1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 * This program is free software; you can redistribute it and/or modify it
4 * under the terms and conditions of the GNU General Public License,
5 * version 2, as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope it will be useful, but WITHOUT
8 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
9 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
10 * more details.
11 *
12 * You should have received a copy of the GNU General Public License along with
13 * this program; if not, see <http://www.gnu.org/licenses/>.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Contact Information:
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23 #include <linux/if_ether.h>
24 #include <linux/delay.h>
25
26 #include "e1000_mac.h"
27 #include "e1000_nvm.h"
28
29 /**
30 * igb_raise_eec_clk - Raise EEPROM clock
31 * @hw: pointer to the HW structure
32 * @eecd: pointer to the EEPROM
33 *
34 * Enable/Raise the EEPROM clock bit.
35 **/
igb_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)36 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
37 {
38 *eecd = *eecd | E1000_EECD_SK;
39 wr32(E1000_EECD, *eecd);
40 wrfl();
41 udelay(hw->nvm.delay_usec);
42 }
43
44 /**
45 * igb_lower_eec_clk - Lower EEPROM clock
46 * @hw: pointer to the HW structure
47 * @eecd: pointer to the EEPROM
48 *
49 * Clear/Lower the EEPROM clock bit.
50 **/
igb_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)51 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
52 {
53 *eecd = *eecd & ~E1000_EECD_SK;
54 wr32(E1000_EECD, *eecd);
55 wrfl();
56 udelay(hw->nvm.delay_usec);
57 }
58
59 /**
60 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM
61 * @hw: pointer to the HW structure
62 * @data: data to send to the EEPROM
63 * @count: number of bits to shift out
64 *
65 * We need to shift 'count' bits out to the EEPROM. So, the value in the
66 * "data" parameter will be shifted out to the EEPROM one bit at a time.
67 * In order to do this, "data" must be broken down into bits.
68 **/
igb_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)69 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
70 {
71 struct e1000_nvm_info *nvm = &hw->nvm;
72 u32 eecd = rd32(E1000_EECD);
73 u32 mask;
74
75 mask = 0x01 << (count - 1);
76 if (nvm->type == e1000_nvm_eeprom_spi)
77 eecd |= E1000_EECD_DO;
78
79 do {
80 eecd &= ~E1000_EECD_DI;
81
82 if (data & mask)
83 eecd |= E1000_EECD_DI;
84
85 wr32(E1000_EECD, eecd);
86 wrfl();
87
88 udelay(nvm->delay_usec);
89
90 igb_raise_eec_clk(hw, &eecd);
91 igb_lower_eec_clk(hw, &eecd);
92
93 mask >>= 1;
94 } while (mask);
95
96 eecd &= ~E1000_EECD_DI;
97 wr32(E1000_EECD, eecd);
98 }
99
100 /**
101 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM
102 * @hw: pointer to the HW structure
103 * @count: number of bits to shift in
104 *
105 * In order to read a register from the EEPROM, we need to shift 'count' bits
106 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
107 * the EEPROM (setting the SK bit), and then reading the value of the data out
108 * "DO" bit. During this "shifting in" process the data in "DI" bit should
109 * always be clear.
110 **/
igb_shift_in_eec_bits(struct e1000_hw * hw,u16 count)111 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
112 {
113 u32 eecd;
114 u32 i;
115 u16 data;
116
117 eecd = rd32(E1000_EECD);
118
119 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
120 data = 0;
121
122 for (i = 0; i < count; i++) {
123 data <<= 1;
124 igb_raise_eec_clk(hw, &eecd);
125
126 eecd = rd32(E1000_EECD);
127
128 eecd &= ~E1000_EECD_DI;
129 if (eecd & E1000_EECD_DO)
130 data |= 1;
131
132 igb_lower_eec_clk(hw, &eecd);
133 }
134
135 return data;
136 }
137
138 /**
139 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
140 * @hw: pointer to the HW structure
141 * @ee_reg: EEPROM flag for polling
142 *
143 * Polls the EEPROM status bit for either read or write completion based
144 * upon the value of 'ee_reg'.
145 **/
igb_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)146 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
147 {
148 u32 attempts = 100000;
149 u32 i, reg = 0;
150 s32 ret_val = -E1000_ERR_NVM;
151
152 for (i = 0; i < attempts; i++) {
153 if (ee_reg == E1000_NVM_POLL_READ)
154 reg = rd32(E1000_EERD);
155 else
156 reg = rd32(E1000_EEWR);
157
158 if (reg & E1000_NVM_RW_REG_DONE) {
159 ret_val = 0;
160 break;
161 }
162
163 udelay(5);
164 }
165
166 return ret_val;
167 }
168
169 /**
170 * igb_acquire_nvm - Generic request for access to EEPROM
171 * @hw: pointer to the HW structure
172 *
173 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
174 * Return successful if access grant bit set, else clear the request for
175 * EEPROM access and return -E1000_ERR_NVM (-1).
176 **/
igb_acquire_nvm(struct e1000_hw * hw)177 s32 igb_acquire_nvm(struct e1000_hw *hw)
178 {
179 u32 eecd = rd32(E1000_EECD);
180 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
181 s32 ret_val = 0;
182
183
184 wr32(E1000_EECD, eecd | E1000_EECD_REQ);
185 eecd = rd32(E1000_EECD);
186
187 while (timeout) {
188 if (eecd & E1000_EECD_GNT)
189 break;
190 udelay(5);
191 eecd = rd32(E1000_EECD);
192 timeout--;
193 }
194
195 if (!timeout) {
196 eecd &= ~E1000_EECD_REQ;
197 wr32(E1000_EECD, eecd);
198 hw_dbg("Could not acquire NVM grant\n");
199 ret_val = -E1000_ERR_NVM;
200 }
201
202 return ret_val;
203 }
204
205 /**
206 * igb_standby_nvm - Return EEPROM to standby state
207 * @hw: pointer to the HW structure
208 *
209 * Return the EEPROM to a standby state.
210 **/
igb_standby_nvm(struct e1000_hw * hw)211 static void igb_standby_nvm(struct e1000_hw *hw)
212 {
213 struct e1000_nvm_info *nvm = &hw->nvm;
214 u32 eecd = rd32(E1000_EECD);
215
216 if (nvm->type == e1000_nvm_eeprom_spi) {
217 /* Toggle CS to flush commands */
218 eecd |= E1000_EECD_CS;
219 wr32(E1000_EECD, eecd);
220 wrfl();
221 udelay(nvm->delay_usec);
222 eecd &= ~E1000_EECD_CS;
223 wr32(E1000_EECD, eecd);
224 wrfl();
225 udelay(nvm->delay_usec);
226 }
227 }
228
229 /**
230 * e1000_stop_nvm - Terminate EEPROM command
231 * @hw: pointer to the HW structure
232 *
233 * Terminates the current command by inverting the EEPROM's chip select pin.
234 **/
e1000_stop_nvm(struct e1000_hw * hw)235 static void e1000_stop_nvm(struct e1000_hw *hw)
236 {
237 u32 eecd;
238
239 eecd = rd32(E1000_EECD);
240 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
241 /* Pull CS high */
242 eecd |= E1000_EECD_CS;
243 igb_lower_eec_clk(hw, &eecd);
244 }
245 }
246
247 /**
248 * igb_release_nvm - Release exclusive access to EEPROM
249 * @hw: pointer to the HW structure
250 *
251 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
252 **/
igb_release_nvm(struct e1000_hw * hw)253 void igb_release_nvm(struct e1000_hw *hw)
254 {
255 u32 eecd;
256
257 e1000_stop_nvm(hw);
258
259 eecd = rd32(E1000_EECD);
260 eecd &= ~E1000_EECD_REQ;
261 wr32(E1000_EECD, eecd);
262 }
263
264 /**
265 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write
266 * @hw: pointer to the HW structure
267 *
268 * Setups the EEPROM for reading and writing.
269 **/
igb_ready_nvm_eeprom(struct e1000_hw * hw)270 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
271 {
272 struct e1000_nvm_info *nvm = &hw->nvm;
273 u32 eecd = rd32(E1000_EECD);
274 s32 ret_val = 0;
275 u16 timeout = 0;
276 u8 spi_stat_reg;
277
278
279 if (nvm->type == e1000_nvm_eeprom_spi) {
280 /* Clear SK and CS */
281 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
282 wr32(E1000_EECD, eecd);
283 wrfl();
284 udelay(1);
285 timeout = NVM_MAX_RETRY_SPI;
286
287 /* Read "Status Register" repeatedly until the LSB is cleared.
288 * The EEPROM will signal that the command has been completed
289 * by clearing bit 0 of the internal status register. If it's
290 * not cleared within 'timeout', then error out.
291 */
292 while (timeout) {
293 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
294 hw->nvm.opcode_bits);
295 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
296 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
297 break;
298
299 udelay(5);
300 igb_standby_nvm(hw);
301 timeout--;
302 }
303
304 if (!timeout) {
305 hw_dbg("SPI NVM Status error\n");
306 ret_val = -E1000_ERR_NVM;
307 goto out;
308 }
309 }
310
311 out:
312 return ret_val;
313 }
314
315 /**
316 * igb_read_nvm_spi - Read EEPROM's using SPI
317 * @hw: pointer to the HW structure
318 * @offset: offset of word in the EEPROM to read
319 * @words: number of words to read
320 * @data: word read from the EEPROM
321 *
322 * Reads a 16 bit word from the EEPROM.
323 **/
igb_read_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)324 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
325 {
326 struct e1000_nvm_info *nvm = &hw->nvm;
327 u32 i = 0;
328 s32 ret_val;
329 u16 word_in;
330 u8 read_opcode = NVM_READ_OPCODE_SPI;
331
332 /* A check for invalid values: offset too large, too many words,
333 * and not enough words.
334 */
335 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
336 (words == 0)) {
337 hw_dbg("nvm parameter(s) out of bounds\n");
338 ret_val = -E1000_ERR_NVM;
339 goto out;
340 }
341
342 ret_val = nvm->ops.acquire(hw);
343 if (ret_val)
344 goto out;
345
346 ret_val = igb_ready_nvm_eeprom(hw);
347 if (ret_val)
348 goto release;
349
350 igb_standby_nvm(hw);
351
352 if ((nvm->address_bits == 8) && (offset >= 128))
353 read_opcode |= NVM_A8_OPCODE_SPI;
354
355 /* Send the READ command (opcode + addr) */
356 igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
357 igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
358
359 /* Read the data. SPI NVMs increment the address with each byte
360 * read and will roll over if reading beyond the end. This allows
361 * us to read the whole NVM from any offset
362 */
363 for (i = 0; i < words; i++) {
364 word_in = igb_shift_in_eec_bits(hw, 16);
365 data[i] = (word_in >> 8) | (word_in << 8);
366 }
367
368 release:
369 nvm->ops.release(hw);
370
371 out:
372 return ret_val;
373 }
374
375 /**
376 * igb_read_nvm_eerd - Reads EEPROM using EERD register
377 * @hw: pointer to the HW structure
378 * @offset: offset of word in the EEPROM to read
379 * @words: number of words to read
380 * @data: word read from the EEPROM
381 *
382 * Reads a 16 bit word from the EEPROM using the EERD register.
383 **/
igb_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)384 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
385 {
386 struct e1000_nvm_info *nvm = &hw->nvm;
387 u32 i, eerd = 0;
388 s32 ret_val = 0;
389
390 /* A check for invalid values: offset too large, too many words,
391 * and not enough words.
392 */
393 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
394 (words == 0)) {
395 hw_dbg("nvm parameter(s) out of bounds\n");
396 ret_val = -E1000_ERR_NVM;
397 goto out;
398 }
399
400 for (i = 0; i < words; i++) {
401 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
402 E1000_NVM_RW_REG_START;
403
404 wr32(E1000_EERD, eerd);
405 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
406 if (ret_val)
407 break;
408
409 data[i] = (rd32(E1000_EERD) >>
410 E1000_NVM_RW_REG_DATA);
411 }
412
413 out:
414 return ret_val;
415 }
416
417 /**
418 * igb_write_nvm_spi - Write to EEPROM using SPI
419 * @hw: pointer to the HW structure
420 * @offset: offset within the EEPROM to be written to
421 * @words: number of words to write
422 * @data: 16 bit word(s) to be written to the EEPROM
423 *
424 * Writes data to EEPROM at offset using SPI interface.
425 *
426 * If e1000_update_nvm_checksum is not called after this function , the
427 * EEPROM will most likley contain an invalid checksum.
428 **/
igb_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)429 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
430 {
431 struct e1000_nvm_info *nvm = &hw->nvm;
432 s32 ret_val = -E1000_ERR_NVM;
433 u16 widx = 0;
434
435 /* A check for invalid values: offset too large, too many words,
436 * and not enough words.
437 */
438 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
439 (words == 0)) {
440 hw_dbg("nvm parameter(s) out of bounds\n");
441 return ret_val;
442 }
443
444 while (widx < words) {
445 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
446
447 ret_val = nvm->ops.acquire(hw);
448 if (ret_val)
449 return ret_val;
450
451 ret_val = igb_ready_nvm_eeprom(hw);
452 if (ret_val) {
453 nvm->ops.release(hw);
454 return ret_val;
455 }
456
457 igb_standby_nvm(hw);
458
459 /* Send the WRITE ENABLE command (8 bit opcode) */
460 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
461 nvm->opcode_bits);
462
463 igb_standby_nvm(hw);
464
465 /* Some SPI eeproms use the 8th address bit embedded in the
466 * opcode
467 */
468 if ((nvm->address_bits == 8) && (offset >= 128))
469 write_opcode |= NVM_A8_OPCODE_SPI;
470
471 /* Send the Write command (8-bit opcode + addr) */
472 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
473 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
474 nvm->address_bits);
475
476 /* Loop to allow for up to whole page write of eeprom */
477 while (widx < words) {
478 u16 word_out = data[widx];
479
480 word_out = (word_out >> 8) | (word_out << 8);
481 igb_shift_out_eec_bits(hw, word_out, 16);
482 widx++;
483
484 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
485 igb_standby_nvm(hw);
486 break;
487 }
488 }
489 usleep_range(1000, 2000);
490 nvm->ops.release(hw);
491 }
492
493 return ret_val;
494 }
495
496 /**
497 * igb_read_part_string - Read device part number
498 * @hw: pointer to the HW structure
499 * @part_num: pointer to device part number
500 * @part_num_size: size of part number buffer
501 *
502 * Reads the product board assembly (PBA) number from the EEPROM and stores
503 * the value in part_num.
504 **/
igb_read_part_string(struct e1000_hw * hw,u8 * part_num,u32 part_num_size)505 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
506 {
507 s32 ret_val;
508 u16 nvm_data;
509 u16 pointer;
510 u16 offset;
511 u16 length;
512
513 if (part_num == NULL) {
514 hw_dbg("PBA string buffer was null\n");
515 ret_val = E1000_ERR_INVALID_ARGUMENT;
516 goto out;
517 }
518
519 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
520 if (ret_val) {
521 hw_dbg("NVM Read Error\n");
522 goto out;
523 }
524
525 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
526 if (ret_val) {
527 hw_dbg("NVM Read Error\n");
528 goto out;
529 }
530
531 /* if nvm_data is not ptr guard the PBA must be in legacy format which
532 * means pointer is actually our second data word for the PBA number
533 * and we can decode it into an ascii string
534 */
535 if (nvm_data != NVM_PBA_PTR_GUARD) {
536 hw_dbg("NVM PBA number is not stored as string\n");
537
538 /* we will need 11 characters to store the PBA */
539 if (part_num_size < 11) {
540 hw_dbg("PBA string buffer too small\n");
541 return E1000_ERR_NO_SPACE;
542 }
543
544 /* extract hex string from data and pointer */
545 part_num[0] = (nvm_data >> 12) & 0xF;
546 part_num[1] = (nvm_data >> 8) & 0xF;
547 part_num[2] = (nvm_data >> 4) & 0xF;
548 part_num[3] = nvm_data & 0xF;
549 part_num[4] = (pointer >> 12) & 0xF;
550 part_num[5] = (pointer >> 8) & 0xF;
551 part_num[6] = '-';
552 part_num[7] = 0;
553 part_num[8] = (pointer >> 4) & 0xF;
554 part_num[9] = pointer & 0xF;
555
556 /* put a null character on the end of our string */
557 part_num[10] = '\0';
558
559 /* switch all the data but the '-' to hex char */
560 for (offset = 0; offset < 10; offset++) {
561 if (part_num[offset] < 0xA)
562 part_num[offset] += '0';
563 else if (part_num[offset] < 0x10)
564 part_num[offset] += 'A' - 0xA;
565 }
566
567 goto out;
568 }
569
570 ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
571 if (ret_val) {
572 hw_dbg("NVM Read Error\n");
573 goto out;
574 }
575
576 if (length == 0xFFFF || length == 0) {
577 hw_dbg("NVM PBA number section invalid length\n");
578 ret_val = E1000_ERR_NVM_PBA_SECTION;
579 goto out;
580 }
581 /* check if part_num buffer is big enough */
582 if (part_num_size < (((u32)length * 2) - 1)) {
583 hw_dbg("PBA string buffer too small\n");
584 ret_val = E1000_ERR_NO_SPACE;
585 goto out;
586 }
587
588 /* trim pba length from start of string */
589 pointer++;
590 length--;
591
592 for (offset = 0; offset < length; offset++) {
593 ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
594 if (ret_val) {
595 hw_dbg("NVM Read Error\n");
596 goto out;
597 }
598 part_num[offset * 2] = (u8)(nvm_data >> 8);
599 part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
600 }
601 part_num[offset * 2] = '\0';
602
603 out:
604 return ret_val;
605 }
606
607 /**
608 * igb_read_mac_addr - Read device MAC address
609 * @hw: pointer to the HW structure
610 *
611 * Reads the device MAC address from the EEPROM and stores the value.
612 * Since devices with two ports use the same EEPROM, we increment the
613 * last bit in the MAC address for the second port.
614 **/
igb_read_mac_addr(struct e1000_hw * hw)615 s32 igb_read_mac_addr(struct e1000_hw *hw)
616 {
617 u32 rar_high;
618 u32 rar_low;
619 u16 i;
620
621 rar_high = rd32(E1000_RAH(0));
622 rar_low = rd32(E1000_RAL(0));
623
624 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
625 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
626
627 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
628 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
629
630 for (i = 0; i < ETH_ALEN; i++)
631 hw->mac.addr[i] = hw->mac.perm_addr[i];
632
633 return 0;
634 }
635
636 /**
637 * igb_validate_nvm_checksum - Validate EEPROM checksum
638 * @hw: pointer to the HW structure
639 *
640 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
641 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
642 **/
igb_validate_nvm_checksum(struct e1000_hw * hw)643 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
644 {
645 s32 ret_val = 0;
646 u16 checksum = 0;
647 u16 i, nvm_data;
648
649 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
650 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
651 if (ret_val) {
652 hw_dbg("NVM Read Error\n");
653 goto out;
654 }
655 checksum += nvm_data;
656 }
657
658 if (checksum != (u16) NVM_SUM) {
659 hw_dbg("NVM Checksum Invalid\n");
660 ret_val = -E1000_ERR_NVM;
661 goto out;
662 }
663
664 out:
665 return ret_val;
666 }
667
668 /**
669 * igb_update_nvm_checksum - Update EEPROM checksum
670 * @hw: pointer to the HW structure
671 *
672 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
673 * up to the checksum. Then calculates the EEPROM checksum and writes the
674 * value to the EEPROM.
675 **/
igb_update_nvm_checksum(struct e1000_hw * hw)676 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
677 {
678 s32 ret_val;
679 u16 checksum = 0;
680 u16 i, nvm_data;
681
682 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
683 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
684 if (ret_val) {
685 hw_dbg("NVM Read Error while updating checksum.\n");
686 goto out;
687 }
688 checksum += nvm_data;
689 }
690 checksum = (u16) NVM_SUM - checksum;
691 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
692 if (ret_val)
693 hw_dbg("NVM Write Error while updating checksum.\n");
694
695 out:
696 return ret_val;
697 }
698
699 /**
700 * igb_get_fw_version - Get firmware version information
701 * @hw: pointer to the HW structure
702 * @fw_vers: pointer to output structure
703 *
704 * unsupported MAC types will return all 0 version structure
705 **/
igb_get_fw_version(struct e1000_hw * hw,struct e1000_fw_version * fw_vers)706 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
707 {
708 u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
709 u8 q, hval, rem, result;
710 u16 comb_verh, comb_verl, comb_offset;
711
712 memset(fw_vers, 0, sizeof(struct e1000_fw_version));
713
714 /* basic eeprom version numbers and bits used vary by part and by tool
715 * used to create the nvm images. Check which data format we have.
716 */
717 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
718 switch (hw->mac.type) {
719 case e1000_i211:
720 igb_read_invm_version(hw, fw_vers);
721 return;
722 case e1000_82575:
723 case e1000_82576:
724 case e1000_82580:
725 /* Use this format, unless EETRACK ID exists,
726 * then use alternate format
727 */
728 if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
729 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
730 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
731 >> NVM_MAJOR_SHIFT;
732 fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
733 >> NVM_MINOR_SHIFT;
734 fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
735 goto etrack_id;
736 }
737 break;
738 case e1000_i210:
739 if (!(igb_get_flash_presence_i210(hw))) {
740 igb_read_invm_version(hw, fw_vers);
741 return;
742 }
743 /* fall through */
744 case e1000_i350:
745 /* find combo image version */
746 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
747 if ((comb_offset != 0x0) &&
748 (comb_offset != NVM_VER_INVALID)) {
749
750 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
751 + 1), 1, &comb_verh);
752 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
753 1, &comb_verl);
754
755 /* get Option Rom version if it exists and is valid */
756 if ((comb_verh && comb_verl) &&
757 ((comb_verh != NVM_VER_INVALID) &&
758 (comb_verl != NVM_VER_INVALID))) {
759
760 fw_vers->or_valid = true;
761 fw_vers->or_major =
762 comb_verl >> NVM_COMB_VER_SHFT;
763 fw_vers->or_build =
764 (comb_verl << NVM_COMB_VER_SHFT)
765 | (comb_verh >> NVM_COMB_VER_SHFT);
766 fw_vers->or_patch =
767 comb_verh & NVM_COMB_VER_MASK;
768 }
769 }
770 break;
771 default:
772 return;
773 }
774 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
775 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
776 >> NVM_MAJOR_SHIFT;
777
778 /* check for old style version format in newer images*/
779 if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
780 eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
781 } else {
782 eeprom_verl = (fw_version & NVM_MINOR_MASK)
783 >> NVM_MINOR_SHIFT;
784 }
785 /* Convert minor value to hex before assigning to output struct
786 * Val to be converted will not be higher than 99, per tool output
787 */
788 q = eeprom_verl / NVM_HEX_CONV;
789 hval = q * NVM_HEX_TENS;
790 rem = eeprom_verl % NVM_HEX_CONV;
791 result = hval + rem;
792 fw_vers->eep_minor = result;
793
794 etrack_id:
795 if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
796 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
797 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
798 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
799 | eeprom_verl;
800 }
801 }
802