• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * DOC: Panel Self Refresh (PSR/SRD)
26  *
27  * Since Haswell Display controller supports Panel Self-Refresh on display
28  * panels witch have a remote frame buffer (RFB) implemented according to PSR
29  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30  * when system is idle but display is on as it eliminates display refresh
31  * request to DDR memory completely as long as the frame buffer for that
32  * display is unchanged.
33  *
34  * Panel Self Refresh must be supported by both Hardware (source) and
35  * Panel (sink).
36  *
37  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38  * to power down the link and memory controller. For DSI panels the same idea
39  * is called "manual mode".
40  *
41  * The implementation uses the hardware-based PSR support which automatically
42  * enters/exits self-refresh mode. The hardware takes care of sending the
43  * required DP aux message and could even retrain the link (that part isn't
44  * enabled yet though). The hardware also keeps track of any frontbuffer
45  * changes to know when to exit self-refresh mode again. Unfortunately that
46  * part doesn't work too well, hence why the i915 PSR support uses the
47  * software frontbuffer tracking to make sure it doesn't miss a screen
48  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49  * get called by the frontbuffer tracking code. Note that because of locking
50  * issues the self-refresh re-enable code is done from a work queue, which
51  * must be correctly synchronized/cancelled when shutting down the pipe."
52  */
53 
54 #include <drm/drmP.h>
55 
56 #include "intel_drv.h"
57 #include "i915_drv.h"
58 
is_edp_psr(struct intel_dp * intel_dp)59 static bool is_edp_psr(struct intel_dp *intel_dp)
60 {
61 	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
62 }
63 
vlv_is_psr_active_on_pipe(struct drm_device * dev,int pipe)64 static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
65 {
66 	struct drm_i915_private *dev_priv = dev->dev_private;
67 	uint32_t val;
68 
69 	val = I915_READ(VLV_PSRSTAT(pipe)) &
70 	      VLV_EDP_PSR_CURR_STATE_MASK;
71 	return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
72 	       (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
73 }
74 
intel_psr_write_vsc(struct intel_dp * intel_dp,const struct edp_vsc_psr * vsc_psr)75 static void intel_psr_write_vsc(struct intel_dp *intel_dp,
76 				const struct edp_vsc_psr *vsc_psr)
77 {
78 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
79 	struct drm_device *dev = dig_port->base.base.dev;
80 	struct drm_i915_private *dev_priv = dev->dev_private;
81 	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
82 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
83 	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
84 	uint32_t *data = (uint32_t *) vsc_psr;
85 	unsigned int i;
86 
87 	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
88 	   the video DIP being updated before program video DIP data buffer
89 	   registers for DIP being updated. */
90 	I915_WRITE(ctl_reg, 0);
91 	POSTING_READ(ctl_reg);
92 
93 	for (i = 0; i < sizeof(*vsc_psr); i += 4) {
94 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
95 						   i >> 2), *data);
96 		data++;
97 	}
98 	for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
99 		I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
100 						   i >> 2), 0);
101 
102 	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
103 	POSTING_READ(ctl_reg);
104 }
105 
vlv_psr_setup_vsc(struct intel_dp * intel_dp)106 static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
107 {
108 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
109 	struct drm_device *dev = intel_dig_port->base.base.dev;
110 	struct drm_i915_private *dev_priv = dev->dev_private;
111 	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
112 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
113 	uint32_t val;
114 
115 	/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
116 	val  = I915_READ(VLV_VSCSDP(pipe));
117 	val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
118 	val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
119 	I915_WRITE(VLV_VSCSDP(pipe), val);
120 }
121 
skl_psr_setup_su_vsc(struct intel_dp * intel_dp)122 static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
123 {
124 	struct edp_vsc_psr psr_vsc;
125 
126 	/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
127 	memset(&psr_vsc, 0, sizeof(psr_vsc));
128 	psr_vsc.sdp_header.HB0 = 0;
129 	psr_vsc.sdp_header.HB1 = 0x7;
130 	psr_vsc.sdp_header.HB2 = 0x3;
131 	psr_vsc.sdp_header.HB3 = 0xb;
132 	intel_psr_write_vsc(intel_dp, &psr_vsc);
133 }
134 
hsw_psr_setup_vsc(struct intel_dp * intel_dp)135 static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
136 {
137 	struct edp_vsc_psr psr_vsc;
138 
139 	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
140 	memset(&psr_vsc, 0, sizeof(psr_vsc));
141 	psr_vsc.sdp_header.HB0 = 0;
142 	psr_vsc.sdp_header.HB1 = 0x7;
143 	psr_vsc.sdp_header.HB2 = 0x2;
144 	psr_vsc.sdp_header.HB3 = 0x8;
145 	intel_psr_write_vsc(intel_dp, &psr_vsc);
146 }
147 
vlv_psr_enable_sink(struct intel_dp * intel_dp)148 static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
149 {
150 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
151 			   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
152 }
153 
hsw_psr_enable_sink(struct intel_dp * intel_dp)154 static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
155 {
156 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
157 	struct drm_device *dev = dig_port->base.base.dev;
158 	struct drm_i915_private *dev_priv = dev->dev_private;
159 	uint32_t aux_clock_divider;
160 	uint32_t aux_data_reg, aux_ctl_reg;
161 	int precharge = 0x3;
162 	static const uint8_t aux_msg[] = {
163 		[0] = DP_AUX_NATIVE_WRITE << 4,
164 		[1] = DP_SET_POWER >> 8,
165 		[2] = DP_SET_POWER & 0xff,
166 		[3] = 1 - 1,
167 		[4] = DP_SET_POWER_D0,
168 	};
169 	int i;
170 
171 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
172 
173 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
174 
175 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
176 			   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
177 
178 	/* Enable AUX frame sync at sink */
179 	if (dev_priv->psr.aux_frame_sync)
180 		drm_dp_dpcd_writeb(&intel_dp->aux,
181 				DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
182 				DP_AUX_FRAME_SYNC_ENABLE);
183 
184 	aux_data_reg = (INTEL_INFO(dev)->gen >= 9) ?
185 				DPA_AUX_CH_DATA1 : EDP_PSR_AUX_DATA1(dev);
186 	aux_ctl_reg = (INTEL_INFO(dev)->gen >= 9) ?
187 				DPA_AUX_CH_CTL : EDP_PSR_AUX_CTL(dev);
188 
189 	/* Setup AUX registers */
190 	for (i = 0; i < sizeof(aux_msg); i += 4)
191 		I915_WRITE(aux_data_reg + i,
192 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
193 
194 	if (INTEL_INFO(dev)->gen >= 9) {
195 		uint32_t val;
196 
197 		val = I915_READ(aux_ctl_reg);
198 		val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
199 		val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
200 		val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
201 		val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
202 		/* Use hardcoded data values for PSR, frame sync and GTC */
203 		val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
204 		val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
205 		val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
206 		I915_WRITE(aux_ctl_reg, val);
207 	} else {
208 		I915_WRITE(aux_ctl_reg,
209 		   DP_AUX_CH_CTL_TIME_OUT_400us |
210 		   (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
211 		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
212 		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
213 	}
214 
215 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE);
216 }
217 
vlv_psr_enable_source(struct intel_dp * intel_dp)218 static void vlv_psr_enable_source(struct intel_dp *intel_dp)
219 {
220 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
221 	struct drm_device *dev = dig_port->base.base.dev;
222 	struct drm_i915_private *dev_priv = dev->dev_private;
223 	struct drm_crtc *crtc = dig_port->base.base.crtc;
224 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
225 
226 	/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
227 	I915_WRITE(VLV_PSRCTL(pipe),
228 		   VLV_EDP_PSR_MODE_SW_TIMER |
229 		   VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
230 		   VLV_EDP_PSR_ENABLE);
231 }
232 
vlv_psr_activate(struct intel_dp * intel_dp)233 static void vlv_psr_activate(struct intel_dp *intel_dp)
234 {
235 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
236 	struct drm_device *dev = dig_port->base.base.dev;
237 	struct drm_i915_private *dev_priv = dev->dev_private;
238 	struct drm_crtc *crtc = dig_port->base.base.crtc;
239 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
240 
241 	/* Let's do the transition from PSR_state 1 to PSR_state 2
242 	 * that is PSR transition to active - static frame transmission.
243 	 * Then Hardware is responsible for the transition to PSR_state 3
244 	 * that is PSR active - no Remote Frame Buffer (RFB) update.
245 	 */
246 	I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
247 		   VLV_EDP_PSR_ACTIVE_ENTRY);
248 }
249 
hsw_psr_enable_source(struct intel_dp * intel_dp)250 static void hsw_psr_enable_source(struct intel_dp *intel_dp)
251 {
252 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
253 	struct drm_device *dev = dig_port->base.base.dev;
254 	struct drm_i915_private *dev_priv = dev->dev_private;
255 
256 	uint32_t max_sleep_time = 0x1f;
257 	/* Lately it was identified that depending on panel idle frame count
258 	 * calculated at HW can be off by 1. So let's use what came
259 	 * from VBT + 1.
260 	 * There are also other cases where panel demands at least 4
261 	 * but VBT is not being set. To cover these 2 cases lets use
262 	 * at least 5 when VBT isn't set to be on the safest side.
263 	 */
264 	uint32_t idle_frames = dev_priv->vbt.psr.idle_frames ?
265 			       dev_priv->vbt.psr.idle_frames + 1 : 5;
266 	uint32_t val = 0x0;
267 	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
268 
269 	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
270 		/* It doesn't mean we shouldn't send TPS patters, so let's
271 		   send the minimal TP1 possible and skip TP2. */
272 		val |= EDP_PSR_TP1_TIME_100us;
273 		val |= EDP_PSR_TP2_TP3_TIME_0us;
274 		val |= EDP_PSR_SKIP_AUX_EXIT;
275 		/* Sink should be able to train with the 5 or 6 idle patterns */
276 		idle_frames += 4;
277 	}
278 
279 	I915_WRITE(EDP_PSR_CTL(dev), val |
280 		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
281 		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
282 		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
283 		   EDP_PSR_ENABLE);
284 
285 	if (dev_priv->psr.psr2_support)
286 		I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
287 				EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
288 }
289 
intel_psr_match_conditions(struct intel_dp * intel_dp)290 static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
291 {
292 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
293 	struct drm_device *dev = dig_port->base.base.dev;
294 	struct drm_i915_private *dev_priv = dev->dev_private;
295 	struct drm_crtc *crtc = dig_port->base.base.crtc;
296 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
297 
298 	lockdep_assert_held(&dev_priv->psr.lock);
299 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
300 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
301 
302 	dev_priv->psr.source_ok = false;
303 
304 	if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
305 		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
306 		return false;
307 	}
308 
309 	if (!i915.enable_psr) {
310 		DRM_DEBUG_KMS("PSR disable by flag\n");
311 		return false;
312 	}
313 
314 	if (IS_HASWELL(dev) &&
315 	    I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
316 		      S3D_ENABLE) {
317 		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
318 		return false;
319 	}
320 
321 	if (IS_HASWELL(dev) &&
322 	    intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
323 		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
324 		return false;
325 	}
326 
327 	if (!IS_VALLEYVIEW(dev) && ((dev_priv->vbt.psr.full_link) ||
328 				    (dig_port->port != PORT_A))) {
329 		DRM_DEBUG_KMS("PSR condition failed: Link Standby requested/needed but not supported on this platform\n");
330 		return false;
331 	}
332 
333 	dev_priv->psr.source_ok = true;
334 	return true;
335 }
336 
intel_psr_activate(struct intel_dp * intel_dp)337 static void intel_psr_activate(struct intel_dp *intel_dp)
338 {
339 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
340 	struct drm_device *dev = intel_dig_port->base.base.dev;
341 	struct drm_i915_private *dev_priv = dev->dev_private;
342 
343 	WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
344 	WARN_ON(dev_priv->psr.active);
345 	lockdep_assert_held(&dev_priv->psr.lock);
346 
347 	/* Enable/Re-enable PSR on the host */
348 	if (HAS_DDI(dev))
349 		/* On HSW+ after we enable PSR on source it will activate it
350 		 * as soon as it match configure idle_frame count. So
351 		 * we just actually enable it here on activation time.
352 		 */
353 		hsw_psr_enable_source(intel_dp);
354 	else
355 		vlv_psr_activate(intel_dp);
356 
357 	dev_priv->psr.active = true;
358 }
359 
360 /**
361  * intel_psr_enable - Enable PSR
362  * @intel_dp: Intel DP
363  *
364  * This function can only be called after the pipe is fully trained and enabled.
365  */
intel_psr_enable(struct intel_dp * intel_dp)366 void intel_psr_enable(struct intel_dp *intel_dp)
367 {
368 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
369 	struct drm_device *dev = intel_dig_port->base.base.dev;
370 	struct drm_i915_private *dev_priv = dev->dev_private;
371 	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
372 
373 	if (!HAS_PSR(dev)) {
374 		DRM_DEBUG_KMS("PSR not supported on this platform\n");
375 		return;
376 	}
377 
378 	if (!is_edp_psr(intel_dp)) {
379 		DRM_DEBUG_KMS("PSR not supported by this panel\n");
380 		return;
381 	}
382 
383 	mutex_lock(&dev_priv->psr.lock);
384 	if (dev_priv->psr.enabled) {
385 		DRM_DEBUG_KMS("PSR already in use\n");
386 		goto unlock;
387 	}
388 
389 	if (!intel_psr_match_conditions(intel_dp))
390 		goto unlock;
391 
392 	dev_priv->psr.busy_frontbuffer_bits = 0;
393 
394 	if (HAS_DDI(dev)) {
395 		hsw_psr_setup_vsc(intel_dp);
396 
397 		if (dev_priv->psr.psr2_support) {
398 			/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
399 			if (crtc->config->pipe_src_w > 3200 ||
400 				crtc->config->pipe_src_h > 2000)
401 				dev_priv->psr.psr2_support = false;
402 			else
403 				skl_psr_setup_su_vsc(intel_dp);
404 		}
405 
406 		/* Avoid continuous PSR exit by masking memup and hpd */
407 		I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
408 			   EDP_PSR_DEBUG_MASK_HPD);
409 
410 		/* Enable PSR on the panel */
411 		hsw_psr_enable_sink(intel_dp);
412 
413 		if (INTEL_INFO(dev)->gen >= 9)
414 			intel_psr_activate(intel_dp);
415 	} else {
416 		vlv_psr_setup_vsc(intel_dp);
417 
418 		/* Enable PSR on the panel */
419 		vlv_psr_enable_sink(intel_dp);
420 
421 		/* On HSW+ enable_source also means go to PSR entry/active
422 		 * state as soon as idle_frame achieved and here would be
423 		 * to soon. However on VLV enable_source just enable PSR
424 		 * but let it on inactive state. So we might do this prior
425 		 * to active transition, i.e. here.
426 		 */
427 		vlv_psr_enable_source(intel_dp);
428 	}
429 
430 	dev_priv->psr.enabled = intel_dp;
431 unlock:
432 	mutex_unlock(&dev_priv->psr.lock);
433 }
434 
vlv_psr_disable(struct intel_dp * intel_dp)435 static void vlv_psr_disable(struct intel_dp *intel_dp)
436 {
437 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
438 	struct drm_device *dev = intel_dig_port->base.base.dev;
439 	struct drm_i915_private *dev_priv = dev->dev_private;
440 	struct intel_crtc *intel_crtc =
441 		to_intel_crtc(intel_dig_port->base.base.crtc);
442 	uint32_t val;
443 
444 	if (dev_priv->psr.active) {
445 		/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
446 		if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
447 			      VLV_EDP_PSR_IN_TRANS) == 0, 1))
448 			WARN(1, "PSR transition took longer than expected\n");
449 
450 		val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
451 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
452 		val &= ~VLV_EDP_PSR_ENABLE;
453 		val &= ~VLV_EDP_PSR_MODE_MASK;
454 		I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
455 
456 		dev_priv->psr.active = false;
457 	} else {
458 		WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
459 	}
460 }
461 
hsw_psr_disable(struct intel_dp * intel_dp)462 static void hsw_psr_disable(struct intel_dp *intel_dp)
463 {
464 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 	struct drm_device *dev = intel_dig_port->base.base.dev;
466 	struct drm_i915_private *dev_priv = dev->dev_private;
467 
468 	if (dev_priv->psr.active) {
469 		I915_WRITE(EDP_PSR_CTL(dev),
470 			   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
471 
472 		/* Wait till PSR is idle */
473 		if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
474 			       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
475 			DRM_ERROR("Timed out waiting for PSR Idle State\n");
476 
477 		dev_priv->psr.active = false;
478 	} else {
479 		WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
480 	}
481 }
482 
483 /**
484  * intel_psr_disable - Disable PSR
485  * @intel_dp: Intel DP
486  *
487  * This function needs to be called before disabling pipe.
488  */
intel_psr_disable(struct intel_dp * intel_dp)489 void intel_psr_disable(struct intel_dp *intel_dp)
490 {
491 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
492 	struct drm_device *dev = intel_dig_port->base.base.dev;
493 	struct drm_i915_private *dev_priv = dev->dev_private;
494 
495 	mutex_lock(&dev_priv->psr.lock);
496 	if (!dev_priv->psr.enabled) {
497 		mutex_unlock(&dev_priv->psr.lock);
498 		return;
499 	}
500 
501 	if (HAS_DDI(dev))
502 		hsw_psr_disable(intel_dp);
503 	else
504 		vlv_psr_disable(intel_dp);
505 
506 	dev_priv->psr.enabled = NULL;
507 	mutex_unlock(&dev_priv->psr.lock);
508 
509 	cancel_delayed_work_sync(&dev_priv->psr.work);
510 }
511 
intel_psr_work(struct work_struct * work)512 static void intel_psr_work(struct work_struct *work)
513 {
514 	struct drm_i915_private *dev_priv =
515 		container_of(work, typeof(*dev_priv), psr.work.work);
516 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
517 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
518 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
519 
520 	/* We have to make sure PSR is ready for re-enable
521 	 * otherwise it keeps disabled until next full enable/disable cycle.
522 	 * PSR might take some time to get fully disabled
523 	 * and be ready for re-enable.
524 	 */
525 	if (HAS_DDI(dev_priv->dev)) {
526 		if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
527 			      EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
528 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
529 			return;
530 		}
531 	} else {
532 		if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
533 			      VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
534 			DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
535 			return;
536 		}
537 	}
538 	mutex_lock(&dev_priv->psr.lock);
539 	intel_dp = dev_priv->psr.enabled;
540 
541 	if (!intel_dp)
542 		goto unlock;
543 
544 	/*
545 	 * The delayed work can race with an invalidate hence we need to
546 	 * recheck. Since psr_flush first clears this and then reschedules we
547 	 * won't ever miss a flush when bailing out here.
548 	 */
549 	if (dev_priv->psr.busy_frontbuffer_bits)
550 		goto unlock;
551 
552 	intel_psr_activate(intel_dp);
553 unlock:
554 	mutex_unlock(&dev_priv->psr.lock);
555 }
556 
intel_psr_exit(struct drm_device * dev)557 static void intel_psr_exit(struct drm_device *dev)
558 {
559 	struct drm_i915_private *dev_priv = dev->dev_private;
560 	struct intel_dp *intel_dp = dev_priv->psr.enabled;
561 	struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
562 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
563 	u32 val;
564 
565 	if (!dev_priv->psr.active)
566 		return;
567 
568 	if (HAS_DDI(dev)) {
569 		val = I915_READ(EDP_PSR_CTL(dev));
570 
571 		WARN_ON(!(val & EDP_PSR_ENABLE));
572 
573 		I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
574 	} else {
575 		val = I915_READ(VLV_PSRCTL(pipe));
576 
577 		/* Here we do the transition from PSR_state 3 to PSR_state 5
578 		 * directly once PSR State 4 that is active with single frame
579 		 * update can be skipped. PSR_state 5 that is PSR exit then
580 		 * Hardware is responsible to transition back to PSR_state 1
581 		 * that is PSR inactive. Same state after
582 		 * vlv_edp_psr_enable_source.
583 		 */
584 		val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
585 		I915_WRITE(VLV_PSRCTL(pipe), val);
586 
587 		/* Send AUX wake up - Spec says after transitioning to PSR
588 		 * active we have to send AUX wake up by writing 01h in DPCD
589 		 * 600h of sink device.
590 		 * XXX: This might slow down the transition, but without this
591 		 * HW doesn't complete the transition to PSR_state 1 and we
592 		 * never get the screen updated.
593 		 */
594 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
595 				   DP_SET_POWER_D0);
596 	}
597 
598 	dev_priv->psr.active = false;
599 }
600 
601 /**
602  * intel_psr_single_frame_update - Single Frame Update
603  * @dev: DRM device
604  * @frontbuffer_bits: frontbuffer plane tracking bits
605  *
606  * Some platforms support a single frame update feature that is used to
607  * send and update only one frame on Remote Frame Buffer.
608  * So far it is only implemented for Valleyview and Cherryview because
609  * hardware requires this to be done before a page flip.
610  */
intel_psr_single_frame_update(struct drm_device * dev,unsigned frontbuffer_bits)611 void intel_psr_single_frame_update(struct drm_device *dev,
612 				   unsigned frontbuffer_bits)
613 {
614 	struct drm_i915_private *dev_priv = dev->dev_private;
615 	struct drm_crtc *crtc;
616 	enum pipe pipe;
617 	u32 val;
618 
619 	/*
620 	 * Single frame update is already supported on BDW+ but it requires
621 	 * many W/A and it isn't really needed.
622 	 */
623 	if (!IS_VALLEYVIEW(dev))
624 		return;
625 
626 	mutex_lock(&dev_priv->psr.lock);
627 	if (!dev_priv->psr.enabled) {
628 		mutex_unlock(&dev_priv->psr.lock);
629 		return;
630 	}
631 
632 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
633 	pipe = to_intel_crtc(crtc)->pipe;
634 
635 	if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
636 		val = I915_READ(VLV_PSRCTL(pipe));
637 
638 		/*
639 		 * We need to set this bit before writing registers for a flip.
640 		 * This bit will be self-clear when it gets to the PSR active state.
641 		 */
642 		I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
643 	}
644 	mutex_unlock(&dev_priv->psr.lock);
645 }
646 
647 /**
648  * intel_psr_invalidate - Invalidade PSR
649  * @dev: DRM device
650  * @frontbuffer_bits: frontbuffer plane tracking bits
651  *
652  * Since the hardware frontbuffer tracking has gaps we need to integrate
653  * with the software frontbuffer tracking. This function gets called every
654  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
655  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
656  *
657  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
658  */
intel_psr_invalidate(struct drm_device * dev,unsigned frontbuffer_bits)659 void intel_psr_invalidate(struct drm_device *dev,
660 			  unsigned frontbuffer_bits)
661 {
662 	struct drm_i915_private *dev_priv = dev->dev_private;
663 	struct drm_crtc *crtc;
664 	enum pipe pipe;
665 
666 	mutex_lock(&dev_priv->psr.lock);
667 	if (!dev_priv->psr.enabled) {
668 		mutex_unlock(&dev_priv->psr.lock);
669 		return;
670 	}
671 
672 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
673 	pipe = to_intel_crtc(crtc)->pipe;
674 
675 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
676 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
677 
678 	if (frontbuffer_bits)
679 		intel_psr_exit(dev);
680 
681 	mutex_unlock(&dev_priv->psr.lock);
682 }
683 
684 /**
685  * intel_psr_flush - Flush PSR
686  * @dev: DRM device
687  * @frontbuffer_bits: frontbuffer plane tracking bits
688  * @origin: which operation caused the flush
689  *
690  * Since the hardware frontbuffer tracking has gaps we need to integrate
691  * with the software frontbuffer tracking. This function gets called every
692  * time frontbuffer rendering has completed and flushed out to memory. PSR
693  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
694  *
695  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
696  */
intel_psr_flush(struct drm_device * dev,unsigned frontbuffer_bits,enum fb_op_origin origin)697 void intel_psr_flush(struct drm_device *dev,
698 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
699 {
700 	struct drm_i915_private *dev_priv = dev->dev_private;
701 	struct drm_crtc *crtc;
702 	enum pipe pipe;
703 	int delay_ms = HAS_DDI(dev) ? 100 : 500;
704 
705 	mutex_lock(&dev_priv->psr.lock);
706 	if (!dev_priv->psr.enabled) {
707 		mutex_unlock(&dev_priv->psr.lock);
708 		return;
709 	}
710 
711 	crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
712 	pipe = to_intel_crtc(crtc)->pipe;
713 
714 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
715 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
716 
717 	if (HAS_DDI(dev)) {
718 		/*
719 		 * By definition every flush should mean invalidate + flush,
720 		 * however on core platforms let's minimize the
721 		 * disable/re-enable so we can avoid the invalidate when flip
722 		 * originated the flush.
723 		 */
724 		if (frontbuffer_bits && origin != ORIGIN_FLIP)
725 			intel_psr_exit(dev);
726 	} else {
727 		/*
728 		 * On Valleyview and Cherryview we don't use hardware tracking
729 		 * so any plane updates or cursor moves don't result in a PSR
730 		 * invalidating. Which means we need to manually fake this in
731 		 * software for all flushes.
732 		 */
733 		if (frontbuffer_bits)
734 			intel_psr_exit(dev);
735 	}
736 
737 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
738 		schedule_delayed_work(&dev_priv->psr.work,
739 				      msecs_to_jiffies(delay_ms));
740 	mutex_unlock(&dev_priv->psr.lock);
741 }
742 
743 /**
744  * intel_psr_init - Init basic PSR work and mutex.
745  * @dev: DRM device
746  *
747  * This function is  called only once at driver load to initialize basic
748  * PSR stuff.
749  */
intel_psr_init(struct drm_device * dev)750 void intel_psr_init(struct drm_device *dev)
751 {
752 	struct drm_i915_private *dev_priv = dev->dev_private;
753 
754 	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
755 	mutex_init(&dev_priv->psr.lock);
756 }
757