1 /*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010,2015 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/intel-mid.h>
29 #include <asm/intel_scu_ipc.h>
30
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
37
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W 0 /* Register write */
40 #define IPC_CMD_PCNTRL_R 1 /* Register read */
41 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
42
43 /*
44 * IPC register summary
45 *
46 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
47 * To read or write information to the SCU, driver writes to IPC-1 memory
48 * mapped registers. The following is the IPC mechanism
49 *
50 * 1. IA core cDMI interface claims this transaction and converts it to a
51 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
52 *
53 * 2. South Complex cDMI block receives this message and writes it to
54 * the IPC-1 register block, causing an interrupt to the SCU
55 *
56 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
57 * message handler is called within firmware.
58 */
59
60 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
61 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
62 #define IPC_IOC 0x100 /* IPC command register IOC bit */
63
64 #define PCI_DEVICE_ID_LINCROFT 0x082a
65 #define PCI_DEVICE_ID_PENWELL 0x080e
66 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea
67 #define PCI_DEVICE_ID_TANGIER 0x11a0
68
69 /* intel scu ipc driver data */
70 struct intel_scu_ipc_pdata_t {
71 u32 i2c_base;
72 u32 i2c_len;
73 u8 irq_mode;
74 };
75
76 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
77 .i2c_base = 0xff12b000,
78 .i2c_len = 0x10,
79 .irq_mode = 0,
80 };
81
82 /* Penwell and Cloverview */
83 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
84 .i2c_base = 0xff12b000,
85 .i2c_len = 0x10,
86 .irq_mode = 1,
87 };
88
89 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
90 .i2c_base = 0xff00d000,
91 .i2c_len = 0x10,
92 .irq_mode = 0,
93 };
94
95 struct intel_scu_ipc_dev {
96 struct device *dev;
97 void __iomem *ipc_base;
98 void __iomem *i2c_base;
99 struct completion cmd_complete;
100 u8 irq_mode;
101 };
102
103 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
104
105 /*
106 * IPC Read Buffer (Read Only):
107 * 16 byte buffer for receiving data from SCU, if IPC command
108 * processing results in response data
109 */
110 #define IPC_READ_BUFFER 0x90
111
112 #define IPC_I2C_CNTRL_ADDR 0
113 #define I2C_DATA_ADDR 0x04
114
115 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
116
117 /*
118 * Send ipc command
119 * Command Register (Write Only):
120 * A write to this register results in an interrupt to the SCU core processor
121 * Format:
122 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
123 */
ipc_command(struct intel_scu_ipc_dev * scu,u32 cmd)124 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
125 {
126 if (scu->irq_mode) {
127 reinit_completion(&scu->cmd_complete);
128 writel(cmd | IPC_IOC, scu->ipc_base);
129 }
130 writel(cmd, scu->ipc_base);
131 }
132
133 /*
134 * Write ipc data
135 * IPC Write Buffer (Write Only):
136 * 16-byte buffer for sending data associated with IPC command to
137 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
138 */
ipc_data_writel(struct intel_scu_ipc_dev * scu,u32 data,u32 offset)139 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
140 {
141 writel(data, scu->ipc_base + 0x80 + offset);
142 }
143
144 /*
145 * Status Register (Read Only):
146 * Driver will read this register to get the ready/busy status of the IPC
147 * block and error status of the IPC command that was just processed by SCU
148 * Format:
149 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
150 */
ipc_read_status(struct intel_scu_ipc_dev * scu)151 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
152 {
153 return __raw_readl(scu->ipc_base + 0x04);
154 }
155
156 /* Read ipc byte data */
ipc_data_readb(struct intel_scu_ipc_dev * scu,u32 offset)157 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
158 {
159 return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
160 }
161
162 /* Read ipc u32 data */
ipc_data_readl(struct intel_scu_ipc_dev * scu,u32 offset)163 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
164 {
165 return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
166 }
167
168 /* Wait till scu status is busy */
busy_loop(struct intel_scu_ipc_dev * scu)169 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
170 {
171 u32 status = ipc_read_status(scu);
172 u32 loop_count = 100000;
173
174 /* break if scu doesn't reset busy bit after huge retry */
175 while ((status & BIT(0)) && --loop_count) {
176 udelay(1); /* scu processing time is in few u secods */
177 status = ipc_read_status(scu);
178 }
179
180 if (status & BIT(0)) {
181 dev_err(scu->dev, "IPC timed out");
182 return -ETIMEDOUT;
183 }
184
185 if (status & BIT(1))
186 return -EIO;
187
188 return 0;
189 }
190
191 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
ipc_wait_for_interrupt(struct intel_scu_ipc_dev * scu)192 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
193 {
194 int status;
195
196 if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
197 dev_err(scu->dev, "IPC timed out\n");
198 return -ETIMEDOUT;
199 }
200
201 status = ipc_read_status(scu);
202 if (status & BIT(1))
203 return -EIO;
204
205 return 0;
206 }
207
intel_scu_ipc_check_status(struct intel_scu_ipc_dev * scu)208 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
209 {
210 return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
211 }
212
213 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
pwr_reg_rdwr(u16 * addr,u8 * data,u32 count,u32 op,u32 id)214 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
215 {
216 struct intel_scu_ipc_dev *scu = &ipcdev;
217 int nc;
218 u32 offset = 0;
219 int err;
220 u8 cbuf[IPC_WWBUF_SIZE];
221 u32 *wbuf = (u32 *)&cbuf;
222
223 memset(cbuf, 0, sizeof(cbuf));
224
225 mutex_lock(&ipclock);
226
227 if (scu->dev == NULL) {
228 mutex_unlock(&ipclock);
229 return -ENODEV;
230 }
231
232 for (nc = 0; nc < count; nc++, offset += 2) {
233 cbuf[offset] = addr[nc];
234 cbuf[offset + 1] = addr[nc] >> 8;
235 }
236
237 if (id == IPC_CMD_PCNTRL_R) {
238 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
239 ipc_data_writel(scu, wbuf[nc], offset);
240 ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
241 } else if (id == IPC_CMD_PCNTRL_W) {
242 for (nc = 0; nc < count; nc++, offset += 1)
243 cbuf[offset] = data[nc];
244 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
245 ipc_data_writel(scu, wbuf[nc], offset);
246 ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
247 } else if (id == IPC_CMD_PCNTRL_M) {
248 cbuf[offset] = data[0];
249 cbuf[offset + 1] = data[1];
250 ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
251 ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
252 }
253
254 err = intel_scu_ipc_check_status(scu);
255 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
256 /* Workaround: values are read as 0 without memcpy_fromio */
257 memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
258 for (nc = 0; nc < count; nc++)
259 data[nc] = ipc_data_readb(scu, nc);
260 }
261 mutex_unlock(&ipclock);
262 return err;
263 }
264
265 /**
266 * intel_scu_ipc_ioread8 - read a word via the SCU
267 * @addr: register on SCU
268 * @data: return pointer for read byte
269 *
270 * Read a single register. Returns 0 on success or an error code. All
271 * locking between SCU accesses is handled for the caller.
272 *
273 * This function may sleep.
274 */
intel_scu_ipc_ioread8(u16 addr,u8 * data)275 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
276 {
277 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
278 }
279 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
280
281 /**
282 * intel_scu_ipc_ioread16 - read a word via the SCU
283 * @addr: register on SCU
284 * @data: return pointer for read word
285 *
286 * Read a register pair. Returns 0 on success or an error code. All
287 * locking between SCU accesses is handled for the caller.
288 *
289 * This function may sleep.
290 */
intel_scu_ipc_ioread16(u16 addr,u16 * data)291 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
292 {
293 u16 x[2] = {addr, addr + 1};
294 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
295 }
296 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
297
298 /**
299 * intel_scu_ipc_ioread32 - read a dword via the SCU
300 * @addr: register on SCU
301 * @data: return pointer for read dword
302 *
303 * Read four registers. Returns 0 on success or an error code. All
304 * locking between SCU accesses is handled for the caller.
305 *
306 * This function may sleep.
307 */
intel_scu_ipc_ioread32(u16 addr,u32 * data)308 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
309 {
310 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
311 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
312 }
313 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
314
315 /**
316 * intel_scu_ipc_iowrite8 - write a byte via the SCU
317 * @addr: register on SCU
318 * @data: byte to write
319 *
320 * Write a single register. Returns 0 on success or an error code. All
321 * locking between SCU accesses is handled for the caller.
322 *
323 * This function may sleep.
324 */
intel_scu_ipc_iowrite8(u16 addr,u8 data)325 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
326 {
327 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
328 }
329 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
330
331 /**
332 * intel_scu_ipc_iowrite16 - write a word via the SCU
333 * @addr: register on SCU
334 * @data: word to write
335 *
336 * Write two registers. Returns 0 on success or an error code. All
337 * locking between SCU accesses is handled for the caller.
338 *
339 * This function may sleep.
340 */
intel_scu_ipc_iowrite16(u16 addr,u16 data)341 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
342 {
343 u16 x[2] = {addr, addr + 1};
344 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
345 }
346 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
347
348 /**
349 * intel_scu_ipc_iowrite32 - write a dword via the SCU
350 * @addr: register on SCU
351 * @data: dword to write
352 *
353 * Write four registers. Returns 0 on success or an error code. All
354 * locking between SCU accesses is handled for the caller.
355 *
356 * This function may sleep.
357 */
intel_scu_ipc_iowrite32(u16 addr,u32 data)358 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
359 {
360 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
361 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
362 }
363 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
364
365 /**
366 * intel_scu_ipc_readvv - read a set of registers
367 * @addr: register list
368 * @data: bytes to return
369 * @len: length of array
370 *
371 * Read registers. Returns 0 on success or an error code. All
372 * locking between SCU accesses is handled for the caller.
373 *
374 * The largest array length permitted by the hardware is 5 items.
375 *
376 * This function may sleep.
377 */
intel_scu_ipc_readv(u16 * addr,u8 * data,int len)378 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
379 {
380 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
381 }
382 EXPORT_SYMBOL(intel_scu_ipc_readv);
383
384 /**
385 * intel_scu_ipc_writev - write a set of registers
386 * @addr: register list
387 * @data: bytes to write
388 * @len: length of array
389 *
390 * Write registers. Returns 0 on success or an error code. All
391 * locking between SCU accesses is handled for the caller.
392 *
393 * The largest array length permitted by the hardware is 5 items.
394 *
395 * This function may sleep.
396 *
397 */
intel_scu_ipc_writev(u16 * addr,u8 * data,int len)398 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
399 {
400 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
401 }
402 EXPORT_SYMBOL(intel_scu_ipc_writev);
403
404 /**
405 * intel_scu_ipc_update_register - r/m/w a register
406 * @addr: register address
407 * @bits: bits to update
408 * @mask: mask of bits to update
409 *
410 * Read-modify-write power control unit register. The first data argument
411 * must be register value and second is mask value
412 * mask is a bitmap that indicates which bits to update.
413 * 0 = masked. Don't modify this bit, 1 = modify this bit.
414 * returns 0 on success or an error code.
415 *
416 * This function may sleep. Locking between SCU accesses is handled
417 * for the caller.
418 */
intel_scu_ipc_update_register(u16 addr,u8 bits,u8 mask)419 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
420 {
421 u8 data[2] = { bits, mask };
422 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
423 }
424 EXPORT_SYMBOL(intel_scu_ipc_update_register);
425
426 /**
427 * intel_scu_ipc_simple_command - send a simple command
428 * @cmd: command
429 * @sub: sub type
430 *
431 * Issue a simple command to the SCU. Do not use this interface if
432 * you must then access data as any data values may be overwritten
433 * by another SCU access by the time this function returns.
434 *
435 * This function may sleep. Locking for SCU accesses is handled for
436 * the caller.
437 */
intel_scu_ipc_simple_command(int cmd,int sub)438 int intel_scu_ipc_simple_command(int cmd, int sub)
439 {
440 struct intel_scu_ipc_dev *scu = &ipcdev;
441 int err;
442
443 mutex_lock(&ipclock);
444 if (scu->dev == NULL) {
445 mutex_unlock(&ipclock);
446 return -ENODEV;
447 }
448 ipc_command(scu, sub << 12 | cmd);
449 err = intel_scu_ipc_check_status(scu);
450 mutex_unlock(&ipclock);
451 return err;
452 }
453 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
454
455 /**
456 * intel_scu_ipc_command - command with data
457 * @cmd: command
458 * @sub: sub type
459 * @in: input data
460 * @inlen: input length in dwords
461 * @out: output data
462 * @outlein: output length in dwords
463 *
464 * Issue a command to the SCU which involves data transfers. Do the
465 * data copies under the lock but leave it for the caller to interpret
466 */
intel_scu_ipc_command(int cmd,int sub,u32 * in,int inlen,u32 * out,int outlen)467 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
468 u32 *out, int outlen)
469 {
470 struct intel_scu_ipc_dev *scu = &ipcdev;
471 int i, err;
472
473 mutex_lock(&ipclock);
474 if (scu->dev == NULL) {
475 mutex_unlock(&ipclock);
476 return -ENODEV;
477 }
478
479 for (i = 0; i < inlen; i++)
480 ipc_data_writel(scu, *in++, 4 * i);
481
482 ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
483 err = intel_scu_ipc_check_status(scu);
484
485 if (!err) {
486 for (i = 0; i < outlen; i++)
487 *out++ = ipc_data_readl(scu, 4 * i);
488 }
489
490 mutex_unlock(&ipclock);
491 return err;
492 }
493 EXPORT_SYMBOL(intel_scu_ipc_command);
494
495 /* I2C commands */
496 #define IPC_I2C_WRITE 1 /* I2C Write command */
497 #define IPC_I2C_READ 2 /* I2C Read command */
498
499 /**
500 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
501 * @addr: I2C address + command bits
502 * @data: data to read/write
503 *
504 * Perform an an I2C read/write operation via the SCU. All locking is
505 * handled for the caller. This function may sleep.
506 *
507 * Returns an error code or 0 on success.
508 *
509 * This has to be in the IPC driver for the locking.
510 */
intel_scu_ipc_i2c_cntrl(u32 addr,u32 * data)511 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
512 {
513 struct intel_scu_ipc_dev *scu = &ipcdev;
514 u32 cmd = 0;
515
516 mutex_lock(&ipclock);
517 if (scu->dev == NULL) {
518 mutex_unlock(&ipclock);
519 return -ENODEV;
520 }
521 cmd = (addr >> 24) & 0xFF;
522 if (cmd == IPC_I2C_READ) {
523 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
524 /* Write not getting updated without delay */
525 mdelay(1);
526 *data = readl(scu->i2c_base + I2C_DATA_ADDR);
527 } else if (cmd == IPC_I2C_WRITE) {
528 writel(*data, scu->i2c_base + I2C_DATA_ADDR);
529 mdelay(1);
530 writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
531 } else {
532 dev_err(scu->dev,
533 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
534
535 mutex_unlock(&ipclock);
536 return -EIO;
537 }
538 mutex_unlock(&ipclock);
539 return 0;
540 }
541 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
542
543 /*
544 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
545 * When ioc bit is set to 1, caller api must wait for interrupt handler called
546 * which in turn unlocks the caller api. Currently this is not used
547 *
548 * This is edge triggered so we need take no action to clear anything
549 */
ioc(int irq,void * dev_id)550 static irqreturn_t ioc(int irq, void *dev_id)
551 {
552 struct intel_scu_ipc_dev *scu = dev_id;
553
554 if (scu->irq_mode)
555 complete(&scu->cmd_complete);
556
557 return IRQ_HANDLED;
558 }
559
560 /**
561 * ipc_probe - probe an Intel SCU IPC
562 * @pdev: the PCI device matching
563 * @id: entry in the match table
564 *
565 * Enable and install an intel SCU IPC. This appears in the PCI space
566 * but uses some hard coded addresses as well.
567 */
ipc_probe(struct pci_dev * pdev,const struct pci_device_id * id)568 static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
569 {
570 int platform; /* Platform type */
571 int err;
572 struct intel_scu_ipc_dev *scu = &ipcdev;
573 struct intel_scu_ipc_pdata_t *pdata;
574
575 platform = intel_mid_identify_cpu();
576 if (platform == 0)
577 return -ENODEV;
578
579 if (scu->dev) /* We support only one SCU */
580 return -EBUSY;
581
582 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
583
584 scu->dev = &pdev->dev;
585 scu->irq_mode = pdata->irq_mode;
586
587 err = pcim_enable_device(pdev);
588 if (err)
589 return err;
590
591 err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
592 if (err)
593 return err;
594
595 init_completion(&scu->cmd_complete);
596
597 err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
598 scu);
599 if (err)
600 return err;
601
602 scu->ipc_base = pcim_iomap_table(pdev)[0];
603
604 scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
605 if (!scu->i2c_base)
606 return -ENOMEM;
607
608 intel_scu_devices_create();
609
610 pci_set_drvdata(pdev, scu);
611 return 0;
612 }
613
614 /**
615 * ipc_remove - remove a bound IPC device
616 * @pdev: PCI device
617 *
618 * In practice the SCU is not removable but this function is also
619 * called for each device on a module unload or cleanup which is the
620 * path that will get used.
621 *
622 * Free up the mappings and release the PCI resources
623 */
ipc_remove(struct pci_dev * pdev)624 static void ipc_remove(struct pci_dev *pdev)
625 {
626 struct intel_scu_ipc_dev *scu = pci_get_drvdata(pdev);
627
628 mutex_lock(&ipclock);
629 scu->dev = NULL;
630 mutex_unlock(&ipclock);
631
632 iounmap(scu->i2c_base);
633 intel_scu_devices_destroy();
634 }
635
636 static const struct pci_device_id pci_ids[] = {
637 {
638 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
639 (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
640 }, {
641 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
642 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
643 }, {
644 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
645 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
646 }, {
647 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
648 (kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
649 }, {
650 0,
651 }
652 };
653 MODULE_DEVICE_TABLE(pci, pci_ids);
654
655 static struct pci_driver ipc_driver = {
656 .name = "intel_scu_ipc",
657 .id_table = pci_ids,
658 .probe = ipc_probe,
659 .remove = ipc_remove,
660 };
661
662 module_pci_driver(ipc_driver);
663
664 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
665 MODULE_DESCRIPTION("Intel SCU IPC driver");
666 MODULE_LICENSE("GPL");
667