• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94 
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97 
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102 
sanitize_enable_ppgtt(struct drm_device * dev,int enable_ppgtt)103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 	bool has_aliasing_ppgtt;
106 	bool has_full_ppgtt;
107 
108 	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110 
111 	if (intel_vgpu_active(dev))
112 		has_full_ppgtt = false; /* emulation is too hard */
113 
114 	/*
115 	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 	 * execlists, the sole mechanism available to submit work.
117 	 */
118 	if (INTEL_INFO(dev)->gen < 9 &&
119 	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 		return 0;
121 
122 	/* Full PPGTT is required by the Gen9 cmdparser */
123 	if (enable_ppgtt == 1 && INTEL_INFO(dev)->gen != 9)
124 		return 1;
125 
126 	if (enable_ppgtt == 2 && has_full_ppgtt)
127 		return 2;
128 
129 #ifdef CONFIG_INTEL_IOMMU
130 	/* Disable ppgtt on SNB if VT-d is on. */
131 	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
132 		DRM_INFO("Disabling PPGTT because VT-d is on\n");
133 		return 0;
134 	}
135 #endif
136 
137 	/* Early VLV doesn't have this */
138 	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
139 	    dev->pdev->revision < 0xb) {
140 		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
141 		return 0;
142 	}
143 
144 	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
145 		return 2;
146 	else
147 		return has_aliasing_ppgtt ? 1 : 0;
148 }
149 
ppgtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)150 static int ppgtt_bind_vma(struct i915_vma *vma,
151 			  enum i915_cache_level cache_level,
152 			  u32 unused)
153 {
154 	u32 pte_flags = 0;
155 
156 	/* Applicable to VLV, and gen8+ */
157 	pte_flags = 0;
158 	if (vma->obj->gt_ro)
159 		pte_flags |= PTE_READ_ONLY;
160 
161 	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
162 				cache_level, pte_flags);
163 
164 	return 0;
165 }
166 
ppgtt_unbind_vma(struct i915_vma * vma)167 static void ppgtt_unbind_vma(struct i915_vma *vma)
168 {
169 	vma->vm->clear_range(vma->vm,
170 			     vma->node.start,
171 			     vma->obj->base.size,
172 			     true);
173 }
174 
gen8_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 flags)175 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
176 				  enum i915_cache_level level,
177 				  bool valid, u32 flags)
178 {
179 	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
180 	pte |= addr;
181 
182 	if (unlikely(flags & PTE_READ_ONLY))
183 		pte &= ~_PAGE_RW;
184 
185 	switch (level) {
186 	case I915_CACHE_NONE:
187 		pte |= PPAT_UNCACHED_INDEX;
188 		break;
189 	case I915_CACHE_WT:
190 		pte |= PPAT_DISPLAY_ELLC_INDEX;
191 		break;
192 	default:
193 		pte |= PPAT_CACHED_INDEX;
194 		break;
195 	}
196 
197 	return pte;
198 }
199 
gen8_pde_encode(const dma_addr_t addr,const enum i915_cache_level level)200 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
201 				  const enum i915_cache_level level)
202 {
203 	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
204 	pde |= addr;
205 	if (level != I915_CACHE_NONE)
206 		pde |= PPAT_CACHED_PDE_INDEX;
207 	else
208 		pde |= PPAT_UNCACHED_INDEX;
209 	return pde;
210 }
211 
212 #define gen8_pdpe_encode gen8_pde_encode
213 #define gen8_pml4e_encode gen8_pde_encode
214 
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 unused)215 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
216 				 enum i915_cache_level level,
217 				 bool valid, u32 unused)
218 {
219 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
220 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
221 
222 	switch (level) {
223 	case I915_CACHE_L3_LLC:
224 	case I915_CACHE_LLC:
225 		pte |= GEN6_PTE_CACHE_LLC;
226 		break;
227 	case I915_CACHE_NONE:
228 		pte |= GEN6_PTE_UNCACHED;
229 		break;
230 	default:
231 		MISSING_CASE(level);
232 	}
233 
234 	return pte;
235 }
236 
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 unused)237 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
238 				 enum i915_cache_level level,
239 				 bool valid, u32 unused)
240 {
241 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
242 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
243 
244 	switch (level) {
245 	case I915_CACHE_L3_LLC:
246 		pte |= GEN7_PTE_CACHE_L3_LLC;
247 		break;
248 	case I915_CACHE_LLC:
249 		pte |= GEN6_PTE_CACHE_LLC;
250 		break;
251 	case I915_CACHE_NONE:
252 		pte |= GEN6_PTE_UNCACHED;
253 		break;
254 	default:
255 		MISSING_CASE(level);
256 	}
257 
258 	return pte;
259 }
260 
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 flags)261 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
262 				 enum i915_cache_level level,
263 				 bool valid, u32 flags)
264 {
265 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
266 	pte |= GEN6_PTE_ADDR_ENCODE(addr);
267 
268 	if (!(flags & PTE_READ_ONLY))
269 		pte |= BYT_PTE_WRITEABLE;
270 
271 	if (level != I915_CACHE_NONE)
272 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
273 
274 	return pte;
275 }
276 
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 unused)277 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
278 				 enum i915_cache_level level,
279 				 bool valid, u32 unused)
280 {
281 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
282 	pte |= HSW_PTE_ADDR_ENCODE(addr);
283 
284 	if (level != I915_CACHE_NONE)
285 		pte |= HSW_WB_LLC_AGE3;
286 
287 	return pte;
288 }
289 
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,bool valid,u32 unused)290 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
291 				  enum i915_cache_level level,
292 				  bool valid, u32 unused)
293 {
294 	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295 	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 
297 	switch (level) {
298 	case I915_CACHE_NONE:
299 		break;
300 	case I915_CACHE_WT:
301 		pte |= HSW_WT_ELLC_LLC_AGE3;
302 		break;
303 	default:
304 		pte |= HSW_WB_ELLC_LLC_AGE3;
305 		break;
306 	}
307 
308 	return pte;
309 }
310 
__setup_page_dma(struct drm_device * dev,struct i915_page_dma * p,gfp_t flags)311 static int __setup_page_dma(struct drm_device *dev,
312 			    struct i915_page_dma *p, gfp_t flags)
313 {
314 	struct device *device = &dev->pdev->dev;
315 
316 	p->page = alloc_page(flags);
317 	if (!p->page)
318 		return -ENOMEM;
319 
320 	p->daddr = dma_map_page(device,
321 				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
322 
323 	if (dma_mapping_error(device, p->daddr)) {
324 		__free_page(p->page);
325 		return -EINVAL;
326 	}
327 
328 	return 0;
329 }
330 
setup_page_dma(struct drm_device * dev,struct i915_page_dma * p)331 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332 {
333 	return __setup_page_dma(dev, p, GFP_KERNEL);
334 }
335 
cleanup_page_dma(struct drm_device * dev,struct i915_page_dma * p)336 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
337 {
338 	if (WARN_ON(!p->page))
339 		return;
340 
341 	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
342 	__free_page(p->page);
343 	memset(p, 0, sizeof(*p));
344 }
345 
kmap_page_dma(struct i915_page_dma * p)346 static void *kmap_page_dma(struct i915_page_dma *p)
347 {
348 	return kmap_atomic(p->page);
349 }
350 
351 /* We use the flushing unmap only with ppgtt structures:
352  * page directories, page tables and scratch pages.
353  */
kunmap_page_dma(struct drm_device * dev,void * vaddr)354 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
355 {
356 	/* There are only few exceptions for gen >=6. chv and bxt.
357 	 * And we are not sure about the latter so play safe for now.
358 	 */
359 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
360 		drm_clflush_virt_range(vaddr, PAGE_SIZE);
361 
362 	kunmap_atomic(vaddr);
363 }
364 
365 #define kmap_px(px) kmap_page_dma(px_base(px))
366 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
367 
368 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
369 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
370 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
371 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
372 
fill_page_dma(struct drm_device * dev,struct i915_page_dma * p,const uint64_t val)373 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
374 			  const uint64_t val)
375 {
376 	int i;
377 	uint64_t * const vaddr = kmap_page_dma(p);
378 
379 	for (i = 0; i < 512; i++)
380 		vaddr[i] = val;
381 
382 	kunmap_page_dma(dev, vaddr);
383 }
384 
fill_page_dma_32(struct drm_device * dev,struct i915_page_dma * p,const uint32_t val32)385 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
386 			     const uint32_t val32)
387 {
388 	uint64_t v = val32;
389 
390 	v = v << 32 | val32;
391 
392 	fill_page_dma(dev, p, v);
393 }
394 
alloc_scratch_page(struct drm_device * dev)395 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
396 {
397 	struct i915_page_scratch *sp;
398 	int ret;
399 
400 	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
401 	if (sp == NULL)
402 		return ERR_PTR(-ENOMEM);
403 
404 	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
405 	if (ret) {
406 		kfree(sp);
407 		return ERR_PTR(ret);
408 	}
409 
410 	set_pages_uc(px_page(sp), 1);
411 
412 	return sp;
413 }
414 
free_scratch_page(struct drm_device * dev,struct i915_page_scratch * sp)415 static void free_scratch_page(struct drm_device *dev,
416 			      struct i915_page_scratch *sp)
417 {
418 	set_pages_wb(px_page(sp), 1);
419 
420 	cleanup_px(dev, sp);
421 	kfree(sp);
422 }
423 
alloc_pt(struct drm_device * dev)424 static struct i915_page_table *alloc_pt(struct drm_device *dev)
425 {
426 	struct i915_page_table *pt;
427 	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
428 		GEN8_PTES : GEN6_PTES;
429 	int ret = -ENOMEM;
430 
431 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
432 	if (!pt)
433 		return ERR_PTR(-ENOMEM);
434 
435 	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
436 				GFP_KERNEL);
437 
438 	if (!pt->used_ptes)
439 		goto fail_bitmap;
440 
441 	ret = setup_px(dev, pt);
442 	if (ret)
443 		goto fail_page_m;
444 
445 	return pt;
446 
447 fail_page_m:
448 	kfree(pt->used_ptes);
449 fail_bitmap:
450 	kfree(pt);
451 
452 	return ERR_PTR(ret);
453 }
454 
free_pt(struct drm_device * dev,struct i915_page_table * pt)455 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
456 {
457 	cleanup_px(dev, pt);
458 	kfree(pt->used_ptes);
459 	kfree(pt);
460 }
461 
gen8_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)462 static void gen8_initialize_pt(struct i915_address_space *vm,
463 			       struct i915_page_table *pt)
464 {
465 	gen8_pte_t scratch_pte;
466 
467 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
468 				      I915_CACHE_LLC, true, 0);
469 
470 	fill_px(vm->dev, pt, scratch_pte);
471 }
472 
gen6_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)473 static void gen6_initialize_pt(struct i915_address_space *vm,
474 			       struct i915_page_table *pt)
475 {
476 	gen6_pte_t scratch_pte;
477 
478 	WARN_ON(px_dma(vm->scratch_page) == 0);
479 
480 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
481 				     I915_CACHE_LLC, true, 0);
482 
483 	fill32_px(vm->dev, pt, scratch_pte);
484 }
485 
alloc_pd(struct drm_device * dev)486 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
487 {
488 	struct i915_page_directory *pd;
489 	int ret = -ENOMEM;
490 
491 	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
492 	if (!pd)
493 		return ERR_PTR(-ENOMEM);
494 
495 	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
496 				sizeof(*pd->used_pdes), GFP_KERNEL);
497 	if (!pd->used_pdes)
498 		goto fail_bitmap;
499 
500 	ret = setup_px(dev, pd);
501 	if (ret)
502 		goto fail_page_m;
503 
504 	return pd;
505 
506 fail_page_m:
507 	kfree(pd->used_pdes);
508 fail_bitmap:
509 	kfree(pd);
510 
511 	return ERR_PTR(ret);
512 }
513 
free_pd(struct drm_device * dev,struct i915_page_directory * pd)514 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
515 {
516 	if (px_page(pd)) {
517 		cleanup_px(dev, pd);
518 		kfree(pd->used_pdes);
519 		kfree(pd);
520 	}
521 }
522 
gen8_initialize_pd(struct i915_address_space * vm,struct i915_page_directory * pd)523 static void gen8_initialize_pd(struct i915_address_space *vm,
524 			       struct i915_page_directory *pd)
525 {
526 	gen8_pde_t scratch_pde;
527 
528 	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
529 
530 	fill_px(vm->dev, pd, scratch_pde);
531 }
532 
__pdp_init(struct drm_device * dev,struct i915_page_directory_pointer * pdp)533 static int __pdp_init(struct drm_device *dev,
534 		      struct i915_page_directory_pointer *pdp)
535 {
536 	size_t pdpes = I915_PDPES_PER_PDP(dev);
537 
538 	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
539 				  sizeof(unsigned long),
540 				  GFP_KERNEL);
541 	if (!pdp->used_pdpes)
542 		return -ENOMEM;
543 
544 	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
545 				      GFP_KERNEL);
546 	if (!pdp->page_directory) {
547 		kfree(pdp->used_pdpes);
548 		/* the PDP might be the statically allocated top level. Keep it
549 		 * as clean as possible */
550 		pdp->used_pdpes = NULL;
551 		return -ENOMEM;
552 	}
553 
554 	return 0;
555 }
556 
__pdp_fini(struct i915_page_directory_pointer * pdp)557 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
558 {
559 	kfree(pdp->used_pdpes);
560 	kfree(pdp->page_directory);
561 	pdp->page_directory = NULL;
562 }
563 
564 static struct
alloc_pdp(struct drm_device * dev)565 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
566 {
567 	struct i915_page_directory_pointer *pdp;
568 	int ret = -ENOMEM;
569 
570 	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
571 
572 	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
573 	if (!pdp)
574 		return ERR_PTR(-ENOMEM);
575 
576 	ret = __pdp_init(dev, pdp);
577 	if (ret)
578 		goto fail_bitmap;
579 
580 	ret = setup_px(dev, pdp);
581 	if (ret)
582 		goto fail_page_m;
583 
584 	return pdp;
585 
586 fail_page_m:
587 	__pdp_fini(pdp);
588 fail_bitmap:
589 	kfree(pdp);
590 
591 	return ERR_PTR(ret);
592 }
593 
free_pdp(struct drm_device * dev,struct i915_page_directory_pointer * pdp)594 static void free_pdp(struct drm_device *dev,
595 		     struct i915_page_directory_pointer *pdp)
596 {
597 	__pdp_fini(pdp);
598 	if (USES_FULL_48BIT_PPGTT(dev)) {
599 		cleanup_px(dev, pdp);
600 		kfree(pdp);
601 	}
602 }
603 
gen8_initialize_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)604 static void gen8_initialize_pdp(struct i915_address_space *vm,
605 				struct i915_page_directory_pointer *pdp)
606 {
607 	gen8_ppgtt_pdpe_t scratch_pdpe;
608 
609 	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
610 
611 	fill_px(vm->dev, pdp, scratch_pdpe);
612 }
613 
gen8_initialize_pml4(struct i915_address_space * vm,struct i915_pml4 * pml4)614 static void gen8_initialize_pml4(struct i915_address_space *vm,
615 				 struct i915_pml4 *pml4)
616 {
617 	gen8_ppgtt_pml4e_t scratch_pml4e;
618 
619 	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
620 					  I915_CACHE_LLC);
621 
622 	fill_px(vm->dev, pml4, scratch_pml4e);
623 }
624 
625 static void
gen8_setup_page_directory(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,struct i915_page_directory * pd,int index)626 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
627 			  struct i915_page_directory_pointer *pdp,
628 			  struct i915_page_directory *pd,
629 			  int index)
630 {
631 	gen8_ppgtt_pdpe_t *page_directorypo;
632 
633 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
634 		return;
635 
636 	page_directorypo = kmap_px(pdp);
637 	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
638 	kunmap_px(ppgtt, page_directorypo);
639 }
640 
641 static void
gen8_setup_page_directory_pointer(struct i915_hw_ppgtt * ppgtt,struct i915_pml4 * pml4,struct i915_page_directory_pointer * pdp,int index)642 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
643 				  struct i915_pml4 *pml4,
644 				  struct i915_page_directory_pointer *pdp,
645 				  int index)
646 {
647 	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
648 
649 	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
650 	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
651 	kunmap_px(ppgtt, pagemap);
652 }
653 
654 /* Broadwell Page Directory Pointer Descriptors */
gen8_write_pdp(struct drm_i915_gem_request * req,unsigned entry,dma_addr_t addr)655 static int gen8_write_pdp(struct drm_i915_gem_request *req,
656 			  unsigned entry,
657 			  dma_addr_t addr)
658 {
659 	struct intel_engine_cs *ring = req->ring;
660 	int ret;
661 
662 	BUG_ON(entry >= 4);
663 
664 	ret = intel_ring_begin(req, 6);
665 	if (ret)
666 		return ret;
667 
668 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
669 	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
670 	intel_ring_emit(ring, upper_32_bits(addr));
671 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
672 	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
673 	intel_ring_emit(ring, lower_32_bits(addr));
674 	intel_ring_advance(ring);
675 
676 	return 0;
677 }
678 
gen8_legacy_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)679 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
680 				 struct drm_i915_gem_request *req)
681 {
682 	int i, ret;
683 
684 	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
685 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
686 
687 		ret = gen8_write_pdp(req, i, pd_daddr);
688 		if (ret)
689 			return ret;
690 	}
691 
692 	return 0;
693 }
694 
gen8_48b_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)695 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
696 			      struct drm_i915_gem_request *req)
697 {
698 	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
699 }
700 
gen8_ppgtt_clear_pte_range(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,uint64_t start,uint64_t length,gen8_pte_t scratch_pte)701 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
702 				       struct i915_page_directory_pointer *pdp,
703 				       uint64_t start,
704 				       uint64_t length,
705 				       gen8_pte_t scratch_pte)
706 {
707 	struct i915_hw_ppgtt *ppgtt =
708 		container_of(vm, struct i915_hw_ppgtt, base);
709 	gen8_pte_t *pt_vaddr;
710 	unsigned pdpe = gen8_pdpe_index(start);
711 	unsigned pde = gen8_pde_index(start);
712 	unsigned pte = gen8_pte_index(start);
713 	unsigned num_entries = length >> PAGE_SHIFT;
714 	unsigned last_pte, i;
715 
716 	if (WARN_ON(!pdp))
717 		return;
718 
719 	while (num_entries) {
720 		struct i915_page_directory *pd;
721 		struct i915_page_table *pt;
722 
723 		if (WARN_ON(!pdp->page_directory[pdpe]))
724 			break;
725 
726 		pd = pdp->page_directory[pdpe];
727 
728 		if (WARN_ON(!pd->page_table[pde]))
729 			break;
730 
731 		pt = pd->page_table[pde];
732 
733 		if (WARN_ON(!px_page(pt)))
734 			break;
735 
736 		last_pte = pte + num_entries;
737 		if (last_pte > GEN8_PTES)
738 			last_pte = GEN8_PTES;
739 
740 		pt_vaddr = kmap_px(pt);
741 
742 		for (i = pte; i < last_pte; i++) {
743 			pt_vaddr[i] = scratch_pte;
744 			num_entries--;
745 		}
746 
747 		kunmap_px(ppgtt, pt);
748 
749 		pte = 0;
750 		if (++pde == I915_PDES) {
751 			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
752 				break;
753 			pde = 0;
754 		}
755 	}
756 }
757 
gen8_ppgtt_clear_range(struct i915_address_space * vm,uint64_t start,uint64_t length,bool use_scratch)758 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
759 				   uint64_t start,
760 				   uint64_t length,
761 				   bool use_scratch)
762 {
763 	struct i915_hw_ppgtt *ppgtt =
764 		container_of(vm, struct i915_hw_ppgtt, base);
765 	gen8_pte_t scratch_pte =
766 		gen8_pte_encode(px_dma(vm->scratch_page),
767 				I915_CACHE_LLC, use_scratch, 0);
768 
769 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
770 		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
771 					   scratch_pte);
772 	} else {
773 		uint64_t templ4, pml4e;
774 		struct i915_page_directory_pointer *pdp;
775 
776 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
777 			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
778 						   scratch_pte);
779 		}
780 	}
781 }
782 
783 static void
gen8_ppgtt_insert_pte_entries(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,struct sg_page_iter * sg_iter,uint64_t start,enum i915_cache_level cache_level,u32 flags)784 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
785 			      struct i915_page_directory_pointer *pdp,
786 			      struct sg_page_iter *sg_iter,
787 			      uint64_t start,
788 			      enum i915_cache_level cache_level,
789 			      u32 flags)
790 {
791 	struct i915_hw_ppgtt *ppgtt =
792 		container_of(vm, struct i915_hw_ppgtt, base);
793 	gen8_pte_t *pt_vaddr;
794 	unsigned pdpe = gen8_pdpe_index(start);
795 	unsigned pde = gen8_pde_index(start);
796 	unsigned pte = gen8_pte_index(start);
797 
798 	pt_vaddr = NULL;
799 
800 	while (__sg_page_iter_next(sg_iter)) {
801 		if (pt_vaddr == NULL) {
802 			struct i915_page_directory *pd = pdp->page_directory[pdpe];
803 			struct i915_page_table *pt = pd->page_table[pde];
804 			pt_vaddr = kmap_px(pt);
805 		}
806 
807 		pt_vaddr[pte] =
808 			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
809 					cache_level, true, flags);
810 		if (++pte == GEN8_PTES) {
811 			kunmap_px(ppgtt, pt_vaddr);
812 			pt_vaddr = NULL;
813 			if (++pde == I915_PDES) {
814 				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
815 					break;
816 				pde = 0;
817 			}
818 			pte = 0;
819 		}
820 	}
821 
822 	if (pt_vaddr)
823 		kunmap_px(ppgtt, pt_vaddr);
824 }
825 
gen8_ppgtt_insert_entries(struct i915_address_space * vm,struct sg_table * pages,uint64_t start,enum i915_cache_level cache_level,u32 flags)826 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
827 				      struct sg_table *pages,
828 				      uint64_t start,
829 				      enum i915_cache_level cache_level,
830 				      u32 flags)
831 {
832 	struct i915_hw_ppgtt *ppgtt =
833 		container_of(vm, struct i915_hw_ppgtt, base);
834 	struct sg_page_iter sg_iter;
835 
836 	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
837 
838 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
839 		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
840 					      cache_level, flags);
841 	} else {
842 		struct i915_page_directory_pointer *pdp;
843 		uint64_t templ4, pml4e;
844 		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
845 
846 		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
847 			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
848 						      start, cache_level, flags);
849 		}
850 	}
851 }
852 
gen8_free_page_tables(struct drm_device * dev,struct i915_page_directory * pd)853 static void gen8_free_page_tables(struct drm_device *dev,
854 				  struct i915_page_directory *pd)
855 {
856 	int i;
857 
858 	if (!px_page(pd))
859 		return;
860 
861 	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
862 		if (WARN_ON(!pd->page_table[i]))
863 			continue;
864 
865 		free_pt(dev, pd->page_table[i]);
866 		pd->page_table[i] = NULL;
867 	}
868 }
869 
gen8_init_scratch(struct i915_address_space * vm)870 static int gen8_init_scratch(struct i915_address_space *vm)
871 {
872 	struct drm_device *dev = vm->dev;
873 
874 	vm->scratch_page = alloc_scratch_page(dev);
875 	if (IS_ERR(vm->scratch_page))
876 		return PTR_ERR(vm->scratch_page);
877 
878 	vm->scratch_pt = alloc_pt(dev);
879 	if (IS_ERR(vm->scratch_pt)) {
880 		free_scratch_page(dev, vm->scratch_page);
881 		return PTR_ERR(vm->scratch_pt);
882 	}
883 
884 	vm->scratch_pd = alloc_pd(dev);
885 	if (IS_ERR(vm->scratch_pd)) {
886 		free_pt(dev, vm->scratch_pt);
887 		free_scratch_page(dev, vm->scratch_page);
888 		return PTR_ERR(vm->scratch_pd);
889 	}
890 
891 	if (USES_FULL_48BIT_PPGTT(dev)) {
892 		vm->scratch_pdp = alloc_pdp(dev);
893 		if (IS_ERR(vm->scratch_pdp)) {
894 			free_pd(dev, vm->scratch_pd);
895 			free_pt(dev, vm->scratch_pt);
896 			free_scratch_page(dev, vm->scratch_page);
897 			return PTR_ERR(vm->scratch_pdp);
898 		}
899 	}
900 
901 	gen8_initialize_pt(vm, vm->scratch_pt);
902 	gen8_initialize_pd(vm, vm->scratch_pd);
903 	if (USES_FULL_48BIT_PPGTT(dev))
904 		gen8_initialize_pdp(vm, vm->scratch_pdp);
905 
906 	return 0;
907 }
908 
gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt * ppgtt,bool create)909 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
910 {
911 	enum vgt_g2v_type msg;
912 	struct drm_device *dev = ppgtt->base.dev;
913 	struct drm_i915_private *dev_priv = dev->dev_private;
914 	unsigned int offset = vgtif_reg(pdp0_lo);
915 	int i;
916 
917 	if (USES_FULL_48BIT_PPGTT(dev)) {
918 		u64 daddr = px_dma(&ppgtt->pml4);
919 
920 		I915_WRITE(offset, lower_32_bits(daddr));
921 		I915_WRITE(offset + 4, upper_32_bits(daddr));
922 
923 		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
924 				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
925 	} else {
926 		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
927 			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
928 
929 			I915_WRITE(offset, lower_32_bits(daddr));
930 			I915_WRITE(offset + 4, upper_32_bits(daddr));
931 
932 			offset += 8;
933 		}
934 
935 		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
936 				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
937 	}
938 
939 	I915_WRITE(vgtif_reg(g2v_notify), msg);
940 
941 	return 0;
942 }
943 
gen8_free_scratch(struct i915_address_space * vm)944 static void gen8_free_scratch(struct i915_address_space *vm)
945 {
946 	struct drm_device *dev = vm->dev;
947 
948 	if (USES_FULL_48BIT_PPGTT(dev))
949 		free_pdp(dev, vm->scratch_pdp);
950 	free_pd(dev, vm->scratch_pd);
951 	free_pt(dev, vm->scratch_pt);
952 	free_scratch_page(dev, vm->scratch_page);
953 }
954 
gen8_ppgtt_cleanup_3lvl(struct drm_device * dev,struct i915_page_directory_pointer * pdp)955 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
956 				    struct i915_page_directory_pointer *pdp)
957 {
958 	int i;
959 
960 	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
961 		if (WARN_ON(!pdp->page_directory[i]))
962 			continue;
963 
964 		gen8_free_page_tables(dev, pdp->page_directory[i]);
965 		free_pd(dev, pdp->page_directory[i]);
966 	}
967 
968 	free_pdp(dev, pdp);
969 }
970 
gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt * ppgtt)971 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
972 {
973 	int i;
974 
975 	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
976 		if (WARN_ON(!ppgtt->pml4.pdps[i]))
977 			continue;
978 
979 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
980 	}
981 
982 	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
983 }
984 
gen8_ppgtt_cleanup(struct i915_address_space * vm)985 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
986 {
987 	struct i915_hw_ppgtt *ppgtt =
988 		container_of(vm, struct i915_hw_ppgtt, base);
989 
990 	if (intel_vgpu_active(vm->dev))
991 		gen8_ppgtt_notify_vgt(ppgtt, false);
992 
993 	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
994 		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
995 	else
996 		gen8_ppgtt_cleanup_4lvl(ppgtt);
997 
998 	gen8_free_scratch(vm);
999 }
1000 
1001 /**
1002  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1003  * @vm:	Master vm structure.
1004  * @pd:	Page directory for this address range.
1005  * @start:	Starting virtual address to begin allocations.
1006  * @length:	Size of the allocations.
1007  * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1008  *		caller to free on error.
1009  *
1010  * Allocate the required number of page tables. Extremely similar to
1011  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1012  * the page directory boundary (instead of the page directory pointer). That
1013  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1014  * possible, and likely that the caller will need to use multiple calls of this
1015  * function to achieve the appropriate allocation.
1016  *
1017  * Return: 0 if success; negative error code otherwise.
1018  */
gen8_ppgtt_alloc_pagetabs(struct i915_address_space * vm,struct i915_page_directory * pd,uint64_t start,uint64_t length,unsigned long * new_pts)1019 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1020 				     struct i915_page_directory *pd,
1021 				     uint64_t start,
1022 				     uint64_t length,
1023 				     unsigned long *new_pts)
1024 {
1025 	struct drm_device *dev = vm->dev;
1026 	struct i915_page_table *pt;
1027 	uint64_t temp;
1028 	uint32_t pde;
1029 
1030 	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1031 		/* Don't reallocate page tables */
1032 		if (test_bit(pde, pd->used_pdes)) {
1033 			/* Scratch is never allocated this way */
1034 			WARN_ON(pt == vm->scratch_pt);
1035 			continue;
1036 		}
1037 
1038 		pt = alloc_pt(dev);
1039 		if (IS_ERR(pt))
1040 			goto unwind_out;
1041 
1042 		gen8_initialize_pt(vm, pt);
1043 		pd->page_table[pde] = pt;
1044 		__set_bit(pde, new_pts);
1045 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1046 	}
1047 
1048 	return 0;
1049 
1050 unwind_out:
1051 	for_each_set_bit(pde, new_pts, I915_PDES)
1052 		free_pt(dev, pd->page_table[pde]);
1053 
1054 	return -ENOMEM;
1055 }
1056 
1057 /**
1058  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1059  * @vm:	Master vm structure.
1060  * @pdp:	Page directory pointer for this address range.
1061  * @start:	Starting virtual address to begin allocations.
1062  * @length:	Size of the allocations.
1063  * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1064  *		caller to free on error.
1065  *
1066  * Allocate the required number of page directories starting at the pde index of
1067  * @start, and ending at the pde index @start + @length. This function will skip
1068  * over already allocated page directories within the range, and only allocate
1069  * new ones, setting the appropriate pointer within the pdp as well as the
1070  * correct position in the bitmap @new_pds.
1071  *
1072  * The function will only allocate the pages within the range for a give page
1073  * directory pointer. In other words, if @start + @length straddles a virtually
1074  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1075  * required by the caller, This is not currently possible, and the BUG in the
1076  * code will prevent it.
1077  *
1078  * Return: 0 if success; negative error code otherwise.
1079  */
1080 static int
gen8_ppgtt_alloc_page_directories(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,uint64_t start,uint64_t length,unsigned long * new_pds)1081 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1082 				  struct i915_page_directory_pointer *pdp,
1083 				  uint64_t start,
1084 				  uint64_t length,
1085 				  unsigned long *new_pds)
1086 {
1087 	struct drm_device *dev = vm->dev;
1088 	struct i915_page_directory *pd;
1089 	uint64_t temp;
1090 	uint32_t pdpe;
1091 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1092 
1093 	WARN_ON(!bitmap_empty(new_pds, pdpes));
1094 
1095 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1096 		if (test_bit(pdpe, pdp->used_pdpes))
1097 			continue;
1098 
1099 		pd = alloc_pd(dev);
1100 		if (IS_ERR(pd))
1101 			goto unwind_out;
1102 
1103 		gen8_initialize_pd(vm, pd);
1104 		pdp->page_directory[pdpe] = pd;
1105 		__set_bit(pdpe, new_pds);
1106 		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1107 	}
1108 
1109 	return 0;
1110 
1111 unwind_out:
1112 	for_each_set_bit(pdpe, new_pds, pdpes)
1113 		free_pd(dev, pdp->page_directory[pdpe]);
1114 
1115 	return -ENOMEM;
1116 }
1117 
1118 /**
1119  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1120  * @vm:	Master vm structure.
1121  * @pml4:	Page map level 4 for this address range.
1122  * @start:	Starting virtual address to begin allocations.
1123  * @length:	Size of the allocations.
1124  * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1125  *		caller to free on error.
1126  *
1127  * Allocate the required number of page directory pointers. Extremely similar to
1128  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1129  * The main difference is here we are limited by the pml4 boundary (instead of
1130  * the page directory pointer).
1131  *
1132  * Return: 0 if success; negative error code otherwise.
1133  */
1134 static int
gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space * vm,struct i915_pml4 * pml4,uint64_t start,uint64_t length,unsigned long * new_pdps)1135 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1136 				  struct i915_pml4 *pml4,
1137 				  uint64_t start,
1138 				  uint64_t length,
1139 				  unsigned long *new_pdps)
1140 {
1141 	struct drm_device *dev = vm->dev;
1142 	struct i915_page_directory_pointer *pdp;
1143 	uint64_t temp;
1144 	uint32_t pml4e;
1145 
1146 	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1147 
1148 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1149 		if (!test_bit(pml4e, pml4->used_pml4es)) {
1150 			pdp = alloc_pdp(dev);
1151 			if (IS_ERR(pdp))
1152 				goto unwind_out;
1153 
1154 			gen8_initialize_pdp(vm, pdp);
1155 			pml4->pdps[pml4e] = pdp;
1156 			__set_bit(pml4e, new_pdps);
1157 			trace_i915_page_directory_pointer_entry_alloc(vm,
1158 								      pml4e,
1159 								      start,
1160 								      GEN8_PML4E_SHIFT);
1161 		}
1162 	}
1163 
1164 	return 0;
1165 
1166 unwind_out:
1167 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1168 		free_pdp(dev, pml4->pdps[pml4e]);
1169 
1170 	return -ENOMEM;
1171 }
1172 
1173 static void
free_gen8_temp_bitmaps(unsigned long * new_pds,unsigned long * new_pts)1174 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1175 {
1176 	kfree(new_pts);
1177 	kfree(new_pds);
1178 }
1179 
1180 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1181  * of these are based on the number of PDPEs in the system.
1182  */
1183 static
alloc_gen8_temp_bitmaps(unsigned long ** new_pds,unsigned long ** new_pts,uint32_t pdpes)1184 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1185 					 unsigned long **new_pts,
1186 					 uint32_t pdpes)
1187 {
1188 	unsigned long *pds;
1189 	unsigned long *pts;
1190 
1191 	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1192 	if (!pds)
1193 		return -ENOMEM;
1194 
1195 	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1196 		      GFP_TEMPORARY);
1197 	if (!pts)
1198 		goto err_out;
1199 
1200 	*new_pds = pds;
1201 	*new_pts = pts;
1202 
1203 	return 0;
1204 
1205 err_out:
1206 	free_gen8_temp_bitmaps(pds, pts);
1207 	return -ENOMEM;
1208 }
1209 
1210 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1211  * the page table structures, we mark them dirty so that
1212  * context switching/execlist queuing code takes extra steps
1213  * to ensure that tlbs are flushed.
1214  */
mark_tlbs_dirty(struct i915_hw_ppgtt * ppgtt)1215 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1216 {
1217 	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1218 }
1219 
gen8_alloc_va_range_3lvl(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,uint64_t start,uint64_t length)1220 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1221 				    struct i915_page_directory_pointer *pdp,
1222 				    uint64_t start,
1223 				    uint64_t length)
1224 {
1225 	struct i915_hw_ppgtt *ppgtt =
1226 		container_of(vm, struct i915_hw_ppgtt, base);
1227 	unsigned long *new_page_dirs, *new_page_tables;
1228 	struct drm_device *dev = vm->dev;
1229 	struct i915_page_directory *pd;
1230 	const uint64_t orig_start = start;
1231 	const uint64_t orig_length = length;
1232 	uint64_t temp;
1233 	uint32_t pdpe;
1234 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1235 	int ret;
1236 
1237 	/* Wrap is never okay since we can only represent 48b, and we don't
1238 	 * actually use the other side of the canonical address space.
1239 	 */
1240 	if (WARN_ON(start + length < start))
1241 		return -ENODEV;
1242 
1243 	if (WARN_ON(start + length > vm->total))
1244 		return -ENODEV;
1245 
1246 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1247 	if (ret)
1248 		return ret;
1249 
1250 	/* Do the allocations first so we can easily bail out */
1251 	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1252 						new_page_dirs);
1253 	if (ret) {
1254 		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1255 		return ret;
1256 	}
1257 
1258 	/* For every page directory referenced, allocate page tables */
1259 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1260 		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1261 						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1262 		if (ret)
1263 			goto err_out;
1264 	}
1265 
1266 	start = orig_start;
1267 	length = orig_length;
1268 
1269 	/* Allocations have completed successfully, so set the bitmaps, and do
1270 	 * the mappings. */
1271 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1272 		gen8_pde_t *const page_directory = kmap_px(pd);
1273 		struct i915_page_table *pt;
1274 		uint64_t pd_len = length;
1275 		uint64_t pd_start = start;
1276 		uint32_t pde;
1277 
1278 		/* Every pd should be allocated, we just did that above. */
1279 		WARN_ON(!pd);
1280 
1281 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1282 			/* Same reasoning as pd */
1283 			WARN_ON(!pt);
1284 			WARN_ON(!pd_len);
1285 			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1286 
1287 			/* Set our used ptes within the page table */
1288 			bitmap_set(pt->used_ptes,
1289 				   gen8_pte_index(pd_start),
1290 				   gen8_pte_count(pd_start, pd_len));
1291 
1292 			/* Our pde is now pointing to the pagetable, pt */
1293 			__set_bit(pde, pd->used_pdes);
1294 
1295 			/* Map the PDE to the page table */
1296 			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1297 							      I915_CACHE_LLC);
1298 			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1299 							gen8_pte_index(start),
1300 							gen8_pte_count(start, length),
1301 							GEN8_PTES);
1302 
1303 			/* NB: We haven't yet mapped ptes to pages. At this
1304 			 * point we're still relying on insert_entries() */
1305 		}
1306 
1307 		kunmap_px(ppgtt, page_directory);
1308 		__set_bit(pdpe, pdp->used_pdpes);
1309 		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1310 	}
1311 
1312 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1313 	mark_tlbs_dirty(ppgtt);
1314 	return 0;
1315 
1316 err_out:
1317 	while (pdpe--) {
1318 		for_each_set_bit(temp, new_page_tables + pdpe *
1319 				BITS_TO_LONGS(I915_PDES), I915_PDES)
1320 			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1321 	}
1322 
1323 	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1324 		free_pd(dev, pdp->page_directory[pdpe]);
1325 
1326 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1327 	mark_tlbs_dirty(ppgtt);
1328 	return ret;
1329 }
1330 
gen8_alloc_va_range_4lvl(struct i915_address_space * vm,struct i915_pml4 * pml4,uint64_t start,uint64_t length)1331 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1332 				    struct i915_pml4 *pml4,
1333 				    uint64_t start,
1334 				    uint64_t length)
1335 {
1336 	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1337 	struct i915_hw_ppgtt *ppgtt =
1338 			container_of(vm, struct i915_hw_ppgtt, base);
1339 	struct i915_page_directory_pointer *pdp;
1340 	uint64_t temp, pml4e;
1341 	int ret = 0;
1342 
1343 	/* Do the pml4 allocations first, so we don't need to track the newly
1344 	 * allocated tables below the pdp */
1345 	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346 
1347 	/* The pagedirectory and pagetable allocations are done in the shared 3
1348 	 * and 4 level code. Just allocate the pdps.
1349 	 */
1350 	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351 						new_pdps);
1352 	if (ret)
1353 		return ret;
1354 
1355 	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356 	     "The allocation has spanned more than 512GB. "
1357 	     "It is highly likely this is incorrect.");
1358 
1359 	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1360 		WARN_ON(!pdp);
1361 
1362 		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363 		if (ret)
1364 			goto err_out;
1365 
1366 		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367 	}
1368 
1369 	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370 		  GEN8_PML4ES_PER_PML4);
1371 
1372 	return 0;
1373 
1374 err_out:
1375 	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376 		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377 
1378 	return ret;
1379 }
1380 
gen8_alloc_va_range(struct i915_address_space * vm,uint64_t start,uint64_t length)1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382 			       uint64_t start, uint64_t length)
1383 {
1384 	struct i915_hw_ppgtt *ppgtt =
1385 		container_of(vm, struct i915_hw_ppgtt, base);
1386 
1387 	if (USES_FULL_48BIT_PPGTT(vm->dev))
1388 		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1389 	else
1390 		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1391 }
1392 
gen8_dump_pdp(struct i915_page_directory_pointer * pdp,uint64_t start,uint64_t length,gen8_pte_t scratch_pte,struct seq_file * m)1393 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1394 			  uint64_t start, uint64_t length,
1395 			  gen8_pte_t scratch_pte,
1396 			  struct seq_file *m)
1397 {
1398 	struct i915_page_directory *pd;
1399 	uint64_t temp;
1400 	uint32_t pdpe;
1401 
1402 	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1403 		struct i915_page_table *pt;
1404 		uint64_t pd_len = length;
1405 		uint64_t pd_start = start;
1406 		uint32_t pde;
1407 
1408 		if (!test_bit(pdpe, pdp->used_pdpes))
1409 			continue;
1410 
1411 		seq_printf(m, "\tPDPE #%d\n", pdpe);
1412 		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1413 			uint32_t  pte;
1414 			gen8_pte_t *pt_vaddr;
1415 
1416 			if (!test_bit(pde, pd->used_pdes))
1417 				continue;
1418 
1419 			pt_vaddr = kmap_px(pt);
1420 			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1421 				uint64_t va =
1422 					(pdpe << GEN8_PDPE_SHIFT) |
1423 					(pde << GEN8_PDE_SHIFT) |
1424 					(pte << GEN8_PTE_SHIFT);
1425 				int i;
1426 				bool found = false;
1427 
1428 				for (i = 0; i < 4; i++)
1429 					if (pt_vaddr[pte + i] != scratch_pte)
1430 						found = true;
1431 				if (!found)
1432 					continue;
1433 
1434 				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1435 				for (i = 0; i < 4; i++) {
1436 					if (pt_vaddr[pte + i] != scratch_pte)
1437 						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1438 					else
1439 						seq_puts(m, "  SCRATCH ");
1440 				}
1441 				seq_puts(m, "\n");
1442 			}
1443 			/* don't use kunmap_px, it could trigger
1444 			 * an unnecessary flush.
1445 			 */
1446 			kunmap_atomic(pt_vaddr);
1447 		}
1448 	}
1449 }
1450 
gen8_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1451 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1452 {
1453 	struct i915_address_space *vm = &ppgtt->base;
1454 	uint64_t start = ppgtt->base.start;
1455 	uint64_t length = ppgtt->base.total;
1456 	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1457 						 I915_CACHE_LLC, true, 0);
1458 
1459 	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1460 		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1461 	} else {
1462 		uint64_t templ4, pml4e;
1463 		struct i915_pml4 *pml4 = &ppgtt->pml4;
1464 		struct i915_page_directory_pointer *pdp;
1465 
1466 		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1467 			if (!test_bit(pml4e, pml4->used_pml4es))
1468 				continue;
1469 
1470 			seq_printf(m, "    PML4E #%llu\n", pml4e);
1471 			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1472 		}
1473 	}
1474 }
1475 
gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt * ppgtt)1476 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1477 {
1478 	unsigned long *new_page_dirs, *new_page_tables;
1479 	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1480 	int ret;
1481 
1482 	/* We allocate temp bitmap for page tables for no gain
1483 	 * but as this is for init only, lets keep the things simple
1484 	 */
1485 	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1486 	if (ret)
1487 		return ret;
1488 
1489 	/* Allocate for all pdps regardless of how the ppgtt
1490 	 * was defined.
1491 	 */
1492 	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1493 						0, 1ULL << 32,
1494 						new_page_dirs);
1495 	if (!ret)
1496 		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1497 
1498 	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1499 
1500 	return ret;
1501 }
1502 
1503 /*
1504  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1505  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1506  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1507  * space.
1508  *
1509  */
gen8_ppgtt_init(struct i915_hw_ppgtt * ppgtt)1510 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1511 {
1512 	int ret;
1513 
1514 	ret = gen8_init_scratch(&ppgtt->base);
1515 	if (ret)
1516 		return ret;
1517 
1518 	ppgtt->base.start = 0;
1519 	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1520 	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1521 	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1522 	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1523 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1524 	ppgtt->base.bind_vma = ppgtt_bind_vma;
1525 
1526 	/*
1527 	 * From bdw, there is support for read-only pages in the PPGTT.
1528 	 *
1529 	 * XXX GVT is not honouring the lack of RW in the PTE bits.
1530 	 */
1531 	ppgtt->base.has_read_only = !intel_vgpu_active(ppgtt->base.dev);
1532 
1533 	ppgtt->debug_dump = gen8_dump_ppgtt;
1534 
1535 	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1536 		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1537 		if (ret)
1538 			goto free_scratch;
1539 
1540 		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1541 
1542 		ppgtt->base.total = 1ULL << 48;
1543 		ppgtt->switch_mm = gen8_48b_mm_switch;
1544 	} else {
1545 		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1546 		if (ret)
1547 			goto free_scratch;
1548 
1549 		ppgtt->base.total = 1ULL << 32;
1550 		ppgtt->switch_mm = gen8_legacy_mm_switch;
1551 		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1552 							      0, 0,
1553 							      GEN8_PML4E_SHIFT);
1554 
1555 		if (intel_vgpu_active(ppgtt->base.dev)) {
1556 			ret = gen8_preallocate_top_level_pdps(ppgtt);
1557 			if (ret)
1558 				goto free_scratch;
1559 		}
1560 	}
1561 
1562 	if (intel_vgpu_active(ppgtt->base.dev))
1563 		gen8_ppgtt_notify_vgt(ppgtt, true);
1564 
1565 	return 0;
1566 
1567 free_scratch:
1568 	gen8_free_scratch(&ppgtt->base);
1569 	return ret;
1570 }
1571 
gen6_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1572 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1573 {
1574 	struct i915_address_space *vm = &ppgtt->base;
1575 	struct i915_page_table *unused;
1576 	gen6_pte_t scratch_pte;
1577 	uint32_t pd_entry;
1578 	uint32_t  pte, pde, temp;
1579 	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1580 
1581 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1582 				     I915_CACHE_LLC, true, 0);
1583 
1584 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1585 		u32 expected;
1586 		gen6_pte_t *pt_vaddr;
1587 		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1588 		pd_entry = readl(ppgtt->pd_addr + pde);
1589 		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1590 
1591 		if (pd_entry != expected)
1592 			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1593 				   pde,
1594 				   pd_entry,
1595 				   expected);
1596 		seq_printf(m, "\tPDE: %x\n", pd_entry);
1597 
1598 		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1599 
1600 		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1601 			unsigned long va =
1602 				(pde * PAGE_SIZE * GEN6_PTES) +
1603 				(pte * PAGE_SIZE);
1604 			int i;
1605 			bool found = false;
1606 			for (i = 0; i < 4; i++)
1607 				if (pt_vaddr[pte + i] != scratch_pte)
1608 					found = true;
1609 			if (!found)
1610 				continue;
1611 
1612 			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1613 			for (i = 0; i < 4; i++) {
1614 				if (pt_vaddr[pte + i] != scratch_pte)
1615 					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1616 				else
1617 					seq_puts(m, "  SCRATCH ");
1618 			}
1619 			seq_puts(m, "\n");
1620 		}
1621 		kunmap_px(ppgtt, pt_vaddr);
1622 	}
1623 }
1624 
1625 /* Write pde (index) from the page directory @pd to the page table @pt */
gen6_write_pde(struct i915_page_directory * pd,const int pde,struct i915_page_table * pt)1626 static void gen6_write_pde(struct i915_page_directory *pd,
1627 			    const int pde, struct i915_page_table *pt)
1628 {
1629 	/* Caller needs to make sure the write completes if necessary */
1630 	struct i915_hw_ppgtt *ppgtt =
1631 		container_of(pd, struct i915_hw_ppgtt, pd);
1632 	u32 pd_entry;
1633 
1634 	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1635 	pd_entry |= GEN6_PDE_VALID;
1636 
1637 	writel(pd_entry, ppgtt->pd_addr + pde);
1638 }
1639 
1640 /* Write all the page tables found in the ppgtt structure to incrementing page
1641  * directories. */
gen6_write_page_range(struct drm_i915_private * dev_priv,struct i915_page_directory * pd,uint32_t start,uint32_t length)1642 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1643 				  struct i915_page_directory *pd,
1644 				  uint32_t start, uint32_t length)
1645 {
1646 	struct i915_page_table *pt;
1647 	uint32_t pde, temp;
1648 
1649 	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1650 		gen6_write_pde(pd, pde, pt);
1651 
1652 	/* Make sure write is complete before other code can use this page
1653 	 * table. Also require for WC mapped PTEs */
1654 	readl(dev_priv->gtt.gsm);
1655 }
1656 
get_pd_offset(struct i915_hw_ppgtt * ppgtt)1657 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1658 {
1659 	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1660 
1661 	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1662 }
1663 
hsw_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1664 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1665 			 struct drm_i915_gem_request *req)
1666 {
1667 	struct intel_engine_cs *ring = req->ring;
1668 	int ret;
1669 
1670 	/* NB: TLBs must be flushed and invalidated before a switch */
1671 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1672 	if (ret)
1673 		return ret;
1674 
1675 	ret = intel_ring_begin(req, 6);
1676 	if (ret)
1677 		return ret;
1678 
1679 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1680 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1681 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1682 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1683 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1684 	intel_ring_emit(ring, MI_NOOP);
1685 	intel_ring_advance(ring);
1686 
1687 	return 0;
1688 }
1689 
vgpu_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1690 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1691 			  struct drm_i915_gem_request *req)
1692 {
1693 	struct intel_engine_cs *ring = req->ring;
1694 	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1695 
1696 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1697 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1698 	return 0;
1699 }
1700 
gen7_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1701 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1702 			  struct drm_i915_gem_request *req)
1703 {
1704 	struct intel_engine_cs *ring = req->ring;
1705 	int ret;
1706 
1707 	/* NB: TLBs must be flushed and invalidated before a switch */
1708 	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1709 	if (ret)
1710 		return ret;
1711 
1712 	ret = intel_ring_begin(req, 6);
1713 	if (ret)
1714 		return ret;
1715 
1716 	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1717 	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1718 	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1719 	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1720 	intel_ring_emit(ring, get_pd_offset(ppgtt));
1721 	intel_ring_emit(ring, MI_NOOP);
1722 	intel_ring_advance(ring);
1723 
1724 	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1725 	if (ring->id != RCS) {
1726 		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1727 		if (ret)
1728 			return ret;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
gen6_mm_switch(struct i915_hw_ppgtt * ppgtt,struct drm_i915_gem_request * req)1734 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735 			  struct drm_i915_gem_request *req)
1736 {
1737 	struct intel_engine_cs *ring = req->ring;
1738 	struct drm_device *dev = ppgtt->base.dev;
1739 	struct drm_i915_private *dev_priv = dev->dev_private;
1740 
1741 
1742 	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1743 	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1744 
1745 	POSTING_READ(RING_PP_DIR_DCLV(ring));
1746 
1747 	return 0;
1748 }
1749 
gen8_ppgtt_enable(struct drm_device * dev)1750 static void gen8_ppgtt_enable(struct drm_device *dev)
1751 {
1752 	struct drm_i915_private *dev_priv = dev->dev_private;
1753 	struct intel_engine_cs *ring;
1754 	int j;
1755 
1756 	for_each_ring(ring, dev_priv, j) {
1757 		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1758 		I915_WRITE(RING_MODE_GEN7(ring),
1759 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1760 	}
1761 }
1762 
gen7_ppgtt_enable(struct drm_device * dev)1763 static void gen7_ppgtt_enable(struct drm_device *dev)
1764 {
1765 	struct drm_i915_private *dev_priv = dev->dev_private;
1766 	struct intel_engine_cs *ring;
1767 	uint32_t ecochk, ecobits;
1768 	int i;
1769 
1770 	ecobits = I915_READ(GAC_ECO_BITS);
1771 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1772 
1773 	ecochk = I915_READ(GAM_ECOCHK);
1774 	if (IS_HASWELL(dev)) {
1775 		ecochk |= ECOCHK_PPGTT_WB_HSW;
1776 	} else {
1777 		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1778 		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1779 	}
1780 	I915_WRITE(GAM_ECOCHK, ecochk);
1781 
1782 	for_each_ring(ring, dev_priv, i) {
1783 		/* GFX_MODE is per-ring on gen7+ */
1784 		I915_WRITE(RING_MODE_GEN7(ring),
1785 			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1786 	}
1787 }
1788 
gen6_ppgtt_enable(struct drm_device * dev)1789 static void gen6_ppgtt_enable(struct drm_device *dev)
1790 {
1791 	struct drm_i915_private *dev_priv = dev->dev_private;
1792 	uint32_t ecochk, gab_ctl, ecobits;
1793 
1794 	ecobits = I915_READ(GAC_ECO_BITS);
1795 	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1796 		   ECOBITS_PPGTT_CACHE64B);
1797 
1798 	gab_ctl = I915_READ(GAB_CTL);
1799 	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1800 
1801 	ecochk = I915_READ(GAM_ECOCHK);
1802 	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1803 
1804 	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1805 }
1806 
1807 /* PPGTT support for Sandybdrige/Gen6 and later */
gen6_ppgtt_clear_range(struct i915_address_space * vm,uint64_t start,uint64_t length,bool use_scratch)1808 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1809 				   uint64_t start,
1810 				   uint64_t length,
1811 				   bool use_scratch)
1812 {
1813 	struct i915_hw_ppgtt *ppgtt =
1814 		container_of(vm, struct i915_hw_ppgtt, base);
1815 	gen6_pte_t *pt_vaddr, scratch_pte;
1816 	unsigned first_entry = start >> PAGE_SHIFT;
1817 	unsigned num_entries = length >> PAGE_SHIFT;
1818 	unsigned act_pt = first_entry / GEN6_PTES;
1819 	unsigned first_pte = first_entry % GEN6_PTES;
1820 	unsigned last_pte, i;
1821 
1822 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1823 				     I915_CACHE_LLC, true, 0);
1824 
1825 	while (num_entries) {
1826 		last_pte = first_pte + num_entries;
1827 		if (last_pte > GEN6_PTES)
1828 			last_pte = GEN6_PTES;
1829 
1830 		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1831 
1832 		for (i = first_pte; i < last_pte; i++)
1833 			pt_vaddr[i] = scratch_pte;
1834 
1835 		kunmap_px(ppgtt, pt_vaddr);
1836 
1837 		num_entries -= last_pte - first_pte;
1838 		first_pte = 0;
1839 		act_pt++;
1840 	}
1841 }
1842 
gen6_ppgtt_insert_entries(struct i915_address_space * vm,struct sg_table * pages,uint64_t start,enum i915_cache_level cache_level,u32 flags)1843 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1844 				      struct sg_table *pages,
1845 				      uint64_t start,
1846 				      enum i915_cache_level cache_level, u32 flags)
1847 {
1848 	struct i915_hw_ppgtt *ppgtt =
1849 		container_of(vm, struct i915_hw_ppgtt, base);
1850 	gen6_pte_t *pt_vaddr;
1851 	unsigned first_entry = start >> PAGE_SHIFT;
1852 	unsigned act_pt = first_entry / GEN6_PTES;
1853 	unsigned act_pte = first_entry % GEN6_PTES;
1854 	struct sg_page_iter sg_iter;
1855 
1856 	pt_vaddr = NULL;
1857 	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1858 		if (pt_vaddr == NULL)
1859 			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1860 
1861 		pt_vaddr[act_pte] =
1862 			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1863 				       cache_level, true, flags);
1864 
1865 		if (++act_pte == GEN6_PTES) {
1866 			kunmap_px(ppgtt, pt_vaddr);
1867 			pt_vaddr = NULL;
1868 			act_pt++;
1869 			act_pte = 0;
1870 		}
1871 	}
1872 	if (pt_vaddr)
1873 		kunmap_px(ppgtt, pt_vaddr);
1874 }
1875 
gen6_alloc_va_range(struct i915_address_space * vm,uint64_t start_in,uint64_t length_in)1876 static int gen6_alloc_va_range(struct i915_address_space *vm,
1877 			       uint64_t start_in, uint64_t length_in)
1878 {
1879 	DECLARE_BITMAP(new_page_tables, I915_PDES);
1880 	struct drm_device *dev = vm->dev;
1881 	struct drm_i915_private *dev_priv = dev->dev_private;
1882 	struct i915_hw_ppgtt *ppgtt =
1883 				container_of(vm, struct i915_hw_ppgtt, base);
1884 	struct i915_page_table *pt;
1885 	uint32_t start, length, start_save, length_save;
1886 	uint32_t pde, temp;
1887 	int ret;
1888 
1889 	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1890 		return -ENODEV;
1891 
1892 	start = start_save = start_in;
1893 	length = length_save = length_in;
1894 
1895 	bitmap_zero(new_page_tables, I915_PDES);
1896 
1897 	/* The allocation is done in two stages so that we can bail out with
1898 	 * minimal amount of pain. The first stage finds new page tables that
1899 	 * need allocation. The second stage marks use ptes within the page
1900 	 * tables.
1901 	 */
1902 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1903 		if (pt != vm->scratch_pt) {
1904 			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1905 			continue;
1906 		}
1907 
1908 		/* We've already allocated a page table */
1909 		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1910 
1911 		pt = alloc_pt(dev);
1912 		if (IS_ERR(pt)) {
1913 			ret = PTR_ERR(pt);
1914 			goto unwind_out;
1915 		}
1916 
1917 		gen6_initialize_pt(vm, pt);
1918 
1919 		ppgtt->pd.page_table[pde] = pt;
1920 		__set_bit(pde, new_page_tables);
1921 		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1922 	}
1923 
1924 	start = start_save;
1925 	length = length_save;
1926 
1927 	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1928 		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1929 
1930 		bitmap_zero(tmp_bitmap, GEN6_PTES);
1931 		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1932 			   gen6_pte_count(start, length));
1933 
1934 		if (__test_and_clear_bit(pde, new_page_tables))
1935 			gen6_write_pde(&ppgtt->pd, pde, pt);
1936 
1937 		trace_i915_page_table_entry_map(vm, pde, pt,
1938 					 gen6_pte_index(start),
1939 					 gen6_pte_count(start, length),
1940 					 GEN6_PTES);
1941 		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1942 				GEN6_PTES);
1943 	}
1944 
1945 	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1946 
1947 	/* Make sure write is complete before other code can use this page
1948 	 * table. Also require for WC mapped PTEs */
1949 	readl(dev_priv->gtt.gsm);
1950 
1951 	mark_tlbs_dirty(ppgtt);
1952 	return 0;
1953 
1954 unwind_out:
1955 	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1956 		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1957 
1958 		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1959 		free_pt(vm->dev, pt);
1960 	}
1961 
1962 	mark_tlbs_dirty(ppgtt);
1963 	return ret;
1964 }
1965 
gen6_init_scratch(struct i915_address_space * vm)1966 static int gen6_init_scratch(struct i915_address_space *vm)
1967 {
1968 	struct drm_device *dev = vm->dev;
1969 
1970 	vm->scratch_page = alloc_scratch_page(dev);
1971 	if (IS_ERR(vm->scratch_page))
1972 		return PTR_ERR(vm->scratch_page);
1973 
1974 	vm->scratch_pt = alloc_pt(dev);
1975 	if (IS_ERR(vm->scratch_pt)) {
1976 		free_scratch_page(dev, vm->scratch_page);
1977 		return PTR_ERR(vm->scratch_pt);
1978 	}
1979 
1980 	gen6_initialize_pt(vm, vm->scratch_pt);
1981 
1982 	return 0;
1983 }
1984 
gen6_free_scratch(struct i915_address_space * vm)1985 static void gen6_free_scratch(struct i915_address_space *vm)
1986 {
1987 	struct drm_device *dev = vm->dev;
1988 
1989 	free_pt(dev, vm->scratch_pt);
1990 	free_scratch_page(dev, vm->scratch_page);
1991 }
1992 
gen6_ppgtt_cleanup(struct i915_address_space * vm)1993 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1994 {
1995 	struct i915_hw_ppgtt *ppgtt =
1996 		container_of(vm, struct i915_hw_ppgtt, base);
1997 	struct i915_page_table *pt;
1998 	uint32_t pde;
1999 
2000 	drm_mm_remove_node(&ppgtt->node);
2001 
2002 	gen6_for_all_pdes(pt, ppgtt, pde) {
2003 		if (pt != vm->scratch_pt)
2004 			free_pt(ppgtt->base.dev, pt);
2005 	}
2006 
2007 	gen6_free_scratch(vm);
2008 }
2009 
gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt * ppgtt)2010 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2011 {
2012 	struct i915_address_space *vm = &ppgtt->base;
2013 	struct drm_device *dev = ppgtt->base.dev;
2014 	struct drm_i915_private *dev_priv = dev->dev_private;
2015 	bool retried = false;
2016 	int ret;
2017 
2018 	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2019 	 * allocator works in address space sizes, so it's multiplied by page
2020 	 * size. We allocate at the top of the GTT to avoid fragmentation.
2021 	 */
2022 	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2023 
2024 	ret = gen6_init_scratch(vm);
2025 	if (ret)
2026 		return ret;
2027 
2028 alloc:
2029 	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2030 						  &ppgtt->node, GEN6_PD_SIZE,
2031 						  GEN6_PD_ALIGN, 0,
2032 						  0, dev_priv->gtt.base.total,
2033 						  DRM_MM_TOPDOWN);
2034 	if (ret == -ENOSPC && !retried) {
2035 		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2036 					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2037 					       I915_CACHE_NONE,
2038 					       0, dev_priv->gtt.base.total,
2039 					       0);
2040 		if (ret)
2041 			goto err_out;
2042 
2043 		retried = true;
2044 		goto alloc;
2045 	}
2046 
2047 	if (ret)
2048 		goto err_out;
2049 
2050 
2051 	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2052 		DRM_DEBUG("Forced to use aperture for PDEs\n");
2053 
2054 	return 0;
2055 
2056 err_out:
2057 	gen6_free_scratch(vm);
2058 	return ret;
2059 }
2060 
gen6_ppgtt_alloc(struct i915_hw_ppgtt * ppgtt)2061 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2062 {
2063 	return gen6_ppgtt_allocate_page_directories(ppgtt);
2064 }
2065 
gen6_scratch_va_range(struct i915_hw_ppgtt * ppgtt,uint64_t start,uint64_t length)2066 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2067 				  uint64_t start, uint64_t length)
2068 {
2069 	struct i915_page_table *unused;
2070 	uint32_t pde, temp;
2071 
2072 	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2073 		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2074 }
2075 
gen6_ppgtt_init(struct i915_hw_ppgtt * ppgtt)2076 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2077 {
2078 	struct drm_device *dev = ppgtt->base.dev;
2079 	struct drm_i915_private *dev_priv = dev->dev_private;
2080 	int ret;
2081 
2082 	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2083 	if (IS_GEN6(dev)) {
2084 		ppgtt->switch_mm = gen6_mm_switch;
2085 	} else if (IS_HASWELL(dev)) {
2086 		ppgtt->switch_mm = hsw_mm_switch;
2087 	} else if (IS_GEN7(dev)) {
2088 		ppgtt->switch_mm = gen7_mm_switch;
2089 	} else
2090 		BUG();
2091 
2092 	if (intel_vgpu_active(dev))
2093 		ppgtt->switch_mm = vgpu_mm_switch;
2094 
2095 	ret = gen6_ppgtt_alloc(ppgtt);
2096 	if (ret)
2097 		return ret;
2098 
2099 	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2100 	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2101 	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2102 	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2103 	ppgtt->base.bind_vma = ppgtt_bind_vma;
2104 	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2105 	ppgtt->base.start = 0;
2106 	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2107 	ppgtt->debug_dump = gen6_dump_ppgtt;
2108 
2109 	ppgtt->pd.base.ggtt_offset =
2110 		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2111 
2112 	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2113 		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2114 
2115 	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2116 
2117 	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2118 
2119 	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2120 			 ppgtt->node.size >> 20,
2121 			 ppgtt->node.start / PAGE_SIZE);
2122 
2123 	DRM_DEBUG("Adding PPGTT at offset %x\n",
2124 		  ppgtt->pd.base.ggtt_offset << 10);
2125 
2126 	return 0;
2127 }
2128 
__hw_ppgtt_init(struct drm_device * dev,struct i915_hw_ppgtt * ppgtt)2129 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2130 {
2131 	ppgtt->base.dev = dev;
2132 
2133 	if (INTEL_INFO(dev)->gen < 8)
2134 		return gen6_ppgtt_init(ppgtt);
2135 	else
2136 		return gen8_ppgtt_init(ppgtt);
2137 }
2138 
i915_address_space_init(struct i915_address_space * vm,struct drm_i915_private * dev_priv)2139 static void i915_address_space_init(struct i915_address_space *vm,
2140 				    struct drm_i915_private *dev_priv)
2141 {
2142 	drm_mm_init(&vm->mm, vm->start, vm->total);
2143 	vm->dev = dev_priv->dev;
2144 	INIT_LIST_HEAD(&vm->active_list);
2145 	INIT_LIST_HEAD(&vm->inactive_list);
2146 	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2147 }
2148 
i915_ppgtt_init(struct drm_device * dev,struct i915_hw_ppgtt * ppgtt)2149 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2150 {
2151 	struct drm_i915_private *dev_priv = dev->dev_private;
2152 	int ret = 0;
2153 
2154 	ret = __hw_ppgtt_init(dev, ppgtt);
2155 	if (ret == 0) {
2156 		kref_init(&ppgtt->ref);
2157 		i915_address_space_init(&ppgtt->base, dev_priv);
2158 	}
2159 
2160 	return ret;
2161 }
2162 
i915_ppgtt_init_hw(struct drm_device * dev)2163 int i915_ppgtt_init_hw(struct drm_device *dev)
2164 {
2165 	/* In the case of execlists, PPGTT is enabled by the context descriptor
2166 	 * and the PDPs are contained within the context itself.  We don't
2167 	 * need to do anything here. */
2168 	if (i915.enable_execlists)
2169 		return 0;
2170 
2171 	if (!USES_PPGTT(dev))
2172 		return 0;
2173 
2174 	if (IS_GEN6(dev))
2175 		gen6_ppgtt_enable(dev);
2176 	else if (IS_GEN7(dev))
2177 		gen7_ppgtt_enable(dev);
2178 	else if (INTEL_INFO(dev)->gen >= 8)
2179 		gen8_ppgtt_enable(dev);
2180 	else
2181 		MISSING_CASE(INTEL_INFO(dev)->gen);
2182 
2183 	return 0;
2184 }
2185 
i915_ppgtt_init_ring(struct drm_i915_gem_request * req)2186 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2187 {
2188 	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2189 	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2190 
2191 	if (i915.enable_execlists)
2192 		return 0;
2193 
2194 	if (!ppgtt)
2195 		return 0;
2196 
2197 	return ppgtt->switch_mm(ppgtt, req);
2198 }
2199 
2200 struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_device * dev,struct drm_i915_file_private * fpriv)2201 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2202 {
2203 	struct i915_hw_ppgtt *ppgtt;
2204 	int ret;
2205 
2206 	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2207 	if (!ppgtt)
2208 		return ERR_PTR(-ENOMEM);
2209 
2210 	ret = i915_ppgtt_init(dev, ppgtt);
2211 	if (ret) {
2212 		kfree(ppgtt);
2213 		return ERR_PTR(ret);
2214 	}
2215 
2216 	ppgtt->file_priv = fpriv;
2217 
2218 	trace_i915_ppgtt_create(&ppgtt->base);
2219 
2220 	return ppgtt;
2221 }
2222 
i915_ppgtt_release(struct kref * kref)2223 void  i915_ppgtt_release(struct kref *kref)
2224 {
2225 	struct i915_hw_ppgtt *ppgtt =
2226 		container_of(kref, struct i915_hw_ppgtt, ref);
2227 
2228 	trace_i915_ppgtt_release(&ppgtt->base);
2229 
2230 	/* vmas should already be unbound */
2231 	WARN_ON(!list_empty(&ppgtt->base.active_list));
2232 	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2233 
2234 	list_del(&ppgtt->base.global_link);
2235 	drm_mm_takedown(&ppgtt->base.mm);
2236 
2237 	ppgtt->base.cleanup(&ppgtt->base);
2238 	kfree(ppgtt);
2239 }
2240 
2241 extern int intel_iommu_gfx_mapped;
2242 /* Certain Gen5 chipsets require require idling the GPU before
2243  * unmapping anything from the GTT when VT-d is enabled.
2244  */
needs_idle_maps(struct drm_device * dev)2245 static bool needs_idle_maps(struct drm_device *dev)
2246 {
2247 #ifdef CONFIG_INTEL_IOMMU
2248 	/* Query intel_iommu to see if we need the workaround. Presumably that
2249 	 * was loaded first.
2250 	 */
2251 	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2252 		return true;
2253 #endif
2254 	return false;
2255 }
2256 
do_idling(struct drm_i915_private * dev_priv)2257 static bool do_idling(struct drm_i915_private *dev_priv)
2258 {
2259 	bool ret = dev_priv->mm.interruptible;
2260 
2261 	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2262 		dev_priv->mm.interruptible = false;
2263 		if (i915_gpu_idle(dev_priv->dev)) {
2264 			DRM_ERROR("Couldn't idle GPU\n");
2265 			/* Wait a bit, in hopes it avoids the hang */
2266 			udelay(10);
2267 		}
2268 	}
2269 
2270 	return ret;
2271 }
2272 
undo_idling(struct drm_i915_private * dev_priv,bool interruptible)2273 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2274 {
2275 	if (unlikely(dev_priv->gtt.do_idle_maps))
2276 		dev_priv->mm.interruptible = interruptible;
2277 }
2278 
i915_check_and_clear_faults(struct drm_device * dev)2279 void i915_check_and_clear_faults(struct drm_device *dev)
2280 {
2281 	struct drm_i915_private *dev_priv = dev->dev_private;
2282 	struct intel_engine_cs *ring;
2283 	int i;
2284 
2285 	if (INTEL_INFO(dev)->gen < 6)
2286 		return;
2287 
2288 	for_each_ring(ring, dev_priv, i) {
2289 		u32 fault_reg;
2290 		fault_reg = I915_READ(RING_FAULT_REG(ring));
2291 		if (fault_reg & RING_FAULT_VALID) {
2292 			DRM_DEBUG_DRIVER("Unexpected fault\n"
2293 					 "\tAddr: 0x%08lx\n"
2294 					 "\tAddress space: %s\n"
2295 					 "\tSource ID: %d\n"
2296 					 "\tType: %d\n",
2297 					 fault_reg & PAGE_MASK,
2298 					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2299 					 RING_FAULT_SRCID(fault_reg),
2300 					 RING_FAULT_FAULT_TYPE(fault_reg));
2301 			I915_WRITE(RING_FAULT_REG(ring),
2302 				   fault_reg & ~RING_FAULT_VALID);
2303 		}
2304 	}
2305 	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2306 }
2307 
i915_ggtt_flush(struct drm_i915_private * dev_priv)2308 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2309 {
2310 	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2311 		intel_gtt_chipset_flush();
2312 	} else {
2313 		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2314 		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2315 	}
2316 }
2317 
i915_gem_suspend_gtt_mappings(struct drm_device * dev)2318 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2319 {
2320 	struct drm_i915_private *dev_priv = dev->dev_private;
2321 
2322 	/* Don't bother messing with faults pre GEN6 as we have little
2323 	 * documentation supporting that it's a good idea.
2324 	 */
2325 	if (INTEL_INFO(dev)->gen < 6)
2326 		return;
2327 
2328 	i915_check_and_clear_faults(dev);
2329 
2330 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2331 				       dev_priv->gtt.base.start,
2332 				       dev_priv->gtt.base.total,
2333 				       true);
2334 
2335 	i915_ggtt_flush(dev_priv);
2336 }
2337 
i915_gem_gtt_prepare_object(struct drm_i915_gem_object * obj)2338 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2339 {
2340 	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2341 			obj->pages->sgl, obj->pages->nents,
2342 			PCI_DMA_BIDIRECTIONAL))
2343 		return -ENOSPC;
2344 
2345 	return 0;
2346 }
2347 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)2348 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2349 {
2350 #ifdef writeq
2351 	writeq(pte, addr);
2352 #else
2353 	iowrite32((u32)pte, addr);
2354 	iowrite32(pte >> 32, addr + 4);
2355 #endif
2356 }
2357 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct sg_table * st,uint64_t start,enum i915_cache_level level,u32 flags)2358 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2359 				     struct sg_table *st,
2360 				     uint64_t start,
2361 				     enum i915_cache_level level, u32 flags)
2362 {
2363 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2364 	unsigned first_entry = start >> PAGE_SHIFT;
2365 	gen8_pte_t __iomem *gtt_entries =
2366 		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2367 	int i = 0;
2368 	struct sg_page_iter sg_iter;
2369 	dma_addr_t addr = 0; /* shut up gcc */
2370 
2371 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2372 		addr = sg_dma_address(sg_iter.sg) +
2373 			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2374 		gen8_set_pte(&gtt_entries[i],
2375 			     gen8_pte_encode(addr, level, true, flags));
2376 		i++;
2377 	}
2378 
2379 	/*
2380 	 * XXX: This serves as a posting read to make sure that the PTE has
2381 	 * actually been updated. There is some concern that even though
2382 	 * registers and PTEs are within the same BAR that they are potentially
2383 	 * of NUMA access patterns. Therefore, even with the way we assume
2384 	 * hardware should work, we must keep this posting read for paranoia.
2385 	 */
2386 	if (i != 0)
2387 		WARN_ON(readq(&gtt_entries[i-1])
2388 			!= gen8_pte_encode(addr, level, true, flags));
2389 
2390 	/* This next bit makes the above posting read even more important. We
2391 	 * want to flush the TLBs only after we're certain all the PTE updates
2392 	 * have finished.
2393 	 */
2394 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2395 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2396 }
2397 
2398 /*
2399  * Binds an object into the global gtt with the specified cache level. The object
2400  * will be accessible to the GPU via commands whose operands reference offsets
2401  * within the global GTT as well as accessible by the GPU through the GMADR
2402  * mapped BAR (dev_priv->mm.gtt->gtt).
2403  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct sg_table * st,uint64_t start,enum i915_cache_level level,u32 flags)2404 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2405 				     struct sg_table *st,
2406 				     uint64_t start,
2407 				     enum i915_cache_level level, u32 flags)
2408 {
2409 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2410 	unsigned first_entry = start >> PAGE_SHIFT;
2411 	gen6_pte_t __iomem *gtt_entries =
2412 		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2413 	int i = 0;
2414 	struct sg_page_iter sg_iter;
2415 	dma_addr_t addr = 0;
2416 
2417 	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2418 		addr = sg_page_iter_dma_address(&sg_iter);
2419 		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2420 		i++;
2421 	}
2422 
2423 	/* XXX: This serves as a posting read to make sure that the PTE has
2424 	 * actually been updated. There is some concern that even though
2425 	 * registers and PTEs are within the same BAR that they are potentially
2426 	 * of NUMA access patterns. Therefore, even with the way we assume
2427 	 * hardware should work, we must keep this posting read for paranoia.
2428 	 */
2429 	if (i != 0) {
2430 		unsigned long gtt = readl(&gtt_entries[i-1]);
2431 		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2432 	}
2433 
2434 	/* This next bit makes the above posting read even more important. We
2435 	 * want to flush the TLBs only after we're certain all the PTE updates
2436 	 * have finished.
2437 	 */
2438 	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2439 	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2440 }
2441 
gen8_ggtt_clear_range(struct i915_address_space * vm,uint64_t start,uint64_t length,bool use_scratch)2442 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2443 				  uint64_t start,
2444 				  uint64_t length,
2445 				  bool use_scratch)
2446 {
2447 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2448 	unsigned first_entry = start >> PAGE_SHIFT;
2449 	unsigned num_entries = length >> PAGE_SHIFT;
2450 	gen8_pte_t scratch_pte, __iomem *gtt_base =
2451 		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2452 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2453 	int i;
2454 
2455 	if (WARN(num_entries > max_entries,
2456 		 "First entry = %d; Num entries = %d (max=%d)\n",
2457 		 first_entry, num_entries, max_entries))
2458 		num_entries = max_entries;
2459 
2460 	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2461 				      I915_CACHE_LLC,
2462 				      use_scratch, 0);
2463 	for (i = 0; i < num_entries; i++)
2464 		gen8_set_pte(&gtt_base[i], scratch_pte);
2465 	readl(gtt_base);
2466 }
2467 
gen6_ggtt_clear_range(struct i915_address_space * vm,uint64_t start,uint64_t length,bool use_scratch)2468 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2469 				  uint64_t start,
2470 				  uint64_t length,
2471 				  bool use_scratch)
2472 {
2473 	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2474 	unsigned first_entry = start >> PAGE_SHIFT;
2475 	unsigned num_entries = length >> PAGE_SHIFT;
2476 	gen6_pte_t scratch_pte, __iomem *gtt_base =
2477 		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2478 	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2479 	int i;
2480 
2481 	if (WARN(num_entries > max_entries,
2482 		 "First entry = %d; Num entries = %d (max=%d)\n",
2483 		 first_entry, num_entries, max_entries))
2484 		num_entries = max_entries;
2485 
2486 	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2487 				     I915_CACHE_LLC, use_scratch, 0);
2488 
2489 	for (i = 0; i < num_entries; i++)
2490 		iowrite32(scratch_pte, &gtt_base[i]);
2491 	readl(gtt_base);
2492 }
2493 
i915_ggtt_insert_entries(struct i915_address_space * vm,struct sg_table * pages,uint64_t start,enum i915_cache_level cache_level,u32 unused)2494 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2495 				     struct sg_table *pages,
2496 				     uint64_t start,
2497 				     enum i915_cache_level cache_level, u32 unused)
2498 {
2499 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2500 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2501 
2502 	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2503 
2504 }
2505 
i915_ggtt_clear_range(struct i915_address_space * vm,uint64_t start,uint64_t length,bool unused)2506 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2507 				  uint64_t start,
2508 				  uint64_t length,
2509 				  bool unused)
2510 {
2511 	unsigned first_entry = start >> PAGE_SHIFT;
2512 	unsigned num_entries = length >> PAGE_SHIFT;
2513 	intel_gtt_clear_range(first_entry, num_entries);
2514 }
2515 
ggtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2516 static int ggtt_bind_vma(struct i915_vma *vma,
2517 			 enum i915_cache_level cache_level,
2518 			 u32 flags)
2519 {
2520 	struct drm_i915_gem_object *obj = vma->obj;
2521 	u32 pte_flags = 0;
2522 	int ret;
2523 
2524 	ret = i915_get_ggtt_vma_pages(vma);
2525 	if (ret)
2526 		return ret;
2527 
2528 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2529 	pte_flags = 0;
2530 	if (obj->gt_ro)
2531 		pte_flags |= PTE_READ_ONLY;
2532 
2533 	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2534 				vma->node.start,
2535 				cache_level, pte_flags);
2536 
2537 	/*
2538 	 * Without aliasing PPGTT there's no difference between
2539 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2540 	 * upgrade to both bound if we bind either to avoid double-binding.
2541 	 */
2542 	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2543 
2544 	return 0;
2545 }
2546 
aliasing_gtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2547 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2548 				 enum i915_cache_level cache_level,
2549 				 u32 flags)
2550 {
2551 	struct drm_device *dev = vma->vm->dev;
2552 	struct drm_i915_private *dev_priv = dev->dev_private;
2553 	struct drm_i915_gem_object *obj = vma->obj;
2554 	struct sg_table *pages = obj->pages;
2555 	u32 pte_flags = 0;
2556 	int ret;
2557 
2558 	ret = i915_get_ggtt_vma_pages(vma);
2559 	if (ret)
2560 		return ret;
2561 	pages = vma->ggtt_view.pages;
2562 
2563 	/* Currently applicable only to VLV */
2564 	if (obj->gt_ro)
2565 		pte_flags |= PTE_READ_ONLY;
2566 
2567 
2568 	if (flags & GLOBAL_BIND) {
2569 		vma->vm->insert_entries(vma->vm, pages,
2570 					vma->node.start,
2571 					cache_level, pte_flags);
2572 	}
2573 
2574 	if (flags & LOCAL_BIND) {
2575 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2576 		appgtt->base.insert_entries(&appgtt->base, pages,
2577 					    vma->node.start,
2578 					    cache_level, pte_flags);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
ggtt_unbind_vma(struct i915_vma * vma)2584 static void ggtt_unbind_vma(struct i915_vma *vma)
2585 {
2586 	struct drm_device *dev = vma->vm->dev;
2587 	struct drm_i915_private *dev_priv = dev->dev_private;
2588 	struct drm_i915_gem_object *obj = vma->obj;
2589 	const uint64_t size = min_t(uint64_t,
2590 				    obj->base.size,
2591 				    vma->node.size);
2592 
2593 	if (vma->bound & GLOBAL_BIND) {
2594 		vma->vm->clear_range(vma->vm,
2595 				     vma->node.start,
2596 				     size,
2597 				     true);
2598 	}
2599 
2600 	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2601 		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2602 
2603 		appgtt->base.clear_range(&appgtt->base,
2604 					 vma->node.start,
2605 					 size,
2606 					 true);
2607 	}
2608 }
2609 
i915_gem_gtt_finish_object(struct drm_i915_gem_object * obj)2610 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2611 {
2612 	struct drm_device *dev = obj->base.dev;
2613 	struct drm_i915_private *dev_priv = dev->dev_private;
2614 	bool interruptible;
2615 
2616 	interruptible = do_idling(dev_priv);
2617 
2618 	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2619 		     PCI_DMA_BIDIRECTIONAL);
2620 
2621 	undo_idling(dev_priv, interruptible);
2622 }
2623 
i915_gtt_color_adjust(struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)2624 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2625 				  unsigned long color,
2626 				  u64 *start,
2627 				  u64 *end)
2628 {
2629 	if (node->color != color)
2630 		*start += 4096;
2631 
2632 	if (!list_empty(&node->node_list)) {
2633 		node = list_entry(node->node_list.next,
2634 				  struct drm_mm_node,
2635 				  node_list);
2636 		if (node->allocated && node->color != color)
2637 			*end -= 4096;
2638 	}
2639 }
2640 
i915_gem_setup_global_gtt(struct drm_device * dev,u64 start,u64 mappable_end,u64 end)2641 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2642 				     u64 start,
2643 				     u64 mappable_end,
2644 				     u64 end)
2645 {
2646 	/* Let GEM Manage all of the aperture.
2647 	 *
2648 	 * However, leave one page at the end still bound to the scratch page.
2649 	 * There are a number of places where the hardware apparently prefetches
2650 	 * past the end of the object, and we've seen multiple hangs with the
2651 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2652 	 * aperture.  One page should be enough to keep any prefetching inside
2653 	 * of the aperture.
2654 	 */
2655 	struct drm_i915_private *dev_priv = dev->dev_private;
2656 	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2657 	struct drm_mm_node *entry;
2658 	struct drm_i915_gem_object *obj;
2659 	unsigned long hole_start, hole_end;
2660 	int ret;
2661 
2662 	BUG_ON(mappable_end > end);
2663 
2664 	ggtt_vm->start = start;
2665 
2666 	/* Subtract the guard page before address space initialization to
2667 	 * shrink the range used by drm_mm */
2668 	ggtt_vm->total = end - start - PAGE_SIZE;
2669 	i915_address_space_init(ggtt_vm, dev_priv);
2670 	ggtt_vm->total += PAGE_SIZE;
2671 
2672 	/* Only VLV supports read-only GGTT mappings */
2673 	ggtt_vm->has_read_only = IS_VALLEYVIEW(dev_priv);
2674 
2675 	if (intel_vgpu_active(dev)) {
2676 		ret = intel_vgt_balloon(dev);
2677 		if (ret)
2678 			return ret;
2679 	}
2680 
2681 	if (!HAS_LLC(dev))
2682 		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2683 
2684 	/* Mark any preallocated objects as occupied */
2685 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2686 		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2687 
2688 		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2689 			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2690 
2691 		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2692 		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2693 		if (ret) {
2694 			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2695 			return ret;
2696 		}
2697 		vma->bound |= GLOBAL_BIND;
2698 		__i915_vma_set_map_and_fenceable(vma);
2699 		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2700 	}
2701 
2702 	/* Clear any non-preallocated blocks */
2703 	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2704 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2705 			      hole_start, hole_end);
2706 		ggtt_vm->clear_range(ggtt_vm, hole_start,
2707 				     hole_end - hole_start, true);
2708 	}
2709 
2710 	/* And finally clear the reserved guard page */
2711 	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2712 
2713 	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2714 		struct i915_hw_ppgtt *ppgtt;
2715 
2716 		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2717 		if (!ppgtt)
2718 			return -ENOMEM;
2719 
2720 		ret = __hw_ppgtt_init(dev, ppgtt);
2721 		if (ret) {
2722 			ppgtt->base.cleanup(&ppgtt->base);
2723 			kfree(ppgtt);
2724 			return ret;
2725 		}
2726 
2727 		if (ppgtt->base.allocate_va_range)
2728 			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2729 							    ppgtt->base.total);
2730 		if (ret) {
2731 			ppgtt->base.cleanup(&ppgtt->base);
2732 			kfree(ppgtt);
2733 			return ret;
2734 		}
2735 
2736 		ppgtt->base.clear_range(&ppgtt->base,
2737 					ppgtt->base.start,
2738 					ppgtt->base.total,
2739 					true);
2740 
2741 		dev_priv->mm.aliasing_ppgtt = ppgtt;
2742 		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2743 		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
i915_gem_init_global_gtt(struct drm_device * dev)2749 void i915_gem_init_global_gtt(struct drm_device *dev)
2750 {
2751 	struct drm_i915_private *dev_priv = dev->dev_private;
2752 	u64 gtt_size, mappable_size;
2753 
2754 	gtt_size = dev_priv->gtt.base.total;
2755 	mappable_size = dev_priv->gtt.mappable_end;
2756 
2757 	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2758 }
2759 
i915_global_gtt_cleanup(struct drm_device * dev)2760 void i915_global_gtt_cleanup(struct drm_device *dev)
2761 {
2762 	struct drm_i915_private *dev_priv = dev->dev_private;
2763 	struct i915_address_space *vm = &dev_priv->gtt.base;
2764 
2765 	if (dev_priv->mm.aliasing_ppgtt) {
2766 		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2767 
2768 		ppgtt->base.cleanup(&ppgtt->base);
2769 		kfree(ppgtt);
2770 	}
2771 
2772 	if (drm_mm_initialized(&vm->mm)) {
2773 		if (intel_vgpu_active(dev))
2774 			intel_vgt_deballoon();
2775 
2776 		drm_mm_takedown(&vm->mm);
2777 		list_del(&vm->global_link);
2778 	}
2779 
2780 	vm->cleanup(vm);
2781 }
2782 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)2783 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2784 {
2785 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2786 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2787 	return snb_gmch_ctl << 20;
2788 }
2789 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)2790 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2791 {
2792 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2793 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2794 	if (bdw_gmch_ctl)
2795 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2796 
2797 #ifdef CONFIG_X86_32
2798 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2799 	if (bdw_gmch_ctl > 4)
2800 		bdw_gmch_ctl = 4;
2801 #endif
2802 
2803 	return bdw_gmch_ctl << 20;
2804 }
2805 
chv_get_total_gtt_size(u16 gmch_ctrl)2806 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2807 {
2808 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2809 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2810 
2811 	if (gmch_ctrl)
2812 		return 1 << (20 + gmch_ctrl);
2813 
2814 	return 0;
2815 }
2816 
gen6_get_stolen_size(u16 snb_gmch_ctl)2817 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2818 {
2819 	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2820 	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2821 	return snb_gmch_ctl << 25; /* 32 MB units */
2822 }
2823 
gen8_get_stolen_size(u16 bdw_gmch_ctl)2824 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2825 {
2826 	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2827 	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2828 	return bdw_gmch_ctl << 25; /* 32 MB units */
2829 }
2830 
chv_get_stolen_size(u16 gmch_ctrl)2831 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2832 {
2833 	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2834 	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2835 
2836 	/*
2837 	 * 0x0  to 0x10: 32MB increments starting at 0MB
2838 	 * 0x11 to 0x16: 4MB increments starting at 8MB
2839 	 * 0x17 to 0x1d: 4MB increments start at 36MB
2840 	 */
2841 	if (gmch_ctrl < 0x11)
2842 		return gmch_ctrl << 25;
2843 	else if (gmch_ctrl < 0x17)
2844 		return (gmch_ctrl - 0x11 + 2) << 22;
2845 	else
2846 		return (gmch_ctrl - 0x17 + 9) << 22;
2847 }
2848 
gen9_get_stolen_size(u16 gen9_gmch_ctl)2849 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2850 {
2851 	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2852 	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2853 
2854 	if (gen9_gmch_ctl < 0xf0)
2855 		return gen9_gmch_ctl << 25; /* 32 MB units */
2856 	else
2857 		/* 4MB increments starting at 0xf0 for 4MB */
2858 		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2859 }
2860 
ggtt_probe_common(struct drm_device * dev,size_t gtt_size)2861 static int ggtt_probe_common(struct drm_device *dev,
2862 			     size_t gtt_size)
2863 {
2864 	struct drm_i915_private *dev_priv = dev->dev_private;
2865 	struct i915_page_scratch *scratch_page;
2866 	phys_addr_t gtt_phys_addr;
2867 
2868 	/* For Modern GENs the PTEs and register space are split in the BAR */
2869 	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2870 		(pci_resource_len(dev->pdev, 0) / 2);
2871 
2872 	/*
2873 	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2874 	 * dropped. For WC mappings in general we have 64 byte burst writes
2875 	 * when the WC buffer is flushed, so we can't use it, but have to
2876 	 * resort to an uncached mapping. The WC issue is easily caught by the
2877 	 * readback check when writing GTT PTE entries.
2878 	 */
2879 	if (IS_BROXTON(dev))
2880 		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2881 	else
2882 		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2883 	if (!dev_priv->gtt.gsm) {
2884 		DRM_ERROR("Failed to map the gtt page table\n");
2885 		return -ENOMEM;
2886 	}
2887 
2888 	scratch_page = alloc_scratch_page(dev);
2889 	if (IS_ERR(scratch_page)) {
2890 		DRM_ERROR("Scratch setup failed\n");
2891 		/* iounmap will also get called at remove, but meh */
2892 		iounmap(dev_priv->gtt.gsm);
2893 		return PTR_ERR(scratch_page);
2894 	}
2895 
2896 	dev_priv->gtt.base.scratch_page = scratch_page;
2897 
2898 	return 0;
2899 }
2900 
2901 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2902  * bits. When using advanced contexts each context stores its own PAT, but
2903  * writing this data shouldn't be harmful even in those cases. */
bdw_setup_private_ppat(struct drm_i915_private * dev_priv)2904 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2905 {
2906 	uint64_t pat;
2907 
2908 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2909 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2910 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2911 	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2912 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2913 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2914 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2915 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2916 
2917 	if (!USES_PPGTT(dev_priv->dev))
2918 		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2919 		 * so RTL will always use the value corresponding to
2920 		 * pat_sel = 000".
2921 		 * So let's disable cache for GGTT to avoid screen corruptions.
2922 		 * MOCS still can be used though.
2923 		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2924 		 * before this patch, i.e. the same uncached + snooping access
2925 		 * like on gen6/7 seems to be in effect.
2926 		 * - So this just fixes blitter/render access. Again it looks
2927 		 * like it's not just uncached access, but uncached + snooping.
2928 		 * So we can still hold onto all our assumptions wrt cpu
2929 		 * clflushing on LLC machines.
2930 		 */
2931 		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2932 
2933 	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2934 	 * write would work. */
2935 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2936 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2937 }
2938 
chv_setup_private_ppat(struct drm_i915_private * dev_priv)2939 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2940 {
2941 	uint64_t pat;
2942 
2943 	/*
2944 	 * Map WB on BDW to snooped on CHV.
2945 	 *
2946 	 * Only the snoop bit has meaning for CHV, the rest is
2947 	 * ignored.
2948 	 *
2949 	 * The hardware will never snoop for certain types of accesses:
2950 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2951 	 * - PPGTT page tables
2952 	 * - some other special cycles
2953 	 *
2954 	 * As with BDW, we also need to consider the following for GT accesses:
2955 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2956 	 * so RTL will always use the value corresponding to
2957 	 * pat_sel = 000".
2958 	 * Which means we must set the snoop bit in PAT entry 0
2959 	 * in order to keep the global status page working.
2960 	 */
2961 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2962 	      GEN8_PPAT(1, 0) |
2963 	      GEN8_PPAT(2, 0) |
2964 	      GEN8_PPAT(3, 0) |
2965 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2966 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2967 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2968 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2969 
2970 	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2971 	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2972 }
2973 
gen8_gmch_probe(struct drm_device * dev,u64 * gtt_total,size_t * stolen,phys_addr_t * mappable_base,u64 * mappable_end)2974 static int gen8_gmch_probe(struct drm_device *dev,
2975 			   u64 *gtt_total,
2976 			   size_t *stolen,
2977 			   phys_addr_t *mappable_base,
2978 			   u64 *mappable_end)
2979 {
2980 	struct drm_i915_private *dev_priv = dev->dev_private;
2981 	u64 gtt_size;
2982 	u16 snb_gmch_ctl;
2983 	int ret;
2984 
2985 	/* TODO: We're not aware of mappable constraints on gen8 yet */
2986 	*mappable_base = pci_resource_start(dev->pdev, 2);
2987 	*mappable_end = pci_resource_len(dev->pdev, 2);
2988 
2989 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2990 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2991 
2992 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2993 
2994 	if (INTEL_INFO(dev)->gen >= 9) {
2995 		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2996 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2997 	} else if (IS_CHERRYVIEW(dev)) {
2998 		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2999 		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3000 	} else {
3001 		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
3002 		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3003 	}
3004 
3005 	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3006 
3007 	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3008 		chv_setup_private_ppat(dev_priv);
3009 	else
3010 		bdw_setup_private_ppat(dev_priv);
3011 
3012 	ret = ggtt_probe_common(dev, gtt_size);
3013 
3014 	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3015 	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3016 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3017 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3018 
3019 	return ret;
3020 }
3021 
gen6_gmch_probe(struct drm_device * dev,u64 * gtt_total,size_t * stolen,phys_addr_t * mappable_base,u64 * mappable_end)3022 static int gen6_gmch_probe(struct drm_device *dev,
3023 			   u64 *gtt_total,
3024 			   size_t *stolen,
3025 			   phys_addr_t *mappable_base,
3026 			   u64 *mappable_end)
3027 {
3028 	struct drm_i915_private *dev_priv = dev->dev_private;
3029 	unsigned int gtt_size;
3030 	u16 snb_gmch_ctl;
3031 	int ret;
3032 
3033 	*mappable_base = pci_resource_start(dev->pdev, 2);
3034 	*mappable_end = pci_resource_len(dev->pdev, 2);
3035 
3036 	/* 64/512MB is the current min/max we actually know of, but this is just
3037 	 * a coarse sanity check.
3038 	 */
3039 	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3040 		DRM_ERROR("Unknown GMADR size (%llx)\n",
3041 			  dev_priv->gtt.mappable_end);
3042 		return -ENXIO;
3043 	}
3044 
3045 	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3046 		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3047 	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3048 
3049 	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3050 
3051 	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3052 	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3053 
3054 	ret = ggtt_probe_common(dev, gtt_size);
3055 
3056 	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3057 	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3058 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3059 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3060 
3061 	return ret;
3062 }
3063 
gen6_gmch_remove(struct i915_address_space * vm)3064 static void gen6_gmch_remove(struct i915_address_space *vm)
3065 {
3066 
3067 	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3068 
3069 	iounmap(gtt->gsm);
3070 	free_scratch_page(vm->dev, vm->scratch_page);
3071 }
3072 
i915_gmch_probe(struct drm_device * dev,u64 * gtt_total,size_t * stolen,phys_addr_t * mappable_base,u64 * mappable_end)3073 static int i915_gmch_probe(struct drm_device *dev,
3074 			   u64 *gtt_total,
3075 			   size_t *stolen,
3076 			   phys_addr_t *mappable_base,
3077 			   u64 *mappable_end)
3078 {
3079 	struct drm_i915_private *dev_priv = dev->dev_private;
3080 	int ret;
3081 
3082 	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3083 	if (!ret) {
3084 		DRM_ERROR("failed to set up gmch\n");
3085 		return -EIO;
3086 	}
3087 
3088 	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3089 
3090 	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3091 	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3092 	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3093 	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3094 	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3095 
3096 	if (unlikely(dev_priv->gtt.do_idle_maps))
3097 		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3098 
3099 	return 0;
3100 }
3101 
i915_gmch_remove(struct i915_address_space * vm)3102 static void i915_gmch_remove(struct i915_address_space *vm)
3103 {
3104 	intel_gmch_remove();
3105 }
3106 
i915_gem_gtt_init(struct drm_device * dev)3107 int i915_gem_gtt_init(struct drm_device *dev)
3108 {
3109 	struct drm_i915_private *dev_priv = dev->dev_private;
3110 	struct i915_gtt *gtt = &dev_priv->gtt;
3111 	int ret;
3112 
3113 	if (INTEL_INFO(dev)->gen <= 5) {
3114 		gtt->gtt_probe = i915_gmch_probe;
3115 		gtt->base.cleanup = i915_gmch_remove;
3116 	} else if (INTEL_INFO(dev)->gen < 8) {
3117 		gtt->gtt_probe = gen6_gmch_probe;
3118 		gtt->base.cleanup = gen6_gmch_remove;
3119 		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3120 			gtt->base.pte_encode = iris_pte_encode;
3121 		else if (IS_HASWELL(dev))
3122 			gtt->base.pte_encode = hsw_pte_encode;
3123 		else if (IS_VALLEYVIEW(dev))
3124 			gtt->base.pte_encode = byt_pte_encode;
3125 		else if (INTEL_INFO(dev)->gen >= 7)
3126 			gtt->base.pte_encode = ivb_pte_encode;
3127 		else
3128 			gtt->base.pte_encode = snb_pte_encode;
3129 	} else {
3130 		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3131 		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3132 	}
3133 
3134 	gtt->base.dev = dev;
3135 
3136 	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3137 			     &gtt->mappable_base, &gtt->mappable_end);
3138 	if (ret)
3139 		return ret;
3140 
3141 	/* GMADR is the PCI mmio aperture into the global GTT. */
3142 	DRM_INFO("Memory usable by graphics device = %lluM\n",
3143 		 gtt->base.total >> 20);
3144 	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3145 	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3146 #ifdef CONFIG_INTEL_IOMMU
3147 	if (intel_iommu_gfx_mapped)
3148 		DRM_INFO("VT-d active for gfx access\n");
3149 #endif
3150 	/*
3151 	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3152 	 * user's requested state against the hardware/driver capabilities.  We
3153 	 * do this now so that we can print out any log messages once rather
3154 	 * than every time we check intel_enable_ppgtt().
3155 	 */
3156 	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3157 	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3158 
3159 	return 0;
3160 }
3161 
i915_gem_restore_gtt_mappings(struct drm_device * dev)3162 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3163 {
3164 	struct drm_i915_private *dev_priv = dev->dev_private;
3165 	struct drm_i915_gem_object *obj;
3166 	struct i915_address_space *vm;
3167 	struct i915_vma *vma;
3168 	bool flush;
3169 
3170 	i915_check_and_clear_faults(dev);
3171 
3172 	/* First fill our portion of the GTT with scratch pages */
3173 	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3174 				       dev_priv->gtt.base.start,
3175 				       dev_priv->gtt.base.total,
3176 				       true);
3177 
3178 	/* Cache flush objects bound into GGTT and rebind them. */
3179 	vm = &dev_priv->gtt.base;
3180 	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3181 		flush = false;
3182 		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3183 			if (vma->vm != vm)
3184 				continue;
3185 
3186 			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3187 					      PIN_UPDATE));
3188 
3189 			flush = true;
3190 		}
3191 
3192 		if (flush)
3193 			i915_gem_clflush_object(obj, obj->pin_display);
3194 	}
3195 
3196 	if (INTEL_INFO(dev)->gen >= 8) {
3197 		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3198 			chv_setup_private_ppat(dev_priv);
3199 		else
3200 			bdw_setup_private_ppat(dev_priv);
3201 
3202 		return;
3203 	}
3204 
3205 	if (USES_PPGTT(dev)) {
3206 		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3207 			/* TODO: Perhaps it shouldn't be gen6 specific */
3208 
3209 			struct i915_hw_ppgtt *ppgtt =
3210 					container_of(vm, struct i915_hw_ppgtt,
3211 						     base);
3212 
3213 			if (i915_is_ggtt(vm))
3214 				ppgtt = dev_priv->mm.aliasing_ppgtt;
3215 
3216 			gen6_write_page_range(dev_priv, &ppgtt->pd,
3217 					      0, ppgtt->base.total);
3218 		}
3219 	}
3220 
3221 	i915_ggtt_flush(dev_priv);
3222 }
3223 
3224 static struct i915_vma *
__i915_gem_vma_create(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * ggtt_view)3225 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3226 		      struct i915_address_space *vm,
3227 		      const struct i915_ggtt_view *ggtt_view)
3228 {
3229 	struct i915_vma *vma;
3230 
3231 	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3232 		return ERR_PTR(-EINVAL);
3233 
3234 	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3235 	if (vma == NULL)
3236 		return ERR_PTR(-ENOMEM);
3237 
3238 	INIT_LIST_HEAD(&vma->vma_link);
3239 	INIT_LIST_HEAD(&vma->mm_list);
3240 	INIT_LIST_HEAD(&vma->exec_list);
3241 	vma->vm = vm;
3242 	vma->obj = obj;
3243 
3244 	if (i915_is_ggtt(vm))
3245 		vma->ggtt_view = *ggtt_view;
3246 
3247 	list_add_tail(&vma->vma_link, &obj->vma_list);
3248 	if (!i915_is_ggtt(vm))
3249 		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3250 
3251 	return vma;
3252 }
3253 
3254 struct i915_vma *
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object * obj,struct i915_address_space * vm)3255 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3256 				  struct i915_address_space *vm)
3257 {
3258 	struct i915_vma *vma;
3259 
3260 	vma = i915_gem_obj_to_vma(obj, vm);
3261 	if (!vma)
3262 		vma = __i915_gem_vma_create(obj, vm,
3263 					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3264 
3265 	return vma;
3266 }
3267 
3268 struct i915_vma *
i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)3269 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3270 				       const struct i915_ggtt_view *view)
3271 {
3272 	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3273 	struct i915_vma *vma;
3274 
3275 	if (WARN_ON(!view))
3276 		return ERR_PTR(-EINVAL);
3277 
3278 	vma = i915_gem_obj_to_ggtt_view(obj, view);
3279 
3280 	if (IS_ERR(vma))
3281 		return vma;
3282 
3283 	if (!vma)
3284 		vma = __i915_gem_vma_create(obj, ggtt, view);
3285 
3286 	return vma;
3287 
3288 }
3289 
3290 static struct scatterlist *
rotate_pages(dma_addr_t * in,unsigned int offset,unsigned int width,unsigned int height,struct sg_table * st,struct scatterlist * sg)3291 rotate_pages(dma_addr_t *in, unsigned int offset,
3292 	     unsigned int width, unsigned int height,
3293 	     struct sg_table *st, struct scatterlist *sg)
3294 {
3295 	unsigned int column, row;
3296 	unsigned int src_idx;
3297 
3298 	if (!sg) {
3299 		st->nents = 0;
3300 		sg = st->sgl;
3301 	}
3302 
3303 	for (column = 0; column < width; column++) {
3304 		src_idx = width * (height - 1) + column;
3305 		for (row = 0; row < height; row++) {
3306 			st->nents++;
3307 			/* We don't need the pages, but need to initialize
3308 			 * the entries so the sg list can be happily traversed.
3309 			 * The only thing we need are DMA addresses.
3310 			 */
3311 			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3312 			sg_dma_address(sg) = in[offset + src_idx];
3313 			sg_dma_len(sg) = PAGE_SIZE;
3314 			sg = sg_next(sg);
3315 			src_idx -= width;
3316 		}
3317 	}
3318 
3319 	return sg;
3320 }
3321 
3322 static struct sg_table *
intel_rotate_fb_obj_pages(struct i915_ggtt_view * ggtt_view,struct drm_i915_gem_object * obj)3323 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3324 			  struct drm_i915_gem_object *obj)
3325 {
3326 	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3327 	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3328 	unsigned int size_pages_uv;
3329 	struct sg_page_iter sg_iter;
3330 	unsigned long i;
3331 	dma_addr_t *page_addr_list;
3332 	struct sg_table *st;
3333 	unsigned int uv_start_page;
3334 	struct scatterlist *sg;
3335 	int ret = -ENOMEM;
3336 
3337 	/* Allocate a temporary list of source pages for random access. */
3338 	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3339 				       sizeof(dma_addr_t));
3340 	if (!page_addr_list)
3341 		return ERR_PTR(ret);
3342 
3343 	/* Account for UV plane with NV12. */
3344 	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3345 		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3346 	else
3347 		size_pages_uv = 0;
3348 
3349 	/* Allocate target SG list. */
3350 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3351 	if (!st)
3352 		goto err_st_alloc;
3353 
3354 	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3355 	if (ret)
3356 		goto err_sg_alloc;
3357 
3358 	/* Populate source page list from the object. */
3359 	i = 0;
3360 	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3361 		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3362 		i++;
3363 	}
3364 
3365 	/* Rotate the pages. */
3366 	sg = rotate_pages(page_addr_list, 0,
3367 		     rot_info->width_pages, rot_info->height_pages,
3368 		     st, NULL);
3369 
3370 	/* Append the UV plane if NV12. */
3371 	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3372 		uv_start_page = size_pages;
3373 
3374 		/* Check for tile-row un-alignment. */
3375 		if (offset_in_page(rot_info->uv_offset))
3376 			uv_start_page--;
3377 
3378 		rot_info->uv_start_page = uv_start_page;
3379 
3380 		rotate_pages(page_addr_list, uv_start_page,
3381 			     rot_info->width_pages_uv,
3382 			     rot_info->height_pages_uv,
3383 			     st, sg);
3384 	}
3385 
3386 	DRM_DEBUG_KMS(
3387 		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3388 		      obj->base.size, rot_info->pitch, rot_info->height,
3389 		      rot_info->pixel_format, rot_info->width_pages,
3390 		      rot_info->height_pages, size_pages + size_pages_uv,
3391 		      size_pages);
3392 
3393 	drm_free_large(page_addr_list);
3394 
3395 	return st;
3396 
3397 err_sg_alloc:
3398 	kfree(st);
3399 err_st_alloc:
3400 	drm_free_large(page_addr_list);
3401 
3402 	DRM_DEBUG_KMS(
3403 		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3404 		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3405 		      rot_info->pixel_format, rot_info->width_pages,
3406 		      rot_info->height_pages, size_pages + size_pages_uv,
3407 		      size_pages);
3408 	return ERR_PTR(ret);
3409 }
3410 
3411 static struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)3412 intel_partial_pages(const struct i915_ggtt_view *view,
3413 		    struct drm_i915_gem_object *obj)
3414 {
3415 	struct sg_table *st;
3416 	struct scatterlist *sg;
3417 	struct sg_page_iter obj_sg_iter;
3418 	int ret = -ENOMEM;
3419 
3420 	st = kmalloc(sizeof(*st), GFP_KERNEL);
3421 	if (!st)
3422 		goto err_st_alloc;
3423 
3424 	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3425 	if (ret)
3426 		goto err_sg_alloc;
3427 
3428 	sg = st->sgl;
3429 	st->nents = 0;
3430 	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3431 		view->params.partial.offset)
3432 	{
3433 		if (st->nents >= view->params.partial.size)
3434 			break;
3435 
3436 		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3437 		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3438 		sg_dma_len(sg) = PAGE_SIZE;
3439 
3440 		sg = sg_next(sg);
3441 		st->nents++;
3442 	}
3443 
3444 	return st;
3445 
3446 err_sg_alloc:
3447 	kfree(st);
3448 err_st_alloc:
3449 	return ERR_PTR(ret);
3450 }
3451 
3452 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)3453 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3454 {
3455 	int ret = 0;
3456 
3457 	if (vma->ggtt_view.pages)
3458 		return 0;
3459 
3460 	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3461 		vma->ggtt_view.pages = vma->obj->pages;
3462 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3463 		vma->ggtt_view.pages =
3464 			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3465 	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3466 		vma->ggtt_view.pages =
3467 			intel_partial_pages(&vma->ggtt_view, vma->obj);
3468 	else
3469 		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3470 			  vma->ggtt_view.type);
3471 
3472 	if (!vma->ggtt_view.pages) {
3473 		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3474 			  vma->ggtt_view.type);
3475 		ret = -EINVAL;
3476 	} else if (IS_ERR(vma->ggtt_view.pages)) {
3477 		ret = PTR_ERR(vma->ggtt_view.pages);
3478 		vma->ggtt_view.pages = NULL;
3479 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3480 			  vma->ggtt_view.type, ret);
3481 	}
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3488  * @vma: VMA to map
3489  * @cache_level: mapping cache level
3490  * @flags: flags like global or local mapping
3491  *
3492  * DMA addresses are taken from the scatter-gather table of this object (or of
3493  * this VMA in case of non-default GGTT views) and PTE entries set up.
3494  * Note that DMA addresses are also the only part of the SG table we care about.
3495  */
i915_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)3496 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3497 		  u32 flags)
3498 {
3499 	int ret;
3500 	u32 bind_flags;
3501 
3502 	if (WARN_ON(flags == 0))
3503 		return -EINVAL;
3504 
3505 	bind_flags = 0;
3506 	if (flags & PIN_GLOBAL)
3507 		bind_flags |= GLOBAL_BIND;
3508 	if (flags & PIN_USER)
3509 		bind_flags |= LOCAL_BIND;
3510 
3511 	if (flags & PIN_UPDATE)
3512 		bind_flags |= vma->bound;
3513 	else
3514 		bind_flags &= ~vma->bound;
3515 
3516 	if (bind_flags == 0)
3517 		return 0;
3518 
3519 	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3520 		trace_i915_va_alloc(vma->vm,
3521 				    vma->node.start,
3522 				    vma->node.size,
3523 				    VM_TO_TRACE_NAME(vma->vm));
3524 
3525 		/* XXX: i915_vma_pin() will fix this +- hack */
3526 		vma->pin_count++;
3527 		ret = vma->vm->allocate_va_range(vma->vm,
3528 						 vma->node.start,
3529 						 vma->node.size);
3530 		vma->pin_count--;
3531 		if (ret)
3532 			return ret;
3533 	}
3534 
3535 	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3536 	if (ret)
3537 		return ret;
3538 
3539 	vma->bound |= bind_flags;
3540 
3541 	if (vma->obj)
3542 		set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
3543 
3544 	return 0;
3545 }
3546 
3547 /**
3548  * i915_ggtt_view_size - Get the size of a GGTT view.
3549  * @obj: Object the view is of.
3550  * @view: The view in question.
3551  *
3552  * @return The size of the GGTT view in bytes.
3553  */
3554 size_t
i915_ggtt_view_size(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view)3555 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3556 		    const struct i915_ggtt_view *view)
3557 {
3558 	if (view->type == I915_GGTT_VIEW_NORMAL) {
3559 		return obj->base.size;
3560 	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3561 		return view->rotation_info.size;
3562 	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3563 		return view->params.partial.size << PAGE_SHIFT;
3564 	} else {
3565 		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3566 		return obj->base.size;
3567 	}
3568 }
3569