• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE			(1<<0)
52 #define INTEL_RC6p_ENABLE			(1<<1)
53 #define INTEL_RC6pp_ENABLE			(1<<2)
54 
bxt_init_clock_gating(struct drm_device * dev)55 static void bxt_init_clock_gating(struct drm_device *dev)
56 {
57 	struct drm_i915_private *dev_priv = dev->dev_private;
58 
59 	/* WaDisableSDEUnitClockGating:bxt */
60 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
61 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
62 
63 	/*
64 	 * FIXME:
65 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 	 */
67 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 
70 	/*
71 	 * Lower the display internal timeout.
72 	 * This is needed to avoid any hard hangs when DSI port PLL
73 	 * is off and a MMIO access is attempted by any privilege
74 	 * application, using batch buffers or any other means.
75 	 */
76 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
77 }
78 
i915_pineview_get_mem_freq(struct drm_device * dev)79 static void i915_pineview_get_mem_freq(struct drm_device *dev)
80 {
81 	struct drm_i915_private *dev_priv = dev->dev_private;
82 	u32 tmp;
83 
84 	tmp = I915_READ(CLKCFG);
85 
86 	switch (tmp & CLKCFG_FSB_MASK) {
87 	case CLKCFG_FSB_533:
88 		dev_priv->fsb_freq = 533; /* 133*4 */
89 		break;
90 	case CLKCFG_FSB_800:
91 		dev_priv->fsb_freq = 800; /* 200*4 */
92 		break;
93 	case CLKCFG_FSB_667:
94 		dev_priv->fsb_freq =  667; /* 167*4 */
95 		break;
96 	case CLKCFG_FSB_400:
97 		dev_priv->fsb_freq = 400; /* 100*4 */
98 		break;
99 	}
100 
101 	switch (tmp & CLKCFG_MEM_MASK) {
102 	case CLKCFG_MEM_533:
103 		dev_priv->mem_freq = 533;
104 		break;
105 	case CLKCFG_MEM_667:
106 		dev_priv->mem_freq = 667;
107 		break;
108 	case CLKCFG_MEM_800:
109 		dev_priv->mem_freq = 800;
110 		break;
111 	}
112 
113 	/* detect pineview DDR3 setting */
114 	tmp = I915_READ(CSHRDDR3CTL);
115 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
116 }
117 
i915_ironlake_get_mem_freq(struct drm_device * dev)118 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
119 {
120 	struct drm_i915_private *dev_priv = dev->dev_private;
121 	u16 ddrpll, csipll;
122 
123 	ddrpll = I915_READ16(DDRMPLL1);
124 	csipll = I915_READ16(CSIPLL0);
125 
126 	switch (ddrpll & 0xff) {
127 	case 0xc:
128 		dev_priv->mem_freq = 800;
129 		break;
130 	case 0x10:
131 		dev_priv->mem_freq = 1066;
132 		break;
133 	case 0x14:
134 		dev_priv->mem_freq = 1333;
135 		break;
136 	case 0x18:
137 		dev_priv->mem_freq = 1600;
138 		break;
139 	default:
140 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
141 				 ddrpll & 0xff);
142 		dev_priv->mem_freq = 0;
143 		break;
144 	}
145 
146 	dev_priv->ips.r_t = dev_priv->mem_freq;
147 
148 	switch (csipll & 0x3ff) {
149 	case 0x00c:
150 		dev_priv->fsb_freq = 3200;
151 		break;
152 	case 0x00e:
153 		dev_priv->fsb_freq = 3733;
154 		break;
155 	case 0x010:
156 		dev_priv->fsb_freq = 4266;
157 		break;
158 	case 0x012:
159 		dev_priv->fsb_freq = 4800;
160 		break;
161 	case 0x014:
162 		dev_priv->fsb_freq = 5333;
163 		break;
164 	case 0x016:
165 		dev_priv->fsb_freq = 5866;
166 		break;
167 	case 0x018:
168 		dev_priv->fsb_freq = 6400;
169 		break;
170 	default:
171 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
172 				 csipll & 0x3ff);
173 		dev_priv->fsb_freq = 0;
174 		break;
175 	}
176 
177 	if (dev_priv->fsb_freq == 3200) {
178 		dev_priv->ips.c_m = 0;
179 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
180 		dev_priv->ips.c_m = 1;
181 	} else {
182 		dev_priv->ips.c_m = 2;
183 	}
184 }
185 
186 static const struct cxsr_latency cxsr_latency_table[] = {
187 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
188 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
189 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
190 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
191 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
192 
193 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
194 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
195 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
196 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
197 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
198 
199 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
200 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
201 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
202 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
203 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
204 
205 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
206 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
207 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
208 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
209 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
210 
211 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
212 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
213 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
214 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
215 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
216 
217 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
218 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
219 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
220 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
221 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
222 };
223 
intel_get_cxsr_latency(int is_desktop,int is_ddr3,int fsb,int mem)224 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
225 							 int is_ddr3,
226 							 int fsb,
227 							 int mem)
228 {
229 	const struct cxsr_latency *latency;
230 	int i;
231 
232 	if (fsb == 0 || mem == 0)
233 		return NULL;
234 
235 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
236 		latency = &cxsr_latency_table[i];
237 		if (is_desktop == latency->is_desktop &&
238 		    is_ddr3 == latency->is_ddr3 &&
239 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
240 			return latency;
241 	}
242 
243 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
244 
245 	return NULL;
246 }
247 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)248 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
249 {
250 	u32 val;
251 
252 	mutex_lock(&dev_priv->rps.hw_lock);
253 
254 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
255 	if (enable)
256 		val &= ~FORCE_DDR_HIGH_FREQ;
257 	else
258 		val |= FORCE_DDR_HIGH_FREQ;
259 	val &= ~FORCE_DDR_LOW_FREQ;
260 	val |= FORCE_DDR_FREQ_REQ_ACK;
261 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
262 
263 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
264 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
265 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
266 
267 	mutex_unlock(&dev_priv->rps.hw_lock);
268 }
269 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)270 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
271 {
272 	u32 val;
273 
274 	mutex_lock(&dev_priv->rps.hw_lock);
275 
276 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
277 	if (enable)
278 		val |= DSP_MAXFIFO_PM5_ENABLE;
279 	else
280 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
281 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
282 
283 	mutex_unlock(&dev_priv->rps.hw_lock);
284 }
285 
286 #define FW_WM(value, plane) \
287 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
288 
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)289 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
290 {
291 	struct drm_device *dev = dev_priv->dev;
292 	u32 val;
293 
294 	if (IS_VALLEYVIEW(dev)) {
295 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
296 		POSTING_READ(FW_BLC_SELF_VLV);
297 		dev_priv->wm.vlv.cxsr = enable;
298 	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
299 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
300 		POSTING_READ(FW_BLC_SELF);
301 	} else if (IS_PINEVIEW(dev)) {
302 		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
303 		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
304 		I915_WRITE(DSPFW3, val);
305 		POSTING_READ(DSPFW3);
306 	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
307 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
308 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
309 		I915_WRITE(FW_BLC_SELF, val);
310 		POSTING_READ(FW_BLC_SELF);
311 	} else if (IS_I915GM(dev)) {
312 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
313 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
314 		I915_WRITE(INSTPM, val);
315 		POSTING_READ(INSTPM);
316 	} else {
317 		return;
318 	}
319 
320 	DRM_DEBUG_KMS("memory self-refresh is %s\n",
321 		      enable ? "enabled" : "disabled");
322 }
323 
324 
325 /*
326  * Latency for FIFO fetches is dependent on several factors:
327  *   - memory configuration (speed, channels)
328  *   - chipset
329  *   - current MCH state
330  * It can be fairly high in some situations, so here we assume a fairly
331  * pessimal value.  It's a tradeoff between extra memory fetches (if we
332  * set this value too high, the FIFO will fetch frequently to stay full)
333  * and power consumption (set it too low to save power and we might see
334  * FIFO underruns and display "flicker").
335  *
336  * A value of 5us seems to be a good balance; safe for very low end
337  * platforms but not overly aggressive on lower latency configs.
338  */
339 static const int pessimal_latency_ns = 5000;
340 
341 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
342 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
343 
vlv_get_fifo_size(struct drm_device * dev,enum pipe pipe,int plane)344 static int vlv_get_fifo_size(struct drm_device *dev,
345 			      enum pipe pipe, int plane)
346 {
347 	struct drm_i915_private *dev_priv = dev->dev_private;
348 	int sprite0_start, sprite1_start, size;
349 
350 	switch (pipe) {
351 		uint32_t dsparb, dsparb2, dsparb3;
352 	case PIPE_A:
353 		dsparb = I915_READ(DSPARB);
354 		dsparb2 = I915_READ(DSPARB2);
355 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
356 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
357 		break;
358 	case PIPE_B:
359 		dsparb = I915_READ(DSPARB);
360 		dsparb2 = I915_READ(DSPARB2);
361 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
362 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
363 		break;
364 	case PIPE_C:
365 		dsparb2 = I915_READ(DSPARB2);
366 		dsparb3 = I915_READ(DSPARB3);
367 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
368 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
369 		break;
370 	default:
371 		return 0;
372 	}
373 
374 	switch (plane) {
375 	case 0:
376 		size = sprite0_start;
377 		break;
378 	case 1:
379 		size = sprite1_start - sprite0_start;
380 		break;
381 	case 2:
382 		size = 512 - 1 - sprite1_start;
383 		break;
384 	default:
385 		return 0;
386 	}
387 
388 	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
389 		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
390 		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
391 		      size);
392 
393 	return size;
394 }
395 
i9xx_get_fifo_size(struct drm_device * dev,int plane)396 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
397 {
398 	struct drm_i915_private *dev_priv = dev->dev_private;
399 	uint32_t dsparb = I915_READ(DSPARB);
400 	int size;
401 
402 	size = dsparb & 0x7f;
403 	if (plane)
404 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
405 
406 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
407 		      plane ? "B" : "A", size);
408 
409 	return size;
410 }
411 
i830_get_fifo_size(struct drm_device * dev,int plane)412 static int i830_get_fifo_size(struct drm_device *dev, int plane)
413 {
414 	struct drm_i915_private *dev_priv = dev->dev_private;
415 	uint32_t dsparb = I915_READ(DSPARB);
416 	int size;
417 
418 	size = dsparb & 0x1ff;
419 	if (plane)
420 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
421 	size >>= 1; /* Convert to cachelines */
422 
423 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
424 		      plane ? "B" : "A", size);
425 
426 	return size;
427 }
428 
i845_get_fifo_size(struct drm_device * dev,int plane)429 static int i845_get_fifo_size(struct drm_device *dev, int plane)
430 {
431 	struct drm_i915_private *dev_priv = dev->dev_private;
432 	uint32_t dsparb = I915_READ(DSPARB);
433 	int size;
434 
435 	size = dsparb & 0x7f;
436 	size >>= 2; /* Convert to cachelines */
437 
438 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
439 		      plane ? "B" : "A",
440 		      size);
441 
442 	return size;
443 }
444 
445 /* Pineview has different values for various configs */
446 static const struct intel_watermark_params pineview_display_wm = {
447 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
448 	.max_wm = PINEVIEW_MAX_WM,
449 	.default_wm = PINEVIEW_DFT_WM,
450 	.guard_size = PINEVIEW_GUARD_WM,
451 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
452 };
453 static const struct intel_watermark_params pineview_display_hplloff_wm = {
454 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
455 	.max_wm = PINEVIEW_MAX_WM,
456 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
457 	.guard_size = PINEVIEW_GUARD_WM,
458 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
459 };
460 static const struct intel_watermark_params pineview_cursor_wm = {
461 	.fifo_size = PINEVIEW_CURSOR_FIFO,
462 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
463 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
464 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
465 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466 };
467 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
468 	.fifo_size = PINEVIEW_CURSOR_FIFO,
469 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
470 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
471 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
472 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473 };
474 static const struct intel_watermark_params g4x_wm_info = {
475 	.fifo_size = G4X_FIFO_SIZE,
476 	.max_wm = G4X_MAX_WM,
477 	.default_wm = G4X_MAX_WM,
478 	.guard_size = 2,
479 	.cacheline_size = G4X_FIFO_LINE_SIZE,
480 };
481 static const struct intel_watermark_params g4x_cursor_wm_info = {
482 	.fifo_size = I965_CURSOR_FIFO,
483 	.max_wm = I965_CURSOR_MAX_WM,
484 	.default_wm = I965_CURSOR_DFT_WM,
485 	.guard_size = 2,
486 	.cacheline_size = G4X_FIFO_LINE_SIZE,
487 };
488 static const struct intel_watermark_params valleyview_wm_info = {
489 	.fifo_size = VALLEYVIEW_FIFO_SIZE,
490 	.max_wm = VALLEYVIEW_MAX_WM,
491 	.default_wm = VALLEYVIEW_MAX_WM,
492 	.guard_size = 2,
493 	.cacheline_size = G4X_FIFO_LINE_SIZE,
494 };
495 static const struct intel_watermark_params valleyview_cursor_wm_info = {
496 	.fifo_size = I965_CURSOR_FIFO,
497 	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
498 	.default_wm = I965_CURSOR_DFT_WM,
499 	.guard_size = 2,
500 	.cacheline_size = G4X_FIFO_LINE_SIZE,
501 };
502 static const struct intel_watermark_params i965_cursor_wm_info = {
503 	.fifo_size = I965_CURSOR_FIFO,
504 	.max_wm = I965_CURSOR_MAX_WM,
505 	.default_wm = I965_CURSOR_DFT_WM,
506 	.guard_size = 2,
507 	.cacheline_size = I915_FIFO_LINE_SIZE,
508 };
509 static const struct intel_watermark_params i945_wm_info = {
510 	.fifo_size = I945_FIFO_SIZE,
511 	.max_wm = I915_MAX_WM,
512 	.default_wm = 1,
513 	.guard_size = 2,
514 	.cacheline_size = I915_FIFO_LINE_SIZE,
515 };
516 static const struct intel_watermark_params i915_wm_info = {
517 	.fifo_size = I915_FIFO_SIZE,
518 	.max_wm = I915_MAX_WM,
519 	.default_wm = 1,
520 	.guard_size = 2,
521 	.cacheline_size = I915_FIFO_LINE_SIZE,
522 };
523 static const struct intel_watermark_params i830_a_wm_info = {
524 	.fifo_size = I855GM_FIFO_SIZE,
525 	.max_wm = I915_MAX_WM,
526 	.default_wm = 1,
527 	.guard_size = 2,
528 	.cacheline_size = I830_FIFO_LINE_SIZE,
529 };
530 static const struct intel_watermark_params i830_bc_wm_info = {
531 	.fifo_size = I855GM_FIFO_SIZE,
532 	.max_wm = I915_MAX_WM/2,
533 	.default_wm = 1,
534 	.guard_size = 2,
535 	.cacheline_size = I830_FIFO_LINE_SIZE,
536 };
537 static const struct intel_watermark_params i845_wm_info = {
538 	.fifo_size = I830_FIFO_SIZE,
539 	.max_wm = I915_MAX_WM,
540 	.default_wm = 1,
541 	.guard_size = 2,
542 	.cacheline_size = I830_FIFO_LINE_SIZE,
543 };
544 
545 /**
546  * intel_calculate_wm - calculate watermark level
547  * @clock_in_khz: pixel clock
548  * @wm: chip FIFO params
549  * @pixel_size: display pixel size
550  * @latency_ns: memory latency for the platform
551  *
552  * Calculate the watermark level (the level at which the display plane will
553  * start fetching from memory again).  Each chip has a different display
554  * FIFO size and allocation, so the caller needs to figure that out and pass
555  * in the correct intel_watermark_params structure.
556  *
557  * As the pixel clock runs, the FIFO will be drained at a rate that depends
558  * on the pixel size.  When it reaches the watermark level, it'll start
559  * fetching FIFO line sized based chunks from memory until the FIFO fills
560  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
561  * will occur, and a display engine hang could result.
562  */
intel_calculate_wm(unsigned long clock_in_khz,const struct intel_watermark_params * wm,int fifo_size,int pixel_size,unsigned long latency_ns)563 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
564 					const struct intel_watermark_params *wm,
565 					int fifo_size,
566 					int pixel_size,
567 					unsigned long latency_ns)
568 {
569 	long entries_required, wm_size;
570 
571 	/*
572 	 * Note: we need to make sure we don't overflow for various clock &
573 	 * latency values.
574 	 * clocks go from a few thousand to several hundred thousand.
575 	 * latency is usually a few thousand
576 	 */
577 	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
578 		1000;
579 	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
580 
581 	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
582 
583 	wm_size = fifo_size - (entries_required + wm->guard_size);
584 
585 	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
586 
587 	/* Don't promote wm_size to unsigned... */
588 	if (wm_size > (long)wm->max_wm)
589 		wm_size = wm->max_wm;
590 	if (wm_size <= 0)
591 		wm_size = wm->default_wm;
592 
593 	/*
594 	 * Bspec seems to indicate that the value shouldn't be lower than
595 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
596 	 * Lets go for 8 which is the burst size since certain platforms
597 	 * already use a hardcoded 8 (which is what the spec says should be
598 	 * done).
599 	 */
600 	if (wm_size <= 8)
601 		wm_size = 8;
602 
603 	return wm_size;
604 }
605 
single_enabled_crtc(struct drm_device * dev)606 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
607 {
608 	struct drm_crtc *crtc, *enabled = NULL;
609 
610 	for_each_crtc(dev, crtc) {
611 		if (intel_crtc_active(crtc)) {
612 			if (enabled)
613 				return NULL;
614 			enabled = crtc;
615 		}
616 	}
617 
618 	return enabled;
619 }
620 
pineview_update_wm(struct drm_crtc * unused_crtc)621 static void pineview_update_wm(struct drm_crtc *unused_crtc)
622 {
623 	struct drm_device *dev = unused_crtc->dev;
624 	struct drm_i915_private *dev_priv = dev->dev_private;
625 	struct drm_crtc *crtc;
626 	const struct cxsr_latency *latency;
627 	u32 reg;
628 	unsigned long wm;
629 
630 	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
631 					 dev_priv->fsb_freq, dev_priv->mem_freq);
632 	if (!latency) {
633 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
634 		intel_set_memory_cxsr(dev_priv, false);
635 		return;
636 	}
637 
638 	crtc = single_enabled_crtc(dev);
639 	if (crtc) {
640 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
641 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
642 		int clock = adjusted_mode->crtc_clock;
643 
644 		/* Display SR */
645 		wm = intel_calculate_wm(clock, &pineview_display_wm,
646 					pineview_display_wm.fifo_size,
647 					pixel_size, latency->display_sr);
648 		reg = I915_READ(DSPFW1);
649 		reg &= ~DSPFW_SR_MASK;
650 		reg |= FW_WM(wm, SR);
651 		I915_WRITE(DSPFW1, reg);
652 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
653 
654 		/* cursor SR */
655 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
656 					pineview_display_wm.fifo_size,
657 					pixel_size, latency->cursor_sr);
658 		reg = I915_READ(DSPFW3);
659 		reg &= ~DSPFW_CURSOR_SR_MASK;
660 		reg |= FW_WM(wm, CURSOR_SR);
661 		I915_WRITE(DSPFW3, reg);
662 
663 		/* Display HPLL off SR */
664 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
665 					pineview_display_hplloff_wm.fifo_size,
666 					pixel_size, latency->display_hpll_disable);
667 		reg = I915_READ(DSPFW3);
668 		reg &= ~DSPFW_HPLL_SR_MASK;
669 		reg |= FW_WM(wm, HPLL_SR);
670 		I915_WRITE(DSPFW3, reg);
671 
672 		/* cursor HPLL off SR */
673 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
674 					pineview_display_hplloff_wm.fifo_size,
675 					pixel_size, latency->cursor_hpll_disable);
676 		reg = I915_READ(DSPFW3);
677 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
678 		reg |= FW_WM(wm, HPLL_CURSOR);
679 		I915_WRITE(DSPFW3, reg);
680 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
681 
682 		intel_set_memory_cxsr(dev_priv, true);
683 	} else {
684 		intel_set_memory_cxsr(dev_priv, false);
685 	}
686 }
687 
g4x_compute_wm0(struct drm_device * dev,int plane,const struct intel_watermark_params * display,int display_latency_ns,const struct intel_watermark_params * cursor,int cursor_latency_ns,int * plane_wm,int * cursor_wm)688 static bool g4x_compute_wm0(struct drm_device *dev,
689 			    int plane,
690 			    const struct intel_watermark_params *display,
691 			    int display_latency_ns,
692 			    const struct intel_watermark_params *cursor,
693 			    int cursor_latency_ns,
694 			    int *plane_wm,
695 			    int *cursor_wm)
696 {
697 	struct drm_crtc *crtc;
698 	const struct drm_display_mode *adjusted_mode;
699 	int htotal, hdisplay, clock, pixel_size;
700 	int line_time_us, line_count;
701 	int entries, tlb_miss;
702 
703 	crtc = intel_get_crtc_for_plane(dev, plane);
704 	if (!intel_crtc_active(crtc)) {
705 		*cursor_wm = cursor->guard_size;
706 		*plane_wm = display->guard_size;
707 		return false;
708 	}
709 
710 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
711 	clock = adjusted_mode->crtc_clock;
712 	htotal = adjusted_mode->crtc_htotal;
713 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
714 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
715 
716 	/* Use the small buffer method to calculate plane watermark */
717 	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
718 	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
719 	if (tlb_miss > 0)
720 		entries += tlb_miss;
721 	entries = DIV_ROUND_UP(entries, display->cacheline_size);
722 	*plane_wm = entries + display->guard_size;
723 	if (*plane_wm > (int)display->max_wm)
724 		*plane_wm = display->max_wm;
725 
726 	/* Use the large buffer method to calculate cursor watermark */
727 	line_time_us = max(htotal * 1000 / clock, 1);
728 	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
729 	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
730 	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
731 	if (tlb_miss > 0)
732 		entries += tlb_miss;
733 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
734 	*cursor_wm = entries + cursor->guard_size;
735 	if (*cursor_wm > (int)cursor->max_wm)
736 		*cursor_wm = (int)cursor->max_wm;
737 
738 	return true;
739 }
740 
741 /*
742  * Check the wm result.
743  *
744  * If any calculated watermark values is larger than the maximum value that
745  * can be programmed into the associated watermark register, that watermark
746  * must be disabled.
747  */
g4x_check_srwm(struct drm_device * dev,int display_wm,int cursor_wm,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor)748 static bool g4x_check_srwm(struct drm_device *dev,
749 			   int display_wm, int cursor_wm,
750 			   const struct intel_watermark_params *display,
751 			   const struct intel_watermark_params *cursor)
752 {
753 	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
754 		      display_wm, cursor_wm);
755 
756 	if (display_wm > display->max_wm) {
757 		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
758 			      display_wm, display->max_wm);
759 		return false;
760 	}
761 
762 	if (cursor_wm > cursor->max_wm) {
763 		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
764 			      cursor_wm, cursor->max_wm);
765 		return false;
766 	}
767 
768 	if (!(display_wm || cursor_wm)) {
769 		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
770 		return false;
771 	}
772 
773 	return true;
774 }
775 
g4x_compute_srwm(struct drm_device * dev,int plane,int latency_ns,const struct intel_watermark_params * display,const struct intel_watermark_params * cursor,int * display_wm,int * cursor_wm)776 static bool g4x_compute_srwm(struct drm_device *dev,
777 			     int plane,
778 			     int latency_ns,
779 			     const struct intel_watermark_params *display,
780 			     const struct intel_watermark_params *cursor,
781 			     int *display_wm, int *cursor_wm)
782 {
783 	struct drm_crtc *crtc;
784 	const struct drm_display_mode *adjusted_mode;
785 	int hdisplay, htotal, pixel_size, clock;
786 	unsigned long line_time_us;
787 	int line_count, line_size;
788 	int small, large;
789 	int entries;
790 
791 	if (!latency_ns) {
792 		*display_wm = *cursor_wm = 0;
793 		return false;
794 	}
795 
796 	crtc = intel_get_crtc_for_plane(dev, plane);
797 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
798 	clock = adjusted_mode->crtc_clock;
799 	htotal = adjusted_mode->crtc_htotal;
800 	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
801 	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
802 
803 	line_time_us = max(htotal * 1000 / clock, 1);
804 	line_count = (latency_ns / line_time_us + 1000) / 1000;
805 	line_size = hdisplay * pixel_size;
806 
807 	/* Use the minimum of the small and large buffer method for primary */
808 	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
809 	large = line_count * line_size;
810 
811 	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
812 	*display_wm = entries + display->guard_size;
813 
814 	/* calculate the self-refresh watermark for display cursor */
815 	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
816 	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
817 	*cursor_wm = entries + cursor->guard_size;
818 
819 	return g4x_check_srwm(dev,
820 			      *display_wm, *cursor_wm,
821 			      display, cursor);
822 }
823 
824 #define FW_WM_VLV(value, plane) \
825 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
826 
vlv_write_wm_values(struct intel_crtc * crtc,const struct vlv_wm_values * wm)827 static void vlv_write_wm_values(struct intel_crtc *crtc,
828 				const struct vlv_wm_values *wm)
829 {
830 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
831 	enum pipe pipe = crtc->pipe;
832 
833 	I915_WRITE(VLV_DDL(pipe),
834 		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
835 		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
836 		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
837 		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
838 
839 	I915_WRITE(DSPFW1,
840 		   FW_WM(wm->sr.plane, SR) |
841 		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
842 		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
843 		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
844 	I915_WRITE(DSPFW2,
845 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
846 		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
847 		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
848 	I915_WRITE(DSPFW3,
849 		   FW_WM(wm->sr.cursor, CURSOR_SR));
850 
851 	if (IS_CHERRYVIEW(dev_priv)) {
852 		I915_WRITE(DSPFW7_CHV,
853 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
854 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
855 		I915_WRITE(DSPFW8_CHV,
856 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
857 			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
858 		I915_WRITE(DSPFW9_CHV,
859 			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
860 			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
861 		I915_WRITE(DSPHOWM,
862 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
863 			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
864 			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
865 			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
866 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
867 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
868 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
869 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
870 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
871 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
872 	} else {
873 		I915_WRITE(DSPFW7,
874 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875 			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876 		I915_WRITE(DSPHOWM,
877 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
878 			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
879 			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
880 			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
881 			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
882 			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
883 			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
884 	}
885 
886 	/* zero (unused) WM1 watermarks */
887 	I915_WRITE(DSPFW4, 0);
888 	I915_WRITE(DSPFW5, 0);
889 	I915_WRITE(DSPFW6, 0);
890 	I915_WRITE(DSPHOWM1, 0);
891 
892 	POSTING_READ(DSPFW1);
893 }
894 
895 #undef FW_WM_VLV
896 
897 enum vlv_wm_level {
898 	VLV_WM_LEVEL_PM2,
899 	VLV_WM_LEVEL_PM5,
900 	VLV_WM_LEVEL_DDR_DVFS,
901 };
902 
903 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int pipe_htotal,unsigned int horiz_pixels,unsigned int bytes_per_pixel,unsigned int latency)904 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
905 				   unsigned int pipe_htotal,
906 				   unsigned int horiz_pixels,
907 				   unsigned int bytes_per_pixel,
908 				   unsigned int latency)
909 {
910 	unsigned int ret;
911 
912 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
913 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
914 	ret = DIV_ROUND_UP(ret, 64);
915 
916 	return ret;
917 }
918 
vlv_setup_wm_latency(struct drm_device * dev)919 static void vlv_setup_wm_latency(struct drm_device *dev)
920 {
921 	struct drm_i915_private *dev_priv = dev->dev_private;
922 
923 	/* all latencies in usec */
924 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
925 
926 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
927 
928 	if (IS_CHERRYVIEW(dev_priv)) {
929 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
930 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
931 
932 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
933 	}
934 }
935 
vlv_compute_wm_level(struct intel_plane * plane,struct intel_crtc * crtc,const struct intel_plane_state * state,int level)936 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
937 				     struct intel_crtc *crtc,
938 				     const struct intel_plane_state *state,
939 				     int level)
940 {
941 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
942 	int clock, htotal, pixel_size, width, wm;
943 
944 	if (dev_priv->wm.pri_latency[level] == 0)
945 		return USHRT_MAX;
946 
947 	if (!state->visible)
948 		return 0;
949 
950 	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
951 	clock = crtc->config->base.adjusted_mode.crtc_clock;
952 	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
953 	width = crtc->config->pipe_src_w;
954 	if (WARN_ON(htotal == 0))
955 		htotal = 1;
956 
957 	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
958 		/*
959 		 * FIXME the formula gives values that are
960 		 * too big for the cursor FIFO, and hence we
961 		 * would never be able to use cursors. For
962 		 * now just hardcode the watermark.
963 		 */
964 		wm = 63;
965 	} else {
966 		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
967 				    dev_priv->wm.pri_latency[level] * 10);
968 	}
969 
970 	return min_t(int, wm, USHRT_MAX);
971 }
972 
vlv_compute_fifo(struct intel_crtc * crtc)973 static void vlv_compute_fifo(struct intel_crtc *crtc)
974 {
975 	struct drm_device *dev = crtc->base.dev;
976 	struct vlv_wm_state *wm_state = &crtc->wm_state;
977 	struct intel_plane *plane;
978 	unsigned int total_rate = 0;
979 	const int fifo_size = 512 - 1;
980 	int fifo_extra, fifo_left = fifo_size;
981 
982 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
983 		struct intel_plane_state *state =
984 			to_intel_plane_state(plane->base.state);
985 
986 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
987 			continue;
988 
989 		if (state->visible) {
990 			wm_state->num_active_planes++;
991 			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
992 		}
993 	}
994 
995 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
996 		struct intel_plane_state *state =
997 			to_intel_plane_state(plane->base.state);
998 		unsigned int rate;
999 
1000 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1001 			plane->wm.fifo_size = 63;
1002 			continue;
1003 		}
1004 
1005 		if (!state->visible) {
1006 			plane->wm.fifo_size = 0;
1007 			continue;
1008 		}
1009 
1010 		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1011 		plane->wm.fifo_size = fifo_size * rate / total_rate;
1012 		fifo_left -= plane->wm.fifo_size;
1013 	}
1014 
1015 	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1016 
1017 	/* spread the remainder evenly */
1018 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1019 		int plane_extra;
1020 
1021 		if (fifo_left == 0)
1022 			break;
1023 
1024 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1025 			continue;
1026 
1027 		/* give it all to the first plane if none are active */
1028 		if (plane->wm.fifo_size == 0 &&
1029 		    wm_state->num_active_planes)
1030 			continue;
1031 
1032 		plane_extra = min(fifo_extra, fifo_left);
1033 		plane->wm.fifo_size += plane_extra;
1034 		fifo_left -= plane_extra;
1035 	}
1036 
1037 	WARN_ON(fifo_left != 0);
1038 }
1039 
vlv_invert_wms(struct intel_crtc * crtc)1040 static void vlv_invert_wms(struct intel_crtc *crtc)
1041 {
1042 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1043 	int level;
1044 
1045 	for (level = 0; level < wm_state->num_levels; level++) {
1046 		struct drm_device *dev = crtc->base.dev;
1047 		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1048 		struct intel_plane *plane;
1049 
1050 		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1051 		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1052 
1053 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
1054 			switch (plane->base.type) {
1055 				int sprite;
1056 			case DRM_PLANE_TYPE_CURSOR:
1057 				wm_state->wm[level].cursor = plane->wm.fifo_size -
1058 					wm_state->wm[level].cursor;
1059 				break;
1060 			case DRM_PLANE_TYPE_PRIMARY:
1061 				wm_state->wm[level].primary = plane->wm.fifo_size -
1062 					wm_state->wm[level].primary;
1063 				break;
1064 			case DRM_PLANE_TYPE_OVERLAY:
1065 				sprite = plane->plane;
1066 				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1067 					wm_state->wm[level].sprite[sprite];
1068 				break;
1069 			}
1070 		}
1071 	}
1072 }
1073 
vlv_compute_wm(struct intel_crtc * crtc)1074 static void vlv_compute_wm(struct intel_crtc *crtc)
1075 {
1076 	struct drm_device *dev = crtc->base.dev;
1077 	struct vlv_wm_state *wm_state = &crtc->wm_state;
1078 	struct intel_plane *plane;
1079 	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1080 	int level;
1081 
1082 	memset(wm_state, 0, sizeof(*wm_state));
1083 
1084 	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1085 	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1086 
1087 	wm_state->num_active_planes = 0;
1088 
1089 	vlv_compute_fifo(crtc);
1090 
1091 	if (wm_state->num_active_planes != 1)
1092 		wm_state->cxsr = false;
1093 
1094 	if (wm_state->cxsr) {
1095 		for (level = 0; level < wm_state->num_levels; level++) {
1096 			wm_state->sr[level].plane = sr_fifo_size;
1097 			wm_state->sr[level].cursor = 63;
1098 		}
1099 	}
1100 
1101 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1102 		struct intel_plane_state *state =
1103 			to_intel_plane_state(plane->base.state);
1104 
1105 		if (!state->visible)
1106 			continue;
1107 
1108 		/* normal watermarks */
1109 		for (level = 0; level < wm_state->num_levels; level++) {
1110 			int wm = vlv_compute_wm_level(plane, crtc, state, level);
1111 			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1112 
1113 			/* hack */
1114 			if (WARN_ON(level == 0 && wm > max_wm))
1115 				wm = max_wm;
1116 
1117 			if (wm > plane->wm.fifo_size)
1118 				break;
1119 
1120 			switch (plane->base.type) {
1121 				int sprite;
1122 			case DRM_PLANE_TYPE_CURSOR:
1123 				wm_state->wm[level].cursor = wm;
1124 				break;
1125 			case DRM_PLANE_TYPE_PRIMARY:
1126 				wm_state->wm[level].primary = wm;
1127 				break;
1128 			case DRM_PLANE_TYPE_OVERLAY:
1129 				sprite = plane->plane;
1130 				wm_state->wm[level].sprite[sprite] = wm;
1131 				break;
1132 			}
1133 		}
1134 
1135 		wm_state->num_levels = level;
1136 
1137 		if (!wm_state->cxsr)
1138 			continue;
1139 
1140 		/* maxfifo watermarks */
1141 		switch (plane->base.type) {
1142 			int sprite, level;
1143 		case DRM_PLANE_TYPE_CURSOR:
1144 			for (level = 0; level < wm_state->num_levels; level++)
1145 				wm_state->sr[level].cursor =
1146 					wm_state->wm[level].cursor;
1147 			break;
1148 		case DRM_PLANE_TYPE_PRIMARY:
1149 			for (level = 0; level < wm_state->num_levels; level++)
1150 				wm_state->sr[level].plane =
1151 					min(wm_state->sr[level].plane,
1152 					    wm_state->wm[level].primary);
1153 			break;
1154 		case DRM_PLANE_TYPE_OVERLAY:
1155 			sprite = plane->plane;
1156 			for (level = 0; level < wm_state->num_levels; level++)
1157 				wm_state->sr[level].plane =
1158 					min(wm_state->sr[level].plane,
1159 					    wm_state->wm[level].sprite[sprite]);
1160 			break;
1161 		}
1162 	}
1163 
1164 	/* clear any (partially) filled invalid levels */
1165 	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1166 		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1167 		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1168 	}
1169 
1170 	vlv_invert_wms(crtc);
1171 }
1172 
1173 #define VLV_FIFO(plane, value) \
1174 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1175 
vlv_pipe_set_fifo_size(struct intel_crtc * crtc)1176 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1177 {
1178 	struct drm_device *dev = crtc->base.dev;
1179 	struct drm_i915_private *dev_priv = to_i915(dev);
1180 	struct intel_plane *plane;
1181 	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1182 
1183 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
1184 		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1185 			WARN_ON(plane->wm.fifo_size != 63);
1186 			continue;
1187 		}
1188 
1189 		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1190 			sprite0_start = plane->wm.fifo_size;
1191 		else if (plane->plane == 0)
1192 			sprite1_start = sprite0_start + plane->wm.fifo_size;
1193 		else
1194 			fifo_size = sprite1_start + plane->wm.fifo_size;
1195 	}
1196 
1197 	WARN_ON(fifo_size != 512 - 1);
1198 
1199 	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1200 		      pipe_name(crtc->pipe), sprite0_start,
1201 		      sprite1_start, fifo_size);
1202 
1203 	switch (crtc->pipe) {
1204 		uint32_t dsparb, dsparb2, dsparb3;
1205 	case PIPE_A:
1206 		dsparb = I915_READ(DSPARB);
1207 		dsparb2 = I915_READ(DSPARB2);
1208 
1209 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1210 			    VLV_FIFO(SPRITEB, 0xff));
1211 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1212 			   VLV_FIFO(SPRITEB, sprite1_start));
1213 
1214 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1215 			     VLV_FIFO(SPRITEB_HI, 0x1));
1216 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1217 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1218 
1219 		I915_WRITE(DSPARB, dsparb);
1220 		I915_WRITE(DSPARB2, dsparb2);
1221 		break;
1222 	case PIPE_B:
1223 		dsparb = I915_READ(DSPARB);
1224 		dsparb2 = I915_READ(DSPARB2);
1225 
1226 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1227 			    VLV_FIFO(SPRITED, 0xff));
1228 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1229 			   VLV_FIFO(SPRITED, sprite1_start));
1230 
1231 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1232 			     VLV_FIFO(SPRITED_HI, 0xff));
1233 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1234 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1235 
1236 		I915_WRITE(DSPARB, dsparb);
1237 		I915_WRITE(DSPARB2, dsparb2);
1238 		break;
1239 	case PIPE_C:
1240 		dsparb3 = I915_READ(DSPARB3);
1241 		dsparb2 = I915_READ(DSPARB2);
1242 
1243 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1244 			     VLV_FIFO(SPRITEF, 0xff));
1245 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1246 			    VLV_FIFO(SPRITEF, sprite1_start));
1247 
1248 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1249 			     VLV_FIFO(SPRITEF_HI, 0xff));
1250 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1251 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1252 
1253 		I915_WRITE(DSPARB3, dsparb3);
1254 		I915_WRITE(DSPARB2, dsparb2);
1255 		break;
1256 	default:
1257 		break;
1258 	}
1259 }
1260 
1261 #undef VLV_FIFO
1262 
vlv_merge_wm(struct drm_device * dev,struct vlv_wm_values * wm)1263 static void vlv_merge_wm(struct drm_device *dev,
1264 			 struct vlv_wm_values *wm)
1265 {
1266 	struct intel_crtc *crtc;
1267 	int num_active_crtcs = 0;
1268 
1269 	wm->level = to_i915(dev)->wm.max_level;
1270 	wm->cxsr = true;
1271 
1272 	for_each_intel_crtc(dev, crtc) {
1273 		const struct vlv_wm_state *wm_state = &crtc->wm_state;
1274 
1275 		if (!crtc->active)
1276 			continue;
1277 
1278 		if (!wm_state->cxsr)
1279 			wm->cxsr = false;
1280 
1281 		num_active_crtcs++;
1282 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1283 	}
1284 
1285 	if (num_active_crtcs != 1)
1286 		wm->cxsr = false;
1287 
1288 	if (num_active_crtcs > 1)
1289 		wm->level = VLV_WM_LEVEL_PM2;
1290 
1291 	for_each_intel_crtc(dev, crtc) {
1292 		struct vlv_wm_state *wm_state = &crtc->wm_state;
1293 		enum pipe pipe = crtc->pipe;
1294 
1295 		if (!crtc->active)
1296 			continue;
1297 
1298 		wm->pipe[pipe] = wm_state->wm[wm->level];
1299 		if (wm->cxsr)
1300 			wm->sr = wm_state->sr[wm->level];
1301 
1302 		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1303 		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1304 		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1305 		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1306 	}
1307 }
1308 
vlv_update_wm(struct drm_crtc * crtc)1309 static void vlv_update_wm(struct drm_crtc *crtc)
1310 {
1311 	struct drm_device *dev = crtc->dev;
1312 	struct drm_i915_private *dev_priv = dev->dev_private;
1313 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1314 	enum pipe pipe = intel_crtc->pipe;
1315 	struct vlv_wm_values wm = {};
1316 
1317 	vlv_compute_wm(intel_crtc);
1318 	vlv_merge_wm(dev, &wm);
1319 
1320 	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1321 		/* FIXME should be part of crtc atomic commit */
1322 		vlv_pipe_set_fifo_size(intel_crtc);
1323 		return;
1324 	}
1325 
1326 	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1327 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1328 		chv_set_memory_dvfs(dev_priv, false);
1329 
1330 	if (wm.level < VLV_WM_LEVEL_PM5 &&
1331 	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1332 		chv_set_memory_pm5(dev_priv, false);
1333 
1334 	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1335 		intel_set_memory_cxsr(dev_priv, false);
1336 
1337 	/* FIXME should be part of crtc atomic commit */
1338 	vlv_pipe_set_fifo_size(intel_crtc);
1339 
1340 	vlv_write_wm_values(intel_crtc, &wm);
1341 
1342 	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1343 		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1344 		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1345 		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1346 		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1347 
1348 	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1349 		intel_set_memory_cxsr(dev_priv, true);
1350 
1351 	if (wm.level >= VLV_WM_LEVEL_PM5 &&
1352 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1353 		chv_set_memory_pm5(dev_priv, true);
1354 
1355 	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1356 	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1357 		chv_set_memory_dvfs(dev_priv, true);
1358 
1359 	dev_priv->wm.vlv = wm;
1360 }
1361 
1362 #define single_plane_enabled(mask) is_power_of_2(mask)
1363 
g4x_update_wm(struct drm_crtc * crtc)1364 static void g4x_update_wm(struct drm_crtc *crtc)
1365 {
1366 	struct drm_device *dev = crtc->dev;
1367 	static const int sr_latency_ns = 12000;
1368 	struct drm_i915_private *dev_priv = dev->dev_private;
1369 	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1370 	int plane_sr, cursor_sr;
1371 	unsigned int enabled = 0;
1372 	bool cxsr_enabled;
1373 
1374 	if (g4x_compute_wm0(dev, PIPE_A,
1375 			    &g4x_wm_info, pessimal_latency_ns,
1376 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1377 			    &planea_wm, &cursora_wm))
1378 		enabled |= 1 << PIPE_A;
1379 
1380 	if (g4x_compute_wm0(dev, PIPE_B,
1381 			    &g4x_wm_info, pessimal_latency_ns,
1382 			    &g4x_cursor_wm_info, pessimal_latency_ns,
1383 			    &planeb_wm, &cursorb_wm))
1384 		enabled |= 1 << PIPE_B;
1385 
1386 	if (single_plane_enabled(enabled) &&
1387 	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1388 			     sr_latency_ns,
1389 			     &g4x_wm_info,
1390 			     &g4x_cursor_wm_info,
1391 			     &plane_sr, &cursor_sr)) {
1392 		cxsr_enabled = true;
1393 	} else {
1394 		cxsr_enabled = false;
1395 		intel_set_memory_cxsr(dev_priv, false);
1396 		plane_sr = cursor_sr = 0;
1397 	}
1398 
1399 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1400 		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1401 		      planea_wm, cursora_wm,
1402 		      planeb_wm, cursorb_wm,
1403 		      plane_sr, cursor_sr);
1404 
1405 	I915_WRITE(DSPFW1,
1406 		   FW_WM(plane_sr, SR) |
1407 		   FW_WM(cursorb_wm, CURSORB) |
1408 		   FW_WM(planeb_wm, PLANEB) |
1409 		   FW_WM(planea_wm, PLANEA));
1410 	I915_WRITE(DSPFW2,
1411 		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1412 		   FW_WM(cursora_wm, CURSORA));
1413 	/* HPLL off in SR has some issues on G4x... disable it */
1414 	I915_WRITE(DSPFW3,
1415 		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1416 		   FW_WM(cursor_sr, CURSOR_SR));
1417 
1418 	if (cxsr_enabled)
1419 		intel_set_memory_cxsr(dev_priv, true);
1420 }
1421 
i965_update_wm(struct drm_crtc * unused_crtc)1422 static void i965_update_wm(struct drm_crtc *unused_crtc)
1423 {
1424 	struct drm_device *dev = unused_crtc->dev;
1425 	struct drm_i915_private *dev_priv = dev->dev_private;
1426 	struct drm_crtc *crtc;
1427 	int srwm = 1;
1428 	int cursor_sr = 16;
1429 	bool cxsr_enabled;
1430 
1431 	/* Calc sr entries for one plane configs */
1432 	crtc = single_enabled_crtc(dev);
1433 	if (crtc) {
1434 		/* self-refresh has much higher latency */
1435 		static const int sr_latency_ns = 12000;
1436 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1437 		int clock = adjusted_mode->crtc_clock;
1438 		int htotal = adjusted_mode->crtc_htotal;
1439 		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1440 		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1441 		unsigned long line_time_us;
1442 		int entries;
1443 
1444 		line_time_us = max(htotal * 1000 / clock, 1);
1445 
1446 		/* Use ns/us then divide to preserve precision */
1447 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1448 			pixel_size * hdisplay;
1449 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1450 		srwm = I965_FIFO_SIZE - entries;
1451 		if (srwm < 0)
1452 			srwm = 1;
1453 		srwm &= 0x1ff;
1454 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1455 			      entries, srwm);
1456 
1457 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1458 			pixel_size * crtc->cursor->state->crtc_w;
1459 		entries = DIV_ROUND_UP(entries,
1460 					  i965_cursor_wm_info.cacheline_size);
1461 		cursor_sr = i965_cursor_wm_info.fifo_size -
1462 			(entries + i965_cursor_wm_info.guard_size);
1463 
1464 		if (cursor_sr > i965_cursor_wm_info.max_wm)
1465 			cursor_sr = i965_cursor_wm_info.max_wm;
1466 
1467 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1468 			      "cursor %d\n", srwm, cursor_sr);
1469 
1470 		cxsr_enabled = true;
1471 	} else {
1472 		cxsr_enabled = false;
1473 		/* Turn off self refresh if both pipes are enabled */
1474 		intel_set_memory_cxsr(dev_priv, false);
1475 	}
1476 
1477 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1478 		      srwm);
1479 
1480 	/* 965 has limitations... */
1481 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1482 		   FW_WM(8, CURSORB) |
1483 		   FW_WM(8, PLANEB) |
1484 		   FW_WM(8, PLANEA));
1485 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1486 		   FW_WM(8, PLANEC_OLD));
1487 	/* update cursor SR watermark */
1488 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1489 
1490 	if (cxsr_enabled)
1491 		intel_set_memory_cxsr(dev_priv, true);
1492 }
1493 
1494 #undef FW_WM
1495 
i9xx_update_wm(struct drm_crtc * unused_crtc)1496 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1497 {
1498 	struct drm_device *dev = unused_crtc->dev;
1499 	struct drm_i915_private *dev_priv = dev->dev_private;
1500 	const struct intel_watermark_params *wm_info;
1501 	uint32_t fwater_lo;
1502 	uint32_t fwater_hi;
1503 	int cwm, srwm = 1;
1504 	int fifo_size;
1505 	int planea_wm, planeb_wm;
1506 	struct drm_crtc *crtc, *enabled = NULL;
1507 
1508 	if (IS_I945GM(dev))
1509 		wm_info = &i945_wm_info;
1510 	else if (!IS_GEN2(dev))
1511 		wm_info = &i915_wm_info;
1512 	else
1513 		wm_info = &i830_a_wm_info;
1514 
1515 	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1516 	crtc = intel_get_crtc_for_plane(dev, 0);
1517 	if (intel_crtc_active(crtc)) {
1518 		const struct drm_display_mode *adjusted_mode;
1519 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1520 		if (IS_GEN2(dev))
1521 			cpp = 4;
1522 
1523 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1524 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1525 					       wm_info, fifo_size, cpp,
1526 					       pessimal_latency_ns);
1527 		enabled = crtc;
1528 	} else {
1529 		planea_wm = fifo_size - wm_info->guard_size;
1530 		if (planea_wm > (long)wm_info->max_wm)
1531 			planea_wm = wm_info->max_wm;
1532 	}
1533 
1534 	if (IS_GEN2(dev))
1535 		wm_info = &i830_bc_wm_info;
1536 
1537 	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1538 	crtc = intel_get_crtc_for_plane(dev, 1);
1539 	if (intel_crtc_active(crtc)) {
1540 		const struct drm_display_mode *adjusted_mode;
1541 		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1542 		if (IS_GEN2(dev))
1543 			cpp = 4;
1544 
1545 		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1546 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1547 					       wm_info, fifo_size, cpp,
1548 					       pessimal_latency_ns);
1549 		if (enabled == NULL)
1550 			enabled = crtc;
1551 		else
1552 			enabled = NULL;
1553 	} else {
1554 		planeb_wm = fifo_size - wm_info->guard_size;
1555 		if (planeb_wm > (long)wm_info->max_wm)
1556 			planeb_wm = wm_info->max_wm;
1557 	}
1558 
1559 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1560 
1561 	if (IS_I915GM(dev) && enabled) {
1562 		struct drm_i915_gem_object *obj;
1563 
1564 		obj = intel_fb_obj(enabled->primary->state->fb);
1565 
1566 		/* self-refresh seems busted with untiled */
1567 		if (obj->tiling_mode == I915_TILING_NONE)
1568 			enabled = NULL;
1569 	}
1570 
1571 	/*
1572 	 * Overlay gets an aggressive default since video jitter is bad.
1573 	 */
1574 	cwm = 2;
1575 
1576 	/* Play safe and disable self-refresh before adjusting watermarks. */
1577 	intel_set_memory_cxsr(dev_priv, false);
1578 
1579 	/* Calc sr entries for one plane configs */
1580 	if (HAS_FW_BLC(dev) && enabled) {
1581 		/* self-refresh has much higher latency */
1582 		static const int sr_latency_ns = 6000;
1583 		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1584 		int clock = adjusted_mode->crtc_clock;
1585 		int htotal = adjusted_mode->crtc_htotal;
1586 		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1587 		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1588 		unsigned long line_time_us;
1589 		int entries;
1590 
1591 		line_time_us = max(htotal * 1000 / clock, 1);
1592 
1593 		/* Use ns/us then divide to preserve precision */
1594 		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1595 			pixel_size * hdisplay;
1596 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1597 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1598 		srwm = wm_info->fifo_size - entries;
1599 		if (srwm < 0)
1600 			srwm = 1;
1601 
1602 		if (IS_I945G(dev) || IS_I945GM(dev))
1603 			I915_WRITE(FW_BLC_SELF,
1604 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1605 		else if (IS_I915GM(dev))
1606 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1607 	}
1608 
1609 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1610 		      planea_wm, planeb_wm, cwm, srwm);
1611 
1612 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1613 	fwater_hi = (cwm & 0x1f);
1614 
1615 	/* Set request length to 8 cachelines per fetch */
1616 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1617 	fwater_hi = fwater_hi | (1 << 8);
1618 
1619 	I915_WRITE(FW_BLC, fwater_lo);
1620 	I915_WRITE(FW_BLC2, fwater_hi);
1621 
1622 	if (enabled)
1623 		intel_set_memory_cxsr(dev_priv, true);
1624 }
1625 
i845_update_wm(struct drm_crtc * unused_crtc)1626 static void i845_update_wm(struct drm_crtc *unused_crtc)
1627 {
1628 	struct drm_device *dev = unused_crtc->dev;
1629 	struct drm_i915_private *dev_priv = dev->dev_private;
1630 	struct drm_crtc *crtc;
1631 	const struct drm_display_mode *adjusted_mode;
1632 	uint32_t fwater_lo;
1633 	int planea_wm;
1634 
1635 	crtc = single_enabled_crtc(dev);
1636 	if (crtc == NULL)
1637 		return;
1638 
1639 	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1640 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1641 				       &i845_wm_info,
1642 				       dev_priv->display.get_fifo_size(dev, 0),
1643 				       4, pessimal_latency_ns);
1644 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1645 	fwater_lo |= (3<<8) | planea_wm;
1646 
1647 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1648 
1649 	I915_WRITE(FW_BLC, fwater_lo);
1650 }
1651 
ilk_pipe_pixel_rate(const struct intel_crtc_state * pipe_config)1652 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1653 {
1654 	uint32_t pixel_rate;
1655 
1656 	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1657 
1658 	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1659 	 * adjust the pixel_rate here. */
1660 
1661 	if (pipe_config->pch_pfit.enabled) {
1662 		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1663 		uint32_t pfit_size = pipe_config->pch_pfit.size;
1664 
1665 		pipe_w = pipe_config->pipe_src_w;
1666 		pipe_h = pipe_config->pipe_src_h;
1667 
1668 		pfit_w = (pfit_size >> 16) & 0xFFFF;
1669 		pfit_h = pfit_size & 0xFFFF;
1670 		if (pipe_w < pfit_w)
1671 			pipe_w = pfit_w;
1672 		if (pipe_h < pfit_h)
1673 			pipe_h = pfit_h;
1674 
1675 		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676 				     pfit_w * pfit_h);
1677 	}
1678 
1679 	return pixel_rate;
1680 }
1681 
1682 /* latency must be in 0.1us units. */
ilk_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684 			       uint32_t latency)
1685 {
1686 	uint64_t ret;
1687 
1688 	if (WARN(latency == 0, "Latency value missing\n"))
1689 		return UINT_MAX;
1690 
1691 	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692 	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693 
1694 	return ret;
1695 }
1696 
1697 /* latency must be in 0.1us units. */
ilk_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint32_t latency)1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700 			       uint32_t latency)
1701 {
1702 	uint32_t ret;
1703 
1704 	if (WARN(latency == 0, "Latency value missing\n"))
1705 		return UINT_MAX;
1706 
1707 	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708 	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709 	ret = DIV_ROUND_UP(ret, 64) + 2;
1710 	return ret;
1711 }
1712 
ilk_wm_fbc(uint32_t pri_val,uint32_t horiz_pixels,uint8_t bytes_per_pixel)1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714 			   uint8_t bytes_per_pixel)
1715 {
1716 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718 
1719 struct skl_pipe_wm_parameters {
1720 	bool active;
1721 	uint32_t pipe_htotal;
1722 	uint32_t pixel_rate; /* in KHz */
1723 	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1724 };
1725 
1726 struct ilk_wm_maximums {
1727 	uint16_t pri;
1728 	uint16_t spr;
1729 	uint16_t cur;
1730 	uint16_t fbc;
1731 };
1732 
1733 /* used in computing the new watermarks state */
1734 struct intel_wm_config {
1735 	unsigned int num_pipes_active;
1736 	bool sprites_enabled;
1737 	bool sprites_scaled;
1738 };
1739 
1740 /*
1741  * For both WM_PIPE and WM_LP.
1742  * mem_value must be in 0.1us units.
1743  */
ilk_compute_pri_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value,bool is_lp)1744 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1745 				   const struct intel_plane_state *pstate,
1746 				   uint32_t mem_value,
1747 				   bool is_lp)
1748 {
1749 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1750 	uint32_t method1, method2;
1751 
1752 	if (!cstate->base.active || !pstate->visible)
1753 		return 0;
1754 
1755 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1756 
1757 	if (!is_lp)
1758 		return method1;
1759 
1760 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1761 				 cstate->base.adjusted_mode.crtc_htotal,
1762 				 drm_rect_width(&pstate->dst),
1763 				 bpp,
1764 				 mem_value);
1765 
1766 	return min(method1, method2);
1767 }
1768 
1769 /*
1770  * For both WM_PIPE and WM_LP.
1771  * mem_value must be in 0.1us units.
1772  */
ilk_compute_spr_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1773 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1774 				   const struct intel_plane_state *pstate,
1775 				   uint32_t mem_value)
1776 {
1777 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1778 	uint32_t method1, method2;
1779 
1780 	if (!cstate->base.active || !pstate->visible)
1781 		return 0;
1782 
1783 	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1784 	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1785 				 cstate->base.adjusted_mode.crtc_htotal,
1786 				 drm_rect_width(&pstate->dst),
1787 				 bpp,
1788 				 mem_value);
1789 	return min(method1, method2);
1790 }
1791 
1792 /*
1793  * For both WM_PIPE and WM_LP.
1794  * mem_value must be in 0.1us units.
1795  */
ilk_compute_cur_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t mem_value)1796 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1797 				   const struct intel_plane_state *pstate,
1798 				   uint32_t mem_value)
1799 {
1800 	/*
1801 	 * We treat the cursor plane as always-on for the purposes of watermark
1802 	 * calculation.  Until we have two-stage watermark programming merged,
1803 	 * this is necessary to avoid flickering.
1804 	 */
1805 	int cpp = 4;
1806 	int width = pstate->visible ? pstate->base.crtc_w : 64;
1807 
1808 	if (!cstate->base.active)
1809 		return 0;
1810 
1811 	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1812 			      cstate->base.adjusted_mode.crtc_htotal,
1813 			      width, cpp, mem_value);
1814 }
1815 
1816 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * cstate,const struct intel_plane_state * pstate,uint32_t pri_val)1817 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1818 				   const struct intel_plane_state *pstate,
1819 				   uint32_t pri_val)
1820 {
1821 	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1822 
1823 	if (!cstate->base.active || !pstate->visible)
1824 		return 0;
1825 
1826 	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1827 }
1828 
ilk_display_fifo_size(const struct drm_device * dev)1829 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1830 {
1831 	if (INTEL_INFO(dev)->gen >= 8)
1832 		return 3072;
1833 	else if (INTEL_INFO(dev)->gen >= 7)
1834 		return 768;
1835 	else
1836 		return 512;
1837 }
1838 
ilk_plane_wm_reg_max(const struct drm_device * dev,int level,bool is_sprite)1839 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1840 					 int level, bool is_sprite)
1841 {
1842 	if (INTEL_INFO(dev)->gen >= 8)
1843 		/* BDW primary/sprite plane watermarks */
1844 		return level == 0 ? 255 : 2047;
1845 	else if (INTEL_INFO(dev)->gen >= 7)
1846 		/* IVB/HSW primary/sprite plane watermarks */
1847 		return level == 0 ? 127 : 1023;
1848 	else if (!is_sprite)
1849 		/* ILK/SNB primary plane watermarks */
1850 		return level == 0 ? 127 : 511;
1851 	else
1852 		/* ILK/SNB sprite plane watermarks */
1853 		return level == 0 ? 63 : 255;
1854 }
1855 
ilk_cursor_wm_reg_max(const struct drm_device * dev,int level)1856 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1857 					  int level)
1858 {
1859 	if (INTEL_INFO(dev)->gen >= 7)
1860 		return level == 0 ? 63 : 255;
1861 	else
1862 		return level == 0 ? 31 : 63;
1863 }
1864 
ilk_fbc_wm_reg_max(const struct drm_device * dev)1865 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1866 {
1867 	if (INTEL_INFO(dev)->gen >= 8)
1868 		return 31;
1869 	else
1870 		return 15;
1871 }
1872 
1873 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)1874 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1875 				     int level,
1876 				     const struct intel_wm_config *config,
1877 				     enum intel_ddb_partitioning ddb_partitioning,
1878 				     bool is_sprite)
1879 {
1880 	unsigned int fifo_size = ilk_display_fifo_size(dev);
1881 
1882 	/* if sprites aren't enabled, sprites get nothing */
1883 	if (is_sprite && !config->sprites_enabled)
1884 		return 0;
1885 
1886 	/* HSW allows LP1+ watermarks even with multiple pipes */
1887 	if (level == 0 || config->num_pipes_active > 1) {
1888 		fifo_size /= INTEL_INFO(dev)->num_pipes;
1889 
1890 		/*
1891 		 * For some reason the non self refresh
1892 		 * FIFO size is only half of the self
1893 		 * refresh FIFO size on ILK/SNB.
1894 		 */
1895 		if (INTEL_INFO(dev)->gen <= 6)
1896 			fifo_size /= 2;
1897 	}
1898 
1899 	if (config->sprites_enabled) {
1900 		/* level 0 is always calculated with 1:1 split */
1901 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1902 			if (is_sprite)
1903 				fifo_size *= 5;
1904 			fifo_size /= 6;
1905 		} else {
1906 			fifo_size /= 2;
1907 		}
1908 	}
1909 
1910 	/* clamp to max that the registers can hold */
1911 	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1912 }
1913 
1914 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_device * dev,int level,const struct intel_wm_config * config)1915 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1916 				      int level,
1917 				      const struct intel_wm_config *config)
1918 {
1919 	/* HSW LP1+ watermarks w/ multiple pipes */
1920 	if (level > 0 && config->num_pipes_active > 1)
1921 		return 64;
1922 
1923 	/* otherwise just report max that registers can hold */
1924 	return ilk_cursor_wm_reg_max(dev, level);
1925 }
1926 
ilk_compute_wm_maximums(const struct drm_device * dev,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)1927 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1928 				    int level,
1929 				    const struct intel_wm_config *config,
1930 				    enum intel_ddb_partitioning ddb_partitioning,
1931 				    struct ilk_wm_maximums *max)
1932 {
1933 	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1934 	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1935 	max->cur = ilk_cursor_wm_max(dev, level, config);
1936 	max->fbc = ilk_fbc_wm_reg_max(dev);
1937 }
1938 
ilk_compute_wm_reg_maximums(struct drm_device * dev,int level,struct ilk_wm_maximums * max)1939 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1940 					int level,
1941 					struct ilk_wm_maximums *max)
1942 {
1943 	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1944 	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1945 	max->cur = ilk_cursor_wm_reg_max(dev, level);
1946 	max->fbc = ilk_fbc_wm_reg_max(dev);
1947 }
1948 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)1949 static bool ilk_validate_wm_level(int level,
1950 				  const struct ilk_wm_maximums *max,
1951 				  struct intel_wm_level *result)
1952 {
1953 	bool ret;
1954 
1955 	/* already determined to be invalid? */
1956 	if (!result->enable)
1957 		return false;
1958 
1959 	result->enable = result->pri_val <= max->pri &&
1960 			 result->spr_val <= max->spr &&
1961 			 result->cur_val <= max->cur;
1962 
1963 	ret = result->enable;
1964 
1965 	/*
1966 	 * HACK until we can pre-compute everything,
1967 	 * and thus fail gracefully if LP0 watermarks
1968 	 * are exceeded...
1969 	 */
1970 	if (level == 0 && !result->enable) {
1971 		if (result->pri_val > max->pri)
1972 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1973 				      level, result->pri_val, max->pri);
1974 		if (result->spr_val > max->spr)
1975 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1976 				      level, result->spr_val, max->spr);
1977 		if (result->cur_val > max->cur)
1978 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1979 				      level, result->cur_val, max->cur);
1980 
1981 		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1982 		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1983 		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1984 		result->enable = true;
1985 	}
1986 
1987 	return ret;
1988 }
1989 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * cstate,struct intel_wm_level * result)1990 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1991 				 const struct intel_crtc *intel_crtc,
1992 				 int level,
1993 				 struct intel_crtc_state *cstate,
1994 				 struct intel_wm_level *result)
1995 {
1996 	struct intel_plane *intel_plane;
1997 	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1998 	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1999 	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2000 
2001 	/* WM1+ latency values stored in 0.5us units */
2002 	if (level > 0) {
2003 		pri_latency *= 5;
2004 		spr_latency *= 5;
2005 		cur_latency *= 5;
2006 	}
2007 
2008 	for_each_intel_plane_on_crtc(dev_priv->dev, intel_crtc, intel_plane) {
2009 		struct intel_plane_state *pstate =
2010 			to_intel_plane_state(intel_plane->base.state);
2011 
2012 		switch (intel_plane->base.type) {
2013 		case DRM_PLANE_TYPE_PRIMARY:
2014 			result->pri_val = ilk_compute_pri_wm(cstate, pstate,
2015 							     pri_latency,
2016 							     level);
2017 			result->fbc_val = ilk_compute_fbc_wm(cstate, pstate,
2018 							     result->pri_val);
2019 			break;
2020 		case DRM_PLANE_TYPE_OVERLAY:
2021 			result->spr_val = ilk_compute_spr_wm(cstate, pstate,
2022 							     spr_latency);
2023 			break;
2024 		case DRM_PLANE_TYPE_CURSOR:
2025 			result->cur_val = ilk_compute_cur_wm(cstate, pstate,
2026 							     cur_latency);
2027 			break;
2028 		}
2029 	}
2030 
2031 	result->enable = true;
2032 }
2033 
2034 static uint32_t
hsw_compute_linetime_wm(struct drm_device * dev,struct drm_crtc * crtc)2035 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2036 {
2037 	struct drm_i915_private *dev_priv = dev->dev_private;
2038 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2039 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2040 	u32 linetime, ips_linetime;
2041 
2042 	if (!intel_crtc->active)
2043 		return 0;
2044 
2045 	/* The WM are computed with base on how long it takes to fill a single
2046 	 * row at the given clock rate, multiplied by 8.
2047 	 * */
2048 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2049 				     adjusted_mode->crtc_clock);
2050 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2051 					 dev_priv->cdclk_freq);
2052 
2053 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2054 	       PIPE_WM_LINETIME_TIME(linetime);
2055 }
2056 
intel_read_wm_latency(struct drm_device * dev,uint16_t wm[8])2057 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2058 {
2059 	struct drm_i915_private *dev_priv = dev->dev_private;
2060 
2061 	if (IS_GEN9(dev)) {
2062 		uint32_t val;
2063 		int ret, i;
2064 		int level, max_level = ilk_wm_max_level(dev);
2065 
2066 		/* read the first set of memory latencies[0:3] */
2067 		val = 0; /* data0 to be programmed to 0 for first set */
2068 		mutex_lock(&dev_priv->rps.hw_lock);
2069 		ret = sandybridge_pcode_read(dev_priv,
2070 					     GEN9_PCODE_READ_MEM_LATENCY,
2071 					     &val);
2072 		mutex_unlock(&dev_priv->rps.hw_lock);
2073 
2074 		if (ret) {
2075 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2076 			return;
2077 		}
2078 
2079 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2080 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2081 				GEN9_MEM_LATENCY_LEVEL_MASK;
2082 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2083 				GEN9_MEM_LATENCY_LEVEL_MASK;
2084 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2085 				GEN9_MEM_LATENCY_LEVEL_MASK;
2086 
2087 		/* read the second set of memory latencies[4:7] */
2088 		val = 1; /* data0 to be programmed to 1 for second set */
2089 		mutex_lock(&dev_priv->rps.hw_lock);
2090 		ret = sandybridge_pcode_read(dev_priv,
2091 					     GEN9_PCODE_READ_MEM_LATENCY,
2092 					     &val);
2093 		mutex_unlock(&dev_priv->rps.hw_lock);
2094 		if (ret) {
2095 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2096 			return;
2097 		}
2098 
2099 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2100 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2101 				GEN9_MEM_LATENCY_LEVEL_MASK;
2102 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2103 				GEN9_MEM_LATENCY_LEVEL_MASK;
2104 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2105 				GEN9_MEM_LATENCY_LEVEL_MASK;
2106 
2107 		/*
2108 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2109 		 * need to be disabled. We make sure to sanitize the values out
2110 		 * of the punit to satisfy this requirement.
2111 		 */
2112 		for (level = 1; level <= max_level; level++) {
2113 			if (wm[level] == 0) {
2114 				for (i = level + 1; i <= max_level; i++)
2115 					wm[i] = 0;
2116 				break;
2117 			}
2118 		}
2119 
2120 		/*
2121 		 * WaWmMemoryReadLatency:skl
2122 		 *
2123 		 * punit doesn't take into account the read latency so we need
2124 		 * to add 2us to the various latency levels we retrieve from the
2125 		 * punit when level 0 response data us 0us.
2126 		 */
2127 		if (wm[0] == 0) {
2128 			wm[0] += 2;
2129 			for (level = 1; level <= max_level; level++) {
2130 				if (wm[level] == 0)
2131 					break;
2132 				wm[level] += 2;
2133 			}
2134 		}
2135 
2136 	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2137 		uint64_t sskpd = I915_READ64(MCH_SSKPD);
2138 
2139 		wm[0] = (sskpd >> 56) & 0xFF;
2140 		if (wm[0] == 0)
2141 			wm[0] = sskpd & 0xF;
2142 		wm[1] = (sskpd >> 4) & 0xFF;
2143 		wm[2] = (sskpd >> 12) & 0xFF;
2144 		wm[3] = (sskpd >> 20) & 0x1FF;
2145 		wm[4] = (sskpd >> 32) & 0x1FF;
2146 	} else if (INTEL_INFO(dev)->gen >= 6) {
2147 		uint32_t sskpd = I915_READ(MCH_SSKPD);
2148 
2149 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2150 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2151 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2152 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2153 	} else if (INTEL_INFO(dev)->gen >= 5) {
2154 		uint32_t mltr = I915_READ(MLTR_ILK);
2155 
2156 		/* ILK primary LP0 latency is 700 ns */
2157 		wm[0] = 7;
2158 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2159 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2160 	}
2161 }
2162 
intel_fixup_spr_wm_latency(struct drm_device * dev,uint16_t wm[5])2163 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2164 {
2165 	/* ILK sprite LP0 latency is 1300 ns */
2166 	if (INTEL_INFO(dev)->gen == 5)
2167 		wm[0] = 13;
2168 }
2169 
intel_fixup_cur_wm_latency(struct drm_device * dev,uint16_t wm[5])2170 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2171 {
2172 	/* ILK cursor LP0 latency is 1300 ns */
2173 	if (INTEL_INFO(dev)->gen == 5)
2174 		wm[0] = 13;
2175 
2176 	/* WaDoubleCursorLP3Latency:ivb */
2177 	if (IS_IVYBRIDGE(dev))
2178 		wm[3] *= 2;
2179 }
2180 
ilk_wm_max_level(const struct drm_device * dev)2181 int ilk_wm_max_level(const struct drm_device *dev)
2182 {
2183 	/* how many WM levels are we expecting */
2184 	if (INTEL_INFO(dev)->gen >= 9)
2185 		return 7;
2186 	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2187 		return 4;
2188 	else if (INTEL_INFO(dev)->gen >= 6)
2189 		return 3;
2190 	else
2191 		return 2;
2192 }
2193 
intel_print_wm_latency(struct drm_device * dev,const char * name,const uint16_t wm[8])2194 static void intel_print_wm_latency(struct drm_device *dev,
2195 				   const char *name,
2196 				   const uint16_t wm[8])
2197 {
2198 	int level, max_level = ilk_wm_max_level(dev);
2199 
2200 	for (level = 0; level <= max_level; level++) {
2201 		unsigned int latency = wm[level];
2202 
2203 		if (latency == 0) {
2204 			DRM_ERROR("%s WM%d latency not provided\n",
2205 				  name, level);
2206 			continue;
2207 		}
2208 
2209 		/*
2210 		 * - latencies are in us on gen9.
2211 		 * - before then, WM1+ latency values are in 0.5us units
2212 		 */
2213 		if (IS_GEN9(dev))
2214 			latency *= 10;
2215 		else if (level > 0)
2216 			latency *= 5;
2217 
2218 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2219 			      name, level, wm[level],
2220 			      latency / 10, latency % 10);
2221 	}
2222 }
2223 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,uint16_t wm[5],uint16_t min)2224 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2225 				    uint16_t wm[5], uint16_t min)
2226 {
2227 	int level, max_level = ilk_wm_max_level(dev_priv->dev);
2228 
2229 	if (wm[0] >= min)
2230 		return false;
2231 
2232 	wm[0] = max(wm[0], min);
2233 	for (level = 1; level <= max_level; level++)
2234 		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2235 
2236 	return true;
2237 }
2238 
snb_wm_latency_quirk(struct drm_device * dev)2239 static void snb_wm_latency_quirk(struct drm_device *dev)
2240 {
2241 	struct drm_i915_private *dev_priv = dev->dev_private;
2242 	bool changed;
2243 
2244 	/*
2245 	 * The BIOS provided WM memory latency values are often
2246 	 * inadequate for high resolution displays. Adjust them.
2247 	 */
2248 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
2249 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
2250 	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2251 
2252 	if (!changed)
2253 		return;
2254 
2255 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2256 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2257 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2258 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2259 }
2260 
ilk_setup_wm_latency(struct drm_device * dev)2261 static void ilk_setup_wm_latency(struct drm_device *dev)
2262 {
2263 	struct drm_i915_private *dev_priv = dev->dev_private;
2264 
2265 	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2266 
2267 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2268 	       sizeof(dev_priv->wm.pri_latency));
2269 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2270 	       sizeof(dev_priv->wm.pri_latency));
2271 
2272 	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2273 	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2274 
2275 	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2276 	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2277 	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2278 
2279 	if (IS_GEN6(dev))
2280 		snb_wm_latency_quirk(dev);
2281 }
2282 
skl_setup_wm_latency(struct drm_device * dev)2283 static void skl_setup_wm_latency(struct drm_device *dev)
2284 {
2285 	struct drm_i915_private *dev_priv = dev->dev_private;
2286 
2287 	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2288 	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2289 }
2290 
ilk_compute_wm_config(struct drm_device * dev,struct intel_wm_config * config)2291 static void ilk_compute_wm_config(struct drm_device *dev,
2292 				  struct intel_wm_config *config)
2293 {
2294 	struct intel_crtc *intel_crtc;
2295 
2296 	/* Compute the currently _active_ config */
2297 	for_each_intel_crtc(dev, intel_crtc) {
2298 		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2299 
2300 		if (!wm->pipe_enabled)
2301 			continue;
2302 
2303 		config->sprites_enabled |= wm->sprites_enabled;
2304 		config->sprites_scaled |= wm->sprites_scaled;
2305 		config->num_pipes_active++;
2306 	}
2307 }
2308 
2309 /* Compute new watermarks for the pipe */
intel_compute_pipe_wm(struct intel_crtc_state * cstate,struct intel_pipe_wm * pipe_wm)2310 static bool intel_compute_pipe_wm(struct intel_crtc_state *cstate,
2311 				  struct intel_pipe_wm *pipe_wm)
2312 {
2313 	struct drm_crtc *crtc = cstate->base.crtc;
2314 	struct drm_device *dev = crtc->dev;
2315 	const struct drm_i915_private *dev_priv = dev->dev_private;
2316 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2317 	struct intel_plane *intel_plane;
2318 	struct intel_plane_state *sprstate = NULL;
2319 	int level, max_level = ilk_wm_max_level(dev);
2320 	/* LP0 watermark maximums depend on this pipe alone */
2321 	struct intel_wm_config config = {
2322 		.num_pipes_active = 1,
2323 	};
2324 	struct ilk_wm_maximums max;
2325 
2326 	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2327 		if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY) {
2328 			sprstate = to_intel_plane_state(intel_plane->base.state);
2329 			break;
2330 		}
2331 	}
2332 
2333 	config.sprites_enabled = sprstate->visible;
2334 	config.sprites_scaled = sprstate->visible &&
2335 		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2336 		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2337 
2338 	pipe_wm->pipe_enabled = cstate->base.active;
2339 	pipe_wm->sprites_enabled = sprstate->visible;
2340 	pipe_wm->sprites_scaled = config.sprites_scaled;
2341 
2342 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2343 	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2344 		max_level = 1;
2345 
2346 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2347 	if (config.sprites_scaled)
2348 		max_level = 0;
2349 
2350 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate, &pipe_wm->wm[0]);
2351 
2352 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2353 		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2354 
2355 	/* LP0 watermarks always use 1/2 DDB partitioning */
2356 	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2357 
2358 	/* At least LP0 must be valid */
2359 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2360 		return false;
2361 
2362 	ilk_compute_wm_reg_maximums(dev, 1, &max);
2363 
2364 	for (level = 1; level <= max_level; level++) {
2365 		struct intel_wm_level wm = {};
2366 
2367 		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate, &wm);
2368 
2369 		/*
2370 		 * Disable any watermark level that exceeds the
2371 		 * register maximums since such watermarks are
2372 		 * always invalid.
2373 		 */
2374 		if (!ilk_validate_wm_level(level, &max, &wm))
2375 			break;
2376 
2377 		pipe_wm->wm[level] = wm;
2378 	}
2379 
2380 	return true;
2381 }
2382 
2383 /*
2384  * Merge the watermarks from all active pipes for a specific level.
2385  */
ilk_merge_wm_level(struct drm_device * dev,int level,struct intel_wm_level * ret_wm)2386 static void ilk_merge_wm_level(struct drm_device *dev,
2387 			       int level,
2388 			       struct intel_wm_level *ret_wm)
2389 {
2390 	const struct intel_crtc *intel_crtc;
2391 
2392 	ret_wm->enable = true;
2393 
2394 	for_each_intel_crtc(dev, intel_crtc) {
2395 		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2396 		const struct intel_wm_level *wm = &active->wm[level];
2397 
2398 		if (!active->pipe_enabled)
2399 			continue;
2400 
2401 		/*
2402 		 * The watermark values may have been used in the past,
2403 		 * so we must maintain them in the registers for some
2404 		 * time even if the level is now disabled.
2405 		 */
2406 		if (!wm->enable)
2407 			ret_wm->enable = false;
2408 
2409 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2410 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2411 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2412 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2413 	}
2414 }
2415 
2416 /*
2417  * Merge all low power watermarks for all active pipes.
2418  */
ilk_wm_merge(struct drm_device * dev,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)2419 static void ilk_wm_merge(struct drm_device *dev,
2420 			 const struct intel_wm_config *config,
2421 			 const struct ilk_wm_maximums *max,
2422 			 struct intel_pipe_wm *merged)
2423 {
2424 	struct drm_i915_private *dev_priv = dev->dev_private;
2425 	int level, max_level = ilk_wm_max_level(dev);
2426 	int last_enabled_level = max_level;
2427 
2428 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2429 	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2430 	    config->num_pipes_active > 1)
2431 		return;
2432 
2433 	/* ILK: FBC WM must be disabled always */
2434 	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2435 
2436 	/* merge each WM1+ level */
2437 	for (level = 1; level <= max_level; level++) {
2438 		struct intel_wm_level *wm = &merged->wm[level];
2439 
2440 		ilk_merge_wm_level(dev, level, wm);
2441 
2442 		if (level > last_enabled_level)
2443 			wm->enable = false;
2444 		else if (!ilk_validate_wm_level(level, max, wm))
2445 			/* make sure all following levels get disabled */
2446 			last_enabled_level = level - 1;
2447 
2448 		/*
2449 		 * The spec says it is preferred to disable
2450 		 * FBC WMs instead of disabling a WM level.
2451 		 */
2452 		if (wm->fbc_val > max->fbc) {
2453 			if (wm->enable)
2454 				merged->fbc_wm_enabled = false;
2455 			wm->fbc_val = 0;
2456 		}
2457 	}
2458 
2459 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2460 	/*
2461 	 * FIXME this is racy. FBC might get enabled later.
2462 	 * What we should check here is whether FBC can be
2463 	 * enabled sometime later.
2464 	 */
2465 	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2466 	    intel_fbc_enabled(dev_priv)) {
2467 		for (level = 2; level <= max_level; level++) {
2468 			struct intel_wm_level *wm = &merged->wm[level];
2469 
2470 			wm->enable = false;
2471 		}
2472 	}
2473 }
2474 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)2475 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2476 {
2477 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2478 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2479 }
2480 
2481 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_device * dev,int level)2482 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2483 {
2484 	struct drm_i915_private *dev_priv = dev->dev_private;
2485 
2486 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2487 		return 2 * level;
2488 	else
2489 		return dev_priv->wm.pri_latency[level];
2490 }
2491 
ilk_compute_wm_results(struct drm_device * dev,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)2492 static void ilk_compute_wm_results(struct drm_device *dev,
2493 				   const struct intel_pipe_wm *merged,
2494 				   enum intel_ddb_partitioning partitioning,
2495 				   struct ilk_wm_values *results)
2496 {
2497 	struct intel_crtc *intel_crtc;
2498 	int level, wm_lp;
2499 
2500 	results->enable_fbc_wm = merged->fbc_wm_enabled;
2501 	results->partitioning = partitioning;
2502 
2503 	/* LP1+ register values */
2504 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2505 		const struct intel_wm_level *r;
2506 
2507 		level = ilk_wm_lp_to_level(wm_lp, merged);
2508 
2509 		r = &merged->wm[level];
2510 
2511 		/*
2512 		 * Maintain the watermark values even if the level is
2513 		 * disabled. Doing otherwise could cause underruns.
2514 		 */
2515 		results->wm_lp[wm_lp - 1] =
2516 			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2517 			(r->pri_val << WM1_LP_SR_SHIFT) |
2518 			r->cur_val;
2519 
2520 		if (r->enable)
2521 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2522 
2523 		if (INTEL_INFO(dev)->gen >= 8)
2524 			results->wm_lp[wm_lp - 1] |=
2525 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2526 		else
2527 			results->wm_lp[wm_lp - 1] |=
2528 				r->fbc_val << WM1_LP_FBC_SHIFT;
2529 
2530 		/*
2531 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2532 		 * level is disabled. Doing otherwise could cause underruns.
2533 		 */
2534 		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2535 			WARN_ON(wm_lp != 1);
2536 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2537 		} else
2538 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2539 	}
2540 
2541 	/* LP0 register values */
2542 	for_each_intel_crtc(dev, intel_crtc) {
2543 		enum pipe pipe = intel_crtc->pipe;
2544 		const struct intel_wm_level *r =
2545 			&intel_crtc->wm.active.wm[0];
2546 
2547 		if (WARN_ON(!r->enable))
2548 			continue;
2549 
2550 		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2551 
2552 		results->wm_pipe[pipe] =
2553 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2554 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2555 			r->cur_val;
2556 	}
2557 }
2558 
2559 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2560  * case both are at the same level. Prefer r1 in case they're the same. */
ilk_find_best_result(struct drm_device * dev,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)2561 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2562 						  struct intel_pipe_wm *r1,
2563 						  struct intel_pipe_wm *r2)
2564 {
2565 	int level, max_level = ilk_wm_max_level(dev);
2566 	int level1 = 0, level2 = 0;
2567 
2568 	for (level = 1; level <= max_level; level++) {
2569 		if (r1->wm[level].enable)
2570 			level1 = level;
2571 		if (r2->wm[level].enable)
2572 			level2 = level;
2573 	}
2574 
2575 	if (level1 == level2) {
2576 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2577 			return r2;
2578 		else
2579 			return r1;
2580 	} else if (level1 > level2) {
2581 		return r1;
2582 	} else {
2583 		return r2;
2584 	}
2585 }
2586 
2587 /* dirty bits used to track which watermarks need changes */
2588 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2589 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2590 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2591 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2592 #define WM_DIRTY_FBC (1 << 24)
2593 #define WM_DIRTY_DDB (1 << 25)
2594 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)2595 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2596 					 const struct ilk_wm_values *old,
2597 					 const struct ilk_wm_values *new)
2598 {
2599 	unsigned int dirty = 0;
2600 	enum pipe pipe;
2601 	int wm_lp;
2602 
2603 	for_each_pipe(dev_priv, pipe) {
2604 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2605 			dirty |= WM_DIRTY_LINETIME(pipe);
2606 			/* Must disable LP1+ watermarks too */
2607 			dirty |= WM_DIRTY_LP_ALL;
2608 		}
2609 
2610 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2611 			dirty |= WM_DIRTY_PIPE(pipe);
2612 			/* Must disable LP1+ watermarks too */
2613 			dirty |= WM_DIRTY_LP_ALL;
2614 		}
2615 	}
2616 
2617 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2618 		dirty |= WM_DIRTY_FBC;
2619 		/* Must disable LP1+ watermarks too */
2620 		dirty |= WM_DIRTY_LP_ALL;
2621 	}
2622 
2623 	if (old->partitioning != new->partitioning) {
2624 		dirty |= WM_DIRTY_DDB;
2625 		/* Must disable LP1+ watermarks too */
2626 		dirty |= WM_DIRTY_LP_ALL;
2627 	}
2628 
2629 	/* LP1+ watermarks already deemed dirty, no need to continue */
2630 	if (dirty & WM_DIRTY_LP_ALL)
2631 		return dirty;
2632 
2633 	/* Find the lowest numbered LP1+ watermark in need of an update... */
2634 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2635 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2636 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2637 			break;
2638 	}
2639 
2640 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2641 	for (; wm_lp <= 3; wm_lp++)
2642 		dirty |= WM_DIRTY_LP(wm_lp);
2643 
2644 	return dirty;
2645 }
2646 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)2647 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2648 			       unsigned int dirty)
2649 {
2650 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2651 	bool changed = false;
2652 
2653 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2654 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2655 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2656 		changed = true;
2657 	}
2658 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2659 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2660 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2661 		changed = true;
2662 	}
2663 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2664 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2665 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2666 		changed = true;
2667 	}
2668 
2669 	/*
2670 	 * Don't touch WM1S_LP_EN here.
2671 	 * Doing so could cause underruns.
2672 	 */
2673 
2674 	return changed;
2675 }
2676 
2677 /*
2678  * The spec says we shouldn't write when we don't need, because every write
2679  * causes WMs to be re-evaluated, expending some power.
2680  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)2681 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2682 				struct ilk_wm_values *results)
2683 {
2684 	struct drm_device *dev = dev_priv->dev;
2685 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2686 	unsigned int dirty;
2687 	uint32_t val;
2688 
2689 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2690 	if (!dirty)
2691 		return;
2692 
2693 	_ilk_disable_lp_wm(dev_priv, dirty);
2694 
2695 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2696 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2697 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2698 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2699 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2700 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2701 
2702 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2703 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2704 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2705 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2706 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2707 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2708 
2709 	if (dirty & WM_DIRTY_DDB) {
2710 		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2711 			val = I915_READ(WM_MISC);
2712 			if (results->partitioning == INTEL_DDB_PART_1_2)
2713 				val &= ~WM_MISC_DATA_PARTITION_5_6;
2714 			else
2715 				val |= WM_MISC_DATA_PARTITION_5_6;
2716 			I915_WRITE(WM_MISC, val);
2717 		} else {
2718 			val = I915_READ(DISP_ARB_CTL2);
2719 			if (results->partitioning == INTEL_DDB_PART_1_2)
2720 				val &= ~DISP_DATA_PARTITION_5_6;
2721 			else
2722 				val |= DISP_DATA_PARTITION_5_6;
2723 			I915_WRITE(DISP_ARB_CTL2, val);
2724 		}
2725 	}
2726 
2727 	if (dirty & WM_DIRTY_FBC) {
2728 		val = I915_READ(DISP_ARB_CTL);
2729 		if (results->enable_fbc_wm)
2730 			val &= ~DISP_FBC_WM_DIS;
2731 		else
2732 			val |= DISP_FBC_WM_DIS;
2733 		I915_WRITE(DISP_ARB_CTL, val);
2734 	}
2735 
2736 	if (dirty & WM_DIRTY_LP(1) &&
2737 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2738 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2739 
2740 	if (INTEL_INFO(dev)->gen >= 7) {
2741 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2742 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2743 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2744 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2745 	}
2746 
2747 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2748 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2749 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2750 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2751 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2752 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2753 
2754 	dev_priv->wm.hw = *results;
2755 }
2756 
ilk_disable_lp_wm(struct drm_device * dev)2757 static bool ilk_disable_lp_wm(struct drm_device *dev)
2758 {
2759 	struct drm_i915_private *dev_priv = dev->dev_private;
2760 
2761 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2762 }
2763 
2764 /*
2765  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2766  * different active planes.
2767  */
2768 
2769 #define SKL_DDB_SIZE		896	/* in blocks */
2770 #define BXT_DDB_SIZE		512
2771 
2772 static void
skl_ddb_get_pipe_allocation_limits(struct drm_device * dev,struct drm_crtc * for_crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_entry * alloc)2773 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2774 				   struct drm_crtc *for_crtc,
2775 				   const struct intel_wm_config *config,
2776 				   const struct skl_pipe_wm_parameters *params,
2777 				   struct skl_ddb_entry *alloc /* out */)
2778 {
2779 	struct drm_crtc *crtc;
2780 	unsigned int pipe_size, ddb_size;
2781 	int nth_active_pipe;
2782 
2783 	if (!params->active) {
2784 		alloc->start = 0;
2785 		alloc->end = 0;
2786 		return;
2787 	}
2788 
2789 	if (IS_BROXTON(dev))
2790 		ddb_size = BXT_DDB_SIZE;
2791 	else
2792 		ddb_size = SKL_DDB_SIZE;
2793 
2794 	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2795 
2796 	nth_active_pipe = 0;
2797 	for_each_crtc(dev, crtc) {
2798 		if (!to_intel_crtc(crtc)->active)
2799 			continue;
2800 
2801 		if (crtc == for_crtc)
2802 			break;
2803 
2804 		nth_active_pipe++;
2805 	}
2806 
2807 	pipe_size = ddb_size / config->num_pipes_active;
2808 	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2809 	alloc->end = alloc->start + pipe_size;
2810 }
2811 
skl_cursor_allocation(const struct intel_wm_config * config)2812 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2813 {
2814 	if (config->num_pipes_active == 1)
2815 		return 32;
2816 
2817 	return 8;
2818 }
2819 
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)2820 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2821 {
2822 	entry->start = reg & 0x3ff;
2823 	entry->end = (reg >> 16) & 0x3ff;
2824 	if (entry->end)
2825 		entry->end += 1;
2826 }
2827 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)2828 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2829 			  struct skl_ddb_allocation *ddb /* out */)
2830 {
2831 	enum pipe pipe;
2832 	int plane;
2833 	u32 val;
2834 
2835 	memset(ddb, 0, sizeof(*ddb));
2836 
2837 	for_each_pipe(dev_priv, pipe) {
2838 		if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
2839 			continue;
2840 
2841 		for_each_plane(dev_priv, pipe, plane) {
2842 			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2843 			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2844 						   val);
2845 		}
2846 
2847 		val = I915_READ(CUR_BUF_CFG(pipe));
2848 		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2849 					   val);
2850 	}
2851 }
2852 
2853 static unsigned int
skl_plane_relative_data_rate(const struct intel_plane_wm_parameters * p,int y)2854 skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p, int y)
2855 {
2856 
2857 	/* for planar format */
2858 	if (p->y_bytes_per_pixel) {
2859 		if (y)  /* y-plane data rate */
2860 			return p->horiz_pixels * p->vert_pixels * p->y_bytes_per_pixel;
2861 		else    /* uv-plane data rate */
2862 			return (p->horiz_pixels/2) * (p->vert_pixels/2) * p->bytes_per_pixel;
2863 	}
2864 
2865 	/* for packed formats */
2866 	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2867 }
2868 
2869 /*
2870  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2871  * a 8192x4096@32bpp framebuffer:
2872  *   3 * 4096 * 8192  * 4 < 2^32
2873  */
2874 static unsigned int
skl_get_total_relative_data_rate(struct intel_crtc * intel_crtc,const struct skl_pipe_wm_parameters * params)2875 skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2876 				 const struct skl_pipe_wm_parameters *params)
2877 {
2878 	unsigned int total_data_rate = 0;
2879 	int plane;
2880 
2881 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2882 		const struct intel_plane_wm_parameters *p;
2883 
2884 		p = &params->plane[plane];
2885 		if (!p->enabled)
2886 			continue;
2887 
2888 		total_data_rate += skl_plane_relative_data_rate(p, 0); /* packed/uv */
2889 		if (p->y_bytes_per_pixel) {
2890 			total_data_rate += skl_plane_relative_data_rate(p, 1); /* y-plane */
2891 		}
2892 	}
2893 
2894 	return total_data_rate;
2895 }
2896 
2897 static void
skl_allocate_pipe_ddb(struct drm_crtc * crtc,const struct intel_wm_config * config,const struct skl_pipe_wm_parameters * params,struct skl_ddb_allocation * ddb)2898 skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2899 		      const struct intel_wm_config *config,
2900 		      const struct skl_pipe_wm_parameters *params,
2901 		      struct skl_ddb_allocation *ddb /* out */)
2902 {
2903 	struct drm_device *dev = crtc->dev;
2904 	struct drm_i915_private *dev_priv = dev->dev_private;
2905 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2906 	enum pipe pipe = intel_crtc->pipe;
2907 	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2908 	uint16_t alloc_size, start, cursor_blocks;
2909 	uint16_t minimum[I915_MAX_PLANES];
2910 	uint16_t y_minimum[I915_MAX_PLANES];
2911 	unsigned int total_data_rate;
2912 	int plane;
2913 
2914 	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2915 	alloc_size = skl_ddb_entry_size(alloc);
2916 	if (alloc_size == 0) {
2917 		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2918 		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2919 		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2920 		return;
2921 	}
2922 
2923 	cursor_blocks = skl_cursor_allocation(config);
2924 	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2925 	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2926 
2927 	alloc_size -= cursor_blocks;
2928 	alloc->end -= cursor_blocks;
2929 
2930 	/* 1. Allocate the mininum required blocks for each active plane */
2931 	for_each_plane(dev_priv, pipe, plane) {
2932 		const struct intel_plane_wm_parameters *p;
2933 
2934 		p = &params->plane[plane];
2935 		if (!p->enabled)
2936 			continue;
2937 
2938 		minimum[plane] = 8;
2939 		alloc_size -= minimum[plane];
2940 		y_minimum[plane] = p->y_bytes_per_pixel ? 8 : 0;
2941 		alloc_size -= y_minimum[plane];
2942 	}
2943 
2944 	/*
2945 	 * 2. Distribute the remaining space in proportion to the amount of
2946 	 * data each plane needs to fetch from memory.
2947 	 *
2948 	 * FIXME: we may not allocate every single block here.
2949 	 */
2950 	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2951 
2952 	start = alloc->start;
2953 	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2954 		const struct intel_plane_wm_parameters *p;
2955 		unsigned int data_rate, y_data_rate;
2956 		uint16_t plane_blocks, y_plane_blocks = 0;
2957 
2958 		p = &params->plane[plane];
2959 		if (!p->enabled)
2960 			continue;
2961 
2962 		data_rate = skl_plane_relative_data_rate(p, 0);
2963 
2964 		/*
2965 		 * allocation for (packed formats) or (uv-plane part of planar format):
2966 		 * promote the expression to 64 bits to avoid overflowing, the
2967 		 * result is < available as data_rate / total_data_rate < 1
2968 		 */
2969 		plane_blocks = minimum[plane];
2970 		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2971 					total_data_rate);
2972 
2973 		ddb->plane[pipe][plane].start = start;
2974 		ddb->plane[pipe][plane].end = start + plane_blocks;
2975 
2976 		start += plane_blocks;
2977 
2978 		/*
2979 		 * allocation for y_plane part of planar format:
2980 		 */
2981 		if (p->y_bytes_per_pixel) {
2982 			y_data_rate = skl_plane_relative_data_rate(p, 1);
2983 			y_plane_blocks = y_minimum[plane];
2984 			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
2985 						total_data_rate);
2986 
2987 			ddb->y_plane[pipe][plane].start = start;
2988 			ddb->y_plane[pipe][plane].end = start + y_plane_blocks;
2989 
2990 			start += y_plane_blocks;
2991 		}
2992 
2993 	}
2994 
2995 }
2996 
skl_pipe_pixel_rate(const struct intel_crtc_state * config)2997 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2998 {
2999 	/* TODO: Take into account the scalers once we support them */
3000 	return config->base.adjusted_mode.crtc_clock;
3001 }
3002 
3003 /*
3004  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3005  * for the read latency) and bytes_per_pixel should always be <= 8, so that
3006  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3007  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3008 */
skl_wm_method1(uint32_t pixel_rate,uint8_t bytes_per_pixel,uint32_t latency)3009 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
3010 			       uint32_t latency)
3011 {
3012 	uint32_t wm_intermediate_val, ret;
3013 
3014 	if (latency == 0)
3015 		return UINT_MAX;
3016 
3017 	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3018 	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3019 
3020 	return ret;
3021 }
3022 
skl_wm_method2(uint32_t pixel_rate,uint32_t pipe_htotal,uint32_t horiz_pixels,uint8_t bytes_per_pixel,uint64_t tiling,uint32_t latency)3023 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3024 			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3025 			       uint64_t tiling, uint32_t latency)
3026 {
3027 	uint32_t ret;
3028 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3029 	uint32_t wm_intermediate_val;
3030 
3031 	if (latency == 0)
3032 		return UINT_MAX;
3033 
3034 	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3035 
3036 	if (tiling == I915_FORMAT_MOD_Y_TILED ||
3037 	    tiling == I915_FORMAT_MOD_Yf_TILED) {
3038 		plane_bytes_per_line *= 4;
3039 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3040 		plane_blocks_per_line /= 4;
3041 	} else {
3042 		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3043 	}
3044 
3045 	wm_intermediate_val = latency * pixel_rate;
3046 	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3047 				plane_blocks_per_line;
3048 
3049 	return ret;
3050 }
3051 
skl_ddb_allocation_changed(const struct skl_ddb_allocation * new_ddb,const struct intel_crtc * intel_crtc)3052 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3053 				       const struct intel_crtc *intel_crtc)
3054 {
3055 	struct drm_device *dev = intel_crtc->base.dev;
3056 	struct drm_i915_private *dev_priv = dev->dev_private;
3057 	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3058 	enum pipe pipe = intel_crtc->pipe;
3059 
3060 	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
3061 		   sizeof(new_ddb->plane[pipe])))
3062 		return true;
3063 
3064 	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
3065 		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3066 		return true;
3067 
3068 	return false;
3069 }
3070 
skl_compute_wm_global_parameters(struct drm_device * dev,struct intel_wm_config * config)3071 static void skl_compute_wm_global_parameters(struct drm_device *dev,
3072 					     struct intel_wm_config *config)
3073 {
3074 	struct drm_crtc *crtc;
3075 	struct drm_plane *plane;
3076 
3077 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3078 		config->num_pipes_active += to_intel_crtc(crtc)->active;
3079 
3080 	/* FIXME: I don't think we need those two global parameters on SKL */
3081 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3082 		struct intel_plane *intel_plane = to_intel_plane(plane);
3083 
3084 		config->sprites_enabled |= intel_plane->wm.enabled;
3085 		config->sprites_scaled |= intel_plane->wm.scaled;
3086 	}
3087 }
3088 
skl_compute_wm_pipe_parameters(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3089 static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
3090 					   struct skl_pipe_wm_parameters *p)
3091 {
3092 	struct drm_device *dev = crtc->dev;
3093 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3094 	enum pipe pipe = intel_crtc->pipe;
3095 	struct drm_plane *plane;
3096 	struct drm_framebuffer *fb;
3097 	int i = 1; /* Index for sprite planes start */
3098 
3099 	p->active = intel_crtc->active;
3100 	if (p->active) {
3101 		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
3102 		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
3103 
3104 		fb = crtc->primary->state->fb;
3105 		/* For planar: Bpp is for uv plane, y_Bpp is for y plane */
3106 		if (fb) {
3107 			p->plane[0].enabled = true;
3108 			p->plane[0].bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3109 				drm_format_plane_cpp(fb->pixel_format, 1) :
3110 				drm_format_plane_cpp(fb->pixel_format, 0);
3111 			p->plane[0].y_bytes_per_pixel = fb->pixel_format == DRM_FORMAT_NV12 ?
3112 				drm_format_plane_cpp(fb->pixel_format, 0) : 0;
3113 			p->plane[0].tiling = fb->modifier[0];
3114 		} else {
3115 			p->plane[0].enabled = false;
3116 			p->plane[0].bytes_per_pixel = 0;
3117 			p->plane[0].y_bytes_per_pixel = 0;
3118 			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
3119 		}
3120 		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
3121 		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
3122 		p->plane[0].rotation = crtc->primary->state->rotation;
3123 
3124 		fb = crtc->cursor->state->fb;
3125 		p->plane[PLANE_CURSOR].y_bytes_per_pixel = 0;
3126 		if (fb) {
3127 			p->plane[PLANE_CURSOR].enabled = true;
3128 			p->plane[PLANE_CURSOR].bytes_per_pixel = fb->bits_per_pixel / 8;
3129 			p->plane[PLANE_CURSOR].horiz_pixels = crtc->cursor->state->crtc_w;
3130 			p->plane[PLANE_CURSOR].vert_pixels = crtc->cursor->state->crtc_h;
3131 		} else {
3132 			p->plane[PLANE_CURSOR].enabled = false;
3133 			p->plane[PLANE_CURSOR].bytes_per_pixel = 0;
3134 			p->plane[PLANE_CURSOR].horiz_pixels = 64;
3135 			p->plane[PLANE_CURSOR].vert_pixels = 64;
3136 		}
3137 	}
3138 
3139 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
3140 		struct intel_plane *intel_plane = to_intel_plane(plane);
3141 
3142 		if (intel_plane->pipe == pipe &&
3143 			plane->type == DRM_PLANE_TYPE_OVERLAY)
3144 			p->plane[i++] = intel_plane->wm;
3145 	}
3146 }
3147 
skl_compute_plane_wm(const struct drm_i915_private * dev_priv,struct skl_pipe_wm_parameters * p,struct intel_plane_wm_parameters * p_params,uint16_t ddb_allocation,int level,uint16_t * out_blocks,uint8_t * out_lines)3148 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3149 				 struct skl_pipe_wm_parameters *p,
3150 				 struct intel_plane_wm_parameters *p_params,
3151 				 uint16_t ddb_allocation,
3152 				 int level,
3153 				 uint16_t *out_blocks, /* out */
3154 				 uint8_t *out_lines /* out */)
3155 {
3156 	uint32_t latency = dev_priv->wm.skl_latency[level];
3157 	uint32_t method1, method2;
3158 	uint32_t plane_bytes_per_line, plane_blocks_per_line;
3159 	uint32_t res_blocks, res_lines;
3160 	uint32_t selected_result;
3161 	uint8_t bytes_per_pixel;
3162 
3163 	if (latency == 0 || !p->active || !p_params->enabled)
3164 		return false;
3165 
3166 	bytes_per_pixel = p_params->y_bytes_per_pixel ?
3167 		p_params->y_bytes_per_pixel :
3168 		p_params->bytes_per_pixel;
3169 	method1 = skl_wm_method1(p->pixel_rate,
3170 				 bytes_per_pixel,
3171 				 latency);
3172 	method2 = skl_wm_method2(p->pixel_rate,
3173 				 p->pipe_htotal,
3174 				 p_params->horiz_pixels,
3175 				 bytes_per_pixel,
3176 				 p_params->tiling,
3177 				 latency);
3178 
3179 	plane_bytes_per_line = p_params->horiz_pixels * bytes_per_pixel;
3180 	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3181 
3182 	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3183 	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
3184 		uint32_t min_scanlines = 4;
3185 		uint32_t y_tile_minimum;
3186 		if (intel_rotation_90_or_270(p_params->rotation)) {
3187 			switch (p_params->bytes_per_pixel) {
3188 			case 1:
3189 				min_scanlines = 16;
3190 				break;
3191 			case 2:
3192 				min_scanlines = 8;
3193 				break;
3194 			case 8:
3195 				WARN(1, "Unsupported pixel depth for rotation");
3196 			}
3197 		}
3198 		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3199 		selected_result = max(method2, y_tile_minimum);
3200 	} else {
3201 		if ((ddb_allocation / plane_blocks_per_line) >= 1)
3202 			selected_result = min(method1, method2);
3203 		else
3204 			selected_result = method1;
3205 	}
3206 
3207 	res_blocks = selected_result + 1;
3208 	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3209 
3210 	if (level >= 1 && level <= 7) {
3211 		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
3212 		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
3213 			res_lines += 4;
3214 		else
3215 			res_blocks++;
3216 	}
3217 
3218 	if (res_blocks >= ddb_allocation || res_lines > 31)
3219 		return false;
3220 
3221 	*out_blocks = res_blocks;
3222 	*out_lines = res_lines;
3223 
3224 	return true;
3225 }
3226 
skl_compute_wm_level(const struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * p,enum pipe pipe,int level,int num_planes,struct skl_wm_level * result)3227 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3228 				 struct skl_ddb_allocation *ddb,
3229 				 struct skl_pipe_wm_parameters *p,
3230 				 enum pipe pipe,
3231 				 int level,
3232 				 int num_planes,
3233 				 struct skl_wm_level *result)
3234 {
3235 	uint16_t ddb_blocks;
3236 	int i;
3237 
3238 	for (i = 0; i < num_planes; i++) {
3239 		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3240 
3241 		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3242 						p, &p->plane[i],
3243 						ddb_blocks,
3244 						level,
3245 						&result->plane_res_b[i],
3246 						&result->plane_res_l[i]);
3247 	}
3248 
3249 	ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][PLANE_CURSOR]);
3250 	result->plane_en[PLANE_CURSOR] = skl_compute_plane_wm(dev_priv, p,
3251 						 &p->plane[PLANE_CURSOR],
3252 						 ddb_blocks, level,
3253 						 &result->plane_res_b[PLANE_CURSOR],
3254 						 &result->plane_res_l[PLANE_CURSOR]);
3255 }
3256 
3257 static uint32_t
skl_compute_linetime_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * p)3258 skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
3259 {
3260 	if (!to_intel_crtc(crtc)->active)
3261 		return 0;
3262 
3263 	if (WARN_ON(p->pixel_rate == 0))
3264 		return 0;
3265 
3266 	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
3267 }
3268 
skl_compute_transition_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct skl_wm_level * trans_wm)3269 static void skl_compute_transition_wm(struct drm_crtc *crtc,
3270 				      struct skl_pipe_wm_parameters *params,
3271 				      struct skl_wm_level *trans_wm /* out */)
3272 {
3273 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3274 	int i;
3275 
3276 	if (!params->active)
3277 		return;
3278 
3279 	/* Until we know more, just disable transition WMs */
3280 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3281 		trans_wm->plane_en[i] = false;
3282 	trans_wm->plane_en[PLANE_CURSOR] = false;
3283 }
3284 
skl_compute_pipe_wm(struct drm_crtc * crtc,struct skl_ddb_allocation * ddb,struct skl_pipe_wm_parameters * params,struct skl_pipe_wm * pipe_wm)3285 static void skl_compute_pipe_wm(struct drm_crtc *crtc,
3286 				struct skl_ddb_allocation *ddb,
3287 				struct skl_pipe_wm_parameters *params,
3288 				struct skl_pipe_wm *pipe_wm)
3289 {
3290 	struct drm_device *dev = crtc->dev;
3291 	const struct drm_i915_private *dev_priv = dev->dev_private;
3292 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293 	int level, max_level = ilk_wm_max_level(dev);
3294 
3295 	for (level = 0; level <= max_level; level++) {
3296 		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3297 				     level, intel_num_planes(intel_crtc),
3298 				     &pipe_wm->wm[level]);
3299 	}
3300 	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3301 
3302 	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3303 }
3304 
skl_compute_wm_results(struct drm_device * dev,struct skl_pipe_wm_parameters * p,struct skl_pipe_wm * p_wm,struct skl_wm_values * r,struct intel_crtc * intel_crtc)3305 static void skl_compute_wm_results(struct drm_device *dev,
3306 				   struct skl_pipe_wm_parameters *p,
3307 				   struct skl_pipe_wm *p_wm,
3308 				   struct skl_wm_values *r,
3309 				   struct intel_crtc *intel_crtc)
3310 {
3311 	int level, max_level = ilk_wm_max_level(dev);
3312 	enum pipe pipe = intel_crtc->pipe;
3313 	uint32_t temp;
3314 	int i;
3315 
3316 	for (level = 0; level <= max_level; level++) {
3317 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3318 			temp = 0;
3319 
3320 			temp |= p_wm->wm[level].plane_res_l[i] <<
3321 					PLANE_WM_LINES_SHIFT;
3322 			temp |= p_wm->wm[level].plane_res_b[i];
3323 			if (p_wm->wm[level].plane_en[i])
3324 				temp |= PLANE_WM_EN;
3325 
3326 			r->plane[pipe][i][level] = temp;
3327 		}
3328 
3329 		temp = 0;
3330 
3331 		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3332 		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3333 
3334 		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3335 			temp |= PLANE_WM_EN;
3336 
3337 		r->plane[pipe][PLANE_CURSOR][level] = temp;
3338 
3339 	}
3340 
3341 	/* transition WMs */
3342 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3343 		temp = 0;
3344 		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3345 		temp |= p_wm->trans_wm.plane_res_b[i];
3346 		if (p_wm->trans_wm.plane_en[i])
3347 			temp |= PLANE_WM_EN;
3348 
3349 		r->plane_trans[pipe][i] = temp;
3350 	}
3351 
3352 	temp = 0;
3353 	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3354 	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3355 	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3356 		temp |= PLANE_WM_EN;
3357 
3358 	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3359 
3360 	r->wm_linetime[pipe] = p_wm->linetime;
3361 }
3362 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,uint32_t reg,const struct skl_ddb_entry * entry)3363 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3364 				const struct skl_ddb_entry *entry)
3365 {
3366 	if (entry->end)
3367 		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3368 	else
3369 		I915_WRITE(reg, 0);
3370 }
3371 
skl_write_wm_values(struct drm_i915_private * dev_priv,const struct skl_wm_values * new)3372 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3373 				const struct skl_wm_values *new)
3374 {
3375 	struct drm_device *dev = dev_priv->dev;
3376 	struct intel_crtc *crtc;
3377 
3378 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3379 		int i, level, max_level = ilk_wm_max_level(dev);
3380 		enum pipe pipe = crtc->pipe;
3381 
3382 		if (!new->dirty[pipe])
3383 			continue;
3384 
3385 		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3386 
3387 		for (level = 0; level <= max_level; level++) {
3388 			for (i = 0; i < intel_num_planes(crtc); i++)
3389 				I915_WRITE(PLANE_WM(pipe, i, level),
3390 					   new->plane[pipe][i][level]);
3391 			I915_WRITE(CUR_WM(pipe, level),
3392 				   new->plane[pipe][PLANE_CURSOR][level]);
3393 		}
3394 		for (i = 0; i < intel_num_planes(crtc); i++)
3395 			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3396 				   new->plane_trans[pipe][i]);
3397 		I915_WRITE(CUR_WM_TRANS(pipe),
3398 			   new->plane_trans[pipe][PLANE_CURSOR]);
3399 
3400 		for (i = 0; i < intel_num_planes(crtc); i++) {
3401 			skl_ddb_entry_write(dev_priv,
3402 					    PLANE_BUF_CFG(pipe, i),
3403 					    &new->ddb.plane[pipe][i]);
3404 			skl_ddb_entry_write(dev_priv,
3405 					    PLANE_NV12_BUF_CFG(pipe, i),
3406 					    &new->ddb.y_plane[pipe][i]);
3407 		}
3408 
3409 		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3410 				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3411 	}
3412 }
3413 
3414 /*
3415  * When setting up a new DDB allocation arrangement, we need to correctly
3416  * sequence the times at which the new allocations for the pipes are taken into
3417  * account or we'll have pipes fetching from space previously allocated to
3418  * another pipe.
3419  *
3420  * Roughly the sequence looks like:
3421  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3422  *     overlapping with a previous light-up pipe (another way to put it is:
3423  *     pipes with their new allocation strickly included into their old ones).
3424  *  2. re-allocate the other pipes that get their allocation reduced
3425  *  3. allocate the pipes having their allocation increased
3426  *
3427  * Steps 1. and 2. are here to take care of the following case:
3428  * - Initially DDB looks like this:
3429  *     |   B    |   C    |
3430  * - enable pipe A.
3431  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3432  *   allocation
3433  *     |  A  |  B  |  C  |
3434  *
3435  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3436  */
3437 
3438 static void
skl_wm_flush_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,int pass)3439 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3440 {
3441 	int plane;
3442 
3443 	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3444 
3445 	for_each_plane(dev_priv, pipe, plane) {
3446 		I915_WRITE(PLANE_SURF(pipe, plane),
3447 			   I915_READ(PLANE_SURF(pipe, plane)));
3448 	}
3449 	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3450 }
3451 
3452 static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation * old,const struct skl_ddb_allocation * new,enum pipe pipe)3453 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3454 			    const struct skl_ddb_allocation *new,
3455 			    enum pipe pipe)
3456 {
3457 	uint16_t old_size, new_size;
3458 
3459 	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3460 	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3461 
3462 	return old_size != new_size &&
3463 	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3464 	       new->pipe[pipe].end <= old->pipe[pipe].end;
3465 }
3466 
skl_flush_wm_values(struct drm_i915_private * dev_priv,struct skl_wm_values * new_values)3467 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3468 				struct skl_wm_values *new_values)
3469 {
3470 	struct drm_device *dev = dev_priv->dev;
3471 	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3472 	bool reallocated[I915_MAX_PIPES] = {};
3473 	struct intel_crtc *crtc;
3474 	enum pipe pipe;
3475 
3476 	new_ddb = &new_values->ddb;
3477 	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3478 
3479 	/*
3480 	 * First pass: flush the pipes with the new allocation contained into
3481 	 * the old space.
3482 	 *
3483 	 * We'll wait for the vblank on those pipes to ensure we can safely
3484 	 * re-allocate the freed space without this pipe fetching from it.
3485 	 */
3486 	for_each_intel_crtc(dev, crtc) {
3487 		if (!crtc->active)
3488 			continue;
3489 
3490 		pipe = crtc->pipe;
3491 
3492 		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3493 			continue;
3494 
3495 		skl_wm_flush_pipe(dev_priv, pipe, 1);
3496 		intel_wait_for_vblank(dev, pipe);
3497 
3498 		reallocated[pipe] = true;
3499 	}
3500 
3501 
3502 	/*
3503 	 * Second pass: flush the pipes that are having their allocation
3504 	 * reduced, but overlapping with a previous allocation.
3505 	 *
3506 	 * Here as well we need to wait for the vblank to make sure the freed
3507 	 * space is not used anymore.
3508 	 */
3509 	for_each_intel_crtc(dev, crtc) {
3510 		if (!crtc->active)
3511 			continue;
3512 
3513 		pipe = crtc->pipe;
3514 
3515 		if (reallocated[pipe])
3516 			continue;
3517 
3518 		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3519 		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3520 			skl_wm_flush_pipe(dev_priv, pipe, 2);
3521 			intel_wait_for_vblank(dev, pipe);
3522 			reallocated[pipe] = true;
3523 		}
3524 	}
3525 
3526 	/*
3527 	 * Third pass: flush the pipes that got more space allocated.
3528 	 *
3529 	 * We don't need to actively wait for the update here, next vblank
3530 	 * will just get more DDB space with the correct WM values.
3531 	 */
3532 	for_each_intel_crtc(dev, crtc) {
3533 		if (!crtc->active)
3534 			continue;
3535 
3536 		pipe = crtc->pipe;
3537 
3538 		/*
3539 		 * At this point, only the pipes more space than before are
3540 		 * left to re-allocate.
3541 		 */
3542 		if (reallocated[pipe])
3543 			continue;
3544 
3545 		skl_wm_flush_pipe(dev_priv, pipe, 3);
3546 	}
3547 }
3548 
skl_update_pipe_wm(struct drm_crtc * crtc,struct skl_pipe_wm_parameters * params,struct intel_wm_config * config,struct skl_ddb_allocation * ddb,struct skl_pipe_wm * pipe_wm)3549 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3550 			       struct skl_pipe_wm_parameters *params,
3551 			       struct intel_wm_config *config,
3552 			       struct skl_ddb_allocation *ddb, /* out */
3553 			       struct skl_pipe_wm *pipe_wm /* out */)
3554 {
3555 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556 
3557 	skl_compute_wm_pipe_parameters(crtc, params);
3558 	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3559 	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3560 
3561 	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3562 		return false;
3563 
3564 	intel_crtc->wm.skl_active = *pipe_wm;
3565 
3566 	return true;
3567 }
3568 
skl_update_other_pipe_wm(struct drm_device * dev,struct drm_crtc * crtc,struct intel_wm_config * config,struct skl_wm_values * r)3569 static void skl_update_other_pipe_wm(struct drm_device *dev,
3570 				     struct drm_crtc *crtc,
3571 				     struct intel_wm_config *config,
3572 				     struct skl_wm_values *r)
3573 {
3574 	struct intel_crtc *intel_crtc;
3575 	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3576 
3577 	/*
3578 	 * If the WM update hasn't changed the allocation for this_crtc (the
3579 	 * crtc we are currently computing the new WM values for), other
3580 	 * enabled crtcs will keep the same allocation and we don't need to
3581 	 * recompute anything for them.
3582 	 */
3583 	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3584 		return;
3585 
3586 	/*
3587 	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3588 	 * other active pipes need new DDB allocation and WM values.
3589 	 */
3590 	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3591 				base.head) {
3592 		struct skl_pipe_wm_parameters params = {};
3593 		struct skl_pipe_wm pipe_wm = {};
3594 		bool wm_changed;
3595 
3596 		if (this_crtc->pipe == intel_crtc->pipe)
3597 			continue;
3598 
3599 		if (!intel_crtc->active)
3600 			continue;
3601 
3602 		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3603 						&params, config,
3604 						&r->ddb, &pipe_wm);
3605 
3606 		/*
3607 		 * If we end up re-computing the other pipe WM values, it's
3608 		 * because it was really needed, so we expect the WM values to
3609 		 * be different.
3610 		 */
3611 		WARN_ON(!wm_changed);
3612 
3613 		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3614 		r->dirty[intel_crtc->pipe] = true;
3615 	}
3616 }
3617 
skl_clear_wm(struct skl_wm_values * watermarks,enum pipe pipe)3618 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3619 {
3620 	watermarks->wm_linetime[pipe] = 0;
3621 	memset(watermarks->plane[pipe], 0,
3622 	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3623 	memset(watermarks->plane_trans[pipe],
3624 	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3625 	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3626 
3627 	/* Clear ddb entries for pipe */
3628 	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3629 	memset(&watermarks->ddb.plane[pipe], 0,
3630 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3631 	memset(&watermarks->ddb.y_plane[pipe], 0,
3632 	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3633 	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3634 	       sizeof(struct skl_ddb_entry));
3635 
3636 }
3637 
skl_update_wm(struct drm_crtc * crtc)3638 static void skl_update_wm(struct drm_crtc *crtc)
3639 {
3640 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3641 	struct drm_device *dev = crtc->dev;
3642 	struct drm_i915_private *dev_priv = dev->dev_private;
3643 	struct skl_pipe_wm_parameters params = {};
3644 	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3645 	struct skl_pipe_wm pipe_wm = {};
3646 	struct intel_wm_config config = {};
3647 
3648 
3649 	/* Clear all dirty flags */
3650 	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3651 
3652 	skl_clear_wm(results, intel_crtc->pipe);
3653 
3654 	skl_compute_wm_global_parameters(dev, &config);
3655 
3656 	if (!skl_update_pipe_wm(crtc, &params, &config,
3657 				&results->ddb, &pipe_wm))
3658 		return;
3659 
3660 	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3661 	results->dirty[intel_crtc->pipe] = true;
3662 
3663 	skl_update_other_pipe_wm(dev, crtc, &config, results);
3664 	skl_write_wm_values(dev_priv, results);
3665 	skl_flush_wm_values(dev_priv, results);
3666 
3667 	/* store the new configuration */
3668 	dev_priv->wm.skl_hw = *results;
3669 }
3670 
3671 static void
skl_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3672 skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3673 		     uint32_t sprite_width, uint32_t sprite_height,
3674 		     int pixel_size, bool enabled, bool scaled)
3675 {
3676 	struct intel_plane *intel_plane = to_intel_plane(plane);
3677 	struct drm_framebuffer *fb = plane->state->fb;
3678 
3679 	intel_plane->wm.enabled = enabled;
3680 	intel_plane->wm.scaled = scaled;
3681 	intel_plane->wm.horiz_pixels = sprite_width;
3682 	intel_plane->wm.vert_pixels = sprite_height;
3683 	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3684 
3685 	/* For planar: Bpp is for UV plane, y_Bpp is for Y plane */
3686 	intel_plane->wm.bytes_per_pixel =
3687 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3688 		drm_format_plane_cpp(plane->state->fb->pixel_format, 1) : pixel_size;
3689 	intel_plane->wm.y_bytes_per_pixel =
3690 		(fb && fb->pixel_format == DRM_FORMAT_NV12) ?
3691 		drm_format_plane_cpp(plane->state->fb->pixel_format, 0) : 0;
3692 
3693 	/*
3694 	 * Framebuffer can be NULL on plane disable, but it does not
3695 	 * matter for watermarks if we assume no tiling in that case.
3696 	 */
3697 	if (fb)
3698 		intel_plane->wm.tiling = fb->modifier[0];
3699 	intel_plane->wm.rotation = plane->state->rotation;
3700 
3701 	skl_update_wm(crtc);
3702 }
3703 
ilk_update_wm(struct drm_crtc * crtc)3704 static void ilk_update_wm(struct drm_crtc *crtc)
3705 {
3706 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3707 	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3708 	struct drm_device *dev = crtc->dev;
3709 	struct drm_i915_private *dev_priv = dev->dev_private;
3710 	struct ilk_wm_maximums max;
3711 	struct ilk_wm_values results = {};
3712 	enum intel_ddb_partitioning partitioning;
3713 	struct intel_pipe_wm pipe_wm = {};
3714 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3715 	struct intel_wm_config config = {};
3716 
3717 	WARN_ON(cstate->base.active != intel_crtc->active);
3718 
3719 	intel_compute_pipe_wm(cstate, &pipe_wm);
3720 
3721 	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3722 		return;
3723 
3724 	intel_crtc->wm.active = pipe_wm;
3725 
3726 	ilk_compute_wm_config(dev, &config);
3727 
3728 	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3729 	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3730 
3731 	/* 5/6 split only in single pipe config on IVB+ */
3732 	if (INTEL_INFO(dev)->gen >= 7 &&
3733 	    config.num_pipes_active == 1 && config.sprites_enabled) {
3734 		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3735 		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3736 
3737 		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3738 	} else {
3739 		best_lp_wm = &lp_wm_1_2;
3740 	}
3741 
3742 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3743 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3744 
3745 	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3746 
3747 	ilk_write_wm_values(dev_priv, &results);
3748 }
3749 
3750 static void
ilk_update_sprite_wm(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)3751 ilk_update_sprite_wm(struct drm_plane *plane,
3752 		     struct drm_crtc *crtc,
3753 		     uint32_t sprite_width, uint32_t sprite_height,
3754 		     int pixel_size, bool enabled, bool scaled)
3755 {
3756 	struct drm_device *dev = plane->dev;
3757 	struct intel_plane *intel_plane = to_intel_plane(plane);
3758 
3759 	/*
3760 	 * IVB workaround: must disable low power watermarks for at least
3761 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3762 	 * when scaling is disabled.
3763 	 *
3764 	 * WaCxSRDisabledForSpriteScaling:ivb
3765 	 */
3766 	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3767 		intel_wait_for_vblank(dev, intel_plane->pipe);
3768 
3769 	ilk_update_wm(crtc);
3770 }
3771 
skl_pipe_wm_active_state(uint32_t val,struct skl_pipe_wm * active,bool is_transwm,bool is_cursor,int i,int level)3772 static void skl_pipe_wm_active_state(uint32_t val,
3773 				     struct skl_pipe_wm *active,
3774 				     bool is_transwm,
3775 				     bool is_cursor,
3776 				     int i,
3777 				     int level)
3778 {
3779 	bool is_enabled = (val & PLANE_WM_EN) != 0;
3780 
3781 	if (!is_transwm) {
3782 		if (!is_cursor) {
3783 			active->wm[level].plane_en[i] = is_enabled;
3784 			active->wm[level].plane_res_b[i] =
3785 					val & PLANE_WM_BLOCKS_MASK;
3786 			active->wm[level].plane_res_l[i] =
3787 					(val >> PLANE_WM_LINES_SHIFT) &
3788 						PLANE_WM_LINES_MASK;
3789 		} else {
3790 			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3791 			active->wm[level].plane_res_b[PLANE_CURSOR] =
3792 					val & PLANE_WM_BLOCKS_MASK;
3793 			active->wm[level].plane_res_l[PLANE_CURSOR] =
3794 					(val >> PLANE_WM_LINES_SHIFT) &
3795 						PLANE_WM_LINES_MASK;
3796 		}
3797 	} else {
3798 		if (!is_cursor) {
3799 			active->trans_wm.plane_en[i] = is_enabled;
3800 			active->trans_wm.plane_res_b[i] =
3801 					val & PLANE_WM_BLOCKS_MASK;
3802 			active->trans_wm.plane_res_l[i] =
3803 					(val >> PLANE_WM_LINES_SHIFT) &
3804 						PLANE_WM_LINES_MASK;
3805 		} else {
3806 			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3807 			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3808 					val & PLANE_WM_BLOCKS_MASK;
3809 			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3810 					(val >> PLANE_WM_LINES_SHIFT) &
3811 						PLANE_WM_LINES_MASK;
3812 		}
3813 	}
3814 }
3815 
skl_pipe_wm_get_hw_state(struct drm_crtc * crtc)3816 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3817 {
3818 	struct drm_device *dev = crtc->dev;
3819 	struct drm_i915_private *dev_priv = dev->dev_private;
3820 	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3821 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3822 	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3823 	enum pipe pipe = intel_crtc->pipe;
3824 	int level, i, max_level;
3825 	uint32_t temp;
3826 
3827 	max_level = ilk_wm_max_level(dev);
3828 
3829 	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3830 
3831 	for (level = 0; level <= max_level; level++) {
3832 		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3833 			hw->plane[pipe][i][level] =
3834 					I915_READ(PLANE_WM(pipe, i, level));
3835 		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3836 	}
3837 
3838 	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3839 		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3840 	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3841 
3842 	if (!intel_crtc->active)
3843 		return;
3844 
3845 	hw->dirty[pipe] = true;
3846 
3847 	active->linetime = hw->wm_linetime[pipe];
3848 
3849 	for (level = 0; level <= max_level; level++) {
3850 		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3851 			temp = hw->plane[pipe][i][level];
3852 			skl_pipe_wm_active_state(temp, active, false,
3853 						false, i, level);
3854 		}
3855 		temp = hw->plane[pipe][PLANE_CURSOR][level];
3856 		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3857 	}
3858 
3859 	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3860 		temp = hw->plane_trans[pipe][i];
3861 		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3862 	}
3863 
3864 	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3865 	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3866 }
3867 
skl_wm_get_hw_state(struct drm_device * dev)3868 void skl_wm_get_hw_state(struct drm_device *dev)
3869 {
3870 	struct drm_i915_private *dev_priv = dev->dev_private;
3871 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3872 	struct drm_crtc *crtc;
3873 
3874 	skl_ddb_get_hw_state(dev_priv, ddb);
3875 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3876 		skl_pipe_wm_get_hw_state(crtc);
3877 }
3878 
ilk_pipe_wm_get_hw_state(struct drm_crtc * crtc)3879 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3880 {
3881 	struct drm_device *dev = crtc->dev;
3882 	struct drm_i915_private *dev_priv = dev->dev_private;
3883 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3884 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3885 	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3886 	enum pipe pipe = intel_crtc->pipe;
3887 	static const unsigned int wm0_pipe_reg[] = {
3888 		[PIPE_A] = WM0_PIPEA_ILK,
3889 		[PIPE_B] = WM0_PIPEB_ILK,
3890 		[PIPE_C] = WM0_PIPEC_IVB,
3891 	};
3892 
3893 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3894 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3895 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3896 
3897 	memset(active, 0, sizeof(*active));
3898 
3899 	active->pipe_enabled = intel_crtc->active;
3900 
3901 	if (active->pipe_enabled) {
3902 		u32 tmp = hw->wm_pipe[pipe];
3903 
3904 		/*
3905 		 * For active pipes LP0 watermark is marked as
3906 		 * enabled, and LP1+ watermaks as disabled since
3907 		 * we can't really reverse compute them in case
3908 		 * multiple pipes are active.
3909 		 */
3910 		active->wm[0].enable = true;
3911 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3912 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3913 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3914 		active->linetime = hw->wm_linetime[pipe];
3915 	} else {
3916 		int level, max_level = ilk_wm_max_level(dev);
3917 
3918 		/*
3919 		 * For inactive pipes, all watermark levels
3920 		 * should be marked as enabled but zeroed,
3921 		 * which is what we'd compute them to.
3922 		 */
3923 		for (level = 0; level <= max_level; level++)
3924 			active->wm[level].enable = true;
3925 	}
3926 }
3927 
3928 #define _FW_WM(value, plane) \
3929 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3930 #define _FW_WM_VLV(value, plane) \
3931 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3932 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)3933 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3934 			       struct vlv_wm_values *wm)
3935 {
3936 	enum pipe pipe;
3937 	uint32_t tmp;
3938 
3939 	for_each_pipe(dev_priv, pipe) {
3940 		tmp = I915_READ(VLV_DDL(pipe));
3941 
3942 		wm->ddl[pipe].primary =
3943 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3944 		wm->ddl[pipe].cursor =
3945 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3946 		wm->ddl[pipe].sprite[0] =
3947 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3948 		wm->ddl[pipe].sprite[1] =
3949 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3950 	}
3951 
3952 	tmp = I915_READ(DSPFW1);
3953 	wm->sr.plane = _FW_WM(tmp, SR);
3954 	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3955 	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3956 	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3957 
3958 	tmp = I915_READ(DSPFW2);
3959 	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3960 	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3961 	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3962 
3963 	tmp = I915_READ(DSPFW3);
3964 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3965 
3966 	if (IS_CHERRYVIEW(dev_priv)) {
3967 		tmp = I915_READ(DSPFW7_CHV);
3968 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3969 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3970 
3971 		tmp = I915_READ(DSPFW8_CHV);
3972 		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3973 		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3974 
3975 		tmp = I915_READ(DSPFW9_CHV);
3976 		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3977 		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3978 
3979 		tmp = I915_READ(DSPHOWM);
3980 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3981 		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3982 		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3983 		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3984 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3985 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3986 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3987 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3988 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3989 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3990 	} else {
3991 		tmp = I915_READ(DSPFW7);
3992 		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3993 		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3994 
3995 		tmp = I915_READ(DSPHOWM);
3996 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3997 		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3998 		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3999 		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4000 		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4001 		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4002 		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4003 	}
4004 }
4005 
4006 #undef _FW_WM
4007 #undef _FW_WM_VLV
4008 
vlv_wm_get_hw_state(struct drm_device * dev)4009 void vlv_wm_get_hw_state(struct drm_device *dev)
4010 {
4011 	struct drm_i915_private *dev_priv = to_i915(dev);
4012 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4013 	struct intel_plane *plane;
4014 	enum pipe pipe;
4015 	u32 val;
4016 
4017 	vlv_read_wm_values(dev_priv, wm);
4018 
4019 	for_each_intel_plane(dev, plane) {
4020 		switch (plane->base.type) {
4021 			int sprite;
4022 		case DRM_PLANE_TYPE_CURSOR:
4023 			plane->wm.fifo_size = 63;
4024 			break;
4025 		case DRM_PLANE_TYPE_PRIMARY:
4026 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4027 			break;
4028 		case DRM_PLANE_TYPE_OVERLAY:
4029 			sprite = plane->plane;
4030 			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4031 			break;
4032 		}
4033 	}
4034 
4035 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4036 	wm->level = VLV_WM_LEVEL_PM2;
4037 
4038 	if (IS_CHERRYVIEW(dev_priv)) {
4039 		mutex_lock(&dev_priv->rps.hw_lock);
4040 
4041 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4042 		if (val & DSP_MAXFIFO_PM5_ENABLE)
4043 			wm->level = VLV_WM_LEVEL_PM5;
4044 
4045 		/*
4046 		 * If DDR DVFS is disabled in the BIOS, Punit
4047 		 * will never ack the request. So if that happens
4048 		 * assume we don't have to enable/disable DDR DVFS
4049 		 * dynamically. To test that just set the REQ_ACK
4050 		 * bit to poke the Punit, but don't change the
4051 		 * HIGH/LOW bits so that we don't actually change
4052 		 * the current state.
4053 		 */
4054 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4055 		val |= FORCE_DDR_FREQ_REQ_ACK;
4056 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4057 
4058 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4059 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4060 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4061 				      "assuming DDR DVFS is disabled\n");
4062 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4063 		} else {
4064 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4065 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4066 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
4067 		}
4068 
4069 		mutex_unlock(&dev_priv->rps.hw_lock);
4070 	}
4071 
4072 	for_each_pipe(dev_priv, pipe)
4073 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4074 			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4075 			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4076 
4077 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4078 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4079 }
4080 
ilk_wm_get_hw_state(struct drm_device * dev)4081 void ilk_wm_get_hw_state(struct drm_device *dev)
4082 {
4083 	struct drm_i915_private *dev_priv = dev->dev_private;
4084 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4085 	struct drm_crtc *crtc;
4086 
4087 	for_each_crtc(dev, crtc)
4088 		ilk_pipe_wm_get_hw_state(crtc);
4089 
4090 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4091 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4092 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4093 
4094 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4095 	if (INTEL_INFO(dev)->gen >= 7) {
4096 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4097 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4098 	}
4099 
4100 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4101 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4102 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4103 	else if (IS_IVYBRIDGE(dev))
4104 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4105 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4106 
4107 	hw->enable_fbc_wm =
4108 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4109 }
4110 
4111 /**
4112  * intel_update_watermarks - update FIFO watermark values based on current modes
4113  *
4114  * Calculate watermark values for the various WM regs based on current mode
4115  * and plane configuration.
4116  *
4117  * There are several cases to deal with here:
4118  *   - normal (i.e. non-self-refresh)
4119  *   - self-refresh (SR) mode
4120  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4121  *   - lines are small relative to FIFO size (buffer can hold more than 2
4122  *     lines), so need to account for TLB latency
4123  *
4124  *   The normal calculation is:
4125  *     watermark = dotclock * bytes per pixel * latency
4126  *   where latency is platform & configuration dependent (we assume pessimal
4127  *   values here).
4128  *
4129  *   The SR calculation is:
4130  *     watermark = (trunc(latency/line time)+1) * surface width *
4131  *       bytes per pixel
4132  *   where
4133  *     line time = htotal / dotclock
4134  *     surface width = hdisplay for normal plane and 64 for cursor
4135  *   and latency is assumed to be high, as above.
4136  *
4137  * The final value programmed to the register should always be rounded up,
4138  * and include an extra 2 entries to account for clock crossings.
4139  *
4140  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4141  * to set the non-SR watermarks to 8.
4142  */
intel_update_watermarks(struct drm_crtc * crtc)4143 void intel_update_watermarks(struct drm_crtc *crtc)
4144 {
4145 	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4146 
4147 	if (dev_priv->display.update_wm)
4148 		dev_priv->display.update_wm(crtc);
4149 }
4150 
intel_update_sprite_watermarks(struct drm_plane * plane,struct drm_crtc * crtc,uint32_t sprite_width,uint32_t sprite_height,int pixel_size,bool enabled,bool scaled)4151 void intel_update_sprite_watermarks(struct drm_plane *plane,
4152 				    struct drm_crtc *crtc,
4153 				    uint32_t sprite_width,
4154 				    uint32_t sprite_height,
4155 				    int pixel_size,
4156 				    bool enabled, bool scaled)
4157 {
4158 	struct drm_i915_private *dev_priv = plane->dev->dev_private;
4159 
4160 	if (dev_priv->display.update_sprite_wm)
4161 		dev_priv->display.update_sprite_wm(plane, crtc,
4162 						   sprite_width, sprite_height,
4163 						   pixel_size, enabled, scaled);
4164 }
4165 
4166 /**
4167  * Lock protecting IPS related data structures
4168  */
4169 DEFINE_SPINLOCK(mchdev_lock);
4170 
4171 /* Global for IPS driver to get at the current i915 device. Protected by
4172  * mchdev_lock. */
4173 static struct drm_i915_private *i915_mch_dev;
4174 
ironlake_set_drps(struct drm_device * dev,u8 val)4175 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4176 {
4177 	struct drm_i915_private *dev_priv = dev->dev_private;
4178 	u16 rgvswctl;
4179 
4180 	assert_spin_locked(&mchdev_lock);
4181 
4182 	rgvswctl = I915_READ16(MEMSWCTL);
4183 	if (rgvswctl & MEMCTL_CMD_STS) {
4184 		DRM_DEBUG("gpu busy, RCS change rejected\n");
4185 		return false; /* still busy with another command */
4186 	}
4187 
4188 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4189 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4190 	I915_WRITE16(MEMSWCTL, rgvswctl);
4191 	POSTING_READ16(MEMSWCTL);
4192 
4193 	rgvswctl |= MEMCTL_CMD_STS;
4194 	I915_WRITE16(MEMSWCTL, rgvswctl);
4195 
4196 	return true;
4197 }
4198 
ironlake_enable_drps(struct drm_device * dev)4199 static void ironlake_enable_drps(struct drm_device *dev)
4200 {
4201 	struct drm_i915_private *dev_priv = dev->dev_private;
4202 	u32 rgvmodectl = I915_READ(MEMMODECTL);
4203 	u8 fmax, fmin, fstart, vstart;
4204 
4205 	spin_lock_irq(&mchdev_lock);
4206 
4207 	/* Enable temp reporting */
4208 	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4209 	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4210 
4211 	/* 100ms RC evaluation intervals */
4212 	I915_WRITE(RCUPEI, 100000);
4213 	I915_WRITE(RCDNEI, 100000);
4214 
4215 	/* Set max/min thresholds to 90ms and 80ms respectively */
4216 	I915_WRITE(RCBMAXAVG, 90000);
4217 	I915_WRITE(RCBMINAVG, 80000);
4218 
4219 	I915_WRITE(MEMIHYST, 1);
4220 
4221 	/* Set up min, max, and cur for interrupt handling */
4222 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4223 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4224 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4225 		MEMMODE_FSTART_SHIFT;
4226 
4227 	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4228 		PXVFREQ_PX_SHIFT;
4229 
4230 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4231 	dev_priv->ips.fstart = fstart;
4232 
4233 	dev_priv->ips.max_delay = fstart;
4234 	dev_priv->ips.min_delay = fmin;
4235 	dev_priv->ips.cur_delay = fstart;
4236 
4237 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4238 			 fmax, fmin, fstart);
4239 
4240 	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4241 
4242 	/*
4243 	 * Interrupts will be enabled in ironlake_irq_postinstall
4244 	 */
4245 
4246 	I915_WRITE(VIDSTART, vstart);
4247 	POSTING_READ(VIDSTART);
4248 
4249 	rgvmodectl |= MEMMODE_SWMODE_EN;
4250 	I915_WRITE(MEMMODECTL, rgvmodectl);
4251 
4252 	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4253 		DRM_ERROR("stuck trying to change perf mode\n");
4254 	mdelay(1);
4255 
4256 	ironlake_set_drps(dev, fstart);
4257 
4258 	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4259 		I915_READ(DDREC) + I915_READ(CSIEC);
4260 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4261 	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4262 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4263 
4264 	spin_unlock_irq(&mchdev_lock);
4265 }
4266 
ironlake_disable_drps(struct drm_device * dev)4267 static void ironlake_disable_drps(struct drm_device *dev)
4268 {
4269 	struct drm_i915_private *dev_priv = dev->dev_private;
4270 	u16 rgvswctl;
4271 
4272 	spin_lock_irq(&mchdev_lock);
4273 
4274 	rgvswctl = I915_READ16(MEMSWCTL);
4275 
4276 	/* Ack interrupts, disable EFC interrupt */
4277 	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4278 	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4279 	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4280 	I915_WRITE(DEIIR, DE_PCU_EVENT);
4281 	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4282 
4283 	/* Go back to the starting frequency */
4284 	ironlake_set_drps(dev, dev_priv->ips.fstart);
4285 	mdelay(1);
4286 	rgvswctl |= MEMCTL_CMD_STS;
4287 	I915_WRITE(MEMSWCTL, rgvswctl);
4288 	mdelay(1);
4289 
4290 	spin_unlock_irq(&mchdev_lock);
4291 }
4292 
4293 /* There's a funny hw issue where the hw returns all 0 when reading from
4294  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4295  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4296  * all limits and the gpu stuck at whatever frequency it is at atm).
4297  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)4298 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4299 {
4300 	u32 limits;
4301 
4302 	/* Only set the down limit when we've reached the lowest level to avoid
4303 	 * getting more interrupts, otherwise leave this clear. This prevents a
4304 	 * race in the hw when coming out of rc6: There's a tiny window where
4305 	 * the hw runs at the minimal clock before selecting the desired
4306 	 * frequency, if the down threshold expires in that window we will not
4307 	 * receive a down interrupt. */
4308 	if (IS_GEN9(dev_priv->dev)) {
4309 		limits = (dev_priv->rps.max_freq_softlimit) << 23;
4310 		if (val <= dev_priv->rps.min_freq_softlimit)
4311 			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4312 	} else {
4313 		limits = dev_priv->rps.max_freq_softlimit << 24;
4314 		if (val <= dev_priv->rps.min_freq_softlimit)
4315 			limits |= dev_priv->rps.min_freq_softlimit << 16;
4316 	}
4317 
4318 	return limits;
4319 }
4320 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)4321 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4322 {
4323 	int new_power;
4324 	u32 threshold_up = 0, threshold_down = 0; /* in % */
4325 	u32 ei_up = 0, ei_down = 0;
4326 
4327 	new_power = dev_priv->rps.power;
4328 	switch (dev_priv->rps.power) {
4329 	case LOW_POWER:
4330 		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4331 			new_power = BETWEEN;
4332 		break;
4333 
4334 	case BETWEEN:
4335 		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4336 			new_power = LOW_POWER;
4337 		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4338 			new_power = HIGH_POWER;
4339 		break;
4340 
4341 	case HIGH_POWER:
4342 		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4343 			new_power = BETWEEN;
4344 		break;
4345 	}
4346 	/* Max/min bins are special */
4347 	if (val <= dev_priv->rps.min_freq_softlimit)
4348 		new_power = LOW_POWER;
4349 	if (val >= dev_priv->rps.max_freq_softlimit)
4350 		new_power = HIGH_POWER;
4351 	if (new_power == dev_priv->rps.power)
4352 		return;
4353 
4354 	/* Note the units here are not exactly 1us, but 1280ns. */
4355 	switch (new_power) {
4356 	case LOW_POWER:
4357 		/* Upclock if more than 95% busy over 16ms */
4358 		ei_up = 16000;
4359 		threshold_up = 95;
4360 
4361 		/* Downclock if less than 85% busy over 32ms */
4362 		ei_down = 32000;
4363 		threshold_down = 85;
4364 		break;
4365 
4366 	case BETWEEN:
4367 		/* Upclock if more than 90% busy over 13ms */
4368 		ei_up = 13000;
4369 		threshold_up = 90;
4370 
4371 		/* Downclock if less than 75% busy over 32ms */
4372 		ei_down = 32000;
4373 		threshold_down = 75;
4374 		break;
4375 
4376 	case HIGH_POWER:
4377 		/* Upclock if more than 85% busy over 10ms */
4378 		ei_up = 10000;
4379 		threshold_up = 85;
4380 
4381 		/* Downclock if less than 60% busy over 32ms */
4382 		ei_down = 32000;
4383 		threshold_down = 60;
4384 		break;
4385 	}
4386 
4387 	/* When byt can survive without system hang with dynamic
4388 	 * sw freq adjustments, this restriction can be lifted.
4389 	 */
4390 	if (IS_VALLEYVIEW(dev_priv))
4391 		goto skip_hw_write;
4392 
4393 	I915_WRITE(GEN6_RP_UP_EI,
4394 		GT_INTERVAL_FROM_US(dev_priv, ei_up));
4395 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
4396 		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4397 
4398 	I915_WRITE(GEN6_RP_DOWN_EI,
4399 		GT_INTERVAL_FROM_US(dev_priv, ei_down));
4400 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4401 		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4402 
4403 	 I915_WRITE(GEN6_RP_CONTROL,
4404 		    GEN6_RP_MEDIA_TURBO |
4405 		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4406 		    GEN6_RP_MEDIA_IS_GFX |
4407 		    GEN6_RP_ENABLE |
4408 		    GEN6_RP_UP_BUSY_AVG |
4409 		    GEN6_RP_DOWN_IDLE_AVG);
4410 
4411 skip_hw_write:
4412 	dev_priv->rps.power = new_power;
4413 	dev_priv->rps.up_threshold = threshold_up;
4414 	dev_priv->rps.down_threshold = threshold_down;
4415 	dev_priv->rps.last_adj = 0;
4416 }
4417 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)4418 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4419 {
4420 	u32 mask = 0;
4421 
4422 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4423 	if (val > dev_priv->rps.min_freq_softlimit)
4424 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4425 	if (val < dev_priv->rps.max_freq_softlimit)
4426 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4427 
4428 	mask &= dev_priv->pm_rps_events;
4429 
4430 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4431 }
4432 
4433 /* gen6_set_rps is called to update the frequency request, but should also be
4434  * called when the range (min_delay and max_delay) is modified so that we can
4435  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_device * dev,u8 val)4436 static void gen6_set_rps(struct drm_device *dev, u8 val)
4437 {
4438 	struct drm_i915_private *dev_priv = dev->dev_private;
4439 
4440 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4441 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0))
4442 		return;
4443 
4444 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4445 	WARN_ON(val > dev_priv->rps.max_freq);
4446 	WARN_ON(val < dev_priv->rps.min_freq);
4447 
4448 	/* min/max delay may still have been modified so be sure to
4449 	 * write the limits value.
4450 	 */
4451 	if (val != dev_priv->rps.cur_freq) {
4452 		gen6_set_rps_thresholds(dev_priv, val);
4453 
4454 		if (IS_GEN9(dev))
4455 			I915_WRITE(GEN6_RPNSWREQ,
4456 				   GEN9_FREQUENCY(val));
4457 		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4458 			I915_WRITE(GEN6_RPNSWREQ,
4459 				   HSW_FREQUENCY(val));
4460 		else
4461 			I915_WRITE(GEN6_RPNSWREQ,
4462 				   GEN6_FREQUENCY(val) |
4463 				   GEN6_OFFSET(0) |
4464 				   GEN6_AGGRESSIVE_TURBO);
4465 	}
4466 
4467 	/* Make sure we continue to get interrupts
4468 	 * until we hit the minimum or maximum frequencies.
4469 	 */
4470 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4471 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4472 
4473 	POSTING_READ(GEN6_RPNSWREQ);
4474 
4475 	dev_priv->rps.cur_freq = val;
4476 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4477 }
4478 
valleyview_set_rps(struct drm_device * dev,u8 val)4479 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4480 {
4481 	struct drm_i915_private *dev_priv = dev->dev_private;
4482 
4483 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4484 	WARN_ON(val > dev_priv->rps.max_freq);
4485 	WARN_ON(val < dev_priv->rps.min_freq);
4486 
4487 	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4488 		      "Odd GPU freq value\n"))
4489 		val &= ~1;
4490 
4491 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4492 
4493 	if (val != dev_priv->rps.cur_freq) {
4494 		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4495 		if (!IS_CHERRYVIEW(dev_priv))
4496 			gen6_set_rps_thresholds(dev_priv, val);
4497 	}
4498 
4499 	dev_priv->rps.cur_freq = val;
4500 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4501 }
4502 
4503 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4504  *
4505  * * If Gfx is Idle, then
4506  * 1. Forcewake Media well.
4507  * 2. Request idle freq.
4508  * 3. Release Forcewake of Media well.
4509 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)4510 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4511 {
4512 	u32 val = dev_priv->rps.idle_freq;
4513 
4514 	if (dev_priv->rps.cur_freq <= val)
4515 		return;
4516 
4517 	/* Wake up the media well, as that takes a lot less
4518 	 * power than the Render well. */
4519 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4520 	valleyview_set_rps(dev_priv->dev, val);
4521 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4522 }
4523 
gen6_rps_busy(struct drm_i915_private * dev_priv)4524 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4525 {
4526 	mutex_lock(&dev_priv->rps.hw_lock);
4527 	if (dev_priv->rps.enabled) {
4528 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
4529 			gen6_rps_reset_ei(dev_priv);
4530 		I915_WRITE(GEN6_PMINTRMSK,
4531 			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4532 	}
4533 	mutex_unlock(&dev_priv->rps.hw_lock);
4534 }
4535 
gen6_rps_idle(struct drm_i915_private * dev_priv)4536 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4537 {
4538 	struct drm_device *dev = dev_priv->dev;
4539 
4540 	mutex_lock(&dev_priv->rps.hw_lock);
4541 	if (dev_priv->rps.enabled) {
4542 		if (IS_VALLEYVIEW(dev))
4543 			vlv_set_rps_idle(dev_priv);
4544 		else
4545 			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4546 		dev_priv->rps.last_adj = 0;
4547 		I915_WRITE(GEN6_PMINTRMSK,
4548 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4549 	}
4550 	mutex_unlock(&dev_priv->rps.hw_lock);
4551 
4552 	spin_lock(&dev_priv->rps.client_lock);
4553 	while (!list_empty(&dev_priv->rps.clients))
4554 		list_del_init(dev_priv->rps.clients.next);
4555 	spin_unlock(&dev_priv->rps.client_lock);
4556 }
4557 
gen6_rps_boost(struct drm_i915_private * dev_priv,struct intel_rps_client * rps,unsigned long submitted)4558 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4559 		    struct intel_rps_client *rps,
4560 		    unsigned long submitted)
4561 {
4562 	/* This is intentionally racy! We peek at the state here, then
4563 	 * validate inside the RPS worker.
4564 	 */
4565 	if (!(dev_priv->mm.busy &&
4566 	      dev_priv->rps.enabled &&
4567 	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4568 		return;
4569 
4570 	/* Force a RPS boost (and don't count it against the client) if
4571 	 * the GPU is severely congested.
4572 	 */
4573 	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4574 		rps = NULL;
4575 
4576 	spin_lock(&dev_priv->rps.client_lock);
4577 	if (rps == NULL || list_empty(&rps->link)) {
4578 		spin_lock_irq(&dev_priv->irq_lock);
4579 		if (dev_priv->rps.interrupts_enabled) {
4580 			dev_priv->rps.client_boost = true;
4581 			queue_work(dev_priv->wq, &dev_priv->rps.work);
4582 		}
4583 		spin_unlock_irq(&dev_priv->irq_lock);
4584 
4585 		if (rps != NULL) {
4586 			list_add(&rps->link, &dev_priv->rps.clients);
4587 			rps->boosts++;
4588 		} else
4589 			dev_priv->rps.boosts++;
4590 	}
4591 	spin_unlock(&dev_priv->rps.client_lock);
4592 }
4593 
intel_set_rps(struct drm_device * dev,u8 val)4594 void intel_set_rps(struct drm_device *dev, u8 val)
4595 {
4596 	if (IS_VALLEYVIEW(dev))
4597 		valleyview_set_rps(dev, val);
4598 	else
4599 		gen6_set_rps(dev, val);
4600 }
4601 
gen9_disable_rc6(struct drm_device * dev)4602 static void gen9_disable_rc6(struct drm_device *dev)
4603 {
4604 	struct drm_i915_private *dev_priv = dev->dev_private;
4605 
4606 	I915_WRITE(GEN6_RC_CONTROL, 0);
4607 }
4608 
gen9_disable_rps(struct drm_device * dev)4609 static void gen9_disable_rps(struct drm_device *dev)
4610 {
4611 	struct drm_i915_private *dev_priv = dev->dev_private;
4612 
4613 	I915_WRITE(GEN9_PG_ENABLE, 0);
4614 }
4615 
gen6_disable_rc6(struct drm_device * dev)4616 static void gen6_disable_rc6(struct drm_device *dev)
4617 {
4618 	struct drm_i915_private *dev_priv = dev->dev_private;
4619 
4620 	I915_WRITE(GEN6_RC_CONTROL, 0);
4621 }
4622 
gen6_disable_rps(struct drm_device * dev)4623 static void gen6_disable_rps(struct drm_device *dev)
4624 {
4625 	struct drm_i915_private *dev_priv = dev->dev_private;
4626 
4627 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4628 }
4629 
cherryview_disable_rc6(struct drm_device * dev)4630 static void cherryview_disable_rc6(struct drm_device *dev)
4631 {
4632 	struct drm_i915_private *dev_priv = dev->dev_private;
4633 
4634 	I915_WRITE(GEN6_RC_CONTROL, 0);
4635 }
4636 
valleyview_disable_rc6(struct drm_device * dev)4637 static void valleyview_disable_rc6(struct drm_device *dev)
4638 {
4639 	struct drm_i915_private *dev_priv = dev->dev_private;
4640 
4641 	/* we're doing forcewake before Disabling RC6,
4642 	 * This what the BIOS expects when going into suspend */
4643 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4644 
4645 	I915_WRITE(GEN6_RC_CONTROL, 0);
4646 
4647 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4648 }
4649 
intel_print_rc6_info(struct drm_device * dev,u32 mode)4650 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4651 {
4652 	if (IS_VALLEYVIEW(dev)) {
4653 		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4654 			mode = GEN6_RC_CTL_RC6_ENABLE;
4655 		else
4656 			mode = 0;
4657 	}
4658 	if (HAS_RC6p(dev))
4659 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4660 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4661 			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4662 			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4663 
4664 	else
4665 		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4666 			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4667 }
4668 
sanitize_rc6_option(const struct drm_device * dev,int enable_rc6)4669 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4670 {
4671 	/* No RC6 before Ironlake and code is gone for ilk. */
4672 	if (INTEL_INFO(dev)->gen < 6)
4673 		return 0;
4674 
4675 	/* Respect the kernel parameter if it is set */
4676 	if (enable_rc6 >= 0) {
4677 		int mask;
4678 
4679 		if (HAS_RC6p(dev))
4680 			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4681 			       INTEL_RC6pp_ENABLE;
4682 		else
4683 			mask = INTEL_RC6_ENABLE;
4684 
4685 		if ((enable_rc6 & mask) != enable_rc6)
4686 			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4687 				      enable_rc6 & mask, enable_rc6, mask);
4688 
4689 		return enable_rc6 & mask;
4690 	}
4691 
4692 	if (IS_IVYBRIDGE(dev))
4693 		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4694 
4695 	return INTEL_RC6_ENABLE;
4696 }
4697 
intel_enable_rc6(const struct drm_device * dev)4698 int intel_enable_rc6(const struct drm_device *dev)
4699 {
4700 	return i915.enable_rc6;
4701 }
4702 
gen6_init_rps_frequencies(struct drm_device * dev)4703 static void gen6_init_rps_frequencies(struct drm_device *dev)
4704 {
4705 	struct drm_i915_private *dev_priv = dev->dev_private;
4706 	uint32_t rp_state_cap;
4707 	u32 ddcc_status = 0;
4708 	int ret;
4709 
4710 	/* All of these values are in units of 50MHz */
4711 	dev_priv->rps.cur_freq		= 0;
4712 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4713 	if (IS_BROXTON(dev)) {
4714 		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4715 		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4716 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4717 		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
4718 	} else {
4719 		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4720 		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
4721 		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
4722 		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4723 	}
4724 
4725 	/* hw_max = RP0 until we check for overclocking */
4726 	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4727 
4728 	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4729 	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4730 		ret = sandybridge_pcode_read(dev_priv,
4731 					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4732 					&ddcc_status);
4733 		if (0 == ret)
4734 			dev_priv->rps.efficient_freq =
4735 				clamp_t(u8,
4736 					((ddcc_status >> 8) & 0xff),
4737 					dev_priv->rps.min_freq,
4738 					dev_priv->rps.max_freq);
4739 	}
4740 
4741 	if (IS_SKYLAKE(dev)) {
4742 		/* Store the frequency values in 16.66 MHZ units, which is
4743 		   the natural hardware unit for SKL */
4744 		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4745 		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4746 		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4747 		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4748 		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4749 	}
4750 
4751 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4752 
4753 	/* Preserve min/max settings in case of re-init */
4754 	if (dev_priv->rps.max_freq_softlimit == 0)
4755 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4756 
4757 	if (dev_priv->rps.min_freq_softlimit == 0) {
4758 		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4759 			dev_priv->rps.min_freq_softlimit =
4760 				max_t(int, dev_priv->rps.efficient_freq,
4761 				      intel_freq_opcode(dev_priv, 450));
4762 		else
4763 			dev_priv->rps.min_freq_softlimit =
4764 				dev_priv->rps.min_freq;
4765 	}
4766 }
4767 
4768 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_device * dev)4769 static void gen9_enable_rps(struct drm_device *dev)
4770 {
4771 	struct drm_i915_private *dev_priv = dev->dev_private;
4772 
4773 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4774 
4775 	gen6_init_rps_frequencies(dev);
4776 
4777 	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4778 	if (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) {
4779 		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4780 		return;
4781 	}
4782 
4783 	/* Program defaults and thresholds for RPS*/
4784 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4785 		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4786 
4787 	/* 1 second timeout*/
4788 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4789 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4790 
4791 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4792 
4793 	/* Leaning on the below call to gen6_set_rps to program/setup the
4794 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4795 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4796 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4797 	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4798 
4799 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4800 }
4801 
gen9_enable_rc6(struct drm_device * dev)4802 static void gen9_enable_rc6(struct drm_device *dev)
4803 {
4804 	struct drm_i915_private *dev_priv = dev->dev_private;
4805 	struct intel_engine_cs *ring;
4806 	uint32_t rc6_mask = 0;
4807 	int unused;
4808 
4809 	/* 1a: Software RC state - RC0 */
4810 	I915_WRITE(GEN6_RC_STATE, 0);
4811 
4812 	/* 1b: Get forcewake during program sequence. Although the driver
4813 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4814 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4815 
4816 	/* 2a: Disable RC states. */
4817 	I915_WRITE(GEN6_RC_CONTROL, 0);
4818 
4819 	/* 2b: Program RC6 thresholds.*/
4820 
4821 	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4822 	if (IS_SKYLAKE(dev))
4823 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4824 	else
4825 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4826 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4827 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4828 	for_each_ring(ring, dev_priv, unused)
4829 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4830 
4831 	if (HAS_GUC_UCODE(dev))
4832 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4833 
4834 	I915_WRITE(GEN6_RC_SLEEP, 0);
4835 
4836 	/* 2c: Program Coarse Power Gating Policies. */
4837 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4838 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4839 
4840 	/* 3a: Enable RC6 */
4841 	if (!dev_priv->rps.ctx_corrupted &&
4842 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4843 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4844 	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4845 			"on" : "off");
4846 	/* WaRsUseTimeoutMode */
4847 	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_D0) ||
4848 	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_A0)) {
4849 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4850 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4851 			   GEN7_RC_CTL_TO_MODE |
4852 			   rc6_mask);
4853 	} else {
4854 		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4855 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4856 			   GEN6_RC_CTL_EI_MODE(1) |
4857 			   rc6_mask);
4858 	}
4859 
4860 	/*
4861 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4862 	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4863 	 */
4864 	if ((IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) ||
4865 	    INTEL_INFO(dev)->gen == 9)
4866 		I915_WRITE(GEN9_PG_ENABLE, 0);
4867 	else
4868 		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4869 				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4870 
4871 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4872 
4873 }
4874 
gen8_enable_rps(struct drm_device * dev)4875 static void gen8_enable_rps(struct drm_device *dev)
4876 {
4877 	struct drm_i915_private *dev_priv = dev->dev_private;
4878 	struct intel_engine_cs *ring;
4879 	uint32_t rc6_mask = 0;
4880 	int unused;
4881 
4882 	/* 1a: Software RC state - RC0 */
4883 	I915_WRITE(GEN6_RC_STATE, 0);
4884 
4885 	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4886 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4887 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4888 
4889 	/* 2a: Disable RC states. */
4890 	I915_WRITE(GEN6_RC_CONTROL, 0);
4891 
4892 	/* Initialize rps frequencies */
4893 	gen6_init_rps_frequencies(dev);
4894 
4895 	/* 2b: Program RC6 thresholds.*/
4896 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4897 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4898 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4899 	for_each_ring(ring, dev_priv, unused)
4900 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4901 	I915_WRITE(GEN6_RC_SLEEP, 0);
4902 	if (IS_BROADWELL(dev))
4903 		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4904 	else
4905 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4906 
4907 	/* 3: Enable RC6 */
4908 	if (!dev_priv->rps.ctx_corrupted &&
4909 	    intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4910 		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4911 	intel_print_rc6_info(dev, rc6_mask);
4912 	if (IS_BROADWELL(dev))
4913 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4914 				GEN7_RC_CTL_TO_MODE |
4915 				rc6_mask);
4916 	else
4917 		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4918 				GEN6_RC_CTL_EI_MODE(1) |
4919 				rc6_mask);
4920 
4921 	/* 4 Program defaults and thresholds for RPS*/
4922 	I915_WRITE(GEN6_RPNSWREQ,
4923 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4924 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4925 		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4926 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4927 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4928 
4929 	/* Docs recommend 900MHz, and 300 MHz respectively */
4930 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4931 		   dev_priv->rps.max_freq_softlimit << 24 |
4932 		   dev_priv->rps.min_freq_softlimit << 16);
4933 
4934 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4935 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4936 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4937 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4938 
4939 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4940 
4941 	/* 5: Enable RPS */
4942 	I915_WRITE(GEN6_RP_CONTROL,
4943 		   GEN6_RP_MEDIA_TURBO |
4944 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4945 		   GEN6_RP_MEDIA_IS_GFX |
4946 		   GEN6_RP_ENABLE |
4947 		   GEN6_RP_UP_BUSY_AVG |
4948 		   GEN6_RP_DOWN_IDLE_AVG);
4949 
4950 	/* 6: Ring frequency + overclocking (our driver does this later */
4951 
4952 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4953 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4954 
4955 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4956 }
4957 
gen6_enable_rps(struct drm_device * dev)4958 static void gen6_enable_rps(struct drm_device *dev)
4959 {
4960 	struct drm_i915_private *dev_priv = dev->dev_private;
4961 	struct intel_engine_cs *ring;
4962 	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4963 	u32 gtfifodbg;
4964 	int rc6_mode;
4965 	int i, ret;
4966 
4967 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4968 
4969 	/* Here begins a magic sequence of register writes to enable
4970 	 * auto-downclocking.
4971 	 *
4972 	 * Perhaps there might be some value in exposing these to
4973 	 * userspace...
4974 	 */
4975 	I915_WRITE(GEN6_RC_STATE, 0);
4976 
4977 	/* Clear the DBG now so we don't confuse earlier errors */
4978 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4979 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4980 		I915_WRITE(GTFIFODBG, gtfifodbg);
4981 	}
4982 
4983 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4984 
4985 	/* Initialize rps frequencies */
4986 	gen6_init_rps_frequencies(dev);
4987 
4988 	/* disable the counters and set deterministic thresholds */
4989 	I915_WRITE(GEN6_RC_CONTROL, 0);
4990 
4991 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4992 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4993 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4994 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4995 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4996 
4997 	for_each_ring(ring, dev_priv, i)
4998 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4999 
5000 	I915_WRITE(GEN6_RC_SLEEP, 0);
5001 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5002 	if (IS_IVYBRIDGE(dev))
5003 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5004 	else
5005 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5006 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5007 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5008 
5009 	/* Check if we are enabling RC6 */
5010 	rc6_mode = intel_enable_rc6(dev_priv->dev);
5011 	if (rc6_mode & INTEL_RC6_ENABLE)
5012 		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5013 
5014 	/* We don't use those on Haswell */
5015 	if (!IS_HASWELL(dev)) {
5016 		if (rc6_mode & INTEL_RC6p_ENABLE)
5017 			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5018 
5019 		if (rc6_mode & INTEL_RC6pp_ENABLE)
5020 			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5021 	}
5022 
5023 	intel_print_rc6_info(dev, rc6_mask);
5024 
5025 	I915_WRITE(GEN6_RC_CONTROL,
5026 		   rc6_mask |
5027 		   GEN6_RC_CTL_EI_MODE(1) |
5028 		   GEN6_RC_CTL_HW_ENABLE);
5029 
5030 	/* Power down if completely idle for over 50ms */
5031 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5032 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5033 
5034 	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5035 	if (ret)
5036 		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5037 
5038 	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5039 	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5040 		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5041 				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5042 				 (pcu_mbox & 0xff) * 50);
5043 		dev_priv->rps.max_freq = pcu_mbox & 0xff;
5044 	}
5045 
5046 	dev_priv->rps.power = HIGH_POWER; /* force a reset */
5047 	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5048 
5049 	rc6vids = 0;
5050 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5051 	if (IS_GEN6(dev) && ret) {
5052 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5053 	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5054 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5055 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5056 		rc6vids &= 0xffff00;
5057 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
5058 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5059 		if (ret)
5060 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5061 	}
5062 
5063 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5064 }
5065 
__gen6_update_ring_freq(struct drm_device * dev)5066 static void __gen6_update_ring_freq(struct drm_device *dev)
5067 {
5068 	struct drm_i915_private *dev_priv = dev->dev_private;
5069 	int min_freq = 15;
5070 	unsigned int gpu_freq;
5071 	unsigned int max_ia_freq, min_ring_freq;
5072 	unsigned int max_gpu_freq, min_gpu_freq;
5073 	int scaling_factor = 180;
5074 	struct cpufreq_policy *policy;
5075 
5076 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5077 
5078 	policy = cpufreq_cpu_get(0);
5079 	if (policy) {
5080 		max_ia_freq = policy->cpuinfo.max_freq;
5081 		cpufreq_cpu_put(policy);
5082 	} else {
5083 		/*
5084 		 * Default to measured freq if none found, PCU will ensure we
5085 		 * don't go over
5086 		 */
5087 		max_ia_freq = tsc_khz;
5088 	}
5089 
5090 	/* Convert from kHz to MHz */
5091 	max_ia_freq /= 1000;
5092 
5093 	min_ring_freq = I915_READ(DCLK) & 0xf;
5094 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
5095 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5096 
5097 	if (IS_SKYLAKE(dev)) {
5098 		/* Convert GT frequency to 50 HZ units */
5099 		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5100 		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5101 	} else {
5102 		min_gpu_freq = dev_priv->rps.min_freq;
5103 		max_gpu_freq = dev_priv->rps.max_freq;
5104 	}
5105 
5106 	/*
5107 	 * For each potential GPU frequency, load a ring frequency we'd like
5108 	 * to use for memory access.  We do this by specifying the IA frequency
5109 	 * the PCU should use as a reference to determine the ring frequency.
5110 	 */
5111 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5112 		int diff = max_gpu_freq - gpu_freq;
5113 		unsigned int ia_freq = 0, ring_freq = 0;
5114 
5115 		if (IS_SKYLAKE(dev)) {
5116 			/*
5117 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5118 			 * No floor required for ring frequency on SKL.
5119 			 */
5120 			ring_freq = gpu_freq;
5121 		} else if (INTEL_INFO(dev)->gen >= 8) {
5122 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
5123 			ring_freq = max(min_ring_freq, gpu_freq);
5124 		} else if (IS_HASWELL(dev)) {
5125 			ring_freq = mult_frac(gpu_freq, 5, 4);
5126 			ring_freq = max(min_ring_freq, ring_freq);
5127 			/* leave ia_freq as the default, chosen by cpufreq */
5128 		} else {
5129 			/* On older processors, there is no separate ring
5130 			 * clock domain, so in order to boost the bandwidth
5131 			 * of the ring, we need to upclock the CPU (ia_freq).
5132 			 *
5133 			 * For GPU frequencies less than 750MHz,
5134 			 * just use the lowest ring freq.
5135 			 */
5136 			if (gpu_freq < min_freq)
5137 				ia_freq = 800;
5138 			else
5139 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5140 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5141 		}
5142 
5143 		sandybridge_pcode_write(dev_priv,
5144 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5145 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5146 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5147 					gpu_freq);
5148 	}
5149 }
5150 
gen6_update_ring_freq(struct drm_device * dev)5151 void gen6_update_ring_freq(struct drm_device *dev)
5152 {
5153 	struct drm_i915_private *dev_priv = dev->dev_private;
5154 
5155 	if (!HAS_CORE_RING_FREQ(dev))
5156 		return;
5157 
5158 	mutex_lock(&dev_priv->rps.hw_lock);
5159 	__gen6_update_ring_freq(dev);
5160 	mutex_unlock(&dev_priv->rps.hw_lock);
5161 }
5162 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)5163 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5164 {
5165 	struct drm_device *dev = dev_priv->dev;
5166 	u32 val, rp0;
5167 
5168 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5169 
5170 	switch (INTEL_INFO(dev)->eu_total) {
5171 	case 8:
5172 		/* (2 * 4) config */
5173 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5174 		break;
5175 	case 12:
5176 		/* (2 * 6) config */
5177 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5178 		break;
5179 	case 16:
5180 		/* (2 * 8) config */
5181 	default:
5182 		/* Setting (2 * 8) Min RP0 for any other combination */
5183 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5184 		break;
5185 	}
5186 
5187 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5188 
5189 	return rp0;
5190 }
5191 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)5192 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5193 {
5194 	u32 val, rpe;
5195 
5196 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5197 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5198 
5199 	return rpe;
5200 }
5201 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)5202 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5203 {
5204 	u32 val, rp1;
5205 
5206 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5207 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5208 
5209 	return rp1;
5210 }
5211 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)5212 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5213 {
5214 	u32 val, rp1;
5215 
5216 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5217 
5218 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5219 
5220 	return rp1;
5221 }
5222 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)5223 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5224 {
5225 	u32 val, rp0;
5226 
5227 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5228 
5229 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5230 	/* Clamp to max */
5231 	rp0 = min_t(u32, rp0, 0xea);
5232 
5233 	return rp0;
5234 }
5235 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)5236 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5237 {
5238 	u32 val, rpe;
5239 
5240 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5241 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5242 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5243 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5244 
5245 	return rpe;
5246 }
5247 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)5248 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5249 {
5250 	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5251 }
5252 
5253 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)5254 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5255 {
5256 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5257 
5258 	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5259 			     dev_priv->vlv_pctx->stolen->start);
5260 }
5261 
5262 
5263 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)5264 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5265 {
5266 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5267 
5268 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5269 }
5270 
cherryview_setup_pctx(struct drm_device * dev)5271 static void cherryview_setup_pctx(struct drm_device *dev)
5272 {
5273 	struct drm_i915_private *dev_priv = dev->dev_private;
5274 	unsigned long pctx_paddr, paddr;
5275 	struct i915_gtt *gtt = &dev_priv->gtt;
5276 	u32 pcbr;
5277 	int pctx_size = 32*1024;
5278 
5279 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5280 
5281 	pcbr = I915_READ(VLV_PCBR);
5282 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5283 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5284 		paddr = (dev_priv->mm.stolen_base +
5285 			 (gtt->stolen_size - pctx_size));
5286 
5287 		pctx_paddr = (paddr & (~4095));
5288 		I915_WRITE(VLV_PCBR, pctx_paddr);
5289 	}
5290 
5291 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5292 }
5293 
valleyview_setup_pctx(struct drm_device * dev)5294 static void valleyview_setup_pctx(struct drm_device *dev)
5295 {
5296 	struct drm_i915_private *dev_priv = dev->dev_private;
5297 	struct drm_i915_gem_object *pctx;
5298 	unsigned long pctx_paddr;
5299 	u32 pcbr;
5300 	int pctx_size = 24*1024;
5301 
5302 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
5303 
5304 	pcbr = I915_READ(VLV_PCBR);
5305 	if (pcbr) {
5306 		/* BIOS set it up already, grab the pre-alloc'd space */
5307 		int pcbr_offset;
5308 
5309 		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5310 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5311 								      pcbr_offset,
5312 								      I915_GTT_OFFSET_NONE,
5313 								      pctx_size);
5314 		goto out;
5315 	}
5316 
5317 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5318 
5319 	/*
5320 	 * From the Gunit register HAS:
5321 	 * The Gfx driver is expected to program this register and ensure
5322 	 * proper allocation within Gfx stolen memory.  For example, this
5323 	 * register should be programmed such than the PCBR range does not
5324 	 * overlap with other ranges, such as the frame buffer, protected
5325 	 * memory, or any other relevant ranges.
5326 	 */
5327 	pctx = i915_gem_object_create_stolen(dev, pctx_size);
5328 	if (!pctx) {
5329 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5330 		return;
5331 	}
5332 
5333 	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5334 	I915_WRITE(VLV_PCBR, pctx_paddr);
5335 
5336 out:
5337 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5338 	dev_priv->vlv_pctx = pctx;
5339 }
5340 
valleyview_cleanup_pctx(struct drm_device * dev)5341 static void valleyview_cleanup_pctx(struct drm_device *dev)
5342 {
5343 	struct drm_i915_private *dev_priv = dev->dev_private;
5344 
5345 	if (WARN_ON(!dev_priv->vlv_pctx))
5346 		return;
5347 
5348 	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
5349 	dev_priv->vlv_pctx = NULL;
5350 }
5351 
valleyview_init_gt_powersave(struct drm_device * dev)5352 static void valleyview_init_gt_powersave(struct drm_device *dev)
5353 {
5354 	struct drm_i915_private *dev_priv = dev->dev_private;
5355 	u32 val;
5356 
5357 	valleyview_setup_pctx(dev);
5358 
5359 	mutex_lock(&dev_priv->rps.hw_lock);
5360 
5361 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5362 	switch ((val >> 6) & 3) {
5363 	case 0:
5364 	case 1:
5365 		dev_priv->mem_freq = 800;
5366 		break;
5367 	case 2:
5368 		dev_priv->mem_freq = 1066;
5369 		break;
5370 	case 3:
5371 		dev_priv->mem_freq = 1333;
5372 		break;
5373 	}
5374 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5375 
5376 	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5377 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5378 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5379 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5380 			 dev_priv->rps.max_freq);
5381 
5382 	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5383 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5384 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5385 			 dev_priv->rps.efficient_freq);
5386 
5387 	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5388 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5389 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5390 			 dev_priv->rps.rp1_freq);
5391 
5392 	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5393 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5394 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5395 			 dev_priv->rps.min_freq);
5396 
5397 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5398 
5399 	/* Preserve min/max settings in case of re-init */
5400 	if (dev_priv->rps.max_freq_softlimit == 0)
5401 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5402 
5403 	if (dev_priv->rps.min_freq_softlimit == 0)
5404 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5405 
5406 	mutex_unlock(&dev_priv->rps.hw_lock);
5407 }
5408 
cherryview_init_gt_powersave(struct drm_device * dev)5409 static void cherryview_init_gt_powersave(struct drm_device *dev)
5410 {
5411 	struct drm_i915_private *dev_priv = dev->dev_private;
5412 	u32 val;
5413 
5414 	cherryview_setup_pctx(dev);
5415 
5416 	mutex_lock(&dev_priv->rps.hw_lock);
5417 
5418 	mutex_lock(&dev_priv->sb_lock);
5419 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5420 	mutex_unlock(&dev_priv->sb_lock);
5421 
5422 	switch ((val >> 2) & 0x7) {
5423 	case 3:
5424 		dev_priv->mem_freq = 2000;
5425 		break;
5426 	default:
5427 		dev_priv->mem_freq = 1600;
5428 		break;
5429 	}
5430 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5431 
5432 	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5433 	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5434 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5435 			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5436 			 dev_priv->rps.max_freq);
5437 
5438 	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5439 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5440 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5441 			 dev_priv->rps.efficient_freq);
5442 
5443 	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5444 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5445 			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5446 			 dev_priv->rps.rp1_freq);
5447 
5448 	/* PUnit validated range is only [RPe, RP0] */
5449 	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5450 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5451 			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5452 			 dev_priv->rps.min_freq);
5453 
5454 	WARN_ONCE((dev_priv->rps.max_freq |
5455 		   dev_priv->rps.efficient_freq |
5456 		   dev_priv->rps.rp1_freq |
5457 		   dev_priv->rps.min_freq) & 1,
5458 		  "Odd GPU freq values\n");
5459 
5460 	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5461 
5462 	/* Preserve min/max settings in case of re-init */
5463 	if (dev_priv->rps.max_freq_softlimit == 0)
5464 		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5465 
5466 	if (dev_priv->rps.min_freq_softlimit == 0)
5467 		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5468 
5469 	mutex_unlock(&dev_priv->rps.hw_lock);
5470 }
5471 
valleyview_cleanup_gt_powersave(struct drm_device * dev)5472 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5473 {
5474 	valleyview_cleanup_pctx(dev);
5475 }
5476 
cherryview_enable_rps(struct drm_device * dev)5477 static void cherryview_enable_rps(struct drm_device *dev)
5478 {
5479 	struct drm_i915_private *dev_priv = dev->dev_private;
5480 	struct intel_engine_cs *ring;
5481 	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5482 	int i;
5483 
5484 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5485 
5486 	gtfifodbg = I915_READ(GTFIFODBG);
5487 	if (gtfifodbg) {
5488 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5489 				 gtfifodbg);
5490 		I915_WRITE(GTFIFODBG, gtfifodbg);
5491 	}
5492 
5493 	cherryview_check_pctx(dev_priv);
5494 
5495 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
5496 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5497 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5498 
5499 	/*  Disable RC states. */
5500 	I915_WRITE(GEN6_RC_CONTROL, 0);
5501 
5502 	/* 2a: Program RC6 thresholds.*/
5503 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5504 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5505 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5506 
5507 	for_each_ring(ring, dev_priv, i)
5508 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5509 	I915_WRITE(GEN6_RC_SLEEP, 0);
5510 
5511 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5512 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5513 
5514 	/* allows RC6 residency counter to work */
5515 	I915_WRITE(VLV_COUNTER_CONTROL,
5516 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5517 				      VLV_MEDIA_RC6_COUNT_EN |
5518 				      VLV_RENDER_RC6_COUNT_EN));
5519 
5520 	/* For now we assume BIOS is allocating and populating the PCBR  */
5521 	pcbr = I915_READ(VLV_PCBR);
5522 
5523 	/* 3: Enable RC6 */
5524 	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5525 						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5526 		rc6_mode = GEN7_RC_CTL_TO_MODE;
5527 
5528 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5529 
5530 	/* 4 Program defaults and thresholds for RPS*/
5531 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5532 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5533 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5534 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5535 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5536 
5537 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5538 
5539 	/* 5: Enable RPS */
5540 	I915_WRITE(GEN6_RP_CONTROL,
5541 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5542 		   GEN6_RP_MEDIA_IS_GFX |
5543 		   GEN6_RP_ENABLE |
5544 		   GEN6_RP_UP_BUSY_AVG |
5545 		   GEN6_RP_DOWN_IDLE_AVG);
5546 
5547 	/* Setting Fixed Bias */
5548 	val = VLV_OVERRIDE_EN |
5549 		  VLV_SOC_TDP_EN |
5550 		  CHV_BIAS_CPU_50_SOC_50;
5551 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5552 
5553 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5554 
5555 	/* RPS code assumes GPLL is used */
5556 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5557 
5558 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5559 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5560 
5561 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5562 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5563 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5564 			 dev_priv->rps.cur_freq);
5565 
5566 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5567 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5568 			 dev_priv->rps.efficient_freq);
5569 
5570 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5571 
5572 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5573 }
5574 
valleyview_enable_rps(struct drm_device * dev)5575 static void valleyview_enable_rps(struct drm_device *dev)
5576 {
5577 	struct drm_i915_private *dev_priv = dev->dev_private;
5578 	struct intel_engine_cs *ring;
5579 	u32 gtfifodbg, val, rc6_mode = 0;
5580 	int i;
5581 
5582 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5583 
5584 	valleyview_check_pctx(dev_priv);
5585 
5586 	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5587 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5588 				 gtfifodbg);
5589 		I915_WRITE(GTFIFODBG, gtfifodbg);
5590 	}
5591 
5592 	/* If VLV, Forcewake all wells, else re-direct to regular path */
5593 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5594 
5595 	/*  Disable RC states. */
5596 	I915_WRITE(GEN6_RC_CONTROL, 0);
5597 
5598 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5599 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5600 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5601 	I915_WRITE(GEN6_RP_UP_EI, 66000);
5602 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5603 
5604 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5605 
5606 	I915_WRITE(GEN6_RP_CONTROL,
5607 		   GEN6_RP_MEDIA_TURBO |
5608 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5609 		   GEN6_RP_MEDIA_IS_GFX |
5610 		   GEN6_RP_ENABLE |
5611 		   GEN6_RP_UP_BUSY_AVG |
5612 		   GEN6_RP_DOWN_IDLE_CONT);
5613 
5614 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5615 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5616 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5617 
5618 	for_each_ring(ring, dev_priv, i)
5619 		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5620 
5621 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5622 
5623 	/* allows RC6 residency counter to work */
5624 	I915_WRITE(VLV_COUNTER_CONTROL,
5625 		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5626 				      VLV_RENDER_RC0_COUNT_EN |
5627 				      VLV_MEDIA_RC6_COUNT_EN |
5628 				      VLV_RENDER_RC6_COUNT_EN));
5629 
5630 	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5631 		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5632 
5633 	intel_print_rc6_info(dev, rc6_mode);
5634 
5635 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5636 
5637 	/* Setting Fixed Bias */
5638 	val = VLV_OVERRIDE_EN |
5639 		  VLV_SOC_TDP_EN |
5640 		  VLV_BIAS_CPU_125_SOC_875;
5641 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5642 
5643 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5644 
5645 	/* RPS code assumes GPLL is used */
5646 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5647 
5648 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5649 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5650 
5651 	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5652 	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5653 			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5654 			 dev_priv->rps.cur_freq);
5655 
5656 	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5657 			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5658 			 dev_priv->rps.efficient_freq);
5659 
5660 	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5661 
5662 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5663 }
5664 
intel_pxfreq(u32 vidfreq)5665 static unsigned long intel_pxfreq(u32 vidfreq)
5666 {
5667 	unsigned long freq;
5668 	int div = (vidfreq & 0x3f0000) >> 16;
5669 	int post = (vidfreq & 0x3000) >> 12;
5670 	int pre = (vidfreq & 0x7);
5671 
5672 	if (!pre)
5673 		return 0;
5674 
5675 	freq = ((div * 133333) / ((1<<post) * pre));
5676 
5677 	return freq;
5678 }
5679 
5680 static const struct cparams {
5681 	u16 i;
5682 	u16 t;
5683 	u16 m;
5684 	u16 c;
5685 } cparams[] = {
5686 	{ 1, 1333, 301, 28664 },
5687 	{ 1, 1066, 294, 24460 },
5688 	{ 1, 800, 294, 25192 },
5689 	{ 0, 1333, 276, 27605 },
5690 	{ 0, 1066, 276, 27605 },
5691 	{ 0, 800, 231, 23784 },
5692 };
5693 
__i915_chipset_val(struct drm_i915_private * dev_priv)5694 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5695 {
5696 	u64 total_count, diff, ret;
5697 	u32 count1, count2, count3, m = 0, c = 0;
5698 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5699 	int i;
5700 
5701 	assert_spin_locked(&mchdev_lock);
5702 
5703 	diff1 = now - dev_priv->ips.last_time1;
5704 
5705 	/* Prevent division-by-zero if we are asking too fast.
5706 	 * Also, we don't get interesting results if we are polling
5707 	 * faster than once in 10ms, so just return the saved value
5708 	 * in such cases.
5709 	 */
5710 	if (diff1 <= 10)
5711 		return dev_priv->ips.chipset_power;
5712 
5713 	count1 = I915_READ(DMIEC);
5714 	count2 = I915_READ(DDREC);
5715 	count3 = I915_READ(CSIEC);
5716 
5717 	total_count = count1 + count2 + count3;
5718 
5719 	/* FIXME: handle per-counter overflow */
5720 	if (total_count < dev_priv->ips.last_count1) {
5721 		diff = ~0UL - dev_priv->ips.last_count1;
5722 		diff += total_count;
5723 	} else {
5724 		diff = total_count - dev_priv->ips.last_count1;
5725 	}
5726 
5727 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5728 		if (cparams[i].i == dev_priv->ips.c_m &&
5729 		    cparams[i].t == dev_priv->ips.r_t) {
5730 			m = cparams[i].m;
5731 			c = cparams[i].c;
5732 			break;
5733 		}
5734 	}
5735 
5736 	diff = div_u64(diff, diff1);
5737 	ret = ((m * diff) + c);
5738 	ret = div_u64(ret, 10);
5739 
5740 	dev_priv->ips.last_count1 = total_count;
5741 	dev_priv->ips.last_time1 = now;
5742 
5743 	dev_priv->ips.chipset_power = ret;
5744 
5745 	return ret;
5746 }
5747 
i915_chipset_val(struct drm_i915_private * dev_priv)5748 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5749 {
5750 	struct drm_device *dev = dev_priv->dev;
5751 	unsigned long val;
5752 
5753 	if (INTEL_INFO(dev)->gen != 5)
5754 		return 0;
5755 
5756 	spin_lock_irq(&mchdev_lock);
5757 
5758 	val = __i915_chipset_val(dev_priv);
5759 
5760 	spin_unlock_irq(&mchdev_lock);
5761 
5762 	return val;
5763 }
5764 
i915_mch_val(struct drm_i915_private * dev_priv)5765 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5766 {
5767 	unsigned long m, x, b;
5768 	u32 tsfs;
5769 
5770 	tsfs = I915_READ(TSFS);
5771 
5772 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5773 	x = I915_READ8(TR1);
5774 
5775 	b = tsfs & TSFS_INTR_MASK;
5776 
5777 	return ((m * x) / 127) - b;
5778 }
5779 
_pxvid_to_vd(u8 pxvid)5780 static int _pxvid_to_vd(u8 pxvid)
5781 {
5782 	if (pxvid == 0)
5783 		return 0;
5784 
5785 	if (pxvid >= 8 && pxvid < 31)
5786 		pxvid = 31;
5787 
5788 	return (pxvid + 2) * 125;
5789 }
5790 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)5791 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5792 {
5793 	struct drm_device *dev = dev_priv->dev;
5794 	const int vd = _pxvid_to_vd(pxvid);
5795 	const int vm = vd - 1125;
5796 
5797 	if (INTEL_INFO(dev)->is_mobile)
5798 		return vm > 0 ? vm : 0;
5799 
5800 	return vd;
5801 }
5802 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)5803 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5804 {
5805 	u64 now, diff, diffms;
5806 	u32 count;
5807 
5808 	assert_spin_locked(&mchdev_lock);
5809 
5810 	now = ktime_get_raw_ns();
5811 	diffms = now - dev_priv->ips.last_time2;
5812 	do_div(diffms, NSEC_PER_MSEC);
5813 
5814 	/* Don't divide by 0 */
5815 	if (!diffms)
5816 		return;
5817 
5818 	count = I915_READ(GFXEC);
5819 
5820 	if (count < dev_priv->ips.last_count2) {
5821 		diff = ~0UL - dev_priv->ips.last_count2;
5822 		diff += count;
5823 	} else {
5824 		diff = count - dev_priv->ips.last_count2;
5825 	}
5826 
5827 	dev_priv->ips.last_count2 = count;
5828 	dev_priv->ips.last_time2 = now;
5829 
5830 	/* More magic constants... */
5831 	diff = diff * 1181;
5832 	diff = div_u64(diff, diffms * 10);
5833 	dev_priv->ips.gfx_power = diff;
5834 }
5835 
i915_update_gfx_val(struct drm_i915_private * dev_priv)5836 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5837 {
5838 	struct drm_device *dev = dev_priv->dev;
5839 
5840 	if (INTEL_INFO(dev)->gen != 5)
5841 		return;
5842 
5843 	spin_lock_irq(&mchdev_lock);
5844 
5845 	__i915_update_gfx_val(dev_priv);
5846 
5847 	spin_unlock_irq(&mchdev_lock);
5848 }
5849 
__i915_gfx_val(struct drm_i915_private * dev_priv)5850 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5851 {
5852 	unsigned long t, corr, state1, corr2, state2;
5853 	u32 pxvid, ext_v;
5854 
5855 	assert_spin_locked(&mchdev_lock);
5856 
5857 	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5858 	pxvid = (pxvid >> 24) & 0x7f;
5859 	ext_v = pvid_to_extvid(dev_priv, pxvid);
5860 
5861 	state1 = ext_v;
5862 
5863 	t = i915_mch_val(dev_priv);
5864 
5865 	/* Revel in the empirically derived constants */
5866 
5867 	/* Correction factor in 1/100000 units */
5868 	if (t > 80)
5869 		corr = ((t * 2349) + 135940);
5870 	else if (t >= 50)
5871 		corr = ((t * 964) + 29317);
5872 	else /* < 50 */
5873 		corr = ((t * 301) + 1004);
5874 
5875 	corr = corr * ((150142 * state1) / 10000 - 78642);
5876 	corr /= 100000;
5877 	corr2 = (corr * dev_priv->ips.corr);
5878 
5879 	state2 = (corr2 * state1) / 10000;
5880 	state2 /= 100; /* convert to mW */
5881 
5882 	__i915_update_gfx_val(dev_priv);
5883 
5884 	return dev_priv->ips.gfx_power + state2;
5885 }
5886 
i915_gfx_val(struct drm_i915_private * dev_priv)5887 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5888 {
5889 	struct drm_device *dev = dev_priv->dev;
5890 	unsigned long val;
5891 
5892 	if (INTEL_INFO(dev)->gen != 5)
5893 		return 0;
5894 
5895 	spin_lock_irq(&mchdev_lock);
5896 
5897 	val = __i915_gfx_val(dev_priv);
5898 
5899 	spin_unlock_irq(&mchdev_lock);
5900 
5901 	return val;
5902 }
5903 
5904 /**
5905  * i915_read_mch_val - return value for IPS use
5906  *
5907  * Calculate and return a value for the IPS driver to use when deciding whether
5908  * we have thermal and power headroom to increase CPU or GPU power budget.
5909  */
i915_read_mch_val(void)5910 unsigned long i915_read_mch_val(void)
5911 {
5912 	struct drm_i915_private *dev_priv;
5913 	unsigned long chipset_val, graphics_val, ret = 0;
5914 
5915 	spin_lock_irq(&mchdev_lock);
5916 	if (!i915_mch_dev)
5917 		goto out_unlock;
5918 	dev_priv = i915_mch_dev;
5919 
5920 	chipset_val = __i915_chipset_val(dev_priv);
5921 	graphics_val = __i915_gfx_val(dev_priv);
5922 
5923 	ret = chipset_val + graphics_val;
5924 
5925 out_unlock:
5926 	spin_unlock_irq(&mchdev_lock);
5927 
5928 	return ret;
5929 }
5930 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5931 
5932 /**
5933  * i915_gpu_raise - raise GPU frequency limit
5934  *
5935  * Raise the limit; IPS indicates we have thermal headroom.
5936  */
i915_gpu_raise(void)5937 bool i915_gpu_raise(void)
5938 {
5939 	struct drm_i915_private *dev_priv;
5940 	bool ret = true;
5941 
5942 	spin_lock_irq(&mchdev_lock);
5943 	if (!i915_mch_dev) {
5944 		ret = false;
5945 		goto out_unlock;
5946 	}
5947 	dev_priv = i915_mch_dev;
5948 
5949 	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5950 		dev_priv->ips.max_delay--;
5951 
5952 out_unlock:
5953 	spin_unlock_irq(&mchdev_lock);
5954 
5955 	return ret;
5956 }
5957 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5958 
5959 /**
5960  * i915_gpu_lower - lower GPU frequency limit
5961  *
5962  * IPS indicates we're close to a thermal limit, so throttle back the GPU
5963  * frequency maximum.
5964  */
i915_gpu_lower(void)5965 bool i915_gpu_lower(void)
5966 {
5967 	struct drm_i915_private *dev_priv;
5968 	bool ret = true;
5969 
5970 	spin_lock_irq(&mchdev_lock);
5971 	if (!i915_mch_dev) {
5972 		ret = false;
5973 		goto out_unlock;
5974 	}
5975 	dev_priv = i915_mch_dev;
5976 
5977 	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5978 		dev_priv->ips.max_delay++;
5979 
5980 out_unlock:
5981 	spin_unlock_irq(&mchdev_lock);
5982 
5983 	return ret;
5984 }
5985 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5986 
5987 /**
5988  * i915_gpu_busy - indicate GPU business to IPS
5989  *
5990  * Tell the IPS driver whether or not the GPU is busy.
5991  */
i915_gpu_busy(void)5992 bool i915_gpu_busy(void)
5993 {
5994 	struct drm_i915_private *dev_priv;
5995 	struct intel_engine_cs *ring;
5996 	bool ret = false;
5997 	int i;
5998 
5999 	spin_lock_irq(&mchdev_lock);
6000 	if (!i915_mch_dev)
6001 		goto out_unlock;
6002 	dev_priv = i915_mch_dev;
6003 
6004 	for_each_ring(ring, dev_priv, i)
6005 		ret |= !list_empty(&ring->request_list);
6006 
6007 out_unlock:
6008 	spin_unlock_irq(&mchdev_lock);
6009 
6010 	return ret;
6011 }
6012 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6013 
6014 /**
6015  * i915_gpu_turbo_disable - disable graphics turbo
6016  *
6017  * Disable graphics turbo by resetting the max frequency and setting the
6018  * current frequency to the default.
6019  */
i915_gpu_turbo_disable(void)6020 bool i915_gpu_turbo_disable(void)
6021 {
6022 	struct drm_i915_private *dev_priv;
6023 	bool ret = true;
6024 
6025 	spin_lock_irq(&mchdev_lock);
6026 	if (!i915_mch_dev) {
6027 		ret = false;
6028 		goto out_unlock;
6029 	}
6030 	dev_priv = i915_mch_dev;
6031 
6032 	dev_priv->ips.max_delay = dev_priv->ips.fstart;
6033 
6034 	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6035 		ret = false;
6036 
6037 out_unlock:
6038 	spin_unlock_irq(&mchdev_lock);
6039 
6040 	return ret;
6041 }
6042 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6043 
6044 /**
6045  * Tells the intel_ips driver that the i915 driver is now loaded, if
6046  * IPS got loaded first.
6047  *
6048  * This awkward dance is so that neither module has to depend on the
6049  * other in order for IPS to do the appropriate communication of
6050  * GPU turbo limits to i915.
6051  */
6052 static void
ips_ping_for_i915_load(void)6053 ips_ping_for_i915_load(void)
6054 {
6055 	void (*link)(void);
6056 
6057 	link = symbol_get(ips_link_to_i915_driver);
6058 	if (link) {
6059 		link();
6060 		symbol_put(ips_link_to_i915_driver);
6061 	}
6062 }
6063 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)6064 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6065 {
6066 	/* We only register the i915 ips part with intel-ips once everything is
6067 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6068 	spin_lock_irq(&mchdev_lock);
6069 	i915_mch_dev = dev_priv;
6070 	spin_unlock_irq(&mchdev_lock);
6071 
6072 	ips_ping_for_i915_load();
6073 }
6074 
intel_gpu_ips_teardown(void)6075 void intel_gpu_ips_teardown(void)
6076 {
6077 	spin_lock_irq(&mchdev_lock);
6078 	i915_mch_dev = NULL;
6079 	spin_unlock_irq(&mchdev_lock);
6080 }
6081 
intel_init_emon(struct drm_device * dev)6082 static void intel_init_emon(struct drm_device *dev)
6083 {
6084 	struct drm_i915_private *dev_priv = dev->dev_private;
6085 	u32 lcfuse;
6086 	u8 pxw[16];
6087 	int i;
6088 
6089 	/* Disable to program */
6090 	I915_WRITE(ECR, 0);
6091 	POSTING_READ(ECR);
6092 
6093 	/* Program energy weights for various events */
6094 	I915_WRITE(SDEW, 0x15040d00);
6095 	I915_WRITE(CSIEW0, 0x007f0000);
6096 	I915_WRITE(CSIEW1, 0x1e220004);
6097 	I915_WRITE(CSIEW2, 0x04000004);
6098 
6099 	for (i = 0; i < 5; i++)
6100 		I915_WRITE(PEW(i), 0);
6101 	for (i = 0; i < 3; i++)
6102 		I915_WRITE(DEW(i), 0);
6103 
6104 	/* Program P-state weights to account for frequency power adjustment */
6105 	for (i = 0; i < 16; i++) {
6106 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
6107 		unsigned long freq = intel_pxfreq(pxvidfreq);
6108 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6109 			PXVFREQ_PX_SHIFT;
6110 		unsigned long val;
6111 
6112 		val = vid * vid;
6113 		val *= (freq / 1000);
6114 		val *= 255;
6115 		val /= (127*127*900);
6116 		if (val > 0xff)
6117 			DRM_ERROR("bad pxval: %ld\n", val);
6118 		pxw[i] = val;
6119 	}
6120 	/* Render standby states get 0 weight */
6121 	pxw[14] = 0;
6122 	pxw[15] = 0;
6123 
6124 	for (i = 0; i < 4; i++) {
6125 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6126 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6127 		I915_WRITE(PXW(i), val);
6128 	}
6129 
6130 	/* Adjust magic regs to magic values (more experimental results) */
6131 	I915_WRITE(OGW0, 0);
6132 	I915_WRITE(OGW1, 0);
6133 	I915_WRITE(EG0, 0x00007f00);
6134 	I915_WRITE(EG1, 0x0000000e);
6135 	I915_WRITE(EG2, 0x000e0000);
6136 	I915_WRITE(EG3, 0x68000300);
6137 	I915_WRITE(EG4, 0x42000000);
6138 	I915_WRITE(EG5, 0x00140031);
6139 	I915_WRITE(EG6, 0);
6140 	I915_WRITE(EG7, 0);
6141 
6142 	for (i = 0; i < 8; i++)
6143 		I915_WRITE(PXWL(i), 0);
6144 
6145 	/* Enable PMON + select events */
6146 	I915_WRITE(ECR, 0x80000019);
6147 
6148 	lcfuse = I915_READ(LCFUSE02);
6149 
6150 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6151 }
6152 
i915_rc6_ctx_corrupted(struct drm_i915_private * dev_priv)6153 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
6154 {
6155 	return !I915_READ(GEN8_RC6_CTX_INFO);
6156 }
6157 
i915_rc6_ctx_wa_init(struct drm_i915_private * i915)6158 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
6159 {
6160 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6161 		return;
6162 
6163 	if (i915_rc6_ctx_corrupted(i915)) {
6164 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
6165 		i915->rps.ctx_corrupted = true;
6166 		intel_runtime_pm_get(i915);
6167 	}
6168 }
6169 
i915_rc6_ctx_wa_cleanup(struct drm_i915_private * i915)6170 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
6171 {
6172 	if (i915->rps.ctx_corrupted) {
6173 		intel_runtime_pm_put(i915);
6174 		i915->rps.ctx_corrupted = false;
6175 	}
6176 }
6177 
6178 /**
6179  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
6180  * @i915: i915 device
6181  *
6182  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
6183  */
i915_rc6_ctx_wa_suspend(struct drm_i915_private * i915)6184 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
6185 {
6186 	if (i915->rps.ctx_corrupted)
6187 		intel_runtime_pm_put(i915);
6188 }
6189 
6190 /**
6191  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
6192  * @i915: i915 device
6193  *
6194  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
6195  */
i915_rc6_ctx_wa_resume(struct drm_i915_private * i915)6196 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
6197 {
6198 	if (!i915->rps.ctx_corrupted)
6199 		return;
6200 
6201 	if (i915_rc6_ctx_corrupted(i915)) {
6202 		intel_runtime_pm_get(i915);
6203 		return;
6204 	}
6205 
6206 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
6207 	i915->rps.ctx_corrupted = false;
6208 }
6209 
6210 static void intel_disable_rc6(struct drm_device *dev);
6211 
6212 /**
6213  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
6214  * @i915: i915 device
6215  *
6216  * Check if an RC6 CTX corruption has happened since the last check and if so
6217  * disable RC6 and runtime power management.
6218  *
6219  * Return false if no context corruption has happened since the last call of
6220  * this function, true otherwise.
6221 */
i915_rc6_ctx_wa_check(struct drm_i915_private * i915)6222 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
6223 {
6224 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
6225 		return false;
6226 
6227 	if (i915->rps.ctx_corrupted)
6228 		return false;
6229 
6230 	if (!i915_rc6_ctx_corrupted(i915))
6231 		return false;
6232 
6233 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
6234 
6235 	intel_disable_rc6(i915->dev);
6236 	i915->rps.ctx_corrupted = true;
6237 	intel_runtime_pm_get_noresume(i915);
6238 
6239 	return true;
6240 }
6241 
intel_init_gt_powersave(struct drm_device * dev)6242 void intel_init_gt_powersave(struct drm_device *dev)
6243 {
6244 	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
6245 
6246 	i915_rc6_ctx_wa_init(to_i915(dev));
6247 
6248 	if (IS_CHERRYVIEW(dev))
6249 		cherryview_init_gt_powersave(dev);
6250 	else if (IS_VALLEYVIEW(dev))
6251 		valleyview_init_gt_powersave(dev);
6252 }
6253 
intel_cleanup_gt_powersave(struct drm_device * dev)6254 void intel_cleanup_gt_powersave(struct drm_device *dev)
6255 {
6256 	if (IS_CHERRYVIEW(dev))
6257 		return;
6258 	else if (IS_VALLEYVIEW(dev))
6259 		valleyview_cleanup_gt_powersave(dev);
6260 
6261 	i915_rc6_ctx_wa_cleanup(to_i915(dev));
6262 }
6263 
gen6_suspend_rps(struct drm_device * dev)6264 static void gen6_suspend_rps(struct drm_device *dev)
6265 {
6266 	struct drm_i915_private *dev_priv = dev->dev_private;
6267 
6268 	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6269 
6270 	gen6_disable_rps_interrupts(dev);
6271 }
6272 
6273 /**
6274  * intel_suspend_gt_powersave - suspend PM work and helper threads
6275  * @dev: drm device
6276  *
6277  * We don't want to disable RC6 or other features here, we just want
6278  * to make sure any work we've queued has finished and won't bother
6279  * us while we're suspended.
6280  */
intel_suspend_gt_powersave(struct drm_device * dev)6281 void intel_suspend_gt_powersave(struct drm_device *dev)
6282 {
6283 	struct drm_i915_private *dev_priv = dev->dev_private;
6284 
6285 	if (INTEL_INFO(dev)->gen < 6)
6286 		return;
6287 
6288 	gen6_suspend_rps(dev);
6289 
6290 	/* Force GPU to min freq during suspend */
6291 	gen6_rps_idle(dev_priv);
6292 }
6293 
__intel_disable_rc6(struct drm_device * dev)6294 static void __intel_disable_rc6(struct drm_device *dev)
6295 {
6296 	if (INTEL_INFO(dev)->gen >= 9)
6297 		gen9_disable_rc6(dev);
6298 	else if (IS_CHERRYVIEW(dev))
6299 		cherryview_disable_rc6(dev);
6300 	else if (IS_VALLEYVIEW(dev))
6301 		valleyview_disable_rc6(dev);
6302 	else
6303 		gen6_disable_rc6(dev);
6304 }
6305 
intel_disable_rc6(struct drm_device * dev)6306 static void intel_disable_rc6(struct drm_device *dev)
6307 {
6308 	struct drm_i915_private *dev_priv = to_i915(dev);
6309 
6310 	mutex_lock(&dev_priv->rps.hw_lock);
6311 	__intel_disable_rc6(dev);
6312 	mutex_unlock(&dev_priv->rps.hw_lock);
6313 }
6314 
intel_disable_rps(struct drm_device * dev)6315 static void intel_disable_rps(struct drm_device *dev)
6316 {
6317 	if (IS_CHERRYVIEW(dev) || IS_VALLEYVIEW(dev))
6318 		return;
6319 
6320 	if (INTEL_INFO(dev)->gen >= 9)
6321 		gen9_disable_rps(dev);
6322 	else
6323 		gen6_disable_rps(dev);
6324 }
6325 
intel_disable_gt_powersave(struct drm_device * dev)6326 void intel_disable_gt_powersave(struct drm_device *dev)
6327 {
6328 	struct drm_i915_private *dev_priv = dev->dev_private;
6329 
6330 	if (IS_IRONLAKE_M(dev)) {
6331 		ironlake_disable_drps(dev);
6332 	} else if (INTEL_INFO(dev)->gen >= 6) {
6333 		intel_suspend_gt_powersave(dev);
6334 
6335 		mutex_lock(&dev_priv->rps.hw_lock);
6336 
6337 		__intel_disable_rc6(dev);
6338 		intel_disable_rps(dev);
6339 
6340 		dev_priv->rps.enabled = false;
6341 
6342 		mutex_unlock(&dev_priv->rps.hw_lock);
6343 	}
6344 }
6345 
intel_gen6_powersave_work(struct work_struct * work)6346 static void intel_gen6_powersave_work(struct work_struct *work)
6347 {
6348 	struct drm_i915_private *dev_priv =
6349 		container_of(work, struct drm_i915_private,
6350 			     rps.delayed_resume_work.work);
6351 	struct drm_device *dev = dev_priv->dev;
6352 
6353 	mutex_lock(&dev_priv->rps.hw_lock);
6354 
6355 	gen6_reset_rps_interrupts(dev);
6356 
6357 	if (IS_CHERRYVIEW(dev)) {
6358 		cherryview_enable_rps(dev);
6359 	} else if (IS_VALLEYVIEW(dev)) {
6360 		valleyview_enable_rps(dev);
6361 	} else if (INTEL_INFO(dev)->gen >= 9) {
6362 		gen9_enable_rc6(dev);
6363 		gen9_enable_rps(dev);
6364 		if (IS_SKYLAKE(dev))
6365 			__gen6_update_ring_freq(dev);
6366 	} else if (IS_BROADWELL(dev)) {
6367 		gen8_enable_rps(dev);
6368 		__gen6_update_ring_freq(dev);
6369 	} else {
6370 		gen6_enable_rps(dev);
6371 		__gen6_update_ring_freq(dev);
6372 	}
6373 
6374 	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6375 	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6376 
6377 	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6378 	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6379 
6380 	dev_priv->rps.enabled = true;
6381 
6382 	gen6_enable_rps_interrupts(dev);
6383 
6384 	mutex_unlock(&dev_priv->rps.hw_lock);
6385 
6386 	intel_runtime_pm_put(dev_priv);
6387 }
6388 
intel_enable_gt_powersave(struct drm_device * dev)6389 void intel_enable_gt_powersave(struct drm_device *dev)
6390 {
6391 	struct drm_i915_private *dev_priv = dev->dev_private;
6392 
6393 	/* Powersaving is controlled by the host when inside a VM */
6394 	if (intel_vgpu_active(dev))
6395 		return;
6396 
6397 	if (IS_IRONLAKE_M(dev)) {
6398 		mutex_lock(&dev->struct_mutex);
6399 		ironlake_enable_drps(dev);
6400 		intel_init_emon(dev);
6401 		mutex_unlock(&dev->struct_mutex);
6402 	} else if (INTEL_INFO(dev)->gen >= 6) {
6403 		/*
6404 		 * PCU communication is slow and this doesn't need to be
6405 		 * done at any specific time, so do this out of our fast path
6406 		 * to make resume and init faster.
6407 		 *
6408 		 * We depend on the HW RC6 power context save/restore
6409 		 * mechanism when entering D3 through runtime PM suspend. So
6410 		 * disable RPM until RPS/RC6 is properly setup. We can only
6411 		 * get here via the driver load/system resume/runtime resume
6412 		 * paths, so the _noresume version is enough (and in case of
6413 		 * runtime resume it's necessary).
6414 		 */
6415 		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6416 					   round_jiffies_up_relative(HZ)))
6417 			intel_runtime_pm_get_noresume(dev_priv);
6418 	}
6419 }
6420 
intel_reset_gt_powersave(struct drm_device * dev)6421 void intel_reset_gt_powersave(struct drm_device *dev)
6422 {
6423 	struct drm_i915_private *dev_priv = dev->dev_private;
6424 
6425 	if (INTEL_INFO(dev)->gen < 6)
6426 		return;
6427 
6428 	gen6_suspend_rps(dev);
6429 	dev_priv->rps.enabled = false;
6430 }
6431 
ibx_init_clock_gating(struct drm_device * dev)6432 static void ibx_init_clock_gating(struct drm_device *dev)
6433 {
6434 	struct drm_i915_private *dev_priv = dev->dev_private;
6435 
6436 	/*
6437 	 * On Ibex Peak and Cougar Point, we need to disable clock
6438 	 * gating for the panel power sequencer or it will fail to
6439 	 * start up when no ports are active.
6440 	 */
6441 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6442 }
6443 
g4x_disable_trickle_feed(struct drm_device * dev)6444 static void g4x_disable_trickle_feed(struct drm_device *dev)
6445 {
6446 	struct drm_i915_private *dev_priv = dev->dev_private;
6447 	enum pipe pipe;
6448 
6449 	for_each_pipe(dev_priv, pipe) {
6450 		I915_WRITE(DSPCNTR(pipe),
6451 			   I915_READ(DSPCNTR(pipe)) |
6452 			   DISPPLANE_TRICKLE_FEED_DISABLE);
6453 
6454 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6455 		POSTING_READ(DSPSURF(pipe));
6456 	}
6457 }
6458 
ilk_init_lp_watermarks(struct drm_device * dev)6459 static void ilk_init_lp_watermarks(struct drm_device *dev)
6460 {
6461 	struct drm_i915_private *dev_priv = dev->dev_private;
6462 
6463 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6464 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6465 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6466 
6467 	/*
6468 	 * Don't touch WM1S_LP_EN here.
6469 	 * Doing so could cause underruns.
6470 	 */
6471 }
6472 
ironlake_init_clock_gating(struct drm_device * dev)6473 static void ironlake_init_clock_gating(struct drm_device *dev)
6474 {
6475 	struct drm_i915_private *dev_priv = dev->dev_private;
6476 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6477 
6478 	/*
6479 	 * Required for FBC
6480 	 * WaFbcDisableDpfcClockGating:ilk
6481 	 */
6482 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6483 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6484 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6485 
6486 	I915_WRITE(PCH_3DCGDIS0,
6487 		   MARIUNIT_CLOCK_GATE_DISABLE |
6488 		   SVSMUNIT_CLOCK_GATE_DISABLE);
6489 	I915_WRITE(PCH_3DCGDIS1,
6490 		   VFMUNIT_CLOCK_GATE_DISABLE);
6491 
6492 	/*
6493 	 * According to the spec the following bits should be set in
6494 	 * order to enable memory self-refresh
6495 	 * The bit 22/21 of 0x42004
6496 	 * The bit 5 of 0x42020
6497 	 * The bit 15 of 0x45000
6498 	 */
6499 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6500 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
6501 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6502 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6503 	I915_WRITE(DISP_ARB_CTL,
6504 		   (I915_READ(DISP_ARB_CTL) |
6505 		    DISP_FBC_WM_DIS));
6506 
6507 	ilk_init_lp_watermarks(dev);
6508 
6509 	/*
6510 	 * Based on the document from hardware guys the following bits
6511 	 * should be set unconditionally in order to enable FBC.
6512 	 * The bit 22 of 0x42000
6513 	 * The bit 22 of 0x42004
6514 	 * The bit 7,8,9 of 0x42020.
6515 	 */
6516 	if (IS_IRONLAKE_M(dev)) {
6517 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6518 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
6519 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
6520 			   ILK_FBCQ_DIS);
6521 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
6522 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
6523 			   ILK_DPARB_GATE);
6524 	}
6525 
6526 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6527 
6528 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6529 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6530 		   ILK_ELPIN_409_SELECT);
6531 	I915_WRITE(_3D_CHICKEN2,
6532 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6533 		   _3D_CHICKEN2_WM_READ_PIPELINED);
6534 
6535 	/* WaDisableRenderCachePipelinedFlush:ilk */
6536 	I915_WRITE(CACHE_MODE_0,
6537 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6538 
6539 	/* WaDisable_RenderCache_OperationalFlush:ilk */
6540 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6541 
6542 	g4x_disable_trickle_feed(dev);
6543 
6544 	ibx_init_clock_gating(dev);
6545 }
6546 
cpt_init_clock_gating(struct drm_device * dev)6547 static void cpt_init_clock_gating(struct drm_device *dev)
6548 {
6549 	struct drm_i915_private *dev_priv = dev->dev_private;
6550 	int pipe;
6551 	uint32_t val;
6552 
6553 	/*
6554 	 * On Ibex Peak and Cougar Point, we need to disable clock
6555 	 * gating for the panel power sequencer or it will fail to
6556 	 * start up when no ports are active.
6557 	 */
6558 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6559 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6560 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6561 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6562 		   DPLS_EDP_PPS_FIX_DIS);
6563 	/* The below fixes the weird display corruption, a few pixels shifted
6564 	 * downward, on (only) LVDS of some HP laptops with IVY.
6565 	 */
6566 	for_each_pipe(dev_priv, pipe) {
6567 		val = I915_READ(TRANS_CHICKEN2(pipe));
6568 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6569 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6570 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6571 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6572 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6573 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6574 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6575 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
6576 	}
6577 	/* WADP0ClockGatingDisable */
6578 	for_each_pipe(dev_priv, pipe) {
6579 		I915_WRITE(TRANS_CHICKEN1(pipe),
6580 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6581 	}
6582 }
6583 
gen6_check_mch_setup(struct drm_device * dev)6584 static void gen6_check_mch_setup(struct drm_device *dev)
6585 {
6586 	struct drm_i915_private *dev_priv = dev->dev_private;
6587 	uint32_t tmp;
6588 
6589 	tmp = I915_READ(MCH_SSKPD);
6590 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6591 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6592 			      tmp);
6593 }
6594 
gen6_init_clock_gating(struct drm_device * dev)6595 static void gen6_init_clock_gating(struct drm_device *dev)
6596 {
6597 	struct drm_i915_private *dev_priv = dev->dev_private;
6598 	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6599 
6600 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6601 
6602 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6603 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6604 		   ILK_ELPIN_409_SELECT);
6605 
6606 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6607 	I915_WRITE(_3D_CHICKEN,
6608 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6609 
6610 	/* WaDisable_RenderCache_OperationalFlush:snb */
6611 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6612 
6613 	/*
6614 	 * BSpec recoomends 8x4 when MSAA is used,
6615 	 * however in practice 16x4 seems fastest.
6616 	 *
6617 	 * Note that PS/WM thread counts depend on the WIZ hashing
6618 	 * disable bit, which we don't touch here, but it's good
6619 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6620 	 */
6621 	I915_WRITE(GEN6_GT_MODE,
6622 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6623 
6624 	ilk_init_lp_watermarks(dev);
6625 
6626 	I915_WRITE(CACHE_MODE_0,
6627 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6628 
6629 	I915_WRITE(GEN6_UCGCTL1,
6630 		   I915_READ(GEN6_UCGCTL1) |
6631 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6632 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6633 
6634 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6635 	 * gating disable must be set.  Failure to set it results in
6636 	 * flickering pixels due to Z write ordering failures after
6637 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
6638 	 * Sanctuary and Tropics, and apparently anything else with
6639 	 * alpha test or pixel discard.
6640 	 *
6641 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
6642 	 * but we didn't debug actual testcases to find it out.
6643 	 *
6644 	 * WaDisableRCCUnitClockGating:snb
6645 	 * WaDisableRCPBUnitClockGating:snb
6646 	 */
6647 	I915_WRITE(GEN6_UCGCTL2,
6648 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6649 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6650 
6651 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6652 	I915_WRITE(_3D_CHICKEN3,
6653 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6654 
6655 	/*
6656 	 * Bspec says:
6657 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6658 	 * 3DSTATE_SF number of SF output attributes is more than 16."
6659 	 */
6660 	I915_WRITE(_3D_CHICKEN3,
6661 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6662 
6663 	/*
6664 	 * According to the spec the following bits should be
6665 	 * set in order to enable memory self-refresh and fbc:
6666 	 * The bit21 and bit22 of 0x42000
6667 	 * The bit21 and bit22 of 0x42004
6668 	 * The bit5 and bit7 of 0x42020
6669 	 * The bit14 of 0x70180
6670 	 * The bit14 of 0x71180
6671 	 *
6672 	 * WaFbcAsynchFlipDisableFbcQueue:snb
6673 	 */
6674 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6675 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6676 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6677 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6678 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6679 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6680 	I915_WRITE(ILK_DSPCLK_GATE_D,
6681 		   I915_READ(ILK_DSPCLK_GATE_D) |
6682 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6683 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6684 
6685 	g4x_disable_trickle_feed(dev);
6686 
6687 	cpt_init_clock_gating(dev);
6688 
6689 	gen6_check_mch_setup(dev);
6690 }
6691 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)6692 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6693 {
6694 	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6695 
6696 	/*
6697 	 * WaVSThreadDispatchOverride:ivb,vlv
6698 	 *
6699 	 * This actually overrides the dispatch
6700 	 * mode for all thread types.
6701 	 */
6702 	reg &= ~GEN7_FF_SCHED_MASK;
6703 	reg |= GEN7_FF_TS_SCHED_HW;
6704 	reg |= GEN7_FF_VS_SCHED_HW;
6705 	reg |= GEN7_FF_DS_SCHED_HW;
6706 
6707 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6708 }
6709 
lpt_init_clock_gating(struct drm_device * dev)6710 static void lpt_init_clock_gating(struct drm_device *dev)
6711 {
6712 	struct drm_i915_private *dev_priv = dev->dev_private;
6713 
6714 	/*
6715 	 * TODO: this bit should only be enabled when really needed, then
6716 	 * disabled when not needed anymore in order to save power.
6717 	 */
6718 	if (HAS_PCH_LPT_LP(dev))
6719 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6720 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6721 			   PCH_LP_PARTITION_LEVEL_DISABLE);
6722 
6723 	/* WADPOClockGatingDisable:hsw */
6724 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6725 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6726 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6727 }
6728 
lpt_suspend_hw(struct drm_device * dev)6729 static void lpt_suspend_hw(struct drm_device *dev)
6730 {
6731 	struct drm_i915_private *dev_priv = dev->dev_private;
6732 
6733 	if (HAS_PCH_LPT_LP(dev)) {
6734 		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6735 
6736 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6737 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6738 	}
6739 }
6740 
broadwell_init_clock_gating(struct drm_device * dev)6741 static void broadwell_init_clock_gating(struct drm_device *dev)
6742 {
6743 	struct drm_i915_private *dev_priv = dev->dev_private;
6744 	enum pipe pipe;
6745 	uint32_t misccpctl;
6746 
6747 	ilk_init_lp_watermarks(dev);
6748 
6749 	/* WaSwitchSolVfFArbitrationPriority:bdw */
6750 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6751 
6752 	/* WaPsrDPAMaskVBlankInSRD:bdw */
6753 	I915_WRITE(CHICKEN_PAR1_1,
6754 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6755 
6756 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6757 	for_each_pipe(dev_priv, pipe) {
6758 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6759 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6760 			   BDW_DPRS_MASK_VBLANK_SRD);
6761 	}
6762 
6763 	/* WaVSRefCountFullforceMissDisable:bdw */
6764 	/* WaDSRefCountFullforceMissDisable:bdw */
6765 	I915_WRITE(GEN7_FF_THREAD_MODE,
6766 		   I915_READ(GEN7_FF_THREAD_MODE) &
6767 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6768 
6769 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6770 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6771 
6772 	/* WaDisableSDEUnitClockGating:bdw */
6773 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6774 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6775 
6776 	/*
6777 	 * WaProgramL3SqcReg1Default:bdw
6778 	 * WaTempDisableDOPClkGating:bdw
6779 	 */
6780 	misccpctl = I915_READ(GEN7_MISCCPCTL);
6781 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6782 	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6783 	/*
6784 	 * Wait at least 100 clocks before re-enabling clock gating. See
6785 	 * the definition of L3SQCREG1 in BSpec.
6786 	 */
6787 	POSTING_READ(GEN8_L3SQCREG1);
6788 	udelay(1);
6789 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6790 
6791 	/*
6792 	 * WaGttCachingOffByDefault:bdw
6793 	 * GTT cache may not work with big pages, so if those
6794 	 * are ever enabled GTT cache may need to be disabled.
6795 	 */
6796 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6797 
6798 	lpt_init_clock_gating(dev);
6799 }
6800 
haswell_init_clock_gating(struct drm_device * dev)6801 static void haswell_init_clock_gating(struct drm_device *dev)
6802 {
6803 	struct drm_i915_private *dev_priv = dev->dev_private;
6804 
6805 	ilk_init_lp_watermarks(dev);
6806 
6807 	/* L3 caching of data atomics doesn't work -- disable it. */
6808 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6809 	I915_WRITE(HSW_ROW_CHICKEN3,
6810 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6811 
6812 	/* This is required by WaCatErrorRejectionIssue:hsw */
6813 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6814 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6815 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6816 
6817 	/* WaVSRefCountFullforceMissDisable:hsw */
6818 	I915_WRITE(GEN7_FF_THREAD_MODE,
6819 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6820 
6821 	/* WaDisable_RenderCache_OperationalFlush:hsw */
6822 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6823 
6824 	/* enable HiZ Raw Stall Optimization */
6825 	I915_WRITE(CACHE_MODE_0_GEN7,
6826 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6827 
6828 	/* WaDisable4x2SubspanOptimization:hsw */
6829 	I915_WRITE(CACHE_MODE_1,
6830 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6831 
6832 	/*
6833 	 * BSpec recommends 8x4 when MSAA is used,
6834 	 * however in practice 16x4 seems fastest.
6835 	 *
6836 	 * Note that PS/WM thread counts depend on the WIZ hashing
6837 	 * disable bit, which we don't touch here, but it's good
6838 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6839 	 */
6840 	I915_WRITE(GEN7_GT_MODE,
6841 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6842 
6843 	/* WaSampleCChickenBitEnable:hsw */
6844 	I915_WRITE(HALF_SLICE_CHICKEN3,
6845 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6846 
6847 	/* WaSwitchSolVfFArbitrationPriority:hsw */
6848 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6849 
6850 	/* WaRsPkgCStateDisplayPMReq:hsw */
6851 	I915_WRITE(CHICKEN_PAR1_1,
6852 		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6853 
6854 	lpt_init_clock_gating(dev);
6855 }
6856 
ivybridge_init_clock_gating(struct drm_device * dev)6857 static void ivybridge_init_clock_gating(struct drm_device *dev)
6858 {
6859 	struct drm_i915_private *dev_priv = dev->dev_private;
6860 	uint32_t snpcr;
6861 
6862 	ilk_init_lp_watermarks(dev);
6863 
6864 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6865 
6866 	/* WaDisableEarlyCull:ivb */
6867 	I915_WRITE(_3D_CHICKEN3,
6868 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6869 
6870 	/* WaDisableBackToBackFlipFix:ivb */
6871 	I915_WRITE(IVB_CHICKEN3,
6872 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6873 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6874 
6875 	/* WaDisablePSDDualDispatchEnable:ivb */
6876 	if (IS_IVB_GT1(dev))
6877 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6878 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6879 
6880 	/* WaDisable_RenderCache_OperationalFlush:ivb */
6881 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6882 
6883 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6884 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6885 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6886 
6887 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6888 	I915_WRITE(GEN7_L3CNTLREG1,
6889 			GEN7_WA_FOR_GEN7_L3_CONTROL);
6890 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6891 		   GEN7_WA_L3_CHICKEN_MODE);
6892 	if (IS_IVB_GT1(dev))
6893 		I915_WRITE(GEN7_ROW_CHICKEN2,
6894 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6895 	else {
6896 		/* must write both registers */
6897 		I915_WRITE(GEN7_ROW_CHICKEN2,
6898 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6899 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6900 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6901 	}
6902 
6903 	/* WaForceL3Serialization:ivb */
6904 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6905 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6906 
6907 	/*
6908 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6909 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6910 	 */
6911 	I915_WRITE(GEN6_UCGCTL2,
6912 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6913 
6914 	/* This is required by WaCatErrorRejectionIssue:ivb */
6915 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6916 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6917 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6918 
6919 	g4x_disable_trickle_feed(dev);
6920 
6921 	gen7_setup_fixed_func_scheduler(dev_priv);
6922 
6923 	if (0) { /* causes HiZ corruption on ivb:gt1 */
6924 		/* enable HiZ Raw Stall Optimization */
6925 		I915_WRITE(CACHE_MODE_0_GEN7,
6926 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6927 	}
6928 
6929 	/* WaDisable4x2SubspanOptimization:ivb */
6930 	I915_WRITE(CACHE_MODE_1,
6931 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6932 
6933 	/*
6934 	 * BSpec recommends 8x4 when MSAA is used,
6935 	 * however in practice 16x4 seems fastest.
6936 	 *
6937 	 * Note that PS/WM thread counts depend on the WIZ hashing
6938 	 * disable bit, which we don't touch here, but it's good
6939 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6940 	 */
6941 	I915_WRITE(GEN7_GT_MODE,
6942 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6943 
6944 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6945 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6946 	snpcr |= GEN6_MBC_SNPCR_MED;
6947 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6948 
6949 	if (!HAS_PCH_NOP(dev))
6950 		cpt_init_clock_gating(dev);
6951 
6952 	gen6_check_mch_setup(dev);
6953 }
6954 
vlv_init_display_clock_gating(struct drm_i915_private * dev_priv)6955 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6956 {
6957         u32 val;
6958 
6959         /*
6960         * On driver load, a pipe may be active and driving a DSI display.
6961         * Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
6962         * (and never recovering) in this case. intel_dsi_post_disable() will
6963         * clear it when we turn off the display.
6964         */
6965         val = I915_READ(DSPCLK_GATE_D);
6966         val &= DPOUNIT_CLOCK_GATE_DISABLE;
6967         val |= VRHUNIT_CLOCK_GATE_DISABLE;
6968         I915_WRITE(DSPCLK_GATE_D, val);
6969 
6970 	/*
6971 	 * Disable trickle feed and enable pnd deadline calculation
6972 	 */
6973 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6974 	I915_WRITE(CBR1_VLV, 0);
6975 }
6976 
valleyview_init_clock_gating(struct drm_device * dev)6977 static void valleyview_init_clock_gating(struct drm_device *dev)
6978 {
6979 	struct drm_i915_private *dev_priv = dev->dev_private;
6980 
6981 	vlv_init_display_clock_gating(dev_priv);
6982 
6983 	/* WaDisableEarlyCull:vlv */
6984 	I915_WRITE(_3D_CHICKEN3,
6985 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6986 
6987 	/* WaDisableBackToBackFlipFix:vlv */
6988 	I915_WRITE(IVB_CHICKEN3,
6989 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6990 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6991 
6992 	/* WaPsdDispatchEnable:vlv */
6993 	/* WaDisablePSDDualDispatchEnable:vlv */
6994 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6995 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6996 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6997 
6998 	/* WaDisable_RenderCache_OperationalFlush:vlv */
6999 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7000 
7001 	/* WaForceL3Serialization:vlv */
7002 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7003 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7004 
7005 	/* WaDisableDopClockGating:vlv */
7006 	I915_WRITE(GEN7_ROW_CHICKEN2,
7007 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7008 
7009 	/* This is required by WaCatErrorRejectionIssue:vlv */
7010 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7011 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7012 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7013 
7014 	gen7_setup_fixed_func_scheduler(dev_priv);
7015 
7016 	/*
7017 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7018 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7019 	 */
7020 	I915_WRITE(GEN6_UCGCTL2,
7021 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7022 
7023 	/* WaDisableL3Bank2xClockGate:vlv
7024 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
7025 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7026 	I915_WRITE(GEN7_UCGCTL4,
7027 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7028 
7029 	/*
7030 	 * BSpec says this must be set, even though
7031 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
7032 	 */
7033 	I915_WRITE(CACHE_MODE_1,
7034 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7035 
7036 	/*
7037 	 * BSpec recommends 8x4 when MSAA is used,
7038 	 * however in practice 16x4 seems fastest.
7039 	 *
7040 	 * Note that PS/WM thread counts depend on the WIZ hashing
7041 	 * disable bit, which we don't touch here, but it's good
7042 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7043 	 */
7044 	I915_WRITE(GEN7_GT_MODE,
7045 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7046 
7047 	/*
7048 	 * WaIncreaseL3CreditsForVLVB0:vlv
7049 	 * This is the hardware default actually.
7050 	 */
7051 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7052 
7053 	/*
7054 	 * WaDisableVLVClockGating_VBIIssue:vlv
7055 	 * Disable clock gating on th GCFG unit to prevent a delay
7056 	 * in the reporting of vblank events.
7057 	 */
7058 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7059 }
7060 
cherryview_init_clock_gating(struct drm_device * dev)7061 static void cherryview_init_clock_gating(struct drm_device *dev)
7062 {
7063 	struct drm_i915_private *dev_priv = dev->dev_private;
7064 
7065 	vlv_init_display_clock_gating(dev_priv);
7066 
7067 	/* WaVSRefCountFullforceMissDisable:chv */
7068 	/* WaDSRefCountFullforceMissDisable:chv */
7069 	I915_WRITE(GEN7_FF_THREAD_MODE,
7070 		   I915_READ(GEN7_FF_THREAD_MODE) &
7071 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7072 
7073 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
7074 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7075 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7076 
7077 	/* WaDisableCSUnitClockGating:chv */
7078 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7079 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7080 
7081 	/* WaDisableSDEUnitClockGating:chv */
7082 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7083 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7084 
7085 	/*
7086 	 * GTT cache may not work with big pages, so if those
7087 	 * are ever enabled GTT cache may need to be disabled.
7088 	 */
7089 	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7090 }
7091 
g4x_init_clock_gating(struct drm_device * dev)7092 static void g4x_init_clock_gating(struct drm_device *dev)
7093 {
7094 	struct drm_i915_private *dev_priv = dev->dev_private;
7095 	uint32_t dspclk_gate;
7096 
7097 	I915_WRITE(RENCLK_GATE_D1, 0);
7098 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7099 		   GS_UNIT_CLOCK_GATE_DISABLE |
7100 		   CL_UNIT_CLOCK_GATE_DISABLE);
7101 	I915_WRITE(RAMCLK_GATE_D, 0);
7102 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7103 		OVRUNIT_CLOCK_GATE_DISABLE |
7104 		OVCUNIT_CLOCK_GATE_DISABLE;
7105 	if (IS_GM45(dev))
7106 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7107 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7108 
7109 	/* WaDisableRenderCachePipelinedFlush */
7110 	I915_WRITE(CACHE_MODE_0,
7111 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7112 
7113 	/* WaDisable_RenderCache_OperationalFlush:g4x */
7114 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7115 
7116 	g4x_disable_trickle_feed(dev);
7117 }
7118 
crestline_init_clock_gating(struct drm_device * dev)7119 static void crestline_init_clock_gating(struct drm_device *dev)
7120 {
7121 	struct drm_i915_private *dev_priv = dev->dev_private;
7122 
7123 	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7124 	I915_WRITE(RENCLK_GATE_D2, 0);
7125 	I915_WRITE(DSPCLK_GATE_D, 0);
7126 	I915_WRITE(RAMCLK_GATE_D, 0);
7127 	I915_WRITE16(DEUC, 0);
7128 	I915_WRITE(MI_ARB_STATE,
7129 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7130 
7131 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7132 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7133 }
7134 
broadwater_init_clock_gating(struct drm_device * dev)7135 static void broadwater_init_clock_gating(struct drm_device *dev)
7136 {
7137 	struct drm_i915_private *dev_priv = dev->dev_private;
7138 
7139 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7140 		   I965_RCC_CLOCK_GATE_DISABLE |
7141 		   I965_RCPB_CLOCK_GATE_DISABLE |
7142 		   I965_ISC_CLOCK_GATE_DISABLE |
7143 		   I965_FBC_CLOCK_GATE_DISABLE);
7144 	I915_WRITE(RENCLK_GATE_D2, 0);
7145 	I915_WRITE(MI_ARB_STATE,
7146 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7147 
7148 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
7149 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7150 }
7151 
gen3_init_clock_gating(struct drm_device * dev)7152 static void gen3_init_clock_gating(struct drm_device *dev)
7153 {
7154 	struct drm_i915_private *dev_priv = dev->dev_private;
7155 	u32 dstate = I915_READ(D_STATE);
7156 
7157 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7158 		DSTATE_DOT_CLOCK_GATING;
7159 	I915_WRITE(D_STATE, dstate);
7160 
7161 	if (IS_PINEVIEW(dev))
7162 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7163 
7164 	/* IIR "flip pending" means done if this bit is set */
7165 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7166 
7167 	/* interrupts should cause a wake up from C3 */
7168 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7169 
7170 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7171 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7172 
7173 	I915_WRITE(MI_ARB_STATE,
7174 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7175 }
7176 
i85x_init_clock_gating(struct drm_device * dev)7177 static void i85x_init_clock_gating(struct drm_device *dev)
7178 {
7179 	struct drm_i915_private *dev_priv = dev->dev_private;
7180 
7181 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7182 
7183 	/* interrupts should cause a wake up from C3 */
7184 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7185 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7186 
7187 	I915_WRITE(MEM_MODE,
7188 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7189 }
7190 
i830_init_clock_gating(struct drm_device * dev)7191 static void i830_init_clock_gating(struct drm_device *dev)
7192 {
7193 	struct drm_i915_private *dev_priv = dev->dev_private;
7194 
7195 	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7196 
7197 	I915_WRITE(MEM_MODE,
7198 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7199 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7200 }
7201 
intel_init_clock_gating(struct drm_device * dev)7202 void intel_init_clock_gating(struct drm_device *dev)
7203 {
7204 	struct drm_i915_private *dev_priv = dev->dev_private;
7205 
7206 	if (dev_priv->display.init_clock_gating)
7207 		dev_priv->display.init_clock_gating(dev);
7208 }
7209 
intel_suspend_hw(struct drm_device * dev)7210 void intel_suspend_hw(struct drm_device *dev)
7211 {
7212 	if (HAS_PCH_LPT(dev))
7213 		lpt_suspend_hw(dev);
7214 }
7215 
7216 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_device * dev)7217 void intel_init_pm(struct drm_device *dev)
7218 {
7219 	struct drm_i915_private *dev_priv = dev->dev_private;
7220 
7221 	intel_fbc_init(dev_priv);
7222 
7223 	/* For cxsr */
7224 	if (IS_PINEVIEW(dev))
7225 		i915_pineview_get_mem_freq(dev);
7226 	else if (IS_GEN5(dev))
7227 		i915_ironlake_get_mem_freq(dev);
7228 
7229 	/* For FIFO watermark updates */
7230 	if (INTEL_INFO(dev)->gen >= 9) {
7231 		skl_setup_wm_latency(dev);
7232 
7233 		if (IS_BROXTON(dev))
7234 			dev_priv->display.init_clock_gating =
7235 				bxt_init_clock_gating;
7236 		dev_priv->display.update_wm = skl_update_wm;
7237 		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
7238 	} else if (HAS_PCH_SPLIT(dev)) {
7239 		ilk_setup_wm_latency(dev);
7240 
7241 		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7242 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7243 		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7244 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7245 			dev_priv->display.update_wm = ilk_update_wm;
7246 			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
7247 		} else {
7248 			DRM_DEBUG_KMS("Failed to read display plane latency. "
7249 				      "Disable CxSR\n");
7250 		}
7251 
7252 		if (IS_GEN5(dev))
7253 			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7254 		else if (IS_GEN6(dev))
7255 			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7256 		else if (IS_IVYBRIDGE(dev))
7257 			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7258 		else if (IS_HASWELL(dev))
7259 			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7260 		else if (INTEL_INFO(dev)->gen == 8)
7261 			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7262 	} else if (IS_CHERRYVIEW(dev)) {
7263 		vlv_setup_wm_latency(dev);
7264 
7265 		dev_priv->display.update_wm = vlv_update_wm;
7266 		dev_priv->display.init_clock_gating =
7267 			cherryview_init_clock_gating;
7268 	} else if (IS_VALLEYVIEW(dev)) {
7269 		vlv_setup_wm_latency(dev);
7270 
7271 		dev_priv->display.update_wm = vlv_update_wm;
7272 		dev_priv->display.init_clock_gating =
7273 			valleyview_init_clock_gating;
7274 	} else if (IS_PINEVIEW(dev)) {
7275 		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7276 					    dev_priv->is_ddr3,
7277 					    dev_priv->fsb_freq,
7278 					    dev_priv->mem_freq)) {
7279 			DRM_INFO("failed to find known CxSR latency "
7280 				 "(found ddr%s fsb freq %d, mem freq %d), "
7281 				 "disabling CxSR\n",
7282 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7283 				 dev_priv->fsb_freq, dev_priv->mem_freq);
7284 			/* Disable CxSR and never update its watermark again */
7285 			intel_set_memory_cxsr(dev_priv, false);
7286 			dev_priv->display.update_wm = NULL;
7287 		} else
7288 			dev_priv->display.update_wm = pineview_update_wm;
7289 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7290 	} else if (IS_G4X(dev)) {
7291 		dev_priv->display.update_wm = g4x_update_wm;
7292 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7293 	} else if (IS_GEN4(dev)) {
7294 		dev_priv->display.update_wm = i965_update_wm;
7295 		if (IS_CRESTLINE(dev))
7296 			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7297 		else if (IS_BROADWATER(dev))
7298 			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7299 	} else if (IS_GEN3(dev)) {
7300 		dev_priv->display.update_wm = i9xx_update_wm;
7301 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7302 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7303 	} else if (IS_GEN2(dev)) {
7304 		if (INTEL_INFO(dev)->num_pipes == 1) {
7305 			dev_priv->display.update_wm = i845_update_wm;
7306 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7307 		} else {
7308 			dev_priv->display.update_wm = i9xx_update_wm;
7309 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7310 		}
7311 
7312 		if (IS_I85X(dev) || IS_I865G(dev))
7313 			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7314 		else
7315 			dev_priv->display.init_clock_gating = i830_init_clock_gating;
7316 	} else {
7317 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7318 	}
7319 }
7320 
sandybridge_pcode_read(struct drm_i915_private * dev_priv,u32 mbox,u32 * val)7321 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7322 {
7323 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7324 
7325 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7326 		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7327 		return -EAGAIN;
7328 	}
7329 
7330 	I915_WRITE(GEN6_PCODE_DATA, *val);
7331 	I915_WRITE(GEN6_PCODE_DATA1, 0);
7332 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7333 
7334 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7335 		     500)) {
7336 		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7337 		return -ETIMEDOUT;
7338 	}
7339 
7340 	*val = I915_READ(GEN6_PCODE_DATA);
7341 	I915_WRITE(GEN6_PCODE_DATA, 0);
7342 
7343 	return 0;
7344 }
7345 
sandybridge_pcode_write(struct drm_i915_private * dev_priv,u32 mbox,u32 val)7346 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7347 {
7348 	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7349 
7350 	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7351 		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7352 		return -EAGAIN;
7353 	}
7354 
7355 	I915_WRITE(GEN6_PCODE_DATA, val);
7356 	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7357 
7358 	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7359 		     500)) {
7360 		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7361 		return -ETIMEDOUT;
7362 	}
7363 
7364 	I915_WRITE(GEN6_PCODE_DATA, 0);
7365 
7366 	return 0;
7367 }
7368 
vlv_gpu_freq_div(unsigned int czclk_freq)7369 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7370 {
7371 	switch (czclk_freq) {
7372 	case 200:
7373 		return 10;
7374 	case 267:
7375 		return 12;
7376 	case 320:
7377 	case 333:
7378 		return 16;
7379 	case 400:
7380 		return 20;
7381 	default:
7382 		return -1;
7383 	}
7384 }
7385 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)7386 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7387 {
7388 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7389 
7390 	div = vlv_gpu_freq_div(czclk_freq);
7391 	if (div < 0)
7392 		return div;
7393 
7394 	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7395 }
7396 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)7397 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7398 {
7399 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7400 
7401 	mul = vlv_gpu_freq_div(czclk_freq);
7402 	if (mul < 0)
7403 		return mul;
7404 
7405 	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7406 }
7407 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)7408 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7409 {
7410 	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7411 
7412 	div = vlv_gpu_freq_div(czclk_freq) / 2;
7413 	if (div < 0)
7414 		return div;
7415 
7416 	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7417 }
7418 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)7419 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7420 {
7421 	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7422 
7423 	mul = vlv_gpu_freq_div(czclk_freq) / 2;
7424 	if (mul < 0)
7425 		return mul;
7426 
7427 	/* CHV needs even values */
7428 	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7429 }
7430 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)7431 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7432 {
7433 	if (IS_GEN9(dev_priv->dev))
7434 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7435 					 GEN9_FREQ_SCALER);
7436 	else if (IS_CHERRYVIEW(dev_priv->dev))
7437 		return chv_gpu_freq(dev_priv, val);
7438 	else if (IS_VALLEYVIEW(dev_priv->dev))
7439 		return byt_gpu_freq(dev_priv, val);
7440 	else
7441 		return val * GT_FREQUENCY_MULTIPLIER;
7442 }
7443 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)7444 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7445 {
7446 	if (IS_GEN9(dev_priv->dev))
7447 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7448 					 GT_FREQUENCY_MULTIPLIER);
7449 	else if (IS_CHERRYVIEW(dev_priv->dev))
7450 		return chv_freq_opcode(dev_priv, val);
7451 	else if (IS_VALLEYVIEW(dev_priv->dev))
7452 		return byt_freq_opcode(dev_priv, val);
7453 	else
7454 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7455 }
7456 
7457 struct request_boost {
7458 	struct work_struct work;
7459 	struct drm_i915_gem_request *req;
7460 };
7461 
__intel_rps_boost_work(struct work_struct * work)7462 static void __intel_rps_boost_work(struct work_struct *work)
7463 {
7464 	struct request_boost *boost = container_of(work, struct request_boost, work);
7465 	struct drm_i915_gem_request *req = boost->req;
7466 
7467 	if (!i915_gem_request_completed(req, true))
7468 		gen6_rps_boost(to_i915(req->ring->dev), NULL,
7469 			       req->emitted_jiffies);
7470 
7471 	i915_gem_request_unreference__unlocked(req);
7472 	kfree(boost);
7473 }
7474 
intel_queue_rps_boost_for_request(struct drm_device * dev,struct drm_i915_gem_request * req)7475 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7476 				       struct drm_i915_gem_request *req)
7477 {
7478 	struct request_boost *boost;
7479 
7480 	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7481 		return;
7482 
7483 	if (i915_gem_request_completed(req, true))
7484 		return;
7485 
7486 	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7487 	if (boost == NULL)
7488 		return;
7489 
7490 	i915_gem_request_reference(req);
7491 	boost->req = req;
7492 
7493 	INIT_WORK(&boost->work, __intel_rps_boost_work);
7494 	queue_work(to_i915(dev)->wq, &boost->work);
7495 }
7496 
intel_pm_setup(struct drm_device * dev)7497 void intel_pm_setup(struct drm_device *dev)
7498 {
7499 	struct drm_i915_private *dev_priv = dev->dev_private;
7500 
7501 	mutex_init(&dev_priv->rps.hw_lock);
7502 	spin_lock_init(&dev_priv->rps.client_lock);
7503 
7504 	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7505 			  intel_gen6_powersave_work);
7506 	INIT_LIST_HEAD(&dev_priv->rps.clients);
7507 	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7508 	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7509 
7510 	dev_priv->pm.suspended = false;
7511 }
7512