• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3  *
4  * (C) Copyright 2008-2010,2015 Intel Corporation
5  * Author: Sreedhara DS (sreedhara.ds@intel.com)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * SCU running in ARC processor communicates with other entity running in IA
13  * core through IPC mechanism which in turn messaging between IA core ad SCU.
14  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17  * along with other APIs.
18  */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/intel-mid.h>
29 #include <asm/intel_scu_ipc.h>
30 
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */
37 
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W      0 /* Register write */
40 #define IPC_CMD_PCNTRL_R      1 /* Register read */
41 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
42 
43 /*
44  * IPC register summary
45  *
46  * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
47  * To read or write information to the SCU, driver writes to IPC-1 memory
48  * mapped registers. The following is the IPC mechanism
49  *
50  * 1. IA core cDMI interface claims this transaction and converts it to a
51  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
52  *
53  * 2. South Complex cDMI block receives this message and writes it to
54  *    the IPC-1 register block, causing an interrupt to the SCU
55  *
56  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
57  *    message handler is called within firmware.
58  */
59 
60 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
61 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
62 #define IPC_IOC	          0x100		/* IPC command register IOC bit */
63 
64 #define PCI_DEVICE_ID_LINCROFT		0x082a
65 #define PCI_DEVICE_ID_PENWELL		0x080e
66 #define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
67 #define PCI_DEVICE_ID_TANGIER		0x11a0
68 
69 /* intel scu ipc driver data */
70 struct intel_scu_ipc_pdata_t {
71 	u32 i2c_base;
72 	u32 i2c_len;
73 	u8 irq_mode;
74 };
75 
76 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
77 	.i2c_base = 0xff12b000,
78 	.i2c_len = 0x10,
79 	.irq_mode = 0,
80 };
81 
82 /* Penwell and Cloverview */
83 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
84 	.i2c_base = 0xff12b000,
85 	.i2c_len = 0x10,
86 	.irq_mode = 1,
87 };
88 
89 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
90 	.i2c_base  = 0xff00d000,
91 	.i2c_len = 0x10,
92 	.irq_mode = 0,
93 };
94 
95 struct intel_scu_ipc_dev {
96 	struct device *dev;
97 	void __iomem *ipc_base;
98 	void __iomem *i2c_base;
99 	struct completion cmd_complete;
100 	u8 irq_mode;
101 };
102 
103 static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */
104 
105 /*
106  * IPC Read Buffer (Read Only):
107  * 16 byte buffer for receiving data from SCU, if IPC command
108  * processing results in response data
109  */
110 #define IPC_READ_BUFFER		0x90
111 
112 #define IPC_I2C_CNTRL_ADDR	0
113 #define I2C_DATA_ADDR		0x04
114 
115 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
116 
117 /*
118  * Send ipc command
119  * Command Register (Write Only):
120  * A write to this register results in an interrupt to the SCU core processor
121  * Format:
122  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
123  */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)124 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
125 {
126 	if (scu->irq_mode) {
127 		reinit_completion(&scu->cmd_complete);
128 		writel(cmd | IPC_IOC, scu->ipc_base);
129 	}
130 	writel(cmd, scu->ipc_base);
131 }
132 
133 /*
134  * Write ipc data
135  * IPC Write Buffer (Write Only):
136  * 16-byte buffer for sending data associated with IPC command to
137  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
138  */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)139 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
140 {
141 	writel(data, scu->ipc_base + 0x80 + offset);
142 }
143 
144 /*
145  * Status Register (Read Only):
146  * Driver will read this register to get the ready/busy status of the IPC
147  * block and error status of the IPC command that was just processed by SCU
148  * Format:
149  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
150  */
ipc_read_status(struct intel_scu_ipc_dev * scu)151 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
152 {
153 	return __raw_readl(scu->ipc_base + 0x04);
154 }
155 
156 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)157 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
158 {
159 	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
160 }
161 
162 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)163 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
164 {
165 	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
166 }
167 
168 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)169 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
170 {
171 	u32 status = ipc_read_status(scu);
172 	u32 loop_count = 100000;
173 
174 	/* break if scu doesn't reset busy bit after huge retry */
175 	while ((status & BIT(0)) && --loop_count) {
176 		udelay(1); /* scu processing time is in few u secods */
177 		status = ipc_read_status(scu);
178 	}
179 
180 	if (status & BIT(0)) {
181 		dev_err(scu->dev, "IPC timed out");
182 		return -ETIMEDOUT;
183 	}
184 
185 	if (status & BIT(1))
186 		return -EIO;
187 
188 	return 0;
189 }
190 
191 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)192 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
193 {
194 	int status;
195 
196 	if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
197 		dev_err(scu->dev, "IPC timed out\n");
198 		return -ETIMEDOUT;
199 	}
200 
201 	status = ipc_read_status(scu);
202 	if (status & BIT(1))
203 		return -EIO;
204 
205 	return 0;
206 }
207 
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)208 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
209 {
210 	return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
211 }
212 
213 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)214 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
215 {
216 	struct intel_scu_ipc_dev *scu = &ipcdev;
217 	int nc;
218 	u32 offset = 0;
219 	int err;
220 	u8 cbuf[IPC_WWBUF_SIZE];
221 	u32 *wbuf = (u32 *)&cbuf;
222 
223 	memset(cbuf, 0, sizeof(cbuf));
224 
225 	mutex_lock(&ipclock);
226 
227 	if (scu->dev == NULL) {
228 		mutex_unlock(&ipclock);
229 		return -ENODEV;
230 	}
231 
232 	for (nc = 0; nc < count; nc++, offset += 2) {
233 		cbuf[offset] = addr[nc];
234 		cbuf[offset + 1] = addr[nc] >> 8;
235 	}
236 
237 	if (id == IPC_CMD_PCNTRL_R) {
238 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
239 			ipc_data_writel(scu, wbuf[nc], offset);
240 		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
241 	} else if (id == IPC_CMD_PCNTRL_W) {
242 		for (nc = 0; nc < count; nc++, offset += 1)
243 			cbuf[offset] = data[nc];
244 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
245 			ipc_data_writel(scu, wbuf[nc], offset);
246 		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
247 	} else if (id == IPC_CMD_PCNTRL_M) {
248 		cbuf[offset] = data[0];
249 		cbuf[offset + 1] = data[1];
250 		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
251 		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
252 	}
253 
254 	err = intel_scu_ipc_check_status(scu);
255 	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
256 		/* Workaround: values are read as 0 without memcpy_fromio */
257 		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
258 		for (nc = 0; nc < count; nc++)
259 			data[nc] = ipc_data_readb(scu, nc);
260 	}
261 	mutex_unlock(&ipclock);
262 	return err;
263 }
264 
265 /**
266  *	intel_scu_ipc_ioread8		-	read a word via the SCU
267  *	@addr: register on SCU
268  *	@data: return pointer for read byte
269  *
270  *	Read a single register. Returns 0 on success or an error code. All
271  *	locking between SCU accesses is handled for the caller.
272  *
273  *	This function may sleep.
274  */
intel_scu_ipc_ioread8(u16 addr,u8 * data)275 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
276 {
277 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
278 }
279 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
280 
281 /**
282  *	intel_scu_ipc_ioread16		-	read a word via the SCU
283  *	@addr: register on SCU
284  *	@data: return pointer for read word
285  *
286  *	Read a register pair. Returns 0 on success or an error code. All
287  *	locking between SCU accesses is handled for the caller.
288  *
289  *	This function may sleep.
290  */
intel_scu_ipc_ioread16(u16 addr,u16 * data)291 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
292 {
293 	u16 x[2] = {addr, addr + 1};
294 	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
295 }
296 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
297 
298 /**
299  *	intel_scu_ipc_ioread32		-	read a dword via the SCU
300  *	@addr: register on SCU
301  *	@data: return pointer for read dword
302  *
303  *	Read four registers. Returns 0 on success or an error code. All
304  *	locking between SCU accesses is handled for the caller.
305  *
306  *	This function may sleep.
307  */
intel_scu_ipc_ioread32(u16 addr,u32 * data)308 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
309 {
310 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
311 	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
312 }
313 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
314 
315 /**
316  *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
317  *	@addr: register on SCU
318  *	@data: byte to write
319  *
320  *	Write a single register. Returns 0 on success or an error code. All
321  *	locking between SCU accesses is handled for the caller.
322  *
323  *	This function may sleep.
324  */
intel_scu_ipc_iowrite8(u16 addr,u8 data)325 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
326 {
327 	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
328 }
329 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
330 
331 /**
332  *	intel_scu_ipc_iowrite16		-	write a word via the SCU
333  *	@addr: register on SCU
334  *	@data: word to write
335  *
336  *	Write two registers. Returns 0 on success or an error code. All
337  *	locking between SCU accesses is handled for the caller.
338  *
339  *	This function may sleep.
340  */
intel_scu_ipc_iowrite16(u16 addr,u16 data)341 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
342 {
343 	u16 x[2] = {addr, addr + 1};
344 	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
345 }
346 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
347 
348 /**
349  *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
350  *	@addr: register on SCU
351  *	@data: dword to write
352  *
353  *	Write four registers. Returns 0 on success or an error code. All
354  *	locking between SCU accesses is handled for the caller.
355  *
356  *	This function may sleep.
357  */
intel_scu_ipc_iowrite32(u16 addr,u32 data)358 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
359 {
360 	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
361 	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
362 }
363 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
364 
365 /**
366  *	intel_scu_ipc_readvv		-	read a set of registers
367  *	@addr: register list
368  *	@data: bytes to return
369  *	@len: length of array
370  *
371  *	Read registers. Returns 0 on success or an error code. All
372  *	locking between SCU accesses is handled for the caller.
373  *
374  *	The largest array length permitted by the hardware is 5 items.
375  *
376  *	This function may sleep.
377  */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)378 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
379 {
380 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
381 }
382 EXPORT_SYMBOL(intel_scu_ipc_readv);
383 
384 /**
385  *	intel_scu_ipc_writev		-	write a set of registers
386  *	@addr: register list
387  *	@data: bytes to write
388  *	@len: length of array
389  *
390  *	Write registers. Returns 0 on success or an error code. All
391  *	locking between SCU accesses is handled for the caller.
392  *
393  *	The largest array length permitted by the hardware is 5 items.
394  *
395  *	This function may sleep.
396  *
397  */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)398 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
399 {
400 	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
401 }
402 EXPORT_SYMBOL(intel_scu_ipc_writev);
403 
404 /**
405  *	intel_scu_ipc_update_register	-	r/m/w a register
406  *	@addr: register address
407  *	@bits: bits to update
408  *	@mask: mask of bits to update
409  *
410  *	Read-modify-write power control unit register. The first data argument
411  *	must be register value and second is mask value
412  *	mask is a bitmap that indicates which bits to update.
413  *	0 = masked. Don't modify this bit, 1 = modify this bit.
414  *	returns 0 on success or an error code.
415  *
416  *	This function may sleep. Locking between SCU accesses is handled
417  *	for the caller.
418  */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)419 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
420 {
421 	u8 data[2] = { bits, mask };
422 	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
423 }
424 EXPORT_SYMBOL(intel_scu_ipc_update_register);
425 
426 /**
427  *	intel_scu_ipc_simple_command	-	send a simple command
428  *	@cmd: command
429  *	@sub: sub type
430  *
431  *	Issue a simple command to the SCU. Do not use this interface if
432  *	you must then access data as any data values may be overwritten
433  *	by another SCU access by the time this function returns.
434  *
435  *	This function may sleep. Locking for SCU accesses is handled for
436  *	the caller.
437  */
intel_scu_ipc_simple_command(int cmd,int sub)438 int intel_scu_ipc_simple_command(int cmd, int sub)
439 {
440 	struct intel_scu_ipc_dev *scu = &ipcdev;
441 	int err;
442 
443 	mutex_lock(&ipclock);
444 	if (scu->dev == NULL) {
445 		mutex_unlock(&ipclock);
446 		return -ENODEV;
447 	}
448 	ipc_command(scu, sub << 12 | cmd);
449 	err = intel_scu_ipc_check_status(scu);
450 	mutex_unlock(&ipclock);
451 	return err;
452 }
453 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
454 
455 /**
456  *	intel_scu_ipc_command	-	command with data
457  *	@cmd: command
458  *	@sub: sub type
459  *	@in: input data
460  *	@inlen: input length in dwords
461  *	@out: output data
462  *	@outlein: output length in dwords
463  *
464  *	Issue a command to the SCU which involves data transfers. Do the
465  *	data copies under the lock but leave it for the caller to interpret
466  */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)467 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
468 			  u32 *out, int outlen)
469 {
470 	struct intel_scu_ipc_dev *scu = &ipcdev;
471 	int i, err;
472 
473 	mutex_lock(&ipclock);
474 	if (scu->dev == NULL) {
475 		mutex_unlock(&ipclock);
476 		return -ENODEV;
477 	}
478 
479 	for (i = 0; i < inlen; i++)
480 		ipc_data_writel(scu, *in++, 4 * i);
481 
482 	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
483 	err = intel_scu_ipc_check_status(scu);
484 
485 	if (!err) {
486 		for (i = 0; i < outlen; i++)
487 			*out++ = ipc_data_readl(scu, 4 * i);
488 	}
489 
490 	mutex_unlock(&ipclock);
491 	return err;
492 }
493 EXPORT_SYMBOL(intel_scu_ipc_command);
494 
495 /* I2C commands */
496 #define IPC_I2C_WRITE 1 /* I2C Write command */
497 #define IPC_I2C_READ  2 /* I2C Read command */
498 
499 /**
500  *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
501  *	@addr: I2C address + command bits
502  *	@data: data to read/write
503  *
504  *	Perform an an I2C read/write operation via the SCU. All locking is
505  *	handled for the caller. This function may sleep.
506  *
507  *	Returns an error code or 0 on success.
508  *
509  *	This has to be in the IPC driver for the locking.
510  */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)511 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
512 {
513 	struct intel_scu_ipc_dev *scu = &ipcdev;
514 	u32 cmd = 0;
515 
516 	mutex_lock(&ipclock);
517 	if (scu->dev == NULL) {
518 		mutex_unlock(&ipclock);
519 		return -ENODEV;
520 	}
521 	cmd = (addr >> 24) & 0xFF;
522 	if (cmd == IPC_I2C_READ) {
523 		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
524 		/* Write not getting updated without delay */
525 		mdelay(1);
526 		*data = readl(scu->i2c_base + I2C_DATA_ADDR);
527 	} else if (cmd == IPC_I2C_WRITE) {
528 		writel(*data, scu->i2c_base + I2C_DATA_ADDR);
529 		mdelay(1);
530 		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
531 	} else {
532 		dev_err(scu->dev,
533 			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
534 
535 		mutex_unlock(&ipclock);
536 		return -EIO;
537 	}
538 	mutex_unlock(&ipclock);
539 	return 0;
540 }
541 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
542 
543 /*
544  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
545  * When ioc bit is set to 1, caller api must wait for interrupt handler called
546  * which in turn unlocks the caller api. Currently this is not used
547  *
548  * This is edge triggered so we need take no action to clear anything
549  */
ioc(int irq,void * dev_id)550 static irqreturn_t ioc(int irq, void *dev_id)
551 {
552 	struct intel_scu_ipc_dev *scu = dev_id;
553 
554 	if (scu->irq_mode)
555 		complete(&scu->cmd_complete);
556 
557 	return IRQ_HANDLED;
558 }
559 
560 /**
561  *	ipc_probe	-	probe an Intel SCU IPC
562  *	@pdev: the PCI device matching
563  *	@id: entry in the match table
564  *
565  *	Enable and install an intel SCU IPC. This appears in the PCI space
566  *	but uses some hard coded addresses as well.
567  */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)568 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
569 {
570 	int platform;		/* Platform type */
571 	int err;
572 	struct intel_scu_ipc_dev *scu = &ipcdev;
573 	struct intel_scu_ipc_pdata_t *pdata;
574 
575 	platform = intel_mid_identify_cpu();
576 	if (platform == 0)
577 		return -ENODEV;
578 
579 	if (scu->dev)		/* We support only one SCU */
580 		return -EBUSY;
581 
582 	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
583 
584 	scu->dev = &pdev->dev;
585 	scu->irq_mode = pdata->irq_mode;
586 
587 	err = pcim_enable_device(pdev);
588 	if (err)
589 		return err;
590 
591 	err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
592 	if (err)
593 		return err;
594 
595 	init_completion(&scu->cmd_complete);
596 
597 	err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
598 			       scu);
599 	if (err)
600 		return err;
601 
602 	scu->ipc_base = pcim_iomap_table(pdev)[0];
603 
604 	scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
605 	if (!scu->i2c_base)
606 		return -ENOMEM;
607 
608 	intel_scu_devices_create();
609 
610 	pci_set_drvdata(pdev, scu);
611 	return 0;
612 }
613 
614 /**
615  *	ipc_remove	-	remove a bound IPC device
616  *	@pdev: PCI device
617  *
618  *	In practice the SCU is not removable but this function is also
619  *	called for each device on a module unload or cleanup which is the
620  *	path that will get used.
621  *
622  *	Free up the mappings and release the PCI resources
623  */
ipc_remove(struct pci_dev * pdev)624 static void ipc_remove(struct pci_dev *pdev)
625 {
626 	struct intel_scu_ipc_dev *scu = pci_get_drvdata(pdev);
627 
628 	mutex_lock(&ipclock);
629 	scu->dev = NULL;
630 	mutex_unlock(&ipclock);
631 
632 	iounmap(scu->i2c_base);
633 	intel_scu_devices_destroy();
634 }
635 
636 static const struct pci_device_id pci_ids[] = {
637 	{
638 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
639 		(kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
640 	}, {
641 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
642 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
643 	}, {
644 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
645 		(kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
646 	}, {
647 		PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
648 		(kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
649 	}, {
650 		0,
651 	}
652 };
653 MODULE_DEVICE_TABLE(pci, pci_ids);
654 
655 static struct pci_driver ipc_driver = {
656 	.name = "intel_scu_ipc",
657 	.id_table = pci_ids,
658 	.probe = ipc_probe,
659 	.remove = ipc_remove,
660 };
661 
662 module_pci_driver(ipc_driver);
663 
664 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
665 MODULE_DESCRIPTION("Intel SCU IPC driver");
666 MODULE_LICENSE("GPL");
667