• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
input_defuzz_abs_event(int value,int old_val,int fuzz)59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
input_start_autorepeat(struct input_dev * dev,int code)75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
input_stop_autorepeat(struct input_dev * dev)86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	add_input_randomness(vals->type, vals->code, vals->value);
157 
158 	/* trigger auto repeat for key events */
159 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 		for (v = vals; v != vals + count; v++) {
161 			if (v->type == EV_KEY && v->value != 2) {
162 				if (v->value)
163 					input_start_autorepeat(dev, v->code);
164 				else
165 					input_stop_autorepeat(dev);
166 			}
167 		}
168 	}
169 }
170 
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)171 static void input_pass_event(struct input_dev *dev,
172 			     unsigned int type, unsigned int code, int value)
173 {
174 	struct input_value vals[] = { { type, code, value } };
175 
176 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178 
179 /*
180  * Generate software autorepeat event. Note that we take
181  * dev->event_lock here to avoid racing with input_event
182  * which may cause keys get "stuck".
183  */
input_repeat_key(unsigned long data)184 static void input_repeat_key(unsigned long data)
185 {
186 	struct input_dev *dev = (void *) data;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dev->event_lock, flags);
190 
191 	if (test_bit(dev->repeat_key, dev->key) &&
192 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 		struct input_value vals[] =  {
194 			{ EV_KEY, dev->repeat_key, 2 },
195 			input_value_sync
196 		};
197 
198 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
199 
200 		if (dev->rep[REP_PERIOD])
201 			mod_timer(&dev->timer, jiffies +
202 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 	}
204 
205 	spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207 
208 #define INPUT_IGNORE_EVENT	0
209 #define INPUT_PASS_TO_HANDLERS	1
210 #define INPUT_PASS_TO_DEVICE	2
211 #define INPUT_SLOT		4
212 #define INPUT_FLUSH		8
213 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214 
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)215 static int input_handle_abs_event(struct input_dev *dev,
216 				  unsigned int code, int *pval)
217 {
218 	struct input_mt *mt = dev->mt;
219 	bool is_mt_event;
220 	int *pold;
221 
222 	if (code == ABS_MT_SLOT) {
223 		/*
224 		 * "Stage" the event; we'll flush it later, when we
225 		 * get actual touch data.
226 		 */
227 		if (mt && *pval >= 0 && *pval < mt->num_slots)
228 			mt->slot = *pval;
229 
230 		return INPUT_IGNORE_EVENT;
231 	}
232 
233 	is_mt_event = input_is_mt_value(code);
234 
235 	if (!is_mt_event) {
236 		pold = &dev->absinfo[code].value;
237 	} else if (mt) {
238 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 	} else {
240 		/*
241 		 * Bypass filtering for multi-touch events when
242 		 * not employing slots.
243 		 */
244 		pold = NULL;
245 	}
246 
247 	if (pold) {
248 		*pval = input_defuzz_abs_event(*pval, *pold,
249 						dev->absinfo[code].fuzz);
250 		if (*pold == *pval)
251 			return INPUT_IGNORE_EVENT;
252 
253 		*pold = *pval;
254 	}
255 
256 	/* Flush pending "slot" event */
257 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 	}
261 
262 	return INPUT_PASS_TO_HANDLERS;
263 }
264 
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)265 static int input_get_disposition(struct input_dev *dev,
266 			  unsigned int type, unsigned int code, int *pval)
267 {
268 	int disposition = INPUT_IGNORE_EVENT;
269 	int value = *pval;
270 
271 	switch (type) {
272 
273 	case EV_SYN:
274 		switch (code) {
275 		case SYN_CONFIG:
276 			disposition = INPUT_PASS_TO_ALL;
277 			break;
278 
279 		case SYN_REPORT:
280 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 			break;
282 		case SYN_MT_REPORT:
283 			disposition = INPUT_PASS_TO_HANDLERS;
284 			break;
285 		}
286 		break;
287 
288 	case EV_KEY:
289 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290 
291 			/* auto-repeat bypasses state updates */
292 			if (value == 2) {
293 				disposition = INPUT_PASS_TO_HANDLERS;
294 				break;
295 			}
296 
297 			if (!!test_bit(code, dev->key) != !!value) {
298 
299 				__change_bit(code, dev->key);
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 			}
302 		}
303 		break;
304 
305 	case EV_SW:
306 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 		    !!test_bit(code, dev->sw) != !!value) {
308 
309 			__change_bit(code, dev->sw);
310 			disposition = INPUT_PASS_TO_HANDLERS;
311 		}
312 		break;
313 
314 	case EV_ABS:
315 		if (is_event_supported(code, dev->absbit, ABS_MAX))
316 			disposition = input_handle_abs_event(dev, code, &value);
317 
318 		break;
319 
320 	case EV_REL:
321 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 			disposition = INPUT_PASS_TO_HANDLERS;
323 
324 		break;
325 
326 	case EV_MSC:
327 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 			disposition = INPUT_PASS_TO_ALL;
329 
330 		break;
331 
332 	case EV_LED:
333 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 		    !!test_bit(code, dev->led) != !!value) {
335 
336 			__change_bit(code, dev->led);
337 			disposition = INPUT_PASS_TO_ALL;
338 		}
339 		break;
340 
341 	case EV_SND:
342 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343 
344 			if (!!test_bit(code, dev->snd) != !!value)
345 				__change_bit(code, dev->snd);
346 			disposition = INPUT_PASS_TO_ALL;
347 		}
348 		break;
349 
350 	case EV_REP:
351 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 			dev->rep[code] = value;
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_FF:
358 		if (value >= 0)
359 			disposition = INPUT_PASS_TO_ALL;
360 		break;
361 
362 	case EV_PWR:
363 		disposition = INPUT_PASS_TO_ALL;
364 		break;
365 	}
366 
367 	*pval = value;
368 	return disposition;
369 }
370 
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)371 static void input_handle_event(struct input_dev *dev,
372 			       unsigned int type, unsigned int code, int value)
373 {
374 	int disposition;
375 
376 	disposition = input_get_disposition(dev, type, code, &value);
377 
378 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 		dev->event(dev, type, code, value);
380 
381 	if (!dev->vals)
382 		return;
383 
384 	if (disposition & INPUT_PASS_TO_HANDLERS) {
385 		struct input_value *v;
386 
387 		if (disposition & INPUT_SLOT) {
388 			v = &dev->vals[dev->num_vals++];
389 			v->type = EV_ABS;
390 			v->code = ABS_MT_SLOT;
391 			v->value = dev->mt->slot;
392 		}
393 
394 		v = &dev->vals[dev->num_vals++];
395 		v->type = type;
396 		v->code = code;
397 		v->value = value;
398 	}
399 
400 	if (disposition & INPUT_FLUSH) {
401 		if (dev->num_vals >= 2)
402 			input_pass_values(dev, dev->vals, dev->num_vals);
403 		dev->num_vals = 0;
404 	} else if (dev->num_vals >= dev->max_vals - 2) {
405 		dev->vals[dev->num_vals++] = input_value_sync;
406 		input_pass_values(dev, dev->vals, dev->num_vals);
407 		dev->num_vals = 0;
408 	}
409 
410 }
411 
412 /**
413  * input_event() - report new input event
414  * @dev: device that generated the event
415  * @type: type of the event
416  * @code: event code
417  * @value: value of the event
418  *
419  * This function should be used by drivers implementing various input
420  * devices to report input events. See also input_inject_event().
421  *
422  * NOTE: input_event() may be safely used right after input device was
423  * allocated with input_allocate_device(), even before it is registered
424  * with input_register_device(), but the event will not reach any of the
425  * input handlers. Such early invocation of input_event() may be used
426  * to 'seed' initial state of a switch or initial position of absolute
427  * axis, etc.
428  */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)429 void input_event(struct input_dev *dev,
430 		 unsigned int type, unsigned int code, int value)
431 {
432 	unsigned long flags;
433 
434 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
435 
436 		spin_lock_irqsave(&dev->event_lock, flags);
437 		input_handle_event(dev, type, code, value);
438 		spin_unlock_irqrestore(&dev->event_lock, flags);
439 	}
440 }
441 EXPORT_SYMBOL(input_event);
442 
443 /**
444  * input_inject_event() - send input event from input handler
445  * @handle: input handle to send event through
446  * @type: type of the event
447  * @code: event code
448  * @value: value of the event
449  *
450  * Similar to input_event() but will ignore event if device is
451  * "grabbed" and handle injecting event is not the one that owns
452  * the device.
453  */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)454 void input_inject_event(struct input_handle *handle,
455 			unsigned int type, unsigned int code, int value)
456 {
457 	struct input_dev *dev = handle->dev;
458 	struct input_handle *grab;
459 	unsigned long flags;
460 
461 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 		spin_lock_irqsave(&dev->event_lock, flags);
463 
464 		rcu_read_lock();
465 		grab = rcu_dereference(dev->grab);
466 		if (!grab || grab == handle)
467 			input_handle_event(dev, type, code, value);
468 		rcu_read_unlock();
469 
470 		spin_unlock_irqrestore(&dev->event_lock, flags);
471 	}
472 }
473 EXPORT_SYMBOL(input_inject_event);
474 
475 /**
476  * input_alloc_absinfo - allocates array of input_absinfo structs
477  * @dev: the input device emitting absolute events
478  *
479  * If the absinfo struct the caller asked for is already allocated, this
480  * functions will not do anything.
481  */
input_alloc_absinfo(struct input_dev * dev)482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 	if (!dev->absinfo)
485 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 					GFP_KERNEL);
487 
488 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491 
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 			  int min, int max, int fuzz, int flat)
494 {
495 	struct input_absinfo *absinfo;
496 
497 	input_alloc_absinfo(dev);
498 	if (!dev->absinfo)
499 		return;
500 
501 	absinfo = &dev->absinfo[axis];
502 	absinfo->minimum = min;
503 	absinfo->maximum = max;
504 	absinfo->fuzz = fuzz;
505 	absinfo->flat = flat;
506 
507 	__set_bit(EV_ABS, dev->evbit);
508 	__set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511 
512 
513 /**
514  * input_grab_device - grabs device for exclusive use
515  * @handle: input handle that wants to own the device
516  *
517  * When a device is grabbed by an input handle all events generated by
518  * the device are delivered only to this handle. Also events injected
519  * by other input handles are ignored while device is grabbed.
520  */
input_grab_device(struct input_handle * handle)521 int input_grab_device(struct input_handle *handle)
522 {
523 	struct input_dev *dev = handle->dev;
524 	int retval;
525 
526 	retval = mutex_lock_interruptible(&dev->mutex);
527 	if (retval)
528 		return retval;
529 
530 	if (dev->grab) {
531 		retval = -EBUSY;
532 		goto out;
533 	}
534 
535 	rcu_assign_pointer(dev->grab, handle);
536 
537  out:
538 	mutex_unlock(&dev->mutex);
539 	return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542 
__input_release_device(struct input_handle * handle)543 static void __input_release_device(struct input_handle *handle)
544 {
545 	struct input_dev *dev = handle->dev;
546 	struct input_handle *grabber;
547 
548 	grabber = rcu_dereference_protected(dev->grab,
549 					    lockdep_is_held(&dev->mutex));
550 	if (grabber == handle) {
551 		rcu_assign_pointer(dev->grab, NULL);
552 		/* Make sure input_pass_event() notices that grab is gone */
553 		synchronize_rcu();
554 
555 		list_for_each_entry(handle, &dev->h_list, d_node)
556 			if (handle->open && handle->handler->start)
557 				handle->handler->start(handle);
558 	}
559 }
560 
561 /**
562  * input_release_device - release previously grabbed device
563  * @handle: input handle that owns the device
564  *
565  * Releases previously grabbed device so that other input handles can
566  * start receiving input events. Upon release all handlers attached
567  * to the device have their start() method called so they have a change
568  * to synchronize device state with the rest of the system.
569  */
input_release_device(struct input_handle * handle)570 void input_release_device(struct input_handle *handle)
571 {
572 	struct input_dev *dev = handle->dev;
573 
574 	mutex_lock(&dev->mutex);
575 	__input_release_device(handle);
576 	mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579 
580 /**
581  * input_open_device - open input device
582  * @handle: handle through which device is being accessed
583  *
584  * This function should be called by input handlers when they
585  * want to start receive events from given input device.
586  */
input_open_device(struct input_handle * handle)587 int input_open_device(struct input_handle *handle)
588 {
589 	struct input_dev *dev = handle->dev;
590 	int retval;
591 
592 	retval = mutex_lock_interruptible(&dev->mutex);
593 	if (retval)
594 		return retval;
595 
596 	if (dev->going_away) {
597 		retval = -ENODEV;
598 		goto out;
599 	}
600 
601 	handle->open++;
602 
603 	if (!dev->users++ && dev->open)
604 		retval = dev->open(dev);
605 
606 	if (retval) {
607 		dev->users--;
608 		if (!--handle->open) {
609 			/*
610 			 * Make sure we are not delivering any more events
611 			 * through this handle
612 			 */
613 			synchronize_rcu();
614 		}
615 	}
616 
617  out:
618 	mutex_unlock(&dev->mutex);
619 	return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622 
input_flush_device(struct input_handle * handle,struct file * file)623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 	struct input_dev *dev = handle->dev;
626 	int retval;
627 
628 	retval = mutex_lock_interruptible(&dev->mutex);
629 	if (retval)
630 		return retval;
631 
632 	if (dev->flush)
633 		retval = dev->flush(dev, file);
634 
635 	mutex_unlock(&dev->mutex);
636 	return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639 
640 /**
641  * input_close_device - close input device
642  * @handle: handle through which device is being accessed
643  *
644  * This function should be called by input handlers when they
645  * want to stop receive events from given input device.
646  */
input_close_device(struct input_handle * handle)647 void input_close_device(struct input_handle *handle)
648 {
649 	struct input_dev *dev = handle->dev;
650 
651 	mutex_lock(&dev->mutex);
652 
653 	__input_release_device(handle);
654 
655 	if (!--dev->users && dev->close)
656 		dev->close(dev);
657 
658 	if (!--handle->open) {
659 		/*
660 		 * synchronize_rcu() makes sure that input_pass_event()
661 		 * completed and that no more input events are delivered
662 		 * through this handle
663 		 */
664 		synchronize_rcu();
665 	}
666 
667 	mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670 
671 /*
672  * Simulate keyup events for all keys that are marked as pressed.
673  * The function must be called with dev->event_lock held.
674  */
input_dev_release_keys(struct input_dev * dev)675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 	bool need_sync = false;
678 	int code;
679 
680 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
681 		for_each_set_bit(code, dev->key, KEY_CNT) {
682 			input_pass_event(dev, EV_KEY, code, 0);
683 			need_sync = true;
684 		}
685 
686 		if (need_sync)
687 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
688 
689 		memset(dev->key, 0, sizeof(dev->key));
690 	}
691 }
692 
693 /*
694  * Prepare device for unregistering
695  */
input_disconnect_device(struct input_dev * dev)696 static void input_disconnect_device(struct input_dev *dev)
697 {
698 	struct input_handle *handle;
699 
700 	/*
701 	 * Mark device as going away. Note that we take dev->mutex here
702 	 * not to protect access to dev->going_away but rather to ensure
703 	 * that there are no threads in the middle of input_open_device()
704 	 */
705 	mutex_lock(&dev->mutex);
706 	dev->going_away = true;
707 	mutex_unlock(&dev->mutex);
708 
709 	spin_lock_irq(&dev->event_lock);
710 
711 	/*
712 	 * Simulate keyup events for all pressed keys so that handlers
713 	 * are not left with "stuck" keys. The driver may continue
714 	 * generate events even after we done here but they will not
715 	 * reach any handlers.
716 	 */
717 	input_dev_release_keys(dev);
718 
719 	list_for_each_entry(handle, &dev->h_list, d_node)
720 		handle->open = 0;
721 
722 	spin_unlock_irq(&dev->event_lock);
723 }
724 
725 /**
726  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
727  * @ke: keymap entry containing scancode to be converted.
728  * @scancode: pointer to the location where converted scancode should
729  *	be stored.
730  *
731  * This function is used to convert scancode stored in &struct keymap_entry
732  * into scalar form understood by legacy keymap handling methods. These
733  * methods expect scancodes to be represented as 'unsigned int'.
734  */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)735 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
736 			     unsigned int *scancode)
737 {
738 	switch (ke->len) {
739 	case 1:
740 		*scancode = *((u8 *)ke->scancode);
741 		break;
742 
743 	case 2:
744 		*scancode = *((u16 *)ke->scancode);
745 		break;
746 
747 	case 4:
748 		*scancode = *((u32 *)ke->scancode);
749 		break;
750 
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL(input_scancode_to_scalar);
758 
759 /*
760  * Those routines handle the default case where no [gs]etkeycode() is
761  * defined. In this case, an array indexed by the scancode is used.
762  */
763 
input_fetch_keycode(struct input_dev * dev,unsigned int index)764 static unsigned int input_fetch_keycode(struct input_dev *dev,
765 					unsigned int index)
766 {
767 	switch (dev->keycodesize) {
768 	case 1:
769 		return ((u8 *)dev->keycode)[index];
770 
771 	case 2:
772 		return ((u16 *)dev->keycode)[index];
773 
774 	default:
775 		return ((u32 *)dev->keycode)[index];
776 	}
777 }
778 
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)779 static int input_default_getkeycode(struct input_dev *dev,
780 				    struct input_keymap_entry *ke)
781 {
782 	unsigned int index;
783 	int error;
784 
785 	if (!dev->keycodesize)
786 		return -EINVAL;
787 
788 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
789 		index = ke->index;
790 	else {
791 		error = input_scancode_to_scalar(ke, &index);
792 		if (error)
793 			return error;
794 	}
795 
796 	if (index >= dev->keycodemax)
797 		return -EINVAL;
798 
799 	ke->keycode = input_fetch_keycode(dev, index);
800 	ke->index = index;
801 	ke->len = sizeof(index);
802 	memcpy(ke->scancode, &index, sizeof(index));
803 
804 	return 0;
805 }
806 
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)807 static int input_default_setkeycode(struct input_dev *dev,
808 				    const struct input_keymap_entry *ke,
809 				    unsigned int *old_keycode)
810 {
811 	unsigned int index;
812 	int error;
813 	int i;
814 
815 	if (!dev->keycodesize)
816 		return -EINVAL;
817 
818 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
819 		index = ke->index;
820 	} else {
821 		error = input_scancode_to_scalar(ke, &index);
822 		if (error)
823 			return error;
824 	}
825 
826 	if (index >= dev->keycodemax)
827 		return -EINVAL;
828 
829 	if (dev->keycodesize < sizeof(ke->keycode) &&
830 			(ke->keycode >> (dev->keycodesize * 8)))
831 		return -EINVAL;
832 
833 	switch (dev->keycodesize) {
834 		case 1: {
835 			u8 *k = (u8 *)dev->keycode;
836 			*old_keycode = k[index];
837 			k[index] = ke->keycode;
838 			break;
839 		}
840 		case 2: {
841 			u16 *k = (u16 *)dev->keycode;
842 			*old_keycode = k[index];
843 			k[index] = ke->keycode;
844 			break;
845 		}
846 		default: {
847 			u32 *k = (u32 *)dev->keycode;
848 			*old_keycode = k[index];
849 			k[index] = ke->keycode;
850 			break;
851 		}
852 	}
853 
854 	if (*old_keycode <= KEY_MAX) {
855 		__clear_bit(*old_keycode, dev->keybit);
856 		for (i = 0; i < dev->keycodemax; i++) {
857 			if (input_fetch_keycode(dev, i) == *old_keycode) {
858 				__set_bit(*old_keycode, dev->keybit);
859 				/* Setting the bit twice is useless, so break */
860 				break;
861 			}
862 		}
863 	}
864 
865 	__set_bit(ke->keycode, dev->keybit);
866 	return 0;
867 }
868 
869 /**
870  * input_get_keycode - retrieve keycode currently mapped to a given scancode
871  * @dev: input device which keymap is being queried
872  * @ke: keymap entry
873  *
874  * This function should be called by anyone interested in retrieving current
875  * keymap. Presently evdev handlers use it.
876  */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)877 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
878 {
879 	unsigned long flags;
880 	int retval;
881 
882 	spin_lock_irqsave(&dev->event_lock, flags);
883 	retval = dev->getkeycode(dev, ke);
884 	spin_unlock_irqrestore(&dev->event_lock, flags);
885 
886 	return retval;
887 }
888 EXPORT_SYMBOL(input_get_keycode);
889 
890 /**
891  * input_set_keycode - attribute a keycode to a given scancode
892  * @dev: input device which keymap is being updated
893  * @ke: new keymap entry
894  *
895  * This function should be called by anyone needing to update current
896  * keymap. Presently keyboard and evdev handlers use it.
897  */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)898 int input_set_keycode(struct input_dev *dev,
899 		      const struct input_keymap_entry *ke)
900 {
901 	unsigned long flags;
902 	unsigned int old_keycode;
903 	int retval;
904 
905 	if (ke->keycode > KEY_MAX)
906 		return -EINVAL;
907 
908 	spin_lock_irqsave(&dev->event_lock, flags);
909 
910 	retval = dev->setkeycode(dev, ke, &old_keycode);
911 	if (retval)
912 		goto out;
913 
914 	/* Make sure KEY_RESERVED did not get enabled. */
915 	__clear_bit(KEY_RESERVED, dev->keybit);
916 
917 	/*
918 	 * Simulate keyup event if keycode is not present
919 	 * in the keymap anymore
920 	 */
921 	if (old_keycode > KEY_MAX) {
922 		dev_warn(dev->dev.parent ?: &dev->dev,
923 			 "%s: got too big old keycode %#x\n",
924 			 __func__, old_keycode);
925 	} else if (test_bit(EV_KEY, dev->evbit) &&
926 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
927 		   __test_and_clear_bit(old_keycode, dev->key)) {
928 		struct input_value vals[] =  {
929 			{ EV_KEY, old_keycode, 0 },
930 			input_value_sync
931 		};
932 
933 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
934 	}
935 
936  out:
937 	spin_unlock_irqrestore(&dev->event_lock, flags);
938 
939 	return retval;
940 }
941 EXPORT_SYMBOL(input_set_keycode);
942 
input_match_device(struct input_handler * handler,struct input_dev * dev)943 static const struct input_device_id *input_match_device(struct input_handler *handler,
944 							struct input_dev *dev)
945 {
946 	const struct input_device_id *id;
947 
948 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
949 
950 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
951 			if (id->bustype != dev->id.bustype)
952 				continue;
953 
954 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
955 			if (id->vendor != dev->id.vendor)
956 				continue;
957 
958 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
959 			if (id->product != dev->id.product)
960 				continue;
961 
962 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
963 			if (id->version != dev->id.version)
964 				continue;
965 
966 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
970 			continue;
971 
972 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
973 			continue;
974 
975 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
976 			continue;
977 
978 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
979 			continue;
980 
981 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
982 			continue;
983 
984 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
985 			continue;
986 
987 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
988 			continue;
989 
990 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
991 			continue;
992 
993 		if (!handler->match || handler->match(handler, dev))
994 			return id;
995 	}
996 
997 	return NULL;
998 }
999 
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1000 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1001 {
1002 	const struct input_device_id *id;
1003 	int error;
1004 
1005 	id = input_match_device(handler, dev);
1006 	if (!id)
1007 		return -ENODEV;
1008 
1009 	error = handler->connect(handler, dev, id);
1010 	if (error && error != -ENODEV)
1011 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1012 		       handler->name, kobject_name(&dev->dev.kobj), error);
1013 
1014 	return error;
1015 }
1016 
1017 #ifdef CONFIG_COMPAT
1018 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1019 static int input_bits_to_string(char *buf, int buf_size,
1020 				unsigned long bits, bool skip_empty)
1021 {
1022 	int len = 0;
1023 
1024 	if (INPUT_COMPAT_TEST) {
1025 		u32 dword = bits >> 32;
1026 		if (dword || !skip_empty)
1027 			len += snprintf(buf, buf_size, "%x ", dword);
1028 
1029 		dword = bits & 0xffffffffUL;
1030 		if (dword || !skip_empty || len)
1031 			len += snprintf(buf + len, max(buf_size - len, 0),
1032 					"%x", dword);
1033 	} else {
1034 		if (bits || !skip_empty)
1035 			len += snprintf(buf, buf_size, "%lx", bits);
1036 	}
1037 
1038 	return len;
1039 }
1040 
1041 #else /* !CONFIG_COMPAT */
1042 
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1043 static int input_bits_to_string(char *buf, int buf_size,
1044 				unsigned long bits, bool skip_empty)
1045 {
1046 	return bits || !skip_empty ?
1047 		snprintf(buf, buf_size, "%lx", bits) : 0;
1048 }
1049 
1050 #endif
1051 
1052 #ifdef CONFIG_PROC_FS
1053 
1054 static struct proc_dir_entry *proc_bus_input_dir;
1055 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1056 static int input_devices_state;
1057 
input_wakeup_procfs_readers(void)1058 static inline void input_wakeup_procfs_readers(void)
1059 {
1060 	input_devices_state++;
1061 	wake_up(&input_devices_poll_wait);
1062 }
1063 
input_proc_devices_poll(struct file * file,poll_table * wait)1064 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1065 {
1066 	poll_wait(file, &input_devices_poll_wait, wait);
1067 	if (file->f_version != input_devices_state) {
1068 		file->f_version = input_devices_state;
1069 		return POLLIN | POLLRDNORM;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 union input_seq_state {
1076 	struct {
1077 		unsigned short pos;
1078 		bool mutex_acquired;
1079 	};
1080 	void *p;
1081 };
1082 
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1083 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1084 {
1085 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1086 	int error;
1087 
1088 	/* We need to fit into seq->private pointer */
1089 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1090 
1091 	error = mutex_lock_interruptible(&input_mutex);
1092 	if (error) {
1093 		state->mutex_acquired = false;
1094 		return ERR_PTR(error);
1095 	}
1096 
1097 	state->mutex_acquired = true;
1098 
1099 	return seq_list_start(&input_dev_list, *pos);
1100 }
1101 
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1102 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1103 {
1104 	return seq_list_next(v, &input_dev_list, pos);
1105 }
1106 
input_seq_stop(struct seq_file * seq,void * v)1107 static void input_seq_stop(struct seq_file *seq, void *v)
1108 {
1109 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1110 
1111 	if (state->mutex_acquired)
1112 		mutex_unlock(&input_mutex);
1113 }
1114 
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1115 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1116 				   unsigned long *bitmap, int max)
1117 {
1118 	int i;
1119 	bool skip_empty = true;
1120 	char buf[18];
1121 
1122 	seq_printf(seq, "B: %s=", name);
1123 
1124 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1125 		if (input_bits_to_string(buf, sizeof(buf),
1126 					 bitmap[i], skip_empty)) {
1127 			skip_empty = false;
1128 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1129 		}
1130 	}
1131 
1132 	/*
1133 	 * If no output was produced print a single 0.
1134 	 */
1135 	if (skip_empty)
1136 		seq_puts(seq, "0");
1137 
1138 	seq_putc(seq, '\n');
1139 }
1140 
input_devices_seq_show(struct seq_file * seq,void * v)1141 static int input_devices_seq_show(struct seq_file *seq, void *v)
1142 {
1143 	struct input_dev *dev = container_of(v, struct input_dev, node);
1144 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1145 	struct input_handle *handle;
1146 
1147 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1148 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1149 
1150 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1151 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1152 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1153 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1154 	seq_printf(seq, "H: Handlers=");
1155 
1156 	list_for_each_entry(handle, &dev->h_list, d_node)
1157 		seq_printf(seq, "%s ", handle->name);
1158 	seq_putc(seq, '\n');
1159 
1160 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1161 
1162 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1163 	if (test_bit(EV_KEY, dev->evbit))
1164 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1165 	if (test_bit(EV_REL, dev->evbit))
1166 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1167 	if (test_bit(EV_ABS, dev->evbit))
1168 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1169 	if (test_bit(EV_MSC, dev->evbit))
1170 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1171 	if (test_bit(EV_LED, dev->evbit))
1172 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1173 	if (test_bit(EV_SND, dev->evbit))
1174 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1175 	if (test_bit(EV_FF, dev->evbit))
1176 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1177 	if (test_bit(EV_SW, dev->evbit))
1178 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1179 
1180 	seq_putc(seq, '\n');
1181 
1182 	kfree(path);
1183 	return 0;
1184 }
1185 
1186 static const struct seq_operations input_devices_seq_ops = {
1187 	.start	= input_devices_seq_start,
1188 	.next	= input_devices_seq_next,
1189 	.stop	= input_seq_stop,
1190 	.show	= input_devices_seq_show,
1191 };
1192 
input_proc_devices_open(struct inode * inode,struct file * file)1193 static int input_proc_devices_open(struct inode *inode, struct file *file)
1194 {
1195 	return seq_open(file, &input_devices_seq_ops);
1196 }
1197 
1198 static const struct file_operations input_devices_fileops = {
1199 	.owner		= THIS_MODULE,
1200 	.open		= input_proc_devices_open,
1201 	.poll		= input_proc_devices_poll,
1202 	.read		= seq_read,
1203 	.llseek		= seq_lseek,
1204 	.release	= seq_release,
1205 };
1206 
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1207 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1208 {
1209 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1210 	int error;
1211 
1212 	/* We need to fit into seq->private pointer */
1213 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1214 
1215 	error = mutex_lock_interruptible(&input_mutex);
1216 	if (error) {
1217 		state->mutex_acquired = false;
1218 		return ERR_PTR(error);
1219 	}
1220 
1221 	state->mutex_acquired = true;
1222 	state->pos = *pos;
1223 
1224 	return seq_list_start(&input_handler_list, *pos);
1225 }
1226 
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1227 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1228 {
1229 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1230 
1231 	state->pos = *pos + 1;
1232 	return seq_list_next(v, &input_handler_list, pos);
1233 }
1234 
input_handlers_seq_show(struct seq_file * seq,void * v)1235 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1236 {
1237 	struct input_handler *handler = container_of(v, struct input_handler, node);
1238 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1239 
1240 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1241 	if (handler->filter)
1242 		seq_puts(seq, " (filter)");
1243 	if (handler->legacy_minors)
1244 		seq_printf(seq, " Minor=%d", handler->minor);
1245 	seq_putc(seq, '\n');
1246 
1247 	return 0;
1248 }
1249 
1250 static const struct seq_operations input_handlers_seq_ops = {
1251 	.start	= input_handlers_seq_start,
1252 	.next	= input_handlers_seq_next,
1253 	.stop	= input_seq_stop,
1254 	.show	= input_handlers_seq_show,
1255 };
1256 
input_proc_handlers_open(struct inode * inode,struct file * file)1257 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1258 {
1259 	return seq_open(file, &input_handlers_seq_ops);
1260 }
1261 
1262 static const struct file_operations input_handlers_fileops = {
1263 	.owner		= THIS_MODULE,
1264 	.open		= input_proc_handlers_open,
1265 	.read		= seq_read,
1266 	.llseek		= seq_lseek,
1267 	.release	= seq_release,
1268 };
1269 
input_proc_init(void)1270 static int __init input_proc_init(void)
1271 {
1272 	struct proc_dir_entry *entry;
1273 
1274 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1275 	if (!proc_bus_input_dir)
1276 		return -ENOMEM;
1277 
1278 	entry = proc_create("devices", 0, proc_bus_input_dir,
1279 			    &input_devices_fileops);
1280 	if (!entry)
1281 		goto fail1;
1282 
1283 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1284 			    &input_handlers_fileops);
1285 	if (!entry)
1286 		goto fail2;
1287 
1288 	return 0;
1289 
1290  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1291  fail1: remove_proc_entry("bus/input", NULL);
1292 	return -ENOMEM;
1293 }
1294 
input_proc_exit(void)1295 static void input_proc_exit(void)
1296 {
1297 	remove_proc_entry("devices", proc_bus_input_dir);
1298 	remove_proc_entry("handlers", proc_bus_input_dir);
1299 	remove_proc_entry("bus/input", NULL);
1300 }
1301 
1302 #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1303 static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1304 static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1305 static inline void input_proc_exit(void) { }
1306 #endif
1307 
1308 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1309 static ssize_t input_dev_show_##name(struct device *dev,		\
1310 				     struct device_attribute *attr,	\
1311 				     char *buf)				\
1312 {									\
1313 	struct input_dev *input_dev = to_input_dev(dev);		\
1314 									\
1315 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1316 			 input_dev->name ? input_dev->name : "");	\
1317 }									\
1318 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1319 
1320 INPUT_DEV_STRING_ATTR_SHOW(name);
1321 INPUT_DEV_STRING_ATTR_SHOW(phys);
1322 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1323 
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1324 static int input_print_modalias_bits(char *buf, int size,
1325 				     char name, unsigned long *bm,
1326 				     unsigned int min_bit, unsigned int max_bit)
1327 {
1328 	int len = 0, i;
1329 
1330 	len += snprintf(buf, max(size, 0), "%c", name);
1331 	for (i = min_bit; i < max_bit; i++)
1332 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1333 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1334 	return len;
1335 }
1336 
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1337 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1338 				int add_cr)
1339 {
1340 	int len;
1341 
1342 	len = snprintf(buf, max(size, 0),
1343 		       "input:b%04Xv%04Xp%04Xe%04X-",
1344 		       id->id.bustype, id->id.vendor,
1345 		       id->id.product, id->id.version);
1346 
1347 	len += input_print_modalias_bits(buf + len, size - len,
1348 				'e', id->evbit, 0, EV_MAX);
1349 	len += input_print_modalias_bits(buf + len, size - len,
1350 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1351 	len += input_print_modalias_bits(buf + len, size - len,
1352 				'r', id->relbit, 0, REL_MAX);
1353 	len += input_print_modalias_bits(buf + len, size - len,
1354 				'a', id->absbit, 0, ABS_MAX);
1355 	len += input_print_modalias_bits(buf + len, size - len,
1356 				'm', id->mscbit, 0, MSC_MAX);
1357 	len += input_print_modalias_bits(buf + len, size - len,
1358 				'l', id->ledbit, 0, LED_MAX);
1359 	len += input_print_modalias_bits(buf + len, size - len,
1360 				's', id->sndbit, 0, SND_MAX);
1361 	len += input_print_modalias_bits(buf + len, size - len,
1362 				'f', id->ffbit, 0, FF_MAX);
1363 	len += input_print_modalias_bits(buf + len, size - len,
1364 				'w', id->swbit, 0, SW_MAX);
1365 
1366 	if (add_cr)
1367 		len += snprintf(buf + len, max(size - len, 0), "\n");
1368 
1369 	return len;
1370 }
1371 
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1372 static ssize_t input_dev_show_modalias(struct device *dev,
1373 				       struct device_attribute *attr,
1374 				       char *buf)
1375 {
1376 	struct input_dev *id = to_input_dev(dev);
1377 	ssize_t len;
1378 
1379 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1380 
1381 	return min_t(int, len, PAGE_SIZE);
1382 }
1383 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1384 
1385 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1386 			      int max, int add_cr);
1387 
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1388 static ssize_t input_dev_show_properties(struct device *dev,
1389 					 struct device_attribute *attr,
1390 					 char *buf)
1391 {
1392 	struct input_dev *input_dev = to_input_dev(dev);
1393 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1394 				     INPUT_PROP_MAX, true);
1395 	return min_t(int, len, PAGE_SIZE);
1396 }
1397 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1398 
1399 static struct attribute *input_dev_attrs[] = {
1400 	&dev_attr_name.attr,
1401 	&dev_attr_phys.attr,
1402 	&dev_attr_uniq.attr,
1403 	&dev_attr_modalias.attr,
1404 	&dev_attr_properties.attr,
1405 	NULL
1406 };
1407 
1408 static struct attribute_group input_dev_attr_group = {
1409 	.attrs	= input_dev_attrs,
1410 };
1411 
1412 #define INPUT_DEV_ID_ATTR(name)						\
1413 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1414 					struct device_attribute *attr,	\
1415 					char *buf)			\
1416 {									\
1417 	struct input_dev *input_dev = to_input_dev(dev);		\
1418 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1419 }									\
1420 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1421 
1422 INPUT_DEV_ID_ATTR(bustype);
1423 INPUT_DEV_ID_ATTR(vendor);
1424 INPUT_DEV_ID_ATTR(product);
1425 INPUT_DEV_ID_ATTR(version);
1426 
1427 static struct attribute *input_dev_id_attrs[] = {
1428 	&dev_attr_bustype.attr,
1429 	&dev_attr_vendor.attr,
1430 	&dev_attr_product.attr,
1431 	&dev_attr_version.attr,
1432 	NULL
1433 };
1434 
1435 static struct attribute_group input_dev_id_attr_group = {
1436 	.name	= "id",
1437 	.attrs	= input_dev_id_attrs,
1438 };
1439 
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1440 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1441 			      int max, int add_cr)
1442 {
1443 	int i;
1444 	int len = 0;
1445 	bool skip_empty = true;
1446 
1447 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1448 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1449 					    bitmap[i], skip_empty);
1450 		if (len) {
1451 			skip_empty = false;
1452 			if (i > 0)
1453 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1454 		}
1455 	}
1456 
1457 	/*
1458 	 * If no output was produced print a single 0.
1459 	 */
1460 	if (len == 0)
1461 		len = snprintf(buf, buf_size, "%d", 0);
1462 
1463 	if (add_cr)
1464 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1465 
1466 	return len;
1467 }
1468 
1469 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1470 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1471 				       struct device_attribute *attr,	\
1472 				       char *buf)			\
1473 {									\
1474 	struct input_dev *input_dev = to_input_dev(dev);		\
1475 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1476 				     input_dev->bm##bit, ev##_MAX,	\
1477 				     true);				\
1478 	return min_t(int, len, PAGE_SIZE);				\
1479 }									\
1480 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1481 
1482 INPUT_DEV_CAP_ATTR(EV, ev);
1483 INPUT_DEV_CAP_ATTR(KEY, key);
1484 INPUT_DEV_CAP_ATTR(REL, rel);
1485 INPUT_DEV_CAP_ATTR(ABS, abs);
1486 INPUT_DEV_CAP_ATTR(MSC, msc);
1487 INPUT_DEV_CAP_ATTR(LED, led);
1488 INPUT_DEV_CAP_ATTR(SND, snd);
1489 INPUT_DEV_CAP_ATTR(FF, ff);
1490 INPUT_DEV_CAP_ATTR(SW, sw);
1491 
1492 static struct attribute *input_dev_caps_attrs[] = {
1493 	&dev_attr_ev.attr,
1494 	&dev_attr_key.attr,
1495 	&dev_attr_rel.attr,
1496 	&dev_attr_abs.attr,
1497 	&dev_attr_msc.attr,
1498 	&dev_attr_led.attr,
1499 	&dev_attr_snd.attr,
1500 	&dev_attr_ff.attr,
1501 	&dev_attr_sw.attr,
1502 	NULL
1503 };
1504 
1505 static struct attribute_group input_dev_caps_attr_group = {
1506 	.name	= "capabilities",
1507 	.attrs	= input_dev_caps_attrs,
1508 };
1509 
1510 static const struct attribute_group *input_dev_attr_groups[] = {
1511 	&input_dev_attr_group,
1512 	&input_dev_id_attr_group,
1513 	&input_dev_caps_attr_group,
1514 	NULL
1515 };
1516 
input_dev_release(struct device * device)1517 static void input_dev_release(struct device *device)
1518 {
1519 	struct input_dev *dev = to_input_dev(device);
1520 
1521 	input_ff_destroy(dev);
1522 	input_mt_destroy_slots(dev);
1523 	kfree(dev->absinfo);
1524 	kfree(dev->vals);
1525 	kfree(dev);
1526 
1527 	module_put(THIS_MODULE);
1528 }
1529 
1530 /*
1531  * Input uevent interface - loading event handlers based on
1532  * device bitfields.
1533  */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1534 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1535 				   const char *name, unsigned long *bitmap, int max)
1536 {
1537 	int len;
1538 
1539 	if (add_uevent_var(env, "%s", name))
1540 		return -ENOMEM;
1541 
1542 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1543 				 sizeof(env->buf) - env->buflen,
1544 				 bitmap, max, false);
1545 	if (len >= (sizeof(env->buf) - env->buflen))
1546 		return -ENOMEM;
1547 
1548 	env->buflen += len;
1549 	return 0;
1550 }
1551 
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1552 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1553 					 struct input_dev *dev)
1554 {
1555 	int len;
1556 
1557 	if (add_uevent_var(env, "MODALIAS="))
1558 		return -ENOMEM;
1559 
1560 	len = input_print_modalias(&env->buf[env->buflen - 1],
1561 				   sizeof(env->buf) - env->buflen,
1562 				   dev, 0);
1563 	if (len >= (sizeof(env->buf) - env->buflen))
1564 		return -ENOMEM;
1565 
1566 	env->buflen += len;
1567 	return 0;
1568 }
1569 
1570 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1571 	do {								\
1572 		int err = add_uevent_var(env, fmt, val);		\
1573 		if (err)						\
1574 			return err;					\
1575 	} while (0)
1576 
1577 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1578 	do {								\
1579 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1580 		if (err)						\
1581 			return err;					\
1582 	} while (0)
1583 
1584 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1585 	do {								\
1586 		int err = input_add_uevent_modalias_var(env, dev);	\
1587 		if (err)						\
1588 			return err;					\
1589 	} while (0)
1590 
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1591 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1592 {
1593 	struct input_dev *dev = to_input_dev(device);
1594 
1595 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1596 				dev->id.bustype, dev->id.vendor,
1597 				dev->id.product, dev->id.version);
1598 	if (dev->name)
1599 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1600 	if (dev->phys)
1601 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1602 	if (dev->uniq)
1603 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1604 
1605 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1606 
1607 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1608 	if (test_bit(EV_KEY, dev->evbit))
1609 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1610 	if (test_bit(EV_REL, dev->evbit))
1611 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1612 	if (test_bit(EV_ABS, dev->evbit))
1613 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1614 	if (test_bit(EV_MSC, dev->evbit))
1615 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1616 	if (test_bit(EV_LED, dev->evbit))
1617 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1618 	if (test_bit(EV_SND, dev->evbit))
1619 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1620 	if (test_bit(EV_FF, dev->evbit))
1621 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1622 	if (test_bit(EV_SW, dev->evbit))
1623 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1624 
1625 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1626 
1627 	return 0;
1628 }
1629 
1630 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1631 	do {								\
1632 		int i;							\
1633 		bool active;						\
1634 									\
1635 		if (!test_bit(EV_##type, dev->evbit))			\
1636 			break;						\
1637 									\
1638 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1639 			active = test_bit(i, dev->bits);		\
1640 			if (!active && !on)				\
1641 				continue;				\
1642 									\
1643 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1644 		}							\
1645 	} while (0)
1646 
input_dev_toggle(struct input_dev * dev,bool activate)1647 static void input_dev_toggle(struct input_dev *dev, bool activate)
1648 {
1649 	if (!dev->event)
1650 		return;
1651 
1652 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1653 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1654 
1655 	if (activate && test_bit(EV_REP, dev->evbit)) {
1656 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1657 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1658 	}
1659 }
1660 
1661 /**
1662  * input_reset_device() - reset/restore the state of input device
1663  * @dev: input device whose state needs to be reset
1664  *
1665  * This function tries to reset the state of an opened input device and
1666  * bring internal state and state if the hardware in sync with each other.
1667  * We mark all keys as released, restore LED state, repeat rate, etc.
1668  */
input_reset_device(struct input_dev * dev)1669 void input_reset_device(struct input_dev *dev)
1670 {
1671 	unsigned long flags;
1672 
1673 	mutex_lock(&dev->mutex);
1674 	spin_lock_irqsave(&dev->event_lock, flags);
1675 
1676 	input_dev_toggle(dev, true);
1677 	input_dev_release_keys(dev);
1678 
1679 	spin_unlock_irqrestore(&dev->event_lock, flags);
1680 	mutex_unlock(&dev->mutex);
1681 }
1682 EXPORT_SYMBOL(input_reset_device);
1683 
1684 #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1685 static int input_dev_suspend(struct device *dev)
1686 {
1687 	struct input_dev *input_dev = to_input_dev(dev);
1688 
1689 	spin_lock_irq(&input_dev->event_lock);
1690 
1691 	/*
1692 	 * Keys that are pressed now are unlikely to be
1693 	 * still pressed when we resume.
1694 	 */
1695 	input_dev_release_keys(input_dev);
1696 
1697 	/* Turn off LEDs and sounds, if any are active. */
1698 	input_dev_toggle(input_dev, false);
1699 
1700 	spin_unlock_irq(&input_dev->event_lock);
1701 
1702 	return 0;
1703 }
1704 
input_dev_resume(struct device * dev)1705 static int input_dev_resume(struct device *dev)
1706 {
1707 	struct input_dev *input_dev = to_input_dev(dev);
1708 
1709 	spin_lock_irq(&input_dev->event_lock);
1710 
1711 	/* Restore state of LEDs and sounds, if any were active. */
1712 	input_dev_toggle(input_dev, true);
1713 
1714 	spin_unlock_irq(&input_dev->event_lock);
1715 
1716 	return 0;
1717 }
1718 
input_dev_freeze(struct device * dev)1719 static int input_dev_freeze(struct device *dev)
1720 {
1721 	struct input_dev *input_dev = to_input_dev(dev);
1722 
1723 	spin_lock_irq(&input_dev->event_lock);
1724 
1725 	/*
1726 	 * Keys that are pressed now are unlikely to be
1727 	 * still pressed when we resume.
1728 	 */
1729 	input_dev_release_keys(input_dev);
1730 
1731 	spin_unlock_irq(&input_dev->event_lock);
1732 
1733 	return 0;
1734 }
1735 
input_dev_poweroff(struct device * dev)1736 static int input_dev_poweroff(struct device *dev)
1737 {
1738 	struct input_dev *input_dev = to_input_dev(dev);
1739 
1740 	spin_lock_irq(&input_dev->event_lock);
1741 
1742 	/* Turn off LEDs and sounds, if any are active. */
1743 	input_dev_toggle(input_dev, false);
1744 
1745 	spin_unlock_irq(&input_dev->event_lock);
1746 
1747 	return 0;
1748 }
1749 
1750 static const struct dev_pm_ops input_dev_pm_ops = {
1751 	.suspend	= input_dev_suspend,
1752 	.resume		= input_dev_resume,
1753 	.freeze		= input_dev_freeze,
1754 	.poweroff	= input_dev_poweroff,
1755 	.restore	= input_dev_resume,
1756 };
1757 #endif /* CONFIG_PM */
1758 
1759 static struct device_type input_dev_type = {
1760 	.groups		= input_dev_attr_groups,
1761 	.release	= input_dev_release,
1762 	.uevent		= input_dev_uevent,
1763 #ifdef CONFIG_PM_SLEEP
1764 	.pm		= &input_dev_pm_ops,
1765 #endif
1766 };
1767 
input_devnode(struct device * dev,umode_t * mode)1768 static char *input_devnode(struct device *dev, umode_t *mode)
1769 {
1770 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1771 }
1772 
1773 struct class input_class = {
1774 	.name		= "input",
1775 	.devnode	= input_devnode,
1776 };
1777 EXPORT_SYMBOL_GPL(input_class);
1778 
1779 /**
1780  * input_allocate_device - allocate memory for new input device
1781  *
1782  * Returns prepared struct input_dev or %NULL.
1783  *
1784  * NOTE: Use input_free_device() to free devices that have not been
1785  * registered; input_unregister_device() should be used for already
1786  * registered devices.
1787  */
input_allocate_device(void)1788 struct input_dev *input_allocate_device(void)
1789 {
1790 	static atomic_t input_no = ATOMIC_INIT(-1);
1791 	struct input_dev *dev;
1792 
1793 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1794 	if (dev) {
1795 		dev->dev.type = &input_dev_type;
1796 		dev->dev.class = &input_class;
1797 		device_initialize(&dev->dev);
1798 		mutex_init(&dev->mutex);
1799 		spin_lock_init(&dev->event_lock);
1800 		init_timer(&dev->timer);
1801 		INIT_LIST_HEAD(&dev->h_list);
1802 		INIT_LIST_HEAD(&dev->node);
1803 
1804 		dev_set_name(&dev->dev, "input%lu",
1805 			     (unsigned long)atomic_inc_return(&input_no));
1806 
1807 		__module_get(THIS_MODULE);
1808 	}
1809 
1810 	return dev;
1811 }
1812 EXPORT_SYMBOL(input_allocate_device);
1813 
1814 struct input_devres {
1815 	struct input_dev *input;
1816 };
1817 
devm_input_device_match(struct device * dev,void * res,void * data)1818 static int devm_input_device_match(struct device *dev, void *res, void *data)
1819 {
1820 	struct input_devres *devres = res;
1821 
1822 	return devres->input == data;
1823 }
1824 
devm_input_device_release(struct device * dev,void * res)1825 static void devm_input_device_release(struct device *dev, void *res)
1826 {
1827 	struct input_devres *devres = res;
1828 	struct input_dev *input = devres->input;
1829 
1830 	dev_dbg(dev, "%s: dropping reference to %s\n",
1831 		__func__, dev_name(&input->dev));
1832 	input_put_device(input);
1833 }
1834 
1835 /**
1836  * devm_input_allocate_device - allocate managed input device
1837  * @dev: device owning the input device being created
1838  *
1839  * Returns prepared struct input_dev or %NULL.
1840  *
1841  * Managed input devices do not need to be explicitly unregistered or
1842  * freed as it will be done automatically when owner device unbinds from
1843  * its driver (or binding fails). Once managed input device is allocated,
1844  * it is ready to be set up and registered in the same fashion as regular
1845  * input device. There are no special devm_input_device_[un]register()
1846  * variants, regular ones work with both managed and unmanaged devices,
1847  * should you need them. In most cases however, managed input device need
1848  * not be explicitly unregistered or freed.
1849  *
1850  * NOTE: the owner device is set up as parent of input device and users
1851  * should not override it.
1852  */
devm_input_allocate_device(struct device * dev)1853 struct input_dev *devm_input_allocate_device(struct device *dev)
1854 {
1855 	struct input_dev *input;
1856 	struct input_devres *devres;
1857 
1858 	devres = devres_alloc(devm_input_device_release,
1859 			      sizeof(struct input_devres), GFP_KERNEL);
1860 	if (!devres)
1861 		return NULL;
1862 
1863 	input = input_allocate_device();
1864 	if (!input) {
1865 		devres_free(devres);
1866 		return NULL;
1867 	}
1868 
1869 	input->dev.parent = dev;
1870 	input->devres_managed = true;
1871 
1872 	devres->input = input;
1873 	devres_add(dev, devres);
1874 
1875 	return input;
1876 }
1877 EXPORT_SYMBOL(devm_input_allocate_device);
1878 
1879 /**
1880  * input_free_device - free memory occupied by input_dev structure
1881  * @dev: input device to free
1882  *
1883  * This function should only be used if input_register_device()
1884  * was not called yet or if it failed. Once device was registered
1885  * use input_unregister_device() and memory will be freed once last
1886  * reference to the device is dropped.
1887  *
1888  * Device should be allocated by input_allocate_device().
1889  *
1890  * NOTE: If there are references to the input device then memory
1891  * will not be freed until last reference is dropped.
1892  */
input_free_device(struct input_dev * dev)1893 void input_free_device(struct input_dev *dev)
1894 {
1895 	if (dev) {
1896 		if (dev->devres_managed)
1897 			WARN_ON(devres_destroy(dev->dev.parent,
1898 						devm_input_device_release,
1899 						devm_input_device_match,
1900 						dev));
1901 		input_put_device(dev);
1902 	}
1903 }
1904 EXPORT_SYMBOL(input_free_device);
1905 
1906 /**
1907  * input_set_capability - mark device as capable of a certain event
1908  * @dev: device that is capable of emitting or accepting event
1909  * @type: type of the event (EV_KEY, EV_REL, etc...)
1910  * @code: event code
1911  *
1912  * In addition to setting up corresponding bit in appropriate capability
1913  * bitmap the function also adjusts dev->evbit.
1914  */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1915 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1916 {
1917 	switch (type) {
1918 	case EV_KEY:
1919 		__set_bit(code, dev->keybit);
1920 		break;
1921 
1922 	case EV_REL:
1923 		__set_bit(code, dev->relbit);
1924 		break;
1925 
1926 	case EV_ABS:
1927 		input_alloc_absinfo(dev);
1928 		if (!dev->absinfo)
1929 			return;
1930 
1931 		__set_bit(code, dev->absbit);
1932 		break;
1933 
1934 	case EV_MSC:
1935 		__set_bit(code, dev->mscbit);
1936 		break;
1937 
1938 	case EV_SW:
1939 		__set_bit(code, dev->swbit);
1940 		break;
1941 
1942 	case EV_LED:
1943 		__set_bit(code, dev->ledbit);
1944 		break;
1945 
1946 	case EV_SND:
1947 		__set_bit(code, dev->sndbit);
1948 		break;
1949 
1950 	case EV_FF:
1951 		__set_bit(code, dev->ffbit);
1952 		break;
1953 
1954 	case EV_PWR:
1955 		/* do nothing */
1956 		break;
1957 
1958 	default:
1959 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1960 		       type, code);
1961 		dump_stack();
1962 		return;
1963 	}
1964 
1965 	__set_bit(type, dev->evbit);
1966 }
1967 EXPORT_SYMBOL(input_set_capability);
1968 
input_estimate_events_per_packet(struct input_dev * dev)1969 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1970 {
1971 	int mt_slots;
1972 	int i;
1973 	unsigned int events;
1974 
1975 	if (dev->mt) {
1976 		mt_slots = dev->mt->num_slots;
1977 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1978 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1979 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1980 		mt_slots = clamp(mt_slots, 2, 32);
1981 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1982 		mt_slots = 2;
1983 	} else {
1984 		mt_slots = 0;
1985 	}
1986 
1987 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1988 
1989 	if (test_bit(EV_ABS, dev->evbit))
1990 		for_each_set_bit(i, dev->absbit, ABS_CNT)
1991 			events += input_is_mt_axis(i) ? mt_slots : 1;
1992 
1993 	if (test_bit(EV_REL, dev->evbit))
1994 		events += bitmap_weight(dev->relbit, REL_CNT);
1995 
1996 	/* Make room for KEY and MSC events */
1997 	events += 7;
1998 
1999 	return events;
2000 }
2001 
2002 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2003 	do {								\
2004 		if (!test_bit(EV_##type, dev->evbit))			\
2005 			memset(dev->bits##bit, 0,			\
2006 				sizeof(dev->bits##bit));		\
2007 	} while (0)
2008 
input_cleanse_bitmasks(struct input_dev * dev)2009 static void input_cleanse_bitmasks(struct input_dev *dev)
2010 {
2011 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2012 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2013 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2014 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2015 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2016 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2017 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2018 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2019 }
2020 
__input_unregister_device(struct input_dev * dev)2021 static void __input_unregister_device(struct input_dev *dev)
2022 {
2023 	struct input_handle *handle, *next;
2024 
2025 	input_disconnect_device(dev);
2026 
2027 	mutex_lock(&input_mutex);
2028 
2029 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2030 		handle->handler->disconnect(handle);
2031 	WARN_ON(!list_empty(&dev->h_list));
2032 
2033 	del_timer_sync(&dev->timer);
2034 	list_del_init(&dev->node);
2035 
2036 	input_wakeup_procfs_readers();
2037 
2038 	mutex_unlock(&input_mutex);
2039 
2040 	device_del(&dev->dev);
2041 }
2042 
devm_input_device_unregister(struct device * dev,void * res)2043 static void devm_input_device_unregister(struct device *dev, void *res)
2044 {
2045 	struct input_devres *devres = res;
2046 	struct input_dev *input = devres->input;
2047 
2048 	dev_dbg(dev, "%s: unregistering device %s\n",
2049 		__func__, dev_name(&input->dev));
2050 	__input_unregister_device(input);
2051 }
2052 
2053 /**
2054  * input_enable_softrepeat - enable software autorepeat
2055  * @dev: input device
2056  * @delay: repeat delay
2057  * @period: repeat period
2058  *
2059  * Enable software autorepeat on the input device.
2060  */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2061 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2062 {
2063 	dev->timer.data = (unsigned long) dev;
2064 	dev->timer.function = input_repeat_key;
2065 	dev->rep[REP_DELAY] = delay;
2066 	dev->rep[REP_PERIOD] = period;
2067 }
2068 EXPORT_SYMBOL(input_enable_softrepeat);
2069 
2070 /**
2071  * input_register_device - register device with input core
2072  * @dev: device to be registered
2073  *
2074  * This function registers device with input core. The device must be
2075  * allocated with input_allocate_device() and all it's capabilities
2076  * set up before registering.
2077  * If function fails the device must be freed with input_free_device().
2078  * Once device has been successfully registered it can be unregistered
2079  * with input_unregister_device(); input_free_device() should not be
2080  * called in this case.
2081  *
2082  * Note that this function is also used to register managed input devices
2083  * (ones allocated with devm_input_allocate_device()). Such managed input
2084  * devices need not be explicitly unregistered or freed, their tear down
2085  * is controlled by the devres infrastructure. It is also worth noting
2086  * that tear down of managed input devices is internally a 2-step process:
2087  * registered managed input device is first unregistered, but stays in
2088  * memory and can still handle input_event() calls (although events will
2089  * not be delivered anywhere). The freeing of managed input device will
2090  * happen later, when devres stack is unwound to the point where device
2091  * allocation was made.
2092  */
input_register_device(struct input_dev * dev)2093 int input_register_device(struct input_dev *dev)
2094 {
2095 	struct input_devres *devres = NULL;
2096 	struct input_handler *handler;
2097 	unsigned int packet_size;
2098 	const char *path;
2099 	int error;
2100 
2101 	if (dev->devres_managed) {
2102 		devres = devres_alloc(devm_input_device_unregister,
2103 				      sizeof(struct input_devres), GFP_KERNEL);
2104 		if (!devres)
2105 			return -ENOMEM;
2106 
2107 		devres->input = dev;
2108 	}
2109 
2110 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2111 	__set_bit(EV_SYN, dev->evbit);
2112 
2113 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2114 	__clear_bit(KEY_RESERVED, dev->keybit);
2115 
2116 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2117 	input_cleanse_bitmasks(dev);
2118 
2119 	packet_size = input_estimate_events_per_packet(dev);
2120 	if (dev->hint_events_per_packet < packet_size)
2121 		dev->hint_events_per_packet = packet_size;
2122 
2123 	dev->max_vals = dev->hint_events_per_packet + 2;
2124 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2125 	if (!dev->vals) {
2126 		error = -ENOMEM;
2127 		goto err_devres_free;
2128 	}
2129 
2130 	/*
2131 	 * If delay and period are pre-set by the driver, then autorepeating
2132 	 * is handled by the driver itself and we don't do it in input.c.
2133 	 */
2134 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2135 		input_enable_softrepeat(dev, 250, 33);
2136 
2137 	if (!dev->getkeycode)
2138 		dev->getkeycode = input_default_getkeycode;
2139 
2140 	if (!dev->setkeycode)
2141 		dev->setkeycode = input_default_setkeycode;
2142 
2143 	error = device_add(&dev->dev);
2144 	if (error)
2145 		goto err_free_vals;
2146 
2147 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2148 	pr_info("%s as %s\n",
2149 		dev->name ? dev->name : "Unspecified device",
2150 		path ? path : "N/A");
2151 	kfree(path);
2152 
2153 	error = mutex_lock_interruptible(&input_mutex);
2154 	if (error)
2155 		goto err_device_del;
2156 
2157 	list_add_tail(&dev->node, &input_dev_list);
2158 
2159 	list_for_each_entry(handler, &input_handler_list, node)
2160 		input_attach_handler(dev, handler);
2161 
2162 	input_wakeup_procfs_readers();
2163 
2164 	mutex_unlock(&input_mutex);
2165 
2166 	if (dev->devres_managed) {
2167 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2168 			__func__, dev_name(&dev->dev));
2169 		devres_add(dev->dev.parent, devres);
2170 	}
2171 	return 0;
2172 
2173 err_device_del:
2174 	device_del(&dev->dev);
2175 err_free_vals:
2176 	kfree(dev->vals);
2177 	dev->vals = NULL;
2178 err_devres_free:
2179 	devres_free(devres);
2180 	return error;
2181 }
2182 EXPORT_SYMBOL(input_register_device);
2183 
2184 /**
2185  * input_unregister_device - unregister previously registered device
2186  * @dev: device to be unregistered
2187  *
2188  * This function unregisters an input device. Once device is unregistered
2189  * the caller should not try to access it as it may get freed at any moment.
2190  */
input_unregister_device(struct input_dev * dev)2191 void input_unregister_device(struct input_dev *dev)
2192 {
2193 	if (dev->devres_managed) {
2194 		WARN_ON(devres_destroy(dev->dev.parent,
2195 					devm_input_device_unregister,
2196 					devm_input_device_match,
2197 					dev));
2198 		__input_unregister_device(dev);
2199 		/*
2200 		 * We do not do input_put_device() here because it will be done
2201 		 * when 2nd devres fires up.
2202 		 */
2203 	} else {
2204 		__input_unregister_device(dev);
2205 		input_put_device(dev);
2206 	}
2207 }
2208 EXPORT_SYMBOL(input_unregister_device);
2209 
2210 /**
2211  * input_register_handler - register a new input handler
2212  * @handler: handler to be registered
2213  *
2214  * This function registers a new input handler (interface) for input
2215  * devices in the system and attaches it to all input devices that
2216  * are compatible with the handler.
2217  */
input_register_handler(struct input_handler * handler)2218 int input_register_handler(struct input_handler *handler)
2219 {
2220 	struct input_dev *dev;
2221 	int error;
2222 
2223 	error = mutex_lock_interruptible(&input_mutex);
2224 	if (error)
2225 		return error;
2226 
2227 	INIT_LIST_HEAD(&handler->h_list);
2228 
2229 	list_add_tail(&handler->node, &input_handler_list);
2230 
2231 	list_for_each_entry(dev, &input_dev_list, node)
2232 		input_attach_handler(dev, handler);
2233 
2234 	input_wakeup_procfs_readers();
2235 
2236 	mutex_unlock(&input_mutex);
2237 	return 0;
2238 }
2239 EXPORT_SYMBOL(input_register_handler);
2240 
2241 /**
2242  * input_unregister_handler - unregisters an input handler
2243  * @handler: handler to be unregistered
2244  *
2245  * This function disconnects a handler from its input devices and
2246  * removes it from lists of known handlers.
2247  */
input_unregister_handler(struct input_handler * handler)2248 void input_unregister_handler(struct input_handler *handler)
2249 {
2250 	struct input_handle *handle, *next;
2251 
2252 	mutex_lock(&input_mutex);
2253 
2254 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2255 		handler->disconnect(handle);
2256 	WARN_ON(!list_empty(&handler->h_list));
2257 
2258 	list_del_init(&handler->node);
2259 
2260 	input_wakeup_procfs_readers();
2261 
2262 	mutex_unlock(&input_mutex);
2263 }
2264 EXPORT_SYMBOL(input_unregister_handler);
2265 
2266 /**
2267  * input_handler_for_each_handle - handle iterator
2268  * @handler: input handler to iterate
2269  * @data: data for the callback
2270  * @fn: function to be called for each handle
2271  *
2272  * Iterate over @bus's list of devices, and call @fn for each, passing
2273  * it @data and stop when @fn returns a non-zero value. The function is
2274  * using RCU to traverse the list and therefore may be using in atomic
2275  * contexts. The @fn callback is invoked from RCU critical section and
2276  * thus must not sleep.
2277  */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2278 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2279 				  int (*fn)(struct input_handle *, void *))
2280 {
2281 	struct input_handle *handle;
2282 	int retval = 0;
2283 
2284 	rcu_read_lock();
2285 
2286 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2287 		retval = fn(handle, data);
2288 		if (retval)
2289 			break;
2290 	}
2291 
2292 	rcu_read_unlock();
2293 
2294 	return retval;
2295 }
2296 EXPORT_SYMBOL(input_handler_for_each_handle);
2297 
2298 /**
2299  * input_register_handle - register a new input handle
2300  * @handle: handle to register
2301  *
2302  * This function puts a new input handle onto device's
2303  * and handler's lists so that events can flow through
2304  * it once it is opened using input_open_device().
2305  *
2306  * This function is supposed to be called from handler's
2307  * connect() method.
2308  */
input_register_handle(struct input_handle * handle)2309 int input_register_handle(struct input_handle *handle)
2310 {
2311 	struct input_handler *handler = handle->handler;
2312 	struct input_dev *dev = handle->dev;
2313 	int error;
2314 
2315 	/*
2316 	 * We take dev->mutex here to prevent race with
2317 	 * input_release_device().
2318 	 */
2319 	error = mutex_lock_interruptible(&dev->mutex);
2320 	if (error)
2321 		return error;
2322 
2323 	/*
2324 	 * Filters go to the head of the list, normal handlers
2325 	 * to the tail.
2326 	 */
2327 	if (handler->filter)
2328 		list_add_rcu(&handle->d_node, &dev->h_list);
2329 	else
2330 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2331 
2332 	mutex_unlock(&dev->mutex);
2333 
2334 	/*
2335 	 * Since we are supposed to be called from ->connect()
2336 	 * which is mutually exclusive with ->disconnect()
2337 	 * we can't be racing with input_unregister_handle()
2338 	 * and so separate lock is not needed here.
2339 	 */
2340 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2341 
2342 	if (handler->start)
2343 		handler->start(handle);
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(input_register_handle);
2348 
2349 /**
2350  * input_unregister_handle - unregister an input handle
2351  * @handle: handle to unregister
2352  *
2353  * This function removes input handle from device's
2354  * and handler's lists.
2355  *
2356  * This function is supposed to be called from handler's
2357  * disconnect() method.
2358  */
input_unregister_handle(struct input_handle * handle)2359 void input_unregister_handle(struct input_handle *handle)
2360 {
2361 	struct input_dev *dev = handle->dev;
2362 
2363 	list_del_rcu(&handle->h_node);
2364 
2365 	/*
2366 	 * Take dev->mutex to prevent race with input_release_device().
2367 	 */
2368 	mutex_lock(&dev->mutex);
2369 	list_del_rcu(&handle->d_node);
2370 	mutex_unlock(&dev->mutex);
2371 
2372 	synchronize_rcu();
2373 }
2374 EXPORT_SYMBOL(input_unregister_handle);
2375 
2376 /**
2377  * input_get_new_minor - allocates a new input minor number
2378  * @legacy_base: beginning or the legacy range to be searched
2379  * @legacy_num: size of legacy range
2380  * @allow_dynamic: whether we can also take ID from the dynamic range
2381  *
2382  * This function allocates a new device minor for from input major namespace.
2383  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2384  * parameters and whether ID can be allocated from dynamic range if there are
2385  * no free IDs in legacy range.
2386  */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2387 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2388 			bool allow_dynamic)
2389 {
2390 	/*
2391 	 * This function should be called from input handler's ->connect()
2392 	 * methods, which are serialized with input_mutex, so no additional
2393 	 * locking is needed here.
2394 	 */
2395 	if (legacy_base >= 0) {
2396 		int minor = ida_simple_get(&input_ida,
2397 					   legacy_base,
2398 					   legacy_base + legacy_num,
2399 					   GFP_KERNEL);
2400 		if (minor >= 0 || !allow_dynamic)
2401 			return minor;
2402 	}
2403 
2404 	return ida_simple_get(&input_ida,
2405 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2406 			      GFP_KERNEL);
2407 }
2408 EXPORT_SYMBOL(input_get_new_minor);
2409 
2410 /**
2411  * input_free_minor - release previously allocated minor
2412  * @minor: minor to be released
2413  *
2414  * This function releases previously allocated input minor so that it can be
2415  * reused later.
2416  */
input_free_minor(unsigned int minor)2417 void input_free_minor(unsigned int minor)
2418 {
2419 	ida_simple_remove(&input_ida, minor);
2420 }
2421 EXPORT_SYMBOL(input_free_minor);
2422 
input_init(void)2423 static int __init input_init(void)
2424 {
2425 	int err;
2426 
2427 	err = class_register(&input_class);
2428 	if (err) {
2429 		pr_err("unable to register input_dev class\n");
2430 		return err;
2431 	}
2432 
2433 	err = input_proc_init();
2434 	if (err)
2435 		goto fail1;
2436 
2437 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2438 				     INPUT_MAX_CHAR_DEVICES, "input");
2439 	if (err) {
2440 		pr_err("unable to register char major %d", INPUT_MAJOR);
2441 		goto fail2;
2442 	}
2443 
2444 	return 0;
2445 
2446  fail2:	input_proc_exit();
2447  fail1:	class_unregister(&input_class);
2448 	return err;
2449 }
2450 
input_exit(void)2451 static void __exit input_exit(void)
2452 {
2453 	input_proc_exit();
2454 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2455 				 INPUT_MAX_CHAR_DEVICES);
2456 	class_unregister(&input_class);
2457 }
2458 
2459 subsys_initcall(input_init);
2460 module_exit(input_exit);
2461