1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9
10 #include <asm/cacheflush.h>
11 #include <asm/e820.h>
12 #include <asm/init.h>
13 #include <asm/page.h>
14 #include <asm/page_types.h>
15 #include <asm/sections.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/tlb.h>
19 #include <asm/proto.h>
20 #include <asm/dma.h> /* for MAX_DMA_PFN */
21 #include <asm/microcode.h>
22
23 /*
24 * We need to define the tracepoints somewhere, and tlb.c
25 * is only compied when SMP=y.
26 */
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/tlb.h>
29
30 #include "mm_internal.h"
31
32 /*
33 * Tables translating between page_cache_type_t and pte encoding.
34 *
35 * The default values are defined statically as minimal supported mode;
36 * WC and WT fall back to UC-. pat_init() updates these values to support
37 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
38 * for the details. Note, __early_ioremap() used during early boot-time
39 * takes pgprot_t (pte encoding) and does not use these tables.
40 *
41 * Index into __cachemode2pte_tbl[] is the cachemode.
42 *
43 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
44 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
45 */
46 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
47 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
48 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
49 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
50 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
51 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
52 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
53 };
54 EXPORT_SYMBOL(__cachemode2pte_tbl);
55
56 uint8_t __pte2cachemode_tbl[8] = {
57 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
58 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
59 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
60 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
61 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
62 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
63 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
65 };
66 EXPORT_SYMBOL(__pte2cachemode_tbl);
67
68 static unsigned long __initdata pgt_buf_start;
69 static unsigned long __initdata pgt_buf_end;
70 static unsigned long __initdata pgt_buf_top;
71
72 static unsigned long min_pfn_mapped;
73
74 static bool __initdata can_use_brk_pgt = true;
75
76 /*
77 * Pages returned are already directly mapped.
78 *
79 * Changing that is likely to break Xen, see commit:
80 *
81 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
82 *
83 * for detailed information.
84 */
alloc_low_pages(unsigned int num)85 __ref void *alloc_low_pages(unsigned int num)
86 {
87 unsigned long pfn;
88 int i;
89
90 if (after_bootmem) {
91 unsigned int order;
92
93 order = get_order((unsigned long)num << PAGE_SHIFT);
94 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
95 __GFP_ZERO, order);
96 }
97
98 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
99 unsigned long ret;
100 if (min_pfn_mapped >= max_pfn_mapped)
101 panic("alloc_low_pages: ran out of memory");
102 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
103 max_pfn_mapped << PAGE_SHIFT,
104 PAGE_SIZE * num , PAGE_SIZE);
105 if (!ret)
106 panic("alloc_low_pages: can not alloc memory");
107 memblock_reserve(ret, PAGE_SIZE * num);
108 pfn = ret >> PAGE_SHIFT;
109 } else {
110 pfn = pgt_buf_end;
111 pgt_buf_end += num;
112 }
113
114 for (i = 0; i < num; i++) {
115 void *adr;
116
117 adr = __va((pfn + i) << PAGE_SHIFT);
118 clear_page(adr);
119 }
120
121 return __va(pfn << PAGE_SHIFT);
122 }
123
124 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
125 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
126 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)127 void __init early_alloc_pgt_buf(void)
128 {
129 unsigned long tables = INIT_PGT_BUF_SIZE;
130 phys_addr_t base;
131
132 base = __pa(extend_brk(tables, PAGE_SIZE));
133
134 pgt_buf_start = base >> PAGE_SHIFT;
135 pgt_buf_end = pgt_buf_start;
136 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137 }
138
139 int after_bootmem;
140
141 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143 struct map_range {
144 unsigned long start;
145 unsigned long end;
146 unsigned page_size_mask;
147 };
148
149 static int page_size_mask;
150
probe_page_size_mask(void)151 static void __init probe_page_size_mask(void)
152 {
153 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
154 /*
155 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
156 * This will simplify cpa(), which otherwise needs to support splitting
157 * large pages into small in interrupt context, etc.
158 */
159 if (cpu_has_pse)
160 page_size_mask |= 1 << PG_LEVEL_2M;
161 #endif
162
163 /* Enable PSE if available */
164 if (cpu_has_pse)
165 cr4_set_bits_and_update_boot(X86_CR4_PSE);
166
167 /* Enable PGE if available */
168 if (cpu_has_pge && !kaiser_enabled) {
169 cr4_set_bits_and_update_boot(X86_CR4_PGE);
170 __supported_pte_mask |= _PAGE_GLOBAL;
171 } else
172 __supported_pte_mask &= ~_PAGE_GLOBAL;
173
174 /* Enable 1 GB linear kernel mappings if available: */
175 if (direct_gbpages && cpu_has_gbpages) {
176 printk(KERN_INFO "Using GB pages for direct mapping\n");
177 page_size_mask |= 1 << PG_LEVEL_1G;
178 } else {
179 direct_gbpages = 0;
180 }
181 }
182
183 #ifdef CONFIG_X86_32
184 #define NR_RANGE_MR 3
185 #else /* CONFIG_X86_64 */
186 #define NR_RANGE_MR 5
187 #endif
188
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)189 static int __meminit save_mr(struct map_range *mr, int nr_range,
190 unsigned long start_pfn, unsigned long end_pfn,
191 unsigned long page_size_mask)
192 {
193 if (start_pfn < end_pfn) {
194 if (nr_range >= NR_RANGE_MR)
195 panic("run out of range for init_memory_mapping\n");
196 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
197 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
198 mr[nr_range].page_size_mask = page_size_mask;
199 nr_range++;
200 }
201
202 return nr_range;
203 }
204
205 /*
206 * adjust the page_size_mask for small range to go with
207 * big page size instead small one if nearby are ram too.
208 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)209 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
210 int nr_range)
211 {
212 int i;
213
214 for (i = 0; i < nr_range; i++) {
215 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
216 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
217 unsigned long start = round_down(mr[i].start, PMD_SIZE);
218 unsigned long end = round_up(mr[i].end, PMD_SIZE);
219
220 #ifdef CONFIG_X86_32
221 if ((end >> PAGE_SHIFT) > max_low_pfn)
222 continue;
223 #endif
224
225 if (memblock_is_region_memory(start, end - start))
226 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
227 }
228 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
229 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
230 unsigned long start = round_down(mr[i].start, PUD_SIZE);
231 unsigned long end = round_up(mr[i].end, PUD_SIZE);
232
233 if (memblock_is_region_memory(start, end - start))
234 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
235 }
236 }
237 }
238
page_size_string(struct map_range * mr)239 static const char *page_size_string(struct map_range *mr)
240 {
241 static const char str_1g[] = "1G";
242 static const char str_2m[] = "2M";
243 static const char str_4m[] = "4M";
244 static const char str_4k[] = "4k";
245
246 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
247 return str_1g;
248 /*
249 * 32-bit without PAE has a 4M large page size.
250 * PG_LEVEL_2M is misnamed, but we can at least
251 * print out the right size in the string.
252 */
253 if (IS_ENABLED(CONFIG_X86_32) &&
254 !IS_ENABLED(CONFIG_X86_PAE) &&
255 mr->page_size_mask & (1<<PG_LEVEL_2M))
256 return str_4m;
257
258 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
259 return str_2m;
260
261 return str_4k;
262 }
263
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)264 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
265 unsigned long start,
266 unsigned long end)
267 {
268 unsigned long start_pfn, end_pfn, limit_pfn;
269 unsigned long pfn;
270 int i;
271
272 limit_pfn = PFN_DOWN(end);
273
274 /* head if not big page alignment ? */
275 pfn = start_pfn = PFN_DOWN(start);
276 #ifdef CONFIG_X86_32
277 /*
278 * Don't use a large page for the first 2/4MB of memory
279 * because there are often fixed size MTRRs in there
280 * and overlapping MTRRs into large pages can cause
281 * slowdowns.
282 */
283 if (pfn == 0)
284 end_pfn = PFN_DOWN(PMD_SIZE);
285 else
286 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
287 #else /* CONFIG_X86_64 */
288 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289 #endif
290 if (end_pfn > limit_pfn)
291 end_pfn = limit_pfn;
292 if (start_pfn < end_pfn) {
293 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
294 pfn = end_pfn;
295 }
296
297 /* big page (2M) range */
298 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299 #ifdef CONFIG_X86_32
300 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
301 #else /* CONFIG_X86_64 */
302 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
303 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
304 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
305 #endif
306
307 if (start_pfn < end_pfn) {
308 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
309 page_size_mask & (1<<PG_LEVEL_2M));
310 pfn = end_pfn;
311 }
312
313 #ifdef CONFIG_X86_64
314 /* big page (1G) range */
315 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
316 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
317 if (start_pfn < end_pfn) {
318 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
319 page_size_mask &
320 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
321 pfn = end_pfn;
322 }
323
324 /* tail is not big page (1G) alignment */
325 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
326 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
327 if (start_pfn < end_pfn) {
328 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
329 page_size_mask & (1<<PG_LEVEL_2M));
330 pfn = end_pfn;
331 }
332 #endif
333
334 /* tail is not big page (2M) alignment */
335 start_pfn = pfn;
336 end_pfn = limit_pfn;
337 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
338
339 if (!after_bootmem)
340 adjust_range_page_size_mask(mr, nr_range);
341
342 /* try to merge same page size and continuous */
343 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
344 unsigned long old_start;
345 if (mr[i].end != mr[i+1].start ||
346 mr[i].page_size_mask != mr[i+1].page_size_mask)
347 continue;
348 /* move it */
349 old_start = mr[i].start;
350 memmove(&mr[i], &mr[i+1],
351 (nr_range - 1 - i) * sizeof(struct map_range));
352 mr[i--].start = old_start;
353 nr_range--;
354 }
355
356 for (i = 0; i < nr_range; i++)
357 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
358 mr[i].start, mr[i].end - 1,
359 page_size_string(&mr[i]));
360
361 return nr_range;
362 }
363
364 struct range pfn_mapped[E820_X_MAX];
365 int nr_pfn_mapped;
366
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)367 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
368 {
369 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
370 nr_pfn_mapped, start_pfn, end_pfn);
371 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
372
373 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
374
375 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
376 max_low_pfn_mapped = max(max_low_pfn_mapped,
377 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
378 }
379
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)380 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
381 {
382 int i;
383
384 for (i = 0; i < nr_pfn_mapped; i++)
385 if ((start_pfn >= pfn_mapped[i].start) &&
386 (end_pfn <= pfn_mapped[i].end))
387 return true;
388
389 return false;
390 }
391
392 /*
393 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
394 * This runs before bootmem is initialized and gets pages directly from
395 * the physical memory. To access them they are temporarily mapped.
396 */
init_memory_mapping(unsigned long start,unsigned long end)397 unsigned long __init_refok init_memory_mapping(unsigned long start,
398 unsigned long end)
399 {
400 struct map_range mr[NR_RANGE_MR];
401 unsigned long ret = 0;
402 int nr_range, i;
403
404 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
405 start, end - 1);
406
407 memset(mr, 0, sizeof(mr));
408 nr_range = split_mem_range(mr, 0, start, end);
409
410 for (i = 0; i < nr_range; i++)
411 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
412 mr[i].page_size_mask);
413
414 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
415
416 return ret >> PAGE_SHIFT;
417 }
418
419 /*
420 * We need to iterate through the E820 memory map and create direct mappings
421 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
422 * create direct mappings for all pfns from [0 to max_low_pfn) and
423 * [4GB to max_pfn) because of possible memory holes in high addresses
424 * that cannot be marked as UC by fixed/variable range MTRRs.
425 * Depending on the alignment of E820 ranges, this may possibly result
426 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
427 *
428 * init_mem_mapping() calls init_range_memory_mapping() with big range.
429 * That range would have hole in the middle or ends, and only ram parts
430 * will be mapped in init_range_memory_mapping().
431 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)432 static unsigned long __init init_range_memory_mapping(
433 unsigned long r_start,
434 unsigned long r_end)
435 {
436 unsigned long start_pfn, end_pfn;
437 unsigned long mapped_ram_size = 0;
438 int i;
439
440 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
441 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
442 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
443 if (start >= end)
444 continue;
445
446 /*
447 * if it is overlapping with brk pgt, we need to
448 * alloc pgt buf from memblock instead.
449 */
450 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
451 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
452 init_memory_mapping(start, end);
453 mapped_ram_size += end - start;
454 can_use_brk_pgt = true;
455 }
456
457 return mapped_ram_size;
458 }
459
get_new_step_size(unsigned long step_size)460 static unsigned long __init get_new_step_size(unsigned long step_size)
461 {
462 /*
463 * Initial mapped size is PMD_SIZE (2M).
464 * We can not set step_size to be PUD_SIZE (1G) yet.
465 * In worse case, when we cross the 1G boundary, and
466 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
467 * to map 1G range with PTE. Hence we use one less than the
468 * difference of page table level shifts.
469 *
470 * Don't need to worry about overflow in the top-down case, on 32bit,
471 * when step_size is 0, round_down() returns 0 for start, and that
472 * turns it into 0x100000000ULL.
473 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
474 * needs to be taken into consideration by the code below.
475 */
476 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
477 }
478
479 /**
480 * memory_map_top_down - Map [map_start, map_end) top down
481 * @map_start: start address of the target memory range
482 * @map_end: end address of the target memory range
483 *
484 * This function will setup direct mapping for memory range
485 * [map_start, map_end) in top-down. That said, the page tables
486 * will be allocated at the end of the memory, and we map the
487 * memory in top-down.
488 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)489 static void __init memory_map_top_down(unsigned long map_start,
490 unsigned long map_end)
491 {
492 unsigned long real_end, start, last_start;
493 unsigned long step_size;
494 unsigned long addr;
495 unsigned long mapped_ram_size = 0;
496
497 /* xen has big range in reserved near end of ram, skip it at first.*/
498 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
499 real_end = addr + PMD_SIZE;
500
501 /* step_size need to be small so pgt_buf from BRK could cover it */
502 step_size = PMD_SIZE;
503 max_pfn_mapped = 0; /* will get exact value next */
504 min_pfn_mapped = real_end >> PAGE_SHIFT;
505 last_start = start = real_end;
506
507 /*
508 * We start from the top (end of memory) and go to the bottom.
509 * The memblock_find_in_range() gets us a block of RAM from the
510 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
511 * for page table.
512 */
513 while (last_start > map_start) {
514 if (last_start > step_size) {
515 start = round_down(last_start - 1, step_size);
516 if (start < map_start)
517 start = map_start;
518 } else
519 start = map_start;
520 mapped_ram_size += init_range_memory_mapping(start,
521 last_start);
522 last_start = start;
523 min_pfn_mapped = last_start >> PAGE_SHIFT;
524 if (mapped_ram_size >= step_size)
525 step_size = get_new_step_size(step_size);
526 }
527
528 if (real_end < map_end)
529 init_range_memory_mapping(real_end, map_end);
530 }
531
532 /**
533 * memory_map_bottom_up - Map [map_start, map_end) bottom up
534 * @map_start: start address of the target memory range
535 * @map_end: end address of the target memory range
536 *
537 * This function will setup direct mapping for memory range
538 * [map_start, map_end) in bottom-up. Since we have limited the
539 * bottom-up allocation above the kernel, the page tables will
540 * be allocated just above the kernel and we map the memory
541 * in [map_start, map_end) in bottom-up.
542 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)543 static void __init memory_map_bottom_up(unsigned long map_start,
544 unsigned long map_end)
545 {
546 unsigned long next, start;
547 unsigned long mapped_ram_size = 0;
548 /* step_size need to be small so pgt_buf from BRK could cover it */
549 unsigned long step_size = PMD_SIZE;
550
551 start = map_start;
552 min_pfn_mapped = start >> PAGE_SHIFT;
553
554 /*
555 * We start from the bottom (@map_start) and go to the top (@map_end).
556 * The memblock_find_in_range() gets us a block of RAM from the
557 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
558 * for page table.
559 */
560 while (start < map_end) {
561 if (step_size && map_end - start > step_size) {
562 next = round_up(start + 1, step_size);
563 if (next > map_end)
564 next = map_end;
565 } else {
566 next = map_end;
567 }
568
569 mapped_ram_size += init_range_memory_mapping(start, next);
570 start = next;
571
572 if (mapped_ram_size >= step_size)
573 step_size = get_new_step_size(step_size);
574 }
575 }
576
init_mem_mapping(void)577 void __init init_mem_mapping(void)
578 {
579 unsigned long end;
580
581 probe_page_size_mask();
582
583 #ifdef CONFIG_X86_64
584 end = max_pfn << PAGE_SHIFT;
585 #else
586 end = max_low_pfn << PAGE_SHIFT;
587 #endif
588
589 /* the ISA range is always mapped regardless of memory holes */
590 init_memory_mapping(0, ISA_END_ADDRESS);
591
592 /*
593 * If the allocation is in bottom-up direction, we setup direct mapping
594 * in bottom-up, otherwise we setup direct mapping in top-down.
595 */
596 if (memblock_bottom_up()) {
597 unsigned long kernel_end = __pa_symbol(_end);
598
599 /*
600 * we need two separate calls here. This is because we want to
601 * allocate page tables above the kernel. So we first map
602 * [kernel_end, end) to make memory above the kernel be mapped
603 * as soon as possible. And then use page tables allocated above
604 * the kernel to map [ISA_END_ADDRESS, kernel_end).
605 */
606 memory_map_bottom_up(kernel_end, end);
607 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
608 } else {
609 memory_map_top_down(ISA_END_ADDRESS, end);
610 }
611
612 #ifdef CONFIG_X86_64
613 if (max_pfn > max_low_pfn) {
614 /* can we preseve max_low_pfn ?*/
615 max_low_pfn = max_pfn;
616 }
617 #else
618 early_ioremap_page_table_range_init();
619 #endif
620
621 load_cr3(swapper_pg_dir);
622 __flush_tlb_all();
623
624 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
625 }
626
627 /*
628 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
629 * is valid. The argument is a physical page number.
630 *
631 * On x86, access has to be given to the first megabyte of RAM because that
632 * area traditionally contains BIOS code and data regions used by X, dosemu,
633 * and similar apps. Since they map the entire memory range, the whole range
634 * must be allowed (for mapping), but any areas that would otherwise be
635 * disallowed are flagged as being "zero filled" instead of rejected.
636 * Access has to be given to non-kernel-ram areas as well, these contain the
637 * PCI mmio resources as well as potential bios/acpi data regions.
638 */
devmem_is_allowed(unsigned long pagenr)639 int devmem_is_allowed(unsigned long pagenr)
640 {
641 if (page_is_ram(pagenr)) {
642 /*
643 * For disallowed memory regions in the low 1MB range,
644 * request that the page be shown as all zeros.
645 */
646 if (pagenr < 256)
647 return 2;
648
649 return 0;
650 }
651
652 /*
653 * This must follow RAM test, since System RAM is considered a
654 * restricted resource under CONFIG_STRICT_IOMEM.
655 */
656 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
657 /* Low 1MB bypasses iomem restrictions. */
658 if (pagenr < 256)
659 return 1;
660
661 return 0;
662 }
663
664 return 1;
665 }
666
free_init_pages(char * what,unsigned long begin,unsigned long end)667 void free_init_pages(char *what, unsigned long begin, unsigned long end)
668 {
669 unsigned long begin_aligned, end_aligned;
670
671 /* Make sure boundaries are page aligned */
672 begin_aligned = PAGE_ALIGN(begin);
673 end_aligned = end & PAGE_MASK;
674
675 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
676 begin = begin_aligned;
677 end = end_aligned;
678 }
679
680 if (begin >= end)
681 return;
682
683 /*
684 * If debugging page accesses then do not free this memory but
685 * mark them not present - any buggy init-section access will
686 * create a kernel page fault:
687 */
688 #ifdef CONFIG_DEBUG_PAGEALLOC
689 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
690 begin, end - 1);
691 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
692 #else
693 /*
694 * We just marked the kernel text read only above, now that
695 * we are going to free part of that, we need to make that
696 * writeable and non-executable first.
697 */
698 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
699 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
700
701 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
702 #endif
703 }
704
free_initmem(void)705 void free_initmem(void)
706 {
707 free_init_pages("unused kernel",
708 (unsigned long)(&__init_begin),
709 (unsigned long)(&__init_end));
710 }
711
712 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)713 void __init free_initrd_mem(unsigned long start, unsigned long end)
714 {
715 /*
716 * Remember, initrd memory may contain microcode or other useful things.
717 * Before we lose initrd mem, we need to find a place to hold them
718 * now that normal virtual memory is enabled.
719 */
720 save_microcode_in_initrd();
721
722 /*
723 * end could be not aligned, and We can not align that,
724 * decompresser could be confused by aligned initrd_end
725 * We already reserve the end partial page before in
726 * - i386_start_kernel()
727 * - x86_64_start_kernel()
728 * - relocate_initrd()
729 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
730 */
731 free_init_pages("initrd", start, PAGE_ALIGN(end));
732 }
733 #endif
734
zone_sizes_init(void)735 void __init zone_sizes_init(void)
736 {
737 unsigned long max_zone_pfns[MAX_NR_ZONES];
738
739 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
740
741 #ifdef CONFIG_ZONE_DMA
742 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
743 #endif
744 #ifdef CONFIG_ZONE_DMA32
745 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
746 #endif
747 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
748 #ifdef CONFIG_HIGHMEM
749 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
750 #endif
751
752 free_area_init_nodes(max_zone_pfns);
753 }
754
755 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
756 .active_mm = &init_mm,
757 .state = 0,
758 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
759 };
760 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
761
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)762 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
763 {
764 /* entry 0 MUST be WB (hardwired to speed up translations) */
765 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
766
767 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
768 __pte2cachemode_tbl[entry] = cache;
769 }
770
771 #ifdef CONFIG_SWAP
max_swapfile_size(void)772 unsigned long max_swapfile_size(void)
773 {
774 unsigned long pages;
775
776 pages = generic_max_swapfile_size();
777
778 if (boot_cpu_has_bug(X86_BUG_L1TF)) {
779 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
780 unsigned long long l1tf_limit = l1tf_pfn_limit();
781 /*
782 * We encode swap offsets also with 3 bits below those for pfn
783 * which makes the usable limit higher.
784 */
785 #if CONFIG_PGTABLE_LEVELS > 2
786 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
787 #endif
788 pages = min_t(unsigned long long, l1tf_limit, pages);
789 }
790 return pages;
791 }
792 #endif
793