1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage. This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51 #define INTEL_RC6_ENABLE (1<<0)
52 #define INTEL_RC6p_ENABLE (1<<1)
53 #define INTEL_RC6pp_ENABLE (1<<2)
54
bxt_init_clock_gating(struct drm_device * dev)55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 struct drm_i915_private *dev_priv = dev->dev_private;
58
59 /* WaDisableSDEUnitClockGating:bxt */
60 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62
63 /*
64 * FIXME:
65 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 */
67 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69
70 /*
71 * Lower the display internal timeout.
72 * This is needed to avoid any hard hangs when DSI port PLL
73 * is off and a MMIO access is attempted by any privilege
74 * application, using batch buffers or any other means.
75 */
76 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
77 }
78
i915_pineview_get_mem_freq(struct drm_device * dev)79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 u32 tmp;
83
84 tmp = I915_READ(CLKCFG);
85
86 switch (tmp & CLKCFG_FSB_MASK) {
87 case CLKCFG_FSB_533:
88 dev_priv->fsb_freq = 533; /* 133*4 */
89 break;
90 case CLKCFG_FSB_800:
91 dev_priv->fsb_freq = 800; /* 200*4 */
92 break;
93 case CLKCFG_FSB_667:
94 dev_priv->fsb_freq = 667; /* 167*4 */
95 break;
96 case CLKCFG_FSB_400:
97 dev_priv->fsb_freq = 400; /* 100*4 */
98 break;
99 }
100
101 switch (tmp & CLKCFG_MEM_MASK) {
102 case CLKCFG_MEM_533:
103 dev_priv->mem_freq = 533;
104 break;
105 case CLKCFG_MEM_667:
106 dev_priv->mem_freq = 667;
107 break;
108 case CLKCFG_MEM_800:
109 dev_priv->mem_freq = 800;
110 break;
111 }
112
113 /* detect pineview DDR3 setting */
114 tmp = I915_READ(CSHRDDR3CTL);
115 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117
i915_ironlake_get_mem_freq(struct drm_device * dev)118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 u16 ddrpll, csipll;
122
123 ddrpll = I915_READ16(DDRMPLL1);
124 csipll = I915_READ16(CSIPLL0);
125
126 switch (ddrpll & 0xff) {
127 case 0xc:
128 dev_priv->mem_freq = 800;
129 break;
130 case 0x10:
131 dev_priv->mem_freq = 1066;
132 break;
133 case 0x14:
134 dev_priv->mem_freq = 1333;
135 break;
136 case 0x18:
137 dev_priv->mem_freq = 1600;
138 break;
139 default:
140 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141 ddrpll & 0xff);
142 dev_priv->mem_freq = 0;
143 break;
144 }
145
146 dev_priv->ips.r_t = dev_priv->mem_freq;
147
148 switch (csipll & 0x3ff) {
149 case 0x00c:
150 dev_priv->fsb_freq = 3200;
151 break;
152 case 0x00e:
153 dev_priv->fsb_freq = 3733;
154 break;
155 case 0x010:
156 dev_priv->fsb_freq = 4266;
157 break;
158 case 0x012:
159 dev_priv->fsb_freq = 4800;
160 break;
161 case 0x014:
162 dev_priv->fsb_freq = 5333;
163 break;
164 case 0x016:
165 dev_priv->fsb_freq = 5866;
166 break;
167 case 0x018:
168 dev_priv->fsb_freq = 6400;
169 break;
170 default:
171 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172 csipll & 0x3ff);
173 dev_priv->fsb_freq = 0;
174 break;
175 }
176
177 if (dev_priv->fsb_freq == 3200) {
178 dev_priv->ips.c_m = 0;
179 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180 dev_priv->ips.c_m = 1;
181 } else {
182 dev_priv->ips.c_m = 2;
183 }
184 }
185
186 static const struct cxsr_latency cxsr_latency_table[] = {
187 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
188 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
189 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
190 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
191 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
192
193 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
194 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
195 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
196 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
197 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
198
199 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
200 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
201 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
202 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
203 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
204
205 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
206 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
207 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
208 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
209 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
210
211 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
212 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
213 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
214 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
215 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
216
217 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
218 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
219 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
220 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
221 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
222 };
223
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 int is_ddr3,
226 int fsb,
227 int mem)
228 {
229 const struct cxsr_latency *latency;
230 int i;
231
232 if (fsb == 0 || mem == 0)
233 return NULL;
234
235 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236 latency = &cxsr_latency_table[i];
237 if (is_desktop == latency->is_desktop &&
238 is_ddr3 == latency->is_ddr3 &&
239 fsb == latency->fsb_freq && mem == latency->mem_freq)
240 return latency;
241 }
242
243 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244
245 return NULL;
246 }
247
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250 u32 val;
251
252 mutex_lock(&dev_priv->rps.hw_lock);
253
254 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255 if (enable)
256 val &= ~FORCE_DDR_HIGH_FREQ;
257 else
258 val |= FORCE_DDR_HIGH_FREQ;
259 val &= ~FORCE_DDR_LOW_FREQ;
260 val |= FORCE_DDR_FREQ_REQ_ACK;
261 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262
263 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266
267 mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272 u32 val;
273
274 mutex_lock(&dev_priv->rps.hw_lock);
275
276 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277 if (enable)
278 val |= DSP_MAXFIFO_PM5_ENABLE;
279 else
280 val &= ~DSP_MAXFIFO_PM5_ENABLE;
281 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282
283 mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285
286 #define FW_WM(value, plane) \
287 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291 struct drm_device *dev = dev_priv->dev;
292 u32 val;
293
294 if (IS_VALLEYVIEW(dev)) {
295 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296 POSTING_READ(FW_BLC_SELF_VLV);
297 dev_priv->wm.vlv.cxsr = enable;
298 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300 POSTING_READ(FW_BLC_SELF);
301 } else if (IS_PINEVIEW(dev)) {
302 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304 I915_WRITE(DSPFW3, val);
305 POSTING_READ(DSPFW3);
306 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
307 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309 I915_WRITE(FW_BLC_SELF, val);
310 POSTING_READ(FW_BLC_SELF);
311 } else if (IS_I915GM(dev)) {
312 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314 I915_WRITE(INSTPM, val);
315 POSTING_READ(INSTPM);
316 } else {
317 return;
318 }
319
320 DRM_DEBUG_KMS("memory self-refresh is %s\n",
321 enable ? "enabled" : "disabled");
322 }
323
324
325 /*
326 * Latency for FIFO fetches is dependent on several factors:
327 * - memory configuration (speed, channels)
328 * - chipset
329 * - current MCH state
330 * It can be fairly high in some situations, so here we assume a fairly
331 * pessimal value. It's a tradeoff between extra memory fetches (if we
332 * set this value too high, the FIFO will fetch frequently to stay full)
333 * and power consumption (set it too low to save power and we might see
334 * FIFO underruns and display "flicker").
335 *
336 * A value of 5us seems to be a good balance; safe for very low end
337 * platforms but not overly aggressive on lower latency configs.
338 */
339 static const int pessimal_latency_ns = 5000;
340
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343
vlv_get_fifo_size(struct drm_device * dev,enum pipe pipe,int plane)344 static int vlv_get_fifo_size(struct drm_device *dev,
345 enum pipe pipe, int plane)
346 {
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 int sprite0_start, sprite1_start, size;
349
350 switch (pipe) {
351 uint32_t dsparb, dsparb2, dsparb3;
352 case PIPE_A:
353 dsparb = I915_READ(DSPARB);
354 dsparb2 = I915_READ(DSPARB2);
355 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357 break;
358 case PIPE_B:
359 dsparb = I915_READ(DSPARB);
360 dsparb2 = I915_READ(DSPARB2);
361 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363 break;
364 case PIPE_C:
365 dsparb2 = I915_READ(DSPARB2);
366 dsparb3 = I915_READ(DSPARB3);
367 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369 break;
370 default:
371 return 0;
372 }
373
374 switch (plane) {
375 case 0:
376 size = sprite0_start;
377 break;
378 case 1:
379 size = sprite1_start - sprite0_start;
380 break;
381 case 2:
382 size = 512 - 1 - sprite1_start;
383 break;
384 default:
385 return 0;
386 }
387
388 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391 size);
392
393 return size;
394 }
395
i9xx_get_fifo_size(struct drm_device * dev,int plane)396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398 struct drm_i915_private *dev_priv = dev->dev_private;
399 uint32_t dsparb = I915_READ(DSPARB);
400 int size;
401
402 size = dsparb & 0x7f;
403 if (plane)
404 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405
406 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407 plane ? "B" : "A", size);
408
409 return size;
410 }
411
i830_get_fifo_size(struct drm_device * dev,int plane)412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414 struct drm_i915_private *dev_priv = dev->dev_private;
415 uint32_t dsparb = I915_READ(DSPARB);
416 int size;
417
418 size = dsparb & 0x1ff;
419 if (plane)
420 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421 size >>= 1; /* Convert to cachelines */
422
423 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424 plane ? "B" : "A", size);
425
426 return size;
427 }
428
i845_get_fifo_size(struct drm_device * dev,int plane)429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431 struct drm_i915_private *dev_priv = dev->dev_private;
432 uint32_t dsparb = I915_READ(DSPARB);
433 int size;
434
435 size = dsparb & 0x7f;
436 size >>= 2; /* Convert to cachelines */
437
438 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439 plane ? "B" : "A",
440 size);
441
442 return size;
443 }
444
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447 .fifo_size = PINEVIEW_DISPLAY_FIFO,
448 .max_wm = PINEVIEW_MAX_WM,
449 .default_wm = PINEVIEW_DFT_WM,
450 .guard_size = PINEVIEW_GUARD_WM,
451 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 .fifo_size = PINEVIEW_DISPLAY_FIFO,
455 .max_wm = PINEVIEW_MAX_WM,
456 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457 .guard_size = PINEVIEW_GUARD_WM,
458 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461 .fifo_size = PINEVIEW_CURSOR_FIFO,
462 .max_wm = PINEVIEW_CURSOR_MAX_WM,
463 .default_wm = PINEVIEW_CURSOR_DFT_WM,
464 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
465 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 .fifo_size = PINEVIEW_CURSOR_FIFO,
469 .max_wm = PINEVIEW_CURSOR_MAX_WM,
470 .default_wm = PINEVIEW_CURSOR_DFT_WM,
471 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
472 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475 .fifo_size = G4X_FIFO_SIZE,
476 .max_wm = G4X_MAX_WM,
477 .default_wm = G4X_MAX_WM,
478 .guard_size = 2,
479 .cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482 .fifo_size = I965_CURSOR_FIFO,
483 .max_wm = I965_CURSOR_MAX_WM,
484 .default_wm = I965_CURSOR_DFT_WM,
485 .guard_size = 2,
486 .cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489 .fifo_size = VALLEYVIEW_FIFO_SIZE,
490 .max_wm = VALLEYVIEW_MAX_WM,
491 .default_wm = VALLEYVIEW_MAX_WM,
492 .guard_size = 2,
493 .cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 .fifo_size = I965_CURSOR_FIFO,
497 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498 .default_wm = I965_CURSOR_DFT_WM,
499 .guard_size = 2,
500 .cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503 .fifo_size = I965_CURSOR_FIFO,
504 .max_wm = I965_CURSOR_MAX_WM,
505 .default_wm = I965_CURSOR_DFT_WM,
506 .guard_size = 2,
507 .cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510 .fifo_size = I945_FIFO_SIZE,
511 .max_wm = I915_MAX_WM,
512 .default_wm = 1,
513 .guard_size = 2,
514 .cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517 .fifo_size = I915_FIFO_SIZE,
518 .max_wm = I915_MAX_WM,
519 .default_wm = 1,
520 .guard_size = 2,
521 .cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524 .fifo_size = I855GM_FIFO_SIZE,
525 .max_wm = I915_MAX_WM,
526 .default_wm = 1,
527 .guard_size = 2,
528 .cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531 .fifo_size = I855GM_FIFO_SIZE,
532 .max_wm = I915_MAX_WM/2,
533 .default_wm = 1,
534 .guard_size = 2,
535 .cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538 .fifo_size = I830_FIFO_SIZE,
539 .max_wm = I915_MAX_WM,
540 .default_wm = 1,
541 .guard_size = 2,
542 .cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544
545 /**
546 * intel_calculate_wm - calculate watermark level
547 * @clock_in_khz: pixel clock
548 * @wm: chip FIFO params
549 * @pixel_size: display pixel size
550 * @latency_ns: memory latency for the platform
551 *
552 * Calculate the watermark level (the level at which the display plane will
553 * start fetching from memory again). Each chip has a different display
554 * FIFO size and allocation, so the caller needs to figure that out and pass
555 * in the correct intel_watermark_params structure.
556 *
557 * As the pixel clock runs, the FIFO will be drained at a rate that depends
558 * on the pixel size. When it reaches the watermark level, it'll start
559 * fetching FIFO line sized based chunks from memory until the FIFO fills
560 * past the watermark point. If the FIFO drains completely, a FIFO underrun
561 * will occur, and a display engine hang could result.
562 */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564 const struct intel_watermark_params *wm,
565 int fifo_size,
566 int pixel_size,
567 unsigned long latency_ns)
568 {
569 long entries_required, wm_size;
570
571 /*
572 * Note: we need to make sure we don't overflow for various clock &
573 * latency values.
574 * clocks go from a few thousand to several hundred thousand.
575 * latency is usually a few thousand
576 */
577 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578 1000;
579 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580
581 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582
583 wm_size = fifo_size - (entries_required + wm->guard_size);
584
585 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586
587 /* Don't promote wm_size to unsigned... */
588 if (wm_size > (long)wm->max_wm)
589 wm_size = wm->max_wm;
590 if (wm_size <= 0)
591 wm_size = wm->default_wm;
592
593 /*
594 * Bspec seems to indicate that the value shouldn't be lower than
595 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596 * Lets go for 8 which is the burst size since certain platforms
597 * already use a hardcoded 8 (which is what the spec says should be
598 * done).
599 */
600 if (wm_size <= 8)
601 wm_size = 8;
602
603 return wm_size;
604 }
605
single_enabled_crtc(struct drm_device * dev)606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608 struct drm_crtc *crtc, *enabled = NULL;
609
610 for_each_crtc(dev, crtc) {
611 if (intel_crtc_active(crtc)) {
612 if (enabled)
613 return NULL;
614 enabled = crtc;
615 }
616 }
617
618 return enabled;
619 }
620
pineview_update_wm(struct drm_crtc * unused_crtc)621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623 struct drm_device *dev = unused_crtc->dev;
624 struct drm_i915_private *dev_priv = dev->dev_private;
625 struct drm_crtc *crtc;
626 const struct cxsr_latency *latency;
627 u32 reg;
628 unsigned long wm;
629
630 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631 dev_priv->fsb_freq, dev_priv->mem_freq);
632 if (!latency) {
633 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634 intel_set_memory_cxsr(dev_priv, false);
635 return;
636 }
637
638 crtc = single_enabled_crtc(dev);
639 if (crtc) {
640 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642 int clock = adjusted_mode->crtc_clock;
643
644 /* Display SR */
645 wm = intel_calculate_wm(clock, &pineview_display_wm,
646 pineview_display_wm.fifo_size,
647 pixel_size, latency->display_sr);
648 reg = I915_READ(DSPFW1);
649 reg &= ~DSPFW_SR_MASK;
650 reg |= FW_WM(wm, SR);
651 I915_WRITE(DSPFW1, reg);
652 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653
654 /* cursor SR */
655 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656 pineview_display_wm.fifo_size,
657 pixel_size, latency->cursor_sr);
658 reg = I915_READ(DSPFW3);
659 reg &= ~DSPFW_CURSOR_SR_MASK;
660 reg |= FW_WM(wm, CURSOR_SR);
661 I915_WRITE(DSPFW3, reg);
662
663 /* Display HPLL off SR */
664 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665 pineview_display_hplloff_wm.fifo_size,
666 pixel_size, latency->display_hpll_disable);
667 reg = I915_READ(DSPFW3);
668 reg &= ~DSPFW_HPLL_SR_MASK;
669 reg |= FW_WM(wm, HPLL_SR);
670 I915_WRITE(DSPFW3, reg);
671
672 /* cursor HPLL off SR */
673 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674 pineview_display_hplloff_wm.fifo_size,
675 pixel_size, latency->cursor_hpll_disable);
676 reg = I915_READ(DSPFW3);
677 reg &= ~DSPFW_HPLL_CURSOR_MASK;
678 reg |= FW_WM(wm, HPLL_CURSOR);
679 I915_WRITE(DSPFW3, reg);
680 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681
682 intel_set_memory_cxsr(dev_priv, true);
683 } else {
684 intel_set_memory_cxsr(dev_priv, false);
685 }
686 }
687
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)688 static bool g4x_compute_wm0(struct drm_device *dev,
689 int plane,
690 const struct intel_watermark_params *display,
691 int display_latency_ns,
692 const struct intel_watermark_params *cursor,
693 int cursor_latency_ns,
694 int *plane_wm,
695 int *cursor_wm)
696 {
697 struct drm_crtc *crtc;
698 const struct drm_display_mode *adjusted_mode;
699 int htotal, hdisplay, clock, pixel_size;
700 int line_time_us, line_count;
701 int entries, tlb_miss;
702
703 crtc = intel_get_crtc_for_plane(dev, plane);
704 if (!intel_crtc_active(crtc)) {
705 *cursor_wm = cursor->guard_size;
706 *plane_wm = display->guard_size;
707 return false;
708 }
709
710 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 clock = adjusted_mode->crtc_clock;
712 htotal = adjusted_mode->crtc_htotal;
713 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715
716 /* Use the small buffer method to calculate plane watermark */
717 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719 if (tlb_miss > 0)
720 entries += tlb_miss;
721 entries = DIV_ROUND_UP(entries, display->cacheline_size);
722 *plane_wm = entries + display->guard_size;
723 if (*plane_wm > (int)display->max_wm)
724 *plane_wm = display->max_wm;
725
726 /* Use the large buffer method to calculate cursor watermark */
727 line_time_us = max(htotal * 1000 / clock, 1);
728 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729 entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731 if (tlb_miss > 0)
732 entries += tlb_miss;
733 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734 *cursor_wm = entries + cursor->guard_size;
735 if (*cursor_wm > (int)cursor->max_wm)
736 *cursor_wm = (int)cursor->max_wm;
737
738 return true;
739 }
740
741 /*
742 * Check the wm result.
743 *
744 * If any calculated watermark values is larger than the maximum value that
745 * can be programmed into the associated watermark register, that watermark
746 * must be disabled.
747 */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)748 static bool g4x_check_srwm(struct drm_device *dev,
749 int display_wm, int cursor_wm,
750 const struct intel_watermark_params *display,
751 const struct intel_watermark_params *cursor)
752 {
753 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754 display_wm, cursor_wm);
755
756 if (display_wm > display->max_wm) {
757 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758 display_wm, display->max_wm);
759 return false;
760 }
761
762 if (cursor_wm > cursor->max_wm) {
763 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764 cursor_wm, cursor->max_wm);
765 return false;
766 }
767
768 if (!(display_wm || cursor_wm)) {
769 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770 return false;
771 }
772
773 return true;
774 }
775
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)776 static bool g4x_compute_srwm(struct drm_device *dev,
777 int plane,
778 int latency_ns,
779 const struct intel_watermark_params *display,
780 const struct intel_watermark_params *cursor,
781 int *display_wm, int *cursor_wm)
782 {
783 struct drm_crtc *crtc;
784 const struct drm_display_mode *adjusted_mode;
785 int hdisplay, htotal, pixel_size, clock;
786 unsigned long line_time_us;
787 int line_count, line_size;
788 int small, large;
789 int entries;
790
791 if (!latency_ns) {
792 *display_wm = *cursor_wm = 0;
793 return false;
794 }
795
796 crtc = intel_get_crtc_for_plane(dev, plane);
797 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798 clock = adjusted_mode->crtc_clock;
799 htotal = adjusted_mode->crtc_htotal;
800 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801 pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802
803 line_time_us = max(htotal * 1000 / clock, 1);
804 line_count = (latency_ns / line_time_us + 1000) / 1000;
805 line_size = hdisplay * pixel_size;
806
807 /* Use the minimum of the small and large buffer method for primary */
808 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809 large = line_count * line_size;
810
811 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812 *display_wm = entries + display->guard_size;
813
814 /* calculate the self-refresh watermark for display cursor */
815 entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817 *cursor_wm = entries + cursor->guard_size;
818
819 return g4x_check_srwm(dev,
820 *display_wm, *cursor_wm,
821 display, cursor);
822 }
823
824 #define FW_WM_VLV(value, plane) \
825 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826
vlv_write_wm_values(struct intel_crtc * crtc,const struct vlv_wm_values * wm)827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828 const struct vlv_wm_values *wm)
829 {
830 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831 enum pipe pipe = crtc->pipe;
832
833 I915_WRITE(VLV_DDL(pipe),
834 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838
839 I915_WRITE(DSPFW1,
840 FW_WM(wm->sr.plane, SR) |
841 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844 I915_WRITE(DSPFW2,
845 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848 I915_WRITE(DSPFW3,
849 FW_WM(wm->sr.cursor, CURSOR_SR));
850
851 if (IS_CHERRYVIEW(dev_priv)) {
852 I915_WRITE(DSPFW7_CHV,
853 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855 I915_WRITE(DSPFW8_CHV,
856 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858 I915_WRITE(DSPFW9_CHV,
859 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861 I915_WRITE(DSPHOWM,
862 FW_WM(wm->sr.plane >> 9, SR_HI) |
863 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 } else {
873 I915_WRITE(DSPFW7,
874 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 I915_WRITE(DSPHOWM,
877 FW_WM(wm->sr.plane >> 9, SR_HI) |
878 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 }
885
886 /* zero (unused) WM1 watermarks */
887 I915_WRITE(DSPFW4, 0);
888 I915_WRITE(DSPFW5, 0);
889 I915_WRITE(DSPFW6, 0);
890 I915_WRITE(DSPHOWM1, 0);
891
892 POSTING_READ(DSPFW1);
893 }
894
895 #undef FW_WM_VLV
896
897 enum vlv_wm_level {
898 VLV_WM_LEVEL_PM2,
899 VLV_WM_LEVEL_PM5,
900 VLV_WM_LEVEL_DDR_DVFS,
901 };
902
903 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int pipe_htotal,unsigned int horiz_pixels,unsigned int bytes_per_pixel,unsigned int latency)904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905 unsigned int pipe_htotal,
906 unsigned int horiz_pixels,
907 unsigned int bytes_per_pixel,
908 unsigned int latency)
909 {
910 unsigned int ret;
911
912 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914 ret = DIV_ROUND_UP(ret, 64);
915
916 return ret;
917 }
918
vlv_setup_wm_latency(struct drm_device * dev)919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921 struct drm_i915_private *dev_priv = dev->dev_private;
922
923 /* all latencies in usec */
924 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925
926 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927
928 if (IS_CHERRYVIEW(dev_priv)) {
929 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931
932 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 }
934 }
935
vlv_compute_wm_level(struct intel_plane * plane,struct intel_crtc * crtc,const struct intel_plane_state * state,int level)936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937 struct intel_crtc *crtc,
938 const struct intel_plane_state *state,
939 int level)
940 {
941 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942 int clock, htotal, pixel_size, width, wm;
943
944 if (dev_priv->wm.pri_latency[level] == 0)
945 return USHRT_MAX;
946
947 if (!state->visible)
948 return 0;
949
950 pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951 clock = crtc->config->base.adjusted_mode.crtc_clock;
952 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953 width = crtc->config->pipe_src_w;
954 if (WARN_ON(htotal == 0))
955 htotal = 1;
956
957 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958 /*
959 * FIXME the formula gives values that are
960 * too big for the cursor FIFO, and hence we
961 * would never be able to use cursors. For
962 * now just hardcode the watermark.
963 */
964 wm = 63;
965 } else {
966 wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967 dev_priv->wm.pri_latency[level] * 10);
968 }
969
970 return min_t(int, wm, USHRT_MAX);
971 }
972
vlv_compute_fifo(struct intel_crtc * crtc)973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975 struct drm_device *dev = crtc->base.dev;
976 struct vlv_wm_state *wm_state = &crtc->wm_state;
977 struct intel_plane *plane;
978 unsigned int total_rate = 0;
979 const int fifo_size = 512 - 1;
980 int fifo_extra, fifo_left = fifo_size;
981
982 for_each_intel_plane_on_crtc(dev, crtc, plane) {
983 struct intel_plane_state *state =
984 to_intel_plane_state(plane->base.state);
985
986 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987 continue;
988
989 if (state->visible) {
990 wm_state->num_active_planes++;
991 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992 }
993 }
994
995 for_each_intel_plane_on_crtc(dev, crtc, plane) {
996 struct intel_plane_state *state =
997 to_intel_plane_state(plane->base.state);
998 unsigned int rate;
999
1000 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001 plane->wm.fifo_size = 63;
1002 continue;
1003 }
1004
1005 if (!state->visible) {
1006 plane->wm.fifo_size = 0;
1007 continue;
1008 }
1009
1010 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011 plane->wm.fifo_size = fifo_size * rate / total_rate;
1012 fifo_left -= plane->wm.fifo_size;
1013 }
1014
1015 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016
1017 /* spread the remainder evenly */
1018 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019 int plane_extra;
1020
1021 if (fifo_left == 0)
1022 break;
1023
1024 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025 continue;
1026
1027 /* give it all to the first plane if none are active */
1028 if (plane->wm.fifo_size == 0 &&
1029 wm_state->num_active_planes)
1030 continue;
1031
1032 plane_extra = min(fifo_extra, fifo_left);
1033 plane->wm.fifo_size += plane_extra;
1034 fifo_left -= plane_extra;
1035 }
1036
1037 WARN_ON(fifo_left != 0);
1038 }
1039
vlv_invert_wms(struct intel_crtc * crtc)1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042 struct vlv_wm_state *wm_state = &crtc->wm_state;
1043 int level;
1044
1045 for (level = 0; level < wm_state->num_levels; level++) {
1046 struct drm_device *dev = crtc->base.dev;
1047 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048 struct intel_plane *plane;
1049
1050 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052
1053 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054 switch (plane->base.type) {
1055 int sprite;
1056 case DRM_PLANE_TYPE_CURSOR:
1057 wm_state->wm[level].cursor = plane->wm.fifo_size -
1058 wm_state->wm[level].cursor;
1059 break;
1060 case DRM_PLANE_TYPE_PRIMARY:
1061 wm_state->wm[level].primary = plane->wm.fifo_size -
1062 wm_state->wm[level].primary;
1063 break;
1064 case DRM_PLANE_TYPE_OVERLAY:
1065 sprite = plane->plane;
1066 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067 wm_state->wm[level].sprite[sprite];
1068 break;
1069 }
1070 }
1071 }
1072 }
1073
vlv_compute_wm(struct intel_crtc * crtc)1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076 struct drm_device *dev = crtc->base.dev;
1077 struct vlv_wm_state *wm_state = &crtc->wm_state;
1078 struct intel_plane *plane;
1079 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080 int level;
1081
1082 memset(wm_state, 0, sizeof(*wm_state));
1083
1084 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086
1087 wm_state->num_active_planes = 0;
1088
1089 vlv_compute_fifo(crtc);
1090
1091 if (wm_state->num_active_planes != 1)
1092 wm_state->cxsr = false;
1093
1094 if (wm_state->cxsr) {
1095 for (level = 0; level < wm_state->num_levels; level++) {
1096 wm_state->sr[level].plane = sr_fifo_size;
1097 wm_state->sr[level].cursor = 63;
1098 }
1099 }
1100
1101 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102 struct intel_plane_state *state =
1103 to_intel_plane_state(plane->base.state);
1104
1105 if (!state->visible)
1106 continue;
1107
1108 /* normal watermarks */
1109 for (level = 0; level < wm_state->num_levels; level++) {
1110 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112
1113 /* hack */
1114 if (WARN_ON(level == 0 && wm > max_wm))
1115 wm = max_wm;
1116
1117 if (wm > plane->wm.fifo_size)
1118 break;
1119
1120 switch (plane->base.type) {
1121 int sprite;
1122 case DRM_PLANE_TYPE_CURSOR:
1123 wm_state->wm[level].cursor = wm;
1124 break;
1125 case DRM_PLANE_TYPE_PRIMARY:
1126 wm_state->wm[level].primary = wm;
1127 break;
1128 case DRM_PLANE_TYPE_OVERLAY:
1129 sprite = plane->plane;
1130 wm_state->wm[level].sprite[sprite] = wm;
1131 break;
1132 }
1133 }
1134
1135 wm_state->num_levels = level;
1136
1137 if (!wm_state->cxsr)
1138 continue;
1139
1140 /* maxfifo watermarks */
1141 switch (plane->base.type) {
1142 int sprite, level;
1143 case DRM_PLANE_TYPE_CURSOR:
1144 for (level = 0; level < wm_state->num_levels; level++)
1145 wm_state->sr[level].cursor =
1146 wm_state->wm[level].cursor;
1147 break;
1148 case DRM_PLANE_TYPE_PRIMARY:
1149 for (level = 0; level < wm_state->num_levels; level++)
1150 wm_state->sr[level].plane =
1151 min(wm_state->sr[level].plane,
1152 wm_state->wm[level].primary);
1153 break;
1154 case DRM_PLANE_TYPE_OVERLAY:
1155 sprite = plane->plane;
1156 for (level = 0; level < wm_state->num_levels; level++)
1157 wm_state->sr[level].plane =
1158 min(wm_state->sr[level].plane,
1159 wm_state->wm[level].sprite[sprite]);
1160 break;
1161 }
1162 }
1163
1164 /* clear any (partially) filled invalid levels */
1165 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168 }
1169
1170 vlv_invert_wms(crtc);
1171 }
1172
1173 #define VLV_FIFO(plane, value) \
1174 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175
vlv_pipe_set_fifo_size(struct intel_crtc * crtc)1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178 struct drm_device *dev = crtc->base.dev;
1179 struct drm_i915_private *dev_priv = to_i915(dev);
1180 struct intel_plane *plane;
1181 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182
1183 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185 WARN_ON(plane->wm.fifo_size != 63);
1186 continue;
1187 }
1188
1189 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190 sprite0_start = plane->wm.fifo_size;
1191 else if (plane->plane == 0)
1192 sprite1_start = sprite0_start + plane->wm.fifo_size;
1193 else
1194 fifo_size = sprite1_start + plane->wm.fifo_size;
1195 }
1196
1197 WARN_ON(fifo_size != 512 - 1);
1198
1199 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200 pipe_name(crtc->pipe), sprite0_start,
1201 sprite1_start, fifo_size);
1202
1203 switch (crtc->pipe) {
1204 uint32_t dsparb, dsparb2, dsparb3;
1205 case PIPE_A:
1206 dsparb = I915_READ(DSPARB);
1207 dsparb2 = I915_READ(DSPARB2);
1208
1209 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210 VLV_FIFO(SPRITEB, 0xff));
1211 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212 VLV_FIFO(SPRITEB, sprite1_start));
1213
1214 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215 VLV_FIFO(SPRITEB_HI, 0x1));
1216 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218
1219 I915_WRITE(DSPARB, dsparb);
1220 I915_WRITE(DSPARB2, dsparb2);
1221 break;
1222 case PIPE_B:
1223 dsparb = I915_READ(DSPARB);
1224 dsparb2 = I915_READ(DSPARB2);
1225
1226 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227 VLV_FIFO(SPRITED, 0xff));
1228 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229 VLV_FIFO(SPRITED, sprite1_start));
1230
1231 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232 VLV_FIFO(SPRITED_HI, 0xff));
1233 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235
1236 I915_WRITE(DSPARB, dsparb);
1237 I915_WRITE(DSPARB2, dsparb2);
1238 break;
1239 case PIPE_C:
1240 dsparb3 = I915_READ(DSPARB3);
1241 dsparb2 = I915_READ(DSPARB2);
1242
1243 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244 VLV_FIFO(SPRITEF, 0xff));
1245 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246 VLV_FIFO(SPRITEF, sprite1_start));
1247
1248 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249 VLV_FIFO(SPRITEF_HI, 0xff));
1250 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252
1253 I915_WRITE(DSPARB3, dsparb3);
1254 I915_WRITE(DSPARB2, dsparb2);
1255 break;
1256 default:
1257 break;
1258 }
1259 }
1260
1261 #undef VLV_FIFO
1262
vlv_merge_wm(struct drm_device * dev,struct vlv_wm_values * wm)1263 static void vlv_merge_wm(struct drm_device *dev,
1264 struct vlv_wm_values *wm)
1265 {
1266 struct intel_crtc *crtc;
1267 int num_active_crtcs = 0;
1268
1269 wm->level = to_i915(dev)->wm.max_level;
1270 wm->cxsr = true;
1271
1272 for_each_intel_crtc(dev, crtc) {
1273 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274
1275 if (!crtc->active)
1276 continue;
1277
1278 if (!wm_state->cxsr)
1279 wm->cxsr = false;
1280
1281 num_active_crtcs++;
1282 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283 }
1284
1285 if (num_active_crtcs != 1)
1286 wm->cxsr = false;
1287
1288 if (num_active_crtcs > 1)
1289 wm->level = VLV_WM_LEVEL_PM2;
1290
1291 for_each_intel_crtc(dev, crtc) {
1292 struct vlv_wm_state *wm_state = &crtc->wm_state;
1293 enum pipe pipe = crtc->pipe;
1294
1295 if (!crtc->active)
1296 continue;
1297
1298 wm->pipe[pipe] = wm_state->wm[wm->level];
1299 if (wm->cxsr)
1300 wm->sr = wm_state->sr[wm->level];
1301
1302 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306 }
1307 }
1308
vlv_update_wm(struct drm_crtc * crtc)1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311 struct drm_device *dev = crtc->dev;
1312 struct drm_i915_private *dev_priv = dev->dev_private;
1313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314 enum pipe pipe = intel_crtc->pipe;
1315 struct vlv_wm_values wm = {};
1316
1317 vlv_compute_wm(intel_crtc);
1318 vlv_merge_wm(dev, &wm);
1319
1320 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321 /* FIXME should be part of crtc atomic commit */
1322 vlv_pipe_set_fifo_size(intel_crtc);
1323 return;
1324 }
1325
1326 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328 chv_set_memory_dvfs(dev_priv, false);
1329
1330 if (wm.level < VLV_WM_LEVEL_PM5 &&
1331 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332 chv_set_memory_pm5(dev_priv, false);
1333
1334 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 intel_set_memory_cxsr(dev_priv, false);
1336
1337 /* FIXME should be part of crtc atomic commit */
1338 vlv_pipe_set_fifo_size(intel_crtc);
1339
1340 vlv_write_wm_values(intel_crtc, &wm);
1341
1342 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347
1348 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 intel_set_memory_cxsr(dev_priv, true);
1350
1351 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353 chv_set_memory_pm5(dev_priv, true);
1354
1355 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357 chv_set_memory_dvfs(dev_priv, true);
1358
1359 dev_priv->wm.vlv = wm;
1360 }
1361
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363
g4x_update_wm(struct drm_crtc * crtc)1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366 struct drm_device *dev = crtc->dev;
1367 static const int sr_latency_ns = 12000;
1368 struct drm_i915_private *dev_priv = dev->dev_private;
1369 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370 int plane_sr, cursor_sr;
1371 unsigned int enabled = 0;
1372 bool cxsr_enabled;
1373
1374 if (g4x_compute_wm0(dev, PIPE_A,
1375 &g4x_wm_info, pessimal_latency_ns,
1376 &g4x_cursor_wm_info, pessimal_latency_ns,
1377 &planea_wm, &cursora_wm))
1378 enabled |= 1 << PIPE_A;
1379
1380 if (g4x_compute_wm0(dev, PIPE_B,
1381 &g4x_wm_info, pessimal_latency_ns,
1382 &g4x_cursor_wm_info, pessimal_latency_ns,
1383 &planeb_wm, &cursorb_wm))
1384 enabled |= 1 << PIPE_B;
1385
1386 if (single_plane_enabled(enabled) &&
1387 g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 sr_latency_ns,
1389 &g4x_wm_info,
1390 &g4x_cursor_wm_info,
1391 &plane_sr, &cursor_sr)) {
1392 cxsr_enabled = true;
1393 } else {
1394 cxsr_enabled = false;
1395 intel_set_memory_cxsr(dev_priv, false);
1396 plane_sr = cursor_sr = 0;
1397 }
1398
1399 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 planea_wm, cursora_wm,
1402 planeb_wm, cursorb_wm,
1403 plane_sr, cursor_sr);
1404
1405 I915_WRITE(DSPFW1,
1406 FW_WM(plane_sr, SR) |
1407 FW_WM(cursorb_wm, CURSORB) |
1408 FW_WM(planeb_wm, PLANEB) |
1409 FW_WM(planea_wm, PLANEA));
1410 I915_WRITE(DSPFW2,
1411 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412 FW_WM(cursora_wm, CURSORA));
1413 /* HPLL off in SR has some issues on G4x... disable it */
1414 I915_WRITE(DSPFW3,
1415 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416 FW_WM(cursor_sr, CURSOR_SR));
1417
1418 if (cxsr_enabled)
1419 intel_set_memory_cxsr(dev_priv, true);
1420 }
1421
i965_update_wm(struct drm_crtc * unused_crtc)1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424 struct drm_device *dev = unused_crtc->dev;
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426 struct drm_crtc *crtc;
1427 int srwm = 1;
1428 int cursor_sr = 16;
1429 bool cxsr_enabled;
1430
1431 /* Calc sr entries for one plane configs */
1432 crtc = single_enabled_crtc(dev);
1433 if (crtc) {
1434 /* self-refresh has much higher latency */
1435 static const int sr_latency_ns = 12000;
1436 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437 int clock = adjusted_mode->crtc_clock;
1438 int htotal = adjusted_mode->crtc_htotal;
1439 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440 int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 unsigned long line_time_us;
1442 int entries;
1443
1444 line_time_us = max(htotal * 1000 / clock, 1);
1445
1446 /* Use ns/us then divide to preserve precision */
1447 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448 pixel_size * hdisplay;
1449 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450 srwm = I965_FIFO_SIZE - entries;
1451 if (srwm < 0)
1452 srwm = 1;
1453 srwm &= 0x1ff;
1454 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455 entries, srwm);
1456
1457 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 pixel_size * crtc->cursor->state->crtc_w;
1459 entries = DIV_ROUND_UP(entries,
1460 i965_cursor_wm_info.cacheline_size);
1461 cursor_sr = i965_cursor_wm_info.fifo_size -
1462 (entries + i965_cursor_wm_info.guard_size);
1463
1464 if (cursor_sr > i965_cursor_wm_info.max_wm)
1465 cursor_sr = i965_cursor_wm_info.max_wm;
1466
1467 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468 "cursor %d\n", srwm, cursor_sr);
1469
1470 cxsr_enabled = true;
1471 } else {
1472 cxsr_enabled = false;
1473 /* Turn off self refresh if both pipes are enabled */
1474 intel_set_memory_cxsr(dev_priv, false);
1475 }
1476
1477 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478 srwm);
1479
1480 /* 965 has limitations... */
1481 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482 FW_WM(8, CURSORB) |
1483 FW_WM(8, PLANEB) |
1484 FW_WM(8, PLANEA));
1485 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486 FW_WM(8, PLANEC_OLD));
1487 /* update cursor SR watermark */
1488 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489
1490 if (cxsr_enabled)
1491 intel_set_memory_cxsr(dev_priv, true);
1492 }
1493
1494 #undef FW_WM
1495
i9xx_update_wm(struct drm_crtc * unused_crtc)1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498 struct drm_device *dev = unused_crtc->dev;
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500 const struct intel_watermark_params *wm_info;
1501 uint32_t fwater_lo;
1502 uint32_t fwater_hi;
1503 int cwm, srwm = 1;
1504 int fifo_size;
1505 int planea_wm, planeb_wm;
1506 struct drm_crtc *crtc, *enabled = NULL;
1507
1508 if (IS_I945GM(dev))
1509 wm_info = &i945_wm_info;
1510 else if (!IS_GEN2(dev))
1511 wm_info = &i915_wm_info;
1512 else
1513 wm_info = &i830_a_wm_info;
1514
1515 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516 crtc = intel_get_crtc_for_plane(dev, 0);
1517 if (intel_crtc_active(crtc)) {
1518 const struct drm_display_mode *adjusted_mode;
1519 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 if (IS_GEN2(dev))
1521 cpp = 4;
1522
1523 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525 wm_info, fifo_size, cpp,
1526 pessimal_latency_ns);
1527 enabled = crtc;
1528 } else {
1529 planea_wm = fifo_size - wm_info->guard_size;
1530 if (planea_wm > (long)wm_info->max_wm)
1531 planea_wm = wm_info->max_wm;
1532 }
1533
1534 if (IS_GEN2(dev))
1535 wm_info = &i830_bc_wm_info;
1536
1537 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538 crtc = intel_get_crtc_for_plane(dev, 1);
1539 if (intel_crtc_active(crtc)) {
1540 const struct drm_display_mode *adjusted_mode;
1541 int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 if (IS_GEN2(dev))
1543 cpp = 4;
1544
1545 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 wm_info, fifo_size, cpp,
1548 pessimal_latency_ns);
1549 if (enabled == NULL)
1550 enabled = crtc;
1551 else
1552 enabled = NULL;
1553 } else {
1554 planeb_wm = fifo_size - wm_info->guard_size;
1555 if (planeb_wm > (long)wm_info->max_wm)
1556 planeb_wm = wm_info->max_wm;
1557 }
1558
1559 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560
1561 if (IS_I915GM(dev) && enabled) {
1562 struct drm_i915_gem_object *obj;
1563
1564 obj = intel_fb_obj(enabled->primary->state->fb);
1565
1566 /* self-refresh seems busted with untiled */
1567 if (obj->tiling_mode == I915_TILING_NONE)
1568 enabled = NULL;
1569 }
1570
1571 /*
1572 * Overlay gets an aggressive default since video jitter is bad.
1573 */
1574 cwm = 2;
1575
1576 /* Play safe and disable self-refresh before adjusting watermarks. */
1577 intel_set_memory_cxsr(dev_priv, false);
1578
1579 /* Calc sr entries for one plane configs */
1580 if (HAS_FW_BLC(dev) && enabled) {
1581 /* self-refresh has much higher latency */
1582 static const int sr_latency_ns = 6000;
1583 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584 int clock = adjusted_mode->crtc_clock;
1585 int htotal = adjusted_mode->crtc_htotal;
1586 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587 int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 unsigned long line_time_us;
1589 int entries;
1590
1591 line_time_us = max(htotal * 1000 / clock, 1);
1592
1593 /* Use ns/us then divide to preserve precision */
1594 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595 pixel_size * hdisplay;
1596 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598 srwm = wm_info->fifo_size - entries;
1599 if (srwm < 0)
1600 srwm = 1;
1601
1602 if (IS_I945G(dev) || IS_I945GM(dev))
1603 I915_WRITE(FW_BLC_SELF,
1604 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605 else if (IS_I915GM(dev))
1606 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607 }
1608
1609 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610 planea_wm, planeb_wm, cwm, srwm);
1611
1612 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613 fwater_hi = (cwm & 0x1f);
1614
1615 /* Set request length to 8 cachelines per fetch */
1616 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617 fwater_hi = fwater_hi | (1 << 8);
1618
1619 I915_WRITE(FW_BLC, fwater_lo);
1620 I915_WRITE(FW_BLC2, fwater_hi);
1621
1622 if (enabled)
1623 intel_set_memory_cxsr(dev_priv, true);
1624 }
1625
i845_update_wm(struct drm_crtc * unused_crtc)1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 struct drm_device *dev = unused_crtc->dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 struct drm_crtc *crtc;
1631 const struct drm_display_mode *adjusted_mode;
1632 uint32_t fwater_lo;
1633 int planea_wm;
1634
1635 crtc = single_enabled_crtc(dev);
1636 if (crtc == NULL)
1637 return;
1638
1639 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 &i845_wm_info,
1642 dev_priv->display.get_fifo_size(dev, 0),
1643 4, pessimal_latency_ns);
1644 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 fwater_lo |= (3<<8) | planea_wm;
1646
1647 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648
1649 I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651
ilk_pipe_pixel_rate(const struct intel_crtc_state * pipe_config)1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654 uint32_t pixel_rate;
1655
1656 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657
1658 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659 * adjust the pixel_rate here. */
1660
1661 if (pipe_config->pch_pfit.enabled) {
1662 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 uint32_t pfit_size = pipe_config->pch_pfit.size;
1664
1665 pipe_w = pipe_config->pipe_src_w;
1666 pipe_h = pipe_config->pipe_src_h;
1667
1668 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669 pfit_h = pfit_size & 0xFFFF;
1670 if (pipe_w < pfit_w)
1671 pipe_w = pfit_w;
1672 if (pipe_h < pfit_h)
1673 pipe_h = pfit_h;
1674
1675 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676 pfit_w * pfit_h);
1677 }
1678
1679 return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
ilk_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 uint32_t latency)
1685 {
1686 uint64_t ret;
1687
1688 if (WARN(latency == 0, "Latency value missing\n"))
1689 return UINT_MAX;
1690
1691 ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694 return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
ilk_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint32_t latency)1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700 uint32_t latency)
1701 {
1702 uint32_t ret;
1703
1704 if (WARN(latency == 0, "Latency value missing\n"))
1705 return UINT_MAX;
1706
1707 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708 ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709 ret = DIV_ROUND_UP(ret, 64) + 2;
1710 return ret;
1711 }
1712
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t bytes_per_pixel)1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 uint8_t bytes_per_pixel)
1715 {
1716 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct skl_pipe_wm_parameters {
1720 bool active;
1721 uint32_t pipe_htotal;
1722 uint32_t pixel_rate; /* in KHz */
1723 struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1724 };
1725
1726 struct ilk_wm_maximums {
1727 uint16_t pri;
1728 uint16_t spr;
1729 uint16_t cur;
1730 uint16_t fbc;
1731 };
1732
1733 /* used in computing the new watermarks state */
1734 struct intel_wm_config {
1735 unsigned int num_pipes_active;
1736 bool sprites_enabled;
1737 bool sprites_scaled;
1738 };
1739
1740 /*
1741 * For both WM_PIPE and WM_LP.
1742 * mem_value must be in 0.1us units.
1743 */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)1744 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1745 const struct intel_plane_state *pstate,
1746 uint32_t mem_value,
1747 bool is_lp)
1748 {
1749 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1750 uint32_t method1, method2;
1751
1752 if (!cstate->base.active || !pstate->visible)
1753 return 0;
1754
1755 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1756
1757 if (!is_lp)
1758 return method1;
1759
1760 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1761 cstate->base.adjusted_mode.crtc_htotal,
1762 drm_rect_width(&pstate->dst),
1763 bpp,
1764 mem_value);
1765
1766 return min(method1, method2);
1767 }
1768
1769 /*
1770 * For both WM_PIPE and WM_LP.
1771 * mem_value must be in 0.1us units.
1772 */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1773 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1774 const struct intel_plane_state *pstate,
1775 uint32_t mem_value)
1776 {
1777 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1778 uint32_t method1, method2;
1779
1780 if (!cstate->base.active || !pstate->visible)
1781 return 0;
1782
1783 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1784 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1785 cstate->base.adjusted_mode.crtc_htotal,
1786 drm_rect_width(&pstate->dst),
1787 bpp,
1788 mem_value);
1789 return min(method1, method2);
1790 }
1791
1792 /*
1793 * For both WM_PIPE and WM_LP.
1794 * mem_value must be in 0.1us units.
1795 */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1796 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1797 const struct intel_plane_state *pstate,
1798 uint32_t mem_value)
1799 {
1800 /*
1801 * We treat the cursor plane as always-on for the purposes of watermark
1802 * calculation. Until we have two-stage watermark programming merged,
1803 * this is necessary to avoid flickering.
1804 */
1805 int cpp = 4;
1806 int width = pstate->visible ? pstate->base.crtc_w : 64;
1807
1808 if (!cstate->base.active)
1809 return 0;
1810
1811 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1812 cstate->base.adjusted_mode.crtc_htotal,
1813 width, cpp, mem_value);
1814 }
1815
1816 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)1817 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1818 const struct intel_plane_state *pstate,
1819 uint32_t pri_val)
1820 {
1821 int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1822
1823 if (!cstate->base.active || !pstate->visible)
1824 return 0;
1825
1826 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1827 }
1828
ilk_display_fifo_size(const struct drm_device * dev)1829 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1830 {
1831 if (INTEL_INFO(dev)->gen >= 8)
1832 return 3072;
1833 else if (INTEL_INFO(dev)->gen >= 7)
1834 return 768;
1835 else
1836 return 512;
1837 }
1838
ilk_plane_wm_reg_max(const struct drm_device * dev,int level,bool is_sprite)1839 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1840 int level, bool is_sprite)
1841 {
1842 if (INTEL_INFO(dev)->gen >= 8)
1843 /* BDW primary/sprite plane watermarks */
1844 return level == 0 ? 255 : 2047;
1845 else if (INTEL_INFO(dev)->gen >= 7)
1846 /* IVB/HSW primary/sprite plane watermarks */
1847 return level == 0 ? 127 : 1023;
1848 else if (!is_sprite)
1849 /* ILK/SNB primary plane watermarks */
1850 return level == 0 ? 127 : 511;
1851 else
1852 /* ILK/SNB sprite plane watermarks */
1853 return level == 0 ? 63 : 255;
1854 }
1855
ilk_cursor_wm_reg_max(const struct drm_device * dev,int level)1856 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1857 int level)
1858 {
1859 if (INTEL_INFO(dev)->gen >= 7)
1860 return level == 0 ? 63 : 255;
1861 else
1862 return level == 0 ? 31 : 63;
1863 }
1864
ilk_fbc_wm_reg_max(const struct drm_device * dev)1865 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1866 {
1867 if (INTEL_INFO(dev)->gen >= 8)
1868 return 31;
1869 else
1870 return 15;
1871 }
1872
1873 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)1874 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1875 int level,
1876 const struct intel_wm_config *config,
1877 enum intel_ddb_partitioning ddb_partitioning,
1878 bool is_sprite)
1879 {
1880 unsigned int fifo_size = ilk_display_fifo_size(dev);
1881
1882 /* if sprites aren't enabled, sprites get nothing */
1883 if (is_sprite && !config->sprites_enabled)
1884 return 0;
1885
1886 /* HSW allows LP1+ watermarks even with multiple pipes */
1887 if (level == 0 || config->num_pipes_active > 1) {
1888 fifo_size /= INTEL_INFO(dev)->num_pipes;
1889
1890 /*
1891 * For some reason the non self refresh
1892 * FIFO size is only half of the self
1893 * refresh FIFO size on ILK/SNB.
1894 */
1895 if (INTEL_INFO(dev)->gen <= 6)
1896 fifo_size /= 2;
1897 }
1898
1899 if (config->sprites_enabled) {
1900 /* level 0 is always calculated with 1:1 split */
1901 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1902 if (is_sprite)
1903 fifo_size *= 5;
1904 fifo_size /= 6;
1905 } else {
1906 fifo_size /= 2;
1907 }
1908 }
1909
1910 /* clamp to max that the registers can hold */
1911 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1912 }
1913
1914 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)1915 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1916 int level,
1917 const struct intel_wm_config *config)
1918 {
1919 /* HSW LP1+ watermarks w/ multiple pipes */
1920 if (level > 0 && config->num_pipes_active > 1)
1921 return 64;
1922
1923 /* otherwise just report max that registers can hold */
1924 return ilk_cursor_wm_reg_max(dev, level);
1925 }
1926
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)1927 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1928 int level,
1929 const struct intel_wm_config *config,
1930 enum intel_ddb_partitioning ddb_partitioning,
1931 struct ilk_wm_maximums *max)
1932 {
1933 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1934 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1935 max->cur = ilk_cursor_wm_max(dev, level, config);
1936 max->fbc = ilk_fbc_wm_reg_max(dev);
1937 }
1938
ilk_compute_wm_reg_maximums(struct drm_device * dev,int level,struct ilk_wm_maximums * max)1939 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1940 int level,
1941 struct ilk_wm_maximums *max)
1942 {
1943 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1944 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1945 max->cur = ilk_cursor_wm_reg_max(dev, level);
1946 max->fbc = ilk_fbc_wm_reg_max(dev);
1947 }
1948
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)1949 static bool ilk_validate_wm_level(int level,
1950 const struct ilk_wm_maximums *max,
1951 struct intel_wm_level *result)
1952 {
1953 bool ret;
1954
1955 /* already determined to be invalid? */
1956 if (!result->enable)
1957 return false;
1958
1959 result->enable = result->pri_val <= max->pri &&
1960 result->spr_val <= max->spr &&
1961 result->cur_val <= max->cur;
1962
1963 ret = result->enable;
1964
1965 /*
1966 * HACK until we can pre-compute everything,
1967 * and thus fail gracefully if LP0 watermarks
1968 * are exceeded...
1969 */
1970 if (level == 0 && !result->enable) {
1971 if (result->pri_val > max->pri)
1972 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1973 level, result->pri_val, max->pri);
1974 if (result->spr_val > max->spr)
1975 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1976 level, result->spr_val, max->spr);
1977 if (result->cur_val > max->cur)
1978 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1979 level, result->cur_val, max->cur);
1980
1981 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1982 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1983 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1984 result->enable = true;
1985 }
1986
1987 return ret;
1988 }
1989
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,struct intel_wm_level * result)1990 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1991 const struct intel_crtc *intel_crtc,
1992 int level,
1993 struct intel_crtc_state *cstate,
1994 struct intel_wm_level *result)
1995 {
1996 struct intel_plane *intel_plane;
1997 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1998 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1999 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2000
2001 /* WM1+ latency values stored in 0.5us units */
2002 if (level > 0) {
2003 pri_latency *= 5;
2004 spr_latency *= 5;
2005 cur_latency *= 5;
2006 }
2007
2008 for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2009 struct intel_plane_state *pstate =
2010 to_intel_plane_state(intel_plane->base.state);
2011
2012 switch (intel_plane->base.type) {
2013 case DRM_PLANE_TYPE_PRIMARY:
2014 result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2015 pri_latency,
2016 level);
2017 result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2018 result->pri_val);
2019 break;
2020 case DRM_PLANE_TYPE_OVERLAY:
2021 result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2022 spr_latency);
2023 break;
2024 case DRM_PLANE_TYPE_CURSOR:
2025 result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2026 cur_latency);
2027 break;
2028 }
2029 }
2030
2031 result->enable = true;
2032 }
2033
2034 static uint32_t
hsw_compute_linetime_wm(struct drm_device * dev,struct drm_crtc * crtc)2035 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2036 {
2037 struct drm_i915_private *dev_priv = dev->dev_private;
2038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2040 u32 linetime, ips_linetime;
2041
2042 if (!intel_crtc->active)
2043 return 0;
2044
2045 /* The WM are computed with base on how long it takes to fill a single
2046 * row at the given clock rate, multiplied by 8.
2047 * */
2048 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2049 adjusted_mode->crtc_clock);
2050 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2051 dev_priv->cdclk_freq);
2052
2053 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2054 PIPE_WM_LINETIME_TIME(linetime);
2055 }
2056
intel_read_wm_latency(struct drm_device * dev,uint16_t wm[8])2057 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2058 {
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060
2061 if (IS_GEN9(dev)) {
2062 uint32_t val;
2063 int ret, i;
2064 int level, max_level = ilk_wm_max_level(dev);
2065
2066 /* read the first set of memory latencies[0:3] */
2067 val = 0; /* data0 to be programmed to 0 for first set */
2068 mutex_lock(&dev_priv->rps.hw_lock);
2069 ret = sandybridge_pcode_read(dev_priv,
2070 GEN9_PCODE_READ_MEM_LATENCY,
2071 &val);
2072 mutex_unlock(&dev_priv->rps.hw_lock);
2073
2074 if (ret) {
2075 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2076 return;
2077 }
2078
2079 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2080 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2081 GEN9_MEM_LATENCY_LEVEL_MASK;
2082 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2083 GEN9_MEM_LATENCY_LEVEL_MASK;
2084 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2085 GEN9_MEM_LATENCY_LEVEL_MASK;
2086
2087 /* read the second set of memory latencies[4:7] */
2088 val = 1; /* data0 to be programmed to 1 for second set */
2089 mutex_lock(&dev_priv->rps.hw_lock);
2090 ret = sandybridge_pcode_read(dev_priv,
2091 GEN9_PCODE_READ_MEM_LATENCY,
2092 &val);
2093 mutex_unlock(&dev_priv->rps.hw_lock);
2094 if (ret) {
2095 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2096 return;
2097 }
2098
2099 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2100 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2101 GEN9_MEM_LATENCY_LEVEL_MASK;
2102 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2103 GEN9_MEM_LATENCY_LEVEL_MASK;
2104 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2105 GEN9_MEM_LATENCY_LEVEL_MASK;
2106
2107 /*
2108 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2109 * need to be disabled. We make sure to sanitize the values out
2110 * of the punit to satisfy this requirement.
2111 */
2112 for (level = 1; level <= max_level; level++) {
2113 if (wm[level] == 0) {
2114 for (i = level + 1; i <= max_level; i++)
2115 wm[i] = 0;
2116 break;
2117 }
2118 }
2119
2120 /*
2121 * WaWmMemoryReadLatency:skl
2122 *
2123 * punit doesn't take into account the read latency so we need
2124 * to add 2us to the various latency levels we retrieve from the
2125 * punit when level 0 response data us 0us.
2126 */
2127 if (wm[0] == 0) {
2128 wm[0] += 2;
2129 for (level = 1; level <= max_level; level++) {
2130 if (wm[level] == 0)
2131 break;
2132 wm[level] += 2;
2133 }
2134 }
2135
2136 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2137 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2138
2139 wm[0] = (sskpd >> 56) & 0xFF;
2140 if (wm[0] == 0)
2141 wm[0] = sskpd & 0xF;
2142 wm[1] = (sskpd >> 4) & 0xFF;
2143 wm[2] = (sskpd >> 12) & 0xFF;
2144 wm[3] = (sskpd >> 20) & 0x1FF;
2145 wm[4] = (sskpd >> 32) & 0x1FF;
2146 } else if (INTEL_INFO(dev)->gen >= 6) {
2147 uint32_t sskpd = I915_READ(MCH_SSKPD);
2148
2149 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2150 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2151 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2152 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2153 } else if (INTEL_INFO(dev)->gen >= 5) {
2154 uint32_t mltr = I915_READ(MLTR_ILK);
2155
2156 /* ILK primary LP0 latency is 700 ns */
2157 wm[0] = 7;
2158 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2159 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2160 }
2161 }
2162
intel_fixup_spr_wm_latency(struct drm_device * dev,uint16_t wm[5])2163 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2164 {
2165 /* ILK sprite LP0 latency is 1300 ns */
2166 if (INTEL_INFO(dev)->gen == 5)
2167 wm[0] = 13;
2168 }
2169
intel_fixup_cur_wm_latency(struct drm_device * dev,uint16_t wm[5])2170 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2171 {
2172 /* ILK cursor LP0 latency is 1300 ns */
2173 if (INTEL_INFO(dev)->gen == 5)
2174 wm[0] = 13;
2175
2176 /* WaDoubleCursorLP3Latency:ivb */
2177 if (IS_IVYBRIDGE(dev))
2178 wm[3] *= 2;
2179 }
2180
ilk_wm_max_level(const struct drm_device * dev)2181 int ilk_wm_max_level(const struct drm_device *dev)
2182 {
2183 /* how many WM levels are we expecting */
2184 if (INTEL_INFO(dev)->gen >= 9)
2185 return 7;
2186 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2187 return 4;
2188 else if (INTEL_INFO(dev)->gen >= 6)
2189 return 3;
2190 else
2191 return 2;
2192 }
2193
intel_print_wm_latency(struct drm_device * dev,const char * name,const uint16_t wm[8])2194 static void intel_print_wm_latency(struct drm_device *dev,
2195 const char *name,
2196 const uint16_t wm[8])
2197 {
2198 int level, max_level = ilk_wm_max_level(dev);
2199
2200 for (level = 0; level <= max_level; level++) {
2201 unsigned int latency = wm[level];
2202
2203 if (latency == 0) {
2204 DRM_ERROR("%s WM%d latency not provided\n",
2205 name, level);
2206 continue;
2207 }
2208
2209 /*
2210 * - latencies are in us on gen9.
2211 * - before then, WM1+ latency values are in 0.5us units
2212 */
2213 if (IS_GEN9(dev))
2214 latency *= 10;
2215 else if (level > 0)
2216 latency *= 5;
2217
2218 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2219 name, level, wm[level],
2220 latency / 10, latency % 10);
2221 }
2222 }
2223
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2224 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2225 uint16_t wm[5], uint16_t min)
2226 {
2227 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2228
2229 if (wm[0] >= min)
2230 return false;
2231
2232 wm[0] = max(wm[0], min);
2233 for (level = 1; level <= max_level; level++)
2234 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2235
2236 return true;
2237 }
2238
snb_wm_latency_quirk(struct drm_device * dev)2239 static void snb_wm_latency_quirk(struct drm_device *dev)
2240 {
2241 struct drm_i915_private *dev_priv = dev->dev_private;
2242 bool changed;
2243
2244 /*
2245 * The BIOS provided WM memory latency values are often
2246 * inadequate for high resolution displays. Adjust them.
2247 */
2248 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
2249 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
2250 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2251
2252 if (!changed)
2253 return;
2254
2255 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2256 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2257 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2258 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2259 }
2260
ilk_setup_wm_latency(struct drm_device * dev)2261 static void ilk_setup_wm_latency(struct drm_device *dev)
2262 {
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264
2265 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2266
2267 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2268 sizeof(dev_priv->wm.pri_latency));
2269 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2270 sizeof(dev_priv->wm.pri_latency));
2271
2272 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2273 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2274
2275 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2276 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2277 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2278
2279 if (IS_GEN6(dev))
2280 snb_wm_latency_quirk(dev);
2281 }
2282
skl_setup_wm_latency(struct drm_device * dev)2283 static void skl_setup_wm_latency(struct drm_device *dev)
2284 {
2285 struct drm_i915_private *dev_priv = dev->dev_private;
2286
2287 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2288 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2289 }
2290
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)2291 static void ilk_compute_wm_config(struct drm_device *dev,
2292 struct intel_wm_config *config)
2293 {
2294 struct intel_crtc *intel_crtc;
2295
2296 /* Compute the currently _active_ config */
2297 for_each_intel_crtc(dev, intel_crtc) {
2298 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2299
2300 if (!wm->pipe_enabled)
2301 continue;
2302
2303 config->sprites_enabled |= wm->sprites_enabled;
2304 config->sprites_scaled |= wm->sprites_scaled;
2305 config->num_pipes_active++;
2306 }
2307 }
2308
2309 /* Compute new watermarks for the pipe */
intel_compute_pipe_wm(struct intel_crtc_state * cstate,struct intel_pipe_wm * pipe_wm)2310 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2311 struct intel_pipe_wm *pipe_wm)
2312 {
2313 struct drm_crtc *crtc = cstate->base.crtc;
2314 struct drm_device *dev = crtc->dev;
2315 const struct drm_i915_private *dev_priv = dev->dev_private;
2316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2317 struct intel_plane *intel_plane;
2318 struct intel_plane_state *sprstate = NULL;
2319 int level, max_level = ilk_wm_max_level(dev);
2320 /* LP0 watermark maximums depend on this pipe alone */
2321 struct intel_wm_config config = {
2322 .num_pipes_active = 1,
2323 };
2324 struct ilk_wm_maximums max;
2325
2326 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2327 if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2328 sprstate = to_intel_plane_state(intel_plane->base.state);
2329 break;
2330 }
2331 }
2332
2333 config.sprites_enabled = sprstate->visible;
2334 config.sprites_scaled = sprstate->visible &&
2335 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2336 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2337
2338 pipe_wm->pipe_enabled = cstate->base.active;
2339 pipe_wm->sprites_enabled = sprstate->visible;
2340 pipe_wm->sprites_scaled = config.sprites_scaled;
2341
2342 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2343 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2344 max_level = 1;
2345
2346 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2347 if (config.sprites_scaled)
2348 max_level = 0;
2349
2350 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2351
2352 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2353 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2354
2355 /* LP0 watermarks always use 1/2 DDB partitioning */
2356 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2357
2358 /* At least LP0 must be valid */
2359 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2360 return false;
2361
2362 ilk_compute_wm_reg_maximums(dev, 1, &max);
2363
2364 for (level = 1; level <= max_level; level++) {
2365 struct intel_wm_level wm = {};
2366
2367 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2368
2369 /*
2370 * Disable any watermark level that exceeds the
2371 * register maximums since such watermarks are
2372 * always invalid.
2373 */
2374 if (!ilk_validate_wm_level(level, &max, &wm))
2375 break;
2376
2377 pipe_wm->wm[level] = wm;
2378 }
2379
2380 return true;
2381 }
2382
2383 /*
2384 * Merge the watermarks from all active pipes for a specific level.
2385 */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)2386 static void ilk_merge_wm_level(struct drm_device *dev,
2387 int level,
2388 struct intel_wm_level *ret_wm)
2389 {
2390 const struct intel_crtc *intel_crtc;
2391
2392 ret_wm->enable = true;
2393
2394 for_each_intel_crtc(dev, intel_crtc) {
2395 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2396 const struct intel_wm_level *wm = &active->wm[level];
2397
2398 if (!active->pipe_enabled)
2399 continue;
2400
2401 /*
2402 * The watermark values may have been used in the past,
2403 * so we must maintain them in the registers for some
2404 * time even if the level is now disabled.
2405 */
2406 if (!wm->enable)
2407 ret_wm->enable = false;
2408
2409 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2410 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2411 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2412 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2413 }
2414 }
2415
2416 /*
2417 * Merge all low power watermarks for all active pipes.
2418 */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)2419 static void ilk_wm_merge(struct drm_device *dev,
2420 const struct intel_wm_config *config,
2421 const struct ilk_wm_maximums *max,
2422 struct intel_pipe_wm *merged)
2423 {
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 int level, max_level = ilk_wm_max_level(dev);
2426 int last_enabled_level = max_level;
2427
2428 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2429 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2430 config->num_pipes_active > 1)
2431 return;
2432
2433 /* ILK: FBC WM must be disabled always */
2434 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2435
2436 /* merge each WM1+ level */
2437 for (level = 1; level <= max_level; level++) {
2438 struct intel_wm_level *wm = &merged->wm[level];
2439
2440 ilk_merge_wm_level(dev, level, wm);
2441
2442 if (level > last_enabled_level)
2443 wm->enable = false;
2444 else if (!ilk_validate_wm_level(level, max, wm))
2445 /* make sure all following levels get disabled */
2446 last_enabled_level = level - 1;
2447
2448 /*
2449 * The spec says it is preferred to disable
2450 * FBC WMs instead of disabling a WM level.
2451 */
2452 if (wm->fbc_val > max->fbc) {
2453 if (wm->enable)
2454 merged->fbc_wm_enabled = false;
2455 wm->fbc_val = 0;
2456 }
2457 }
2458
2459 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2460 /*
2461 * FIXME this is racy. FBC might get enabled later.
2462 * What we should check here is whether FBC can be
2463 * enabled sometime later.
2464 */
2465 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2466 intel_fbc_enabled(dev_priv)) {
2467 for (level = 2; level <= max_level; level++) {
2468 struct intel_wm_level *wm = &merged->wm[level];
2469
2470 wm->enable = false;
2471 }
2472 }
2473 }
2474
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)2475 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2476 {
2477 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2478 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2479 }
2480
2481 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)2482 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2483 {
2484 struct drm_i915_private *dev_priv = dev->dev_private;
2485
2486 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2487 return 2 * level;
2488 else
2489 return dev_priv->wm.pri_latency[level];
2490 }
2491
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)2492 static void ilk_compute_wm_results(struct drm_device *dev,
2493 const struct intel_pipe_wm *merged,
2494 enum intel_ddb_partitioning partitioning,
2495 struct ilk_wm_values *results)
2496 {
2497 struct intel_crtc *intel_crtc;
2498 int level, wm_lp;
2499
2500 results->enable_fbc_wm = merged->fbc_wm_enabled;
2501 results->partitioning = partitioning;
2502
2503 /* LP1+ register values */
2504 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2505 const struct intel_wm_level *r;
2506
2507 level = ilk_wm_lp_to_level(wm_lp, merged);
2508
2509 r = &merged->wm[level];
2510
2511 /*
2512 * Maintain the watermark values even if the level is
2513 * disabled. Doing otherwise could cause underruns.
2514 */
2515 results->wm_lp[wm_lp - 1] =
2516 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2517 (r->pri_val << WM1_LP_SR_SHIFT) |
2518 r->cur_val;
2519
2520 if (r->enable)
2521 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2522
2523 if (INTEL_INFO(dev)->gen >= 8)
2524 results->wm_lp[wm_lp - 1] |=
2525 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2526 else
2527 results->wm_lp[wm_lp - 1] |=
2528 r->fbc_val << WM1_LP_FBC_SHIFT;
2529
2530 /*
2531 * Always set WM1S_LP_EN when spr_val != 0, even if the
2532 * level is disabled. Doing otherwise could cause underruns.
2533 */
2534 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2535 WARN_ON(wm_lp != 1);
2536 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2537 } else
2538 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2539 }
2540
2541 /* LP0 register values */
2542 for_each_intel_crtc(dev, intel_crtc) {
2543 enum pipe pipe = intel_crtc->pipe;
2544 const struct intel_wm_level *r =
2545 &intel_crtc->wm.active.wm[0];
2546
2547 if (WARN_ON(!r->enable))
2548 continue;
2549
2550 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2551
2552 results->wm_pipe[pipe] =
2553 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2554 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2555 r->cur_val;
2556 }
2557 }
2558
2559 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2560 * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)2561 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2562 struct intel_pipe_wm *r1,
2563 struct intel_pipe_wm *r2)
2564 {
2565 int level, max_level = ilk_wm_max_level(dev);
2566 int level1 = 0, level2 = 0;
2567
2568 for (level = 1; level <= max_level; level++) {
2569 if (r1->wm[level].enable)
2570 level1 = level;
2571 if (r2->wm[level].enable)
2572 level2 = level;
2573 }
2574
2575 if (level1 == level2) {
2576 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2577 return r2;
2578 else
2579 return r1;
2580 } else if (level1 > level2) {
2581 return r1;
2582 } else {
2583 return r2;
2584 }
2585 }
2586
2587 /* dirty bits used to track which watermarks need changes */
2588 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2589 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2590 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2591 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2592 #define WM_DIRTY_FBC (1 << 24)
2593 #define WM_DIRTY_DDB (1 << 25)
2594
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)2595 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2596 const struct ilk_wm_values *old,
2597 const struct ilk_wm_values *new)
2598 {
2599 unsigned int dirty = 0;
2600 enum pipe pipe;
2601 int wm_lp;
2602
2603 for_each_pipe(dev_priv, pipe) {
2604 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2605 dirty |= WM_DIRTY_LINETIME(pipe);
2606 /* Must disable LP1+ watermarks too */
2607 dirty |= WM_DIRTY_LP_ALL;
2608 }
2609
2610 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2611 dirty |= WM_DIRTY_PIPE(pipe);
2612 /* Must disable LP1+ watermarks too */
2613 dirty |= WM_DIRTY_LP_ALL;
2614 }
2615 }
2616
2617 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2618 dirty |= WM_DIRTY_FBC;
2619 /* Must disable LP1+ watermarks too */
2620 dirty |= WM_DIRTY_LP_ALL;
2621 }
2622
2623 if (old->partitioning != new->partitioning) {
2624 dirty |= WM_DIRTY_DDB;
2625 /* Must disable LP1+ watermarks too */
2626 dirty |= WM_DIRTY_LP_ALL;
2627 }
2628
2629 /* LP1+ watermarks already deemed dirty, no need to continue */
2630 if (dirty & WM_DIRTY_LP_ALL)
2631 return dirty;
2632
2633 /* Find the lowest numbered LP1+ watermark in need of an update... */
2634 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2635 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2636 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2637 break;
2638 }
2639
2640 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2641 for (; wm_lp <= 3; wm_lp++)
2642 dirty |= WM_DIRTY_LP(wm_lp);
2643
2644 return dirty;
2645 }
2646
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)2647 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2648 unsigned int dirty)
2649 {
2650 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2651 bool changed = false;
2652
2653 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2654 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2655 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2656 changed = true;
2657 }
2658 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2659 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2660 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2661 changed = true;
2662 }
2663 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2664 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2665 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2666 changed = true;
2667 }
2668
2669 /*
2670 * Don't touch WM1S_LP_EN here.
2671 * Doing so could cause underruns.
2672 */
2673
2674 return changed;
2675 }
2676
2677 /*
2678 * The spec says we shouldn't write when we don't need, because every write
2679 * causes WMs to be re-evaluated, expending some power.
2680 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)2681 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2682 struct ilk_wm_values *results)
2683 {
2684 struct drm_device *dev = dev_priv->dev;
2685 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2686 unsigned int dirty;
2687 uint32_t val;
2688
2689 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2690 if (!dirty)
2691 return;
2692
2693 _ilk_disable_lp_wm(dev_priv, dirty);
2694
2695 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2696 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2697 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2698 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2699 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2700 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2701
2702 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2703 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2704 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2705 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2706 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2707 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2708
2709 if (dirty & WM_DIRTY_DDB) {
2710 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2711 val = I915_READ(WM_MISC);
2712 if (results->partitioning == INTEL_DDB_PART_1_2)
2713 val &= ~WM_MISC_DATA_PARTITION_5_6;
2714 else
2715 val |= WM_MISC_DATA_PARTITION_5_6;
2716 I915_WRITE(WM_MISC, val);
2717 } else {
2718 val = I915_READ(DISP_ARB_CTL2);
2719 if (results->partitioning == INTEL_DDB_PART_1_2)
2720 val &= ~DISP_DATA_PARTITION_5_6;
2721 else
2722 val |= DISP_DATA_PARTITION_5_6;
2723 I915_WRITE(DISP_ARB_CTL2, val);
2724 }
2725 }
2726
2727 if (dirty & WM_DIRTY_FBC) {
2728 val = I915_READ(DISP_ARB_CTL);
2729 if (results->enable_fbc_wm)
2730 val &= ~DISP_FBC_WM_DIS;
2731 else
2732 val |= DISP_FBC_WM_DIS;
2733 I915_WRITE(DISP_ARB_CTL, val);
2734 }
2735
2736 if (dirty & WM_DIRTY_LP(1) &&
2737 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2738 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2739
2740 if (INTEL_INFO(dev)->gen >= 7) {
2741 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2742 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2743 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2744 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2745 }
2746
2747 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2748 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2749 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2750 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2751 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2752 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2753
2754 dev_priv->wm.hw = *results;
2755 }
2756
ilk_disable_lp_wm(struct drm_device * dev)2757 static bool ilk_disable_lp_wm(struct drm_device *dev)
2758 {
2759 struct drm_i915_private *dev_priv = dev->dev_private;
2760
2761 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2762 }
2763
2764 /*
2765 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2766 * different active planes.
2767 */
2768
2769 #define SKL_DDB_SIZE 896 /* in blocks */
2770 #define BXT_DDB_SIZE 512
2771
2772 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,struct drm_crtc * for_crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_entry * alloc)2773 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2774 struct drm_crtc *for_crtc,
2775 const struct intel_wm_config *config,
2776 const struct skl_pipe_wm_parameters *params,
2777 struct skl_ddb_entry *alloc /* out */)
2778 {
2779 struct drm_crtc *crtc;
2780 unsigned int pipe_size, ddb_size;
2781 int nth_active_pipe;
2782
2783 if (!params->active) {
2784 alloc->start = 0;
2785 alloc->end = 0;
2786 return;
2787 }
2788
2789 if (IS_BROXTON(dev))
2790 ddb_size = BXT_DDB_SIZE;
2791 else
2792 ddb_size = SKL_DDB_SIZE;
2793
2794 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2795
2796 nth_active_pipe = 0;
2797 for_each_crtc(dev, crtc) {
2798 if (!to_intel_crtc(crtc)->active)
2799 continue;
2800
2801 if (crtc == for_crtc)
2802 break;
2803
2804 nth_active_pipe++;
2805 }
2806
2807 pipe_size = ddb_size / config->num_pipes_active;
2808 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2809 alloc->end = alloc->start + pipe_size;
2810 }
2811
skl_cursor_allocation(const struct intel_wm_config * config)2812 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2813 {
2814 if (config->num_pipes_active == 1)
2815 return 32;
2816
2817 return 8;
2818 }
2819
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)2820 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2821 {
2822 entry->start = reg & 0x3ff;
2823 entry->end = (reg >> 16) & 0x3ff;
2824 if (entry->end)
2825 entry->end += 1;
2826 }
2827
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)2828 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2829 struct skl_ddb_allocation *ddb /* out */)
2830 {
2831 enum pipe pipe;
2832 int plane;
2833 u32 val;
2834
2835 memset(ddb, 0, sizeof(*ddb));
2836
2837 for_each_pipe(dev_priv, pipe) {
2838 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2839 continue;
2840
2841 for_each_plane(dev_priv, pipe, plane) {
2842 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2843 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2844 val);
2845 }
2846
2847 val = I915_READ(CUR_BUF_CFG(pipe));
2848 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2849 val);
2850 }
2851 }
2852
2853 static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters * p,int y)2854 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2855 {
2856
2857 /* for planar format */
2858 if (p->y_bytes_per_pixel) {
2859 if (y) /* y-plane data rate */
2860 return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2861 else /* uv-plane data rate */
2862 return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2863 }
2864
2865 /* for packed formats */
2866 return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2867 }
2868
2869 /*
2870 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2871 * a 8192x4096@32bpp framebuffer:
2872 * 3 * 4096 * 8192 * 4 < 2^32
2873 */
2874 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc * intel_crtc,const struct skl_pipe_wm_parameters * params)2875 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2876 const struct skl_pipe_wm_parameters *params)
2877 {
2878 unsigned int total_data_rate = 0;
2879 int plane;
2880
2881 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2882 const struct intel_plane_wm_parameters *p;
2883
2884 p = ¶ms->plane[plane];
2885 if (!p->enabled)
2886 continue;
2887
2888 total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2889 if (p->y_bytes_per_pixel) {
2890 total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2891 }
2892 }
2893
2894 return total_data_rate;
2895 }
2896
2897 static void
skl_allocate_pipe_ddb(struct drm_crtc * crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_allocation * ddb)2898 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2899 const struct intel_wm_config *config,
2900 const struct skl_pipe_wm_parameters *params,
2901 struct skl_ddb_allocation *ddb /* out */)
2902 {
2903 struct drm_device *dev = crtc->dev;
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906 enum pipe pipe = intel_crtc->pipe;
2907 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2908 uint16_t alloc_size, start, cursor_blocks;
2909 uint16_t minimum[I915_MAX_PLANES];
2910 uint16_t y_minimum[I915_MAX_PLANES];
2911 unsigned int total_data_rate;
2912 int plane;
2913
2914 skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2915 alloc_size = skl_ddb_entry_size(alloc);
2916 if (alloc_size == 0) {
2917 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2918 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2919 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2920 return;
2921 }
2922
2923 cursor_blocks = skl_cursor_allocation(config);
2924 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2925 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2926
2927 alloc_size -= cursor_blocks;
2928 alloc->end -= cursor_blocks;
2929
2930 /* 1. Allocate the mininum required blocks for each active plane */
2931 for_each_plane(dev_priv, pipe, plane) {
2932 const struct intel_plane_wm_parameters *p;
2933
2934 p = ¶ms->plane[plane];
2935 if (!p->enabled)
2936 continue;
2937
2938 minimum[plane] = 8;
2939 alloc_size -= minimum[plane];
2940 y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2941 alloc_size -= y_minimum[plane];
2942 }
2943
2944 /*
2945 * 2. Distribute the remaining space in proportion to the amount of
2946 * data each plane needs to fetch from memory.
2947 *
2948 * FIXME: we may not allocate every single block here.
2949 */
2950 total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2951
2952 start = alloc->start;
2953 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2954 const struct intel_plane_wm_parameters *p;
2955 unsigned int data_rate, y_data_rate;
2956 uint16_t plane_blocks, y_plane_blocks = 0;
2957
2958 p = ¶ms->plane[plane];
2959 if (!p->enabled)
2960 continue;
2961
2962 data_rate = skl_plane_relative_data_rate(p, 0);
2963
2964 /*
2965 * allocation for (packed formats) or (uv-plane part of planar format):
2966 * promote the expression to 64 bits to avoid overflowing, the
2967 * result is < available as data_rate / total_data_rate < 1
2968 */
2969 plane_blocks = minimum[plane];
2970 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2971 total_data_rate);
2972
2973 ddb->plane[pipe][plane].start = start;
2974 ddb->plane[pipe][plane].end = start + plane_blocks;
2975
2976 start += plane_blocks;
2977
2978 /*
2979 * allocation for y_plane part of planar format:
2980 */
2981 if (p->y_bytes_per_pixel) {
2982 y_data_rate = skl_plane_relative_data_rate(p, 1);
2983 y_plane_blocks = y_minimum[plane];
2984 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2985 total_data_rate);
2986
2987 ddb->y_plane[pipe][plane].start = start;
2988 ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2989
2990 start += y_plane_blocks;
2991 }
2992
2993 }
2994
2995 }
2996
skl_pipe_pixel_rate(const struct intel_crtc_state * config)2997 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2998 {
2999 /* TODO: Take into account the scalers once we support them */
3000 return config->base.adjusted_mode.crtc_clock;
3001 }
3002
3003 /*
3004 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3005 * for the read latency) and bytes_per_pixel should always be <= 8, so that
3006 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3007 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3008 */
skl_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)3009 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3010 uint32_t latency)
3011 {
3012 uint32_t wm_intermediate_val, ret;
3013
3014 if (latency == 0)
3015 return UINT_MAX;
3016
3017 wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3018 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3019
3020 return ret;
3021 }
3022
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint64_t tiling,uint32_t latency)3023 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3024 uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3025 uint64_t tiling, uint32_t latency)
3026 {
3027 uint32_t ret;
3028 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3029 uint32_t wm_intermediate_val;
3030
3031 if (latency == 0)
3032 return UINT_MAX;
3033
3034 plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3035
3036 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3037 tiling == I915_FORMAT_MOD_Yf_TILED) {
3038 plane_bytes_per_line *= 4;
3039 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3040 plane_blocks_per_line /= 4;
3041 } else {
3042 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3043 }
3044
3045 wm_intermediate_val = latency * pixel_rate;
3046 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3047 plane_blocks_per_line;
3048
3049 return ret;
3050 }
3051
skl_ddb_allocation_changed(const struct skl_ddb_allocation * new_ddb,const struct intel_crtc * intel_crtc)3052 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3053 const struct intel_crtc *intel_crtc)
3054 {
3055 struct drm_device *dev = intel_crtc->base.dev;
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3058 enum pipe pipe = intel_crtc->pipe;
3059
3060 if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3061 sizeof(new_ddb->plane[pipe])))
3062 return true;
3063
3064 if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3065 sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3066 return true;
3067
3068 return false;
3069 }
3070
skl_compute_wm_global_parameters(struct drm_device * dev,struct intel_wm_config * config)3071 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3072 struct intel_wm_config *config)
3073 {
3074 struct drm_crtc *crtc;
3075 struct drm_plane *plane;
3076
3077 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3078 config->num_pipes_active += to_intel_crtc(crtc)->active;
3079
3080 /* FIXME: I don't think we need those two global parameters on SKL */
3081 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3082 struct intel_plane *intel_plane = to_intel_plane(plane);
3083
3084 config->sprites_enabled |= intel_plane->wm.enabled;
3085 config->sprites_scaled |= intel_plane->wm.scaled;
3086 }
3087 }
3088
skl_compute_wm_pipe_parameters(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3089 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3090 struct skl_pipe_wm_parameters *p)
3091 {
3092 struct drm_device *dev = crtc->dev;
3093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 enum pipe pipe = intel_crtc->pipe;
3095 struct drm_plane *plane;
3096 struct drm_framebuffer *fb;
3097 int i = 1; /* Index for sprite planes start */
3098
3099 p->active = intel_crtc->active;
3100 if (p->active) {
3101 p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3102 p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3103
3104 fb = crtc->primary->state->fb;
3105 /* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3106 if (fb) {
3107 p->plane[0].enabled = true;
3108 p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3109 drm_format_plane_cpp(fb->pixel_format, 1) :
3110 drm_format_plane_cpp(fb->pixel_format, 0);
3111 p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3112 drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3113 p->plane[0].tiling = fb->modifier[0];
3114 } else {
3115 p->plane[0].enabled = false;
3116 p->plane[0].bytes_per_pixel = 0;
3117 p->plane[0].y_bytes_per_pixel = 0;
3118 p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3119 }
3120 p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3121 p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3122 p->plane[0].rotation = crtc->primary->state->rotation;
3123
3124 fb = crtc->cursor->state->fb;
3125 p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3126 if (fb) {
3127 p->plane[PLANE_CURSOR].enabled = true;
3128 p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3129 p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3130 p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3131 } else {
3132 p->plane[PLANE_CURSOR].enabled = false;
3133 p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3134 p->plane[PLANE_CURSOR].horiz_pixels = 64;
3135 p->plane[PLANE_CURSOR].vert_pixels = 64;
3136 }
3137 }
3138
3139 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3140 struct intel_plane *intel_plane = to_intel_plane(plane);
3141
3142 if (intel_plane->pipe == pipe &&
3143 plane->type == DRM_PLANE_TYPE_OVERLAY)
3144 p->plane[i++] = intel_plane->wm;
3145 }
3146 }
3147
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct skl_pipe_wm_parameters * p,struct intel_plane_wm_parameters * p_params,uint16_t ddb_allocation,int level,uint16_t * out_blocks,uint8_t * out_lines)3148 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3149 struct skl_pipe_wm_parameters *p,
3150 struct intel_plane_wm_parameters *p_params,
3151 uint16_t ddb_allocation,
3152 int level,
3153 uint16_t *out_blocks, /* out */
3154 uint8_t *out_lines /* out */)
3155 {
3156 uint32_t latency = dev_priv->wm.skl_latency[level];
3157 uint32_t method1, method2;
3158 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3159 uint32_t res_blocks, res_lines;
3160 uint32_t selected_result;
3161 uint8_t bytes_per_pixel;
3162
3163 if (latency == 0 || !p->active || !p_params->enabled)
3164 return false;
3165
3166 bytes_per_pixel = p_params->y_bytes_per_pixel ?
3167 p_params->y_bytes_per_pixel :
3168 p_params->bytes_per_pixel;
3169 method1 = skl_wm_method1(p->pixel_rate,
3170 bytes_per_pixel,
3171 latency);
3172 method2 = skl_wm_method2(p->pixel_rate,
3173 p->pipe_htotal,
3174 p_params->horiz_pixels,
3175 bytes_per_pixel,
3176 p_params->tiling,
3177 latency);
3178
3179 plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3180 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3181
3182 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3183 p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3184 uint32_t min_scanlines = 4;
3185 uint32_t y_tile_minimum;
3186 if (intel_rotation_90_or_270(p_params->rotation)) {
3187 switch (p_params->bytes_per_pixel) {
3188 case 1:
3189 min_scanlines = 16;
3190 break;
3191 case 2:
3192 min_scanlines = 8;
3193 break;
3194 case 8:
3195 WARN(1, "Unsupported pixel depth for rotation");
3196 }
3197 }
3198 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3199 selected_result = max(method2, y_tile_minimum);
3200 } else {
3201 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3202 selected_result = min(method1, method2);
3203 else
3204 selected_result = method1;
3205 }
3206
3207 res_blocks = selected_result + 1;
3208 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3209
3210 if (level >= 1 && level <= 7) {
3211 if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3212 p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3213 res_lines += 4;
3214 else
3215 res_blocks++;
3216 }
3217
3218 if (res_blocks >= ddb_allocation || res_lines > 31)
3219 return false;
3220
3221 *out_blocks = res_blocks;
3222 *out_lines = res_lines;
3223
3224 return true;
3225 }
3226
skl_compute_wm_level(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * p,enum pipe pipe,int level,int num_planes,struct skl_wm_level * result)3227 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3228 struct skl_ddb_allocation *ddb,
3229 struct skl_pipe_wm_parameters *p,
3230 enum pipe pipe,
3231 int level,
3232 int num_planes,
3233 struct skl_wm_level *result)
3234 {
3235 uint16_t ddb_blocks;
3236 int i;
3237
3238 for (i = 0; i < num_planes; i++) {
3239 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3240
3241 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3242 p, &p->plane[i],
3243 ddb_blocks,
3244 level,
3245 &result->plane_res_b[i],
3246 &result->plane_res_l[i]);
3247 }
3248
3249 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3250 result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3251 &p->plane[PLANE_CURSOR],
3252 ddb_blocks, level,
3253 &result->plane_res_b[PLANE_CURSOR],
3254 &result->plane_res_l[PLANE_CURSOR]);
3255 }
3256
3257 static uint32_t
skl_compute_linetime_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3258 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3259 {
3260 if (!to_intel_crtc(crtc)->active)
3261 return 0;
3262
3263 if (WARN_ON(p->pixel_rate == 0))
3264 return 0;
3265
3266 return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3267 }
3268
skl_compute_transition_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct skl_wm_level * trans_wm)3269 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3270 struct skl_pipe_wm_parameters *params,
3271 struct skl_wm_level *trans_wm /* out */)
3272 {
3273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3274 int i;
3275
3276 if (!params->active)
3277 return;
3278
3279 /* Until we know more, just disable transition WMs */
3280 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3281 trans_wm->plane_en[i] = false;
3282 trans_wm->plane_en[PLANE_CURSOR] = false;
3283 }
3284
skl_compute_pipe_wm(struct drm_crtc * crtc,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * params,struct skl_pipe_wm * pipe_wm)3285 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3286 struct skl_ddb_allocation *ddb,
3287 struct skl_pipe_wm_parameters *params,
3288 struct skl_pipe_wm *pipe_wm)
3289 {
3290 struct drm_device *dev = crtc->dev;
3291 const struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293 int level, max_level = ilk_wm_max_level(dev);
3294
3295 for (level = 0; level <= max_level; level++) {
3296 skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3297 level, intel_num_planes(intel_crtc),
3298 &pipe_wm->wm[level]);
3299 }
3300 pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3301
3302 skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3303 }
3304
skl_compute_wm_results(struct drm_device * dev,struct skl_pipe_wm_parameters * p,struct skl_pipe_wm * p_wm,struct skl_wm_values * r,struct intel_crtc * intel_crtc)3305 static void skl_compute_wm_results(struct drm_device *dev,
3306 struct skl_pipe_wm_parameters *p,
3307 struct skl_pipe_wm *p_wm,
3308 struct skl_wm_values *r,
3309 struct intel_crtc *intel_crtc)
3310 {
3311 int level, max_level = ilk_wm_max_level(dev);
3312 enum pipe pipe = intel_crtc->pipe;
3313 uint32_t temp;
3314 int i;
3315
3316 for (level = 0; level <= max_level; level++) {
3317 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3318 temp = 0;
3319
3320 temp |= p_wm->wm[level].plane_res_l[i] <<
3321 PLANE_WM_LINES_SHIFT;
3322 temp |= p_wm->wm[level].plane_res_b[i];
3323 if (p_wm->wm[level].plane_en[i])
3324 temp |= PLANE_WM_EN;
3325
3326 r->plane[pipe][i][level] = temp;
3327 }
3328
3329 temp = 0;
3330
3331 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3332 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3333
3334 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3335 temp |= PLANE_WM_EN;
3336
3337 r->plane[pipe][PLANE_CURSOR][level] = temp;
3338
3339 }
3340
3341 /* transition WMs */
3342 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3343 temp = 0;
3344 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3345 temp |= p_wm->trans_wm.plane_res_b[i];
3346 if (p_wm->trans_wm.plane_en[i])
3347 temp |= PLANE_WM_EN;
3348
3349 r->plane_trans[pipe][i] = temp;
3350 }
3351
3352 temp = 0;
3353 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3354 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3355 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3356 temp |= PLANE_WM_EN;
3357
3358 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3359
3360 r->wm_linetime[pipe] = p_wm->linetime;
3361 }
3362
skl_ddb_entry_write(struct drm_i915_private * dev_priv,uint32_t reg,const struct skl_ddb_entry * entry)3363 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3364 const struct skl_ddb_entry *entry)
3365 {
3366 if (entry->end)
3367 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3368 else
3369 I915_WRITE(reg, 0);
3370 }
3371
skl_write_wm_values(struct drm_i915_private * dev_priv,const struct skl_wm_values * new)3372 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3373 const struct skl_wm_values *new)
3374 {
3375 struct drm_device *dev = dev_priv->dev;
3376 struct intel_crtc *crtc;
3377
3378 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3379 int i, level, max_level = ilk_wm_max_level(dev);
3380 enum pipe pipe = crtc->pipe;
3381
3382 if (!new->dirty[pipe])
3383 continue;
3384
3385 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3386
3387 for (level = 0; level <= max_level; level++) {
3388 for (i = 0; i < intel_num_planes(crtc); i++)
3389 I915_WRITE(PLANE_WM(pipe, i, level),
3390 new->plane[pipe][i][level]);
3391 I915_WRITE(CUR_WM(pipe, level),
3392 new->plane[pipe][PLANE_CURSOR][level]);
3393 }
3394 for (i = 0; i < intel_num_planes(crtc); i++)
3395 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3396 new->plane_trans[pipe][i]);
3397 I915_WRITE(CUR_WM_TRANS(pipe),
3398 new->plane_trans[pipe][PLANE_CURSOR]);
3399
3400 for (i = 0; i < intel_num_planes(crtc); i++) {
3401 skl_ddb_entry_write(dev_priv,
3402 PLANE_BUF_CFG(pipe, i),
3403 &new->ddb.plane[pipe][i]);
3404 skl_ddb_entry_write(dev_priv,
3405 PLANE_NV12_BUF_CFG(pipe, i),
3406 &new->ddb.y_plane[pipe][i]);
3407 }
3408
3409 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3410 &new->ddb.plane[pipe][PLANE_CURSOR]);
3411 }
3412 }
3413
3414 /*
3415 * When setting up a new DDB allocation arrangement, we need to correctly
3416 * sequence the times at which the new allocations for the pipes are taken into
3417 * account or we'll have pipes fetching from space previously allocated to
3418 * another pipe.
3419 *
3420 * Roughly the sequence looks like:
3421 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3422 * overlapping with a previous light-up pipe (another way to put it is:
3423 * pipes with their new allocation strickly included into their old ones).
3424 * 2. re-allocate the other pipes that get their allocation reduced
3425 * 3. allocate the pipes having their allocation increased
3426 *
3427 * Steps 1. and 2. are here to take care of the following case:
3428 * - Initially DDB looks like this:
3429 * | B | C |
3430 * - enable pipe A.
3431 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3432 * allocation
3433 * | A | B | C |
3434 *
3435 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3436 */
3437
3438 static void
skl_wm_flush_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,int pass)3439 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3440 {
3441 int plane;
3442
3443 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3444
3445 for_each_plane(dev_priv, pipe, plane) {
3446 I915_WRITE(PLANE_SURF(pipe, plane),
3447 I915_READ(PLANE_SURF(pipe, plane)));
3448 }
3449 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3450 }
3451
3452 static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3453 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3454 const struct skl_ddb_allocation *new,
3455 enum pipe pipe)
3456 {
3457 uint16_t old_size, new_size;
3458
3459 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3460 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3461
3462 return old_size != new_size &&
3463 new->pipe[pipe].start >= old->pipe[pipe].start &&
3464 new->pipe[pipe].end <= old->pipe[pipe].end;
3465 }
3466
skl_flush_wm_values(struct drm_i915_private * dev_priv,struct skl_wm_values * new_values)3467 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3468 struct skl_wm_values *new_values)
3469 {
3470 struct drm_device *dev = dev_priv->dev;
3471 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3472 bool reallocated[I915_MAX_PIPES] = {};
3473 struct intel_crtc *crtc;
3474 enum pipe pipe;
3475
3476 new_ddb = &new_values->ddb;
3477 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3478
3479 /*
3480 * First pass: flush the pipes with the new allocation contained into
3481 * the old space.
3482 *
3483 * We'll wait for the vblank on those pipes to ensure we can safely
3484 * re-allocate the freed space without this pipe fetching from it.
3485 */
3486 for_each_intel_crtc(dev, crtc) {
3487 if (!crtc->active)
3488 continue;
3489
3490 pipe = crtc->pipe;
3491
3492 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3493 continue;
3494
3495 skl_wm_flush_pipe(dev_priv, pipe, 1);
3496 intel_wait_for_vblank(dev, pipe);
3497
3498 reallocated[pipe] = true;
3499 }
3500
3501
3502 /*
3503 * Second pass: flush the pipes that are having their allocation
3504 * reduced, but overlapping with a previous allocation.
3505 *
3506 * Here as well we need to wait for the vblank to make sure the freed
3507 * space is not used anymore.
3508 */
3509 for_each_intel_crtc(dev, crtc) {
3510 if (!crtc->active)
3511 continue;
3512
3513 pipe = crtc->pipe;
3514
3515 if (reallocated[pipe])
3516 continue;
3517
3518 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3519 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3520 skl_wm_flush_pipe(dev_priv, pipe, 2);
3521 intel_wait_for_vblank(dev, pipe);
3522 reallocated[pipe] = true;
3523 }
3524 }
3525
3526 /*
3527 * Third pass: flush the pipes that got more space allocated.
3528 *
3529 * We don't need to actively wait for the update here, next vblank
3530 * will just get more DDB space with the correct WM values.
3531 */
3532 for_each_intel_crtc(dev, crtc) {
3533 if (!crtc->active)
3534 continue;
3535
3536 pipe = crtc->pipe;
3537
3538 /*
3539 * At this point, only the pipes more space than before are
3540 * left to re-allocate.
3541 */
3542 if (reallocated[pipe])
3543 continue;
3544
3545 skl_wm_flush_pipe(dev_priv, pipe, 3);
3546 }
3547 }
3548
skl_update_pipe_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct intel_wm_config * config,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)3549 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3550 struct skl_pipe_wm_parameters *params,
3551 struct intel_wm_config *config,
3552 struct skl_ddb_allocation *ddb, /* out */
3553 struct skl_pipe_wm *pipe_wm /* out */)
3554 {
3555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556
3557 skl_compute_wm_pipe_parameters(crtc, params);
3558 skl_allocate_pipe_ddb(crtc, config, params, ddb);
3559 skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3560
3561 if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3562 return false;
3563
3564 intel_crtc->wm.skl_active = *pipe_wm;
3565
3566 return true;
3567 }
3568
skl_update_other_pipe_wm(struct drm_device * dev,struct drm_crtc * crtc,struct intel_wm_config * config,struct skl_wm_values * r)3569 static void skl_update_other_pipe_wm(struct drm_device *dev,
3570 struct drm_crtc *crtc,
3571 struct intel_wm_config *config,
3572 struct skl_wm_values *r)
3573 {
3574 struct intel_crtc *intel_crtc;
3575 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3576
3577 /*
3578 * If the WM update hasn't changed the allocation for this_crtc (the
3579 * crtc we are currently computing the new WM values for), other
3580 * enabled crtcs will keep the same allocation and we don't need to
3581 * recompute anything for them.
3582 */
3583 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3584 return;
3585
3586 /*
3587 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3588 * other active pipes need new DDB allocation and WM values.
3589 */
3590 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3591 base.head) {
3592 struct skl_pipe_wm_parameters params = {};
3593 struct skl_pipe_wm pipe_wm = {};
3594 bool wm_changed;
3595
3596 if (this_crtc->pipe == intel_crtc->pipe)
3597 continue;
3598
3599 if (!intel_crtc->active)
3600 continue;
3601
3602 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3603 ¶ms, config,
3604 &r->ddb, &pipe_wm);
3605
3606 /*
3607 * If we end up re-computing the other pipe WM values, it's
3608 * because it was really needed, so we expect the WM values to
3609 * be different.
3610 */
3611 WARN_ON(!wm_changed);
3612
3613 skl_compute_wm_results(dev, ¶ms, &pipe_wm, r, intel_crtc);
3614 r->dirty[intel_crtc->pipe] = true;
3615 }
3616 }
3617
skl_clear_wm(struct skl_wm_values * watermarks,enum pipe pipe)3618 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3619 {
3620 watermarks->wm_linetime[pipe] = 0;
3621 memset(watermarks->plane[pipe], 0,
3622 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3623 memset(watermarks->plane_trans[pipe],
3624 0, sizeof(uint32_t) * I915_MAX_PLANES);
3625 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3626
3627 /* Clear ddb entries for pipe */
3628 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3629 memset(&watermarks->ddb.plane[pipe], 0,
3630 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3631 memset(&watermarks->ddb.y_plane[pipe], 0,
3632 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3633 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3634 sizeof(struct skl_ddb_entry));
3635
3636 }
3637
skl_update_wm(struct drm_crtc * crtc)3638 static void skl_update_wm(struct drm_crtc *crtc)
3639 {
3640 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3641 struct drm_device *dev = crtc->dev;
3642 struct drm_i915_private *dev_priv = dev->dev_private;
3643 struct skl_pipe_wm_parameters params = {};
3644 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3645 struct skl_pipe_wm pipe_wm = {};
3646 struct intel_wm_config config = {};
3647
3648
3649 /* Clear all dirty flags */
3650 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3651
3652 skl_clear_wm(results, intel_crtc->pipe);
3653
3654 skl_compute_wm_global_parameters(dev, &config);
3655
3656 if (!skl_update_pipe_wm(crtc, ¶ms, &config,
3657 &results->ddb, &pipe_wm))
3658 return;
3659
3660 skl_compute_wm_results(dev, ¶ms, &pipe_wm, results, intel_crtc);
3661 results->dirty[intel_crtc->pipe] = true;
3662
3663 skl_update_other_pipe_wm(dev, crtc, &config, results);
3664 skl_write_wm_values(dev_priv, results);
3665 skl_flush_wm_values(dev_priv, results);
3666
3667 /* store the new configuration */
3668 dev_priv->wm.skl_hw = *results;
3669 }
3670
3671 static void
skl_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3672 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3673 uint32_t sprite_width, uint32_t sprite_height,
3674 int pixel_size, bool enabled, bool scaled)
3675 {
3676 struct intel_plane *intel_plane = to_intel_plane(plane);
3677 struct drm_framebuffer *fb = plane->state->fb;
3678
3679 intel_plane->wm.enabled = enabled;
3680 intel_plane->wm.scaled = scaled;
3681 intel_plane->wm.horiz_pixels = sprite_width;
3682 intel_plane->wm.vert_pixels = sprite_height;
3683 intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3684
3685 /* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3686 intel_plane->wm.bytes_per_pixel =
3687 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3688 drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3689 intel_plane->wm.y_bytes_per_pixel =
3690 (fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3691 drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3692
3693 /*
3694 * Framebuffer can be NULL on plane disable, but it does not
3695 * matter for watermarks if we assume no tiling in that case.
3696 */
3697 if (fb)
3698 intel_plane->wm.tiling = fb->modifier[0];
3699 intel_plane->wm.rotation = plane->state->rotation;
3700
3701 skl_update_wm(crtc);
3702 }
3703
ilk_update_wm(struct drm_crtc * crtc)3704 static void ilk_update_wm(struct drm_crtc *crtc)
3705 {
3706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3708 struct drm_device *dev = crtc->dev;
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710 struct ilk_wm_maximums max;
3711 struct ilk_wm_values results = {};
3712 enum intel_ddb_partitioning partitioning;
3713 struct intel_pipe_wm pipe_wm = {};
3714 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3715 struct intel_wm_config config = {};
3716
3717 WARN_ON(cstate->base.active != intel_crtc->active);
3718
3719 intel_compute_pipe_wm(cstate, &pipe_wm);
3720
3721 if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3722 return;
3723
3724 intel_crtc->wm.active = pipe_wm;
3725
3726 ilk_compute_wm_config(dev, &config);
3727
3728 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3729 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3730
3731 /* 5/6 split only in single pipe config on IVB+ */
3732 if (INTEL_INFO(dev)->gen >= 7 &&
3733 config.num_pipes_active == 1 && config.sprites_enabled) {
3734 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3735 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3736
3737 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3738 } else {
3739 best_lp_wm = &lp_wm_1_2;
3740 }
3741
3742 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3743 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3744
3745 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3746
3747 ilk_write_wm_values(dev_priv, &results);
3748 }
3749
3750 static void
ilk_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3751 ilk_update_sprite_wm(struct drm_plane *plane,
3752 struct drm_crtc *crtc,
3753 uint32_t sprite_width, uint32_t sprite_height,
3754 int pixel_size, bool enabled, bool scaled)
3755 {
3756 struct drm_device *dev = plane->dev;
3757 struct intel_plane *intel_plane = to_intel_plane(plane);
3758
3759 /*
3760 * IVB workaround: must disable low power watermarks for at least
3761 * one frame before enabling scaling. LP watermarks can be re-enabled
3762 * when scaling is disabled.
3763 *
3764 * WaCxSRDisabledForSpriteScaling:ivb
3765 */
3766 if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3767 intel_wait_for_vblank(dev, intel_plane->pipe);
3768
3769 ilk_update_wm(crtc);
3770 }
3771
skl_pipe_wm_active_state(uint32_t val,struct skl_pipe_wm * active,bool is_transwm,bool is_cursor,int i,int level)3772 static void skl_pipe_wm_active_state(uint32_t val,
3773 struct skl_pipe_wm *active,
3774 bool is_transwm,
3775 bool is_cursor,
3776 int i,
3777 int level)
3778 {
3779 bool is_enabled = (val & PLANE_WM_EN) != 0;
3780
3781 if (!is_transwm) {
3782 if (!is_cursor) {
3783 active->wm[level].plane_en[i] = is_enabled;
3784 active->wm[level].plane_res_b[i] =
3785 val & PLANE_WM_BLOCKS_MASK;
3786 active->wm[level].plane_res_l[i] =
3787 (val >> PLANE_WM_LINES_SHIFT) &
3788 PLANE_WM_LINES_MASK;
3789 } else {
3790 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3791 active->wm[level].plane_res_b[PLANE_CURSOR] =
3792 val & PLANE_WM_BLOCKS_MASK;
3793 active->wm[level].plane_res_l[PLANE_CURSOR] =
3794 (val >> PLANE_WM_LINES_SHIFT) &
3795 PLANE_WM_LINES_MASK;
3796 }
3797 } else {
3798 if (!is_cursor) {
3799 active->trans_wm.plane_en[i] = is_enabled;
3800 active->trans_wm.plane_res_b[i] =
3801 val & PLANE_WM_BLOCKS_MASK;
3802 active->trans_wm.plane_res_l[i] =
3803 (val >> PLANE_WM_LINES_SHIFT) &
3804 PLANE_WM_LINES_MASK;
3805 } else {
3806 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3807 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3808 val & PLANE_WM_BLOCKS_MASK;
3809 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3810 (val >> PLANE_WM_LINES_SHIFT) &
3811 PLANE_WM_LINES_MASK;
3812 }
3813 }
3814 }
3815
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc)3816 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3817 {
3818 struct drm_device *dev = crtc->dev;
3819 struct drm_i915_private *dev_priv = dev->dev_private;
3820 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3822 struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3823 enum pipe pipe = intel_crtc->pipe;
3824 int level, i, max_level;
3825 uint32_t temp;
3826
3827 max_level = ilk_wm_max_level(dev);
3828
3829 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3830
3831 for (level = 0; level <= max_level; level++) {
3832 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3833 hw->plane[pipe][i][level] =
3834 I915_READ(PLANE_WM(pipe, i, level));
3835 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3836 }
3837
3838 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3839 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3840 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3841
3842 if (!intel_crtc->active)
3843 return;
3844
3845 hw->dirty[pipe] = true;
3846
3847 active->linetime = hw->wm_linetime[pipe];
3848
3849 for (level = 0; level <= max_level; level++) {
3850 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3851 temp = hw->plane[pipe][i][level];
3852 skl_pipe_wm_active_state(temp, active, false,
3853 false, i, level);
3854 }
3855 temp = hw->plane[pipe][PLANE_CURSOR][level];
3856 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3857 }
3858
3859 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3860 temp = hw->plane_trans[pipe][i];
3861 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3862 }
3863
3864 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3865 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3866 }
3867
skl_wm_get_hw_state(struct drm_device * dev)3868 void skl_wm_get_hw_state(struct drm_device *dev)
3869 {
3870 struct drm_i915_private *dev_priv = dev->dev_private;
3871 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3872 struct drm_crtc *crtc;
3873
3874 skl_ddb_get_hw_state(dev_priv, ddb);
3875 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3876 skl_pipe_wm_get_hw_state(crtc);
3877 }
3878
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)3879 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3880 {
3881 struct drm_device *dev = crtc->dev;
3882 struct drm_i915_private *dev_priv = dev->dev_private;
3883 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3885 struct intel_pipe_wm *active = &intel_crtc->wm.active;
3886 enum pipe pipe = intel_crtc->pipe;
3887 static const unsigned int wm0_pipe_reg[] = {
3888 [PIPE_A] = WM0_PIPEA_ILK,
3889 [PIPE_B] = WM0_PIPEB_ILK,
3890 [PIPE_C] = WM0_PIPEC_IVB,
3891 };
3892
3893 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3894 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3895 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3896
3897 memset(active, 0, sizeof(*active));
3898
3899 active->pipe_enabled = intel_crtc->active;
3900
3901 if (active->pipe_enabled) {
3902 u32 tmp = hw->wm_pipe[pipe];
3903
3904 /*
3905 * For active pipes LP0 watermark is marked as
3906 * enabled, and LP1+ watermaks as disabled since
3907 * we can't really reverse compute them in case
3908 * multiple pipes are active.
3909 */
3910 active->wm[0].enable = true;
3911 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3912 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3913 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3914 active->linetime = hw->wm_linetime[pipe];
3915 } else {
3916 int level, max_level = ilk_wm_max_level(dev);
3917
3918 /*
3919 * For inactive pipes, all watermark levels
3920 * should be marked as enabled but zeroed,
3921 * which is what we'd compute them to.
3922 */
3923 for (level = 0; level <= max_level; level++)
3924 active->wm[level].enable = true;
3925 }
3926 }
3927
3928 #define _FW_WM(value, plane) \
3929 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3930 #define _FW_WM_VLV(value, plane) \
3931 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3932
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)3933 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3934 struct vlv_wm_values *wm)
3935 {
3936 enum pipe pipe;
3937 uint32_t tmp;
3938
3939 for_each_pipe(dev_priv, pipe) {
3940 tmp = I915_READ(VLV_DDL(pipe));
3941
3942 wm->ddl[pipe].primary =
3943 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3944 wm->ddl[pipe].cursor =
3945 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3946 wm->ddl[pipe].sprite[0] =
3947 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3948 wm->ddl[pipe].sprite[1] =
3949 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3950 }
3951
3952 tmp = I915_READ(DSPFW1);
3953 wm->sr.plane = _FW_WM(tmp, SR);
3954 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3955 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3956 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3957
3958 tmp = I915_READ(DSPFW2);
3959 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3960 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3961 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3962
3963 tmp = I915_READ(DSPFW3);
3964 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3965
3966 if (IS_CHERRYVIEW(dev_priv)) {
3967 tmp = I915_READ(DSPFW7_CHV);
3968 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3969 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3970
3971 tmp = I915_READ(DSPFW8_CHV);
3972 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3973 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3974
3975 tmp = I915_READ(DSPFW9_CHV);
3976 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3977 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3978
3979 tmp = I915_READ(DSPHOWM);
3980 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3981 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3982 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3983 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3984 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3985 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3986 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3987 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3988 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3989 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3990 } else {
3991 tmp = I915_READ(DSPFW7);
3992 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3993 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3994
3995 tmp = I915_READ(DSPHOWM);
3996 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3997 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3998 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3999 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4000 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4001 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4002 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4003 }
4004 }
4005
4006 #undef _FW_WM
4007 #undef _FW_WM_VLV
4008
vlv_wm_get_hw_state(struct drm_device * dev)4009 void vlv_wm_get_hw_state(struct drm_device *dev)
4010 {
4011 struct drm_i915_private *dev_priv = to_i915(dev);
4012 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4013 struct intel_plane *plane;
4014 enum pipe pipe;
4015 u32 val;
4016
4017 vlv_read_wm_values(dev_priv, wm);
4018
4019 for_each_intel_plane(dev, plane) {
4020 switch (plane->base.type) {
4021 int sprite;
4022 case DRM_PLANE_TYPE_CURSOR:
4023 plane->wm.fifo_size = 63;
4024 break;
4025 case DRM_PLANE_TYPE_PRIMARY:
4026 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4027 break;
4028 case DRM_PLANE_TYPE_OVERLAY:
4029 sprite = plane->plane;
4030 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4031 break;
4032 }
4033 }
4034
4035 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4036 wm->level = VLV_WM_LEVEL_PM2;
4037
4038 if (IS_CHERRYVIEW(dev_priv)) {
4039 mutex_lock(&dev_priv->rps.hw_lock);
4040
4041 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4042 if (val & DSP_MAXFIFO_PM5_ENABLE)
4043 wm->level = VLV_WM_LEVEL_PM5;
4044
4045 /*
4046 * If DDR DVFS is disabled in the BIOS, Punit
4047 * will never ack the request. So if that happens
4048 * assume we don't have to enable/disable DDR DVFS
4049 * dynamically. To test that just set the REQ_ACK
4050 * bit to poke the Punit, but don't change the
4051 * HIGH/LOW bits so that we don't actually change
4052 * the current state.
4053 */
4054 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4055 val |= FORCE_DDR_FREQ_REQ_ACK;
4056 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4057
4058 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4059 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4060 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4061 "assuming DDR DVFS is disabled\n");
4062 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4063 } else {
4064 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4065 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4066 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4067 }
4068
4069 mutex_unlock(&dev_priv->rps.hw_lock);
4070 }
4071
4072 for_each_pipe(dev_priv, pipe)
4073 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4074 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4075 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4076
4077 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4078 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4079 }
4080
ilk_wm_get_hw_state(struct drm_device * dev)4081 void ilk_wm_get_hw_state(struct drm_device *dev)
4082 {
4083 struct drm_i915_private *dev_priv = dev->dev_private;
4084 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4085 struct drm_crtc *crtc;
4086
4087 for_each_crtc(dev, crtc)
4088 ilk_pipe_wm_get_hw_state(crtc);
4089
4090 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4091 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4092 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4093
4094 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4095 if (INTEL_INFO(dev)->gen >= 7) {
4096 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4097 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4098 }
4099
4100 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4101 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4102 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4103 else if (IS_IVYBRIDGE(dev))
4104 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4105 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4106
4107 hw->enable_fbc_wm =
4108 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4109 }
4110
4111 /**
4112 * intel_update_watermarks - update FIFO watermark values based on current modes
4113 *
4114 * Calculate watermark values for the various WM regs based on current mode
4115 * and plane configuration.
4116 *
4117 * There are several cases to deal with here:
4118 * - normal (i.e. non-self-refresh)
4119 * - self-refresh (SR) mode
4120 * - lines are large relative to FIFO size (buffer can hold up to 2)
4121 * - lines are small relative to FIFO size (buffer can hold more than 2
4122 * lines), so need to account for TLB latency
4123 *
4124 * The normal calculation is:
4125 * watermark = dotclock * bytes per pixel * latency
4126 * where latency is platform & configuration dependent (we assume pessimal
4127 * values here).
4128 *
4129 * The SR calculation is:
4130 * watermark = (trunc(latency/line time)+1) * surface width *
4131 * bytes per pixel
4132 * where
4133 * line time = htotal / dotclock
4134 * surface width = hdisplay for normal plane and 64 for cursor
4135 * and latency is assumed to be high, as above.
4136 *
4137 * The final value programmed to the register should always be rounded up,
4138 * and include an extra 2 entries to account for clock crossings.
4139 *
4140 * We don't use the sprite, so we can ignore that. And on Crestline we have
4141 * to set the non-SR watermarks to 8.
4142 */
intel_update_watermarks(struct drm_crtc * crtc)4143 void intel_update_watermarks(struct drm_crtc *crtc)
4144 {
4145 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4146
4147 if (dev_priv->display.update_wm)
4148 dev_priv->display.update_wm(crtc);
4149 }
4150
intel_update_sprite_watermarks(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)4151 void intel_update_sprite_watermarks(struct drm_plane *plane,
4152 struct drm_crtc *crtc,
4153 uint32_t sprite_width,
4154 uint32_t sprite_height,
4155 int pixel_size,
4156 bool enabled, bool scaled)
4157 {
4158 struct drm_i915_private *dev_priv = plane->dev->dev_private;
4159
4160 if (dev_priv->display.update_sprite_wm)
4161 dev_priv->display.update_sprite_wm(plane, crtc,
4162 sprite_width, sprite_height,
4163 pixel_size, enabled, scaled);
4164 }
4165
4166 /**
4167 * Lock protecting IPS related data structures
4168 */
4169 DEFINE_SPINLOCK(mchdev_lock);
4170
4171 /* Global for IPS driver to get at the current i915 device. Protected by
4172 * mchdev_lock. */
4173 static struct drm_i915_private *i915_mch_dev;
4174
ironlake_set_drps(struct drm_device * dev,u8 val)4175 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4176 {
4177 struct drm_i915_private *dev_priv = dev->dev_private;
4178 u16 rgvswctl;
4179
4180 assert_spin_locked(&mchdev_lock);
4181
4182 rgvswctl = I915_READ16(MEMSWCTL);
4183 if (rgvswctl & MEMCTL_CMD_STS) {
4184 DRM_DEBUG("gpu busy, RCS change rejected\n");
4185 return false; /* still busy with another command */
4186 }
4187
4188 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4189 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4190 I915_WRITE16(MEMSWCTL, rgvswctl);
4191 POSTING_READ16(MEMSWCTL);
4192
4193 rgvswctl |= MEMCTL_CMD_STS;
4194 I915_WRITE16(MEMSWCTL, rgvswctl);
4195
4196 return true;
4197 }
4198
ironlake_enable_drps(struct drm_device * dev)4199 static void ironlake_enable_drps(struct drm_device *dev)
4200 {
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 u32 rgvmodectl = I915_READ(MEMMODECTL);
4203 u8 fmax, fmin, fstart, vstart;
4204
4205 spin_lock_irq(&mchdev_lock);
4206
4207 /* Enable temp reporting */
4208 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4209 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4210
4211 /* 100ms RC evaluation intervals */
4212 I915_WRITE(RCUPEI, 100000);
4213 I915_WRITE(RCDNEI, 100000);
4214
4215 /* Set max/min thresholds to 90ms and 80ms respectively */
4216 I915_WRITE(RCBMAXAVG, 90000);
4217 I915_WRITE(RCBMINAVG, 80000);
4218
4219 I915_WRITE(MEMIHYST, 1);
4220
4221 /* Set up min, max, and cur for interrupt handling */
4222 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4223 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4224 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4225 MEMMODE_FSTART_SHIFT;
4226
4227 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4228 PXVFREQ_PX_SHIFT;
4229
4230 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4231 dev_priv->ips.fstart = fstart;
4232
4233 dev_priv->ips.max_delay = fstart;
4234 dev_priv->ips.min_delay = fmin;
4235 dev_priv->ips.cur_delay = fstart;
4236
4237 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4238 fmax, fmin, fstart);
4239
4240 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4241
4242 /*
4243 * Interrupts will be enabled in ironlake_irq_postinstall
4244 */
4245
4246 I915_WRITE(VIDSTART, vstart);
4247 POSTING_READ(VIDSTART);
4248
4249 rgvmodectl |= MEMMODE_SWMODE_EN;
4250 I915_WRITE(MEMMODECTL, rgvmodectl);
4251
4252 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4253 DRM_ERROR("stuck trying to change perf mode\n");
4254 mdelay(1);
4255
4256 ironlake_set_drps(dev, fstart);
4257
4258 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4259 I915_READ(DDREC) + I915_READ(CSIEC);
4260 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4261 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4262 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4263
4264 spin_unlock_irq(&mchdev_lock);
4265 }
4266
ironlake_disable_drps(struct drm_device * dev)4267 static void ironlake_disable_drps(struct drm_device *dev)
4268 {
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 u16 rgvswctl;
4271
4272 spin_lock_irq(&mchdev_lock);
4273
4274 rgvswctl = I915_READ16(MEMSWCTL);
4275
4276 /* Ack interrupts, disable EFC interrupt */
4277 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4278 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4279 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4280 I915_WRITE(DEIIR, DE_PCU_EVENT);
4281 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4282
4283 /* Go back to the starting frequency */
4284 ironlake_set_drps(dev, dev_priv->ips.fstart);
4285 mdelay(1);
4286 rgvswctl |= MEMCTL_CMD_STS;
4287 I915_WRITE(MEMSWCTL, rgvswctl);
4288 mdelay(1);
4289
4290 spin_unlock_irq(&mchdev_lock);
4291 }
4292
4293 /* There's a funny hw issue where the hw returns all 0 when reading from
4294 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4295 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4296 * all limits and the gpu stuck at whatever frequency it is at atm).
4297 */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)4298 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4299 {
4300 u32 limits;
4301
4302 /* Only set the down limit when we've reached the lowest level to avoid
4303 * getting more interrupts, otherwise leave this clear. This prevents a
4304 * race in the hw when coming out of rc6: There's a tiny window where
4305 * the hw runs at the minimal clock before selecting the desired
4306 * frequency, if the down threshold expires in that window we will not
4307 * receive a down interrupt. */
4308 if (IS_GEN9(dev_priv->dev)) {
4309 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4310 if (val <= dev_priv->rps.min_freq_softlimit)
4311 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4312 } else {
4313 limits = dev_priv->rps.max_freq_softlimit << 24;
4314 if (val <= dev_priv->rps.min_freq_softlimit)
4315 limits |= dev_priv->rps.min_freq_softlimit << 16;
4316 }
4317
4318 return limits;
4319 }
4320
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)4321 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4322 {
4323 int new_power;
4324 u32 threshold_up = 0, threshold_down = 0; /* in % */
4325 u32 ei_up = 0, ei_down = 0;
4326
4327 new_power = dev_priv->rps.power;
4328 switch (dev_priv->rps.power) {
4329 case LOW_POWER:
4330 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4331 new_power = BETWEEN;
4332 break;
4333
4334 case BETWEEN:
4335 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4336 new_power = LOW_POWER;
4337 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4338 new_power = HIGH_POWER;
4339 break;
4340
4341 case HIGH_POWER:
4342 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4343 new_power = BETWEEN;
4344 break;
4345 }
4346 /* Max/min bins are special */
4347 if (val <= dev_priv->rps.min_freq_softlimit)
4348 new_power = LOW_POWER;
4349 if (val >= dev_priv->rps.max_freq_softlimit)
4350 new_power = HIGH_POWER;
4351 if (new_power == dev_priv->rps.power)
4352 return;
4353
4354 /* Note the units here are not exactly 1us, but 1280ns. */
4355 switch (new_power) {
4356 case LOW_POWER:
4357 /* Upclock if more than 95% busy over 16ms */
4358 ei_up = 16000;
4359 threshold_up = 95;
4360
4361 /* Downclock if less than 85% busy over 32ms */
4362 ei_down = 32000;
4363 threshold_down = 85;
4364 break;
4365
4366 case BETWEEN:
4367 /* Upclock if more than 90% busy over 13ms */
4368 ei_up = 13000;
4369 threshold_up = 90;
4370
4371 /* Downclock if less than 75% busy over 32ms */
4372 ei_down = 32000;
4373 threshold_down = 75;
4374 break;
4375
4376 case HIGH_POWER:
4377 /* Upclock if more than 85% busy over 10ms */
4378 ei_up = 10000;
4379 threshold_up = 85;
4380
4381 /* Downclock if less than 60% busy over 32ms */
4382 ei_down = 32000;
4383 threshold_down = 60;
4384 break;
4385 }
4386
4387 /* When byt can survive without system hang with dynamic
4388 * sw freq adjustments, this restriction can be lifted.
4389 */
4390 if (IS_VALLEYVIEW(dev_priv))
4391 goto skip_hw_write;
4392
4393 I915_WRITE(GEN6_RP_UP_EI,
4394 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4395 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4396 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4397
4398 I915_WRITE(GEN6_RP_DOWN_EI,
4399 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4400 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4401 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4402
4403 I915_WRITE(GEN6_RP_CONTROL,
4404 GEN6_RP_MEDIA_TURBO |
4405 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4406 GEN6_RP_MEDIA_IS_GFX |
4407 GEN6_RP_ENABLE |
4408 GEN6_RP_UP_BUSY_AVG |
4409 GEN6_RP_DOWN_IDLE_AVG);
4410
4411 skip_hw_write:
4412 dev_priv->rps.power = new_power;
4413 dev_priv->rps.up_threshold = threshold_up;
4414 dev_priv->rps.down_threshold = threshold_down;
4415 dev_priv->rps.last_adj = 0;
4416 }
4417
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)4418 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4419 {
4420 u32 mask = 0;
4421
4422 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4423 if (val > dev_priv->rps.min_freq_softlimit)
4424 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4425 if (val < dev_priv->rps.max_freq_softlimit)
4426 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4427
4428 mask &= dev_priv->pm_rps_events;
4429
4430 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4431 }
4432
4433 /* gen6_set_rps is called to update the frequency request, but should also be
4434 * called when the range (min_delay and max_delay) is modified so that we can
4435 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_device * dev,u8 val)4436 static void gen6_set_rps(struct drm_device *dev, u8 val)
4437 {
4438 struct drm_i915_private *dev_priv = dev->dev_private;
4439
4440 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4441 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4442 return;
4443
4444 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4445 WARN_ON(val > dev_priv->rps.max_freq);
4446 WARN_ON(val < dev_priv->rps.min_freq);
4447
4448 /* min/max delay may still have been modified so be sure to
4449 * write the limits value.
4450 */
4451 if (val != dev_priv->rps.cur_freq) {
4452 gen6_set_rps_thresholds(dev_priv, val);
4453
4454 if (IS_GEN9(dev))
4455 I915_WRITE(GEN6_RPNSWREQ,
4456 GEN9_FREQUENCY(val));
4457 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4458 I915_WRITE(GEN6_RPNSWREQ,
4459 HSW_FREQUENCY(val));
4460 else
4461 I915_WRITE(GEN6_RPNSWREQ,
4462 GEN6_FREQUENCY(val) |
4463 GEN6_OFFSET(0) |
4464 GEN6_AGGRESSIVE_TURBO);
4465 }
4466
4467 /* Make sure we continue to get interrupts
4468 * until we hit the minimum or maximum frequencies.
4469 */
4470 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4471 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4472
4473 POSTING_READ(GEN6_RPNSWREQ);
4474
4475 dev_priv->rps.cur_freq = val;
4476 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4477 }
4478
valleyview_set_rps(struct drm_device * dev,u8 val)4479 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4480 {
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482
4483 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4484 WARN_ON(val > dev_priv->rps.max_freq);
4485 WARN_ON(val < dev_priv->rps.min_freq);
4486
4487 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4488 "Odd GPU freq value\n"))
4489 val &= ~1;
4490
4491 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4492
4493 if (val != dev_priv->rps.cur_freq) {
4494 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4495 if (!IS_CHERRYVIEW(dev_priv))
4496 gen6_set_rps_thresholds(dev_priv, val);
4497 }
4498
4499 dev_priv->rps.cur_freq = val;
4500 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4501 }
4502
4503 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4504 *
4505 * * If Gfx is Idle, then
4506 * 1. Forcewake Media well.
4507 * 2. Request idle freq.
4508 * 3. Release Forcewake of Media well.
4509 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)4510 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4511 {
4512 u32 val = dev_priv->rps.idle_freq;
4513
4514 if (dev_priv->rps.cur_freq <= val)
4515 return;
4516
4517 /* Wake up the media well, as that takes a lot less
4518 * power than the Render well. */
4519 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4520 valleyview_set_rps(dev_priv->dev, val);
4521 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4522 }
4523
gen6_rps_busy(struct drm_i915_private * dev_priv)4524 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4525 {
4526 mutex_lock(&dev_priv->rps.hw_lock);
4527 if (dev_priv->rps.enabled) {
4528 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
4529 gen6_rps_reset_ei(dev_priv);
4530 I915_WRITE(GEN6_PMINTRMSK,
4531 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4532 }
4533 mutex_unlock(&dev_priv->rps.hw_lock);
4534 }
4535
gen6_rps_idle(struct drm_i915_private * dev_priv)4536 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4537 {
4538 struct drm_device *dev = dev_priv->dev;
4539
4540 mutex_lock(&dev_priv->rps.hw_lock);
4541 if (dev_priv->rps.enabled) {
4542 if (IS_VALLEYVIEW(dev))
4543 vlv_set_rps_idle(dev_priv);
4544 else
4545 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4546 dev_priv->rps.last_adj = 0;
4547 I915_WRITE(GEN6_PMINTRMSK,
4548 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4549 }
4550 mutex_unlock(&dev_priv->rps.hw_lock);
4551
4552 spin_lock(&dev_priv->rps.client_lock);
4553 while (!list_empty(&dev_priv->rps.clients))
4554 list_del_init(dev_priv->rps.clients.next);
4555 spin_unlock(&dev_priv->rps.client_lock);
4556 }
4557
gen6_rps_boost(struct drm_i915_private * dev_priv,struct intel_rps_client * rps,unsigned long submitted)4558 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4559 struct intel_rps_client *rps,
4560 unsigned long submitted)
4561 {
4562 /* This is intentionally racy! We peek at the state here, then
4563 * validate inside the RPS worker.
4564 */
4565 if (!(dev_priv->mm.busy &&
4566 dev_priv->rps.enabled &&
4567 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4568 return;
4569
4570 /* Force a RPS boost (and don't count it against the client) if
4571 * the GPU is severely congested.
4572 */
4573 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4574 rps = NULL;
4575
4576 spin_lock(&dev_priv->rps.client_lock);
4577 if (rps == NULL || list_empty(&rps->link)) {
4578 spin_lock_irq(&dev_priv->irq_lock);
4579 if (dev_priv->rps.interrupts_enabled) {
4580 dev_priv->rps.client_boost = true;
4581 queue_work(dev_priv->wq, &dev_priv->rps.work);
4582 }
4583 spin_unlock_irq(&dev_priv->irq_lock);
4584
4585 if (rps != NULL) {
4586 list_add(&rps->link, &dev_priv->rps.clients);
4587 rps->boosts++;
4588 } else
4589 dev_priv->rps.boosts++;
4590 }
4591 spin_unlock(&dev_priv->rps.client_lock);
4592 }
4593
intel_set_rps(struct drm_device * dev,u8 val)4594 void intel_set_rps(struct drm_device *dev, u8 val)
4595 {
4596 if (IS_VALLEYVIEW(dev))
4597 valleyview_set_rps(dev, val);
4598 else
4599 gen6_set_rps(dev, val);
4600 }
4601
gen9_disable_rc6(struct drm_device * dev)4602 static void gen9_disable_rc6(struct drm_device *dev)
4603 {
4604 struct drm_i915_private *dev_priv = dev->dev_private;
4605
4606 I915_WRITE(GEN6_RC_CONTROL, 0);
4607 }
4608
gen9_disable_rps(struct drm_device * dev)4609 static void gen9_disable_rps(struct drm_device *dev)
4610 {
4611 struct drm_i915_private *dev_priv = dev->dev_private;
4612
4613 I915_WRITE(GEN9_PG_ENABLE, 0);
4614 }
4615
gen6_disable_rc6(struct drm_device * dev)4616 static void gen6_disable_rc6(struct drm_device *dev)
4617 {
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619
4620 I915_WRITE(GEN6_RC_CONTROL, 0);
4621 }
4622
gen6_disable_rps(struct drm_device * dev)4623 static void gen6_disable_rps(struct drm_device *dev)
4624 {
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4628 }
4629
cherryview_disable_rc6(struct drm_device * dev)4630 static void cherryview_disable_rc6(struct drm_device *dev)
4631 {
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634 I915_WRITE(GEN6_RC_CONTROL, 0);
4635 }
4636
valleyview_disable_rc6(struct drm_device * dev)4637 static void valleyview_disable_rc6(struct drm_device *dev)
4638 {
4639 struct drm_i915_private *dev_priv = dev->dev_private;
4640
4641 /* we're doing forcewake before Disabling RC6,
4642 * This what the BIOS expects when going into suspend */
4643 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4644
4645 I915_WRITE(GEN6_RC_CONTROL, 0);
4646
4647 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4648 }
4649
intel_print_rc6_info(struct drm_device * dev,u32 mode)4650 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4651 {
4652 if (IS_VALLEYVIEW(dev)) {
4653 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4654 mode = GEN6_RC_CTL_RC6_ENABLE;
4655 else
4656 mode = 0;
4657 }
4658 if (HAS_RC6p(dev))
4659 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4660 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4661 (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4662 (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4663
4664 else
4665 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4666 (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4667 }
4668
sanitize_rc6_option(const struct drm_device * dev,int enable_rc6)4669 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4670 {
4671 /* No RC6 before Ironlake and code is gone for ilk. */
4672 if (INTEL_INFO(dev)->gen < 6)
4673 return 0;
4674
4675 /* Respect the kernel parameter if it is set */
4676 if (enable_rc6 >= 0) {
4677 int mask;
4678
4679 if (HAS_RC6p(dev))
4680 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4681 INTEL_RC6pp_ENABLE;
4682 else
4683 mask = INTEL_RC6_ENABLE;
4684
4685 if ((enable_rc6 & mask) != enable_rc6)
4686 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4687 enable_rc6 & mask, enable_rc6, mask);
4688
4689 return enable_rc6 & mask;
4690 }
4691
4692 if (IS_IVYBRIDGE(dev))
4693 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4694
4695 return INTEL_RC6_ENABLE;
4696 }
4697
intel_enable_rc6(const struct drm_device * dev)4698 int intel_enable_rc6(const struct drm_device *dev)
4699 {
4700 return i915.enable_rc6;
4701 }
4702
gen6_init_rps_frequencies(struct drm_device * dev)4703 static void gen6_init_rps_frequencies(struct drm_device *dev)
4704 {
4705 struct drm_i915_private *dev_priv = dev->dev_private;
4706 uint32_t rp_state_cap;
4707 u32 ddcc_status = 0;
4708 int ret;
4709
4710 /* All of these values are in units of 50MHz */
4711 dev_priv->rps.cur_freq = 0;
4712 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4713 if (IS_BROXTON(dev)) {
4714 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4715 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4716 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4717 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4718 } else {
4719 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4720 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4721 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4722 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4723 }
4724
4725 /* hw_max = RP0 until we check for overclocking */
4726 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4727
4728 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4729 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4730 ret = sandybridge_pcode_read(dev_priv,
4731 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4732 &ddcc_status);
4733 if (0 == ret)
4734 dev_priv->rps.efficient_freq =
4735 clamp_t(u8,
4736 ((ddcc_status >> 8) & 0xff),
4737 dev_priv->rps.min_freq,
4738 dev_priv->rps.max_freq);
4739 }
4740
4741 if (IS_SKYLAKE(dev)) {
4742 /* Store the frequency values in 16.66 MHZ units, which is
4743 the natural hardware unit for SKL */
4744 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4745 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4746 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4747 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4748 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4749 }
4750
4751 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4752
4753 /* Preserve min/max settings in case of re-init */
4754 if (dev_priv->rps.max_freq_softlimit == 0)
4755 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4756
4757 if (dev_priv->rps.min_freq_softlimit == 0) {
4758 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4759 dev_priv->rps.min_freq_softlimit =
4760 max_t(int, dev_priv->rps.efficient_freq,
4761 intel_freq_opcode(dev_priv, 450));
4762 else
4763 dev_priv->rps.min_freq_softlimit =
4764 dev_priv->rps.min_freq;
4765 }
4766 }
4767
4768 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_device * dev)4769 static void gen9_enable_rps(struct drm_device *dev)
4770 {
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772
4773 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4774
4775 gen6_init_rps_frequencies(dev);
4776
4777 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4778 if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4779 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4780 return;
4781 }
4782
4783 /* Program defaults and thresholds for RPS*/
4784 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4785 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4786
4787 /* 1 second timeout*/
4788 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4789 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4790
4791 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4792
4793 /* Leaning on the below call to gen6_set_rps to program/setup the
4794 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4795 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4796 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4797 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4798
4799 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4800 }
4801
gen9_enable_rc6(struct drm_device * dev)4802 static void gen9_enable_rc6(struct drm_device *dev)
4803 {
4804 struct drm_i915_private *dev_priv = dev->dev_private;
4805 struct intel_engine_cs *ring;
4806 uint32_t rc6_mask = 0;
4807 int unused;
4808
4809 /* 1a: Software RC state - RC0 */
4810 I915_WRITE(GEN6_RC_STATE, 0);
4811
4812 /* 1b: Get forcewake during program sequence. Although the driver
4813 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4814 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4815
4816 /* 2a: Disable RC states. */
4817 I915_WRITE(GEN6_RC_CONTROL, 0);
4818
4819 /* 2b: Program RC6 thresholds.*/
4820
4821 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4822 if (IS_SKYLAKE(dev))
4823 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4824 else
4825 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4826 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4827 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4828 for_each_ring(ring, dev_priv, unused)
4829 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4830
4831 if (HAS_GUC_UCODE(dev))
4832 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4833
4834 I915_WRITE(GEN6_RC_SLEEP, 0);
4835
4836 /* 2c: Program Coarse Power Gating Policies. */
4837 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4838 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4839
4840 /* 3a: Enable RC6 */
4841 if (!dev_priv->rps.ctx_corrupted &&
4842 intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4843 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4844 DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4845 "on" : "off");
4846 /* WaRsUseTimeoutMode */
4847 if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4848 (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4849 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4850 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4851 GEN7_RC_CTL_TO_MODE |
4852 rc6_mask);
4853 } else {
4854 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4855 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4856 GEN6_RC_CTL_EI_MODE(1) |
4857 rc6_mask);
4858 }
4859
4860 /*
4861 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4862 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4863 */
4864 if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4865 INTEL_INFO(dev)->gen == 9)
4866 I915_WRITE(GEN9_PG_ENABLE, 0);
4867 else
4868 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4869 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4870
4871 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4872
4873 }
4874
gen8_enable_rps(struct drm_device * dev)4875 static void gen8_enable_rps(struct drm_device *dev)
4876 {
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 struct intel_engine_cs *ring;
4879 uint32_t rc6_mask = 0;
4880 int unused;
4881
4882 /* 1a: Software RC state - RC0 */
4883 I915_WRITE(GEN6_RC_STATE, 0);
4884
4885 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4886 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4887 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4888
4889 /* 2a: Disable RC states. */
4890 I915_WRITE(GEN6_RC_CONTROL, 0);
4891
4892 /* Initialize rps frequencies */
4893 gen6_init_rps_frequencies(dev);
4894
4895 /* 2b: Program RC6 thresholds.*/
4896 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4897 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4898 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4899 for_each_ring(ring, dev_priv, unused)
4900 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4901 I915_WRITE(GEN6_RC_SLEEP, 0);
4902 if (IS_BROADWELL(dev))
4903 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4904 else
4905 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4906
4907 /* 3: Enable RC6 */
4908 if (!dev_priv->rps.ctx_corrupted &&
4909 intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4910 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4911 intel_print_rc6_info(dev, rc6_mask);
4912 if (IS_BROADWELL(dev))
4913 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4914 GEN7_RC_CTL_TO_MODE |
4915 rc6_mask);
4916 else
4917 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4918 GEN6_RC_CTL_EI_MODE(1) |
4919 rc6_mask);
4920
4921 /* 4 Program defaults and thresholds for RPS*/
4922 I915_WRITE(GEN6_RPNSWREQ,
4923 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4924 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4925 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4926 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4927 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4928
4929 /* Docs recommend 900MHz, and 300 MHz respectively */
4930 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4931 dev_priv->rps.max_freq_softlimit << 24 |
4932 dev_priv->rps.min_freq_softlimit << 16);
4933
4934 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4935 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4936 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4937 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4938
4939 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4940
4941 /* 5: Enable RPS */
4942 I915_WRITE(GEN6_RP_CONTROL,
4943 GEN6_RP_MEDIA_TURBO |
4944 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4945 GEN6_RP_MEDIA_IS_GFX |
4946 GEN6_RP_ENABLE |
4947 GEN6_RP_UP_BUSY_AVG |
4948 GEN6_RP_DOWN_IDLE_AVG);
4949
4950 /* 6: Ring frequency + overclocking (our driver does this later */
4951
4952 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4953 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4954
4955 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4956 }
4957
gen6_enable_rps(struct drm_device * dev)4958 static void gen6_enable_rps(struct drm_device *dev)
4959 {
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 struct intel_engine_cs *ring;
4962 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4963 u32 gtfifodbg;
4964 int rc6_mode;
4965 int i, ret;
4966
4967 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4968
4969 /* Here begins a magic sequence of register writes to enable
4970 * auto-downclocking.
4971 *
4972 * Perhaps there might be some value in exposing these to
4973 * userspace...
4974 */
4975 I915_WRITE(GEN6_RC_STATE, 0);
4976
4977 /* Clear the DBG now so we don't confuse earlier errors */
4978 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4979 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4980 I915_WRITE(GTFIFODBG, gtfifodbg);
4981 }
4982
4983 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4984
4985 /* Initialize rps frequencies */
4986 gen6_init_rps_frequencies(dev);
4987
4988 /* disable the counters and set deterministic thresholds */
4989 I915_WRITE(GEN6_RC_CONTROL, 0);
4990
4991 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4992 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4993 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4994 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4995 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4996
4997 for_each_ring(ring, dev_priv, i)
4998 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4999
5000 I915_WRITE(GEN6_RC_SLEEP, 0);
5001 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5002 if (IS_IVYBRIDGE(dev))
5003 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5004 else
5005 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5006 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5007 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5008
5009 /* Check if we are enabling RC6 */
5010 rc6_mode = intel_enable_rc6(dev_priv->dev);
5011 if (rc6_mode & INTEL_RC6_ENABLE)
5012 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5013
5014 /* We don't use those on Haswell */
5015 if (!IS_HASWELL(dev)) {
5016 if (rc6_mode & INTEL_RC6p_ENABLE)
5017 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5018
5019 if (rc6_mode & INTEL_RC6pp_ENABLE)
5020 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5021 }
5022
5023 intel_print_rc6_info(dev, rc6_mask);
5024
5025 I915_WRITE(GEN6_RC_CONTROL,
5026 rc6_mask |
5027 GEN6_RC_CTL_EI_MODE(1) |
5028 GEN6_RC_CTL_HW_ENABLE);
5029
5030 /* Power down if completely idle for over 50ms */
5031 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5032 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5033
5034 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5035 if (ret)
5036 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5037
5038 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5039 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5040 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5041 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5042 (pcu_mbox & 0xff) * 50);
5043 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5044 }
5045
5046 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5047 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5048
5049 rc6vids = 0;
5050 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5051 if (IS_GEN6(dev) && ret) {
5052 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5053 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5054 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5055 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5056 rc6vids &= 0xffff00;
5057 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5058 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5059 if (ret)
5060 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5061 }
5062
5063 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5064 }
5065
__gen6_update_ring_freq(struct drm_device * dev)5066 static void __gen6_update_ring_freq(struct drm_device *dev)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 int min_freq = 15;
5070 unsigned int gpu_freq;
5071 unsigned int max_ia_freq, min_ring_freq;
5072 unsigned int max_gpu_freq, min_gpu_freq;
5073 int scaling_factor = 180;
5074 struct cpufreq_policy *policy;
5075
5076 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5077
5078 policy = cpufreq_cpu_get(0);
5079 if (policy) {
5080 max_ia_freq = policy->cpuinfo.max_freq;
5081 cpufreq_cpu_put(policy);
5082 } else {
5083 /*
5084 * Default to measured freq if none found, PCU will ensure we
5085 * don't go over
5086 */
5087 max_ia_freq = tsc_khz;
5088 }
5089
5090 /* Convert from kHz to MHz */
5091 max_ia_freq /= 1000;
5092
5093 min_ring_freq = I915_READ(DCLK) & 0xf;
5094 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5095 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5096
5097 if (IS_SKYLAKE(dev)) {
5098 /* Convert GT frequency to 50 HZ units */
5099 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5100 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5101 } else {
5102 min_gpu_freq = dev_priv->rps.min_freq;
5103 max_gpu_freq = dev_priv->rps.max_freq;
5104 }
5105
5106 /*
5107 * For each potential GPU frequency, load a ring frequency we'd like
5108 * to use for memory access. We do this by specifying the IA frequency
5109 * the PCU should use as a reference to determine the ring frequency.
5110 */
5111 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5112 int diff = max_gpu_freq - gpu_freq;
5113 unsigned int ia_freq = 0, ring_freq = 0;
5114
5115 if (IS_SKYLAKE(dev)) {
5116 /*
5117 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5118 * No floor required for ring frequency on SKL.
5119 */
5120 ring_freq = gpu_freq;
5121 } else if (INTEL_INFO(dev)->gen >= 8) {
5122 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5123 ring_freq = max(min_ring_freq, gpu_freq);
5124 } else if (IS_HASWELL(dev)) {
5125 ring_freq = mult_frac(gpu_freq, 5, 4);
5126 ring_freq = max(min_ring_freq, ring_freq);
5127 /* leave ia_freq as the default, chosen by cpufreq */
5128 } else {
5129 /* On older processors, there is no separate ring
5130 * clock domain, so in order to boost the bandwidth
5131 * of the ring, we need to upclock the CPU (ia_freq).
5132 *
5133 * For GPU frequencies less than 750MHz,
5134 * just use the lowest ring freq.
5135 */
5136 if (gpu_freq < min_freq)
5137 ia_freq = 800;
5138 else
5139 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5140 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5141 }
5142
5143 sandybridge_pcode_write(dev_priv,
5144 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5145 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5146 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5147 gpu_freq);
5148 }
5149 }
5150
gen6_update_ring_freq(struct drm_device * dev)5151 void gen6_update_ring_freq(struct drm_device *dev)
5152 {
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154
5155 if (!HAS_CORE_RING_FREQ(dev))
5156 return;
5157
5158 mutex_lock(&dev_priv->rps.hw_lock);
5159 __gen6_update_ring_freq(dev);
5160 mutex_unlock(&dev_priv->rps.hw_lock);
5161 }
5162
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)5163 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5164 {
5165 struct drm_device *dev = dev_priv->dev;
5166 u32 val, rp0;
5167
5168 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5169
5170 switch (INTEL_INFO(dev)->eu_total) {
5171 case 8:
5172 /* (2 * 4) config */
5173 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5174 break;
5175 case 12:
5176 /* (2 * 6) config */
5177 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5178 break;
5179 case 16:
5180 /* (2 * 8) config */
5181 default:
5182 /* Setting (2 * 8) Min RP0 for any other combination */
5183 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5184 break;
5185 }
5186
5187 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5188
5189 return rp0;
5190 }
5191
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)5192 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5193 {
5194 u32 val, rpe;
5195
5196 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5197 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5198
5199 return rpe;
5200 }
5201
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)5202 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5203 {
5204 u32 val, rp1;
5205
5206 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5207 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5208
5209 return rp1;
5210 }
5211
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)5212 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5213 {
5214 u32 val, rp1;
5215
5216 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5217
5218 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5219
5220 return rp1;
5221 }
5222
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)5223 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5224 {
5225 u32 val, rp0;
5226
5227 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5228
5229 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5230 /* Clamp to max */
5231 rp0 = min_t(u32, rp0, 0xea);
5232
5233 return rp0;
5234 }
5235
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)5236 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5237 {
5238 u32 val, rpe;
5239
5240 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5241 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5242 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5243 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5244
5245 return rpe;
5246 }
5247
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)5248 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5249 {
5250 return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5251 }
5252
5253 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)5254 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5255 {
5256 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5257
5258 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5259 dev_priv->vlv_pctx->stolen->start);
5260 }
5261
5262
5263 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)5264 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5265 {
5266 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5267
5268 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5269 }
5270
cherryview_setup_pctx(struct drm_device * dev)5271 static void cherryview_setup_pctx(struct drm_device *dev)
5272 {
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 unsigned long pctx_paddr, paddr;
5275 struct i915_gtt *gtt = &dev_priv->gtt;
5276 u32 pcbr;
5277 int pctx_size = 32*1024;
5278
5279 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5280
5281 pcbr = I915_READ(VLV_PCBR);
5282 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5283 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5284 paddr = (dev_priv->mm.stolen_base +
5285 (gtt->stolen_size - pctx_size));
5286
5287 pctx_paddr = (paddr & (~4095));
5288 I915_WRITE(VLV_PCBR, pctx_paddr);
5289 }
5290
5291 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5292 }
5293
valleyview_setup_pctx(struct drm_device * dev)5294 static void valleyview_setup_pctx(struct drm_device *dev)
5295 {
5296 struct drm_i915_private *dev_priv = dev->dev_private;
5297 struct drm_i915_gem_object *pctx;
5298 unsigned long pctx_paddr;
5299 u32 pcbr;
5300 int pctx_size = 24*1024;
5301
5302 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5303
5304 pcbr = I915_READ(VLV_PCBR);
5305 if (pcbr) {
5306 /* BIOS set it up already, grab the pre-alloc'd space */
5307 int pcbr_offset;
5308
5309 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5310 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5311 pcbr_offset,
5312 I915_GTT_OFFSET_NONE,
5313 pctx_size);
5314 goto out;
5315 }
5316
5317 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5318
5319 /*
5320 * From the Gunit register HAS:
5321 * The Gfx driver is expected to program this register and ensure
5322 * proper allocation within Gfx stolen memory. For example, this
5323 * register should be programmed such than the PCBR range does not
5324 * overlap with other ranges, such as the frame buffer, protected
5325 * memory, or any other relevant ranges.
5326 */
5327 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5328 if (!pctx) {
5329 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5330 return;
5331 }
5332
5333 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5334 I915_WRITE(VLV_PCBR, pctx_paddr);
5335
5336 out:
5337 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5338 dev_priv->vlv_pctx = pctx;
5339 }
5340
valleyview_cleanup_pctx(struct drm_device * dev)5341 static void valleyview_cleanup_pctx(struct drm_device *dev)
5342 {
5343 struct drm_i915_private *dev_priv = dev->dev_private;
5344
5345 if (WARN_ON(!dev_priv->vlv_pctx))
5346 return;
5347
5348 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5349 dev_priv->vlv_pctx = NULL;
5350 }
5351
valleyview_init_gt_powersave(struct drm_device * dev)5352 static void valleyview_init_gt_powersave(struct drm_device *dev)
5353 {
5354 struct drm_i915_private *dev_priv = dev->dev_private;
5355 u32 val;
5356
5357 valleyview_setup_pctx(dev);
5358
5359 mutex_lock(&dev_priv->rps.hw_lock);
5360
5361 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5362 switch ((val >> 6) & 3) {
5363 case 0:
5364 case 1:
5365 dev_priv->mem_freq = 800;
5366 break;
5367 case 2:
5368 dev_priv->mem_freq = 1066;
5369 break;
5370 case 3:
5371 dev_priv->mem_freq = 1333;
5372 break;
5373 }
5374 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5375
5376 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5377 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5378 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5379 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5380 dev_priv->rps.max_freq);
5381
5382 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5383 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5384 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5385 dev_priv->rps.efficient_freq);
5386
5387 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5388 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5389 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5390 dev_priv->rps.rp1_freq);
5391
5392 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5393 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5394 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5395 dev_priv->rps.min_freq);
5396
5397 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5398
5399 /* Preserve min/max settings in case of re-init */
5400 if (dev_priv->rps.max_freq_softlimit == 0)
5401 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5402
5403 if (dev_priv->rps.min_freq_softlimit == 0)
5404 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5405
5406 mutex_unlock(&dev_priv->rps.hw_lock);
5407 }
5408
cherryview_init_gt_powersave(struct drm_device * dev)5409 static void cherryview_init_gt_powersave(struct drm_device *dev)
5410 {
5411 struct drm_i915_private *dev_priv = dev->dev_private;
5412 u32 val;
5413
5414 cherryview_setup_pctx(dev);
5415
5416 mutex_lock(&dev_priv->rps.hw_lock);
5417
5418 mutex_lock(&dev_priv->sb_lock);
5419 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5420 mutex_unlock(&dev_priv->sb_lock);
5421
5422 switch ((val >> 2) & 0x7) {
5423 case 3:
5424 dev_priv->mem_freq = 2000;
5425 break;
5426 default:
5427 dev_priv->mem_freq = 1600;
5428 break;
5429 }
5430 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5431
5432 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5433 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5434 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5435 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5436 dev_priv->rps.max_freq);
5437
5438 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5439 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5440 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5441 dev_priv->rps.efficient_freq);
5442
5443 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5444 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5445 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5446 dev_priv->rps.rp1_freq);
5447
5448 /* PUnit validated range is only [RPe, RP0] */
5449 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5450 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5451 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5452 dev_priv->rps.min_freq);
5453
5454 WARN_ONCE((dev_priv->rps.max_freq |
5455 dev_priv->rps.efficient_freq |
5456 dev_priv->rps.rp1_freq |
5457 dev_priv->rps.min_freq) & 1,
5458 "Odd GPU freq values\n");
5459
5460 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5461
5462 /* Preserve min/max settings in case of re-init */
5463 if (dev_priv->rps.max_freq_softlimit == 0)
5464 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5465
5466 if (dev_priv->rps.min_freq_softlimit == 0)
5467 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5468
5469 mutex_unlock(&dev_priv->rps.hw_lock);
5470 }
5471
valleyview_cleanup_gt_powersave(struct drm_device * dev)5472 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5473 {
5474 valleyview_cleanup_pctx(dev);
5475 }
5476
cherryview_enable_rps(struct drm_device * dev)5477 static void cherryview_enable_rps(struct drm_device *dev)
5478 {
5479 struct drm_i915_private *dev_priv = dev->dev_private;
5480 struct intel_engine_cs *ring;
5481 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5482 int i;
5483
5484 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5485
5486 gtfifodbg = I915_READ(GTFIFODBG);
5487 if (gtfifodbg) {
5488 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5489 gtfifodbg);
5490 I915_WRITE(GTFIFODBG, gtfifodbg);
5491 }
5492
5493 cherryview_check_pctx(dev_priv);
5494
5495 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5496 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5497 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5498
5499 /* Disable RC states. */
5500 I915_WRITE(GEN6_RC_CONTROL, 0);
5501
5502 /* 2a: Program RC6 thresholds.*/
5503 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5504 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5505 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5506
5507 for_each_ring(ring, dev_priv, i)
5508 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5509 I915_WRITE(GEN6_RC_SLEEP, 0);
5510
5511 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5512 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5513
5514 /* allows RC6 residency counter to work */
5515 I915_WRITE(VLV_COUNTER_CONTROL,
5516 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5517 VLV_MEDIA_RC6_COUNT_EN |
5518 VLV_RENDER_RC6_COUNT_EN));
5519
5520 /* For now we assume BIOS is allocating and populating the PCBR */
5521 pcbr = I915_READ(VLV_PCBR);
5522
5523 /* 3: Enable RC6 */
5524 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5525 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5526 rc6_mode = GEN7_RC_CTL_TO_MODE;
5527
5528 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5529
5530 /* 4 Program defaults and thresholds for RPS*/
5531 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5532 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5533 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5534 I915_WRITE(GEN6_RP_UP_EI, 66000);
5535 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5536
5537 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5538
5539 /* 5: Enable RPS */
5540 I915_WRITE(GEN6_RP_CONTROL,
5541 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5542 GEN6_RP_MEDIA_IS_GFX |
5543 GEN6_RP_ENABLE |
5544 GEN6_RP_UP_BUSY_AVG |
5545 GEN6_RP_DOWN_IDLE_AVG);
5546
5547 /* Setting Fixed Bias */
5548 val = VLV_OVERRIDE_EN |
5549 VLV_SOC_TDP_EN |
5550 CHV_BIAS_CPU_50_SOC_50;
5551 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5552
5553 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5554
5555 /* RPS code assumes GPLL is used */
5556 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5557
5558 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5559 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5560
5561 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5562 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5563 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5564 dev_priv->rps.cur_freq);
5565
5566 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5567 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5568 dev_priv->rps.efficient_freq);
5569
5570 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5571
5572 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5573 }
5574
valleyview_enable_rps(struct drm_device * dev)5575 static void valleyview_enable_rps(struct drm_device *dev)
5576 {
5577 struct drm_i915_private *dev_priv = dev->dev_private;
5578 struct intel_engine_cs *ring;
5579 u32 gtfifodbg, val, rc6_mode = 0;
5580 int i;
5581
5582 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5583
5584 valleyview_check_pctx(dev_priv);
5585
5586 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5587 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5588 gtfifodbg);
5589 I915_WRITE(GTFIFODBG, gtfifodbg);
5590 }
5591
5592 /* If VLV, Forcewake all wells, else re-direct to regular path */
5593 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5594
5595 /* Disable RC states. */
5596 I915_WRITE(GEN6_RC_CONTROL, 0);
5597
5598 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5599 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5600 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5601 I915_WRITE(GEN6_RP_UP_EI, 66000);
5602 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5603
5604 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5605
5606 I915_WRITE(GEN6_RP_CONTROL,
5607 GEN6_RP_MEDIA_TURBO |
5608 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5609 GEN6_RP_MEDIA_IS_GFX |
5610 GEN6_RP_ENABLE |
5611 GEN6_RP_UP_BUSY_AVG |
5612 GEN6_RP_DOWN_IDLE_CONT);
5613
5614 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5615 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5616 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5617
5618 for_each_ring(ring, dev_priv, i)
5619 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5620
5621 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5622
5623 /* allows RC6 residency counter to work */
5624 I915_WRITE(VLV_COUNTER_CONTROL,
5625 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5626 VLV_RENDER_RC0_COUNT_EN |
5627 VLV_MEDIA_RC6_COUNT_EN |
5628 VLV_RENDER_RC6_COUNT_EN));
5629
5630 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5631 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5632
5633 intel_print_rc6_info(dev, rc6_mode);
5634
5635 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5636
5637 /* Setting Fixed Bias */
5638 val = VLV_OVERRIDE_EN |
5639 VLV_SOC_TDP_EN |
5640 VLV_BIAS_CPU_125_SOC_875;
5641 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5642
5643 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5644
5645 /* RPS code assumes GPLL is used */
5646 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5647
5648 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5649 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5650
5651 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5652 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5653 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5654 dev_priv->rps.cur_freq);
5655
5656 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5657 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5658 dev_priv->rps.efficient_freq);
5659
5660 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5661
5662 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5663 }
5664
intel_pxfreq(u32 vidfreq)5665 static unsigned long intel_pxfreq(u32 vidfreq)
5666 {
5667 unsigned long freq;
5668 int div = (vidfreq & 0x3f0000) >> 16;
5669 int post = (vidfreq & 0x3000) >> 12;
5670 int pre = (vidfreq & 0x7);
5671
5672 if (!pre)
5673 return 0;
5674
5675 freq = ((div * 133333) / ((1<<post) * pre));
5676
5677 return freq;
5678 }
5679
5680 static const struct cparams {
5681 u16 i;
5682 u16 t;
5683 u16 m;
5684 u16 c;
5685 } cparams[] = {
5686 { 1, 1333, 301, 28664 },
5687 { 1, 1066, 294, 24460 },
5688 { 1, 800, 294, 25192 },
5689 { 0, 1333, 276, 27605 },
5690 { 0, 1066, 276, 27605 },
5691 { 0, 800, 231, 23784 },
5692 };
5693
__i915_chipset_val(struct drm_i915_private * dev_priv)5694 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5695 {
5696 u64 total_count, diff, ret;
5697 u32 count1, count2, count3, m = 0, c = 0;
5698 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5699 int i;
5700
5701 assert_spin_locked(&mchdev_lock);
5702
5703 diff1 = now - dev_priv->ips.last_time1;
5704
5705 /* Prevent division-by-zero if we are asking too fast.
5706 * Also, we don't get interesting results if we are polling
5707 * faster than once in 10ms, so just return the saved value
5708 * in such cases.
5709 */
5710 if (diff1 <= 10)
5711 return dev_priv->ips.chipset_power;
5712
5713 count1 = I915_READ(DMIEC);
5714 count2 = I915_READ(DDREC);
5715 count3 = I915_READ(CSIEC);
5716
5717 total_count = count1 + count2 + count3;
5718
5719 /* FIXME: handle per-counter overflow */
5720 if (total_count < dev_priv->ips.last_count1) {
5721 diff = ~0UL - dev_priv->ips.last_count1;
5722 diff += total_count;
5723 } else {
5724 diff = total_count - dev_priv->ips.last_count1;
5725 }
5726
5727 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5728 if (cparams[i].i == dev_priv->ips.c_m &&
5729 cparams[i].t == dev_priv->ips.r_t) {
5730 m = cparams[i].m;
5731 c = cparams[i].c;
5732 break;
5733 }
5734 }
5735
5736 diff = div_u64(diff, diff1);
5737 ret = ((m * diff) + c);
5738 ret = div_u64(ret, 10);
5739
5740 dev_priv->ips.last_count1 = total_count;
5741 dev_priv->ips.last_time1 = now;
5742
5743 dev_priv->ips.chipset_power = ret;
5744
5745 return ret;
5746 }
5747
i915_chipset_val(struct drm_i915_private * dev_priv)5748 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5749 {
5750 struct drm_device *dev = dev_priv->dev;
5751 unsigned long val;
5752
5753 if (INTEL_INFO(dev)->gen != 5)
5754 return 0;
5755
5756 spin_lock_irq(&mchdev_lock);
5757
5758 val = __i915_chipset_val(dev_priv);
5759
5760 spin_unlock_irq(&mchdev_lock);
5761
5762 return val;
5763 }
5764
i915_mch_val(struct drm_i915_private * dev_priv)5765 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5766 {
5767 unsigned long m, x, b;
5768 u32 tsfs;
5769
5770 tsfs = I915_READ(TSFS);
5771
5772 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5773 x = I915_READ8(TR1);
5774
5775 b = tsfs & TSFS_INTR_MASK;
5776
5777 return ((m * x) / 127) - b;
5778 }
5779
_pxvid_to_vd(u8 pxvid)5780 static int _pxvid_to_vd(u8 pxvid)
5781 {
5782 if (pxvid == 0)
5783 return 0;
5784
5785 if (pxvid >= 8 && pxvid < 31)
5786 pxvid = 31;
5787
5788 return (pxvid + 2) * 125;
5789 }
5790
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)5791 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5792 {
5793 struct drm_device *dev = dev_priv->dev;
5794 const int vd = _pxvid_to_vd(pxvid);
5795 const int vm = vd - 1125;
5796
5797 if (INTEL_INFO(dev)->is_mobile)
5798 return vm > 0 ? vm : 0;
5799
5800 return vd;
5801 }
5802
__i915_update_gfx_val(struct drm_i915_private * dev_priv)5803 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5804 {
5805 u64 now, diff, diffms;
5806 u32 count;
5807
5808 assert_spin_locked(&mchdev_lock);
5809
5810 now = ktime_get_raw_ns();
5811 diffms = now - dev_priv->ips.last_time2;
5812 do_div(diffms, NSEC_PER_MSEC);
5813
5814 /* Don't divide by 0 */
5815 if (!diffms)
5816 return;
5817
5818 count = I915_READ(GFXEC);
5819
5820 if (count < dev_priv->ips.last_count2) {
5821 diff = ~0UL - dev_priv->ips.last_count2;
5822 diff += count;
5823 } else {
5824 diff = count - dev_priv->ips.last_count2;
5825 }
5826
5827 dev_priv->ips.last_count2 = count;
5828 dev_priv->ips.last_time2 = now;
5829
5830 /* More magic constants... */
5831 diff = diff * 1181;
5832 diff = div_u64(diff, diffms * 10);
5833 dev_priv->ips.gfx_power = diff;
5834 }
5835
i915_update_gfx_val(struct drm_i915_private * dev_priv)5836 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5837 {
5838 struct drm_device *dev = dev_priv->dev;
5839
5840 if (INTEL_INFO(dev)->gen != 5)
5841 return;
5842
5843 spin_lock_irq(&mchdev_lock);
5844
5845 __i915_update_gfx_val(dev_priv);
5846
5847 spin_unlock_irq(&mchdev_lock);
5848 }
5849
__i915_gfx_val(struct drm_i915_private * dev_priv)5850 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5851 {
5852 unsigned long t, corr, state1, corr2, state2;
5853 u32 pxvid, ext_v;
5854
5855 assert_spin_locked(&mchdev_lock);
5856
5857 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5858 pxvid = (pxvid >> 24) & 0x7f;
5859 ext_v = pvid_to_extvid(dev_priv, pxvid);
5860
5861 state1 = ext_v;
5862
5863 t = i915_mch_val(dev_priv);
5864
5865 /* Revel in the empirically derived constants */
5866
5867 /* Correction factor in 1/100000 units */
5868 if (t > 80)
5869 corr = ((t * 2349) + 135940);
5870 else if (t >= 50)
5871 corr = ((t * 964) + 29317);
5872 else /* < 50 */
5873 corr = ((t * 301) + 1004);
5874
5875 corr = corr * ((150142 * state1) / 10000 - 78642);
5876 corr /= 100000;
5877 corr2 = (corr * dev_priv->ips.corr);
5878
5879 state2 = (corr2 * state1) / 10000;
5880 state2 /= 100; /* convert to mW */
5881
5882 __i915_update_gfx_val(dev_priv);
5883
5884 return dev_priv->ips.gfx_power + state2;
5885 }
5886
i915_gfx_val(struct drm_i915_private * dev_priv)5887 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5888 {
5889 struct drm_device *dev = dev_priv->dev;
5890 unsigned long val;
5891
5892 if (INTEL_INFO(dev)->gen != 5)
5893 return 0;
5894
5895 spin_lock_irq(&mchdev_lock);
5896
5897 val = __i915_gfx_val(dev_priv);
5898
5899 spin_unlock_irq(&mchdev_lock);
5900
5901 return val;
5902 }
5903
5904 /**
5905 * i915_read_mch_val - return value for IPS use
5906 *
5907 * Calculate and return a value for the IPS driver to use when deciding whether
5908 * we have thermal and power headroom to increase CPU or GPU power budget.
5909 */
i915_read_mch_val(void)5910 unsigned long i915_read_mch_val(void)
5911 {
5912 struct drm_i915_private *dev_priv;
5913 unsigned long chipset_val, graphics_val, ret = 0;
5914
5915 spin_lock_irq(&mchdev_lock);
5916 if (!i915_mch_dev)
5917 goto out_unlock;
5918 dev_priv = i915_mch_dev;
5919
5920 chipset_val = __i915_chipset_val(dev_priv);
5921 graphics_val = __i915_gfx_val(dev_priv);
5922
5923 ret = chipset_val + graphics_val;
5924
5925 out_unlock:
5926 spin_unlock_irq(&mchdev_lock);
5927
5928 return ret;
5929 }
5930 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5931
5932 /**
5933 * i915_gpu_raise - raise GPU frequency limit
5934 *
5935 * Raise the limit; IPS indicates we have thermal headroom.
5936 */
i915_gpu_raise(void)5937 bool i915_gpu_raise(void)
5938 {
5939 struct drm_i915_private *dev_priv;
5940 bool ret = true;
5941
5942 spin_lock_irq(&mchdev_lock);
5943 if (!i915_mch_dev) {
5944 ret = false;
5945 goto out_unlock;
5946 }
5947 dev_priv = i915_mch_dev;
5948
5949 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5950 dev_priv->ips.max_delay--;
5951
5952 out_unlock:
5953 spin_unlock_irq(&mchdev_lock);
5954
5955 return ret;
5956 }
5957 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5958
5959 /**
5960 * i915_gpu_lower - lower GPU frequency limit
5961 *
5962 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5963 * frequency maximum.
5964 */
i915_gpu_lower(void)5965 bool i915_gpu_lower(void)
5966 {
5967 struct drm_i915_private *dev_priv;
5968 bool ret = true;
5969
5970 spin_lock_irq(&mchdev_lock);
5971 if (!i915_mch_dev) {
5972 ret = false;
5973 goto out_unlock;
5974 }
5975 dev_priv = i915_mch_dev;
5976
5977 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5978 dev_priv->ips.max_delay++;
5979
5980 out_unlock:
5981 spin_unlock_irq(&mchdev_lock);
5982
5983 return ret;
5984 }
5985 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5986
5987 /**
5988 * i915_gpu_busy - indicate GPU business to IPS
5989 *
5990 * Tell the IPS driver whether or not the GPU is busy.
5991 */
i915_gpu_busy(void)5992 bool i915_gpu_busy(void)
5993 {
5994 struct drm_i915_private *dev_priv;
5995 struct intel_engine_cs *ring;
5996 bool ret = false;
5997 int i;
5998
5999 spin_lock_irq(&mchdev_lock);
6000 if (!i915_mch_dev)
6001 goto out_unlock;
6002 dev_priv = i915_mch_dev;
6003
6004 for_each_ring(ring, dev_priv, i)
6005 ret |= !list_empty(&ring->request_list);
6006
6007 out_unlock:
6008 spin_unlock_irq(&mchdev_lock);
6009
6010 return ret;
6011 }
6012 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6013
6014 /**
6015 * i915_gpu_turbo_disable - disable graphics turbo
6016 *
6017 * Disable graphics turbo by resetting the max frequency and setting the
6018 * current frequency to the default.
6019 */
i915_gpu_turbo_disable(void)6020 bool i915_gpu_turbo_disable(void)
6021 {
6022 struct drm_i915_private *dev_priv;
6023 bool ret = true;
6024
6025 spin_lock_irq(&mchdev_lock);
6026 if (!i915_mch_dev) {
6027 ret = false;
6028 goto out_unlock;
6029 }
6030 dev_priv = i915_mch_dev;
6031
6032 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6033
6034 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6035 ret = false;
6036
6037 out_unlock:
6038 spin_unlock_irq(&mchdev_lock);
6039
6040 return ret;
6041 }
6042 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6043
6044 /**
6045 * Tells the intel_ips driver that the i915 driver is now loaded, if
6046 * IPS got loaded first.
6047 *
6048 * This awkward dance is so that neither module has to depend on the
6049 * other in order for IPS to do the appropriate communication of
6050 * GPU turbo limits to i915.
6051 */
6052 static void
ips_ping_for_i915_load(void)6053 ips_ping_for_i915_load(void)
6054 {
6055 void (*link)(void);
6056
6057 link = symbol_get(ips_link_to_i915_driver);
6058 if (link) {
6059 link();
6060 symbol_put(ips_link_to_i915_driver);
6061 }
6062 }
6063
intel_gpu_ips_init(struct drm_i915_private * dev_priv)6064 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6065 {
6066 /* We only register the i915 ips part with intel-ips once everything is
6067 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6068 spin_lock_irq(&mchdev_lock);
6069 i915_mch_dev = dev_priv;
6070 spin_unlock_irq(&mchdev_lock);
6071
6072 ips_ping_for_i915_load();
6073 }
6074
intel_gpu_ips_teardown(void)6075 void intel_gpu_ips_teardown(void)
6076 {
6077 spin_lock_irq(&mchdev_lock);
6078 i915_mch_dev = NULL;
6079 spin_unlock_irq(&mchdev_lock);
6080 }
6081
intel_init_emon(struct drm_device * dev)6082 static void intel_init_emon(struct drm_device *dev)
6083 {
6084 struct drm_i915_private *dev_priv = dev->dev_private;
6085 u32 lcfuse;
6086 u8 pxw[16];
6087 int i;
6088
6089 /* Disable to program */
6090 I915_WRITE(ECR, 0);
6091 POSTING_READ(ECR);
6092
6093 /* Program energy weights for various events */
6094 I915_WRITE(SDEW, 0x15040d00);
6095 I915_WRITE(CSIEW0, 0x007f0000);
6096 I915_WRITE(CSIEW1, 0x1e220004);
6097 I915_WRITE(CSIEW2, 0x04000004);
6098
6099 for (i = 0; i < 5; i++)
6100 I915_WRITE(PEW(i), 0);
6101 for (i = 0; i < 3; i++)
6102 I915_WRITE(DEW(i), 0);
6103
6104 /* Program P-state weights to account for frequency power adjustment */
6105 for (i = 0; i < 16; i++) {
6106 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6107 unsigned long freq = intel_pxfreq(pxvidfreq);
6108 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6109 PXVFREQ_PX_SHIFT;
6110 unsigned long val;
6111
6112 val = vid * vid;
6113 val *= (freq / 1000);
6114 val *= 255;
6115 val /= (127*127*900);
6116 if (val > 0xff)
6117 DRM_ERROR("bad pxval: %ld\n", val);
6118 pxw[i] = val;
6119 }
6120 /* Render standby states get 0 weight */
6121 pxw[14] = 0;
6122 pxw[15] = 0;
6123
6124 for (i = 0; i < 4; i++) {
6125 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6126 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6127 I915_WRITE(PXW(i), val);
6128 }
6129
6130 /* Adjust magic regs to magic values (more experimental results) */
6131 I915_WRITE(OGW0, 0);
6132 I915_WRITE(OGW1, 0);
6133 I915_WRITE(EG0, 0x00007f00);
6134 I915_WRITE(EG1, 0x0000000e);
6135 I915_WRITE(EG2, 0x000e0000);
6136 I915_WRITE(EG3, 0x68000300);
6137 I915_WRITE(EG4, 0x42000000);
6138 I915_WRITE(EG5, 0x00140031);
6139 I915_WRITE(EG6, 0);
6140 I915_WRITE(EG7, 0);
6141
6142 for (i = 0; i < 8; i++)
6143 I915_WRITE(PXWL(i), 0);
6144
6145 /* Enable PMON + select events */
6146 I915_WRITE(ECR, 0x80000019);
6147
6148 lcfuse = I915_READ(LCFUSE02);
6149
6150 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6151 }
6152
i915_rc6_ctx_corrupted(struct drm_i915_private * dev_priv)6153 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
6154 {
6155 return !I915_READ(GEN8_RC6_CTX_INFO);
6156 }
6157
i915_rc6_ctx_wa_init(struct drm_i915_private * i915)6158 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
6159 {
6160 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6161 return;
6162
6163 if (i915_rc6_ctx_corrupted(i915)) {
6164 DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
6165 i915->rps.ctx_corrupted = true;
6166 intel_runtime_pm_get(i915);
6167 }
6168 }
6169
i915_rc6_ctx_wa_cleanup(struct drm_i915_private * i915)6170 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
6171 {
6172 if (i915->rps.ctx_corrupted) {
6173 intel_runtime_pm_put(i915);
6174 i915->rps.ctx_corrupted = false;
6175 }
6176 }
6177
6178 /**
6179 * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
6180 * @i915: i915 device
6181 *
6182 * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
6183 */
i915_rc6_ctx_wa_suspend(struct drm_i915_private * i915)6184 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
6185 {
6186 if (i915->rps.ctx_corrupted)
6187 intel_runtime_pm_put(i915);
6188 }
6189
6190 /**
6191 * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
6192 * @i915: i915 device
6193 *
6194 * Perform any steps needed to re-init the RC6 CTX WA after system resume.
6195 */
i915_rc6_ctx_wa_resume(struct drm_i915_private * i915)6196 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
6197 {
6198 if (!i915->rps.ctx_corrupted)
6199 return;
6200
6201 if (i915_rc6_ctx_corrupted(i915)) {
6202 intel_runtime_pm_get(i915);
6203 return;
6204 }
6205
6206 DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
6207 i915->rps.ctx_corrupted = false;
6208 }
6209
6210 static void intel_disable_rc6(struct drm_device *dev);
6211
6212 /**
6213 * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
6214 * @i915: i915 device
6215 *
6216 * Check if an RC6 CTX corruption has happened since the last check and if so
6217 * disable RC6 and runtime power management.
6218 *
6219 * Return false if no context corruption has happened since the last call of
6220 * this function, true otherwise.
6221 */
i915_rc6_ctx_wa_check(struct drm_i915_private * i915)6222 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
6223 {
6224 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6225 return false;
6226
6227 if (i915->rps.ctx_corrupted)
6228 return false;
6229
6230 if (!i915_rc6_ctx_corrupted(i915))
6231 return false;
6232
6233 DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
6234
6235 intel_disable_rc6(i915->dev);
6236 i915->rps.ctx_corrupted = true;
6237 intel_runtime_pm_get_noresume(i915);
6238
6239 return true;
6240 }
6241
intel_init_gt_powersave(struct drm_device * dev)6242 void intel_init_gt_powersave(struct drm_device *dev)
6243 {
6244 i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6245
6246 i915_rc6_ctx_wa_init(to_i915(dev));
6247
6248 if (IS_CHERRYVIEW(dev))
6249 cherryview_init_gt_powersave(dev);
6250 else if (IS_VALLEYVIEW(dev))
6251 valleyview_init_gt_powersave(dev);
6252 }
6253
intel_cleanup_gt_powersave(struct drm_device * dev)6254 void intel_cleanup_gt_powersave(struct drm_device *dev)
6255 {
6256 if (IS_CHERRYVIEW(dev))
6257 return;
6258 else if (IS_VALLEYVIEW(dev))
6259 valleyview_cleanup_gt_powersave(dev);
6260
6261 i915_rc6_ctx_wa_cleanup(to_i915(dev));
6262 }
6263
gen6_suspend_rps(struct drm_device * dev)6264 static void gen6_suspend_rps(struct drm_device *dev)
6265 {
6266 struct drm_i915_private *dev_priv = dev->dev_private;
6267
6268 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6269
6270 gen6_disable_rps_interrupts(dev);
6271 }
6272
6273 /**
6274 * intel_suspend_gt_powersave - suspend PM work and helper threads
6275 * @dev: drm device
6276 *
6277 * We don't want to disable RC6 or other features here, we just want
6278 * to make sure any work we've queued has finished and won't bother
6279 * us while we're suspended.
6280 */
intel_suspend_gt_powersave(struct drm_device * dev)6281 void intel_suspend_gt_powersave(struct drm_device *dev)
6282 {
6283 struct drm_i915_private *dev_priv = dev->dev_private;
6284
6285 if (INTEL_INFO(dev)->gen < 6)
6286 return;
6287
6288 gen6_suspend_rps(dev);
6289
6290 /* Force GPU to min freq during suspend */
6291 gen6_rps_idle(dev_priv);
6292 }
6293
__intel_disable_rc6(struct drm_device * dev)6294 static void __intel_disable_rc6(struct drm_device *dev)
6295 {
6296 if (INTEL_INFO(dev)->gen >= 9)
6297 gen9_disable_rc6(dev);
6298 else if (IS_CHERRYVIEW(dev))
6299 cherryview_disable_rc6(dev);
6300 else if (IS_VALLEYVIEW(dev))
6301 valleyview_disable_rc6(dev);
6302 else
6303 gen6_disable_rc6(dev);
6304 }
6305
intel_disable_rc6(struct drm_device * dev)6306 static void intel_disable_rc6(struct drm_device *dev)
6307 {
6308 struct drm_i915_private *dev_priv = to_i915(dev);
6309
6310 mutex_lock(&dev_priv->rps.hw_lock);
6311 __intel_disable_rc6(dev);
6312 mutex_unlock(&dev_priv->rps.hw_lock);
6313 }
6314
intel_disable_rps(struct drm_device * dev)6315 static void intel_disable_rps(struct drm_device *dev)
6316 {
6317 if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
6318 return;
6319
6320 if (INTEL_INFO(dev)->gen >= 9)
6321 gen9_disable_rps(dev);
6322 else
6323 gen6_disable_rps(dev);
6324 }
6325
intel_disable_gt_powersave(struct drm_device * dev)6326 void intel_disable_gt_powersave(struct drm_device *dev)
6327 {
6328 struct drm_i915_private *dev_priv = dev->dev_private;
6329
6330 if (IS_IRONLAKE_M(dev)) {
6331 ironlake_disable_drps(dev);
6332 } else if (INTEL_INFO(dev)->gen >= 6) {
6333 intel_suspend_gt_powersave(dev);
6334
6335 mutex_lock(&dev_priv->rps.hw_lock);
6336
6337 __intel_disable_rc6(dev);
6338 intel_disable_rps(dev);
6339
6340 dev_priv->rps.enabled = false;
6341
6342 mutex_unlock(&dev_priv->rps.hw_lock);
6343 }
6344 }
6345
intel_gen6_powersave_work(struct work_struct * work)6346 static void intel_gen6_powersave_work(struct work_struct *work)
6347 {
6348 struct drm_i915_private *dev_priv =
6349 container_of(work, struct drm_i915_private,
6350 rps.delayed_resume_work.work);
6351 struct drm_device *dev = dev_priv->dev;
6352
6353 mutex_lock(&dev_priv->rps.hw_lock);
6354
6355 gen6_reset_rps_interrupts(dev);
6356
6357 if (IS_CHERRYVIEW(dev)) {
6358 cherryview_enable_rps(dev);
6359 } else if (IS_VALLEYVIEW(dev)) {
6360 valleyview_enable_rps(dev);
6361 } else if (INTEL_INFO(dev)->gen >= 9) {
6362 gen9_enable_rc6(dev);
6363 gen9_enable_rps(dev);
6364 if (IS_SKYLAKE(dev))
6365 __gen6_update_ring_freq(dev);
6366 } else if (IS_BROADWELL(dev)) {
6367 gen8_enable_rps(dev);
6368 __gen6_update_ring_freq(dev);
6369 } else {
6370 gen6_enable_rps(dev);
6371 __gen6_update_ring_freq(dev);
6372 }
6373
6374 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6375 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6376
6377 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6378 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6379
6380 dev_priv->rps.enabled = true;
6381
6382 gen6_enable_rps_interrupts(dev);
6383
6384 mutex_unlock(&dev_priv->rps.hw_lock);
6385
6386 intel_runtime_pm_put(dev_priv);
6387 }
6388
intel_enable_gt_powersave(struct drm_device * dev)6389 void intel_enable_gt_powersave(struct drm_device *dev)
6390 {
6391 struct drm_i915_private *dev_priv = dev->dev_private;
6392
6393 /* Powersaving is controlled by the host when inside a VM */
6394 if (intel_vgpu_active(dev))
6395 return;
6396
6397 if (IS_IRONLAKE_M(dev)) {
6398 mutex_lock(&dev->struct_mutex);
6399 ironlake_enable_drps(dev);
6400 intel_init_emon(dev);
6401 mutex_unlock(&dev->struct_mutex);
6402 } else if (INTEL_INFO(dev)->gen >= 6) {
6403 /*
6404 * PCU communication is slow and this doesn't need to be
6405 * done at any specific time, so do this out of our fast path
6406 * to make resume and init faster.
6407 *
6408 * We depend on the HW RC6 power context save/restore
6409 * mechanism when entering D3 through runtime PM suspend. So
6410 * disable RPM until RPS/RC6 is properly setup. We can only
6411 * get here via the driver load/system resume/runtime resume
6412 * paths, so the _noresume version is enough (and in case of
6413 * runtime resume it's necessary).
6414 */
6415 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6416 round_jiffies_up_relative(HZ)))
6417 intel_runtime_pm_get_noresume(dev_priv);
6418 }
6419 }
6420
intel_reset_gt_powersave(struct drm_device * dev)6421 void intel_reset_gt_powersave(struct drm_device *dev)
6422 {
6423 struct drm_i915_private *dev_priv = dev->dev_private;
6424
6425 if (INTEL_INFO(dev)->gen < 6)
6426 return;
6427
6428 gen6_suspend_rps(dev);
6429 dev_priv->rps.enabled = false;
6430 }
6431
ibx_init_clock_gating(struct drm_device * dev)6432 static void ibx_init_clock_gating(struct drm_device *dev)
6433 {
6434 struct drm_i915_private *dev_priv = dev->dev_private;
6435
6436 /*
6437 * On Ibex Peak and Cougar Point, we need to disable clock
6438 * gating for the panel power sequencer or it will fail to
6439 * start up when no ports are active.
6440 */
6441 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6442 }
6443
g4x_disable_trickle_feed(struct drm_device * dev)6444 static void g4x_disable_trickle_feed(struct drm_device *dev)
6445 {
6446 struct drm_i915_private *dev_priv = dev->dev_private;
6447 enum pipe pipe;
6448
6449 for_each_pipe(dev_priv, pipe) {
6450 I915_WRITE(DSPCNTR(pipe),
6451 I915_READ(DSPCNTR(pipe)) |
6452 DISPPLANE_TRICKLE_FEED_DISABLE);
6453
6454 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6455 POSTING_READ(DSPSURF(pipe));
6456 }
6457 }
6458
ilk_init_lp_watermarks(struct drm_device * dev)6459 static void ilk_init_lp_watermarks(struct drm_device *dev)
6460 {
6461 struct drm_i915_private *dev_priv = dev->dev_private;
6462
6463 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6464 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6465 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6466
6467 /*
6468 * Don't touch WM1S_LP_EN here.
6469 * Doing so could cause underruns.
6470 */
6471 }
6472
ironlake_init_clock_gating(struct drm_device * dev)6473 static void ironlake_init_clock_gating(struct drm_device *dev)
6474 {
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6477
6478 /*
6479 * Required for FBC
6480 * WaFbcDisableDpfcClockGating:ilk
6481 */
6482 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6483 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6484 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6485
6486 I915_WRITE(PCH_3DCGDIS0,
6487 MARIUNIT_CLOCK_GATE_DISABLE |
6488 SVSMUNIT_CLOCK_GATE_DISABLE);
6489 I915_WRITE(PCH_3DCGDIS1,
6490 VFMUNIT_CLOCK_GATE_DISABLE);
6491
6492 /*
6493 * According to the spec the following bits should be set in
6494 * order to enable memory self-refresh
6495 * The bit 22/21 of 0x42004
6496 * The bit 5 of 0x42020
6497 * The bit 15 of 0x45000
6498 */
6499 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6500 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6501 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6502 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6503 I915_WRITE(DISP_ARB_CTL,
6504 (I915_READ(DISP_ARB_CTL) |
6505 DISP_FBC_WM_DIS));
6506
6507 ilk_init_lp_watermarks(dev);
6508
6509 /*
6510 * Based on the document from hardware guys the following bits
6511 * should be set unconditionally in order to enable FBC.
6512 * The bit 22 of 0x42000
6513 * The bit 22 of 0x42004
6514 * The bit 7,8,9 of 0x42020.
6515 */
6516 if (IS_IRONLAKE_M(dev)) {
6517 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6518 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6519 I915_READ(ILK_DISPLAY_CHICKEN1) |
6520 ILK_FBCQ_DIS);
6521 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6522 I915_READ(ILK_DISPLAY_CHICKEN2) |
6523 ILK_DPARB_GATE);
6524 }
6525
6526 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6527
6528 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6529 I915_READ(ILK_DISPLAY_CHICKEN2) |
6530 ILK_ELPIN_409_SELECT);
6531 I915_WRITE(_3D_CHICKEN2,
6532 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6533 _3D_CHICKEN2_WM_READ_PIPELINED);
6534
6535 /* WaDisableRenderCachePipelinedFlush:ilk */
6536 I915_WRITE(CACHE_MODE_0,
6537 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6538
6539 /* WaDisable_RenderCache_OperationalFlush:ilk */
6540 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6541
6542 g4x_disable_trickle_feed(dev);
6543
6544 ibx_init_clock_gating(dev);
6545 }
6546
cpt_init_clock_gating(struct drm_device * dev)6547 static void cpt_init_clock_gating(struct drm_device *dev)
6548 {
6549 struct drm_i915_private *dev_priv = dev->dev_private;
6550 int pipe;
6551 uint32_t val;
6552
6553 /*
6554 * On Ibex Peak and Cougar Point, we need to disable clock
6555 * gating for the panel power sequencer or it will fail to
6556 * start up when no ports are active.
6557 */
6558 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6559 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6560 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6561 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6562 DPLS_EDP_PPS_FIX_DIS);
6563 /* The below fixes the weird display corruption, a few pixels shifted
6564 * downward, on (only) LVDS of some HP laptops with IVY.
6565 */
6566 for_each_pipe(dev_priv, pipe) {
6567 val = I915_READ(TRANS_CHICKEN2(pipe));
6568 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6569 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6570 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6571 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6572 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6573 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6574 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6575 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6576 }
6577 /* WADP0ClockGatingDisable */
6578 for_each_pipe(dev_priv, pipe) {
6579 I915_WRITE(TRANS_CHICKEN1(pipe),
6580 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6581 }
6582 }
6583
gen6_check_mch_setup(struct drm_device * dev)6584 static void gen6_check_mch_setup(struct drm_device *dev)
6585 {
6586 struct drm_i915_private *dev_priv = dev->dev_private;
6587 uint32_t tmp;
6588
6589 tmp = I915_READ(MCH_SSKPD);
6590 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6591 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6592 tmp);
6593 }
6594
gen6_init_clock_gating(struct drm_device * dev)6595 static void gen6_init_clock_gating(struct drm_device *dev)
6596 {
6597 struct drm_i915_private *dev_priv = dev->dev_private;
6598 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6599
6600 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6601
6602 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6603 I915_READ(ILK_DISPLAY_CHICKEN2) |
6604 ILK_ELPIN_409_SELECT);
6605
6606 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6607 I915_WRITE(_3D_CHICKEN,
6608 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6609
6610 /* WaDisable_RenderCache_OperationalFlush:snb */
6611 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6612
6613 /*
6614 * BSpec recoomends 8x4 when MSAA is used,
6615 * however in practice 16x4 seems fastest.
6616 *
6617 * Note that PS/WM thread counts depend on the WIZ hashing
6618 * disable bit, which we don't touch here, but it's good
6619 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6620 */
6621 I915_WRITE(GEN6_GT_MODE,
6622 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6623
6624 ilk_init_lp_watermarks(dev);
6625
6626 I915_WRITE(CACHE_MODE_0,
6627 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6628
6629 I915_WRITE(GEN6_UCGCTL1,
6630 I915_READ(GEN6_UCGCTL1) |
6631 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6632 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6633
6634 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6635 * gating disable must be set. Failure to set it results in
6636 * flickering pixels due to Z write ordering failures after
6637 * some amount of runtime in the Mesa "fire" demo, and Unigine
6638 * Sanctuary and Tropics, and apparently anything else with
6639 * alpha test or pixel discard.
6640 *
6641 * According to the spec, bit 11 (RCCUNIT) must also be set,
6642 * but we didn't debug actual testcases to find it out.
6643 *
6644 * WaDisableRCCUnitClockGating:snb
6645 * WaDisableRCPBUnitClockGating:snb
6646 */
6647 I915_WRITE(GEN6_UCGCTL2,
6648 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6649 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6650
6651 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6652 I915_WRITE(_3D_CHICKEN3,
6653 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6654
6655 /*
6656 * Bspec says:
6657 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6658 * 3DSTATE_SF number of SF output attributes is more than 16."
6659 */
6660 I915_WRITE(_3D_CHICKEN3,
6661 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6662
6663 /*
6664 * According to the spec the following bits should be
6665 * set in order to enable memory self-refresh and fbc:
6666 * The bit21 and bit22 of 0x42000
6667 * The bit21 and bit22 of 0x42004
6668 * The bit5 and bit7 of 0x42020
6669 * The bit14 of 0x70180
6670 * The bit14 of 0x71180
6671 *
6672 * WaFbcAsynchFlipDisableFbcQueue:snb
6673 */
6674 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6675 I915_READ(ILK_DISPLAY_CHICKEN1) |
6676 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6677 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6678 I915_READ(ILK_DISPLAY_CHICKEN2) |
6679 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6680 I915_WRITE(ILK_DSPCLK_GATE_D,
6681 I915_READ(ILK_DSPCLK_GATE_D) |
6682 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6683 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6684
6685 g4x_disable_trickle_feed(dev);
6686
6687 cpt_init_clock_gating(dev);
6688
6689 gen6_check_mch_setup(dev);
6690 }
6691
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)6692 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6693 {
6694 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6695
6696 /*
6697 * WaVSThreadDispatchOverride:ivb,vlv
6698 *
6699 * This actually overrides the dispatch
6700 * mode for all thread types.
6701 */
6702 reg &= ~GEN7_FF_SCHED_MASK;
6703 reg |= GEN7_FF_TS_SCHED_HW;
6704 reg |= GEN7_FF_VS_SCHED_HW;
6705 reg |= GEN7_FF_DS_SCHED_HW;
6706
6707 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6708 }
6709
lpt_init_clock_gating(struct drm_device * dev)6710 static void lpt_init_clock_gating(struct drm_device *dev)
6711 {
6712 struct drm_i915_private *dev_priv = dev->dev_private;
6713
6714 /*
6715 * TODO: this bit should only be enabled when really needed, then
6716 * disabled when not needed anymore in order to save power.
6717 */
6718 if (HAS_PCH_LPT_LP(dev))
6719 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6720 I915_READ(SOUTH_DSPCLK_GATE_D) |
6721 PCH_LP_PARTITION_LEVEL_DISABLE);
6722
6723 /* WADPOClockGatingDisable:hsw */
6724 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6725 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6726 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6727 }
6728
lpt_suspend_hw(struct drm_device * dev)6729 static void lpt_suspend_hw(struct drm_device *dev)
6730 {
6731 struct drm_i915_private *dev_priv = dev->dev_private;
6732
6733 if (HAS_PCH_LPT_LP(dev)) {
6734 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6735
6736 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6737 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6738 }
6739 }
6740
broadwell_init_clock_gating(struct drm_device * dev)6741 static void broadwell_init_clock_gating(struct drm_device *dev)
6742 {
6743 struct drm_i915_private *dev_priv = dev->dev_private;
6744 enum pipe pipe;
6745 uint32_t misccpctl;
6746
6747 ilk_init_lp_watermarks(dev);
6748
6749 /* WaSwitchSolVfFArbitrationPriority:bdw */
6750 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6751
6752 /* WaPsrDPAMaskVBlankInSRD:bdw */
6753 I915_WRITE(CHICKEN_PAR1_1,
6754 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6755
6756 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6757 for_each_pipe(dev_priv, pipe) {
6758 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6759 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6760 BDW_DPRS_MASK_VBLANK_SRD);
6761 }
6762
6763 /* WaVSRefCountFullforceMissDisable:bdw */
6764 /* WaDSRefCountFullforceMissDisable:bdw */
6765 I915_WRITE(GEN7_FF_THREAD_MODE,
6766 I915_READ(GEN7_FF_THREAD_MODE) &
6767 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6768
6769 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6770 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6771
6772 /* WaDisableSDEUnitClockGating:bdw */
6773 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6774 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6775
6776 /*
6777 * WaProgramL3SqcReg1Default:bdw
6778 * WaTempDisableDOPClkGating:bdw
6779 */
6780 misccpctl = I915_READ(GEN7_MISCCPCTL);
6781 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6782 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6783 /*
6784 * Wait at least 100 clocks before re-enabling clock gating. See
6785 * the definition of L3SQCREG1 in BSpec.
6786 */
6787 POSTING_READ(GEN8_L3SQCREG1);
6788 udelay(1);
6789 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6790
6791 /*
6792 * WaGttCachingOffByDefault:bdw
6793 * GTT cache may not work with big pages, so if those
6794 * are ever enabled GTT cache may need to be disabled.
6795 */
6796 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6797
6798 lpt_init_clock_gating(dev);
6799 }
6800
haswell_init_clock_gating(struct drm_device * dev)6801 static void haswell_init_clock_gating(struct drm_device *dev)
6802 {
6803 struct drm_i915_private *dev_priv = dev->dev_private;
6804
6805 ilk_init_lp_watermarks(dev);
6806
6807 /* L3 caching of data atomics doesn't work -- disable it. */
6808 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6809 I915_WRITE(HSW_ROW_CHICKEN3,
6810 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6811
6812 /* This is required by WaCatErrorRejectionIssue:hsw */
6813 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6814 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6815 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6816
6817 /* WaVSRefCountFullforceMissDisable:hsw */
6818 I915_WRITE(GEN7_FF_THREAD_MODE,
6819 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6820
6821 /* WaDisable_RenderCache_OperationalFlush:hsw */
6822 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6823
6824 /* enable HiZ Raw Stall Optimization */
6825 I915_WRITE(CACHE_MODE_0_GEN7,
6826 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6827
6828 /* WaDisable4x2SubspanOptimization:hsw */
6829 I915_WRITE(CACHE_MODE_1,
6830 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6831
6832 /*
6833 * BSpec recommends 8x4 when MSAA is used,
6834 * however in practice 16x4 seems fastest.
6835 *
6836 * Note that PS/WM thread counts depend on the WIZ hashing
6837 * disable bit, which we don't touch here, but it's good
6838 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6839 */
6840 I915_WRITE(GEN7_GT_MODE,
6841 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6842
6843 /* WaSampleCChickenBitEnable:hsw */
6844 I915_WRITE(HALF_SLICE_CHICKEN3,
6845 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6846
6847 /* WaSwitchSolVfFArbitrationPriority:hsw */
6848 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6849
6850 /* WaRsPkgCStateDisplayPMReq:hsw */
6851 I915_WRITE(CHICKEN_PAR1_1,
6852 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6853
6854 lpt_init_clock_gating(dev);
6855 }
6856
ivybridge_init_clock_gating(struct drm_device * dev)6857 static void ivybridge_init_clock_gating(struct drm_device *dev)
6858 {
6859 struct drm_i915_private *dev_priv = dev->dev_private;
6860 uint32_t snpcr;
6861
6862 ilk_init_lp_watermarks(dev);
6863
6864 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6865
6866 /* WaDisableEarlyCull:ivb */
6867 I915_WRITE(_3D_CHICKEN3,
6868 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6869
6870 /* WaDisableBackToBackFlipFix:ivb */
6871 I915_WRITE(IVB_CHICKEN3,
6872 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6873 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6874
6875 /* WaDisablePSDDualDispatchEnable:ivb */
6876 if (IS_IVB_GT1(dev))
6877 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6878 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6879
6880 /* WaDisable_RenderCache_OperationalFlush:ivb */
6881 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6882
6883 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6884 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6885 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6886
6887 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6888 I915_WRITE(GEN7_L3CNTLREG1,
6889 GEN7_WA_FOR_GEN7_L3_CONTROL);
6890 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6891 GEN7_WA_L3_CHICKEN_MODE);
6892 if (IS_IVB_GT1(dev))
6893 I915_WRITE(GEN7_ROW_CHICKEN2,
6894 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6895 else {
6896 /* must write both registers */
6897 I915_WRITE(GEN7_ROW_CHICKEN2,
6898 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6899 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6900 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6901 }
6902
6903 /* WaForceL3Serialization:ivb */
6904 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6905 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6906
6907 /*
6908 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6909 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6910 */
6911 I915_WRITE(GEN6_UCGCTL2,
6912 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6913
6914 /* This is required by WaCatErrorRejectionIssue:ivb */
6915 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6916 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6917 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6918
6919 g4x_disable_trickle_feed(dev);
6920
6921 gen7_setup_fixed_func_scheduler(dev_priv);
6922
6923 if (0) { /* causes HiZ corruption on ivb:gt1 */
6924 /* enable HiZ Raw Stall Optimization */
6925 I915_WRITE(CACHE_MODE_0_GEN7,
6926 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6927 }
6928
6929 /* WaDisable4x2SubspanOptimization:ivb */
6930 I915_WRITE(CACHE_MODE_1,
6931 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6932
6933 /*
6934 * BSpec recommends 8x4 when MSAA is used,
6935 * however in practice 16x4 seems fastest.
6936 *
6937 * Note that PS/WM thread counts depend on the WIZ hashing
6938 * disable bit, which we don't touch here, but it's good
6939 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6940 */
6941 I915_WRITE(GEN7_GT_MODE,
6942 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6943
6944 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6945 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6946 snpcr |= GEN6_MBC_SNPCR_MED;
6947 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6948
6949 if (!HAS_PCH_NOP(dev))
6950 cpt_init_clock_gating(dev);
6951
6952 gen6_check_mch_setup(dev);
6953 }
6954
vlv_init_display_clock_gating(struct drm_i915_private * dev_priv)6955 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6956 {
6957 u32 val;
6958
6959 /*
6960 * On driver load, a pipe may be active and driving a DSI display.
6961 * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
6962 * (and never recovering) in this case. intel_dsi_post_disable() will
6963 * clear it when we turn off the display.
6964 */
6965 val = I915_READ(DSPCLK_GATE_D);
6966 val &= DPOUNIT_CLOCK_GATE_DISABLE;
6967 val |= VRHUNIT_CLOCK_GATE_DISABLE;
6968 I915_WRITE(DSPCLK_GATE_D, val);
6969
6970 /*
6971 * Disable trickle feed and enable pnd deadline calculation
6972 */
6973 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6974 I915_WRITE(CBR1_VLV, 0);
6975 }
6976
valleyview_init_clock_gating(struct drm_device * dev)6977 static void valleyview_init_clock_gating(struct drm_device *dev)
6978 {
6979 struct drm_i915_private *dev_priv = dev->dev_private;
6980
6981 vlv_init_display_clock_gating(dev_priv);
6982
6983 /* WaDisableEarlyCull:vlv */
6984 I915_WRITE(_3D_CHICKEN3,
6985 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6986
6987 /* WaDisableBackToBackFlipFix:vlv */
6988 I915_WRITE(IVB_CHICKEN3,
6989 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6990 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6991
6992 /* WaPsdDispatchEnable:vlv */
6993 /* WaDisablePSDDualDispatchEnable:vlv */
6994 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6995 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6996 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6997
6998 /* WaDisable_RenderCache_OperationalFlush:vlv */
6999 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7000
7001 /* WaForceL3Serialization:vlv */
7002 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7003 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7004
7005 /* WaDisableDopClockGating:vlv */
7006 I915_WRITE(GEN7_ROW_CHICKEN2,
7007 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7008
7009 /* This is required by WaCatErrorRejectionIssue:vlv */
7010 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7011 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7012 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7013
7014 gen7_setup_fixed_func_scheduler(dev_priv);
7015
7016 /*
7017 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7018 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7019 */
7020 I915_WRITE(GEN6_UCGCTL2,
7021 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7022
7023 /* WaDisableL3Bank2xClockGate:vlv
7024 * Disabling L3 clock gating- MMIO 940c[25] = 1
7025 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7026 I915_WRITE(GEN7_UCGCTL4,
7027 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7028
7029 /*
7030 * BSpec says this must be set, even though
7031 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7032 */
7033 I915_WRITE(CACHE_MODE_1,
7034 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7035
7036 /*
7037 * BSpec recommends 8x4 when MSAA is used,
7038 * however in practice 16x4 seems fastest.
7039 *
7040 * Note that PS/WM thread counts depend on the WIZ hashing
7041 * disable bit, which we don't touch here, but it's good
7042 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043 */
7044 I915_WRITE(GEN7_GT_MODE,
7045 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046
7047 /*
7048 * WaIncreaseL3CreditsForVLVB0:vlv
7049 * This is the hardware default actually.
7050 */
7051 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7052
7053 /*
7054 * WaDisableVLVClockGating_VBIIssue:vlv
7055 * Disable clock gating on th GCFG unit to prevent a delay
7056 * in the reporting of vblank events.
7057 */
7058 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7059 }
7060
cherryview_init_clock_gating(struct drm_device * dev)7061 static void cherryview_init_clock_gating(struct drm_device *dev)
7062 {
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064
7065 vlv_init_display_clock_gating(dev_priv);
7066
7067 /* WaVSRefCountFullforceMissDisable:chv */
7068 /* WaDSRefCountFullforceMissDisable:chv */
7069 I915_WRITE(GEN7_FF_THREAD_MODE,
7070 I915_READ(GEN7_FF_THREAD_MODE) &
7071 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7072
7073 /* WaDisableSemaphoreAndSyncFlipWait:chv */
7074 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7075 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7076
7077 /* WaDisableCSUnitClockGating:chv */
7078 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7079 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7080
7081 /* WaDisableSDEUnitClockGating:chv */
7082 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7083 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7084
7085 /*
7086 * GTT cache may not work with big pages, so if those
7087 * are ever enabled GTT cache may need to be disabled.
7088 */
7089 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7090 }
7091
g4x_init_clock_gating(struct drm_device * dev)7092 static void g4x_init_clock_gating(struct drm_device *dev)
7093 {
7094 struct drm_i915_private *dev_priv = dev->dev_private;
7095 uint32_t dspclk_gate;
7096
7097 I915_WRITE(RENCLK_GATE_D1, 0);
7098 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7099 GS_UNIT_CLOCK_GATE_DISABLE |
7100 CL_UNIT_CLOCK_GATE_DISABLE);
7101 I915_WRITE(RAMCLK_GATE_D, 0);
7102 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7103 OVRUNIT_CLOCK_GATE_DISABLE |
7104 OVCUNIT_CLOCK_GATE_DISABLE;
7105 if (IS_GM45(dev))
7106 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7107 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7108
7109 /* WaDisableRenderCachePipelinedFlush */
7110 I915_WRITE(CACHE_MODE_0,
7111 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7112
7113 /* WaDisable_RenderCache_OperationalFlush:g4x */
7114 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7115
7116 g4x_disable_trickle_feed(dev);
7117 }
7118
crestline_init_clock_gating(struct drm_device * dev)7119 static void crestline_init_clock_gating(struct drm_device *dev)
7120 {
7121 struct drm_i915_private *dev_priv = dev->dev_private;
7122
7123 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7124 I915_WRITE(RENCLK_GATE_D2, 0);
7125 I915_WRITE(DSPCLK_GATE_D, 0);
7126 I915_WRITE(RAMCLK_GATE_D, 0);
7127 I915_WRITE16(DEUC, 0);
7128 I915_WRITE(MI_ARB_STATE,
7129 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7130
7131 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7132 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7133 }
7134
broadwater_init_clock_gating(struct drm_device * dev)7135 static void broadwater_init_clock_gating(struct drm_device *dev)
7136 {
7137 struct drm_i915_private *dev_priv = dev->dev_private;
7138
7139 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7140 I965_RCC_CLOCK_GATE_DISABLE |
7141 I965_RCPB_CLOCK_GATE_DISABLE |
7142 I965_ISC_CLOCK_GATE_DISABLE |
7143 I965_FBC_CLOCK_GATE_DISABLE);
7144 I915_WRITE(RENCLK_GATE_D2, 0);
7145 I915_WRITE(MI_ARB_STATE,
7146 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7147
7148 /* WaDisable_RenderCache_OperationalFlush:gen4 */
7149 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7150 }
7151
gen3_init_clock_gating(struct drm_device * dev)7152 static void gen3_init_clock_gating(struct drm_device *dev)
7153 {
7154 struct drm_i915_private *dev_priv = dev->dev_private;
7155 u32 dstate = I915_READ(D_STATE);
7156
7157 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7158 DSTATE_DOT_CLOCK_GATING;
7159 I915_WRITE(D_STATE, dstate);
7160
7161 if (IS_PINEVIEW(dev))
7162 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7163
7164 /* IIR "flip pending" means done if this bit is set */
7165 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7166
7167 /* interrupts should cause a wake up from C3 */
7168 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7169
7170 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7171 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7172
7173 I915_WRITE(MI_ARB_STATE,
7174 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7175 }
7176
i85x_init_clock_gating(struct drm_device * dev)7177 static void i85x_init_clock_gating(struct drm_device *dev)
7178 {
7179 struct drm_i915_private *dev_priv = dev->dev_private;
7180
7181 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7182
7183 /* interrupts should cause a wake up from C3 */
7184 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7185 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7186
7187 I915_WRITE(MEM_MODE,
7188 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7189 }
7190
i830_init_clock_gating(struct drm_device * dev)7191 static void i830_init_clock_gating(struct drm_device *dev)
7192 {
7193 struct drm_i915_private *dev_priv = dev->dev_private;
7194
7195 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7196
7197 I915_WRITE(MEM_MODE,
7198 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7199 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7200 }
7201
intel_init_clock_gating(struct drm_device * dev)7202 void intel_init_clock_gating(struct drm_device *dev)
7203 {
7204 struct drm_i915_private *dev_priv = dev->dev_private;
7205
7206 if (dev_priv->display.init_clock_gating)
7207 dev_priv->display.init_clock_gating(dev);
7208 }
7209
intel_suspend_hw(struct drm_device * dev)7210 void intel_suspend_hw(struct drm_device *dev)
7211 {
7212 if (HAS_PCH_LPT(dev))
7213 lpt_suspend_hw(dev);
7214 }
7215
7216 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)7217 void intel_init_pm(struct drm_device *dev)
7218 {
7219 struct drm_i915_private *dev_priv = dev->dev_private;
7220
7221 intel_fbc_init(dev_priv);
7222
7223 /* For cxsr */
7224 if (IS_PINEVIEW(dev))
7225 i915_pineview_get_mem_freq(dev);
7226 else if (IS_GEN5(dev))
7227 i915_ironlake_get_mem_freq(dev);
7228
7229 /* For FIFO watermark updates */
7230 if (INTEL_INFO(dev)->gen >= 9) {
7231 skl_setup_wm_latency(dev);
7232
7233 if (IS_BROXTON(dev))
7234 dev_priv->display.init_clock_gating =
7235 bxt_init_clock_gating;
7236 dev_priv->display.update_wm = skl_update_wm;
7237 dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7238 } else if (HAS_PCH_SPLIT(dev)) {
7239 ilk_setup_wm_latency(dev);
7240
7241 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7242 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7243 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7244 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7245 dev_priv->display.update_wm = ilk_update_wm;
7246 dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7247 } else {
7248 DRM_DEBUG_KMS("Failed to read display plane latency. "
7249 "Disable CxSR\n");
7250 }
7251
7252 if (IS_GEN5(dev))
7253 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7254 else if (IS_GEN6(dev))
7255 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7256 else if (IS_IVYBRIDGE(dev))
7257 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7258 else if (IS_HASWELL(dev))
7259 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7260 else if (INTEL_INFO(dev)->gen == 8)
7261 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7262 } else if (IS_CHERRYVIEW(dev)) {
7263 vlv_setup_wm_latency(dev);
7264
7265 dev_priv->display.update_wm = vlv_update_wm;
7266 dev_priv->display.init_clock_gating =
7267 cherryview_init_clock_gating;
7268 } else if (IS_VALLEYVIEW(dev)) {
7269 vlv_setup_wm_latency(dev);
7270
7271 dev_priv->display.update_wm = vlv_update_wm;
7272 dev_priv->display.init_clock_gating =
7273 valleyview_init_clock_gating;
7274 } else if (IS_PINEVIEW(dev)) {
7275 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7276 dev_priv->is_ddr3,
7277 dev_priv->fsb_freq,
7278 dev_priv->mem_freq)) {
7279 DRM_INFO("failed to find known CxSR latency "
7280 "(found ddr%s fsb freq %d, mem freq %d), "
7281 "disabling CxSR\n",
7282 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7283 dev_priv->fsb_freq, dev_priv->mem_freq);
7284 /* Disable CxSR and never update its watermark again */
7285 intel_set_memory_cxsr(dev_priv, false);
7286 dev_priv->display.update_wm = NULL;
7287 } else
7288 dev_priv->display.update_wm = pineview_update_wm;
7289 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7290 } else if (IS_G4X(dev)) {
7291 dev_priv->display.update_wm = g4x_update_wm;
7292 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7293 } else if (IS_GEN4(dev)) {
7294 dev_priv->display.update_wm = i965_update_wm;
7295 if (IS_CRESTLINE(dev))
7296 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7297 else if (IS_BROADWATER(dev))
7298 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7299 } else if (IS_GEN3(dev)) {
7300 dev_priv->display.update_wm = i9xx_update_wm;
7301 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7302 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7303 } else if (IS_GEN2(dev)) {
7304 if (INTEL_INFO(dev)->num_pipes == 1) {
7305 dev_priv->display.update_wm = i845_update_wm;
7306 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7307 } else {
7308 dev_priv->display.update_wm = i9xx_update_wm;
7309 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7310 }
7311
7312 if (IS_I85X(dev) || IS_I865G(dev))
7313 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7314 else
7315 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7316 } else {
7317 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7318 }
7319 }
7320
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)7321 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7322 {
7323 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7324
7325 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7326 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7327 return -EAGAIN;
7328 }
7329
7330 I915_WRITE(GEN6_PCODE_DATA, *val);
7331 I915_WRITE(GEN6_PCODE_DATA1, 0);
7332 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7333
7334 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7335 500)) {
7336 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7337 return -ETIMEDOUT;
7338 }
7339
7340 *val = I915_READ(GEN6_PCODE_DATA);
7341 I915_WRITE(GEN6_PCODE_DATA, 0);
7342
7343 return 0;
7344 }
7345
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u32 mbox,u32 val)7346 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7347 {
7348 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7349
7350 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7351 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7352 return -EAGAIN;
7353 }
7354
7355 I915_WRITE(GEN6_PCODE_DATA, val);
7356 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7357
7358 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7359 500)) {
7360 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7361 return -ETIMEDOUT;
7362 }
7363
7364 I915_WRITE(GEN6_PCODE_DATA, 0);
7365
7366 return 0;
7367 }
7368
vlv_gpu_freq_div(unsigned int czclk_freq)7369 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7370 {
7371 switch (czclk_freq) {
7372 case 200:
7373 return 10;
7374 case 267:
7375 return 12;
7376 case 320:
7377 case 333:
7378 return 16;
7379 case 400:
7380 return 20;
7381 default:
7382 return -1;
7383 }
7384 }
7385
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)7386 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7387 {
7388 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7389
7390 div = vlv_gpu_freq_div(czclk_freq);
7391 if (div < 0)
7392 return div;
7393
7394 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7395 }
7396
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)7397 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7398 {
7399 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7400
7401 mul = vlv_gpu_freq_div(czclk_freq);
7402 if (mul < 0)
7403 return mul;
7404
7405 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7406 }
7407
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)7408 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7409 {
7410 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7411
7412 div = vlv_gpu_freq_div(czclk_freq) / 2;
7413 if (div < 0)
7414 return div;
7415
7416 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7417 }
7418
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)7419 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7420 {
7421 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7422
7423 mul = vlv_gpu_freq_div(czclk_freq) / 2;
7424 if (mul < 0)
7425 return mul;
7426
7427 /* CHV needs even values */
7428 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7429 }
7430
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)7431 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7432 {
7433 if (IS_GEN9(dev_priv->dev))
7434 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7435 GEN9_FREQ_SCALER);
7436 else if (IS_CHERRYVIEW(dev_priv->dev))
7437 return chv_gpu_freq(dev_priv, val);
7438 else if (IS_VALLEYVIEW(dev_priv->dev))
7439 return byt_gpu_freq(dev_priv, val);
7440 else
7441 return val * GT_FREQUENCY_MULTIPLIER;
7442 }
7443
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)7444 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7445 {
7446 if (IS_GEN9(dev_priv->dev))
7447 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7448 GT_FREQUENCY_MULTIPLIER);
7449 else if (IS_CHERRYVIEW(dev_priv->dev))
7450 return chv_freq_opcode(dev_priv, val);
7451 else if (IS_VALLEYVIEW(dev_priv->dev))
7452 return byt_freq_opcode(dev_priv, val);
7453 else
7454 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7455 }
7456
7457 struct request_boost {
7458 struct work_struct work;
7459 struct drm_i915_gem_request *req;
7460 };
7461
__intel_rps_boost_work(struct work_struct * work)7462 static void __intel_rps_boost_work(struct work_struct *work)
7463 {
7464 struct request_boost *boost = container_of(work, struct request_boost, work);
7465 struct drm_i915_gem_request *req = boost->req;
7466
7467 if (!i915_gem_request_completed(req, true))
7468 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7469 req->emitted_jiffies);
7470
7471 i915_gem_request_unreference__unlocked(req);
7472 kfree(boost);
7473 }
7474
intel_queue_rps_boost_for_request(struct drm_device * dev,struct drm_i915_gem_request * req)7475 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7476 struct drm_i915_gem_request *req)
7477 {
7478 struct request_boost *boost;
7479
7480 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7481 return;
7482
7483 if (i915_gem_request_completed(req, true))
7484 return;
7485
7486 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7487 if (boost == NULL)
7488 return;
7489
7490 i915_gem_request_reference(req);
7491 boost->req = req;
7492
7493 INIT_WORK(&boost->work, __intel_rps_boost_work);
7494 queue_work(to_i915(dev)->wq, &boost->work);
7495 }
7496
intel_pm_setup(struct drm_device * dev)7497 void intel_pm_setup(struct drm_device *dev)
7498 {
7499 struct drm_i915_private *dev_priv = dev->dev_private;
7500
7501 mutex_init(&dev_priv->rps.hw_lock);
7502 spin_lock_init(&dev_priv->rps.client_lock);
7503
7504 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7505 intel_gen6_powersave_work);
7506 INIT_LIST_HEAD(&dev_priv->rps.clients);
7507 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7508 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7509
7510 dev_priv->pm.suspended = false;
7511 }
7512