• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16 
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20 
21 #include "perf_event.h"
22 
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
29 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
30 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
31 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
32 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
33 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
34 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
35 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
36 };
37 
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46 	EVENT_CONSTRAINT_END
47 };
48 
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64 	EVENT_CONSTRAINT_END
65 };
66 
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80 	EVENT_CONSTRAINT_END
81 };
82 
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88 	EVENT_EXTRA_END
89 };
90 
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100 	EVENT_CONSTRAINT_END
101 };
102 
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117 
118 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122 
123 	EVENT_CONSTRAINT_END
124 };
125 
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141 
142 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146 
147 	EVENT_CONSTRAINT_END
148 };
149 
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156 	EVENT_EXTRA_END
157 };
158 
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161 	EVENT_CONSTRAINT_END
162 };
163 
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169 	EVENT_CONSTRAINT_END
170 };
171 
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177 	EVENT_CONSTRAINT_END
178 };
179 
180 struct event_constraint intel_skl_event_constraints[] = {
181 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
182 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
183 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
184 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
185 	EVENT_CONSTRAINT_END
186 };
187 
188 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
189 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
190 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
191 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
192 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
193 	EVENT_EXTRA_END
194 };
195 
196 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
197 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
199 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
200 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201 	EVENT_EXTRA_END
202 };
203 
204 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
205 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
206 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
207 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
208 	/*
209 	 * Note the low 8 bits eventsel code is not a continuous field, containing
210 	 * some #GPing bits. These are masked out.
211 	 */
212 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
213 	EVENT_EXTRA_END
214 };
215 
216 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
217 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
218 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
219 
220 struct attribute *nhm_events_attrs[] = {
221 	EVENT_PTR(mem_ld_nhm),
222 	NULL,
223 };
224 
225 struct attribute *snb_events_attrs[] = {
226 	EVENT_PTR(mem_ld_snb),
227 	EVENT_PTR(mem_st_snb),
228 	NULL,
229 };
230 
231 static struct event_constraint intel_hsw_event_constraints[] = {
232 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
233 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
234 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
235 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
236 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
237 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
238 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
239 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
240 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
241 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
242 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
243 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
244 
245 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
246 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
247 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
248 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
249 
250 	EVENT_CONSTRAINT_END
251 };
252 
253 struct event_constraint intel_bdw_event_constraints[] = {
254 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
255 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
256 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
257 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
258 	INTEL_UEVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
259 	EVENT_CONSTRAINT_END
260 };
261 
intel_pmu_event_map(int hw_event)262 static u64 intel_pmu_event_map(int hw_event)
263 {
264 	return intel_perfmon_event_map[hw_event];
265 }
266 
267 /*
268  * Notes on the events:
269  * - data reads do not include code reads (comparable to earlier tables)
270  * - data counts include speculative execution (except L1 write, dtlb, bpu)
271  * - remote node access includes remote memory, remote cache, remote mmio.
272  * - prefetches are not included in the counts.
273  * - icache miss does not include decoded icache
274  */
275 
276 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
277 #define SKL_DEMAND_RFO			BIT_ULL(1)
278 #define SKL_ANY_RESPONSE		BIT_ULL(16)
279 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
280 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
281 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
282 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
283 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
284 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
285 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
286 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
287 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
288 #define SKL_SPL_HIT			BIT_ULL(30)
289 #define SKL_SNOOP_NONE			BIT_ULL(31)
290 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
291 #define SKL_SNOOP_MISS			BIT_ULL(33)
292 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
293 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
294 #define SKL_SNOOP_HITM			BIT_ULL(36)
295 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
296 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
297 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
298 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
299 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
300 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
301 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
302 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
303 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
304 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
305 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
306 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
307 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
308 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
309 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
310 
311 static __initconst const u64 skl_hw_cache_event_ids
312 				[PERF_COUNT_HW_CACHE_MAX]
313 				[PERF_COUNT_HW_CACHE_OP_MAX]
314 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
315 {
316  [ C(L1D ) ] = {
317 	[ C(OP_READ) ] = {
318 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
319 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
320 	},
321 	[ C(OP_WRITE) ] = {
322 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
323 		[ C(RESULT_MISS)   ] = 0x0,
324 	},
325 	[ C(OP_PREFETCH) ] = {
326 		[ C(RESULT_ACCESS) ] = 0x0,
327 		[ C(RESULT_MISS)   ] = 0x0,
328 	},
329  },
330  [ C(L1I ) ] = {
331 	[ C(OP_READ) ] = {
332 		[ C(RESULT_ACCESS) ] = 0x0,
333 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
334 	},
335 	[ C(OP_WRITE) ] = {
336 		[ C(RESULT_ACCESS) ] = -1,
337 		[ C(RESULT_MISS)   ] = -1,
338 	},
339 	[ C(OP_PREFETCH) ] = {
340 		[ C(RESULT_ACCESS) ] = 0x0,
341 		[ C(RESULT_MISS)   ] = 0x0,
342 	},
343  },
344  [ C(LL  ) ] = {
345 	[ C(OP_READ) ] = {
346 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
347 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
348 	},
349 	[ C(OP_WRITE) ] = {
350 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
351 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
352 	},
353 	[ C(OP_PREFETCH) ] = {
354 		[ C(RESULT_ACCESS) ] = 0x0,
355 		[ C(RESULT_MISS)   ] = 0x0,
356 	},
357  },
358  [ C(DTLB) ] = {
359 	[ C(OP_READ) ] = {
360 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
361 		[ C(RESULT_MISS)   ] = 0x608,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
362 	},
363 	[ C(OP_WRITE) ] = {
364 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
365 		[ C(RESULT_MISS)   ] = 0x649,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
366 	},
367 	[ C(OP_PREFETCH) ] = {
368 		[ C(RESULT_ACCESS) ] = 0x0,
369 		[ C(RESULT_MISS)   ] = 0x0,
370 	},
371  },
372  [ C(ITLB) ] = {
373 	[ C(OP_READ) ] = {
374 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
375 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
376 	},
377 	[ C(OP_WRITE) ] = {
378 		[ C(RESULT_ACCESS) ] = -1,
379 		[ C(RESULT_MISS)   ] = -1,
380 	},
381 	[ C(OP_PREFETCH) ] = {
382 		[ C(RESULT_ACCESS) ] = -1,
383 		[ C(RESULT_MISS)   ] = -1,
384 	},
385  },
386  [ C(BPU ) ] = {
387 	[ C(OP_READ) ] = {
388 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
389 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
390 	},
391 	[ C(OP_WRITE) ] = {
392 		[ C(RESULT_ACCESS) ] = -1,
393 		[ C(RESULT_MISS)   ] = -1,
394 	},
395 	[ C(OP_PREFETCH) ] = {
396 		[ C(RESULT_ACCESS) ] = -1,
397 		[ C(RESULT_MISS)   ] = -1,
398 	},
399  },
400  [ C(NODE) ] = {
401 	[ C(OP_READ) ] = {
402 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
403 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
404 	},
405 	[ C(OP_WRITE) ] = {
406 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
407 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
408 	},
409 	[ C(OP_PREFETCH) ] = {
410 		[ C(RESULT_ACCESS) ] = 0x0,
411 		[ C(RESULT_MISS)   ] = 0x0,
412 	},
413  },
414 };
415 
416 static __initconst const u64 skl_hw_cache_extra_regs
417 				[PERF_COUNT_HW_CACHE_MAX]
418 				[PERF_COUNT_HW_CACHE_OP_MAX]
419 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
420 {
421  [ C(LL  ) ] = {
422 	[ C(OP_READ) ] = {
423 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
424 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
425 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
426 				       SKL_L3_MISS|SKL_ANY_SNOOP|
427 				       SKL_SUPPLIER_NONE,
428 	},
429 	[ C(OP_WRITE) ] = {
430 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
431 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
432 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
433 				       SKL_L3_MISS|SKL_ANY_SNOOP|
434 				       SKL_SUPPLIER_NONE,
435 	},
436 	[ C(OP_PREFETCH) ] = {
437 		[ C(RESULT_ACCESS) ] = 0x0,
438 		[ C(RESULT_MISS)   ] = 0x0,
439 	},
440  },
441  [ C(NODE) ] = {
442 	[ C(OP_READ) ] = {
443 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
444 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
445 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
446 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
447 	},
448 	[ C(OP_WRITE) ] = {
449 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
450 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
451 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
452 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
453 	},
454 	[ C(OP_PREFETCH) ] = {
455 		[ C(RESULT_ACCESS) ] = 0x0,
456 		[ C(RESULT_MISS)   ] = 0x0,
457 	},
458  },
459 };
460 
461 #define SNB_DMND_DATA_RD	(1ULL << 0)
462 #define SNB_DMND_RFO		(1ULL << 1)
463 #define SNB_DMND_IFETCH		(1ULL << 2)
464 #define SNB_DMND_WB		(1ULL << 3)
465 #define SNB_PF_DATA_RD		(1ULL << 4)
466 #define SNB_PF_RFO		(1ULL << 5)
467 #define SNB_PF_IFETCH		(1ULL << 6)
468 #define SNB_LLC_DATA_RD		(1ULL << 7)
469 #define SNB_LLC_RFO		(1ULL << 8)
470 #define SNB_LLC_IFETCH		(1ULL << 9)
471 #define SNB_BUS_LOCKS		(1ULL << 10)
472 #define SNB_STRM_ST		(1ULL << 11)
473 #define SNB_OTHER		(1ULL << 15)
474 #define SNB_RESP_ANY		(1ULL << 16)
475 #define SNB_NO_SUPP		(1ULL << 17)
476 #define SNB_LLC_HITM		(1ULL << 18)
477 #define SNB_LLC_HITE		(1ULL << 19)
478 #define SNB_LLC_HITS		(1ULL << 20)
479 #define SNB_LLC_HITF		(1ULL << 21)
480 #define SNB_LOCAL		(1ULL << 22)
481 #define SNB_REMOTE		(0xffULL << 23)
482 #define SNB_SNP_NONE		(1ULL << 31)
483 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
484 #define SNB_SNP_MISS		(1ULL << 33)
485 #define SNB_NO_FWD		(1ULL << 34)
486 #define SNB_SNP_FWD		(1ULL << 35)
487 #define SNB_HITM		(1ULL << 36)
488 #define SNB_NON_DRAM		(1ULL << 37)
489 
490 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
491 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
492 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
493 
494 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
495 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
496 				 SNB_HITM)
497 
498 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
499 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
500 
501 #define SNB_L3_ACCESS		SNB_RESP_ANY
502 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
503 
504 static __initconst const u64 snb_hw_cache_extra_regs
505 				[PERF_COUNT_HW_CACHE_MAX]
506 				[PERF_COUNT_HW_CACHE_OP_MAX]
507 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
508 {
509  [ C(LL  ) ] = {
510 	[ C(OP_READ) ] = {
511 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
512 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
513 	},
514 	[ C(OP_WRITE) ] = {
515 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
516 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
517 	},
518 	[ C(OP_PREFETCH) ] = {
519 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
520 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
521 	},
522  },
523  [ C(NODE) ] = {
524 	[ C(OP_READ) ] = {
525 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
526 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
527 	},
528 	[ C(OP_WRITE) ] = {
529 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
530 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
531 	},
532 	[ C(OP_PREFETCH) ] = {
533 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
534 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
535 	},
536  },
537 };
538 
539 static __initconst const u64 snb_hw_cache_event_ids
540 				[PERF_COUNT_HW_CACHE_MAX]
541 				[PERF_COUNT_HW_CACHE_OP_MAX]
542 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
543 {
544  [ C(L1D) ] = {
545 	[ C(OP_READ) ] = {
546 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
547 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
548 	},
549 	[ C(OP_WRITE) ] = {
550 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
551 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
552 	},
553 	[ C(OP_PREFETCH) ] = {
554 		[ C(RESULT_ACCESS) ] = 0x0,
555 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
556 	},
557  },
558  [ C(L1I ) ] = {
559 	[ C(OP_READ) ] = {
560 		[ C(RESULT_ACCESS) ] = 0x0,
561 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
562 	},
563 	[ C(OP_WRITE) ] = {
564 		[ C(RESULT_ACCESS) ] = -1,
565 		[ C(RESULT_MISS)   ] = -1,
566 	},
567 	[ C(OP_PREFETCH) ] = {
568 		[ C(RESULT_ACCESS) ] = 0x0,
569 		[ C(RESULT_MISS)   ] = 0x0,
570 	},
571  },
572  [ C(LL  ) ] = {
573 	[ C(OP_READ) ] = {
574 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
575 		[ C(RESULT_ACCESS) ] = 0x01b7,
576 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
577 		[ C(RESULT_MISS)   ] = 0x01b7,
578 	},
579 	[ C(OP_WRITE) ] = {
580 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
581 		[ C(RESULT_ACCESS) ] = 0x01b7,
582 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
583 		[ C(RESULT_MISS)   ] = 0x01b7,
584 	},
585 	[ C(OP_PREFETCH) ] = {
586 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
587 		[ C(RESULT_ACCESS) ] = 0x01b7,
588 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
589 		[ C(RESULT_MISS)   ] = 0x01b7,
590 	},
591  },
592  [ C(DTLB) ] = {
593 	[ C(OP_READ) ] = {
594 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
595 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
596 	},
597 	[ C(OP_WRITE) ] = {
598 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
599 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
600 	},
601 	[ C(OP_PREFETCH) ] = {
602 		[ C(RESULT_ACCESS) ] = 0x0,
603 		[ C(RESULT_MISS)   ] = 0x0,
604 	},
605  },
606  [ C(ITLB) ] = {
607 	[ C(OP_READ) ] = {
608 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
609 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
610 	},
611 	[ C(OP_WRITE) ] = {
612 		[ C(RESULT_ACCESS) ] = -1,
613 		[ C(RESULT_MISS)   ] = -1,
614 	},
615 	[ C(OP_PREFETCH) ] = {
616 		[ C(RESULT_ACCESS) ] = -1,
617 		[ C(RESULT_MISS)   ] = -1,
618 	},
619  },
620  [ C(BPU ) ] = {
621 	[ C(OP_READ) ] = {
622 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
623 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
624 	},
625 	[ C(OP_WRITE) ] = {
626 		[ C(RESULT_ACCESS) ] = -1,
627 		[ C(RESULT_MISS)   ] = -1,
628 	},
629 	[ C(OP_PREFETCH) ] = {
630 		[ C(RESULT_ACCESS) ] = -1,
631 		[ C(RESULT_MISS)   ] = -1,
632 	},
633  },
634  [ C(NODE) ] = {
635 	[ C(OP_READ) ] = {
636 		[ C(RESULT_ACCESS) ] = 0x01b7,
637 		[ C(RESULT_MISS)   ] = 0x01b7,
638 	},
639 	[ C(OP_WRITE) ] = {
640 		[ C(RESULT_ACCESS) ] = 0x01b7,
641 		[ C(RESULT_MISS)   ] = 0x01b7,
642 	},
643 	[ C(OP_PREFETCH) ] = {
644 		[ C(RESULT_ACCESS) ] = 0x01b7,
645 		[ C(RESULT_MISS)   ] = 0x01b7,
646 	},
647  },
648 
649 };
650 
651 /*
652  * Notes on the events:
653  * - data reads do not include code reads (comparable to earlier tables)
654  * - data counts include speculative execution (except L1 write, dtlb, bpu)
655  * - remote node access includes remote memory, remote cache, remote mmio.
656  * - prefetches are not included in the counts because they are not
657  *   reliably counted.
658  */
659 
660 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
661 #define HSW_DEMAND_RFO			BIT_ULL(1)
662 #define HSW_ANY_RESPONSE		BIT_ULL(16)
663 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
664 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
665 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
666 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
667 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
668 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
669 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
670 					 HSW_L3_MISS_REMOTE_HOP2P)
671 #define HSW_SNOOP_NONE			BIT_ULL(31)
672 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
673 #define HSW_SNOOP_MISS			BIT_ULL(33)
674 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
675 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
676 #define HSW_SNOOP_HITM			BIT_ULL(36)
677 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
678 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
679 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
680 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
681 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
682 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
683 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
684 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
685 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
686 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
687 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
688 
689 #define BDW_L3_MISS_LOCAL		BIT(26)
690 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
691 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
692 					 HSW_L3_MISS_REMOTE_HOP2P)
693 
694 
695 static __initconst const u64 hsw_hw_cache_event_ids
696 				[PERF_COUNT_HW_CACHE_MAX]
697 				[PERF_COUNT_HW_CACHE_OP_MAX]
698 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(L1D ) ] = {
701 	[ C(OP_READ) ] = {
702 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
703 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
704 	},
705 	[ C(OP_WRITE) ] = {
706 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
707 		[ C(RESULT_MISS)   ] = 0x0,
708 	},
709 	[ C(OP_PREFETCH) ] = {
710 		[ C(RESULT_ACCESS) ] = 0x0,
711 		[ C(RESULT_MISS)   ] = 0x0,
712 	},
713  },
714  [ C(L1I ) ] = {
715 	[ C(OP_READ) ] = {
716 		[ C(RESULT_ACCESS) ] = 0x0,
717 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
718 	},
719 	[ C(OP_WRITE) ] = {
720 		[ C(RESULT_ACCESS) ] = -1,
721 		[ C(RESULT_MISS)   ] = -1,
722 	},
723 	[ C(OP_PREFETCH) ] = {
724 		[ C(RESULT_ACCESS) ] = 0x0,
725 		[ C(RESULT_MISS)   ] = 0x0,
726 	},
727  },
728  [ C(LL  ) ] = {
729 	[ C(OP_READ) ] = {
730 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
731 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
732 	},
733 	[ C(OP_WRITE) ] = {
734 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
735 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
736 	},
737 	[ C(OP_PREFETCH) ] = {
738 		[ C(RESULT_ACCESS) ] = 0x0,
739 		[ C(RESULT_MISS)   ] = 0x0,
740 	},
741  },
742  [ C(DTLB) ] = {
743 	[ C(OP_READ) ] = {
744 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
745 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
746 	},
747 	[ C(OP_WRITE) ] = {
748 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
749 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
750 	},
751 	[ C(OP_PREFETCH) ] = {
752 		[ C(RESULT_ACCESS) ] = 0x0,
753 		[ C(RESULT_MISS)   ] = 0x0,
754 	},
755  },
756  [ C(ITLB) ] = {
757 	[ C(OP_READ) ] = {
758 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
759 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
760 	},
761 	[ C(OP_WRITE) ] = {
762 		[ C(RESULT_ACCESS) ] = -1,
763 		[ C(RESULT_MISS)   ] = -1,
764 	},
765 	[ C(OP_PREFETCH) ] = {
766 		[ C(RESULT_ACCESS) ] = -1,
767 		[ C(RESULT_MISS)   ] = -1,
768 	},
769  },
770  [ C(BPU ) ] = {
771 	[ C(OP_READ) ] = {
772 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
773 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
774 	},
775 	[ C(OP_WRITE) ] = {
776 		[ C(RESULT_ACCESS) ] = -1,
777 		[ C(RESULT_MISS)   ] = -1,
778 	},
779 	[ C(OP_PREFETCH) ] = {
780 		[ C(RESULT_ACCESS) ] = -1,
781 		[ C(RESULT_MISS)   ] = -1,
782 	},
783  },
784  [ C(NODE) ] = {
785 	[ C(OP_READ) ] = {
786 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
787 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
788 	},
789 	[ C(OP_WRITE) ] = {
790 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
791 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
792 	},
793 	[ C(OP_PREFETCH) ] = {
794 		[ C(RESULT_ACCESS) ] = 0x0,
795 		[ C(RESULT_MISS)   ] = 0x0,
796 	},
797  },
798 };
799 
800 static __initconst const u64 hsw_hw_cache_extra_regs
801 				[PERF_COUNT_HW_CACHE_MAX]
802 				[PERF_COUNT_HW_CACHE_OP_MAX]
803 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
804 {
805  [ C(LL  ) ] = {
806 	[ C(OP_READ) ] = {
807 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
808 				       HSW_LLC_ACCESS,
809 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
810 				       HSW_L3_MISS|HSW_ANY_SNOOP,
811 	},
812 	[ C(OP_WRITE) ] = {
813 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
814 				       HSW_LLC_ACCESS,
815 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
816 				       HSW_L3_MISS|HSW_ANY_SNOOP,
817 	},
818 	[ C(OP_PREFETCH) ] = {
819 		[ C(RESULT_ACCESS) ] = 0x0,
820 		[ C(RESULT_MISS)   ] = 0x0,
821 	},
822  },
823  [ C(NODE) ] = {
824 	[ C(OP_READ) ] = {
825 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
826 				       HSW_L3_MISS_LOCAL_DRAM|
827 				       HSW_SNOOP_DRAM,
828 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
829 				       HSW_L3_MISS_REMOTE|
830 				       HSW_SNOOP_DRAM,
831 	},
832 	[ C(OP_WRITE) ] = {
833 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
834 				       HSW_L3_MISS_LOCAL_DRAM|
835 				       HSW_SNOOP_DRAM,
836 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
837 				       HSW_L3_MISS_REMOTE|
838 				       HSW_SNOOP_DRAM,
839 	},
840 	[ C(OP_PREFETCH) ] = {
841 		[ C(RESULT_ACCESS) ] = 0x0,
842 		[ C(RESULT_MISS)   ] = 0x0,
843 	},
844  },
845 };
846 
847 static __initconst const u64 westmere_hw_cache_event_ids
848 				[PERF_COUNT_HW_CACHE_MAX]
849 				[PERF_COUNT_HW_CACHE_OP_MAX]
850 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
851 {
852  [ C(L1D) ] = {
853 	[ C(OP_READ) ] = {
854 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
855 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
856 	},
857 	[ C(OP_WRITE) ] = {
858 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
859 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
860 	},
861 	[ C(OP_PREFETCH) ] = {
862 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
863 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
864 	},
865  },
866  [ C(L1I ) ] = {
867 	[ C(OP_READ) ] = {
868 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
869 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
870 	},
871 	[ C(OP_WRITE) ] = {
872 		[ C(RESULT_ACCESS) ] = -1,
873 		[ C(RESULT_MISS)   ] = -1,
874 	},
875 	[ C(OP_PREFETCH) ] = {
876 		[ C(RESULT_ACCESS) ] = 0x0,
877 		[ C(RESULT_MISS)   ] = 0x0,
878 	},
879  },
880  [ C(LL  ) ] = {
881 	[ C(OP_READ) ] = {
882 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
883 		[ C(RESULT_ACCESS) ] = 0x01b7,
884 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
885 		[ C(RESULT_MISS)   ] = 0x01b7,
886 	},
887 	/*
888 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
889 	 * on RFO.
890 	 */
891 	[ C(OP_WRITE) ] = {
892 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
893 		[ C(RESULT_ACCESS) ] = 0x01b7,
894 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
895 		[ C(RESULT_MISS)   ] = 0x01b7,
896 	},
897 	[ C(OP_PREFETCH) ] = {
898 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
899 		[ C(RESULT_ACCESS) ] = 0x01b7,
900 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
901 		[ C(RESULT_MISS)   ] = 0x01b7,
902 	},
903  },
904  [ C(DTLB) ] = {
905 	[ C(OP_READ) ] = {
906 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
907 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
908 	},
909 	[ C(OP_WRITE) ] = {
910 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
911 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
912 	},
913 	[ C(OP_PREFETCH) ] = {
914 		[ C(RESULT_ACCESS) ] = 0x0,
915 		[ C(RESULT_MISS)   ] = 0x0,
916 	},
917  },
918  [ C(ITLB) ] = {
919 	[ C(OP_READ) ] = {
920 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
921 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
922 	},
923 	[ C(OP_WRITE) ] = {
924 		[ C(RESULT_ACCESS) ] = -1,
925 		[ C(RESULT_MISS)   ] = -1,
926 	},
927 	[ C(OP_PREFETCH) ] = {
928 		[ C(RESULT_ACCESS) ] = -1,
929 		[ C(RESULT_MISS)   ] = -1,
930 	},
931  },
932  [ C(BPU ) ] = {
933 	[ C(OP_READ) ] = {
934 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
935 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
936 	},
937 	[ C(OP_WRITE) ] = {
938 		[ C(RESULT_ACCESS) ] = -1,
939 		[ C(RESULT_MISS)   ] = -1,
940 	},
941 	[ C(OP_PREFETCH) ] = {
942 		[ C(RESULT_ACCESS) ] = -1,
943 		[ C(RESULT_MISS)   ] = -1,
944 	},
945  },
946  [ C(NODE) ] = {
947 	[ C(OP_READ) ] = {
948 		[ C(RESULT_ACCESS) ] = 0x01b7,
949 		[ C(RESULT_MISS)   ] = 0x01b7,
950 	},
951 	[ C(OP_WRITE) ] = {
952 		[ C(RESULT_ACCESS) ] = 0x01b7,
953 		[ C(RESULT_MISS)   ] = 0x01b7,
954 	},
955 	[ C(OP_PREFETCH) ] = {
956 		[ C(RESULT_ACCESS) ] = 0x01b7,
957 		[ C(RESULT_MISS)   ] = 0x01b7,
958 	},
959  },
960 };
961 
962 /*
963  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
964  * See IA32 SDM Vol 3B 30.6.1.3
965  */
966 
967 #define NHM_DMND_DATA_RD	(1 << 0)
968 #define NHM_DMND_RFO		(1 << 1)
969 #define NHM_DMND_IFETCH		(1 << 2)
970 #define NHM_DMND_WB		(1 << 3)
971 #define NHM_PF_DATA_RD		(1 << 4)
972 #define NHM_PF_DATA_RFO		(1 << 5)
973 #define NHM_PF_IFETCH		(1 << 6)
974 #define NHM_OFFCORE_OTHER	(1 << 7)
975 #define NHM_UNCORE_HIT		(1 << 8)
976 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
977 #define NHM_OTHER_CORE_HITM	(1 << 10)
978         			/* reserved */
979 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
980 #define NHM_REMOTE_DRAM		(1 << 13)
981 #define NHM_LOCAL_DRAM		(1 << 14)
982 #define NHM_NON_DRAM		(1 << 15)
983 
984 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
985 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
986 
987 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
988 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
989 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
990 
991 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
992 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
994 
995 static __initconst const u64 nehalem_hw_cache_extra_regs
996 				[PERF_COUNT_HW_CACHE_MAX]
997 				[PERF_COUNT_HW_CACHE_OP_MAX]
998 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
999 {
1000  [ C(LL  ) ] = {
1001 	[ C(OP_READ) ] = {
1002 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1003 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1004 	},
1005 	[ C(OP_WRITE) ] = {
1006 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1007 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1008 	},
1009 	[ C(OP_PREFETCH) ] = {
1010 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1011 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1012 	},
1013  },
1014  [ C(NODE) ] = {
1015 	[ C(OP_READ) ] = {
1016 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1017 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1018 	},
1019 	[ C(OP_WRITE) ] = {
1020 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1021 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1022 	},
1023 	[ C(OP_PREFETCH) ] = {
1024 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1025 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1026 	},
1027  },
1028 };
1029 
1030 static __initconst const u64 nehalem_hw_cache_event_ids
1031 				[PERF_COUNT_HW_CACHE_MAX]
1032 				[PERF_COUNT_HW_CACHE_OP_MAX]
1033 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1034 {
1035  [ C(L1D) ] = {
1036 	[ C(OP_READ) ] = {
1037 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1038 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1039 	},
1040 	[ C(OP_WRITE) ] = {
1041 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1042 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1043 	},
1044 	[ C(OP_PREFETCH) ] = {
1045 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1046 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1047 	},
1048  },
1049  [ C(L1I ) ] = {
1050 	[ C(OP_READ) ] = {
1051 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1052 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1053 	},
1054 	[ C(OP_WRITE) ] = {
1055 		[ C(RESULT_ACCESS) ] = -1,
1056 		[ C(RESULT_MISS)   ] = -1,
1057 	},
1058 	[ C(OP_PREFETCH) ] = {
1059 		[ C(RESULT_ACCESS) ] = 0x0,
1060 		[ C(RESULT_MISS)   ] = 0x0,
1061 	},
1062  },
1063  [ C(LL  ) ] = {
1064 	[ C(OP_READ) ] = {
1065 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1066 		[ C(RESULT_ACCESS) ] = 0x01b7,
1067 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1068 		[ C(RESULT_MISS)   ] = 0x01b7,
1069 	},
1070 	/*
1071 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1072 	 * on RFO.
1073 	 */
1074 	[ C(OP_WRITE) ] = {
1075 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1076 		[ C(RESULT_ACCESS) ] = 0x01b7,
1077 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1078 		[ C(RESULT_MISS)   ] = 0x01b7,
1079 	},
1080 	[ C(OP_PREFETCH) ] = {
1081 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1082 		[ C(RESULT_ACCESS) ] = 0x01b7,
1083 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1084 		[ C(RESULT_MISS)   ] = 0x01b7,
1085 	},
1086  },
1087  [ C(DTLB) ] = {
1088 	[ C(OP_READ) ] = {
1089 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1090 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1091 	},
1092 	[ C(OP_WRITE) ] = {
1093 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1094 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1095 	},
1096 	[ C(OP_PREFETCH) ] = {
1097 		[ C(RESULT_ACCESS) ] = 0x0,
1098 		[ C(RESULT_MISS)   ] = 0x0,
1099 	},
1100  },
1101  [ C(ITLB) ] = {
1102 	[ C(OP_READ) ] = {
1103 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1104 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1105 	},
1106 	[ C(OP_WRITE) ] = {
1107 		[ C(RESULT_ACCESS) ] = -1,
1108 		[ C(RESULT_MISS)   ] = -1,
1109 	},
1110 	[ C(OP_PREFETCH) ] = {
1111 		[ C(RESULT_ACCESS) ] = -1,
1112 		[ C(RESULT_MISS)   ] = -1,
1113 	},
1114  },
1115  [ C(BPU ) ] = {
1116 	[ C(OP_READ) ] = {
1117 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1118 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1119 	},
1120 	[ C(OP_WRITE) ] = {
1121 		[ C(RESULT_ACCESS) ] = -1,
1122 		[ C(RESULT_MISS)   ] = -1,
1123 	},
1124 	[ C(OP_PREFETCH) ] = {
1125 		[ C(RESULT_ACCESS) ] = -1,
1126 		[ C(RESULT_MISS)   ] = -1,
1127 	},
1128  },
1129  [ C(NODE) ] = {
1130 	[ C(OP_READ) ] = {
1131 		[ C(RESULT_ACCESS) ] = 0x01b7,
1132 		[ C(RESULT_MISS)   ] = 0x01b7,
1133 	},
1134 	[ C(OP_WRITE) ] = {
1135 		[ C(RESULT_ACCESS) ] = 0x01b7,
1136 		[ C(RESULT_MISS)   ] = 0x01b7,
1137 	},
1138 	[ C(OP_PREFETCH) ] = {
1139 		[ C(RESULT_ACCESS) ] = 0x01b7,
1140 		[ C(RESULT_MISS)   ] = 0x01b7,
1141 	},
1142  },
1143 };
1144 
1145 static __initconst const u64 core2_hw_cache_event_ids
1146 				[PERF_COUNT_HW_CACHE_MAX]
1147 				[PERF_COUNT_HW_CACHE_OP_MAX]
1148 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1149 {
1150  [ C(L1D) ] = {
1151 	[ C(OP_READ) ] = {
1152 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1153 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1154 	},
1155 	[ C(OP_WRITE) ] = {
1156 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1157 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1158 	},
1159 	[ C(OP_PREFETCH) ] = {
1160 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1161 		[ C(RESULT_MISS)   ] = 0,
1162 	},
1163  },
1164  [ C(L1I ) ] = {
1165 	[ C(OP_READ) ] = {
1166 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1167 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1168 	},
1169 	[ C(OP_WRITE) ] = {
1170 		[ C(RESULT_ACCESS) ] = -1,
1171 		[ C(RESULT_MISS)   ] = -1,
1172 	},
1173 	[ C(OP_PREFETCH) ] = {
1174 		[ C(RESULT_ACCESS) ] = 0,
1175 		[ C(RESULT_MISS)   ] = 0,
1176 	},
1177  },
1178  [ C(LL  ) ] = {
1179 	[ C(OP_READ) ] = {
1180 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1181 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1182 	},
1183 	[ C(OP_WRITE) ] = {
1184 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1185 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1186 	},
1187 	[ C(OP_PREFETCH) ] = {
1188 		[ C(RESULT_ACCESS) ] = 0,
1189 		[ C(RESULT_MISS)   ] = 0,
1190 	},
1191  },
1192  [ C(DTLB) ] = {
1193 	[ C(OP_READ) ] = {
1194 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1195 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1196 	},
1197 	[ C(OP_WRITE) ] = {
1198 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1199 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1200 	},
1201 	[ C(OP_PREFETCH) ] = {
1202 		[ C(RESULT_ACCESS) ] = 0,
1203 		[ C(RESULT_MISS)   ] = 0,
1204 	},
1205  },
1206  [ C(ITLB) ] = {
1207 	[ C(OP_READ) ] = {
1208 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1209 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1210 	},
1211 	[ C(OP_WRITE) ] = {
1212 		[ C(RESULT_ACCESS) ] = -1,
1213 		[ C(RESULT_MISS)   ] = -1,
1214 	},
1215 	[ C(OP_PREFETCH) ] = {
1216 		[ C(RESULT_ACCESS) ] = -1,
1217 		[ C(RESULT_MISS)   ] = -1,
1218 	},
1219  },
1220  [ C(BPU ) ] = {
1221 	[ C(OP_READ) ] = {
1222 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1223 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1224 	},
1225 	[ C(OP_WRITE) ] = {
1226 		[ C(RESULT_ACCESS) ] = -1,
1227 		[ C(RESULT_MISS)   ] = -1,
1228 	},
1229 	[ C(OP_PREFETCH) ] = {
1230 		[ C(RESULT_ACCESS) ] = -1,
1231 		[ C(RESULT_MISS)   ] = -1,
1232 	},
1233  },
1234 };
1235 
1236 static __initconst const u64 atom_hw_cache_event_ids
1237 				[PERF_COUNT_HW_CACHE_MAX]
1238 				[PERF_COUNT_HW_CACHE_OP_MAX]
1239 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1240 {
1241  [ C(L1D) ] = {
1242 	[ C(OP_READ) ] = {
1243 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1244 		[ C(RESULT_MISS)   ] = 0,
1245 	},
1246 	[ C(OP_WRITE) ] = {
1247 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1248 		[ C(RESULT_MISS)   ] = 0,
1249 	},
1250 	[ C(OP_PREFETCH) ] = {
1251 		[ C(RESULT_ACCESS) ] = 0x0,
1252 		[ C(RESULT_MISS)   ] = 0,
1253 	},
1254  },
1255  [ C(L1I ) ] = {
1256 	[ C(OP_READ) ] = {
1257 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1258 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1259 	},
1260 	[ C(OP_WRITE) ] = {
1261 		[ C(RESULT_ACCESS) ] = -1,
1262 		[ C(RESULT_MISS)   ] = -1,
1263 	},
1264 	[ C(OP_PREFETCH) ] = {
1265 		[ C(RESULT_ACCESS) ] = 0,
1266 		[ C(RESULT_MISS)   ] = 0,
1267 	},
1268  },
1269  [ C(LL  ) ] = {
1270 	[ C(OP_READ) ] = {
1271 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1272 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1273 	},
1274 	[ C(OP_WRITE) ] = {
1275 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1276 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1277 	},
1278 	[ C(OP_PREFETCH) ] = {
1279 		[ C(RESULT_ACCESS) ] = 0,
1280 		[ C(RESULT_MISS)   ] = 0,
1281 	},
1282  },
1283  [ C(DTLB) ] = {
1284 	[ C(OP_READ) ] = {
1285 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1286 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1287 	},
1288 	[ C(OP_WRITE) ] = {
1289 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1290 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1291 	},
1292 	[ C(OP_PREFETCH) ] = {
1293 		[ C(RESULT_ACCESS) ] = 0,
1294 		[ C(RESULT_MISS)   ] = 0,
1295 	},
1296  },
1297  [ C(ITLB) ] = {
1298 	[ C(OP_READ) ] = {
1299 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1300 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1301 	},
1302 	[ C(OP_WRITE) ] = {
1303 		[ C(RESULT_ACCESS) ] = -1,
1304 		[ C(RESULT_MISS)   ] = -1,
1305 	},
1306 	[ C(OP_PREFETCH) ] = {
1307 		[ C(RESULT_ACCESS) ] = -1,
1308 		[ C(RESULT_MISS)   ] = -1,
1309 	},
1310  },
1311  [ C(BPU ) ] = {
1312 	[ C(OP_READ) ] = {
1313 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1314 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1315 	},
1316 	[ C(OP_WRITE) ] = {
1317 		[ C(RESULT_ACCESS) ] = -1,
1318 		[ C(RESULT_MISS)   ] = -1,
1319 	},
1320 	[ C(OP_PREFETCH) ] = {
1321 		[ C(RESULT_ACCESS) ] = -1,
1322 		[ C(RESULT_MISS)   ] = -1,
1323 	},
1324  },
1325 };
1326 
1327 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1328 {
1329 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1330 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1331 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1332 	EVENT_EXTRA_END
1333 };
1334 
1335 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1336 #define SLM_DMND_WRITE		SNB_DMND_RFO
1337 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1338 
1339 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1340 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1341 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1342 
1343 static __initconst const u64 slm_hw_cache_extra_regs
1344 				[PERF_COUNT_HW_CACHE_MAX]
1345 				[PERF_COUNT_HW_CACHE_OP_MAX]
1346 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1347 {
1348  [ C(LL  ) ] = {
1349 	[ C(OP_READ) ] = {
1350 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1351 		[ C(RESULT_MISS)   ] = 0,
1352 	},
1353 	[ C(OP_WRITE) ] = {
1354 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1355 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1356 	},
1357 	[ C(OP_PREFETCH) ] = {
1358 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1359 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1360 	},
1361  },
1362 };
1363 
1364 static __initconst const u64 slm_hw_cache_event_ids
1365 				[PERF_COUNT_HW_CACHE_MAX]
1366 				[PERF_COUNT_HW_CACHE_OP_MAX]
1367 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1368 {
1369  [ C(L1D) ] = {
1370 	[ C(OP_READ) ] = {
1371 		[ C(RESULT_ACCESS) ] = 0,
1372 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1373 	},
1374 	[ C(OP_WRITE) ] = {
1375 		[ C(RESULT_ACCESS) ] = 0,
1376 		[ C(RESULT_MISS)   ] = 0,
1377 	},
1378 	[ C(OP_PREFETCH) ] = {
1379 		[ C(RESULT_ACCESS) ] = 0,
1380 		[ C(RESULT_MISS)   ] = 0,
1381 	},
1382  },
1383  [ C(L1I ) ] = {
1384 	[ C(OP_READ) ] = {
1385 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1386 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1387 	},
1388 	[ C(OP_WRITE) ] = {
1389 		[ C(RESULT_ACCESS) ] = -1,
1390 		[ C(RESULT_MISS)   ] = -1,
1391 	},
1392 	[ C(OP_PREFETCH) ] = {
1393 		[ C(RESULT_ACCESS) ] = 0,
1394 		[ C(RESULT_MISS)   ] = 0,
1395 	},
1396  },
1397  [ C(LL  ) ] = {
1398 	[ C(OP_READ) ] = {
1399 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1400 		[ C(RESULT_ACCESS) ] = 0x01b7,
1401 		[ C(RESULT_MISS)   ] = 0,
1402 	},
1403 	[ C(OP_WRITE) ] = {
1404 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1405 		[ C(RESULT_ACCESS) ] = 0x01b7,
1406 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1407 		[ C(RESULT_MISS)   ] = 0x01b7,
1408 	},
1409 	[ C(OP_PREFETCH) ] = {
1410 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1411 		[ C(RESULT_ACCESS) ] = 0x01b7,
1412 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1413 		[ C(RESULT_MISS)   ] = 0x01b7,
1414 	},
1415  },
1416  [ C(DTLB) ] = {
1417 	[ C(OP_READ) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0,
1419 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1420 	},
1421 	[ C(OP_WRITE) ] = {
1422 		[ C(RESULT_ACCESS) ] = 0,
1423 		[ C(RESULT_MISS)   ] = 0,
1424 	},
1425 	[ C(OP_PREFETCH) ] = {
1426 		[ C(RESULT_ACCESS) ] = 0,
1427 		[ C(RESULT_MISS)   ] = 0,
1428 	},
1429  },
1430  [ C(ITLB) ] = {
1431 	[ C(OP_READ) ] = {
1432 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1433 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1434 	},
1435 	[ C(OP_WRITE) ] = {
1436 		[ C(RESULT_ACCESS) ] = -1,
1437 		[ C(RESULT_MISS)   ] = -1,
1438 	},
1439 	[ C(OP_PREFETCH) ] = {
1440 		[ C(RESULT_ACCESS) ] = -1,
1441 		[ C(RESULT_MISS)   ] = -1,
1442 	},
1443  },
1444  [ C(BPU ) ] = {
1445 	[ C(OP_READ) ] = {
1446 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1447 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1448 	},
1449 	[ C(OP_WRITE) ] = {
1450 		[ C(RESULT_ACCESS) ] = -1,
1451 		[ C(RESULT_MISS)   ] = -1,
1452 	},
1453 	[ C(OP_PREFETCH) ] = {
1454 		[ C(RESULT_ACCESS) ] = -1,
1455 		[ C(RESULT_MISS)   ] = -1,
1456 	},
1457  },
1458 };
1459 
1460 /*
1461  * Used from PMIs where the LBRs are already disabled.
1462  *
1463  * This function could be called consecutively. It is required to remain in
1464  * disabled state if called consecutively.
1465  *
1466  * During consecutive calls, the same disable value will be written to related
1467  * registers, so the PMU state remains unchanged. hw.state in
1468  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1469  * calls.
1470  */
__intel_pmu_disable_all(void)1471 static void __intel_pmu_disable_all(void)
1472 {
1473 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1474 
1475 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1476 
1477 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1478 		intel_pmu_disable_bts();
1479 	else
1480 		intel_bts_disable_local();
1481 
1482 	intel_pmu_pebs_disable_all();
1483 }
1484 
intel_pmu_disable_all(void)1485 static void intel_pmu_disable_all(void)
1486 {
1487 	__intel_pmu_disable_all();
1488 	intel_pmu_lbr_disable_all();
1489 }
1490 
__intel_pmu_enable_all(int added,bool pmi)1491 static void __intel_pmu_enable_all(int added, bool pmi)
1492 {
1493 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1494 
1495 	intel_pmu_pebs_enable_all();
1496 	intel_pmu_lbr_enable_all(pmi);
1497 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1498 			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1499 
1500 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1501 		struct perf_event *event =
1502 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1503 
1504 		if (WARN_ON_ONCE(!event))
1505 			return;
1506 
1507 		intel_pmu_enable_bts(event->hw.config);
1508 	} else
1509 		intel_bts_enable_local();
1510 }
1511 
intel_pmu_enable_all(int added)1512 static void intel_pmu_enable_all(int added)
1513 {
1514 	__intel_pmu_enable_all(added, false);
1515 }
1516 
1517 /*
1518  * Workaround for:
1519  *   Intel Errata AAK100 (model 26)
1520  *   Intel Errata AAP53  (model 30)
1521  *   Intel Errata BD53   (model 44)
1522  *
1523  * The official story:
1524  *   These chips need to be 'reset' when adding counters by programming the
1525  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1526  *   in sequence on the same PMC or on different PMCs.
1527  *
1528  * In practise it appears some of these events do in fact count, and
1529  * we need to programm all 4 events.
1530  */
intel_pmu_nhm_workaround(void)1531 static void intel_pmu_nhm_workaround(void)
1532 {
1533 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1534 	static const unsigned long nhm_magic[4] = {
1535 		0x4300B5,
1536 		0x4300D2,
1537 		0x4300B1,
1538 		0x4300B1
1539 	};
1540 	struct perf_event *event;
1541 	int i;
1542 
1543 	/*
1544 	 * The Errata requires below steps:
1545 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1546 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1547 	 *    the corresponding PMCx;
1548 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1549 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1550 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1551 	 */
1552 
1553 	/*
1554 	 * The real steps we choose are a little different from above.
1555 	 * A) To reduce MSR operations, we don't run step 1) as they
1556 	 *    are already cleared before this function is called;
1557 	 * B) Call x86_perf_event_update to save PMCx before configuring
1558 	 *    PERFEVTSELx with magic number;
1559 	 * C) With step 5), we do clear only when the PERFEVTSELx is
1560 	 *    not used currently.
1561 	 * D) Call x86_perf_event_set_period to restore PMCx;
1562 	 */
1563 
1564 	/* We always operate 4 pairs of PERF Counters */
1565 	for (i = 0; i < 4; i++) {
1566 		event = cpuc->events[i];
1567 		if (event)
1568 			x86_perf_event_update(event);
1569 	}
1570 
1571 	for (i = 0; i < 4; i++) {
1572 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1573 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1574 	}
1575 
1576 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1577 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1578 
1579 	for (i = 0; i < 4; i++) {
1580 		event = cpuc->events[i];
1581 
1582 		if (event) {
1583 			x86_perf_event_set_period(event);
1584 			__x86_pmu_enable_event(&event->hw,
1585 					ARCH_PERFMON_EVENTSEL_ENABLE);
1586 		} else
1587 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1588 	}
1589 }
1590 
intel_pmu_nhm_enable_all(int added)1591 static void intel_pmu_nhm_enable_all(int added)
1592 {
1593 	if (added)
1594 		intel_pmu_nhm_workaround();
1595 	intel_pmu_enable_all(added);
1596 }
1597 
intel_pmu_get_status(void)1598 static inline u64 intel_pmu_get_status(void)
1599 {
1600 	u64 status;
1601 
1602 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1603 
1604 	return status;
1605 }
1606 
intel_pmu_ack_status(u64 ack)1607 static inline void intel_pmu_ack_status(u64 ack)
1608 {
1609 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1610 }
1611 
intel_pmu_disable_fixed(struct hw_perf_event * hwc)1612 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1613 {
1614 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1615 	u64 ctrl_val, mask;
1616 
1617 	mask = 0xfULL << (idx * 4);
1618 
1619 	rdmsrl(hwc->config_base, ctrl_val);
1620 	ctrl_val &= ~mask;
1621 	wrmsrl(hwc->config_base, ctrl_val);
1622 }
1623 
event_is_checkpointed(struct perf_event * event)1624 static inline bool event_is_checkpointed(struct perf_event *event)
1625 {
1626 	return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1627 }
1628 
intel_pmu_disable_event(struct perf_event * event)1629 static void intel_pmu_disable_event(struct perf_event *event)
1630 {
1631 	struct hw_perf_event *hwc = &event->hw;
1632 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1633 
1634 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1635 		intel_pmu_disable_bts();
1636 		intel_pmu_drain_bts_buffer();
1637 		return;
1638 	}
1639 
1640 	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1641 	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1642 	cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1643 
1644 	/*
1645 	 * must disable before any actual event
1646 	 * because any event may be combined with LBR
1647 	 */
1648 	if (needs_branch_stack(event))
1649 		intel_pmu_lbr_disable(event);
1650 
1651 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1652 		intel_pmu_disable_fixed(hwc);
1653 		return;
1654 	}
1655 
1656 	x86_pmu_disable_event(event);
1657 
1658 	if (unlikely(event->attr.precise_ip))
1659 		intel_pmu_pebs_disable(event);
1660 }
1661 
intel_pmu_enable_fixed(struct hw_perf_event * hwc)1662 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1663 {
1664 	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1665 	u64 ctrl_val, bits, mask;
1666 
1667 	/*
1668 	 * Enable IRQ generation (0x8),
1669 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1670 	 * if requested:
1671 	 */
1672 	bits = 0x8ULL;
1673 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1674 		bits |= 0x2;
1675 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1676 		bits |= 0x1;
1677 
1678 	/*
1679 	 * ANY bit is supported in v3 and up
1680 	 */
1681 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1682 		bits |= 0x4;
1683 
1684 	bits <<= (idx * 4);
1685 	mask = 0xfULL << (idx * 4);
1686 
1687 	rdmsrl(hwc->config_base, ctrl_val);
1688 	ctrl_val &= ~mask;
1689 	ctrl_val |= bits;
1690 	wrmsrl(hwc->config_base, ctrl_val);
1691 }
1692 
intel_pmu_enable_event(struct perf_event * event)1693 static void intel_pmu_enable_event(struct perf_event *event)
1694 {
1695 	struct hw_perf_event *hwc = &event->hw;
1696 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1697 
1698 	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1699 		if (!__this_cpu_read(cpu_hw_events.enabled))
1700 			return;
1701 
1702 		intel_pmu_enable_bts(hwc->config);
1703 		return;
1704 	}
1705 	/*
1706 	 * must enabled before any actual event
1707 	 * because any event may be combined with LBR
1708 	 */
1709 	if (needs_branch_stack(event))
1710 		intel_pmu_lbr_enable(event);
1711 
1712 	if (event->attr.exclude_host)
1713 		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1714 	if (event->attr.exclude_guest)
1715 		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1716 
1717 	if (unlikely(event_is_checkpointed(event)))
1718 		cpuc->intel_cp_status |= (1ull << hwc->idx);
1719 
1720 	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1721 		intel_pmu_enable_fixed(hwc);
1722 		return;
1723 	}
1724 
1725 	if (unlikely(event->attr.precise_ip))
1726 		intel_pmu_pebs_enable(event);
1727 
1728 	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1729 }
1730 
1731 /*
1732  * Save and restart an expired event. Called by NMI contexts,
1733  * so it has to be careful about preempting normal event ops:
1734  */
intel_pmu_save_and_restart(struct perf_event * event)1735 int intel_pmu_save_and_restart(struct perf_event *event)
1736 {
1737 	x86_perf_event_update(event);
1738 	/*
1739 	 * For a checkpointed counter always reset back to 0.  This
1740 	 * avoids a situation where the counter overflows, aborts the
1741 	 * transaction and is then set back to shortly before the
1742 	 * overflow, and overflows and aborts again.
1743 	 */
1744 	if (unlikely(event_is_checkpointed(event))) {
1745 		/* No race with NMIs because the counter should not be armed */
1746 		wrmsrl(event->hw.event_base, 0);
1747 		local64_set(&event->hw.prev_count, 0);
1748 	}
1749 	return x86_perf_event_set_period(event);
1750 }
1751 
intel_pmu_reset(void)1752 static void intel_pmu_reset(void)
1753 {
1754 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1755 	unsigned long flags;
1756 	int idx;
1757 
1758 	if (!x86_pmu.num_counters)
1759 		return;
1760 
1761 	local_irq_save(flags);
1762 
1763 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1764 
1765 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1766 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1767 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1768 	}
1769 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1770 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1771 
1772 	if (ds)
1773 		ds->bts_index = ds->bts_buffer_base;
1774 
1775 	/* Ack all overflows and disable fixed counters */
1776 	if (x86_pmu.version >= 2) {
1777 		intel_pmu_ack_status(intel_pmu_get_status());
1778 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1779 	}
1780 
1781 	/* Reset LBRs and LBR freezing */
1782 	if (x86_pmu.lbr_nr) {
1783 		update_debugctlmsr(get_debugctlmsr() &
1784 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1785 	}
1786 
1787 	local_irq_restore(flags);
1788 }
1789 
1790 /*
1791  * This handler is triggered by the local APIC, so the APIC IRQ handling
1792  * rules apply:
1793  */
intel_pmu_handle_irq(struct pt_regs * regs)1794 static int intel_pmu_handle_irq(struct pt_regs *regs)
1795 {
1796 	struct perf_sample_data data;
1797 	struct cpu_hw_events *cpuc;
1798 	int bit, loops;
1799 	u64 status;
1800 	int handled;
1801 
1802 	cpuc = this_cpu_ptr(&cpu_hw_events);
1803 
1804 	/*
1805 	 * No known reason to not always do late ACK,
1806 	 * but just in case do it opt-in.
1807 	 */
1808 	if (!x86_pmu.late_ack)
1809 		apic_write(APIC_LVTPC, APIC_DM_NMI);
1810 	__intel_pmu_disable_all();
1811 	handled = intel_pmu_drain_bts_buffer();
1812 	handled += intel_bts_interrupt();
1813 	status = intel_pmu_get_status();
1814 	if (!status)
1815 		goto done;
1816 
1817 	loops = 0;
1818 again:
1819 	intel_pmu_lbr_read();
1820 	intel_pmu_ack_status(status);
1821 	if (++loops > 100) {
1822 		static bool warned = false;
1823 		if (!warned) {
1824 			WARN(1, "perfevents: irq loop stuck!\n");
1825 			perf_event_print_debug();
1826 			warned = true;
1827 		}
1828 		intel_pmu_reset();
1829 		goto done;
1830 	}
1831 
1832 	inc_irq_stat(apic_perf_irqs);
1833 
1834 
1835 	/*
1836 	 * Ignore a range of extra bits in status that do not indicate
1837 	 * overflow by themselves.
1838 	 */
1839 	status &= ~(GLOBAL_STATUS_COND_CHG |
1840 		    GLOBAL_STATUS_ASIF |
1841 		    GLOBAL_STATUS_LBRS_FROZEN);
1842 	if (!status)
1843 		goto done;
1844 
1845 	/*
1846 	 * PEBS overflow sets bit 62 in the global status register
1847 	 */
1848 	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1849 		handled++;
1850 		x86_pmu.drain_pebs(regs);
1851 		/*
1852 		 * There are cases where, even though, the PEBS ovfl bit is set
1853 		 * in GLOBAL_OVF_STATUS, the PEBS events may also have their
1854 		 * overflow bits set for their counters. We must clear them
1855 		 * here because they have been processed as exact samples in
1856 		 * the drain_pebs() routine. They must not be processed again
1857 		 * in the for_each_bit_set() loop for regular samples below.
1858 		 */
1859 		status &= ~cpuc->pebs_enabled;
1860 		status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
1861 	}
1862 
1863 	/*
1864 	 * Intel PT
1865 	 */
1866 	if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1867 		handled++;
1868 		intel_pt_interrupt();
1869 	}
1870 
1871 	/*
1872 	 * Checkpointed counters can lead to 'spurious' PMIs because the
1873 	 * rollback caused by the PMI will have cleared the overflow status
1874 	 * bit. Therefore always force probe these counters.
1875 	 */
1876 	status |= cpuc->intel_cp_status;
1877 
1878 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1879 		struct perf_event *event = cpuc->events[bit];
1880 
1881 		handled++;
1882 
1883 		if (!test_bit(bit, cpuc->active_mask))
1884 			continue;
1885 
1886 		if (!intel_pmu_save_and_restart(event))
1887 			continue;
1888 
1889 		perf_sample_data_init(&data, 0, event->hw.last_period);
1890 
1891 		if (has_branch_stack(event))
1892 			data.br_stack = &cpuc->lbr_stack;
1893 
1894 		if (perf_event_overflow(event, &data, regs))
1895 			x86_pmu_stop(event, 0);
1896 	}
1897 
1898 	/*
1899 	 * Repeat if there is more work to be done:
1900 	 */
1901 	status = intel_pmu_get_status();
1902 	if (status)
1903 		goto again;
1904 
1905 done:
1906 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
1907 	if (cpuc->enabled)
1908 		__intel_pmu_enable_all(0, true);
1909 
1910 	/*
1911 	 * Only unmask the NMI after the overflow counters
1912 	 * have been reset. This avoids spurious NMIs on
1913 	 * Haswell CPUs.
1914 	 */
1915 	if (x86_pmu.late_ack)
1916 		apic_write(APIC_LVTPC, APIC_DM_NMI);
1917 	return handled;
1918 }
1919 
1920 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)1921 intel_bts_constraints(struct perf_event *event)
1922 {
1923 	struct hw_perf_event *hwc = &event->hw;
1924 	unsigned int hw_event, bts_event;
1925 
1926 	if (event->attr.freq)
1927 		return NULL;
1928 
1929 	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1930 	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1931 
1932 	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1933 		return &bts_constraint;
1934 
1935 	return NULL;
1936 }
1937 
intel_alt_er(int idx,u64 config)1938 static int intel_alt_er(int idx, u64 config)
1939 {
1940 	int alt_idx = idx;
1941 
1942 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1943 		return idx;
1944 
1945 	if (idx == EXTRA_REG_RSP_0)
1946 		alt_idx = EXTRA_REG_RSP_1;
1947 
1948 	if (idx == EXTRA_REG_RSP_1)
1949 		alt_idx = EXTRA_REG_RSP_0;
1950 
1951 	if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1952 		return idx;
1953 
1954 	return alt_idx;
1955 }
1956 
intel_fixup_er(struct perf_event * event,int idx)1957 static void intel_fixup_er(struct perf_event *event, int idx)
1958 {
1959 	event->hw.extra_reg.idx = idx;
1960 
1961 	if (idx == EXTRA_REG_RSP_0) {
1962 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1963 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1964 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1965 	} else if (idx == EXTRA_REG_RSP_1) {
1966 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1967 		event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1968 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1969 	}
1970 }
1971 
1972 /*
1973  * manage allocation of shared extra msr for certain events
1974  *
1975  * sharing can be:
1976  * per-cpu: to be shared between the various events on a single PMU
1977  * per-core: per-cpu + shared by HT threads
1978  */
1979 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)1980 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1981 				   struct perf_event *event,
1982 				   struct hw_perf_event_extra *reg)
1983 {
1984 	struct event_constraint *c = &emptyconstraint;
1985 	struct er_account *era;
1986 	unsigned long flags;
1987 	int idx = reg->idx;
1988 
1989 	/*
1990 	 * reg->alloc can be set due to existing state, so for fake cpuc we
1991 	 * need to ignore this, otherwise we might fail to allocate proper fake
1992 	 * state for this extra reg constraint. Also see the comment below.
1993 	 */
1994 	if (reg->alloc && !cpuc->is_fake)
1995 		return NULL; /* call x86_get_event_constraint() */
1996 
1997 again:
1998 	era = &cpuc->shared_regs->regs[idx];
1999 	/*
2000 	 * we use spin_lock_irqsave() to avoid lockdep issues when
2001 	 * passing a fake cpuc
2002 	 */
2003 	raw_spin_lock_irqsave(&era->lock, flags);
2004 
2005 	if (!atomic_read(&era->ref) || era->config == reg->config) {
2006 
2007 		/*
2008 		 * If its a fake cpuc -- as per validate_{group,event}() we
2009 		 * shouldn't touch event state and we can avoid doing so
2010 		 * since both will only call get_event_constraints() once
2011 		 * on each event, this avoids the need for reg->alloc.
2012 		 *
2013 		 * Not doing the ER fixup will only result in era->reg being
2014 		 * wrong, but since we won't actually try and program hardware
2015 		 * this isn't a problem either.
2016 		 */
2017 		if (!cpuc->is_fake) {
2018 			if (idx != reg->idx)
2019 				intel_fixup_er(event, idx);
2020 
2021 			/*
2022 			 * x86_schedule_events() can call get_event_constraints()
2023 			 * multiple times on events in the case of incremental
2024 			 * scheduling(). reg->alloc ensures we only do the ER
2025 			 * allocation once.
2026 			 */
2027 			reg->alloc = 1;
2028 		}
2029 
2030 		/* lock in msr value */
2031 		era->config = reg->config;
2032 		era->reg = reg->reg;
2033 
2034 		/* one more user */
2035 		atomic_inc(&era->ref);
2036 
2037 		/*
2038 		 * need to call x86_get_event_constraint()
2039 		 * to check if associated event has constraints
2040 		 */
2041 		c = NULL;
2042 	} else {
2043 		idx = intel_alt_er(idx, reg->config);
2044 		if (idx != reg->idx) {
2045 			raw_spin_unlock_irqrestore(&era->lock, flags);
2046 			goto again;
2047 		}
2048 	}
2049 	raw_spin_unlock_irqrestore(&era->lock, flags);
2050 
2051 	return c;
2052 }
2053 
2054 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)2055 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2056 				   struct hw_perf_event_extra *reg)
2057 {
2058 	struct er_account *era;
2059 
2060 	/*
2061 	 * Only put constraint if extra reg was actually allocated. Also takes
2062 	 * care of event which do not use an extra shared reg.
2063 	 *
2064 	 * Also, if this is a fake cpuc we shouldn't touch any event state
2065 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2066 	 * either since it'll be thrown out.
2067 	 */
2068 	if (!reg->alloc || cpuc->is_fake)
2069 		return;
2070 
2071 	era = &cpuc->shared_regs->regs[reg->idx];
2072 
2073 	/* one fewer user */
2074 	atomic_dec(&era->ref);
2075 
2076 	/* allocate again next time */
2077 	reg->alloc = 0;
2078 }
2079 
2080 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2081 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2082 			      struct perf_event *event)
2083 {
2084 	struct event_constraint *c = NULL, *d;
2085 	struct hw_perf_event_extra *xreg, *breg;
2086 
2087 	xreg = &event->hw.extra_reg;
2088 	if (xreg->idx != EXTRA_REG_NONE) {
2089 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2090 		if (c == &emptyconstraint)
2091 			return c;
2092 	}
2093 	breg = &event->hw.branch_reg;
2094 	if (breg->idx != EXTRA_REG_NONE) {
2095 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2096 		if (d == &emptyconstraint) {
2097 			__intel_shared_reg_put_constraints(cpuc, xreg);
2098 			c = d;
2099 		}
2100 	}
2101 	return c;
2102 }
2103 
2104 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2105 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2106 			  struct perf_event *event)
2107 {
2108 	struct event_constraint *c;
2109 
2110 	if (x86_pmu.event_constraints) {
2111 		for_each_event_constraint(c, x86_pmu.event_constraints) {
2112 			if ((event->hw.config & c->cmask) == c->code) {
2113 				event->hw.flags |= c->flags;
2114 				return c;
2115 			}
2116 		}
2117 	}
2118 
2119 	return &unconstrained;
2120 }
2121 
2122 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2123 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2124 			    struct perf_event *event)
2125 {
2126 	struct event_constraint *c;
2127 
2128 	c = intel_bts_constraints(event);
2129 	if (c)
2130 		return c;
2131 
2132 	c = intel_shared_regs_constraints(cpuc, event);
2133 	if (c)
2134 		return c;
2135 
2136 	c = intel_pebs_constraints(event);
2137 	if (c)
2138 		return c;
2139 
2140 	return x86_get_event_constraints(cpuc, idx, event);
2141 }
2142 
2143 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)2144 intel_start_scheduling(struct cpu_hw_events *cpuc)
2145 {
2146 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2147 	struct intel_excl_states *xl;
2148 	int tid = cpuc->excl_thread_id;
2149 
2150 	/*
2151 	 * nothing needed if in group validation mode
2152 	 */
2153 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2154 		return;
2155 
2156 	/*
2157 	 * no exclusion needed
2158 	 */
2159 	if (WARN_ON_ONCE(!excl_cntrs))
2160 		return;
2161 
2162 	xl = &excl_cntrs->states[tid];
2163 
2164 	xl->sched_started = true;
2165 	/*
2166 	 * lock shared state until we are done scheduling
2167 	 * in stop_event_scheduling()
2168 	 * makes scheduling appear as a transaction
2169 	 */
2170 	raw_spin_lock(&excl_cntrs->lock);
2171 }
2172 
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2173 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2174 {
2175 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2176 	struct event_constraint *c = cpuc->event_constraint[idx];
2177 	struct intel_excl_states *xl;
2178 	int tid = cpuc->excl_thread_id;
2179 
2180 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2181 		return;
2182 
2183 	if (WARN_ON_ONCE(!excl_cntrs))
2184 		return;
2185 
2186 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2187 		return;
2188 
2189 	xl = &excl_cntrs->states[tid];
2190 
2191 	lockdep_assert_held(&excl_cntrs->lock);
2192 
2193 	if (c->flags & PERF_X86_EVENT_EXCL)
2194 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2195 	else
2196 		xl->state[cntr] = INTEL_EXCL_SHARED;
2197 }
2198 
2199 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)2200 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2201 {
2202 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2203 	struct intel_excl_states *xl;
2204 	int tid = cpuc->excl_thread_id;
2205 
2206 	/*
2207 	 * nothing needed if in group validation mode
2208 	 */
2209 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2210 		return;
2211 	/*
2212 	 * no exclusion needed
2213 	 */
2214 	if (WARN_ON_ONCE(!excl_cntrs))
2215 		return;
2216 
2217 	xl = &excl_cntrs->states[tid];
2218 
2219 	xl->sched_started = false;
2220 	/*
2221 	 * release shared state lock (acquired in intel_start_scheduling())
2222 	 */
2223 	raw_spin_unlock(&excl_cntrs->lock);
2224 }
2225 
2226 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)2227 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2228 			   int idx, struct event_constraint *c)
2229 {
2230 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2231 	struct intel_excl_states *xlo;
2232 	int tid = cpuc->excl_thread_id;
2233 	int is_excl, i;
2234 
2235 	/*
2236 	 * validating a group does not require
2237 	 * enforcing cross-thread  exclusion
2238 	 */
2239 	if (cpuc->is_fake || !is_ht_workaround_enabled())
2240 		return c;
2241 
2242 	/*
2243 	 * no exclusion needed
2244 	 */
2245 	if (WARN_ON_ONCE(!excl_cntrs))
2246 		return c;
2247 
2248 	/*
2249 	 * because we modify the constraint, we need
2250 	 * to make a copy. Static constraints come
2251 	 * from static const tables.
2252 	 *
2253 	 * only needed when constraint has not yet
2254 	 * been cloned (marked dynamic)
2255 	 */
2256 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2257 		struct event_constraint *cx;
2258 
2259 		/*
2260 		 * grab pre-allocated constraint entry
2261 		 */
2262 		cx = &cpuc->constraint_list[idx];
2263 
2264 		/*
2265 		 * initialize dynamic constraint
2266 		 * with static constraint
2267 		 */
2268 		*cx = *c;
2269 
2270 		/*
2271 		 * mark constraint as dynamic, so we
2272 		 * can free it later on
2273 		 */
2274 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
2275 		c = cx;
2276 	}
2277 
2278 	/*
2279 	 * From here on, the constraint is dynamic.
2280 	 * Either it was just allocated above, or it
2281 	 * was allocated during a earlier invocation
2282 	 * of this function
2283 	 */
2284 
2285 	/*
2286 	 * state of sibling HT
2287 	 */
2288 	xlo = &excl_cntrs->states[tid ^ 1];
2289 
2290 	/*
2291 	 * event requires exclusive counter access
2292 	 * across HT threads
2293 	 */
2294 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
2295 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2296 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2297 		if (!cpuc->n_excl++)
2298 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2299 	}
2300 
2301 	/*
2302 	 * Modify static constraint with current dynamic
2303 	 * state of thread
2304 	 *
2305 	 * EXCLUSIVE: sibling counter measuring exclusive event
2306 	 * SHARED   : sibling counter measuring non-exclusive event
2307 	 * UNUSED   : sibling counter unused
2308 	 */
2309 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2310 		/*
2311 		 * exclusive event in sibling counter
2312 		 * our corresponding counter cannot be used
2313 		 * regardless of our event
2314 		 */
2315 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2316 			__clear_bit(i, c->idxmsk);
2317 		/*
2318 		 * if measuring an exclusive event, sibling
2319 		 * measuring non-exclusive, then counter cannot
2320 		 * be used
2321 		 */
2322 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2323 			__clear_bit(i, c->idxmsk);
2324 	}
2325 
2326 	/*
2327 	 * recompute actual bit weight for scheduling algorithm
2328 	 */
2329 	c->weight = hweight64(c->idxmsk64);
2330 
2331 	/*
2332 	 * if we return an empty mask, then switch
2333 	 * back to static empty constraint to avoid
2334 	 * the cost of freeing later on
2335 	 */
2336 	if (c->weight == 0)
2337 		c = &emptyconstraint;
2338 
2339 	return c;
2340 }
2341 
2342 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2343 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2344 			    struct perf_event *event)
2345 {
2346 	struct event_constraint *c1 = NULL;
2347 	struct event_constraint *c2;
2348 
2349 	if (idx >= 0) /* fake does < 0 */
2350 		c1 = cpuc->event_constraint[idx];
2351 
2352 	/*
2353 	 * first time only
2354 	 * - static constraint: no change across incremental scheduling calls
2355 	 * - dynamic constraint: handled by intel_get_excl_constraints()
2356 	 */
2357 	c2 = __intel_get_event_constraints(cpuc, idx, event);
2358 	if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2359 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2360 		c1->weight = c2->weight;
2361 		c2 = c1;
2362 	}
2363 
2364 	if (cpuc->excl_cntrs)
2365 		return intel_get_excl_constraints(cpuc, event, idx, c2);
2366 
2367 	return c2;
2368 }
2369 
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2370 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2371 		struct perf_event *event)
2372 {
2373 	struct hw_perf_event *hwc = &event->hw;
2374 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2375 	int tid = cpuc->excl_thread_id;
2376 	struct intel_excl_states *xl;
2377 
2378 	/*
2379 	 * nothing needed if in group validation mode
2380 	 */
2381 	if (cpuc->is_fake)
2382 		return;
2383 
2384 	if (WARN_ON_ONCE(!excl_cntrs))
2385 		return;
2386 
2387 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2388 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2389 		if (!--cpuc->n_excl)
2390 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2391 	}
2392 
2393 	/*
2394 	 * If event was actually assigned, then mark the counter state as
2395 	 * unused now.
2396 	 */
2397 	if (hwc->idx >= 0) {
2398 		xl = &excl_cntrs->states[tid];
2399 
2400 		/*
2401 		 * put_constraint may be called from x86_schedule_events()
2402 		 * which already has the lock held so here make locking
2403 		 * conditional.
2404 		 */
2405 		if (!xl->sched_started)
2406 			raw_spin_lock(&excl_cntrs->lock);
2407 
2408 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2409 
2410 		if (!xl->sched_started)
2411 			raw_spin_unlock(&excl_cntrs->lock);
2412 	}
2413 }
2414 
2415 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2416 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2417 					struct perf_event *event)
2418 {
2419 	struct hw_perf_event_extra *reg;
2420 
2421 	reg = &event->hw.extra_reg;
2422 	if (reg->idx != EXTRA_REG_NONE)
2423 		__intel_shared_reg_put_constraints(cpuc, reg);
2424 
2425 	reg = &event->hw.branch_reg;
2426 	if (reg->idx != EXTRA_REG_NONE)
2427 		__intel_shared_reg_put_constraints(cpuc, reg);
2428 }
2429 
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2430 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2431 					struct perf_event *event)
2432 {
2433 	intel_put_shared_regs_event_constraints(cpuc, event);
2434 
2435 	/*
2436 	 * is PMU has exclusive counter restrictions, then
2437 	 * all events are subject to and must call the
2438 	 * put_excl_constraints() routine
2439 	 */
2440 	if (cpuc->excl_cntrs)
2441 		intel_put_excl_constraints(cpuc, event);
2442 }
2443 
intel_pebs_aliases_core2(struct perf_event * event)2444 static void intel_pebs_aliases_core2(struct perf_event *event)
2445 {
2446 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2447 		/*
2448 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2449 		 * (0x003c) so that we can use it with PEBS.
2450 		 *
2451 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2452 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
2453 		 * (0x00c0), which is a PEBS capable event, to get the same
2454 		 * count.
2455 		 *
2456 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
2457 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
2458 		 * larger than the maximum number of instructions that can be
2459 		 * retired per cycle (4) and then inverting the condition, we
2460 		 * count all cycles that retire 16 or less instructions, which
2461 		 * is every cycle.
2462 		 *
2463 		 * Thereby we gain a PEBS capable cycle counter.
2464 		 */
2465 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2466 
2467 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2468 		event->hw.config = alt_config;
2469 	}
2470 }
2471 
intel_pebs_aliases_snb(struct perf_event * event)2472 static void intel_pebs_aliases_snb(struct perf_event *event)
2473 {
2474 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2475 		/*
2476 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2477 		 * (0x003c) so that we can use it with PEBS.
2478 		 *
2479 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2480 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
2481 		 * (0x01c2), which is a PEBS capable event, to get the same
2482 		 * count.
2483 		 *
2484 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
2485 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2486 		 * larger than the maximum number of micro-ops that can be
2487 		 * retired per cycle (4) and then inverting the condition, we
2488 		 * count all cycles that retire 16 or less micro-ops, which
2489 		 * is every cycle.
2490 		 *
2491 		 * Thereby we gain a PEBS capable cycle counter.
2492 		 */
2493 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2494 
2495 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2496 		event->hw.config = alt_config;
2497 	}
2498 }
2499 
intel_pmu_free_running_flags(struct perf_event * event)2500 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2501 {
2502 	unsigned long flags = x86_pmu.free_running_flags;
2503 
2504 	if (event->attr.use_clockid)
2505 		flags &= ~PERF_SAMPLE_TIME;
2506 	return flags;
2507 }
2508 
intel_pmu_hw_config(struct perf_event * event)2509 static int intel_pmu_hw_config(struct perf_event *event)
2510 {
2511 	int ret = x86_pmu_hw_config(event);
2512 
2513 	if (ret)
2514 		return ret;
2515 
2516 	if (event->attr.precise_ip) {
2517 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
2518 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2519 			if (!(event->attr.sample_type &
2520 			      ~intel_pmu_free_running_flags(event)))
2521 				event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2522 		}
2523 		if (x86_pmu.pebs_aliases)
2524 			x86_pmu.pebs_aliases(event);
2525 	}
2526 
2527 	if (needs_branch_stack(event)) {
2528 		ret = intel_pmu_setup_lbr_filter(event);
2529 		if (ret)
2530 			return ret;
2531 
2532 		/*
2533 		 * BTS is set up earlier in this path, so don't account twice
2534 		 */
2535 		if (!intel_pmu_has_bts(event)) {
2536 			/* disallow lbr if conflicting events are present */
2537 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2538 				return -EBUSY;
2539 
2540 			event->destroy = hw_perf_lbr_event_destroy;
2541 		}
2542 	}
2543 
2544 	if (event->attr.type != PERF_TYPE_RAW)
2545 		return 0;
2546 
2547 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2548 		return 0;
2549 
2550 	if (x86_pmu.version < 3)
2551 		return -EINVAL;
2552 
2553 	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2554 		return -EACCES;
2555 
2556 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2557 
2558 	return 0;
2559 }
2560 
perf_guest_get_msrs(int * nr)2561 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2562 {
2563 	if (x86_pmu.guest_get_msrs)
2564 		return x86_pmu.guest_get_msrs(nr);
2565 	*nr = 0;
2566 	return NULL;
2567 }
2568 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2569 
intel_guest_get_msrs(int * nr)2570 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2571 {
2572 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2573 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2574 
2575 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2576 	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2577 	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2578 	/*
2579 	 * If PMU counter has PEBS enabled it is not enough to disable counter
2580 	 * on a guest entry since PEBS memory write can overshoot guest entry
2581 	 * and corrupt guest memory. Disabling PEBS solves the problem.
2582 	 */
2583 	arr[1].msr = MSR_IA32_PEBS_ENABLE;
2584 	arr[1].host = cpuc->pebs_enabled;
2585 	arr[1].guest = 0;
2586 
2587 	*nr = 2;
2588 	return arr;
2589 }
2590 
core_guest_get_msrs(int * nr)2591 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2592 {
2593 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2594 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2595 	int idx;
2596 
2597 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2598 		struct perf_event *event = cpuc->events[idx];
2599 
2600 		arr[idx].msr = x86_pmu_config_addr(idx);
2601 		arr[idx].host = arr[idx].guest = 0;
2602 
2603 		if (!test_bit(idx, cpuc->active_mask))
2604 			continue;
2605 
2606 		arr[idx].host = arr[idx].guest =
2607 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2608 
2609 		if (event->attr.exclude_host)
2610 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2611 		else if (event->attr.exclude_guest)
2612 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2613 	}
2614 
2615 	*nr = x86_pmu.num_counters;
2616 	return arr;
2617 }
2618 
core_pmu_enable_event(struct perf_event * event)2619 static void core_pmu_enable_event(struct perf_event *event)
2620 {
2621 	if (!event->attr.exclude_host)
2622 		x86_pmu_enable_event(event);
2623 }
2624 
core_pmu_enable_all(int added)2625 static void core_pmu_enable_all(int added)
2626 {
2627 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2628 	int idx;
2629 
2630 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2631 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2632 
2633 		if (!test_bit(idx, cpuc->active_mask) ||
2634 				cpuc->events[idx]->attr.exclude_host)
2635 			continue;
2636 
2637 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2638 	}
2639 }
2640 
hsw_hw_config(struct perf_event * event)2641 static int hsw_hw_config(struct perf_event *event)
2642 {
2643 	int ret = intel_pmu_hw_config(event);
2644 
2645 	if (ret)
2646 		return ret;
2647 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2648 		return 0;
2649 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2650 
2651 	/*
2652 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2653 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2654 	 * this combination.
2655 	 */
2656 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2657 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2658 	      event->attr.precise_ip > 0))
2659 		return -EOPNOTSUPP;
2660 
2661 	if (event_is_checkpointed(event)) {
2662 		/*
2663 		 * Sampling of checkpointed events can cause situations where
2664 		 * the CPU constantly aborts because of a overflow, which is
2665 		 * then checkpointed back and ignored. Forbid checkpointing
2666 		 * for sampling.
2667 		 *
2668 		 * But still allow a long sampling period, so that perf stat
2669 		 * from KVM works.
2670 		 */
2671 		if (event->attr.sample_period > 0 &&
2672 		    event->attr.sample_period < 0x7fffffff)
2673 			return -EOPNOTSUPP;
2674 	}
2675 	return 0;
2676 }
2677 
2678 static struct event_constraint counter2_constraint =
2679 			EVENT_CONSTRAINT(0, 0x4, 0);
2680 
2681 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2682 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2683 			  struct perf_event *event)
2684 {
2685 	struct event_constraint *c;
2686 
2687 	c = intel_get_event_constraints(cpuc, idx, event);
2688 
2689 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
2690 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2691 		if (c->idxmsk64 & (1U << 2))
2692 			return &counter2_constraint;
2693 		return &emptyconstraint;
2694 	}
2695 
2696 	return c;
2697 }
2698 
2699 /*
2700  * Broadwell:
2701  *
2702  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2703  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2704  * the two to enforce a minimum period of 128 (the smallest value that has bits
2705  * 0-5 cleared and >= 100).
2706  *
2707  * Because of how the code in x86_perf_event_set_period() works, the truncation
2708  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2709  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2710  *
2711  * Therefore the effective (average) period matches the requested period,
2712  * despite coarser hardware granularity.
2713  */
bdw_limit_period(struct perf_event * event,unsigned left)2714 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2715 {
2716 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2717 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
2718 		if (left < 128)
2719 			left = 128;
2720 		left &= ~0x3fULL;
2721 	}
2722 	return left;
2723 }
2724 
2725 PMU_FORMAT_ATTR(event,	"config:0-7"	);
2726 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
2727 PMU_FORMAT_ATTR(edge,	"config:18"	);
2728 PMU_FORMAT_ATTR(pc,	"config:19"	);
2729 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
2730 PMU_FORMAT_ATTR(inv,	"config:23"	);
2731 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
2732 PMU_FORMAT_ATTR(in_tx,  "config:32");
2733 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2734 
2735 static struct attribute *intel_arch_formats_attr[] = {
2736 	&format_attr_event.attr,
2737 	&format_attr_umask.attr,
2738 	&format_attr_edge.attr,
2739 	&format_attr_pc.attr,
2740 	&format_attr_inv.attr,
2741 	&format_attr_cmask.attr,
2742 	NULL,
2743 };
2744 
intel_event_sysfs_show(char * page,u64 config)2745 ssize_t intel_event_sysfs_show(char *page, u64 config)
2746 {
2747 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2748 
2749 	return x86_event_sysfs_show(page, config, event);
2750 }
2751 
allocate_shared_regs(int cpu)2752 struct intel_shared_regs *allocate_shared_regs(int cpu)
2753 {
2754 	struct intel_shared_regs *regs;
2755 	int i;
2756 
2757 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
2758 			    GFP_KERNEL, cpu_to_node(cpu));
2759 	if (regs) {
2760 		/*
2761 		 * initialize the locks to keep lockdep happy
2762 		 */
2763 		for (i = 0; i < EXTRA_REG_MAX; i++)
2764 			raw_spin_lock_init(&regs->regs[i].lock);
2765 
2766 		regs->core_id = -1;
2767 	}
2768 	return regs;
2769 }
2770 
allocate_excl_cntrs(int cpu)2771 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2772 {
2773 	struct intel_excl_cntrs *c;
2774 
2775 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2776 			 GFP_KERNEL, cpu_to_node(cpu));
2777 	if (c) {
2778 		raw_spin_lock_init(&c->lock);
2779 		c->core_id = -1;
2780 	}
2781 	return c;
2782 }
2783 
intel_pmu_cpu_prepare(int cpu)2784 static int intel_pmu_cpu_prepare(int cpu)
2785 {
2786 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2787 
2788 	if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2789 		cpuc->shared_regs = allocate_shared_regs(cpu);
2790 		if (!cpuc->shared_regs)
2791 			goto err;
2792 	}
2793 
2794 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2795 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2796 
2797 		cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2798 		if (!cpuc->constraint_list)
2799 			goto err_shared_regs;
2800 
2801 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2802 		if (!cpuc->excl_cntrs)
2803 			goto err_constraint_list;
2804 
2805 		cpuc->excl_thread_id = 0;
2806 	}
2807 
2808 	return NOTIFY_OK;
2809 
2810 err_constraint_list:
2811 	kfree(cpuc->constraint_list);
2812 	cpuc->constraint_list = NULL;
2813 
2814 err_shared_regs:
2815 	kfree(cpuc->shared_regs);
2816 	cpuc->shared_regs = NULL;
2817 
2818 err:
2819 	return NOTIFY_BAD;
2820 }
2821 
intel_pmu_cpu_starting(int cpu)2822 static void intel_pmu_cpu_starting(int cpu)
2823 {
2824 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2825 	int core_id = topology_core_id(cpu);
2826 	int i;
2827 
2828 	init_debug_store_on_cpu(cpu);
2829 	/*
2830 	 * Deal with CPUs that don't clear their LBRs on power-up.
2831 	 */
2832 	intel_pmu_lbr_reset();
2833 
2834 	cpuc->lbr_sel = NULL;
2835 
2836 	if (!cpuc->shared_regs)
2837 		return;
2838 
2839 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2840 		void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2841 
2842 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2843 			struct intel_shared_regs *pc;
2844 
2845 			pc = per_cpu(cpu_hw_events, i).shared_regs;
2846 			if (pc && pc->core_id == core_id) {
2847 				*onln = cpuc->shared_regs;
2848 				cpuc->shared_regs = pc;
2849 				break;
2850 			}
2851 		}
2852 		cpuc->shared_regs->core_id = core_id;
2853 		cpuc->shared_regs->refcnt++;
2854 	}
2855 
2856 	if (x86_pmu.lbr_sel_map)
2857 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2858 
2859 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2860 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2861 			struct intel_excl_cntrs *c;
2862 
2863 			c = per_cpu(cpu_hw_events, i).excl_cntrs;
2864 			if (c && c->core_id == core_id) {
2865 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2866 				cpuc->excl_cntrs = c;
2867 				cpuc->excl_thread_id = 1;
2868 				break;
2869 			}
2870 		}
2871 		cpuc->excl_cntrs->core_id = core_id;
2872 		cpuc->excl_cntrs->refcnt++;
2873 	}
2874 }
2875 
free_excl_cntrs(int cpu)2876 static void free_excl_cntrs(int cpu)
2877 {
2878 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2879 	struct intel_excl_cntrs *c;
2880 
2881 	c = cpuc->excl_cntrs;
2882 	if (c) {
2883 		if (c->core_id == -1 || --c->refcnt == 0)
2884 			kfree(c);
2885 		cpuc->excl_cntrs = NULL;
2886 		kfree(cpuc->constraint_list);
2887 		cpuc->constraint_list = NULL;
2888 	}
2889 }
2890 
intel_pmu_cpu_dying(int cpu)2891 static void intel_pmu_cpu_dying(int cpu)
2892 {
2893 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2894 	struct intel_shared_regs *pc;
2895 
2896 	pc = cpuc->shared_regs;
2897 	if (pc) {
2898 		if (pc->core_id == -1 || --pc->refcnt == 0)
2899 			kfree(pc);
2900 		cpuc->shared_regs = NULL;
2901 	}
2902 
2903 	free_excl_cntrs(cpu);
2904 
2905 	fini_debug_store_on_cpu(cpu);
2906 }
2907 
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2908 static void intel_pmu_sched_task(struct perf_event_context *ctx,
2909 				 bool sched_in)
2910 {
2911 	if (x86_pmu.pebs_active)
2912 		intel_pmu_pebs_sched_task(ctx, sched_in);
2913 	if (x86_pmu.lbr_nr)
2914 		intel_pmu_lbr_sched_task(ctx, sched_in);
2915 }
2916 
2917 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2918 
2919 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2920 
2921 PMU_FORMAT_ATTR(frontend, "config1:0-23");
2922 
2923 static struct attribute *intel_arch3_formats_attr[] = {
2924 	&format_attr_event.attr,
2925 	&format_attr_umask.attr,
2926 	&format_attr_edge.attr,
2927 	&format_attr_pc.attr,
2928 	&format_attr_any.attr,
2929 	&format_attr_inv.attr,
2930 	&format_attr_cmask.attr,
2931 	&format_attr_in_tx.attr,
2932 	&format_attr_in_tx_cp.attr,
2933 
2934 	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2935 	&format_attr_ldlat.attr, /* PEBS load latency */
2936 	NULL,
2937 };
2938 
2939 static struct attribute *skl_format_attr[] = {
2940 	&format_attr_frontend.attr,
2941 	NULL,
2942 };
2943 
2944 static __initconst const struct x86_pmu core_pmu = {
2945 	.name			= "core",
2946 	.handle_irq		= x86_pmu_handle_irq,
2947 	.disable_all		= x86_pmu_disable_all,
2948 	.enable_all		= core_pmu_enable_all,
2949 	.enable			= core_pmu_enable_event,
2950 	.disable		= x86_pmu_disable_event,
2951 	.hw_config		= x86_pmu_hw_config,
2952 	.schedule_events	= x86_schedule_events,
2953 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2954 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2955 	.event_map		= intel_pmu_event_map,
2956 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2957 	.apic			= 1,
2958 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
2959 
2960 	/*
2961 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
2962 	 * so we install an artificial 1<<31 period regardless of
2963 	 * the generic event period:
2964 	 */
2965 	.max_period		= (1ULL<<31) - 1,
2966 	.get_event_constraints	= intel_get_event_constraints,
2967 	.put_event_constraints	= intel_put_event_constraints,
2968 	.event_constraints	= intel_core_event_constraints,
2969 	.guest_get_msrs		= core_guest_get_msrs,
2970 	.format_attrs		= intel_arch_formats_attr,
2971 	.events_sysfs_show	= intel_event_sysfs_show,
2972 
2973 	/*
2974 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2975 	 * together with PMU version 1 and thus be using core_pmu with
2976 	 * shared_regs. We need following callbacks here to allocate
2977 	 * it properly.
2978 	 */
2979 	.cpu_prepare		= intel_pmu_cpu_prepare,
2980 	.cpu_starting		= intel_pmu_cpu_starting,
2981 	.cpu_dying		= intel_pmu_cpu_dying,
2982 };
2983 
2984 static __initconst const struct x86_pmu intel_pmu = {
2985 	.name			= "Intel",
2986 	.handle_irq		= intel_pmu_handle_irq,
2987 	.disable_all		= intel_pmu_disable_all,
2988 	.enable_all		= intel_pmu_enable_all,
2989 	.enable			= intel_pmu_enable_event,
2990 	.disable		= intel_pmu_disable_event,
2991 	.hw_config		= intel_pmu_hw_config,
2992 	.schedule_events	= x86_schedule_events,
2993 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
2994 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
2995 	.event_map		= intel_pmu_event_map,
2996 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
2997 	.apic			= 1,
2998 	.free_running_flags	= PEBS_FREERUNNING_FLAGS,
2999 	/*
3000 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
3001 	 * so we install an artificial 1<<31 period regardless of
3002 	 * the generic event period:
3003 	 */
3004 	.max_period		= (1ULL << 31) - 1,
3005 	.get_event_constraints	= intel_get_event_constraints,
3006 	.put_event_constraints	= intel_put_event_constraints,
3007 	.pebs_aliases		= intel_pebs_aliases_core2,
3008 
3009 	.format_attrs		= intel_arch3_formats_attr,
3010 	.events_sysfs_show	= intel_event_sysfs_show,
3011 
3012 	.cpu_prepare		= intel_pmu_cpu_prepare,
3013 	.cpu_starting		= intel_pmu_cpu_starting,
3014 	.cpu_dying		= intel_pmu_cpu_dying,
3015 	.guest_get_msrs		= intel_guest_get_msrs,
3016 	.sched_task		= intel_pmu_sched_task,
3017 };
3018 
intel_clovertown_quirk(void)3019 static __init void intel_clovertown_quirk(void)
3020 {
3021 	/*
3022 	 * PEBS is unreliable due to:
3023 	 *
3024 	 *   AJ67  - PEBS may experience CPL leaks
3025 	 *   AJ68  - PEBS PMI may be delayed by one event
3026 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3027 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3028 	 *
3029 	 * AJ67 could be worked around by restricting the OS/USR flags.
3030 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3031 	 *
3032 	 * AJ106 could possibly be worked around by not allowing LBR
3033 	 *       usage from PEBS, including the fixup.
3034 	 * AJ68  could possibly be worked around by always programming
3035 	 *	 a pebs_event_reset[0] value and coping with the lost events.
3036 	 *
3037 	 * But taken together it might just make sense to not enable PEBS on
3038 	 * these chips.
3039 	 */
3040 	pr_warn("PEBS disabled due to CPU errata\n");
3041 	x86_pmu.pebs = 0;
3042 	x86_pmu.pebs_constraints = NULL;
3043 }
3044 
intel_snb_pebs_broken(int cpu)3045 static int intel_snb_pebs_broken(int cpu)
3046 {
3047 	u32 rev = UINT_MAX; /* default to broken for unknown models */
3048 
3049 	switch (cpu_data(cpu).x86_model) {
3050 	case 42: /* SNB */
3051 		rev = 0x28;
3052 		break;
3053 
3054 	case 45: /* SNB-EP */
3055 		switch (cpu_data(cpu).x86_stepping) {
3056 		case 6: rev = 0x618; break;
3057 		case 7: rev = 0x70c; break;
3058 		}
3059 	}
3060 
3061 	return (cpu_data(cpu).microcode < rev);
3062 }
3063 
intel_snb_check_microcode(void)3064 static void intel_snb_check_microcode(void)
3065 {
3066 	int pebs_broken = 0;
3067 	int cpu;
3068 
3069 	get_online_cpus();
3070 	for_each_online_cpu(cpu) {
3071 		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3072 			break;
3073 	}
3074 	put_online_cpus();
3075 
3076 	if (pebs_broken == x86_pmu.pebs_broken)
3077 		return;
3078 
3079 	/*
3080 	 * Serialized by the microcode lock..
3081 	 */
3082 	if (x86_pmu.pebs_broken) {
3083 		pr_info("PEBS enabled due to microcode update\n");
3084 		x86_pmu.pebs_broken = 0;
3085 	} else {
3086 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3087 		x86_pmu.pebs_broken = 1;
3088 	}
3089 }
3090 
3091 /*
3092  * Under certain circumstances, access certain MSR may cause #GP.
3093  * The function tests if the input MSR can be safely accessed.
3094  */
check_msr(unsigned long msr,u64 mask)3095 static bool check_msr(unsigned long msr, u64 mask)
3096 {
3097 	u64 val_old, val_new, val_tmp;
3098 
3099 	/*
3100 	 * Read the current value, change it and read it back to see if it
3101 	 * matches, this is needed to detect certain hardware emulators
3102 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3103 	 */
3104 	if (rdmsrl_safe(msr, &val_old))
3105 		return false;
3106 
3107 	/*
3108 	 * Only change the bits which can be updated by wrmsrl.
3109 	 */
3110 	val_tmp = val_old ^ mask;
3111 	if (wrmsrl_safe(msr, val_tmp) ||
3112 	    rdmsrl_safe(msr, &val_new))
3113 		return false;
3114 
3115 	if (val_new != val_tmp)
3116 		return false;
3117 
3118 	/* Here it's sure that the MSR can be safely accessed.
3119 	 * Restore the old value and return.
3120 	 */
3121 	wrmsrl(msr, val_old);
3122 
3123 	return true;
3124 }
3125 
intel_sandybridge_quirk(void)3126 static __init void intel_sandybridge_quirk(void)
3127 {
3128 	x86_pmu.check_microcode = intel_snb_check_microcode;
3129 	intel_snb_check_microcode();
3130 }
3131 
3132 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3133 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3134 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3135 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3136 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3137 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3138 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3139 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3140 };
3141 
intel_arch_events_quirk(void)3142 static __init void intel_arch_events_quirk(void)
3143 {
3144 	int bit;
3145 
3146 	/* disable event that reported as not presend by cpuid */
3147 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3148 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3149 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
3150 			intel_arch_events_map[bit].name);
3151 	}
3152 }
3153 
intel_nehalem_quirk(void)3154 static __init void intel_nehalem_quirk(void)
3155 {
3156 	union cpuid10_ebx ebx;
3157 
3158 	ebx.full = x86_pmu.events_maskl;
3159 	if (ebx.split.no_branch_misses_retired) {
3160 		/*
3161 		 * Erratum AAJ80 detected, we work it around by using
3162 		 * the BR_MISP_EXEC.ANY event. This will over-count
3163 		 * branch-misses, but it's still much better than the
3164 		 * architectural event which is often completely bogus:
3165 		 */
3166 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3167 		ebx.split.no_branch_misses_retired = 0;
3168 		x86_pmu.events_maskl = ebx.full;
3169 		pr_info("CPU erratum AAJ80 worked around\n");
3170 	}
3171 }
3172 
3173 /*
3174  * enable software workaround for errata:
3175  * SNB: BJ122
3176  * IVB: BV98
3177  * HSW: HSD29
3178  *
3179  * Only needed when HT is enabled. However detecting
3180  * if HT is enabled is difficult (model specific). So instead,
3181  * we enable the workaround in the early boot, and verify if
3182  * it is needed in a later initcall phase once we have valid
3183  * topology information to check if HT is actually enabled
3184  */
intel_ht_bug(void)3185 static __init void intel_ht_bug(void)
3186 {
3187 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3188 
3189 	x86_pmu.start_scheduling = intel_start_scheduling;
3190 	x86_pmu.commit_scheduling = intel_commit_scheduling;
3191 	x86_pmu.stop_scheduling = intel_stop_scheduling;
3192 }
3193 
3194 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
3195 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
3196 
3197 /* Haswell special events */
3198 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
3199 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
3200 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
3201 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
3202 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
3203 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
3204 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
3205 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
3206 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
3207 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
3208 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
3209 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
3210 
3211 static struct attribute *hsw_events_attrs[] = {
3212 	EVENT_PTR(tx_start),
3213 	EVENT_PTR(tx_commit),
3214 	EVENT_PTR(tx_abort),
3215 	EVENT_PTR(tx_capacity),
3216 	EVENT_PTR(tx_conflict),
3217 	EVENT_PTR(el_start),
3218 	EVENT_PTR(el_commit),
3219 	EVENT_PTR(el_abort),
3220 	EVENT_PTR(el_capacity),
3221 	EVENT_PTR(el_conflict),
3222 	EVENT_PTR(cycles_t),
3223 	EVENT_PTR(cycles_ct),
3224 	EVENT_PTR(mem_ld_hsw),
3225 	EVENT_PTR(mem_st_hsw),
3226 	NULL
3227 };
3228 
intel_pmu_init(void)3229 __init int intel_pmu_init(void)
3230 {
3231 	union cpuid10_edx edx;
3232 	union cpuid10_eax eax;
3233 	union cpuid10_ebx ebx;
3234 	struct event_constraint *c;
3235 	unsigned int unused;
3236 	struct extra_reg *er;
3237 	int version, i;
3238 
3239 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3240 		switch (boot_cpu_data.x86) {
3241 		case 0x6:
3242 			return p6_pmu_init();
3243 		case 0xb:
3244 			return knc_pmu_init();
3245 		case 0xf:
3246 			return p4_pmu_init();
3247 		}
3248 		return -ENODEV;
3249 	}
3250 
3251 	/*
3252 	 * Check whether the Architectural PerfMon supports
3253 	 * Branch Misses Retired hw_event or not.
3254 	 */
3255 	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3256 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3257 		return -ENODEV;
3258 
3259 	version = eax.split.version_id;
3260 	if (version < 2)
3261 		x86_pmu = core_pmu;
3262 	else
3263 		x86_pmu = intel_pmu;
3264 
3265 	x86_pmu.version			= version;
3266 	x86_pmu.num_counters		= eax.split.num_counters;
3267 	x86_pmu.cntval_bits		= eax.split.bit_width;
3268 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
3269 
3270 	x86_pmu.events_maskl		= ebx.full;
3271 	x86_pmu.events_mask_len		= eax.split.mask_length;
3272 
3273 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3274 
3275 	/*
3276 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
3277 	 * assume at least 3 events:
3278 	 */
3279 	if (version > 1)
3280 		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3281 
3282 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
3283 		u64 capabilities;
3284 
3285 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3286 		x86_pmu.intel_cap.capabilities = capabilities;
3287 	}
3288 
3289 	intel_ds_init();
3290 
3291 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3292 
3293 	/*
3294 	 * Install the hw-cache-events table:
3295 	 */
3296 	switch (boot_cpu_data.x86_model) {
3297 	case 14: /* 65nm Core "Yonah" */
3298 		pr_cont("Core events, ");
3299 		break;
3300 
3301 	case 15: /* 65nm Core2 "Merom"          */
3302 		x86_add_quirk(intel_clovertown_quirk);
3303 	case 22: /* 65nm Core2 "Merom-L"        */
3304 	case 23: /* 45nm Core2 "Penryn"         */
3305 	case 29: /* 45nm Core2 "Dunnington (MP) */
3306 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3307 		       sizeof(hw_cache_event_ids));
3308 
3309 		intel_pmu_lbr_init_core();
3310 
3311 		x86_pmu.event_constraints = intel_core2_event_constraints;
3312 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3313 		pr_cont("Core2 events, ");
3314 		break;
3315 
3316 	case 30: /* 45nm Nehalem    */
3317 	case 26: /* 45nm Nehalem-EP */
3318 	case 46: /* 45nm Nehalem-EX */
3319 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3320 		       sizeof(hw_cache_event_ids));
3321 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3322 		       sizeof(hw_cache_extra_regs));
3323 
3324 		intel_pmu_lbr_init_nhm();
3325 
3326 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
3327 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3328 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3329 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
3330 
3331 		x86_pmu.cpu_events = nhm_events_attrs;
3332 
3333 		/* UOPS_ISSUED.STALLED_CYCLES */
3334 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3335 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3336 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3337 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3338 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3339 
3340 		intel_pmu_pebs_data_source_nhm();
3341 		x86_add_quirk(intel_nehalem_quirk);
3342 
3343 		pr_cont("Nehalem events, ");
3344 		break;
3345 
3346 	case 28: /* 45nm Atom "Pineview"   */
3347 	case 38: /* 45nm Atom "Lincroft"   */
3348 	case 39: /* 32nm Atom "Penwell"    */
3349 	case 53: /* 32nm Atom "Cloverview" */
3350 	case 54: /* 32nm Atom "Cedarview"  */
3351 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3352 		       sizeof(hw_cache_event_ids));
3353 
3354 		intel_pmu_lbr_init_atom();
3355 
3356 		x86_pmu.event_constraints = intel_gen_event_constraints;
3357 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3358 		pr_cont("Atom events, ");
3359 		break;
3360 
3361 	case 55: /* 22nm Atom "Silvermont"                */
3362 	case 76: /* 14nm Atom "Airmont"                   */
3363 	case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3364 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3365 			sizeof(hw_cache_event_ids));
3366 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3367 		       sizeof(hw_cache_extra_regs));
3368 
3369 		intel_pmu_lbr_init_atom();
3370 
3371 		x86_pmu.event_constraints = intel_slm_event_constraints;
3372 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3373 		x86_pmu.extra_regs = intel_slm_extra_regs;
3374 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3375 		pr_cont("Silvermont events, ");
3376 		break;
3377 
3378 	case 37: /* 32nm Westmere    */
3379 	case 44: /* 32nm Westmere-EP */
3380 	case 47: /* 32nm Westmere-EX */
3381 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3382 		       sizeof(hw_cache_event_ids));
3383 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3384 		       sizeof(hw_cache_extra_regs));
3385 
3386 		intel_pmu_lbr_init_nhm();
3387 
3388 		x86_pmu.event_constraints = intel_westmere_event_constraints;
3389 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3390 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3391 		x86_pmu.extra_regs = intel_westmere_extra_regs;
3392 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3393 
3394 		x86_pmu.cpu_events = nhm_events_attrs;
3395 
3396 		/* UOPS_ISSUED.STALLED_CYCLES */
3397 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3398 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3399 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3400 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3401 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3402 
3403 		intel_pmu_pebs_data_source_nhm();
3404 		pr_cont("Westmere events, ");
3405 		break;
3406 
3407 	case 42: /* 32nm SandyBridge         */
3408 	case 45: /* 32nm SandyBridge-E/EN/EP */
3409 		x86_add_quirk(intel_sandybridge_quirk);
3410 		x86_add_quirk(intel_ht_bug);
3411 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3412 		       sizeof(hw_cache_event_ids));
3413 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3414 		       sizeof(hw_cache_extra_regs));
3415 
3416 		intel_pmu_lbr_init_snb();
3417 
3418 		x86_pmu.event_constraints = intel_snb_event_constraints;
3419 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3420 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3421 		if (boot_cpu_data.x86_model == 45)
3422 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3423 		else
3424 			x86_pmu.extra_regs = intel_snb_extra_regs;
3425 
3426 
3427 		/* all extra regs are per-cpu when HT is on */
3428 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3429 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3430 
3431 		x86_pmu.cpu_events = snb_events_attrs;
3432 
3433 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3434 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3435 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3436 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3437 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3438 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3439 
3440 		pr_cont("SandyBridge events, ");
3441 		break;
3442 
3443 	case 58: /* 22nm IvyBridge       */
3444 	case 62: /* 22nm IvyBridge-EP/EX */
3445 		x86_add_quirk(intel_ht_bug);
3446 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3447 		       sizeof(hw_cache_event_ids));
3448 		/* dTLB-load-misses on IVB is different than SNB */
3449 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3450 
3451 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3452 		       sizeof(hw_cache_extra_regs));
3453 
3454 		intel_pmu_lbr_init_snb();
3455 
3456 		x86_pmu.event_constraints = intel_ivb_event_constraints;
3457 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3458 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3459 		if (boot_cpu_data.x86_model == 62)
3460 			x86_pmu.extra_regs = intel_snbep_extra_regs;
3461 		else
3462 			x86_pmu.extra_regs = intel_snb_extra_regs;
3463 		/* all extra regs are per-cpu when HT is on */
3464 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3465 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3466 
3467 		x86_pmu.cpu_events = snb_events_attrs;
3468 
3469 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3470 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3471 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3472 
3473 		pr_cont("IvyBridge events, ");
3474 		break;
3475 
3476 
3477 	case 60: /* 22nm Haswell Core */
3478 	case 63: /* 22nm Haswell Server */
3479 	case 69: /* 22nm Haswell ULT */
3480 	case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3481 		x86_add_quirk(intel_ht_bug);
3482 		x86_pmu.late_ack = true;
3483 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3484 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3485 
3486 		intel_pmu_lbr_init_hsw();
3487 
3488 		x86_pmu.event_constraints = intel_hsw_event_constraints;
3489 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3490 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3491 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3492 		/* all extra regs are per-cpu when HT is on */
3493 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3494 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3495 
3496 		x86_pmu.hw_config = hsw_hw_config;
3497 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3498 		x86_pmu.cpu_events = hsw_events_attrs;
3499 		x86_pmu.lbr_double_abort = true;
3500 		pr_cont("Haswell events, ");
3501 		break;
3502 
3503 	case 61: /* 14nm Broadwell Core-M */
3504 	case 86: /* 14nm Broadwell Xeon D */
3505 	case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3506 	case 79: /* 14nm Broadwell Server */
3507 		x86_pmu.late_ack = true;
3508 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3509 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3510 
3511 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3512 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3513 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
3514 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3515 									  HSW_SNOOP_DRAM;
3516 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3517 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3518 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3519 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3520 
3521 		intel_pmu_lbr_init_hsw();
3522 
3523 		x86_pmu.event_constraints = intel_bdw_event_constraints;
3524 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3525 		x86_pmu.extra_regs = intel_snbep_extra_regs;
3526 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3527 		/* all extra regs are per-cpu when HT is on */
3528 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3529 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3530 
3531 		x86_pmu.hw_config = hsw_hw_config;
3532 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3533 		x86_pmu.cpu_events = hsw_events_attrs;
3534 		x86_pmu.limit_period = bdw_limit_period;
3535 		pr_cont("Broadwell events, ");
3536 		break;
3537 
3538 	case 78: /* 14nm Skylake Mobile */
3539 	case 94: /* 14nm Skylake Desktop */
3540 		x86_pmu.late_ack = true;
3541 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3542 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3543 		intel_pmu_lbr_init_skl();
3544 
3545 		x86_pmu.event_constraints = intel_skl_event_constraints;
3546 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3547 		x86_pmu.extra_regs = intel_skl_extra_regs;
3548 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3549 		/* all extra regs are per-cpu when HT is on */
3550 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3551 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3552 
3553 		x86_pmu.hw_config = hsw_hw_config;
3554 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
3555 		x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3556 						  skl_format_attr);
3557 		WARN_ON(!x86_pmu.format_attrs);
3558 		x86_pmu.cpu_events = hsw_events_attrs;
3559 		pr_cont("Skylake events, ");
3560 		break;
3561 
3562 	default:
3563 		switch (x86_pmu.version) {
3564 		case 1:
3565 			x86_pmu.event_constraints = intel_v1_event_constraints;
3566 			pr_cont("generic architected perfmon v1, ");
3567 			break;
3568 		default:
3569 			/*
3570 			 * default constraints for v2 and up
3571 			 */
3572 			x86_pmu.event_constraints = intel_gen_event_constraints;
3573 			pr_cont("generic architected perfmon, ");
3574 			break;
3575 		}
3576 	}
3577 
3578 	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3579 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3580 		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3581 		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3582 	}
3583 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3584 
3585 	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3586 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3587 		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3588 		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3589 	}
3590 
3591 	x86_pmu.intel_ctrl |=
3592 		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3593 
3594 	if (x86_pmu.event_constraints) {
3595 		/*
3596 		 * event on fixed counter2 (REF_CYCLES) only works on this
3597 		 * counter, so do not extend mask to generic counters
3598 		 */
3599 		for_each_event_constraint(c, x86_pmu.event_constraints) {
3600 			if (c->cmask == FIXED_EVENT_FLAGS
3601 			    && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3602 				c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3603 			}
3604 			c->idxmsk64 &=
3605 				~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3606 			c->weight = hweight64(c->idxmsk64);
3607 		}
3608 	}
3609 
3610 	/*
3611 	 * Access LBR MSR may cause #GP under certain circumstances.
3612 	 * E.g. KVM doesn't support LBR MSR
3613 	 * Check all LBT MSR here.
3614 	 * Disable LBR access if any LBR MSRs can not be accessed.
3615 	 */
3616 	if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3617 		x86_pmu.lbr_nr = 0;
3618 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
3619 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3620 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3621 			x86_pmu.lbr_nr = 0;
3622 	}
3623 
3624 	/*
3625 	 * Access extra MSR may cause #GP under certain circumstances.
3626 	 * E.g. KVM doesn't support offcore event
3627 	 * Check all extra_regs here.
3628 	 */
3629 	if (x86_pmu.extra_regs) {
3630 		for (er = x86_pmu.extra_regs; er->msr; er++) {
3631 			er->extra_msr_access = check_msr(er->msr, 0x11UL);
3632 			/* Disable LBR select mapping */
3633 			if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3634 				x86_pmu.lbr_sel_map = NULL;
3635 		}
3636 	}
3637 
3638 	/* Support full width counters using alternative MSR range */
3639 	if (x86_pmu.intel_cap.full_width_write) {
3640 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
3641 		x86_pmu.perfctr = MSR_IA32_PMC0;
3642 		pr_cont("full-width counters, ");
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 /*
3649  * HT bug: phase 2 init
3650  * Called once we have valid topology information to check
3651  * whether or not HT is enabled
3652  * If HT is off, then we disable the workaround
3653  */
fixup_ht_bug(void)3654 static __init int fixup_ht_bug(void)
3655 {
3656 	int cpu = smp_processor_id();
3657 	int w, c;
3658 	/*
3659 	 * problem not present on this CPU model, nothing to do
3660 	 */
3661 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3662 		return 0;
3663 
3664 	w = cpumask_weight(topology_sibling_cpumask(cpu));
3665 	if (w > 1) {
3666 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3667 		return 0;
3668 	}
3669 
3670 	if (lockup_detector_suspend() != 0) {
3671 		pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3672 		return 0;
3673 	}
3674 
3675 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3676 
3677 	x86_pmu.start_scheduling = NULL;
3678 	x86_pmu.commit_scheduling = NULL;
3679 	x86_pmu.stop_scheduling = NULL;
3680 
3681 	lockup_detector_resume();
3682 
3683 	get_online_cpus();
3684 
3685 	for_each_online_cpu(c) {
3686 		free_excl_cntrs(c);
3687 	}
3688 
3689 	put_online_cpus();
3690 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3691 	return 0;
3692 }
3693 subsys_initcall(fixup_ht_bug)
3694