_get(dev_priv);
4570 
4571 	trace_i915_gem_object_destroy(obj);
4572 
4573 	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4574 		int ret;
4575 
4576 		vma->pin_count = 0;
4577 		ret = i915_vma_unbind(vma);
4578 		if (WARN_ON(ret == -ERESTARTSYS)) {
4579 			bool was_interruptible;
4580 
4581 			was_interruptible = dev_priv->mm.interruptible;
4582 			dev_priv->mm.interruptible = false;
4583 
4584 			WARN_ON(i915_vma_unbind(vma));
4585 
4586 			dev_priv->mm.interruptible = was_interruptible;
4587 		}
4588 	}
4589 
4590 	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4591 	 * before progressing. */
4592 	if (obj->stolen)
4593 		i915_gem_object_unpin_pages(obj);
4594 
4595 	WARN_ON(obj->frontbuffer_bits);
4596 
4597 	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4598 	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4599 	    obj->tiling_mode != I915_TILING_NONE)
4600 		i915_gem_object_unpin_pages(obj);
4601 
4602 	if (WARN_ON(obj->pages_pin_count))
4603 		obj->pages_pin_count = 0;
4604 	if (discard_backing_storage(obj))
4605 		obj->madv = I915_MADV_DONTNEED;
4606 	i915_gem_object_put_pages(obj);
4607 	i915_gem_object_free_mmap_offset(obj);
4608 
4609 	BUG_ON(obj->pages);
4610 
4611 	if (obj->base.import_attach)
4612 		drm_prime_gem_destroy(&obj->base, NULL);
4613 
4614 	if (obj->ops->release)
4615 		obj->ops->release(obj);
4616 
4617 	drm_gem_object_release(&obj->base);
4618 	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4619 
4620 	kfree(obj->bit_17);
4621 	i915_gem_object_free(obj);
4622 
4623 	intel_runtime_pm_put(dev_priv);
4624 }
4625 
i915_gem_obj_to_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)4626 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4627 				     struct i915_address_space *vm)
4628 {
4629 	struct i915_vma *vma;
4630 	list_for_each_entry(vma, &obj->vma_list, vma_link) {
4631 		if (i915_is_ggtt(vma->vm) &&
4632 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4633 			continue;
4634 		if (vma->vm == vm)
4635 			return vma;
4636 	}
4637 	return NULL;
4638 }
4639 
i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)4640 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4641 					   const struct i915_ggtt_view *view)
4642 {
4643 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4644 	struct i915_vma *vma;
4645 
4646 	if (WARN_ONCE(!view, "no view specified"))
4647 		return ERR_PTR(-EINVAL);
4648 
4649 	list_for_each_entry(vma, &obj->vma_list, vma_link)
4650 		if (vma->vm == ggtt &&
4651 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4652 			return vma;
4653 	return NULL;
4654 }
4655 
i915_gem_vma_destroy(struct i915_vma * vma)4656 void i915_gem_vma_destroy(struct i915_vma *vma)
4657 {
4658 	struct i915_address_space *vm = NULL;
4659 	WARN_ON(vma->node.allocated);
4660 
4661 	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4662 	if (!list_empty(&vma->exec_list))
4663 		return;
4664 
4665 	vm = vma->vm;
4666 
4667 	if (!i915_is_ggtt(vm))
4668 		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4669 
4670 	list_del(&vma->vma_link);
4671 
4672 	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4673 }
4674 
4675 static void
i915_gem_stop_ringbuffers(struct drm_device * dev)4676 i915_gem_stop_ringbuffers(struct drm_device *dev)
4677 {
4678 	struct drm_i915_private *dev_priv = dev->dev_private;
4679 	struct intel_engine_cs *ring;
4680 	int i;
4681 
4682 	for_each_ring(ring, dev_priv, i)
4683 		dev_priv->gt.stop_ring(ring);
4684 }
4685 
4686 int
i915_gem_suspend(struct drm_device * dev)4687 i915_gem_suspend(struct drm_device *dev)
4688 {
4689 	struct drm_i915_private *dev_priv = dev->dev_private;
4690 	int ret = 0;
4691 
4692 	mutex_lock(&dev->struct_mutex);
4693 	ret = i915_gpu_idle(dev);
4694 	if (ret)
4695 		goto err;
4696 
4697 	i915_gem_retire_requests(dev);
4698 
4699 	i915_gem_stop_ringbuffers(dev);
4700 	mutex_unlock(&dev->struct_mutex);
4701 
4702 	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4703 	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4704 	flush_delayed_work(&dev_priv->mm.idle_work);
4705 
4706 	/* Assert that we sucessfully flushed all the work and
4707 	 * reset the GPU back to its idle, low power state.
4708 	 */
4709 	WARN_ON(dev_priv->mm.busy);
4710 
4711 	return 0;
4712 
4713 err:
4714 	mutex_unlock(&dev->struct_mutex);
4715 	return ret;
4716 }
4717 
i915_gem_l3_remap(struct drm_i915_gem_request * req,int slice)4718 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4719 {
4720 	struct intel_engine_cs *ring = req->ring;
4721 	struct drm_device *dev = ring->dev;
4722 	struct drm_i915_private *dev_priv = dev->dev_private;
4723 	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4724 	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4725 	int i, ret;
4726 
4727 	if (!HAS_L3_DPF(dev) || !remap_info)
4728 		return 0;
4729 
4730 	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4731 	if (ret)
4732 		return ret;
4733 
4734 	/*
4735 	 * Note: We do not worry about the concurrent register cacheline hang
4736 	 * here because no other code should access these registers other than
4737 	 * at initialization time.
4738 	 */
4739 	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4740 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4741 		intel_ring_emit(ring, reg_base + i);
4742 		intel_ring_emit(ring, remap_info[i/4]);
4743 	}
4744 
4745 	intel_ring_advance(ring);
4746 
4747 	return ret;
4748 }
4749 
i915_gem_init_swizzling(struct drm_device * dev)4750 void i915_gem_init_swizzling(struct drm_device *dev)
4751 {
4752 	struct drm_i915_private *dev_priv = dev->dev_private;
4753 
4754 	if (INTEL_INFO(dev)->gen < 5 ||
4755 	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4756 		return;
4757 
4758 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4759 				 DISP_TILE_SURFACE_SWIZZLING);
4760 
4761 	if (IS_GEN5(dev))
4762 		return;
4763 
4764 	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4765 	if (IS_GEN6(dev))
4766 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4767 	else if (IS_GEN7(dev))
4768 		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4769 	else if (IS_GEN8(dev))
4770 		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4771 	else
4772 		BUG();
4773 }
4774 
init_unused_ring(struct drm_device * dev,u32 base)4775 static void init_unused_ring(struct drm_device *dev, u32 base)
4776 {
4777 	struct drm_i915_private *dev_priv = dev->dev_private;
4778 
4779 	I915_WRITE(RING_CTL(base), 0);
4780 	I915_WRITE(RING_HEAD(base), 0);
4781 	I915_WRITE(RING_TAIL(base), 0);
4782 	I915_WRITE(RING_START(base), 0);
4783 }
4784 
init_unused_rings(struct drm_device * dev)4785 static void init_unused_rings(struct drm_device *dev)
4786 {
4787 	if (IS_I830(dev)) {
4788 		init_unused_ring(dev, PRB1_BASE);
4789 		init_unused_ring(dev, SRB0_BASE);
4790 		init_unused_ring(dev, SRB1_BASE);
4791 		init_unused_ring(dev, SRB2_BASE);
4792 		init_unused_ring(dev, SRB3_BASE);
4793 	} else if (IS_GEN2(dev)) {
4794 		init_unused_ring(dev, SRB0_BASE);
4795 		init_unused_ring(dev, SRB1_BASE);
4796 	} else if (IS_GEN3(dev)) {
4797 		init_unused_ring(dev, PRB1_BASE);
4798 		init_unused_ring(dev, PRB2_BASE);
4799 	}
4800 }
4801 
i915_gem_init_rings(struct drm_device * dev)4802 int i915_gem_init_rings(struct drm_device *dev)
4803 {
4804 	struct drm_i915_private *dev_priv = dev->dev_private;
4805 	int ret;
4806 
4807 	ret = intel_init_render_ring_buffer(dev);
4808 	if (ret)
4809 		return ret;
4810 
4811 	if (HAS_BSD(dev)) {
4812 		ret = intel_init_bsd_ring_buffer(dev);
4813 		if (ret)
4814 			goto cleanup_render_ring;
4815 	}
4816 
4817 	if (HAS_BLT(dev)) {
4818 		ret = intel_init_blt_ring_buffer(dev);
4819 		if (ret)
4820 			goto cleanup_bsd_ring;
4821 	}
4822 
4823 	if (HAS_VEBOX(dev)) {
4824 		ret = intel_init_vebox_ring_buffer(dev);
4825 		if (ret)
4826 			goto cleanup_blt_ring;
4827 	}
4828 
4829 	if (HAS_BSD2(dev)) {
4830 		ret = intel_init_bsd2_ring_buffer(dev);
4831 		if (ret)
4832 			goto cleanup_vebox_ring;
4833 	}
4834 
4835 	return 0;
4836 
4837 cleanup_vebox_ring:
4838 	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4839 cleanup_blt_ring:
4840 	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4841 cleanup_bsd_ring:
4842 	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4843 cleanup_render_ring:
4844 	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4845 
4846 	return ret;
4847 }
4848 
4849 int
i915_gem_init_hw(struct drm_device * dev)4850 i915_gem_init_hw(struct drm_device *dev)
4851 {
4852 	struct drm_i915_private *dev_priv = dev->dev_private;
4853 	struct intel_engine_cs *ring;
4854 	int ret, i, j;
4855 
4856 	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4857 		return -EIO;
4858 
4859 	/* Double layer security blanket, see i915_gem_init() */
4860 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4861 
4862 	if (dev_priv->ellc_size)
4863 		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4864 
4865 	if (IS_HASWELL(dev))
4866 		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4867 			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4868 
4869 	if (HAS_PCH_NOP(dev)) {
4870 		if (IS_IVYBRIDGE(dev)) {
4871 			u32 temp = I915_READ(GEN7_MSG_CTL);
4872 			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4873 			I915_WRITE(GEN7_MSG_CTL, temp);
4874 		} else if (INTEL_INFO(dev)->gen >= 7) {
4875 			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4876 			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4877 			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4878 		}
4879 	}
4880 
4881 	i915_gem_init_swizzling(dev);
4882 
4883 	/*
4884 	 * At least 830 can leave some of the unused rings
4885 	 * "active" (ie. head != tail) after resume which
4886 	 * will prevent c3 entry. Makes sure all unused rings
4887 	 * are totally idle.
4888 	 */
4889 	init_unused_rings(dev);
4890 
4891 	BUG_ON(!dev_priv->ring[RCS].default_context);
4892 
4893 	ret = i915_ppgtt_init_hw(dev);
4894 	if (ret) {
4895 		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4896 		goto out;
4897 	}
4898 
4899 	/* Need to do basic initialisation of all rings first: */
4900 	for_each_ring(ring, dev_priv, i) {
4901 		ret = ring->init_hw(ring);
4902 		if (ret)
4903 			goto out;
4904 	}
4905 
4906 	/* We can't enable contexts until all firmware is loaded */
4907 	if (HAS_GUC_UCODE(dev)) {
4908 		ret = intel_guc_ucode_load(dev);
4909 		if (ret) {
4910 			/*
4911 			 * If we got an error and GuC submission is enabled, map
4912 			 * the error to -EIO so the GPU will be declared wedged.
4913 			 * OTOH, if we didn't intend to use the GuC anyway, just
4914 			 * discard the error and carry on.
4915 			 */
4916 			DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4917 				  i915.enable_guc_submission ? "" :
4918 				  " (ignored)");
4919 			ret = i915.enable_guc_submission ? -EIO : 0;
4920 			if (ret)
4921 				goto out;
4922 		}
4923 	}
4924 
4925 	/*
4926 	 * Increment the next seqno by 0x100 so we have a visible break
4927 	 * on re-initialisation
4928 	 */
4929 	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4930 	if (ret)
4931 		goto out;
4932 
4933 	/* Now it is safe to go back round and do everything else: */
4934 	for_each_ring(ring, dev_priv, i) {
4935 		struct drm_i915_gem_request *req;
4936 
4937 		WARN_ON(!ring->default_context);
4938 
4939 		ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4940 		if (ret) {
4941 			i915_gem_cleanup_ringbuffer(dev);
4942 			goto out;
4943 		}
4944 
4945 		if (ring->id == RCS) {
4946 			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4947 				i915_gem_l3_remap(req, j);
4948 		}
4949 
4950 		ret = i915_ppgtt_init_ring(req);
4951 		if (ret && ret != -EIO) {
4952 			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4953 			i915_gem_request_cancel(req);
4954 			i915_gem_cleanup_ringbuffer(dev);
4955 			goto out;
4956 		}
4957 
4958 		ret = i915_gem_context_enable(req);
4959 		if (ret && ret != -EIO) {
4960 			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4961 			i915_gem_request_cancel(req);
4962 			i915_gem_cleanup_ringbuffer(dev);
4963 			goto out;
4964 		}
4965 
4966 		i915_add_request_no_flush(req);
4967 	}
4968 
4969 out:
4970 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4971 	return ret;
4972 }
4973 
i915_gem_init(struct drm_device * dev)4974 int i915_gem_init(struct drm_device *dev)
4975 {
4976 	struct drm_i915_private *dev_priv = dev->dev_private;
4977 	int ret;
4978 
4979 	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4980 			i915.enable_execlists);
4981 
4982 	mutex_lock(&dev->struct_mutex);
4983 
4984 	if (IS_VALLEYVIEW(dev)) {
4985 		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4986 		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4987 		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4988 			      VLV_GTLC_ALLOWWAKEACK), 10))
4989 			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4990 	}
4991 
4992 	if (!i915.enable_execlists) {
4993 		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4994 		dev_priv->gt.init_rings = i915_gem_init_rings;
4995 		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4996 		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4997 	} else {
4998 		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4999 		dev_priv->gt.init_rings = intel_logical_rings_init;
5000 		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5001 		dev_priv->gt.stop_ring = intel_logical_ring_stop;
5002 	}
5003 
5004 	/* This is just a security blanket to placate dragons.
5005 	 * On some systems, we very sporadically observe that the first TLBs
5006 	 * used by the CS may be stale, despite us poking the TLB reset. If
5007 	 * we hold the forcewake during initialisation these problems
5008 	 * just magically go away.
5009 	 */
5010 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5011 
5012 	ret = i915_gem_init_userptr(dev);
5013 	if (ret)
5014 		goto out_unlock;
5015 
5016 	i915_gem_init_global_gtt(dev);
5017 
5018 	ret = i915_gem_context_init(dev);
5019 	if (ret)
5020 		goto out_unlock;
5021 
5022 	ret = dev_priv->gt.init_rings(dev);
5023 	if (ret)
5024 		goto out_unlock;
5025 
5026 	ret = i915_gem_init_hw(dev);
5027 	if (ret == -EIO) {
5028 		/* Allow ring initialisation to fail by marking the GPU as
5029 		 * wedged. But we only want to do this where the GPU is angry,
5030 		 * for all other failure, such as an allocation failure, bail.
5031 		 */
5032 		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5033 		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5034 		ret = 0;
5035 	}
5036 
5037 out_unlock:
5038 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5039 	mutex_unlock(&dev->struct_mutex);
5040 
5041 	return ret;
5042 }
5043 
5044 void
i915_gem_cleanup_ringbuffer(struct drm_device * dev)5045 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5046 {
5047 	struct drm_i915_private *dev_priv = dev->dev_private;
5048 	struct intel_engine_cs *ring;
5049 	int i;
5050 
5051 	for_each_ring(ring, dev_priv, i)
5052 		dev_priv->gt.cleanup_ring(ring);
5053 
5054     if (i915.enable_execlists)
5055             /*
5056              * Neither the BIOS, ourselves or any other kernel
5057              * expects the system to be in execlists mode on startup,
5058              * so we need to reset the GPU back to legacy mode.
5059              */
5060             intel_gpu_reset(dev);
5061 }
5062 
5063 static void
init_ring_lists(struct intel_engine_cs * ring)5064 init_ring_lists(struct intel_engine_cs *ring)
5065 {
5066 	INIT_LIST_HEAD(&ring->active_list);
5067 	INIT_LIST_HEAD(&ring->request_list);
5068 }
5069 
5070 void
i915_gem_load(struct drm_device * dev)5071 i915_gem_load(struct drm_device *dev)
5072 {
5073 	struct drm_i915_private *dev_priv = dev->dev_private;
5074 	int i;
5075 
5076 	dev_priv->objects =
5077 		kmem_cache_create("i915_gem_object",
5078 				  sizeof(struct drm_i915_gem_object), 0,
5079 				  SLAB_HWCACHE_ALIGN,
5080 				  NULL);
5081 	dev_priv->vmas =
5082 		kmem_cache_create("i915_gem_vma",
5083 				  sizeof(struct i915_vma), 0,
5084 				  SLAB_HWCACHE_ALIGN,
5085 				  NULL);
5086 	dev_priv->requests =
5087 		kmem_cache_create("i915_gem_request",
5088 				  sizeof(struct drm_i915_gem_request), 0,
5089 				  SLAB_HWCACHE_ALIGN,
5090 				  NULL);
5091 
5092 	INIT_LIST_HEAD(&dev_priv->vm_list);
5093 	INIT_LIST_HEAD(&dev_priv->context_list);
5094 	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5095 	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5096 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5097 	for (i = 0; i < I915_NUM_RINGS; i++)
5098 		init_ring_lists(&dev_priv->ring[i]);
5099 	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5100 		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5101 	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5102 			  i915_gem_retire_work_handler);
5103 	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5104 			  i915_gem_idle_work_handler);
5105 	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5106 
5107 	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5108 
5109 	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5110 		dev_priv->num_fence_regs = 32;
5111 	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5112 		dev_priv->num_fence_regs = 16;
5113 	else
5114 		dev_priv->num_fence_regs = 8;
5115 
5116 	if (intel_vgpu_active(dev))
5117 		dev_priv->num_fence_regs =
5118 				I915_READ(vgtif_reg(avail_rs.fence_num));
5119 
5120 	/*
5121 	 * Set initial sequence number for requests.
5122 	 * Using this number allows the wraparound to happen early,
5123 	 * catching any obvious problems.
5124 	 */
5125 	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5126 	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5127 
5128 	/* Initialize fence registers to zero */
5129 	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5130 	i915_gem_restore_fences(dev);
5131 
5132 	i915_gem_detect_bit_6_swizzle(dev);
5133 	init_waitqueue_head(&dev_priv->pending_flip_queue);
5134 
5135 	dev_priv->mm.interruptible = true;
5136 
5137 	i915_gem_shrinker_init(dev_priv);
5138 
5139 	mutex_init(&dev_priv->fb_tracking.lock);
5140 
5141 	mutex_init(&dev_priv->tlb_invalidate_lock);
5142 }
5143 
i915_gem_release(struct drm_device * dev,struct drm_file * file)5144 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5145 {
5146 	struct drm_i915_file_private *file_priv = file->driver_priv;
5147 
5148 	/* Clean up our request list when the client is going away, so that
5149 	 * later retire_requests won't dereference our soon-to-be-gone
5150 	 * file_priv.
5151 	 */
5152 	spin_lock(&file_priv->mm.lock);
5153 	while (!list_empty(&file_priv->mm.request_list)) {
5154 		struct drm_i915_gem_request *request;
5155 
5156 		request = list_first_entry(&file_priv->mm.request_list,
5157 					   struct drm_i915_gem_request,
5158 					   client_list);
5159 		list_del(&request->client_list);
5160 		request->file_priv = NULL;
5161 	}
5162 	spin_unlock(&file_priv->mm.lock);
5163 
5164 	if (!list_empty(&file_priv->rps.link)) {
5165 		spin_lock(&to_i915(dev)->rps.client_lock);
5166 		list_del(&file_priv->rps.link);
5167 		spin_unlock(&to_i915(dev)->rps.client_lock);
5168 	}
5169 }
5170 
i915_gem_open(struct drm_device * dev,struct drm_file * file)5171 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5172 {
5173 	struct drm_i915_file_private *file_priv;
5174 	int ret;
5175 
5176 	DRM_DEBUG_DRIVER("\n");
5177 
5178 	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5179 	if (!file_priv)
5180 		return -ENOMEM;
5181 
5182 	file->driver_priv = file_priv;
5183 	file_priv->dev_priv = dev->dev_private;
5184 	file_priv->file = file;
5185 	INIT_LIST_HEAD(&file_priv->rps.link);
5186 
5187 	spin_lock_init(&file_priv->mm.lock);
5188 	INIT_LIST_HEAD(&file_priv->mm.request_list);
5189 
5190 	ret = i915_gem_context_open(dev, file);
5191 	if (ret)
5192 		kfree(file_priv);
5193 
5194 	return ret;
5195 }
5196 
5197 /**
5198  * i915_gem_track_fb - update frontbuffer tracking
5199  * @old: current GEM buffer for the frontbuffer slots
5200  * @new: new GEM buffer for the frontbuffer slots
5201  * @frontbuffer_bits: bitmask of frontbuffer slots
5202  *
5203  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5204  * from @old and setting them in @new. Both @old and @new can be NULL.
5205  */
i915_gem_track_fb(struct drm_i915_gem_object * old,struct drm_i915_gem_object * new,unsigned frontbuffer_bits)5206 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5207 		       struct drm_i915_gem_object *new,
5208 		       unsigned frontbuffer_bits)
5209 {
5210 	if (old) {
5211 		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5212 		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5213 		old->frontbuffer_bits &= ~frontbuffer_bits;
5214 	}
5215 
5216 	if (new) {
5217 		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5218 		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5219 		new->frontbuffer_bits |= frontbuffer_bits;
5220 	}
5221 }
5222 
5223 /* All the new VM stuff */
i915_gem_obj_offset(struct drm_i915_gem_object * o,struct i915_address_space * vm)5224 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5225 			struct i915_address_space *vm)
5226 {
5227 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5228 	struct i915_vma *vma;
5229 
5230 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5231 
5232 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5233 		if (i915_is_ggtt(vma->vm) &&
5234 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5235 			continue;
5236 		if (vma->vm == vm)
5237 			return vma->node.start;
5238 	}
5239 
5240 	WARN(1, "%s vma for this object not found.\n",
5241 	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5242 	return -1;
5243 }
5244 
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5245 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5246 				  const struct i915_ggtt_view *view)
5247 {
5248 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5249 	struct i915_vma *vma;
5250 
5251 	list_for_each_entry(vma, &o->vma_list, vma_link)
5252 		if (vma->vm == ggtt &&
5253 		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5254 			return vma->node.start;
5255 
5256 	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5257 	return -1;
5258 }
5259 
i915_gem_obj_bound(struct drm_i915_gem_object * o,struct i915_address_space * vm)5260 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5261 			struct i915_address_space *vm)
5262 {
5263 	struct i915_vma *vma;
5264 
5265 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5266 		if (i915_is_ggtt(vma->vm) &&
5267 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5268 			continue;
5269 		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5270 			return true;
5271 	}
5272 
5273 	return false;
5274 }
5275 
i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object * o,const struct i915_ggtt_view * view)5276 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5277 				  const struct i915_ggtt_view *view)
5278 {
5279 	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5280 	struct i915_vma *vma;
5281 
5282 	list_for_each_entry(vma, &o->vma_list, vma_link)
5283 		if (vma->vm == ggtt &&
5284 		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5285 		    drm_mm_node_allocated(&vma->node))
5286 			return true;
5287 
5288 	return false;
5289 }
5290 
i915_gem_obj_bound_any(struct drm_i915_gem_object * o)5291 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5292 {
5293 	struct i915_vma *vma;
5294 
5295 	list_for_each_entry(vma, &o->vma_list, vma_link)
5296 		if (drm_mm_node_allocated(&vma->node))
5297 			return true;
5298 
5299 	return false;
5300 }
5301 
i915_gem_obj_size(struct drm_i915_gem_object * o,struct i915_address_space * vm)5302 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5303 				struct i915_address_space *vm)
5304 {
5305 	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5306 	struct i915_vma *vma;
5307 
5308 	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5309 
5310 	BUG_ON(list_empty(&o->vma_list));
5311 
5312 	list_for_each_entry(vma, &o->vma_list, vma_link) {
5313 		if (i915_is_ggtt(vma->vm) &&
5314 		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5315 			continue;
5316 		if (vma->vm == vm)
5317 			return vma->node.size;
5318 	}
5319 	return 0;
5320 }
5321 
i915_gem_obj_is_pinned(struct drm_i915_gem_object * obj)5322 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5323 {
5324 	struct i915_vma *vma;
5325 	list_for_each_entry(vma, &obj->vma_list, vma_link)
5326 		if (vma->pin_count > 0)
5327 			return true;
5328 
5329 	return false;
5330 }
5331 
5332 /* Allocate a new GEM object and fill it with the supplied data */
5333 struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device * dev,const void * data,size_t size)5334 i915_gem_object_create_from_data(struct drm_device *dev,
5335 			         const void *data, size_t size)
5336 {
5337 	struct drm_i915_gem_object *obj;
5338 	struct sg_table *sg;
5339 	size_t bytes;
5340 	int ret;
5341 
5342 	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5343 	if (IS_ERR_OR_NULL(obj))
5344 		return obj;
5345 
5346 	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5347 	if (ret)
5348 		goto fail;
5349 
5350 	ret = i915_gem_object_get_pages(obj);
5351 	if (ret)
5352 		goto fail;
5353 
5354 	i915_gem_object_pin_pages(obj);
5355 	sg = obj->pages;
5356 	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5357 	i915_gem_object_unpin_pages(obj);
5358 
5359 	if (WARN_ON(bytes != size)) {
5360 		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5361 		ret = -EFAULT;
5362 		goto fail;
5363 	}
5364 
5365 	return obj;
5366 
5367 fail:
5368 	drm_gem_object_unreference(&obj->base);
5369 	return ERR_PTR(ret);
5370 }
5371